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We consider the numerical solution of an inverse problem of finding the shape and location 
of holes in an elastic body. The problem is solved by minimizing a functional depending 
on the eigenvalues and traces of corresponding eigenmodes. We use the adjoint method to 
calculate the shape derivative of this functional. The optimization is performed by BFGS, 
using a genetic algorithm as a preprocessor and the Method of Fundamental Solutions as a 
solver for the direct problem. We address several numerical simulations that illustrate the 
good performance of the method.
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1. Introduction

The goal of this paper is to develop an inverse method, both analytical and numerical, for detecting the shape of un-
known holes inside an elastic body. Free vibrations of this body are considered. Physical measurements on the eigenvalues 
and on the traces of the eigenmodes on a certain part of the exterior boundary are used as input data in the process of 
recovering the shape(s) of the hole(s).

The existing approaches in the literature focus on matching the measured eigenvalues (see e.g. [14,15,20]) but the infor-
mation coming from the eigenmodes is not taken into account. An exception is [21] where measurements on eigenmodes 
are used in order to detect damaged zones in a concrete dam, by a free material approach.

In the present work the shapes of the holes are recovered through a shape optimization procedure, namely, by minimiz-
ing the objective functional (3) in Section 2, which is a least square distance between the computed eigenvalues/eigenmodes 
and the measured ones.

In Section 3, the shape derivative of the objective functional is computed, which requires the shape derivatives of the 
eigenvalues and eigenmodes. An essential tool is the adjoint method which has been adapted to the current framework. To 
our knowledge, this is the first time when the shape derivative of a functional depending on eigenmodes is computed.

The direct problem, that is, the computation of eigenvalues and eigenmodes for given shape(s) of hole(s), is done through 
the Method of Fundamental Solutions (MFS), see Section 4. This is a meshless method which builds the solution as a convo-
lution of fundamental solutions centered at chosen points located outside the domain. This ensures that the state equation 
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Fig. 1. The boundaries for the problem of detecting an inclusion V .

is satisfied exactly, while the boundary conditions will be satisfied only approximately. Choosing an initial guess turns out 
to be a delicate question since our approach does not allow for topology changes during the optimization procedure. To 
avoid these difficulties, at a first step we use a genetic algorithm to provide a good initial guess.

In Section 5, three numerical examples are presented. The first one consists in detecting the shape of one hole included 
in a square elastic body with measurements of five eigenvalues and eigenmodes on one side of the square. In the second 
example three holes are to be detected in a rectangular body having measurements of five eigenvalues and the traces of the 
eigenmodes on three sides of the rectangle. In the last example we consider the same domain as in example 2, but use just 
one eigenvalue and the measurements of the trace of the corresponding eigenmode on a smaller part of the boundary.

2. Problem formulation

Let � ⊂ R
2 be a bounded domain. The boundary is made of two disjoint parts �D and �N , respectively with Dirichlet 

and Neumann boundary conditions. Denote by V ⊂ � an inclusion which is unknown (Fig. 1).
Given the specific mass ρ and the elastic tensor C , we consider the eigenvalue problem⎧⎪⎨

⎪⎩
∇ · σ(u) + ρ�u = 0 in �\V ,

u = 0, on �D ,

σ (u)n = 0 on �N ∪ ∂V ,

(1)

where

σ(u) = Cε(u)

and

ε(u) = 1

2

(
∇u + ∇uT

)
.

On the current domain � \ V , the variational formulation of (1) writes∫
�\V

C ε(u) ε(v)dx = �

∫
�\V

ρ u v dx ,

which can be written in component notation as:∫
�\V

Cijkl ui, j vk,l dx = �

∫
�\V

ρ ui vidx. (2)

In the above, ui, j denotes the partial derivative of the ui component in the direction x j . We have used Einstein’s summation 
convention and the symmetry properties of the fourth order tensor C . Assuming that the body is isotropic and has the Lamé 
coefficients λ and μ, the elastic tensor is defined by

Cξ = λ(trξ)I + 2μξ

for all symmetric matrices ξ .
We will denote the eigenvalues by 0 < �1(�) ≤ �2(�) ≤ ... where each �q(�) is counted with its multiplicity and the 

corresponding (normalized) eigenfunctions by uq , q = 1, 2, ....
In this context we define the direct problem: Given the inclusion V , we want to compute the first N eigensolutions (

�q, uq
)
, q = 1, ..., N .

On the space L2(� \ V )2, we shall consider the norm ‖ · ‖L2
ρ

, induced by the following inner product associated to the 
function ρ ∈ L∞(� \ V ) representing the specific mass (ρ(x) ≥ ρ0 > 0 almost everywhere in � \ V ):
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(u, v) 
→
∫

�\V

ρ u · v dx .

In the inverse problem, we assume that we know the first N eigenvalues �̃q and the traces ũq of the corresponding 
eigenfunctions on �m , �m being a subset of �N . Given this data we want to recover the shape and size of the hole(s). The 
quantities �̃q and ũq are to be measured experimentally; however, in the present work we compute them by solving the 
direct problem for a certain target inclusion Ṽ . The optimization process consists in the minimization of the functional

J (� \ V ) =
N∑

q=1

∣∣�q − �̃q
∣∣2 +

N∑
q=0

∥∥uq|�m − ũq|�m

∥∥2
L2(�m)

(3)

Remark 1. Measuring experimentally the quantities �̃q and ũq is a challenging task in itself. We refer to [21] and references 
therein for a real world example, a Dynamic Monitoring System developed at Laboratório Nacional de Engenharia Civil (LNEC), 
installed on Cabril dam (Portugal) in 2008. This monitoring system includes 16 high sensitivity uniaxial accelerometers (lo-
cated at the upper zone of the dam, for measuring radial accelerations) that measure continuously and accurately vibrations 
of low amplitude (at a rate of 1000 Hz), namely, vibrations due to ambient excitation. The values of natural frequencies 
and vibration modes are extracted from the measured acceleration records, using Modal Identification techniques on the 
frequency domain that are mainly based on the Fourier analysis of the radial acceleration records.

Remark 2. The eigenmodes uq are not unique. Even in the case when �q is simple, uq is an arbitrary representant in the 
one-dimensional associated eigenspace. It is usual to normalize uq in order to reduce the arbitrariness, but even after doing 
so we still have two possibilities, uq and −uq . See Remark 7 in Section 4 for implementation details.

Remark 3. In the present work, it is straightforward to normalize ũq in the L2
ρ(�) because it is computed as a solution of a 

target direct problem. However, in the more realistic case when the trace of ũq is obtained through physical measurements, 
this is impossible since we do not know ũq in � but only its trace on �m . One possible way around this difficulty is to 
normalize both uq and ũq with respect to some norm on �m , for instance in L2(�m).

3. Shape derivatives

This section is devoted to the computation of the shape derivative of the functional J defined in (3). Infinitesimal 
variations of an initially given shape will be considered in the same spirit as in [10,23,26]. Note however that the existing 
results focus on objective functionals which do not depend on eigenmodes. Differentiating an objective functional depending 
on eigenmodes is essentially new and involves an adjoint problem of a new type, to our knowledge never considered before. 
An approach close to ours can be found in [24], however the authors consider a fixed Hilbert space since they work on a 
fixed domain � (the varying parameters control material properties). On the other hand, in [24] no objective functional is 
considered (only the derivatives of the eigenmodes are computed) so no adjoint state is involved.

3.1. The adjoint state

We recall some basic notions on the adjoint method as introduced by Cea in [9]. Given a functional J (θ) to mini-
mize/maximize, the goal is to find a control θ producing the state uθ that minimizes/maximizes the functional. Namely, we 
consider a functional of the form

J (θ) = J (θ, uθ ),

which depends on θ in a direct manner and also through the solution uθ of a state equation which may be a partial 
differential equation having the variational formulation

Aθ (uθ , v) = lθ (v) , ∀v ∈ H . (4)

In the above, Aθ is a bilinear, continuous and coercive application depending on a parameter θ , lθ is a linear, continuous 
application depending on θ , H is a fixed Hilbert space.

The physical quantity θ is called control and one is looking for a θ which minimizes/maximizes J . Since a necessary 
condition for extremum is the vanishing of the total derivative

d J

dθ
= 0,

one of the most important ingredients is the analytic calculus of the above referred derivative. The state uθ depends on θ in 
an implicit way, through the problem (4) and one seeks to describe the variation of uθ in terms of infinitesimal variations 
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of θ , under convenient differentiability hypothesis on the families of operators Aθ and lθ with respect to θ . Note that the 
total derivative of J involves the derivative of uθ with respect to θ :

d J

dθ
(θ) τ = ∂J

∂θ
(θ, uθ ) τ + ∂J

∂u
(θ, uθ )

duθ

dθ
(θ) τ . (5)

In the above formula (5) and for the whole present section τ stays for an infinitesimal variation of θ . The difficulty lays in 

the fact that the term 
∂J
∂u

(θ, uθ )
duθ

dθ
(θ) τ involves 

duθ

dθ
(θ) τ ; recall that uθ depends on θ implicitly through problem (4). It 

is the adjoint method that allows one to transform the implicit dependency of 
∂J
∂u

(θ, uθ )
duθ

dθ
(θ) τ into an explicit one with 

respect to τ .
The adjoint problem is introduced as

Aθ (pθ , w) = ∂J
∂u

(θ, uθ )w ∀w ∈ H, (6)

its solution pθ ∈ H is called the adjoint state. Then under symmetry hypothesis on the operators Aθ it is possible to prove 
that the implicit term in the expression of (5) has the form:

∂J
∂u

(θ, uθ )
duθ

dθ
(θ) τ = Aθ (pθ ,

duθ

dθ
(θ) τ ) = Aθ (

duθ

dθ
(θ) τ , pθ ) =

(
−dAθ

dθ
(uθ , pθ ) + dlθ

dθ
(pθ )

)
τ .

Therefore, the total derivative of J writes as the following expression, where the dependency on τ is now explicit:

d J

dθ
(θ) τ =

(
∂J
∂θ

(θ, uθ ) − dAθ

dθ
(uθ , pθ ) + dlθ

dθ
(pθ )

)
τ .

3.2. Domain variation for shape optimization

We are interested in a setting where the parameter θ controls the shape of the domain � \ V , thus the space H itself 
varies with the parameter θ and the standard procedure sketched above in subsection 3.1 must be adapted. In the following 
we recall the classical approach of Hadamard [13] of varying the shape of a domain, following the description in [19].

Denote by I + θ the diffeomorphism that models the variation of the domain in the sense that � \ V = (I + θ)(� \ V 0). 
We shall denote by Uad the set of admissible domains � \ V , that is all domains that verify the above relation for some 
diffeomorphism I + θ .

If θ ∈ W 1,∞(Rd; Rd) verifies

‖θ‖W 1,∞(Rd;Rd) < 1,

then the function I + θ is invertible and belongs to the space

{T ∈ W 1,∞
loc (Rd;Rd) such that T −1 ∈ W 1,∞

loc (Rd;Rd)} .

Given J : Uad →R, J is called differentiable with respect to the domain, in � \ V 0, if the application

θ 
→ J ((I + θ)(� \ V 0)) (7)

is Fréchet differentiable in θ = 0.
The approach described in [19] consists in performing a change of variables in the integral operators Aθ and lθ , thus 

transporting the state equation (4) from the varying domain � \ V to the fixed domain � \ V 0. This allows one to use the 
results in subsection 3.1 and obtain an adjoint problem identical to (6). We do not present more details here; the proof of 
Theorem 1 follows the same idea.

3.3. Main result

Unlike the approaches described above, the present paper is concerned with an eigenvalue problem (1) which is essen-
tially different from the elliptic problem (4). The unknowns in the variational formulation (2) are � and u, thus on the 
right hand side of the equation a trilinear form appears. Moreover, the objective functional in (3) depends not only on the 
eigenvalues �q but also on the eigenmodes uq . Thus, the computation of the adjoint state and of the shape derivative must 
be carried out from scratch. Actually, it turns out that several specific adjoint problems must be introduced, as many as the 
number of eigenmodes on which the functional depends.

Theorem 1. Suppose the first eigenvalues �q, 1 ≤ q ≤ N, are simple. Then, the shape derivative of J , that is, the Fréchet derivative of 
the application given in (7), is equal to
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J ′(θ = 0)(τ ) = 2
N∑

q=1

(�q − �̃q)
d�q

dθ
(τ )

+
N∑

q=1

⎡
⎢⎣ ∫
�\V 0

ρ (uq)i (pq)i dx0

(d�q

dθ
(τ ) +

∫
∂V 0

ρ (uq)2
i ταnα ds

)
− (8)

−
∫

∂V 0

[
Cijkl (pq)k,l (uq)i, j − �qρ (uq)i (pq)i

]
ταnα ds

⎤
⎥⎦

where

d�q

dθ
(τ ) =

∫
∂V 0

[
Cijkl (uq)k,l (uq)i, j − �qρ (uq)2

i

]
ταnα ds (9)

and for each index q, 1 ≤ q ≤ N, pq is the adjoint state associated to the eigensolution (�q, uq). The adjoint state pq is the solution of 
the adjoint problem below, for all w ∈ (H1(� \ V 0))

2 satisfying the homogeneous Dirichlet condition on �D,∫
�\V 0

[
Cijkl (pq)k,l wi, j − �qρ (pq)i wi

]
dx0 − 2

∫
�\V 0

ρ (uq)i (pq)i dx0

∫
�\V 0

ρ (uq)i wi dx0 =

=
∫
�m

(
(uq)i − (ũq)i

)
wi ds ,

(10)

which in classical formulation writes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (Cε(pq)
)+ �q ρ pq + 2

⎛
⎜⎝ ∫

�\V 0

ρ uq pqdx0

⎞
⎟⎠ρ uq = 0 in �\V 0,

pq = 0 on �D ,

σ (pq)n = uq − ũq on �m,

σ (pq)n = 0 on ∂V 0 ∪ (�N \ �m) .

(11)

Remark 4. One can write another, equivalent, formulation of (10) as follows. Denote by γ q the (known) quantity

γ q = −1

2

∫
�m

(
(uq)i − (ũq)i

)
(uq)i

Then pq can be computed as the solution of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
�\V 0

[
Cijkl (pq)k,l wi, j − �qρ (pq)i wi

]
dx0 = 2γ q

∫
�\V 0

ρ (uq)i wi dx0 +
∫
�m

(
(uq)i − (ũq)i

)
wi ds

∫
�\V 0

ρ (uq)i (pq)i dx0 = γ q
(12)

which in classical formulation writes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (Cε(pq)
)+ �q ρ pq = −2γ qρ uq in �\V 0,

pq = 0 on �D ,

σ (pq)n = uq − ũq on �m,

σ (pq)n = 0 on ∂V 0 ∪ (�N \ �m) .∫
ρ (pq)i(uq)i = γ q .

(13)
�\V 0



P.R.S. Antunes et al. / Journal of Computational Physics 333 (2017) 352–368 357
Note that, in the discretized version of (12), if we drop the last (integral) condition, we obtain a degenerate n × n system 
(with a singular matrix). By adding the last condition, we obtain a system with n + 1 equations and only n unknowns, 
having unique solution.

Remark 5. In Theorem 1 we only consider the case of simple eigenvalues. When multiple eigenvalues occur, things become 
more complicated. Few authors have addressed this case. The paper [12] is an example; however it does not take into 
account the eigenmodes. See also Section 6.5 in [25].

The following proof is somewhat formal in the sense that we do not focus on the smoothness of the boundary of the 
domain � \ V , nor on the Sobolev spaces involved. However we think it is useful to present the computation of the shape 
derivative (and the link to the adjoint states) with some detail.

Proof of Theorem 1. Equation (2) depends on θ through the domain � \ V = (I + θ)(� \ V 0). It is difficult to consider 
infinitesimal variations in (2) because the space of functions varies with θ . To overcome this problem, we shall transform 
the integrals over � \ V into integrals over the fixed domain � \ V 0 and then we shall derive in θ .

In order to simplify notations, we shall skip the subscript q which identifies the eigenmode (�q, uq). Denoting by T =
I + θ and by S = T −1 = (I + θ)−1 we define û = u ◦ T hence u = û ◦ S . Replacing u in terms of û (which is defined on the 
fixed domain � \ V 0) in equation (2), we get∫

�\V

Cijkl ûi,α ◦ S Sα, j v̂k,β ◦ S Sβ,l dx = �

∫
�\V

ρ ûi ◦ S v̂i ◦ S dx.

Through the change of variable x = T (x0), the integrals will become all on the fixed domain � \ V 0:∫
�\V 0

Cijkl ûi,α ◦ S ◦ T Sα, j ◦ T v̂k,β ◦ S ◦ T Sβ,l ◦ T |det(∇T )|dx0 = �

∫
�\V 0

ρ ûi ◦ S ◦ T v̂i ◦ S ◦ T |det(∇T )|dx0.

But det(∇T ) > 0 since T = I + θ is in the neighborhood of the identity and det(I) = 1. The above equation writes then∫
�\V 0

Cijkl ûi,α Sα, j ◦ T v̂k,β Sβ,l ◦ T det(∇T )dx0 = �

∫
�\V 0

ρ ûi v̂ i det(∇T )dx0

and it can be derived in θ . We shall compute this derivative at θ = 0. By denoting by Mij = Si, j ◦ T , one obtains

d

dθ

⎛
⎜⎝ ∫

�\V 0

Cijkl ûi,α Mα j v̂k,β Mβl det(∇T )dx0

⎞
⎟⎠
∣∣∣∣∣∣∣
θ=0

(τ ) = d

dθ

⎛
⎜⎝�

∫
�\V 0

ρ ûi v̂ i det(∇T )dx0

⎞
⎟⎠
∣∣∣∣∣∣∣
θ=0

(τ )

It may be verified that Mij
∣∣
θ=0 = δi j , 

d Mij

dθ

∣∣∣∣
θ=0

(τ ) = −τi, j and 
d det(∇T )

dθ

∣∣∣∣
θ=0

(τ ) = divτ . Note also that we chose the test 

function v̂ to be fixed (independent of θ ). With the notation δû = dû

dθ

∣∣∣∣
θ=0

(τ ) and since û |θ=0= u0, the equation above 

writes ∫
�\V 0

Cijkl δûi, j v̂k,l dx0 −
∫

�\V 0

Cijkl v̂k,l u0i,ατα, j dx0 −

−
∫

�\V 0

Cijkl u0i, j v̂k,βτβ,l dx0 +
∫

�\V 0

Cijkl u0i, j v̂k,l divτ dx0 = (14)

= d�

dθ

∣∣∣∣
θ=0
(τ )

∫
�\V 0

ρu0i v̂ i dx0 + �

∫
�\V 0

ρδûi v̂ i dx0 + �

∫
�\V 0

ρu0i v̂ i divτ dx0.

We now turn to the computation of the shape derivative of the eigenvalue �. Since the eigenmodes are normalized in 
the norm ‖ · ‖L2

ρ
, the variational formulation (2) yields the following expression for �:∫

�\V

Cijkl ui, j uk,l dx = �.

When transported on the fix domain � \ V 0 one obtains
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∫
�\V 0

Cijkl ûi,α Sα, j ◦ T ûk,β Sβ,l ◦ T det(∇T )dx0 = �,

which by derivation in θ , at θ = 0, gives

2
∫

�\V 0

Cijkl δûi, j u0k,l dx0 − 2
∫

�\V 0

Cijkl u0k,l u0i,ατα, j dx0 +
∫

�\V 0

Cijkl u0i, j u0k,l divτ dx0 = d�

dθ

∣∣∣∣
θ=0
(τ ) (15)

On the other hand, since the eigenvector u is normalized, and transporting on the fixed domain � \ V 0, one obtains

0 = d‖u‖
dθ

∣∣∣∣
θ=0

= d

dθ

∣∣∣∣
θ=0

∫
�\V

ρu2dx = d

dθ

∣∣∣∣
θ=0

∫
�\V 0

ρ û2
i det(∇T )dx0 =

= 2
∫

�\V 0

ρ δûi u0i dx0 +
∫

�\V 0

ρ u2
0i divτ dx0 .

Therefore

2
∫

�\V 0

ρ δûi u0i dx0 +
∫

�\V 0

ρ u2
0i divτ dx0 = 0. (16)

Writing the variational formulation (2) for the test function v = δû, and having in mind the above relation, we get∫
�\V 0

Cijkl u0k,l δûi, j dx0 = �

∫
�\V 0

ρ u0i δûi dx0 = −1

2
�

∫
�\V 0

ρ u2
0i divτ dx0 .

After replacing the above integral in (15), the derivative of � writes

d�

dθ

∣∣∣∣
θ=0
(τ ) = −�

∫
�\V 0

ρ u2
0i divτ dx0 +

∫
�\V 0

Cijkl u0i, j u0k,l divτ dx0 − 2
∫

�\V 0

Cijkl u0k,l u0i,ατα, j dx0.

Applying the flux-divergence theorem to each of the above terms one obtains

d�

dθ

∣∣∣∣
θ=0
(τ ) =

∫
�\V 0

(�ρu2
0i),α τα dx0 −

∫
∂�∪∂V 0

�ρ u2
0i τα nα ds0 −

−
∫

�\V 0

(Cijkl u0k,l),α u0i, j τα dx0 −
∫

�\V 0

Cijkl u0k,l u0i, jα τα dx0 +
∫

∂�∪∂V 0

Cijkl u0k,l u0i, j τα nα ds0 +

+ 2
∫

�\V 0

(Cijkl u0k,l), j u0i,α τα dx0 + 2
∫

�\V 0

Cijkl u0k,l u0i,α j τα dx0 − 2
∫

∂�∪∂V 0

Cijkl u0k,l u0i,α τα n j ds0

In the first parcel of the above expression we differentiate: (�ρu2
0i),α = 2�ρu0iu0i,α and, due to the classical formulation 

of the eigenvalue problem (1), the first integral cancels with the sixth integral. Also the third, fourth and seventh integrals 
sum up to zero. On the other hand, due to the homogeneous Neumann condition Cijkl u0k,l n j = 0 on both �N and ∂V 0, in 
the last parcel the domain of integration can be replaced by �D . So, only the boundary terms remain in the expression of 
the derivative of �:

d�

dθ

∣∣∣∣
θ=0
(τ ) =

∫
∂�∪∂V 0

(Cijkl u0k,l u0i, j − �ρ u2
0i) τα nα ds0 − 2

∫
�D

Cijkl u0k,l u0i,α τα n j ds0

Since on �D one has ui = 0, ∇u is parallel to the normal n and therefore ∇ui = gin, and by components 
ui, j = gin j . Then ui, jn j = gin jn j = gi . Consequently ui, j = ui,αnαn j . Hence Cijkl uk,l ui,α τα n j = Cijkl uk,l ui,β nβ nα ταn j =
Cijkl uk,l ui,β nβ n j τα nα = Cijkl uk,l ui, j τα nα . Then the derivative of � writes:

d�

dθ

∣∣∣∣
θ=0
(τ ) =

∫
�N ∪∂V 0

(Cijkl u0k,l u0i, j − �ρ u2
0i) τα nα ds0 −

∫
�D

(Cijkl u0k,l u0i, j + �ρ u2
0i) τα nα ds0, (17)

and since in the context under consideration the only moving boundary is ∂V , one obtains the formula (9) in the theorem.
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Going back to (14), the problem that defines the derivative of the eigenmode u0, writes:∫
�\V 0

Cijkl δûi, j v̂k,l dx0 − �

∫
�\V 0

ρ δûi v̂ i dx0 =
∫

�\V 0

Cijkl v̂k,l u0i,α τα, j dx0 +
∫

�\V 0

Cijkl u0i, j v̂k,α τα,l dx0 + (18)

+ d�

dθ

∣∣∣∣
θ=0
(τ )

∫
�\V 0

ρ u0i v̂ i dx0 +
∫

�\V 0

(−Cijkl u0i, j v̂k,l + �ρ u0i v̂ i)divτ dx0.

However, for v̂ = u0, the righthand and the lefthand terms of the above variational equation are identically equal to zero, 
therefore the supplementary condition (16) is to be taken into account. For a general test function v̂ one may write the 
supplementary condition (16) as

−
∫

�\V 0

ρ u0i v̂ i dx0

∫
�\V 0

ρ δûi u0i dx0 = 1

2

∫
�\V 0

ρ u0i v̂ i dx0

∫
�\V 0

ρ u0i u0i divτ dx0. (19)

The above condition is significant precisely on the space generated by the eigenvector u0, where the variational formu-
lation (18) gives no information. On the other hand, on the orthogonal complement of u0, this information is irrelevant and 
the variational formulation (18) is substantial. A linear combination between (18) and (19) produces the following concise 
variational formulation which defines the derivative of the eigenmode u as its unique solution

∫
�\V 0

Cijkl δûi, j v̂k,l dx0 − �

∫
�\V 0

ρ δûi v̂ i dx0 − η

∫
�\V 0

ρ u0i v̂ i dx0

∫
�\V 0

ρ δûi u0i dx0 =

=
∫

�\V 0

Cijkl v̂k,l u0i,α τα, j dx0 +
∫

�\V 0

Cijkl u0i, j v̂k,α τα,l dx0 +

+ d�

dθ

∣∣∣∣
θ=0
(τ )

∫
�\V 0

ρ u0i v̂ i dx0 +
∫

�\V 0

(−Cijkl u0i, j v̂k,l + �ρ u0i v̂ i)divτ dx0 +

+ η

2

∫
�\V 0

ρ u0i v̂ i dx0

∫
�\V 0

ρ u0i u0i divτ dx0,

(20)

where η is an arbitrary real coefficient to be chosen later.
From now on, we shall use the superscript q to distinguish between different eigenvalues and eigenmodes. For each q

between 1 and N , consider the adjoint problem in the form:

∫
�\V 0

[
Cijkl (pq)k,l wi, j − �qρ (pq)i wi

]
dx0 − η

∫
�\V 0

ρ (uq
0)i (pq)i dx0

∫
�\V 0

ρ (uq
0)i wi dx0 =

= 2
∫
�m

(
(uq

0)i − (ũq)i
)

wi ds

(21)

The left hand side of the adjoint problem has the same structure as the bilinear form in (20) while the right hand side is 

equal to 
∂ J

∂uq
w . Then the total derivative of the functional J writes:

J ′(θ = 0)(τ ) = d J

dθ

∣∣∣∣
θ=0
(τ ) = ∂ J

∂θ

∣∣∣∣
θ=0
(τ ) +

N∑
q=1

∂ J

∂�q

d�q

dθ

∣∣∣∣
θ=0
(τ ) +

N∑
q=1

∂ J

∂uq
δûq. (22)

Due to the adjoint problem (21) for w = δûq the second term in the above expression has the form∫
�\V 0

[
Cijkl (pq)k,l wi, j − �qρ (pq)i wi

]
dx0 − η

∫
�\V 0

ρ (uq
0)i (pq)i dx0

∫
�\V 0

ρ (uq
0)i wi dx0

and having in mind problem (20) for the test function v̂ = pq , it is equal to
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Fig. 2. The boundaries �int and �ext and the artificial boundaries �̂int and �̂ext .

=
∫

�\V 0

Cijkl (pq)k,l (uq
0)i,α τα, j dx0 +

∫
�\V 0

Cijkl (uq
0)i, j (pq)k,α τα,l dx0 + d�

dθ

∣∣∣∣
θ=0
(τ )

∫
�\V 0

ρ (uq
0)i (pq)i dx0

+
∫

�\V 0

(−Cijkl (uq
0)i, j (pq)k,l + �ρ (uq

0)i (pq)i)divτ dx0 + η

2

∫
�\V 0

ρ (uq
0)i (pq)i dx0

∫
�\V 0

ρ (uq
0)i (uq

0)i divτ dx0

Applying the flux-divergence theorem to each volume integral and after canceling terms, we see that it is equal to

=
∫

�\V 0

ρ (uq
0)i (pq)i dx0

⎛
⎜⎝d�

dθ
(τ ) + η

2

∫
�N ∪∂V 0

ρ (uq
0)

2
i ταnα ds

⎞
⎟⎠−

+
∫
�D

Cijkl (pq)k,l (uq
0)i, j ταnα ds −

∫
�N ∪∂V 0

[
Cijkl (pq)k,l (uq

0)i, j − �ρ (uq
0)i (pq)i

]
ταnα ds

Any non-zero value of η will do, but we shall choose η = 2 for convenience. Since �N and �D do not vary, and having in 
mind the formula (9) of the derivative of �, it turns out that the derivative of J is given by (8). �
Remark 6. It is straightforward to generalize the above computations for computing the derivative of more general function-
als depending on the eigenvalues and on the eigenmodes. For this, it suffices to replace the right hand side of the variational 

form of the adjoint problem (10) by the corresponding expression of 
∂ J

∂uq
δûq .

4. Numerical methods

Given the Lamé coefficients λ, μ and the specific mass ρ , the fundamental tensor associated to the PDE of (1) is the 
Kupradze tensor

G� = 1

μκ2
s

(
κ2

s Gs(x)I+D
(
Gs − G p

)
(x)

)
(23)

where I is the Kronecker delta, D = ∂i j and κp =
√

�ρ
λ+2μ , κs =

√
�ρ
μ . Gs and G p are the fundamental solutions of the 

Helmholtz equation with frequencies κs and κp respectively,

Gs(x) = i

4
H (1)

0 (κs |x|) , G p(x) = i

4
H (1)

0

(
κp |x|) ,

where H (1)
0 is the Hänkel function of the first kind. We will consider the numerical solution of problem (1) using the 

Method of Fundamental Solutions (MFS). For keeping simplicity in the exposition we will assume that V is connected. The 
case where V has several connected components can be handled in the same way. We will use the notation �ext = ∂�, 
�int = ∂V and consider two artificial boundaries, �̂int and �̂ext , which are the boundaries of two simply connected domains 
�̂int and �̂ext , such that �̂int ⊂ V and � ⊂ �̂ext , as illustrated in Fig. 2. We will also define �̂ = �̂int ∪ �̂ext . The MFS 
approximation is built by considering shifts of the Kupradze tensor to some points placed on �̂ .
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Definition 1. An MFS approximation in the discrete set �̂m = {y1, ..., ym} ⊂ �̂ is an element of the linear space Vm =
span {G�(• − y1), ...,G�(• − ym)} |∂� .

Next, we prove a density result for the MFS approximations which is an extension of a theorem proved in [4] (in the 
context of the Helmholtz equation and simply connected domains) to the elastic case and to domains which are not simply 
connected.

Theorem 2. If � ∈R is not a Navier–Dirichlet eigenvalue of �̂int , then

S(�̂) = span{G�(· − y)|�\V : y ∈ �̂}
is dense in Hκ (�\V ) = {v ∈ (

H1(�\V )
)2 : ∇ · σ(v) + ρ�v = 0}.

Proof. Take v ∈Hκ (�\V ), and let

w(y) = 〈G�(· − y), v〉(
H1(�\V )

)2×(
H−1(�\V )

)2 =
∫

�\V

G�(x − y)v(x)dx

which is the Newtonian potential in �\V . We want to prove that if w(y) = 0, ∀y ∈ �̂, then v ≡ 0.
The Newtonian potential satisfies (see e.g. [18])

∇ · σ(w) + ρ�w =
{

v, in �\V ,

0, in R
2\ (�\V

)
.

In particular, ∇ · σ(w) + ρ�w = 0 in R2\�̂ext because � ⊂ �̂ext . Then, since Kupradze radiation conditions are also 
satisfied, by the uniqueness of the exterior problem for � ∈ R, we have w = 0 in R2\�̂ext and by analytic continuation, 
w = 0 in R2\�. On the other hand, we have w = 0 on �̂int and thus w = 0 in �̂int because � is not a Navier-Dirichlet 
eigenvalue of �̂int and again by analytic continuation, w = 0 in V . The Newtonian potential has no jumps, thus both in �ext

and �int , w− = w+ = 0, (σ (w)n)− = (σ (w)n)+ = 0 and we have the interior problem⎧⎨
⎩

∇ · σ(w) + ρ�w = v, �\V
σ(w)n = w = 0, �int
σ(w)n = w = 0, �ext .

By Betti’s formula (see e.g. [18]),∫
�\V

(
v̄ ∇ · σ(w) − w ∇ · σ(v)

)
dx =

∫
�

(
v̄ σ(w)n − w σ(v)n

)
dx = 0

and thus

0 =
∫

�\V

(
v̄ ∇ · σ(w) − w ∇ · σ(v)

)
dx =

∫
�\V

(
v̄ (v − ρ�w) − w

(−ρ�v
))

dx = ||v||2L2(�\V )

which implies v ≡ 0. �
We will calculate the eigensolutions of (1) using MFS approximations (see e.g. [16,17,4]). The displacement field u is 

approximated by a linear combination of the form

u(x) ≈
NMFS∑
j=1

G�

(
x − y j

)
a j (24)

where a j ∈ C
2. In this work we follow the choice for the set of the point sources Y = {

y j, j = 1, ..., NMFS
}

proposed in [3,
4]. By construction, the MFS approximation satisfies the PDE of the problem, since each term of the linear combination is a 
translation of the fundamental solution to some point source y j /∈ �̄. The coefficients are calculated such that the boundary 
conditions of the problem are approximated in some sense. We consider the sets of points

X D =
{

xD
i , i = 1, ..., M D

}
, X N =

{
xN

i , i = 1, ..., MN
}

, X∂V =
{

x∂V
i , i = 1, ..., M∂V

}
(almost) uniformly distributed respectively on the boundaries �D , �N and ∂V , where M D + MN + M∂V > NMFS . We impose 
the boundary conditions of the problem at these points,
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u(xD
i ) = 0, i = 1, ..., M D , σ (u(xN

i ))n = 0, i = 1, ..., MN , σ (u(x∂V
i ))n = 0, i = 1, ..., M∂V ,

which can be written as a linear system of equations whose matrix depends on �. The approximations for the eigenvalues 
correspond to the values of � such that we have a nonzero solution for this system and can be calculated with Betcke–
Trefethen subspace angle technique (cf. [8]). This technique involves the calculation of a Q R factorization and the singular 
value decomposition of a matrix A(�) which depends on �. Then, we calculate the singular values, which are the square 
root of the non-zero eigenvalues of A∗(�)A(�) and can be calculated with stable and fairly fast numerical methods (see 
e.g. [11]). We study the evolution of the smallest singular value as a function of �, σ1(�). The approximations for the 
eigenvalues are the values � for which σ1(�) ≈ 0 (see [8] for details).

In order to solve the shape optimization problem, we need to define a class of admissible inclusions. For some P ∈ N

consider the functions

γ1(t) = a(1)
0 +

P∑
j=1

a(1)
j cos( jt) +

P∑
j=1

b(1)
j sin( jt)

and

γ2(t) = a(2)
0 +

P∑
j=1

a(2)
j cos( jt) +

P∑
j=1

b(2)
j sin( jt)

and the vector C ∈R
4P+2 with all the coefficients,

C =
(

a(1)
0 ,a(1)

1 , ...,a(1)
P ,b(1)

1 , ...,b(1)
P ,a(2)

0 ,a(2)
1 , ...,a(2)

P ,b(2)
1 , ...,b(2)

P

)
.

The class of admissible inclusions is the set

V =
{

V ⊂ R
2 : ∂V = {

γ1(t), γ2(t) : t ∈ [0,2π [} is a Jordan curve
}

and (for a fixed �) the set of admissible domains is

O =
⎧⎨
⎩�\

⎛
⎝ Ni⋃

j=1

V j

⎞
⎠ : V j are pairwise disjoint, V j ⊂ �, Ni ≤ Nincl

⎫⎬
⎭ ,

where Nincl is the maximum of the number of inclusions. In this work we consider Nincl = 5, which means that we exclude 
domains with more than 5 inclusions. The shape optimization of each inclusion is performed by searching for optimal 
vectors C .

A drawback of this parametrization is related with the difficulty of dealing with changes of topology during the opti-
mization procedure. To avoid these difficulties, at a first step, we use a genetic algorithm to provide a good initial guess for 
the BFGS algorithm. We start building a sample of 100 admissible domains generated randomly, having different numbers 
of inclusions Ni = 1, 2, ..., Nincl = 5. Then, we calculate a few generations in the genetic algorithm. A descendant of two 
individuals is calculated by crossing the corresponding vectors C . The crossing-over of two vectors C1 and C2 is defined by

C3 = tC1 + (1 − t)C2 +P,

where t is randomly chosen in (0, 1) and P is a vector calculated randomly with the same dimension of C1 and with 
small norm. It is allowed to cross individuals with different number of inclusions. For instance, we can cross two domains 
D1, D2 ∈ O having respectively Ni1 and Ni2 inclusions, for example with Ni1 < Ni2 . In that case, the Ni1 vectors C defining 
D1 are crossed with Ni1 of the Ni2 corresponding vectors of D2. Then, we define a Bernoulli random variable X , with 
probability of success equal to 0.5. If X = 0, we simply exclude the remaining Ni2 − Ni1 vectors C that were not selected 
to be crossed with those of the domain D1, which means that the descendant will have just Ni1 inclusions. Otherwise, if 
X = 1, the Ni2 − Ni1 vectors C of D2 are kept unchanged in the descendant, which implies that the descendant has Ni2

inclusions.
Another approach that could be considered and allows to handle changes in topology is to use a level set method (see 

e.g. [1,2,12,22]).
After calculating a good initial guess by the genetic algorithm, we apply the BFGS algorithm to minimize the functional J . 

Note that by the definition of J , we need to calculate ‖uq|�m − ũq|�m ‖2
L2(�m)

, for q = 1, ..., N .

Remark 7. There is an ambiguity because uq and −uq are both normalized eigenfunctions. To circumvent this problem and 
decide the ‘correct’ sign in the eigenfunction, for each q = 1, ..., N , if

‖ − uq|�m − ũq|�m‖2
L2(�m)

< ‖uq|�m − ũq|�m‖2
L2(�m)

,

we change the sign of the eigenfunction and uq is replaced by −uq . Another possibility would be to use in the cost function, 
instead of the L2 distance between uq and ũq , the quantity −(uq, ̃uq)

2
2 , where
L (�m)
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Fig. 3. σ1(�) for � ∈ [1,17.5].

Fig. 4. First components (left plots) and second components (right plots) of the eigenfunction associated to �1 ≈ 2.91741, �100 ≈ 289.41906 and �600 ≈
1066.68372.
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Fig. 5. The target hole Ṽ (continuous black line), the initial guess (green dots) and the computed hole V (red dashed line). (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)

(v, w)2
L2(�m)

=
∫
�m

v · wds.

By minimizing this quantity one forces the function uq|�m to become colinear with ũq|�m .

The shape gradient is calculated using Theorem 1. The adjoint problem (13) is solved using a Kansa-type method of 
fundamental solutions (cf. [5]) which allows for the numerical solution of boundary value problems with inhomogeneous 
PDE’s in the framework of the MFS, but with several test frequencies.

5. Numerical results

In this section we present some numerical results illustrating the good performance of the numerical method. Before 
going to the problem of determining the inclusion V , we illustrate the application of the MFS for solving the direct problem 
(1). We consider � = [−1, 1] × [−1, 1], V is a ball with radius equal to 0.5, centered at the origin and �N = {1} × [−1, 1], 
�D = ∂�\�N . In this example we take MD = 150, MN = 50, M∂V = 110 and NMFS = 200 (80 points on �̂int and 120 points 
on �̂ext ). In Fig. 3 we plot the smallest singular value, σ1(�), obtained with Betcke–Trefethen subspace angle technique, 
for � ∈ [1, 17.5] which allows to locate 5 eigenvalues in this interval (�1 ≈ 2.91741, �2 ≈ 6.70115, �3 ≈ 8.59045, �4 ≈
13.77762, �5 ≈ 16.86712). It is well known that the MFS can be highly accurate, even for high frequencies (cf. [7]), and 
this is clearly an advantage when compared with classical mesh-type methods such as the Finite Element Method which 
would need a huge mesh to deal with the oscillatory behavior of the solution. In Fig. 4 we plot the first and second 
components of eigenfunctions associated to three eigenvalues, �1 ≈ 2.91741 and higher eigenvalues �100 ≈ 289.41906 and 
�600 ≈ 1066.68372.

Next we show some numerical results for the solution of the inverse problem of determining the hole Ṽ and will denote 
by V the current hole, approximating the target hole Ṽ . In all the experiments we take λ = μ = 1 and ρ ≡ 1. We always 
assume that the eigenvalues are simple, due to the inherent limitation in Theorem 1.

In the first example we consider just one connected hole. Again, we consider � = [−1, 1] × [−1, 1], �N = {1} × [−1, 1], 
�D = ∂�\�N , MD = 150, MN = 50, M∂V = 110 and NMFS = 200 (80 points on �̂int and 120 points on �̂ext ). In Fig. 5 we plot 
∂� in blue, �D is plotted with a continuous line, while �N is marked with a red dashed line. We plot ∂ Ṽ , the boundary of 
the target hole, with a continuous black line. The boundary of the initial guess that was obtained from the genetic algorithm 
is marked with green dots and the numerical solution obtained using the BFGS algorithm is plotted with a dashed red line. 
We can observe that we can determine the location and shape of the hole with accuracy. In this simulation, we consider 
N = 5 and obtain J (V ) = 9.7 × 10−5. We performed several tests using different values of N and were able to obtain also 
very good reconstructions of Ṽ , even with N = 1. Next, we illustrate the convergence in this example. In Fig. 6 we plot the 
evolution of the functional J during the optimization procedure. The results for n = 0, 1, 2, 3 correspond to evaluations of 
the functional at the initial sample of domains and three generations of the genetic algorithm. Then, we show the results 
for the BFGS iterations using the ‘best’ domain from the last generation of the genetic algorithm as initial guess.
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Fig. 6. Convergence results – evolution of the functional J during the optimization procedure.

Fig. 7. (a) First components of the target ũq|�N (continuous black line) and uq|�N (dashed lines), for q = 1, ..., 5; (b) similar results for the second component 
of the eigenfunctions.

Fig. 8. The target hole Ṽ (continuous black line), the initial guess (green dots) and the computed hole V (red dashed line). (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)

In Fig. 7-left we plot the traces on �N of the first components of the first five eigenfunctions of the exact solution 
(corresponding to the target hole) with a continuous black line. The numerical approximations for these quantities are 
marked with dashed lines. In Fig. 7-right we plot similar results for the second components of the eigenfunctions.

In the second example we consider a cantilever with three target holes. In this case, � = [−1, 1] × [−0.5, 0.5], �D =
{−1} × [−0.5, 0.5], �N = �1 ∪ �2 ∪ �3, where �1 = {1} × [−0.5, 0.5], �2 = [−1, 1] × { 0.5} and �3 = [−1, 1] × {0.5}. We 
take MD = 50, MN = 150, M∂V = 300 (100 collocation points on each of the boundaries of the three holes) and NMFS = 500
(100 points on each of the three auxiliary curves and 200 points on �̂ext ). In Fig. 8 we plot with continuous black line the 
boundaries of the three components of the target hole Ṽ , with green dots the initial guess and with dashed red lines the 
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Fig. 9. (a) First components of the target ũq|�1 (continuous black line) and of the numerical approximation uq|�1 (dashed lines); (b) first components of 
ũq|�2 (continuous black line) and uq |�2 (dashed lines); (c) first components of ũq |�3 (continuous black line) and uq |�3 (dashed lines); (d), (e), (f) similar 
results for the second components of the eigenfunctions.

boundaries of the numerical approximation V . In this case we obtain J (V ) = 3.6 × 10−3. In Fig. 9 we plot the traces of the 
two components of the eigenfunctions associated to the five eigenvalues on �1, �2 and �3.

Note that �m (which is the part of the boundary where the traces of the eigenfunctions are measured) may be just a 
subset of �N . Moreover, as was mentioned, typically we obtained also good results taking N = 1. In the last example, we 
consider the same target configuration of the previous example, but now we take N = 1 and the traces of the eigenfunctions 
are measured in �m = �4 ∪ �5, where �4 = [0.5, 1] × {−0.5} and �5 = {0.5} × [−0.5, 0]. In Fig. 10 we plot the boundary of 
the target Ṽ with a continuous black line and the boundary of V with a red dashed line. The initial guess was the same as 
in the previous example. The boundary �m is marked with a thick black line. In this example we obtain J (V ) = 3.4 × 10−5.

In Fig. 11-left we plot the traces of the two components of the eigenfunctions associated to the first eigenfunction on �4. 
In the right plot of the same Figure we show similar results on �5.
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Fig. 10. The target holes Ṽ (continuous black line) and the computed holes V (red dashed line). (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)

Fig. 11. (a) first and second components of the target ũ1|�4 (continuous black line), first component of u1|�4 (dashed red line) and second component of 
u1|�4 (dashed blue line); (b) similar results on �5. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

6. Discussion

We consider the problem of identifying the holes in an elastic domain by minimizing a functional depending on eigen-
values and traces of the corresponding eigenmodes on part of the boundary. The direct problem (the computation the 
eigenvalues and eigenmodes of a given domain) is solved by the Method of Fundamental Solutions. The objective functional 
is minimized by the BFGS method which requires the derivatives of the functional with respect to the optimization pa-
rameters, which define the shape and size of the hole(s). The shape derivative is computed by using the adjoint method; 
to our knowledge, this is the first time when the adjoint method is applied to a functional depending on eigenmodes 
(eigenvectors).

The obtained numerical results illustrate that we can obtain good reconstructions of the holes, with a few measurements 
of the eigenvalues and eigenmodes. However, we believe that some improvements are needed in order to have a robust 
nondestructive numerical method to deal with realistic problems. We use Fourier expansions to parameterize the holes. 
A handicap of this approach is that we cannot change the topology during the optimization procedure. In a future work we 
would like to address the use of a level set method coupled with the Method of Fundamental Solutions.

Another open problem is the treatment of inclusions of a different material instead of holes. In that case, instead of the 
Method of Fundamental Solutions, we must consider a different approach for the numerical solution of the direct problem 
(see e.g. [6]). Both the adjoint method and the optimization algorithm based on it would follow similar steps.
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