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Abstract. In this paper, we use the retina as a window into the cen-
tral nervous system and in particular to assess changes in the retinal
tissue associated with the Alzheimer’s disease. We imaged the retina
of wild type (WT) and transgenic mouse model (TMM) of Alzheimer’s
disease with optical coherence tomography and classify retinas into the
WT and TMM groups using support vector machines with the radial
basis function kernel. Predictions reached an accuracy over 80% at the
age of 4 months and over 90% at the age of 8 months. Texture analy-
sis of computed fundus reference images suggest a more heterogeneous
organization of the retina in transgenic mice at the age of 8 months in
comparison to controls.
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1 Introduction

In this work we explore the use of statistical descriptors of Optical Coherence
Tomography (OCT) data of wild type (WT) and transgenic mouse model (TMM)
of Alzheimer’s Disease (AD). Our objective is two-fold. On the one hand, we aim
to test the classification approach previously applied to OCT data of human
retinas to classify those into the healthy control and disease groups [1]. On the
other hand, we aim to clarify if changes in the retina are present and can be
detected in the early stages of disease.

According to the WHO (World Health Organization) report [2] projections
from 2013 estimate a total of over 47 million people living with dementia (in-
cluding AD) in 2015. Projections for 2030 are of 66 million, resulting in the
indisputable burden for patients and caregivers. Although these figures account
for all types of dementia, AD is the most common type and estimated to repre-
sent 60% to 80% of the cases [3].



One of the fundamental problems tackling AD is the lack of early diagnostic
biomarkers, the reason why AD may develop undiagnosed for over a decade [4].
While the definite diagnosis of AD can only be ”confirmed after a postmortem
examination of the brain” [4], up to now the ”probable” diagnosis is possible
only when ”significant neurological damage has already occurred” [4].

A particular effective diagnostic tool requires positron emission tomography
(PET) imaging facilities and the use of the Pittsburgh compound-B (PiB) agent,
therefore severely limiting the access to this biomarker due to the (high) associ-
ated costs and due to the limited number of PET facilities [4].

Ideally, a biomarker should be easy to collect and measure in addition to
the objective and reproducible mandatory characteristics [5]. The definition of
biomarker clearly points to the need of a different approach when it comes to AD
diagnosis. The use of the retina as a window into the brain is being followed by
an increasing number of research groups and appears as the natural choice. The
retina is actually the visible part of the central nervous system (CNS). There
is also cumulating evidence indicating that the retina can be also affected in
neurodegenerative diseases [6].

OCT is a wide spread imaging technique in the field of ophthalmology and is
an important tool to diagnose a variety of diseases. OCT provides the absorption
and scattering properties of the tissues and thus inherently conveys pertinent
information on the structure of the retina. In addition to the basic information
on the thickness of the retina, previous studies conducted by our research group
demonstrate that information gathered by the OCT allows to automatically
classify eyes into the Parkinson, Diabetic Retinopathy and Multiple Sclerosis
groups [7,8]. These works paved the way for the work herewith reported.

2 Methodology

The use of transgenic mouse models of AD allows to overcome a fundamental
problem when trying to collect data in the early stages of the disease in humans,
that the diagnosis of AD is possible only after a significant neurological damage
occurred [4]. Furthermore, it allows to follow-up the natural development and
ageing of the retina for WT controls and TMM and to compare the two groups
at the same age at regular intervals during their life-span.

The TMM used in this study is the 3xTg-AD (triple-transgenic mouse
model). This model presents characteristics of the human form of disease, namely
the aggregation of amyloid-β (Aβ) protein accumulating into plaques and the
hyperphosphorylation of tau protein [9].

In this work we report data gathered at the ages of 4 and 8 months.

2.1 OCT Imaging

OCT is a noninvasive diagnostic imaging technology able to provide cross-
sectional images (B-scans) of the retinal tissue in vivo and in situ (Fig. 1). Its
working principle is analogous to that of ultrasonography with light taking the



role of sound [10]. Furthermore, OCT terms such as A-scan and B-scan match
the definition of those in ultrasound. The principle, based on the backscattering
of low-coherence light has been extensively described in the literature [11,12].
OCT readings convey information on refractive index changes along the light
path. Consequently, any change in the content or structural organization of the
retina, with respect to the healthy condition, is captured in the statistics of the
signal.
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Fig. 1. Optical coherence tomography. Top: B-scan of the right eye of a wild type
(control) mice at the age of 8 months. Bottom: Plot of the A-scan earmarked in yellow
(B-scan above). A-scan values up to sample ∼500 correspond to OCT readings within
the vitreous. A-scan values from sample ∼500 to ∼800 correspond to OCT readings
within the retina and A-scan values from sample ∼800 to 1024 correspond to OCT
readings within the choroid. Light travels from top to bottom (B-scan) and left to
right (A-scan).

The system used in this study is the Micron IV OCT (Phoenix Research
Labs, Pleasanton, CA, USA). It is tailored to image mouse and rat retinas and
allows to scan the posterior pole of the eye gathering 512 by 512 by 1024 voxels
over 50◦ field of view.

The animals were anesthetized and pupils dilated. Animals were then placed
in front of the OCT for data acquisition with all scans being performed at the



same retinal location, horizontally centered on the optic disk and vertically above
the optic disc border.

A total of 512 B-scans, of 512 A-scans each, were produced per eye scan.
Each B-scan is saved in the computer disc as an uncompressed TIFF file of 512
by 1024 pixels. The 512 images were then read using Matlab 9.1.0 (R2016b)
(The MathWorks Inc., Natick, MA, USA) for processing and analysis.

2.2 Pre-Processing

OCT data was saved in a format read by the OCT Explorer (Retinal Image
Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa City, IA) [13,14,15]
software for segmentation. In particular we take advantage of the ease to perform
manual segmentation/correction using this software interface to segment three
major layers. The first major layer (Layer 1) comprises the retinal nerve fiber
layer (RNFL), the ganglion cell layer (GCL), the inner plexiform layer (IPL), the
inner nuclear layer (INL) and the outer plexiform layer (OPL) layers. The second
major layer (Layer 2) comprises the outer nuclear layer (ONL) and the external
limiting membrane (ELM), and; the third major layer (Layer 3) comprises the
ellipsoid zone and retinal pigment epithelium (RPE) layers. For a detailed insight
into the histology, OCT images and schematic arrangement of the mouse retina,
please refer to [4,16,17,18,19].

2.3 Processing

Histograms Histograms contain the first-order statistical information about
the images/volumes. These are an obvious choice when looking for differences in
the very early stages of disease, when the structure of the retina is still preserved
and indistinguishable from the healthy condition. Characteristics of the imaged
tissue (retina) can thus be obtained by analyzing the histograms of the OCT
values. Histograms were computed and the respective probability mass function
(pmf ) determined separately for Layer 1 (j = 1), Layer 2 (j = 2), Layer 3 (j = 3)
and the whole retina (j = 4).

Parameters defining the shape of the pmf are then computed by fitting the
function defined by (1)

f(x) =

2∑
i=0

Aie
−(x−xi)

2/(σ2
i ) (1)

to the pmf, from where a vector of parameters (vj = [A0, x0, σ0, A1, x1, σ1,
A2, x2, σ2]) (j = {1, 2, 3, 4}) is computed conveying information on the char-
acteristics of the tissue.

Each of the four individual vectors (vj) is transformed into the vector
wj = [A0, σ0, A1, σ1, A2, σ2, x0−x1, x0−x2, A0/A1, A0/A2, σ0/σ1, σ0/σ2,RMSE],
where RMSE stands for the root mean squared error of the fit.



Mean value fundus images Different approaches can be used to compute
a fundus reference image from an OCT volume data. These approaches share
the idea of using depth-wise averaging (total or partial) of each individual A-
scan [20]. In this work, for each of the three layers (Layer 1, Layer 2 and Layer
3) a mean value fundus (MVF) image [21] is computed by (2) as the average of
the A-scan values within the respective layer.

MV Fi(x, y) =
1

Z2
i (x, y)− Z1

i (x, y) + 1

Z2
i (x,y)∑

z=Z1
i
(x,y)

V (x, y, z) , (2)

where V is the OCT volume (of size 512×512×1024 voxels), Z1
i (x, y) and Z2

i (x, y)
are the limits of Layer i (i = {1, 2, 3}) at coordinates (x, y) and the coordinate
system for the OCT data is defined as: x is the nasal-temporal direction, y is the
superior-inferior direction, and z is the anterior-posterior (depth) direction [21].

Texture analysis Texture analysis is an image analysis technique used in a
wide range of applications with special emphasis on pattern recognition.

In this work we resort to common texture analysis techniques [22] to find
whether the structural arrangement of the retina may be different in mice model
of AD in comparison to those of controls. In addition, it may provide further
insight into the natural ageing process through the analysis of data from WT
animals imaged over time.

In this exploratory approach we make use of the Energy (3) and Contrast
(4) statistical properties of the image derived from the gray-level co-occurrence
matrix (GLCM). In particular, the number of gray levels of computed fundus
reference images was reduced to 16 to limit the size of the GLCM. Furthermore,
we split each image into 7 by 7 blocks (of equal size) with an overlap of 10% and
analyze each independently of each other, in different directions and at different
scales. On the one hand, with respect to the RNFL, different orientations are
expected because fibers converge to the optic disc. On the other hand, when
considering the human retina, where the OCT scans are performed centered on
the fovea, fibers are radially oriented away from it. The maximum energy and
maximum contrast across the combination of directions (0◦, 45◦, 90◦ and 135◦)
and scales (1, 2, 3 and 4) was chosen as the value for the block, respectively, for
energy and contrast.

Eαθ =
∑
i,j

p(i, j)2 , (3)

Cαθ =
∑
i,j

|i− j|2p(i, j) , (4)

where p(i, j) is the joint probability occurrence of pixel pairs having values i and
j in the image and α and θ are, respectively, the scale and direction.



2.4 Classification

Each eye scan is characterized by a vector of 52 parameters and is labeled as
”C”, if belonging to the group of controls (WT), and as ”D” otherwise (TMM).

Classification is performed using support vector machines (SVM) with radial
basis function (RBF) kernel [23]. This is a supervised learning algorithm able to
infer a function from labeled training data, a set of training examples for which
the classification is known beforehand. A model (discriminating function) is thus
created and later applied to classify new cases.

As not all the features may be required, the backward elimination algorithm
was used to increase the performance (i.e., accuracy in classifying unknown cases)
of the system. From the initial set of parameters a subset (of dimension 6)
was determined allowing for an increased accuracy. The system accuracy was
determined using the k-fold cross-validation procedure, were the cases were split
into k sets. k−1 sets were used for training and the set left out was then classified
using the establish model. The accuracy was determined comparing the obtained
classifications into the ”C” and ”D” classes with the actual ones. The process
repeats k times.

The working hypothesis, that OCT embeds information on the status of the
CNS allowing to discriminate between controls and AD cases, will prove to be
correct should the system be able to classify eyes, in the WT and TMM groups,
with an accuracy over the simple randomization one (equivalent to tossing a
coin).

3 Results

Two eyes per animal were imaged by the OCT system, at the ages of 4 and
8 months, and the respective OCT volume data exported and processed. The
number of eyes and scans performed can be found in table 1. These do not
account for the 13 out of 90 (14.4%) scans dropped due to acquisition and
segmentation errors.

Table 1. Number of eyes and valid scans performed at the ages of 4 and 8 months.
WT – wild type mice (controls), and; TMM – Transgenic mouse model of Alzheimer’s
disease.

Age WT TMM
(months) Eyes Scans Eyes Scans

4 20 20 12 12

8 26 20 32 25

The number of cases in each class (”C” and ”D”) for every classification per-
formed was matched every time not to bias results. Cases were randomly selected
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Fig. 2. Classification performance in discriminating wild type mice (WT) from triple-
transgenic mouse model (3xTg-AD) (TMM) of Alzheimer’s Disease at time points
T04 (4 months) and T08 (8 months), respectively at the ages of 4 and 8 months.
Minimum/Median/Maximum accuracy values (%) are of 76/83/95 and 92/94/96, re-
spectively for time points T04 and T08.

and the process repeated multiple times. In consequence, accuracy results are
shown as a distribution as opposed to a single value (Fig. 2).

Achieved results strongly suggest that retinas of transgenic mice are actu-
ally different from that of healthy controls at the same age. Additionally, results
demonstrate that differences do exist at the age of 4 months and that the dif-
ferences are even clearer at the age of 8 months, as shown by the increase from
the minimum 76% to a minimum of 92% in classification accuracy (Fig. 2).

Results from the texture analysis can be found in figure 3. At the age of 4
months WT and TMM mice do show similar values for both the energy and
contrast at all layers. At the age of 8 months, the contrast is reduced for the
TMM group in comparison to that of the WT group. For the energy, differences
become clearer. In particular, for Layer 1 the energy distribution is similar but
with an increase in the mean value for the TMM group. For Layers 2 and 3,
the distributions show that energy values of WT mice do have a much more
homogeneous distribution than that of the TMM group. These findings suggest a
difference in tissue properties between controls and mouse model of disease which
is in agreement with results from the classification using the SVM algorithm.
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Fig. 3. Texture analysis: energy and contrast from the gray-level co-occurrence matrix
(GLCM) of mean value fundus (MVF) images for Layers 1 to 3 and time points T04
and T08, respectively mice at the ages of 4 and 8 months. C – wild type (WT) mice
group; D – transgenic mouse model (TMM) group.

4 Conclusions

In this paper we have tested the approach followed previously for the classifica-
tion of human retinas to find it possible to apply it to OCT scans of mice retinas
with success.

Our data show that not only it is possible to use the OCT to get an insight
on changes occurring in the retina of mouse model of Alzheimer’s disease, but
that differences are sufficient to allow to discriminate eyes of controls from that
of the transgenic group, with an accuracy in the prediction of over 80% at the
age of 4 months and over 90% at the age of 8 months (median values).

Finally, found differences in texture of fundus images computed for the layers
considered in this work suggest a more heterogeneous organization of the retina
in transgenic mice at the age of 8 months, while at the age of 4 months results
are similar.
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Casa da Misericórdia)(MB-1049-2015), by The Portuguese Foundation for Sci-
ence and Technology (PEst-UID/NEU/04539/2013), by FEDER-COMPETE
(POCI-01-0145-FEDER-007440) and Centro 2020 Regional Operational Pro-
gramme (CENTRO-01-0145-FEDER-000008: BrainHealth 2020).

References

1. R Bernardes, P Serranho, T Santos, V Gonçalves & J Cunha-Vaz. Optical coher-
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20. P Guimarães, P Rodrigues, C Lobo, S Leal, J Figueira, P Serranho & R Bernardes.
Ocular fundus reference images from optical coherence tomography. Computerized
Medical Imaging and Graphics, 38, 381–389, 2014.
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