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1 INTRODUCTION 

1.1 Forests and climate change 

Climate change is one of the worst environmental threats ever faced by the mankind. 

The greenhouse gas concentration in the atmosphere is currently at its highest levels 

in at least the last 650000 years. Greenhouse gas is a gas in the atmosphere that 

absorbs and re-emits radiation within the thermal infrared range, thus causing 

warming in the surrounding atmosphere. Ever since the beginning of the industrial 

revolution, and especially within the last one hundred years, the concentration has 

rapidly increased as a result of fossil fuel combustion, from approximately 280 ppm 

in the late 1800s to 388 ppm in 2010. At the same time the average global surface 

temperature has increased by approximately 0.76 °C, while 15 of the warmest years 

in the temperature record have been recorded in the past 20 years. The warmer earth 

will have an impact on the earth’s climate, climate variability and the ecosystems in 

many and partly unpredictable ways. Some regions could even benefit from the 

warmer more favourable climate, while other regions would suffer from catastrophic 

environmental changes (Ryan et al. 2010). The estimates on the speed of climate 

change vary, but even in the most optimistic scenarios, the average temperature of 

earth would increase by some 1.8 °C by 2100 (Statistics Finland 2011a). 

 

Out of several greenhouse gases that contribute to climate change, the most 

prominent is carbon dioxide (CO2), which mainly results from the combustion of 

fossil fuels. Forests sequestrate CO2 from the atmosphere during their lifetime and 

thus play an integral role in mitigating climate change. In Finland the forests grew by 

an estimated 100 million m
3
 in 2009, vastly surpassing the total drain, a trend which 

has persisted ever since the 1970s. At the same time the forests cover some 26 

million ha or 86 % of all land area in Finland (Finnish Forest Research Institute 

2010). In comparison, the global forest coverage in 2005 was about 3952 million ha 

or just 30 % of all the world’s land area (IPCC 2007). The forests themselves, with 

their growing forest stocks, increased the net carbon sinks in Finnish forests to some 

49 TgCO2eq in 2009, equal to about 74 % of Finnish greenhouse gas emissions that 

year (Statistics Finland 2011b). In its totality the carbon pool in living forest biomass 

is estimated to be globally in the range of 1000 GtCO2 (IPCC 2007), over 15000 

times the amount of annual CO2 emissions of Finland. Even after felling, the carbon 
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remains captured within the woody materials, such as sawlogs used for construction 

or pulpwood used for paper and packaging. After their respective lifecycles, the 

wood waste is recycled, incinerated (with or without energy recovery) or land-filled, 

at which point some or all of the carbon is release back to the atmosphere at varying 

rates.  

 

In addition to carbon sequestration, forests mitigate climate change also by providing 

a sustainable source for raw materials. This flow of raw material can be used for 

different wood-based products, which can substitute for other more fossil energy 

intensive materials, such as plastics and metal, or when wood is used for energy 

purposes, oil and natural gas. Because of the avoided fossil emissions, the 

greenhouse gas concentration in the atmosphere is decreased. It is estimated that for 

example in the United States, forests and forest products offset some 12 – 19 % of all 

US fossil fuel emissions, though largely owing to forest recovery from the past 

deforestation and extensive harvesting (Ryan et al. 2010).  

 

In 2009 the greenhouse gas emissions in Finland decreased by 5.8 % from the 

previous year, to 66.3 TgCO2eq, about 7 % under the Kyoto Protocol target of 71 

TgCO2 (Statistics Finland 2011b). The energy sector is especially vital in reaching 

the target, as in 2008 it was responsible for approximately 78 % of all the emissions 

(Finnish Forest Research Institute 2010). With approximately 5.2 Tg of fossil fuel 

based CO2 emissions, the Finnish forest industry was responsible for approximately 

33.9 % of the total emissions, that resulted from manufacturing or 7.5 % of all 

emissions in Finland. This is negligible however, compared to the total energy 

consumed by the industry, as 21.6 Tg of biogenic CO2 emissions came from the use 

of renewable wood fuels used by the forest industry. Incidentally, the Finnish forest 

industry self-provides a vast portion of the energy that it consumes. With black 

liquor and over 20 million m
3
 of wood used for energy purposes, a fifth of the total 

energy consumption of 1336 PJ in Finland comes from wood. The largest share of 

the energy consumed in Finland still comes from fossil fuels, namely oil, coal and 

natural gas, which accounted for 46 % of the total energy consumption in 2009.  
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With different forest management and end-use strategies, come tradeoffs. If the 

carbon pools in the growing forest stocks were to be increased, by lengthening the 

rotation periods, the supply of roundwood would decrease, at least on the short-term.  

Because of material substitution, this in turn could lead to the use of more energy 

intensive materials instead. Similarly if pulpwood was used for energy purposes, 

instead of paper or packaging manufacturing, the decreased amount of paper and 

packaging would be substituted by some other materials. These various tradeoffs 

play an important role in the decision making process. For instance, avoiding 

deforestation and increasing the harvesting intervals to increase the forest carbon 

pools, could move timber production elsewhere, thus leading to no total net benefits 

for the carbon in the atmosphere (Ryan et al. 2010). 

 

In western Europe approximately 75 Tg of materials were used for packaging 

purposes in 1995 (Hekkert 2001). This constitutes for approximately 10 % of the 

total quantity of Western European material markets. Furthermore around 20 % of all 

timber consumption in Europe is used for wooden pallets and packaging, with around 

400 million wooden pallets produced each year in Europe alone. The sector 

represents approximately 4 % of all European Union woodworking industries, with 

estimated 3000 companies employing some 50000 people (Finnish Forest Industries 

2010). The overall environmental impact of the packaging sector is enormous. It is 

estimated that for example in 1994, the greenhouse gas emissions associated with the 

packaging materials in Western Europe, were some 144 TgCO2eq, which at the time 

equalled to 14 % of all material-related greenhouse gas emissions or 3.3 % of all 

greenhouse gas emissions in Europe (Hekkert 2001). In Finland the total 

consumption of packaging materials in 2008 was some 2.4 Tg (PYR 2010). 

 

1.2 Sustainable forestry 

In 1993 at the Second Ministerial Conference on the Protection of Forests in Europe 

(MCPFE) in Helsinki, sustainable forest management (SFM) was defined as “… the 

stewardship and use of forests and forest lands in a way, and at a rate, that 

maintains their biodiversity, productivity, regeneration capacity, vitality and their 

potential to fulfill now and in the future, relevant ecological, economic and social 

functions, at local, national, and global levels, and that does not cause damage to 

other ecosystems.” (MCPFE 1993).  
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After the main idea and the underlying concepts for sustainable forest management 

were first agreed upon at the Helsinki Conference, the more precise criteria and the 

indicators for SFM were developed in the follow-up meetings in Geneva and Antalya 

in the mid-1990s. Based on the developed framework, two reports were compiled, 

first in 1998 for the third MCPFE in Lisbon, and then in 2003 for the fourth MCPFE 

in Vienna, where the pan-European indicators were revised, based on the experiences 

since the Lisbon meeting.  The first national sustainability indicators for Finland 

were developed early on in 1996, based on the precursory pan-European work. They 

were revised in 2000, and further in 2007, when the third national indicators were 

introduced, based on the national experiences, on-going international deliberations, 

and the agreed upon pan-European indicators. The national SFM criteria closely 

follow pan-European criteria laid out in 2003, however with slight alterations. The 

criteria include forest resources, health and vitality of the forest ecosystem, 

productive functions of forests, biological diversity, protective functions and also 

socio-economic aspects of forests (Ministry of Agriculture and Forestry 2007). 

 

1.3 Packaging materials 

Packaging can be seen as a socio-scientific discipline, with multiple functions and 

roles which it simultaneously has to fulfil (Lockhart 1997). The paramount goal for 

packaging is to ensure the delivery of goods to the consumer, in the best possible 

condition intended. Most importantly it should protect, preserve and contain the 

product, especially during the transportation phase. It should also provide 

information to the consumer, regarding the product, and serve as a device for 

marketing. Packaging simultaneously operates in human, physical and atmospheric 

environments, which are inseparable from each other. The three environments each 

have three functions, which also have to be fulfilled, and they are neither separable 

from each other, nor then three environment. The functions of a package are 

protection, utility and communication. The interacting functions and environments 

can be presented in the so-called packaging matrix. The exact composition of the 

packaging matrix varies depending on the application, and the intended use of the 

package, however its’ generic form is presented in Figure 1. 
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Figure 1. Packaging matrix (Bix et al. 2003). 

 

Packaging can be further divided in to three basic categories, based on their intended 

use and purpose. These categories are primary, secondary and tertiary (Figure 2) 

(Järvi-Kääriäinen and Ollila 2007, p.10). Primary packaging directly wraps or 

contains the product and is typically the smallest unit of distribution or use, whereas 

the secondary package is used to wrap the primary package. An example of 

secondary package would be a display-ready corrugated container for juice cartons, 

the juice cartons being the primary package for the liquid inside. The tertiary 

package is used to wrap or contain both primary and secondary packages, and it is 

especially designed for bulk-handling in the warehousing and transportation phase. 

For this reason tertiary packages are usually pallets, in the form of unit loads, for 

ease of handling, and they are designed in a way, that they can be easily handled by 

machinery. From the material perspective, the categories are somewhat arbitrary in 

the sense that the material use is not bound by the categories in any strict sense, as 

several different materials can potentially be used, and the materials can often 

substitute for each other. Furthermore, the packaging materials are seldom used 

singly, rather they are used jointly. For instance many liquid packaging systems are 

made from liquid packaging board with high-density polyethylene caps and 

aluminium pull tabs. 
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Figure 2. Packaging layers. 

 

Some commonly used packaging materials are glass, plastic, paper, paperboard, 

metal and wood. In Finland the most common packaging material, defined by its 

weight, is wood, closely followed by metal (Table 1). In total, over 2.4 Tg of 

different packaging materials were domestically consumed in 2008 (PYR 2010). It 

should be noted that the total use is not the same as the virgin material use. The total 

use is calculated as the sum of new materials entering the market, which also 

includes recycled and reused materials. The total consumption of paper, paperboard 

and corrugated board packaging was 0.27 Tg, while the consumption of wood 

packages, namely pallets, was 0.91 Tg. Wood and fibre-based packaging materials 

account for some 48 % of all packaging material consumption, or two-thirds of all 

virgin packaging materials placed on the market, with approximately half of this 

consumed by the food packaging industry. 

 

Table 1. Total consumption of packaging materials in Finland in 2008 (PYR 2010). 

Material 
Quantity placed on the 

market, tons 
Reuse, 

tons 
Total use, 

tons 

GLASS 60 645 114 795 175 440 
PLASTICS 115 373 251 778 367 150 

PAPER, BOARD AND CORRUGATED 
BOARD 256 074 10 101 266 175 
METALS 50 807 654 028 704 835 
WOOD 217 205 689 344 906 549 
OTHERS 695 1 109 1 804 

TOTAL 700 799 1 721 155 2 421 953 

Tertiary 
packaging 

Secondary 
packaging 

Primary 
packaging 

Product 
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The value of paper processing and the fibre- and wood-based packaging industry’s 

production in Finland is over €1 billion annually. The sector is an important 

employer, as these activities provide employment for some 5600 people in Finland. 

The total value of the entire packaging industry’s production in Finland is about €2 

billion, while the global market for the packaging industry is worth some €400 

billion annually. Fibre-based packaging, which includes corrugated board, carton and 

liquid packaging board, accounts for approximately 40 % of this (Finnish Forest 

Industries 2011).  

 

The global packaging market was valued at nearly $480 billion in 2005, with Asia 

emerging as the biggest consumer of packaging materials in the future (World 

Packaging Organisation, 2008). The biggest national packaging markets are found in 

the United States, Japan, China, Germany and France. Measured by the value, clearly 

the most important packaging material in the world is fibre-based packaging, with 

worldwide sales exceeding $180 billion in 2005. Behind fibre-based packaging 

comes plastic, metal, glass and other materials, in the respective order. The “other 

materials” sector is principally composed of wooden pallets and containers, which is 

noteworthy, as this means almost 6 % of all global packaging material consumption 

is in the form of either wooden pallets or containers. The fastest growing packaging 

material sector is the rigid and flexible plastics. This is mainly due to rising demand 

for PET bottles, and plastics substituting for metals, glass and sometimes fibre-based 

materials. The growing importance of the food markets and the rising demand for 

ready-meals and other convenience-oriented products, has also been kind for the 

plastic demand. Both metal and glass are expected to lose market share in the future 

to fibre-based packaging and plastics.  

 

1.4 Sustainable packaging 

Sustainability can be defined as resource consumption that maximizes the welfare of 

the current generation, without compromising the welfare of the future generations. 

Packaging materials have a significant impact on the welfare of the current and 

future generations, as they can affect the environment in an adverse way, as a result 

of landfilling, consumption of scarce resources, and the greenhouse gas emissions 

that result from the manufacturing and use of packaging materials (Gielen and 

Moriguchi 2001).  
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There are no clear-cut criteria to what constitutes a sustainable package. The 

Sustainable Packaging Coalition (SPC) developed in 2009 a framework for 

measuring the sustainability of packaging materials. In their Sustainable Packaging 

Indicators and Metrics Framework (Sustainable Packaging Coalition 2009), they 

discuss several key elements, definitions and performance categories, to what should 

constitute a sustainable package. Greenhouse gas emissions are just one of the many 

indicators, in the SPC framework that provides information about the package’s 

sustainability. According to the SPC definition, the key elements in sustainable 

packaging are that it 

 is beneficial, safe & healthy for individuals and communities throughout its 

life cycle; 

 meets market criteria for both performance and cost; 

 is sourced, manufactured, transported, and recycled using renewable energy; 

 optimizes the use of renewable or recycled source materials; 

 is manufactured using clean production technologies and best practices; 

 is made from materials healthy in all probable end of life scenarios; 

 is physically designed to optimize materials and energy;  

 is effectively recovered and utilized in biological and/or industrial closed 

loop cycles  

 

The consumption of packaging materials leads to greenhouse gas emissions through 

the production and transportation, and through the end-of-life management of the 

materials. The most important greenhouse gas emission related to packaging is 

carbon dioxide (CO2), however in the case of landfilling, the methane (CH4) 

emissions have to be considered as well. Methane emissions result from the 

decomposition of woody materials in the landfills, and CH4 has 25 higher global 

warming potential than carbon dioxide. Recycling of packaging materials is essential 

in order to lower the greenhouse gas emissions, as recycling generally results in 

considerably less emissions, than would results from the production of packaging 

from virgin materials. For example in the case of aluminium, the emissions from 

recycled secondary aluminium are 10 – 20 times lower than the emissions from 

primary aluminium. Both improved material management, such as finding 
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substitution benefits in materials and increasing the recycling and reuse, as well as 

reduction of emissions in production and waste management, show potential in 

reducing the packaging related environmental impacts. The costs for material 

efficiency improvements are considerably lower than the costs for emissions 

reductions in material production. Packaging materials have technical potential, as 

well as low lifecycle costs of material efficiency improvement, compared to many 

other mitigation tactics, and thus packaging materials should be paid more attention 

in climate change policy and discussion in general (Hekkert 2001).  

 

According to International Trade Administration of the U.S. Department of 

Commerce (ITA 2010), the strive for cost reductions, changing consumer attitudes 

and the legislation, are the three major forces driving the industry and the packaging 

supply chains towards greater sustainability nowadays. In their assessment it is 

currently especially the European laws, regulations and standards, which are actively 

and foremost shaping the global packaging market in terms of sustainability.  

 

1.5 Packaging waste, material recovery and reuse in Europe 

Approximately half of the paper consumed in Europe is manufactured by using 

recycled fibres. The most recycled fibre is used in producing packaging materials and 

newspaper paper grades. The Finnish forest industry each year uses approximately 

0.75 Tg of recovered paper as a raw material. This equals to about 5 % of all raw 

material use.  The relatively small share is explained by the fact that almost all 

production is exported, and subsequently recovered outside of Finland. Importing 

recycled fibres back to Finland is not, at least at the moment, seen as an 

economically viable option (Finnish Forest Industries 2011).  

 

The Environmental Registry for Packaging (PYR) is a non-profit company 

responsible for compiling the annual statistics of packaging material recovery, reuse 

and recycling in Finland, in accordance to the EU Commission Decision 

2005/270/EC on packaging and packaging waste. The statistics are collected from 

packagers, fillers, importers, exporters, material producers and recovery 

organisations, and they cover 95% of all packaging materials entering the Finnish 

markets. In 2008 (Table 2) the total use of packaging materials in Finland was 

roughly 2.4 Tg (PYR 2010). 
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Table 2. Use, reuse, recovery and recycling of packaging materials in Finland  

(PYR 2010). 

Material 

Quantity 
placed on 

the market, 
tons 

Recovered by 
recycling as 

material, tons 

Recyclin
g rate, 

% 
Reuse, 

tons 

Reus
e 

rate, 
% 

Total use, 
tons 

GLASS 60 645 48 391 80 114 795 65 175 440 
PLASTICS 115 373 26 175 23 251 778 69 367 150 

PAPER, BOARD AND 
CORRUGATED 

BOARD 
256 074 238 468 93 10 101 4 266 175 

METALS 50 807 38 294 75 654 028 93 704 835 
WOOD 217 205 42 996 20 689 344 76 906 549 
OTHERS 695 0 0 1 109 62 1 804 

TOTAL 700 799 394 324 56 1 721 155 71 2 421 953 

 

According to European Commission decisions (Commission Decision 2005/270/EC), 

the waste generated by packaging in Finland is deemed to be equal to the packaging 

placed on the Finnish market. The quantity placed on the market represents the first-

time use of any given packaging material. When a reusable package enters the 

market for the first time, it is presented under the quantity placed on the market. 

After the first lifecycle the package is refilled or reused after cleaning, and it is then 

presented under the reuse. With recovery and reuse, the total amount of packaging 

materials is calculated as the sum of reused and one-way packaging materials. 

According to the Environmental Register of Packaging (PYR 2010) statistics, in 

2008 the recovery rate for all packaging materials in Finland was nearly 90 %. This 

means that a majority of packaging materials entering the Finnish market were 

collected and either recycled or incinerated at the end of their lifecycle. In its entirety 

only about 0.07 Tg of packaging waste was disposed to the landfill sites, which is a 

mere 3 % of the total packaging use. The reuse rate for packaging materials in 

Finland is 71 %, one of the highest in the European Union. The recycling rate for 

packaging materials is 56 %, about the European Union average and just slightly 

above the recycling target set by European Union Packaging and Packaging Waste 

Directive (Directive 94/62/EC). The average recovery rate in European Union in 

2008 was 71% (Figure 3). 

 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31994L0062:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31994L0062:EN:NOT
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Figure 3. Recycling and recovery rates of packaging waste in EU in 2008  

(Eurostat 2011). 

 

The targets for recovery and recycling set by the Packaging Waste Directive 

(Directive 94/62/EC) are that 

a) no later than 30 June 2001  

a. between 50 % as a minimum and 65 % as a maximum by weight of 

packaging waste will be recovered or incinerated at waste incineration 

plants with energy recovery  

b. between 25 % as a minimum and 45 % as a maximum by weight of 

the totality of packaging materials contained in packaging waste will 

be recycled with a minimum of  15 % by weight for each packaging 

material 

b) no later than 31 December 2008  

a. 60 % as a minimum by weight of packaging waste will be recovered 

or incinerated at waste incineration plants with energy recovery 

b. between 55 % as a minimum and 80 % as a maximum by weight of 

packaging waste will be recycled 

c. the following targets for materials contained in packaging waste must 

be attained 

i. 60 % for glass, paper and board 

ii. 50 % for metals 
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iii. 22.5 % for plastics 

iv. 15 % for wood 

 

The Commission has also laid out a legally binding Waste Framework Directive 

(Directive 2008/98/EC) for its’ Member States, in which it presents the European 

waste hierarchy (Figure 4). The hierarchy lays down the generic principles and the 

priority order to what constitutes the best overall environmental options in waste 

management. Preventing and reducing the waste at the source is seen as the most 

favoured option, whereas disposal to landfills and incineration without energy 

recovery is frowned upon. Reuse is preferred to recycling, as it thought to require 

and consume less energy and resources. Incineration with energy recovery is 

considered only better to disposal. 

 

 

Figure 4. European waste hierarchy. 

  

1.6 Purpose of the study 

The purpose of the study is to examine the integrated climatic impacts of forestry and 

the fibre-based packaging materials. This is examined as a difference between two 

levels of production and consumption, when the amount of fibre-based packaging 

material on the market decreases from the current state – the baseline.  

Most 
favoured 
option 

Least 
favoured 
option 
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While forest and forest product carbon pools and material substitution has been 

studied in the past, the specific integrated climatic impacts of forestry and fibre-

based packaging material use have been neglected, despite the important role of 

fibre-based packaging as material that can possibly help to mitigate climate change. 

The lack of knowledge about this specific aspect has been the main motivation in 

undertaking the study. In this study, the current level of wood material use for fibre-

based packaging is evaluated by comparing it to a lower level of use. Therefore, 

different scenarios are generated to compare and see what kind of climatic impacts 

using less fibre-based packaging materials could have, weighing the positives and 

negatives.  

 

The main research questions, for which answers are sought for, are the following: 

 The combined carbon pools of forests and wood-based products in different 

scenarios 

o How important are fibre-based packaging materials for the carbon 

pools? 

o How long-lived are these carbon pools? 

o When and how is the carbon released back to the atmosphere? 

o How does recycling affect the carbon pools? 

 CO2 emissions of the fibre-based packaging materials over their whole 

lifecycle 

o How large are the CO2 emissions? 

o How do the CO2 emissions compare to other materials such as 

plastics? 

o What are the functional carbon displacement factors for fibre-based 

materials? 

o How does the end-of-life management affect the emissions? 

o What is the typical lifespan for packaging materials in Finland? 

 Material substitution 

o What are the avoided emissions from material substitution? 

o How do the possibilities to use wood change between scenarios? 

o Should wood raw material resources be allocated to packaging 

materials rather than something else? 
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Reliable results from the study would be interesting policywise, especially as the 

benefits of energy wood use are discussed, as well as from the point of view of the 

industry, as the results could be used for product marketing and research and 

development. The results could also justify wood raw material use for fibre-based 

packaging manufacturing in general, if there are positive climatic impacts to be 

found in allocating the resources to packaging materials, instead to other uses. The 

inclusion and comparison of economically optimal forest management practices and 

forest management by silvicultural guidelines developed by the Forestry 

Development Centre Tapio will also be interesting, as they are the basis for the 

current forest management practices in Finland.  
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2 FORESTRY AND WOOD USE IN FINLAND 

 

2.1 Sustainable forest management in Finland 

Based on the principles of the pan-European sustainability indicators and the 

application of the six national Sustainable Forest Management (SFM) criteria 

discussed in chapter 1.2, some observations can be made about sustainable forest 

management in Finland and the state of the Finnish forests. In total, 12 descriptive 

and 35 quantitative indicators in six different categories are used to measure the 

sustainability of forest management. The six national and pan-European criteria 

(Ministry of Agriculture and Forestry 2007) are 

1) Maintenance and appropriate enhancement of forest resources and their 

contribution to global carbon cycles. 

2) Maintenance of forest ecosystem health and vitality. 

3) Maintenance and encouragement of productive functions of forests. 

4) Maintenance, conservation and appropriate enhancement of biological 

diversity in forest ecosystems.  

5) Maintenance and appropriate enhancement of protective functions in forest 

management. 

6) Maintenance of other socio-economic functions and conditions. 

 

The qualitative indicators for forest resources (1) include both the preservation and 

the increase of forest land, as well as the maintenance of carbon balance in the 

forests. This is measures by the forest area, the growing stock, the age structure of 

the forest, the carbon stock of the forest and the use of wood based fuels. Through 

net growth of the forests, the net annual carbon sink in Finnish forests grew to 49 

TgCO2 in 2009. The share of wood based fuels was around 20 % of the total energy 

consumption in Finland (Finnish Forest Research Institute 2010). The Finnish forest 

area has remained almost unchanged for the past 40 years, whereas the volume of the 

growing stock has increased by over 40 % (Ministry of Agriculture and Forestry 

2007).  

 

The health and vitality of the forest (2) is measured by the amount of air pollutants, 

the chemical soil condition, defoliation and forest damage. The health and vitality of 
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Finnish forests has been relatively good, for example the nitrogen and sulfur 

deposition loads, most of which come from abroad, have decreased considerably 

since the 1980s (Ministry of Agriculture and Forestry 2007).  

 

The productive functions (3) of forests are measured by indicators related to both the 

wood and non-wood aspects of the forests. For example the annual increment and 

drain are important components of this criterion. Thanks to sustainability promoted 

by both private forest owners and the government, the annual increment of Finnish 

forests has constantly surpassed the drain (Finnish Forest Research Institute 2010).  

 

Biological diversity (4) is measured by a large number of indicators such as the tree 

species composition, forest regeneration, the amount of natural forests and the 

threatened forest species. In many ways this criterion is very similar to the second 

criterion of forest health and vitality. In general the Finnish forests have been 

managed ecologically for decades and under the statutory requirements of the Forest 

Act since 1997. The endangerment of certain forest species has slowed down since 

the 1990s (Finnish Forest Research Institute 2010).  

 

The protective functions of forests (5) are mostly focused in the northern parts of 

Finland, in an area of approximately 3.3 million hectares, as very little problems 

related to soil erosion, avalanches and shifting exist in Finland.  Issues concerning 

the water systems are however given a special attention in the national criteria, and it 

has received its’ own indicator of “impacts of forest management on waters”, which 

does not exists as such in the pan-European criterion. In general the level of water 

protection in Finland has constantly improved at felling site and natural peatlands are 

not drained anymore (Ministry of Agriculture and Forestry 2007).  

 

Finally, the socio-economic functions of forests (6) cover a vast range of different 

indicators which are related to the maintenance of economic viability of forestry, 

improvement of employment and occupational safety in the forest sector, 

safeguarding the opportunities of the public for participation, education and research 

in forestry and the maintenance of cultural and spiritual values of forests. Despite 

losing some of its importance since the 1980s, the forests have remained highly 

important to the Finnish national economy and especially to the imports. In social 
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and cultural sense the Finnish forests also play an important role in shaping the 

Finnish national identity and the relationship to nature (Finnish Forest Research 

Institute 2010). 

  

2.2 Use of wood raw material in Finland 

In 2009 the total consumption of roundwood in Finland was 59.5 million m
3
, of 

which 7.3 million m
3
 were imported roundwood (Finnish Forest Research Institute 

2010). The consumption of roundwood declined for the third year in a row, and by 

18 % from the year before, while the amount of imported roundwood declined even 

more sharply by 50 %. Incidentally 2009 was the slowest year for the roundwood 

markets and timber trading in Finland in the past 25 years. The trend was mostly due 

to the global recession that had started from the United States in 2007, and its 

negative impact on the economic climate and consequently the demand of wood-

based products, but also due to the large timber stocks at the time.  

 

The majority of the consumed roundwood, 51.5 million m
3
, was used by the forest 

industry. The rest of the wood raw material was consumed for energy purposes at 

heating- and power plants and small-sized residential houses. Contrary to the 

declining trend in domestic and imported roundwood consumption, energy wood use 

increased by one quarter to 8.0 million m
3
. In addition to roundwood, the industry 

used approximately 6.4 million m
3
 of sawmill chips and dust, that were generated as 

industry by-products and wood residue from harvesting and manufacturing. The 

majority of the by-products and wood residue were consumed for energy purposes, 

as 12.1 million m
3
 of wood was used by heating- and power plants and for fuel wood 

by small residential houses. In total some 18.5 m
3
 of wood by-products and wood 

residue were consumed. All this added up to approximately 57.8 million m
3
 of wood 

consumed by the forest industry and 20.2 million m
3
 of wood used for energy 

purposes in Finland in 2009 (Figure 5).  
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Figure 5. Wood consumption in Finland 2009 (Finnish Forest Research Institute 

2010). 

 

The single most important source of consumption for wood raw material in Finland 

remains the pulp industry with approximately 30.7 million m
3
 of roundwood and 6.1 

million m
3
 of industry by-products and wood residue used in production. The 

breakdown between mechanical, semi-chemical and chemical pulp is roughly so that 

three quarters of the wood is used for chemical pulping and the remaining amount for 

mechanical, with negligible amounts also going in to the semi-chemical production. 

The second most important sector of the industry is the wood products, with roughly 

21.1 million m
3
 of wood consumed, namely by the sawmilling industry. Aside from 

the sawmilling and the plywood and veneer industry, very little wood is used for 

other purposes by the industry. Rest of the wood, roughly 20.2 million m
3
, is used for 

energy purposes. The production consequently follows the wood consumption. The 

production was down in 2009, with total production of 10.6 million tons of paper and 

paperboard, 8.0 million m
3
 of sawnwood and 0.8 million m

3
 of plywood, with most 

of the production exported. The total production of paperboard, which includes the 

packaging materials, was 2.5 million tons with approximately 90 % of the production 

going in to exports (Finnish Forest Industries 2011).   
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2.3 Future trends in wood use 

The European Union RES-directive (Directive 2009/28/EC) mandates that by 2020 

the share of renewable energy should be at least 20 % of the total energy 

consumption in all the Member States. The specific targets vary between the Member 

State, in Finland’s case the share of renewables being 38 % of all energy. In primary 

energy this translates in to approximately 39 TWh (Finnish Forest Research Institute 

2010). Half of the increment in the renewable energy is expected to come through the 

increased use of wood chips. This means that by 2020, approximately 12 – 13 

million m
3
 of wood chips would be used for energy purposes. 

 

Hetemäki and Hänninen (2009) have estimated that the Finnish forest industry wood 

consumption will decline in the coming years. They base this estimation on three 

factors that affect the industry; the so-called “China Syndrome”, which moves 

production as well as consumption to developing countries in Asia, electronic 

substitution of paper media which globally affects the forest sector, and the 

biological characteristics of Finnish forests, due to which the Finnish forests produce 

considerably less wood compared to some other countries with more favorable 

conditions for wood production. For the wood consumption they estimate that by 

2020, it declines by 22.9 million m
3
 or 30 % from the levels of 2007. The 

consumption of domestic wood would decline by 21 % or 12.4 million m
3
. This 

would mean an increased potential for energy wood use, as according to the 

estimates, there would be over 3.0 million m
3
 of excess wood chips and dust, as well 

as approximately 7.1 million m
3
 of excess pulpwood available to the market 

compared to the 2007 levels. The central idea is that in the future the Finnish forest 

sector is more and more relied on the renewable energy aspect of wood use, rather 

than the wood-based products. From the economic or environmental point of view, 

they argue that there is no reason to limit pulpwood outside of the energy use. In the 

future the stumpage price development would be increasingly attributable to the 

value added of the energy sector, rather than the forest sector and its wood-based 

products. At the present the increased use of wood fuels is more restricted by its 

price and availability, rather than the industrial capacity to utilize it (Pöyry 2010). 

 

In a Government Institute for Economic Research assessment, Honkatukia and 

Simola (2011) reached a somewhat different conclusion on the future outlook of the 
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Finnish wood consumption. They argue the previous estimates have been somewhat 

too pessimistic, but also note that the many uncertainties surround the Finnish forest 

industry and its future, makes predicting the future difficult.  Most strikingly they 

expect the total consumption of wood to reach some 90 – 100 million m
3
 by 2020, 

due to the forest and energy sector integration. The integration would stem from the 

climate and energy policies, and the increased use of renewable energy. The 

consumption of wood is not expected to reach the full industrial potential, which they 

estimate to be around 80.0 million m
3
. The reasons are market-based, and the weak 

cost competitiveness of the forest industry. In their assessment, the worst-off sector 

is the paper industry, whereas the future for the paperboard industry looks much 

brighter.  Even in their most pessimistic estimate, the wood consumption would not 

decline as much as Hetemäki and Hänninen (2009) predicted. They also note that 

despite the increased consumption of wood, in none of the scenarios the consumption 

reaches levels, which would threaten the principles of sustainable forest management 

in Finland. 
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3 FOREST AND FOREST PRODUCT CARBON POOLS 

 

3.1 Forest carbon cycle 

Plants absorb CO2 from the atmosphere (Gross primary production, GPP), converting 

it through photosynthesis in to carbohydrates, which the plants can then use to build 

organic matter such as leaves, wood, and roots. Through autotrophic respiration (Ra) 

of the plant, some of the CO2 is released back to the atmosphere. With no outside 

disturbances the net difference between photosynthesis and the respiration 

determines the net accumulation of carbon in the plant (Net primary production, 

NPP). About half of the assimilated CO2 is used for growth and the maintenance 

respiration, and it is lost back to the atmosphere, while the other half remains 

captured within the plant (Gower 2003).  

 

As a result of harvesting forests for wood raw material, it is also important to 

consider the industrial carbon cycle of forests. The trees are felled, and wood is 

transported from the forests to different production facilities. The carbon in wood 

remains captured in wood and paper products, and is eventually released back to the 

atmosphere when the product is recycled, incinerated or land-filled as waste at the 

end of their lifecycle. Secondary greenhouse gas emissions also occur in between, as 

the material is transported and manufactured in to wood-based products at different 

production facilities (Figure 6). In addition to harvests, disturbances such as forest 

fires, insects, pathogens, and wind can affect the forest carbon cycle. Even with no 

disturbances, some of the forest carbon is eventually released back to the 

atmosphere, as trees grow, shed dead branches, leaves and roots, or simply die. 

Micro-organisms decompose the dead material, releasing some of the CO2 back to 

the atmosphere, while a portion remains captured within the soil. Live and dead trees 

in mature forests contain approximately 60 % of the carbon in the forest, while the 

remaining 40 % is captured in the soil and the forest litter (Ryan et al. 2010).  
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Figure 6. Forest carbon cycle (Gower 2003). 

 

The total carbon pool of the world’s forests is estimated to be some 3400 GtCO2, of 

which approximately 30 % is in the living tree biomass, while the rest is in the dead 

trees, litter and the soil (FAO 2006, IPCC 2007). In Finland it is estimated that the 

carbon pool in living tree biomass is approximately 2.3 GtCO2, while the boreal 

forest soil carbon pool is about 3.8 GtCO2. Compared to forests, the peatland carbon 

pool is massive and estimated to be some 17.6 GtCO2 (Kauppi et al. 1997). The net 

carbon sink in the growing forest stock in Finland increased to an all-time high of 49 

TgCO2eq in 2009 (Statistics Finland 2011b). Meanwhile the global greenhouse gas 

emissions resulting from human activities have reached an all time high of 30.6 

GtCO2eq in 2010 (International Energy Agency 2011).   

  

Buchanan and Levine (1999) emphasize the importance of the balance between the 

biological and industrial carbon cycles. The carbon released from the wood products 

can be balanced by the replanting and the regeneration of the forest. Sustainability 

can only be reached through actions which balance the removals of wood, and the 

growth of the forest. Only when the growth equals or exceeds the removals, the 

forest carbon pools can maintain a long-term equilibrium or ideally increase. A 

sustainably managed forest is carbon neutral in the long-run, as the carbon released 
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following the logging of one stand, is replaced by the carbon absorbed by the growth 

of the next stand. 

 

Depending on the age of the stand, forests can either be carbon sources or carbon 

sinks. To increase the forest carbon pools, the forest needs to produce an increasing 

amount of biomass. Once forests reach maturity or when a steady-state forest 

management is implemented, the forests carbon pools stop growing. Song and 

Woodcock (2003) have estimated that a forest stand in the Pacific Northwest of the 

United States can be a carbon sink for up to 200 years, while peaking in rate of 

carbon sequestration at the age of 30 – 40 years. Old growth forests are typically 

considered neutral to the carbon pools, and for any particular year after their 

maturity, the stands can be either weak sinks or sources for carbon, depending on 

their heterotrophic respiration (Rh), which is the decomposition of dead stems, leaves 

and branches on the soil. Luyssaert et al. (2008) however note, that despite the long-

standing view of carbon neutrality of old-growth forests, their results indicate that 

forests can continue to accumulate carbon, and maintain a positive balance even as 

long as up to 800 years. In Finland some 80 % of trees are conifers, of which little 

under two-thirds are Scots Pine, while the rest are Norway Spruce. Barring young 

stands, the carbon pools on Norway Spruce stands are considerably larger than those 

found on Scots Pine stands (Liski 2000). 

 

3.2 Forest carbon pools 

Forest biomass can be used in three ways to mitigate climate change (Soimakallio et 

al. 2009). It can either be a substitute for more energy intensive materials, it can 

sequester carbon from the atmosphere or it can conserve biogenic carbon within the 

biomass of forest and wood-based products. This in turn leads to three different 

mitigation strategies, which are substitution, sequestration and conservation 

management. In substitution management, the biomass is used to replace fossil fuel 

based alternatives; whereas with conservation and sequestration management, the 

amount of carbon stored in the biomass is either protected or increased, respectively. 

The effectiveness of the chosen mitigation strategy depends on the method and the 

relevant time-frame to mitigate climate change. The three strategies are typically 

optional to each other, in the sense that for example utilising the substitution strategy, 

the raw wood material cannot at the same time be conserved as living biomass. In 
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certain situations however, conservation and sequestration strategies can overlap 

each other. This is the case for instance when the forests are protected. 

 

Several specific strategies exist to increase the forest carbon pools and slow down the 

amount of CO2 entering the atmosphere, each with varying risks, uncertainties and 

tradeoffs (Ryan et al. 2010). Avoiding deforestation and decreasing the harvests to 

keep the forests intact and to retain the forest carbon would be considered 

conservation strategies. Conservation has relatively low risk and a huge potential. 

Global deforestation releases some 1400-2000 TgC (~5138 – 7340 TgCO2) to the 

atmosphere each year. To put it in to a perspective, deforestation releases hundred 

times more CO2 to the atmosphere each year than the total annual Finnish CO2 

emissions.  

 

The sequestration strategies involve afforestation and increasing the growth through 

forest management and silvicultural practices. In Finland afforestation and 

management practices are governed by the law. The Finnish Forest Act is to ensure 

economically, ecologically and socially sustainable and responsible use of Finnish 

forests (Ryan et al. 2010).  

 

As opposed to conservation and sequestration strategies, substitution strategies help 

to mitigate climate change by utilizing harvested wood to offset fossil fuel emissions. 

The substitution benefits come from both using wood fuels to substitute for fossil 

fuels, and material substitution when products with lower associated greenhouse gas 

emissions are manufactured from wood and used. In the United States for example, 

the forests could potentially provide energy production to offset 190 TgC (~697 

TgCO2) of emissions each year. The substitution strategies are tricky as providing 

more energy wood or wood raw material for manufacturing of wood products would 

required intensifying forest management, which in turn could decrease the carbon 

pools in the forest, hence negating the first two mitigation options (Ryan et al. 2010). 

 

Most studies support the notion that longer rotation lengths are better for the forest 

carbon pools. It is also one of the forest management actions that countries can 

apply, under the Article 3.4 of the Kyoto Protocol, to help reduce their greenhouse 

gas emissions. Changing the harvesting regime of a steady-state stand can turn into 
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either a source or a sink for carbon, until it reaches a new steady-state with the new 

harvesting regime. Liski et al. (2001) simulated three different rotation lengths of 60, 

90 and 120 years, for Scots Pine and Norway Spruce stands in Finland. Their results 

indicate that the longer rotation length would be better for the carbon budget on 

stands. Shortening the rotation from 90 years, closer to the culmination point of the 

mean annual increment (MAI), decreased the forest and product carbon pools for 

Scots Pine, while increased them for Norway Spruce. With the shorter rotation 

length, the carbon in the forest vegetation decreased, but the soil carbon increased, 

because of increased amount of harvest residue and litter from the trees. The total 

roundwood yield increased on both stands, but only the Norway Spruce wood 

product carbon pools increased. The younger stands yielded less sawlogs and more 

pulpwood and due to shorter lifespan of the pulpwood products, the emissions from 

harvesting, and the process energy involved in the manufacturing, the increased 

amount of pulpwood was not enough to compensate for the lost sawlogs on the Scots 

Pine stands, while on the Norway Spruce stands it was just enough. For these reasons 

they concluded that the longer rotation length is better for the overall carbon budget.  

The rotation length of 120 years showed to be clearly the better regime for the Scots 

Pine, while for the Norway Spruce stands, the conclusions were not so evident. For 

the forest owners however, the longer rotation lengths were not so attractive as they 

had a negative impact on their discounted net income (net present value, NPV).  

 

Kaipainen et al. (2004) analyzed the carbon pools and managing rotation lengths in 

different European forests; Finnish, German and British spruce stands, and Spanish 

and German pine stands. They simulated increasing the rotation by 20 years from the 

recommended to study the effects of elongated rotation periods on the average 

carbon pools in the trees, soil and the wood products. Elongating the rotation 

increased the carbon pools in all the forests, however in some cases this also lead to a 

1 – 6 % decrease in the harvesting possibilities. Despite this the overall carbon pools 

increased in all the cases. 

 

Pingoud et al. (2010) studies the effects of different silvicultural regimes on the 

integrated climatic impacts of forestry and the use of wood-based products. Their 

findings suggest that the generic mitigation strategies are not necessarily mutually 

exclusive. Depending on the applied silvicultural regime, forest wood yields change 
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and so do the possibilities of using wood. Because wood products store carbon and 

have substitution benefits in the form of avoided emissions, different silvicultural 

regimes can affect the potential to offset greenhouse gas emissions. The forest carbon 

pools are also affected by the regimes because as the growth of the forest changes, it 

has an impact on carbon sequestration and the size of the pools. Their results indicate 

that elongating the rotation periods could have positive impacts on both the carbon 

pools and the avoided emissions from substitution.  They found that lengthening the 

rotation from the current recommended, and increasing the average basal area of the 

forest, lead to a higher production of sawlogs. This subsequently led to larger carbon 

pools and higher levels of avoided emissions as energy intensive materials were 

increasingly substituted by sawnwood. Their findings suggest that changing the 

current forest management practices in Finland could possibly lead to win-win 

scenarios where the forest and wood-product carbon pools, as well as the avoided 

emissions, are increased from the current levels. 

 

Perez-Garcia et al. (2005) have similarly studied the effects of silvicultural regimes 

and the integrated climatic impacts, but they reached a somewhat different 

conclusion than Pingoud et al. (2010). Instead of increasing the rotation lengths and 

the basal area, more intensive silviculture with shorter rotations and more harvests 

showed the highest emission reductions. The somewhat contradictory findings are 

mostly due to the different biological properties of the forests studied, as well as the 

different geographical locations and the industry structures in the regions. The study 

concluded that increasing the use of wood is desirable, and leads to higher climate 

benefits than leaving forests in their natural state, but only as long as forests are 

managed in a sustainable way, the wood waste is taken care of and the by-products 

are used responsibly.  

 

3.3 Forest product carbon pools 

When wood is harvested, the carbon leaves the forest, captured within sawlogs and 

pulpwood. The carbon content of wood is approximately half of the dry weight of the 

wood, though the exact amount varies between the tree species. Carbon remains 

captured within the wood, until the product reaches the end of its lifecycle. The 

climatic benefits from the product carbon pools largely depend on the delayed re-

emissions of biogenic carbon to the atmosphere. Buchanan and Levine (1999) assert 
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that the carbon stored in wood products must be included in any study that addresses 

the complicated relationship between the forest industry and global carbon 

emissions. On average, paper and paper products decay within five years, whereas 

lumber used for housing can last for more than a hundred years (UNFCCC 2003). 

Pingoud et al. (2001) have estimated that in Finland the average lifespan of 

sawnwood product is approximately 40 years.  

 

The length of a product lifecycle is an important factor, however as cellulose fibers 

can be reused up to 6 times, the amount of time the pulpwood products can store the 

carbon is multifold through recycling. After being no longer in use, the product may 

be recycled, incinerated or land-filled, which then releases some or all of the carbon 

back to the atmosphere. Because not everything is incinerated or recycled, the carbon 

in wood products can be found in two basic pools, in those products that are still in 

use, and the products which are decomposing at the landfills.  The decay of wood 

products in landfills can be very slow, and some of the carbon in the wood waste 

may never return the atmosphere. Pingoud et al. (1996) have estimated that the wood 

product carbon pool in Finnish landfills is twice as large and increasing, as the 

carbon pool of wood products in use. Unfortunately anaerobic decomposition also 

produces methane (CH4), a greenhouse gas 25 times more potent than CO2, which 

reduces the carbon storing benefits of landfills (Ryan et al. 2010). 

 

Laturi et al. (2008) estimate that the amount of carbon stored in wood products in 

Finland is about 26.6 TgC (~97 TgCO2), including only the sawnwood products and 

wood-based panels. They showed that the forest product carbon pools have grown 

annually by about 0.7 TgC (~2.7 TgCO2) between the years 2000 and 2004, at the 

time offsetting some 3 % of all greenhouse gas emissions in Finland. Furthermore, 

the carbon pools have vastly increased from the earlier decades, and they predict the 

trend will continue in the future as well. Even in their most pessimistic future 

scenario, the carbon reservoirs would increase by approximately 50 % from their 

2004 levels in the next 40 years. They estimate that depending on the consumption, 

by 2050 the forest product carbon pools could be in the range of 39.6 – 64.4 TgC 

(~145.3 – 236.6 TgCO2). These estimates might even be in the lower range, as they 

do not include pulpwood products or the carbon in wood at landfills. The amount of 

carbon at landfills might be especially substantial, as noted by Pingoud et al. (1996), 
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as they estimated that the amount of carbon at landfills might be as much as twice the 

amount of carbon in wood products still in use. Because most of the wood products 

produced in Finland are exported, some two-thirds of the carbon pools associated 

with Finnish forest products can be found abroad.   

 

In the United States the additions of carbon to the forest product carbon pools have 

been larger than the decomposition losses in the pools. For instance in 2007 the 

carbon pools increased by an estimated 30 TgC (~110 TgCO2), offsetting some 1.7 

% of all fossil fuel emissions in the United States. Ryan et al. (2010) conclude that if 

the same net amount of wood products going in to the landfills was used as wood 

energy instead, it could potentially offset about 1.2 % of the total fossil fuel 

emissions in the United States. About two-thirds of the net carbon additions are in to 

the landfill pools, however the carbon pools of the products is increasing as well, 

namely through construction of buildings. In total the forest product carbon pool of 

single- and multifamily homes was estimated 700 TgC (~2569 TgCO2) in 2001. 

Skog and Nicholson (1998) have estimated that the total size of the forest product 

carbon pool in the United States is around 2700 TgC (~9900 TgCO2).  

 

Buchanan and Levine (1999) suggest that because of the finite lifetime of wood 

products, the wood product carbon pools cannot be used to offset the emissions on 

the long-term. They base this on the fact that the total carbon pools would remain at a 

constant level after reaching a steady-state around 40 years, corresponding with the 

average lifetime of products, while the cumulative emissions from manufacturing 

would still continue to increase. At the rate the carbon emissions would be equal to 

the wood product carbon pools after 150 years. The notion is the same as reach by 

Schlamadinger and Marland (1996). However, when also taking in to account the 

avoided emissions from wood use, wood is a good option and can help to decrease 

and avoid carbon emissions. They point out that sustainable forest management is 

one key requirement for climate change mitigation strategies that utilize forest 

resources.  
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4 GREENHOUSE GAS EMISSIONS AND SUBSTITUTION BENEFITS 

 

4.1 Lifecycle assessment  

Lifecycle assessment (LCA) is a technique to assess environmental impacts 

associated with all the stages of a product's, service’s or process’ life from cradle-to-

grave (EPA 2006). It enables the estimation of the cumulative environmental impacts 

that result from all the stages of the lifecycle (Figure 7). 

 

 

Figure 7. Lifecycle stages in the LCA (EPA 2006). 

 

The purpose of a LCA is to assess the environmental aspects and potential impacts 

by compiling an inventory of all relevant energy and material inputs and releases, 

evaluating their potential environmental impacts, and interpreting the results in order 

to help decision-makers make more informed decisions (EPA 2006).  

 

Lifecycle assessment is part of the International Organization for Standardization 

(ISO) environmental management standards ISO 14040 and ISO 14044 (ISO 2011). 

According to the standards, LCA is carried out in four phases (Figure 8). The process 

is systematic and phased, consisting of interdependent components in the sense that 

the results from one category will affect the others. A lifecycle assessment starts with 

the goal and scope setting. The purpose of the goal and scope setting phase is to set 

out the context of the study and explain how and to whom the results are to be 

communicated to. The inventory analysis (LCI) phase creates an inventory of all the 
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inbound and outbound flows of materials and energy in the system. The impact 

assessment (LCIA) phase evaluates the potential human and ecological effects that 

result from the inbound and outbound flows, identified in the inventory analysis. The 

purpose of the final phase, interpretation, is just that. It evaluates the results from the 

inventory and impact categories, and its’ purpose is to identify and signify issues 

based on these results, as well as evaluate the study as a whole and point out its’ 

limitations, recommendations and conclusions. 

 

 

Figure 8. Phases of an LCA (EPA 2006). 

 

4.2 Carbon footprint 

A carbon footprint is the measure of greenhouse gas emissions associated with an 

activity, group of activities or a product. In principle the carbon footprint is the same 

as climate change impact category of a lifecycle assessment (Eriksson et al. 2009). 

The carbon footprints and the LCA of wood-based products have been extensively 

studied in recent years by both the industry and the scientific community. No unified 

methodology to assess the product carbon footprint exists as of yet. Several 

methodologies have been proposed or are currently under development, one of which 

is the Confederation of European Paper Industries’ (CEPI) Carbon Footprint 

framework (Figure 9) launched in 2007, proposed for accounting the carbon footprint 
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of forest and forest products (CEPI 2007).  The so called “ten toes” represent the 

different ten elements of a carbon footprint for paper and paperboard products. This 

includes carbon sequestration in forests (toe 1), carbon stored in forest products (toe 

2), greenhouse gas emissions from forest product manufacturing facilities, 

production of raw material and purchased electricity, steam, heat and water (toes 3-

6), transport related greenhouse gas emissions (toe 7), emissions associated with the 

product use (toe 8), emissions associated with the product’s end-of-life (toe 9) and 

the avoided emissions and offset (toe 10). 

 

 

Figure 9. CEPI Carbon Footprint framework (CEPI 2007). 

 

While in principle the same, the methodologies for calculating the carbon footprints 

differ in, for instance, how the biogenic carbon in the growing forest stock is 

accounted for (toe 1 in the CEPI framework) or rather if it is accounted for at all. 

CEPI argues that because of sustainable forest management, that is due to industry 

use of wood, which ensures the re-growth of the forests after harvesting, the 

inclusion of carbon sequestration in the forest to the forest product carbon footprint is 
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necessary.  The British Standard Institute (BSI) Publicly Available Standard (PAS) 

“Assessing the life cycle greenhouse gas emissions of goods and services” (BSI 

2008) discusses the inclusion of biogenic carbon, but states that the biogenic carbon 

should be excluded from the carbon footprint and only the carbon stored in products, 

and the impact of land use changes can be included in the footprint . As stressed by 

Eriksson et al. (2009), until there is a detailed methodology and standard for the 

calculation of the carbon footprint, the differences in the accounting methods make it 

critical to acknowledge and describe in detail the conditions and methods used in the 

LCA studies.  

 

The International Organization for Standardization (ISO) has begun working on a 

new uniform standard for the quantification and communication of greenhouse gas 

emissions associated with goods and services. The standard for “Carbon Footprints 

of Products” ISO 14067 (ISO 2011) is largely built on the existing ISO standards for 

life cycle assessments and environmental labels and declarations. The standard is 

planned for release in 2012. In comparison to the existing lifecycle assessment 

standards, the new standard contains further improvements to the quantification of 

greenhouse gas emissions. As of May 2011, it is still at the committee stage for 

further comments and voting. The inclusion of biogenic carbon in the forest is at the 

time of writing this uncertain, however the inclusion has been discussed within the 

working group of the ISO 14067. 

 

4.3 Avoided emissions 

Substitution strategies help mitigate climate change by utilizing harvested wood to 

offset fossil fuel emissions, by replacing fossil fuels and more energy intensive 

materials with wood (Schlamadinger and Marland 1996). Because of the finite 

lifecycle of wood, in the long run, the amount of carbon stored in the forest and in 

forest products reaches an equilibrium, and a continuing mitigation of carbon 

emissions depends on the extent to which fossil fuel use is displaced by the use of 

wood energy and wood products.  

 

Schlamadinger and Marland (1996) present the idea of displacement factors, which 

describe the direct and indirect energy substitution of wood use. The difference is 

that direct energy substitution comes from the amount of carbon emissions that are 
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avoided when wood energy is used instead of fossil fuels, whereas indirect energy 

substitution is the amount of carbon emissions avoided by replacing energy intensive 

products with wood products of the same function. Thus the efficiency and the 

substitution benefits depend purely on the reference system the wood is used to 

replace. 

 

Wood in generally is seen as a good option in reducing the amount of greenhouse gas 

emissions released to the atmosphere. Reid et al. (2004) for example affirm that on 

average using one cubic meter of wood to substitute for other construction materials 

(concrete, blocks and bricks), results in 0.75 – 1 tCO2 emission reduction. Sathre and 

O’Connor (2008) have more extensively reviewed 48 studies on the climatic impacts 

of wood use in construction. They found that all the studies reviewed suggested that 

the production of wood-based materials and products resulted in less greenhouse gas 

emissions than their alternatives. According to the reviewed articles, the single most 

significant source of variability in the greenhouse gas emissions appeared to come 

from the end-of-life management. Also, in several studies the use phase of the 

building was a more significant source of greenhouse gasses, than the actual 

construction or disposal phase. They concluded that to minimize the climatic 

impacts, the whole lifecycle of the materials should be considered, not just the 

building phase. A meta-analysis on the displacement factors used for sawnwood was 

also carried out on a basis of 20 scientific articles. They found that the displacement 

factors used ranged from a minimum of -2.2 to a maximum of 15.0, with an average 

low of 0.7, to an average middle of 2.0, to an average high of 4.4. They concluded 

that the average middle estimate of 2 could be viewed as reasonable middle estimate 

for an end-product sawnwood displacement factor. This means that for each ton of 

carbon in wood product used to substitute for an alternative material, a greenhouse 

gas emission reduction of 2 tC is achieved. They further note that in comparison, the 

displacement factors suggested for energy wood typically range between 0.5 – 1. 

 

The main opportunities for using wood to mitigate climate change come from using a 

greater amount of wood to substitute for more energy intensive materials, extending 

the lifespan of wood products and increasing the recycling. Hekkert et al. (2000a) 

have estimated by examining different scenarios, the potential to reduce the 

packaging greenhouse gas emissions. Improving the material design alone, namely 
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by designing lighter packages with less material, showed a 9 % reduction in the 

overall CO2 emissions, while material substitution showed a 10 % reduction. From 

the emission reduction point-of-view, the most promising improvement appeared to 

be substituting single use packages with reusable packaging, which showed a 32 % 

reduction in the CO2 emissions.  The total technical potential of CO2 emission 

reductions was estimated 51 %. The approaches differ from each other in how 

complex they would be to implement. Low complexity measures, such as material 

redesign, would only involve the use of less, lighter and thinner materials and for 

which only the measures from the packaging manufacturers would be necessary.  

Medium complexity measures, such as increased material substitution, would also 

involve the material production sector, as well as the packaging manufacturers 

themselves. The measure with the highest complexity and incidentally the hardest to 

implement, would require changes in all stages of the packaging material lifecycle.   

 

Some legislative and regulatory constraints for substitution exist as well (Reid et al. 

2004). For example in the food packaging industry, which globally represents about 

half of the fibre-based packaging consumption (Finnish Forest Industries 2011), strict 

hygiene and preservation requirements restrict and limit the potential to use fibre-

based materials. Incidentally packaging materials are seldom used singly but as a 

combination of many different materials. For example aseptic liquid packaging 

systems are made from liquid packaging board, which combines paperboard with 

low-density polyethylene (LDPE) coating and aluminium foil.  

 

4.4 Comparative packaging lifecycle assessment studies 

The Swedish Environmental Research Institute (IVL) has studied the carbon 

footprint of carton (Eriksson et al. 2010) and the carbon footprints of all basic 

products of the Billerud group, as well as conducted case studies on two specific 

fibre products  (Eriksson et al. 2009). The methodology used by the IVL studies 

followed the CEPI Carbon Footprint framework, which also included separately 

calculating the biogenic CO2 net sequestration in managed forests. Their comparative 

study showed that both plastic bags and sacks contributed more to the greenhouse 

gas emissions than their paper alternatives, when applying the European average 

end-of-life management treatments. The associated emissions for paper sacks were 

less than two-thirds of the emissions associated with the plastic alternative, and the 
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paper bags fared even better (Figure 10). They noted that the single most significant 

source of greenhouse gas emissions with the paper bags and sacks was methane 

emissions at the landfilling stage. The 100 year time horizon used was slightly 

unfavourable for wood, as during this time only 3 % of the plastics were assumed to 

decay, whereas the wood decay at this point was assumed to be 70 %.  With less 

landfilling the results would look more favourable for wood. If biogenic CO2 

sequestration was included in the footprint as well, the results would look even more 

favourable. Eriksson et al. (2010) also calculated the average carbon footprint for 

carton in Europe as 1127 kgCO2eq cradle-to-grave. Direct comparison to alternative 

materials is not possible however, as a result of the vastly different mass ratios of 

end-products with the same functional purpose (Pilz et al. 2010). The results also 

proved very sensitive to whether or not the biogenic carbon sequestration is included 

or not, as IVL calculated the amount of biogenic carbon sequestration to be 730 

kgCO2eq for a ton of carton. Compared to the cradle-to-grave emissions of 1127 kg 

CO2eq, the inclusion of biogenic carbon would offset two-thirds of the total 

greenhouse gas emissions. 

 

 
Figure 10. GHG emissions from paper and plastic bags and sacks (Erikkson et al. 

2009). 

 

In a lifecycle assessment (LCA) study by the German Institute for Energy and 

Environmental Research (IFEU), Detzel et al. (2008) compared the carbon footprints 

of milk and juice containers in the Spanish markets. The study examined the 

packaging systems most commonly used in the Spanish market, beverage cartons and 

HDPE and PET bottles, for the two most important beverage varieties in Spain, UHT 

(ultra-heat treatment) milk and juice. They show that in all the cases, the greenhouse 
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gas emissions associated with the products were dominated by the greenhouse gas 

emissions of the production phase, and that the PET bottles produced considerable 

higher greenhouse gas emissions, than the beverage cartons. The end-of-life 

management options considered were energy recovery, landfilling and recycling, by 

applying the average end-of-life management treatments in Spain. For the small 

portion packs, the PET bottles showed 2 – 3 times higher emissions, than the 

beverage cartons. In a cumulative comparison the greenhouse gas emissions 

associated with milk and juice family packs, the 1 litre PET milk bottle showed 

approximately 80 % higher associated emissions than the beverage carton alternative. 

For 1 litre PET juice bottle, the emissions associated were approximately 120 % 

higher than with the beverage carton. In comparison with the HDPE bottles, the 

results depended heavily on the end-of-life management, but still showed favourable 

to the beverage carton. Again the end-of-life management was found to have a high 

importance in the favourability of the materials, as the variation was mostly due to 

the methane emissions associated with landfilling. While plastic bottle waste is 

practically inert in landfills, the beverage carton is a potential source for greenhouse 

gas emissions through the methane generation. They note that in countries where 

landfilling of untreated packaging waste has been banned, the beverage cartons 

would show even more favourable lifecycle carbon footprints. In a similar IFEU 

study, Wellenreuther et al. (2008) did a more comprehensive study with similar 

products in the Spanish markets, as Detzel et al. (2008), reaching supporting 

conclusions. They found that the beverage cartons showed smaller climatic impacts 

than the PET bottles in almost all the impact and inventory categories, and that the 

sensitivity analysis only changed the magnitude of the results.  The net results for the 

HDPE bottles were lower than for the PET bottle, but in comparison to the beverage 

cartons, they still fared worse. 

 

In another IVL LCA study on the packaging systems for liquid foods, Jelse et al. 

(2009) analysed the packaging systems of four different products groups, dairy, juice 

and two portion packaged beverages in the Nordic markets; Finland, Sweden, 

Denmark and Norway. They found that on all the four markets, the dairy and juice 

carton packages had significantly lower contributions to the global warming potential 

(GWP) than the PET or HDPE packages. With the larger of the two portion 

packaging systems studied, the greenhouse gas emissions of the disposable glass 
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packaging were found to be the highest. With the smaller portion packaging system, 

the HDPE package had higher associated greenhouse gas emissions than the 

beverage carton, again on all markets. The results from the IVL study were in line 

with the finding by IFEU on the Spanish beverage markets.  

 

In a lifecycle assessment of beverage cups, Häkkinen and Vares (2009) found that 

when comparing PET and carton based cold drink cups, the carton based cups had a 

considerably lower global warming potential than the PET cups. The consumption of 

fossil fuels for the production of 100000 PET based cups was estimated to be five 

times higher, than for carton cups, and the CO2 emissions for paper cups were only a 

fifth of the PET cups’. The end-of-life management was again noted having a 

significant impact on the results. 

 

Zabaniotou and Kassidi (2003) compared polystyrene (PS) and recycled paper egg 

packaging systems in Greece. Because of the actual waste management in Greece, it 

was assumed that both packages would be disposed in landfills and no other options 

were considered. As noted before, the end-of-life management is of high importance 

in how the materials fare compared to each other. Recycling is generally considered 

to be desirable and necessary, and waste management policy in many countries 

considers (as well as the European Union waste hierarchy) the reuse and recycling to 

be preferable and superior to energy recovery or landfilling. The results show that the 

fibre-based packaging had lower greenhouse gas emissions and global warming 

potential, and it consumed less energy in the production, than polystyrene packaging. 

In all but two of the LCA impact categories, the recycled paper egg package had a 

lower impact score and the results clearly show that the fibre alternative had a lower 

overall impact on the environment.  

 

Grönman (2009) compared carton-based fibre-molds and expanded polystyrene 

(EPS) systems in a secondary packaging application for foodstuff. The results show 

that if the fibre-molds are recycled, the fibre based system is clearly better than the 

EPS system, showing approximately 43 – 56 % lower overall emissions. End-of-life 

management scenarios were also considered, which showed that if the waste was 

landfilled or incinerated with energy recovery instead of recycled, the EPS system 
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would be better. It was noted however, that in the case of Finland, majority of the 

waste would be recycled.  

 

Singh et al. (2006) compared re-usable plastic containers (RPC) and display-ready 

corrugated containers (DRC) used for packaging fresh fruits and vegetables in the in 

the North American market. Their results show that for the 10 different product items 

reviewed, in 18 out of 20 cases, the RPC generated on average 29% less greenhouse 

gas emissions than the DRC. Their results indicated that for these applications, re-use 

with closed-loop recycling was a more efficient way to reduce greenhouse gas 

emissions than using DRCs. The problem with the use of RPCs is however that they 

are 5 – 10 times more expensive than DRCs and require a well-organized large 

logistical chains to off-set the costs (Twede et al. 2005). Two notable examples of 

such logistical supply chains are the US automobile assembly industry, and the fresh-

produce industry supplying some of the US grocery store chains.  

 

In a European Federation of Corrugated Board Manufacturers study, Vogtländer 

(2004) compared similar fruit packaging systems as Singh et al. (2006) but in the 

European market. The study included the costs and the eco-costs for the whole 

system including packaging, transport, storage, handling, return flows and cleaning 

of the RPCs. The problem was approached from an eco-cost point of view, which 

helps to allocate the direct and the indirect environmental burdens in lifecycle 

analysis, that come associated with the complex nature of the transport service 

systems. The study found that the corrugated board system was better in all cases, 

however on short distances of 500 km and less, the differences were negligible. The 

costs for rigid container and corrugated board systems were the same for the distance 

of 500 km, whereas the foldable container system was found to be more expensive.  

 

The change from a DRC system to a RPC system would be a high complexity 

measure and thus hard to implement, as changes in all the stages of the packaging 

material lifecycle would be necessary. Hekkert et al. (2000b) have extensively 

analysed the different road transport packaging related environmental impacts in 

Western Europe, including the corrugated boxes and reusable plastic containers.  

They estimate that by substituting corrugated boxes with reusable plastic crates, 

some 12 % emission reductions could be achieved. They assumed a transport 
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distance of 200 km to be the realistic upper limit and noted that the results are very 

sensitive to this. In fact if the transport distance doubled, the reusable plastic crate 

would no longer be an improvement option. Depending on the density of the 

population, the transport distances vary between different European regions. The 

pooling system matters as well, as depending whether plastic crates would be 

returned to the pooler or the distributor, the environmental impacts could show more 

favourable to the reusable plastic crates, as the same truck could be used for the 

returns as well. The calculations for the eco-cost are highly sensitive to the material 

prices fluctuations. Based on the price data of the time, for instance a price drop of 

50 % for the corrugated board box, would increase the eco-cost of this mitigation 

option from 15 e/tCO2eq to 100 e/tCO2eq saved. 

 

4.4.1 Summary of the findings 

Based on the literary analysis, there seems to be clear indications that fibre-based 

materials in primary and secondary packaging use have positive environmental 

impacts, compared to alternative materials. In fact, the emissions of non-wood 

materials showed in many cases over twice the emissions of the fibre-based 

alternatives. In addition to the reviewed studies, this view is supported by for 

example Larvio (2008) and Pasqualino et al. (2011), in their beverage packaging 

system studies in the Finnish and the Spanish markets, Banar and Cokaygil (2009), in 

their cheese packaging study, and Singh and Krasowski (2010), in their comparative 

lifecycle assessment of selected fruit packaging systems. 

 

In the case of tertiary packaging, the issue is more complex. Moving away from 

primary and secondary packaging opens the window for more flexible options and 

logistical solutions concerning packaging, as the distance between the product and 

the consumer increases. Especially in the case of corrugated board and reusable 

plastic container systems, there seems to be a high amount of uncertainty 

surrounding the question of which system is better. Three issues seem to be of high 

importance; the transport distances, the energy used in manufacturing of materials 

and the end-of-life management. Most of the energy consumed by the forest industry 

in Finland is self-generated with renewable wood fuels. In Finland corrugated board 

used by the industry accounts for approximately 60 % of all fibre-based packaging 

material consumption. The recovery rate for corrugated board in Finland is extremely 
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high, as 90.8 % of the corrugated board waste is recycled and 7.7 % incinerated with 

energy recovery. The transport distances are also of high importance, as the RPCs 

have to be pooled back-and-forth. The pooling in itself matters as well. In Finland 

large-scale closed-pool systems, where the ownership of the containers is maintained 

by the pooler, as examined by Singh et al. (2006), have not been studied or do not 

exist. For these reasons, there is a high amount of uncertainty how applicable the 

results would be to Finland.  

 

The boundaries set by the LCA studies can have a major impact on the results. In 

general, all LCA studies are quite sensitive to the energy systems used, as well as the 

end-of-life management scenarios. For instance Mourad et al. (2008) point out how 

different recycling rates for aseptic milk cartons change the amount of associated 

greenhouse gas emissions. Simply by recycling the carton content and increasing the 

recycling rate from 2 % to 22 %, the global warming potential decreased by 14 %, 

while a 70 % recycling rate showed the GWP decrease by 56 %, from the baseline of 

no recycling. Noteworthy is also that many of the factors affecting the potential 

climatic impact of packaging, are intervened in such ways that for example 

optimizing the material use not only has a positive impact on the production phase, 

but also the lighter weight of the new design has the potential to improve the fuel 

economy of all associated land transports later in the transportation phase (IPCC 

2001). The inclusion of biogenic carbon sequestration in managed forests would also 

show very beneficial for the wood products, as it would in many cases offset a large 

portion of the total wood product carbon footprint.  
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5 METHODOLOGY AND DATA 

 

5.1 The basic approach 

In short, the basic idea is to examine the climatic impacts of fibre-based packaging 

material production and consumption at its current level through different forest 

management and end-use scenarios. The baseline forest and forest product carbon 

pools and the avoided emissions from wood use are compared (1) to carbon pools, 

and (2) to avoided emissions under alternative forest management regimes and end-

use scenarios. Different forest management regimes are generated by optimizations 

and stand simulations. Under the alternative scenarios the wood yields change, as the 

pulpwood supply decreases. A decrease in the price of pulpwood reflects the 

decreased demand for - and consequently the supply of - fibre-based packaging 

materials. Therefore, the baseline corresponds with the highest level of fibre-based 

packaging material supply in all scenarios. The comparison of the climatic indicators 

between scenarios give an insight into the sustainability of fibre-based packaging 

materials, and the climatic impacts of decreased material supply and substitution 

under the alternative scenarios.  

 

The scenarios considered in the study are the following: 

I. Baseline: Economically optimal forest management (maximized bareland 

value) 

II. Reduced pulpwood demand (RPD): Forest management and wood yields 

change, due to the drop in pulpwood price which changes the optimal forest 

management. Paper, energy and packaging supply stay proportionally fixed. 

III. End-use scenarios: 

a. Sawlog: The reduced demand for packaging materials (reflected by 

the pulpwood price) leads to an increased sawlog production. No 

change for paper or energy wood. Forest management regime same as 

in RPD. 

b. Energy wood (Energy): The demand shifts from packaging to energy 

use. No change for paper or sawlogs. Forest management regime 

same as in baseline. 
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IV. Tapio: Forest management by silvicultural guidelines developed by the 

Forestry Development Centre Tapio. Product mix proportionally fixed to the 

baseline. 

 

The economically optimal forest management was chosen in order to attain a 

reasonable baseline, from which to generate sensible alternative scenarios, in which 

the pulpwood supply decreases. In the first of the two end-use scenarios the demand 

shifts from pulpwood to sawlog production, which is interesting from both the 

industry and forest owner point-of-view. The energy scenario is especially interesting 

policywise, as pulpwood is already in some cases used for energy purposes, instead 

of pulpwood products. The guidelines developed by the Forestry Development 

Centre Tapio are also included, as they are the current basis of forestry practices in 

Finland. 

 

5.2 Steady-state framework 

The methodology of the study is based on a stand-level steady-state analysis (Figure 

11), where the steady-state forms a fully regulated forest, sustainably managed in a 

long-term equilibrium. The growth of the forest equals the removals, and the influx 

of wood raw material for wood based products, equals the material decay, similarly 

to Pingoud et al. (2010). The annual wood yield is the mean annual increment (MAI), 

which is the cumulative wood yield of the stand, divided by stand rotation length (1).  

 

 

 

where q(t) is the cumulative yield (m
3
) at the time of the final harvest t (years) . 

 

The steady-state forest represents a normal forest, composed of even-aged, fully-

stocked stands, where one age class can be harvested each year, so that after each 

specific rotation period, the stands harvested first, would be ready to be harvested 

again. The carbon sequestration rates, as well as the raw material flows and 

allocations, differ depending on the forest management scenario, leading to varying 

carbon stock levels and avoided emissions from wood use.  The idea is to compare 
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these steady-states to one another, to see what kind of climatic impacts each of them 

has.  

 

 

Figure 11. Steady-state framework. 

 

5.3 Forest stand data 

The forest stand data were obtained from two different datasets at an earlier stage of 

the project. The datasets came from the Finnish Forest Research Institute Metla. The 

first dataset consisted of Norway Spruce and Scots Pine stands, located in Päijät-

Häme. The second stand data was collected from a Metla TINKA dataset, and 

included stands in Southern and Central Finland, established by the Finnish Forest 

Research Institute. The stands were established in 1985 – 1986, and measured during 

the National Forest Inventory (NFI). Of the final stands chosen for the study, 8 were 

Scots Pine and 6 were Norway Spruce (Table 3).  
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Table 3. Forest stands data at the beginning of simulations. 

Stand Species Site type Location Age N BA Hg Dg Hdom 

1 Scots Pine VT Etelä-Pohjanmaa 18 1371 8,0 6,7 10,9 7,8 

2 Scots Pine VT Keski-Suomi 20 2076 11,4 7,7 11,1 9,1 

3 Scots Pine VT Pohjois-Karjala 19 1861 7,2 6,6 9,4 8,5 

4 Scots Pine VT Päijät-Häme 11 2390 4,3 4,7 6,3 7,1 

5 Scots Pine VT Etelä-Savo 15 2375 24,1 9,6 12,0 10,4 

  
  

Average 17 2015 11 7 10 9 

6 Scots Pine MT Itä-Savo 23 1876 14,1 8,8 12,4 9,7 

7 Scots Pine MT Päijät-Häme 11 2110 6,7 5,9 8,0 8,6 

8 Scots Pine MT Päijät-Häme 12 3600 14,9 6,6 9,0 10,5 

  
  

Average 15 2529 12 7 10 10 

9 Norway Spruce MT Keski-Suomi 22 1575 4,8 5,5 6,9 7,0 

10 Norway Spruce MT Kainuu 17 2076 3,2 3,3 5,3 3,9 

11 Norway Spruce MT Päijät-Häme 22 2200 2,1 3,8 5,0 5,6 

  
  

Average 20 1950 3 4 6 5 

12 Norway Spruce OMT Keski-Suomi 21 1498 5,0 6,5 7,9 8,4 

13 Norway Spruce OMT Päijät-Häme 22 2000 1,9 3,8 5,0 5,4 

14 Norway Spruce OMT Päijät-Häme 21 2500 3,4 4,3 5,7 6,5 

      Average 21 1999 3 5 6 7 

 

All the stands were measured in the field before their first thinning. The biological 

age of the stands varied between 11 – 23 years at the time of the measurements. The 

number of trees per hectare varied between 1371 – 3600 for Scots Pine and 1575 – 

2500 for Norway Spruce. At this point they had reached a stable state, so that they 

were not directly threatened by the competing vegetation. The variation in the 

number of trees at the beginning of the simulations gives diversity to the results, and 

covers a large portion of actual growth situations in Finnish forests. Selecting young 

stands also gave more freedom in optimization and allowed more flexibility in the 

analysis that followed.  

 

The stands consisted of three different site types; MT (Myrtillus), OMT (Oxalis 

Myrtillus) and VT (Vaccinium).  The three represent the most common site types in 

Southern Finland, so including forest stands from these sites was logical. Myrtillus is 

most common site type, representing approximately 45 % of forest surface area in 

Southern Finland, while Oxalis Myrtillus covers some 29 % and Vaccinium nearly 

20 % (Hotanen et al. 2008, p. 99 – 135). On the Scots Pine sites, the regeneration 

methods were planting, seedling and natural generation. On the Norway spruce sites, 
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the only regeneration method was planting. The history of the stands, except for their 

respective regeneration methods, is unknown. 

 

5.4 Stand Management Assistant and MOTTI simulations 

Stand management for the plots was first optimized with the help of Stand 

Management Assistant (SMA) software, which is a software for analyzing 

silvicultural and economic options in stand management. The user can determine the 

optimal regimes for the present conditions, and view the results of the optimizations. 

The software includes different treatments such as thinnings and planting density 

(Valsta et al. 1996). Economically optimal forest management was chosen as the 

baseline for the stand optimization. This allowed generating an alternative forest 

management regime, by decreasing the price of pulpwood, while other variables 

were held constant. The decreased price of pulpwood is thought to reflect the 

decreased demand for fibre-based packaging materials. Therefore SMA was used in 

order to first find the sensible forest management practices, that would lead to such 

effects on wood production and supply, that were pursued, and to see what kind of 

simulations would have to be carried out later.  

 

After optimization, each stands was simulated in MOTTI, a stand-level analysis tool, 

developed by the Finnish Forest Research Institute (Metla), with three different 

forest management regimes applied for each stand. MOTTI includes the newest 

empirical growth models from Finland, and thus is a suitable tool for assessing the 

stand-level effects of different forest management practices on the stand 

development and growth. It includes cumulative wood yields over the stand rotation, 

as well as the tree biomass (stem, branches, foliage and roots), which is essential in 

order to calculate the carbon sequestration in the forest. The simulator is suitable for 

analyzing Scots Pine, Birch and Norway Spruce. The current version of MOTTI is 

not suitable for uneven-aged forest management, so it was not considered. The forest 

biomass and the wood yields used for all the calculations were obtained through the 

MOTTI simulations.  

 

In total two different optimizations and three simulations were carried out for each 

stand. The baseline maximizes the bareland value of the forest. The second forest 

management regime was generated by changing the price of pulpwood, which 
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changes the optimal forest management. This was done in order to simulate the 

effects of reduced fibre-based packaging demand, which would negatively affect the 

price of pulpwood. This leads to varying thinning and harvesting frequencies, and 

rotation lengths, due to the changes in the optimal forest management behaviour 

under the new pulpwood price.  The silvicultural guidelines developed by the 

Forestry Development Centre Tapio were also considered, and simulations following 

the guidelines were carried out. The guidelines are interesting because they are 

descriptive of the current management practices in Finland. The simulations and 

optimizations were carried out at an earlier stage of the project during summer 2010. 

 

5.4.1 Price data 

In order to determine the economically optimal forest management, the bareland 

value of the forest had to be calculated. For this cost and price data were needed. 

Trend prices for roundwood were derived from the average roundwood prices in 

Finland between 1995 and 2009 (Table 4).  

 

Table 4. Roundwood prices (€/m
3
) in Finland between 1995 and 2009 and trend 

prices for 2010. 

  Sawlogs Pulpwood 

Year Pine Spruce Pine Spruce 

1995 47,68 38,13 17,96 21,16 

1996 46,75 38,42 18,41 23,09 

1997 50,15 41,23 17,90 24,34 

1998 51,04 42,50 17,60 24,82 

1999 50,11 44,11 16,36 24,40 

2000 50,53 46,73 15,79 24,05 

2001 47,80 44,65 14,54 22,82 

2002 47,88 45,03 14,60 22,91 

2003 47,19 44,97 13,82 21,67 

2004 46,28 45,52 12,60 20,68 

2005 44,34 46,52 12,56 20,83 

2006 48,00 49,53 13,03 21,46 

2007 62,95 64,50 15,65 23,32 

2008 53,17 53,05 15,76 21,20 

2009 40,84 41,30 12,87 17,46 

2010 49,44 53,16 12,45 20,16 

 

The harvesting costs were obtained from Metsäteho (2010) and they represent the 

average harvesting costs of 2010. The costs are presented in the following Table 5. 
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Table 5. Harvesting costs. 

€/m
3
 Harvesting costs 

Pine sawlogs 7,11 

Spruce sawlogs 6,63 

Pine pulpwood 12,48 

Spruce pulpwood 12,34 

 

For Scots Pine the roadside wood price was 56.5 e/m
3
 for sawlog, and 25 e/m

3
 for 

pulpwood and for Norway Spruce 59.8 e/m
3
 for sawlog and 32.5 e/m

3
 for pulpwood. 

In the alternative (RPD) price scenario, the sawlog price remains unchanged, but the 

pulpwood price decreases by 10 €. The average roadside and the scenario prices are 

presented in Table 6. 

 

Table 6. Roadside wood prices (€/m
3
) (= stumpage price + harvesting). 

 
Sawlogs Pulpwood 

 
Pine Spruce Pine Spruce 

2010 56,55 59,79 24,93 32,50 

Baseline 56,55 59,79 24,93 32,50 

Tapio 56,55 59,79 24,93 32,50 

RPD 56,55 59,79 14,93 22,50 

 

The forest management costs were obtained from Metla (MetINFO 2010) and they’re 

presented in the following Table 7. 

 

Table 7. Forest management costs. 

Forest management €/ha 

Planting 642,2 

Seeding 200,3 

Sapling management 381,1 

Harrowing 164,2 

Mounding 301,6 
 

The interest rate used in the calculations was 3 %. This is about an average used in 

forest and other types of low-risk investment calculations, and it represents the risk-

free interest rate obtainable by the investor through government bonds (Knüpfer and 

Puttonen 2004, Holopainen and Viitanen 2009). Using a higher interest rate would 

suggest higher risk involved, and in the simulations, it would shorten the rotation 

lengths as the higher interest rate decreases the value of all future cash flows.  
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5.5 Wood supply in baseline and the alternative scenarios 

The cumulative wood yields over the stand rotations obtained from MOTTI, were 

divided by their rotation lengths, to obtain the annual wood yields. The average wood 

yields are calculated for species with the same site type, Vaccinium (VT) and 

Myrtillus (MT) for Scots Pine, and Myrtillus (MT) and Oxalis Myrtillus (OMT) for 

Norway Spruce. The effects of the three different silvicultural regimes, as well as the 

mean annual yields for each regime, are presented in the following Table 8. 

 

Table 8. Average stand characteristics at the time of the final harvest. MAIt is the 

total annual yield, MAIsl is the annual sawlog yield and MAIpw is the annual 

pulpwood yield.  

Species Site Regime Age N BA Dg Hdom V MAIt MAIsl MAIpw 

Scots pine VT 

Baseline 70 576 23,8 24,5 19,1 203 4,94 2,21 2,73 

RPD 74 516 23,4 25,5 19,6 204 4,85 2,37 2,48 

Tapio 68 446 21,7 25,6 19,0 187 4,50 2,23 2,27 

  

Scots pine MT 

Baseline 63 419 25,7 29,3 23,9 260 7,44 4,00 3,44 

RPD 65 385 25,8 30,2 24,2 265 7,12 4,14 2,98 

Tapio 65 502 31,8 29,1 24,3 326 7,23 4,08 3,15 

  

Norway spruce MT 

Baseline 72 881 38,6 25,9 23,1 374 6,49 4,25 2,23 

RPD 76 875 41,5 26,7 23,9 413 6,61 4,64 1,98 

Tapio 69 571 29,9 27,2 21,8 278 5,64 3,62 2,03 

  

Norway spruce OMT 

Baseline 62 879 46,3 28,8 27,7 514 10,73 7,53 3,20 

RPD 65 745 45,1 31,1 28,4 508 10,48 7,68 2,80 

Tapio 56 526 33,3 30,2 25,4 346 9,09 6,20 2,89 

 

The different wood assortments considered in the study are defined as sawnwood, 

energy wood, paper and packaging. The wood raw material allocation (m
3
/ha/y) per 

each wood assortment in the baseline is on average 29% sawnwood, 33% paper, 16% 

packaging materials, 22% energy. The proportions vary between regimes, depending 

on how much sawlog and pulpwood the stand produces. For example with an 

increased rotation length, the annual sawlog yield increases, while the pulpwood 

yield decreases. The changes in the wood raw material allocation in each scenario, in 

relation to the baseline, along with the average wood allocation (m
3
/y/ha) of the 

baseline, are presented in the following Table 9.  
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Table 9. Scenario average wood allocation m
3
 / ha / y. 

 Sawnwood Paper Energy Packaging 

I. Baseline 29 % 33 % 22 % 16 % 

II. RPD + - - - 

IIIa. Sawlog + Unchanged Unchanged - 

IIIb. Energy Unchanged Unchanged + - 

IV. Tapio - - - - 

 

In the baseline the wood allocation is the following: 

 The sawlog yield (MAIsl) is accounted so that  

o 50 % goes towards sawnwood; 

o 13 % goes to paper production; 

o 7 % goes to packaging production; 

o 30 % is used for energy.  

 The pulpwood yield (MAIpw) is divided so that  

o 60 % goes towards paper production; 

o 30 % is allocated for packaging purposes; 

o 10 % is allocated to energy use.  

 

Proportionally paper, energy and packaging stay the same in baseline, RPD and 

Tapio, while in the two end-use scenarios, Sawlog and Energy, the proportions 

change. The climatic benefits of forestry depend heavily on the use of wood raw 

material and the wood-based products, and therefore these two end-use scenarios are 

also considered, in which the product mix changes, and pulpwood for packaging 

purposes is reallocated to other wood assortments. The reduction is determined on 

the basis of how much less wood raw material for paper, packaging and energy 

purposes is available when the price of pulpwood decreases, compared to the 

baseline scenario. This is calculated as (2)  

 

 

 

where Rwrm is the reduced amount of wood raw material available for paper, 

packaging and energy. 
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In the RPD scenario the reduction is equally burdened on paper, packaging and 

energy, whereas in the two end-use scenarios, Sawlog and Energy, the reduction is 

burdened on packaging alone. Tapio is somewhat different from the other scenarios, 

as it is based on the silvicultural guidelines, rather than the economically optimal 

forest management practices. The wood assortment allocation in Tapio is 

proportionally fixed to the baseline, in order to examine the climatic impacts of 

producing the same product mix as in the baseline, but under Tapio management. In 

absolute terms, the wood yields under the Tapio regime are lower than in the 

baseline, and therefore the amount of wood allocated per each wood assortment is 

lower as well. 

 

5.6 Calculation of forest and forest product carbon pools 

The first climatic indicator will be the combined carbon pool of forests and forest 

products. The carbon pools represent the theoretical sustainable level that each 

scenario could maintain, based on the methodology of the steady-state framework. 

This allows the comparison of scenarios to one another. The product carbon pools do 

not grow but remain constant within each scenario, so that the size of the product 

pool is only determined by the products’ estimated lifespans. To compare products 

which have vastly different length lifecycles, an accounting method needs to be 

established, which is discussed later. This is important, as the benefits from storing 

carbon depend heavily on the product lifespan, as long-lived products such as wood 

used for construction, can store carbon for decades.  

 

The pulp yield is assumed 50 % for chemical pulp, and 95 % for mechanical pulp 

production.  The overall pulp yield is calculated as a weighted average based on the 

Finnish production figures (Finnish Forest Industries 2011), and therefore the 

average pulp yield is assumed to be 61 %. The 61 % yield implies that from each 

cubic meter of wood used for pulping, 39 % of the wood content is lost in the 

manufacturing process. This lowers both the product carbon pools and the avoided 

emission, as only the wood content of the final product can be considered. For 

energy wood and sawlogs no losses are assumed.  

 

The carbon content of wood is assumed 50 % of the dry weight of the wood. This is 

widely mentioned and used in many previous studies and literature (Pingoud et al. 
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2010, Lindblad and Verkasalo 2001, Laturi et al. 2008). In empirical research, the 

actual carbon content has been observed to be in the range of 46.27% to 49.97% for 

selected hardwood species, and from 47.21% to 55.2% on selected softwood species 

(Lamlom and Savidge 2003). The dry density of wood is assumed to be 0.4 t / m
3 

for 

both Norway Spruce and Scots Pine. Based on these assumptions, the carbon content 

of 1 m
3
 of wood is 200 kg. Carbon (C) is converted in to carbon dioxide (CO2) by a 

factor of 44/12 (~3.67). 

 

The assumed recycling rate for fibre-based packaging materials and paper is 87%, 

based on end-of-life management statistics on Finland (Eurostat 2010). The cellulose 

fibre is expected to be recycled six times, before wearing off completely. The length 

of each cycle is assumed as three months for both paper and packaging. Few public 

studies on the lifespan of recycled fibre exist. However, in a University of 

Lappeenranta thesis, Jernström (2002) estimated that in Finland, recycled newspaper 

is typically 1½ months old when reaching the deinking plant, whereas magazine 

paper is much older, from eight months up to a year. According to UNFCCC (2003), 

on average paper and paper products decay within five years. Buchanan and Levine 

(1999) have used three years for paper products and 40 years for solid wood products 

in their study. PAS 2050 lifecycle inventory methodology allows credits in the 

carbon footprint for delayed emissions, if the product’s lifespan is more than one 

year. For example Nors et al. (2009) have assumed a lifespan of less than one year 

for newspaper and magazine prints. They point out however, that it would not be 

unusual for some people to store magazines for years. Eriksson et al. (2010) on the 

other hand assumed an average lifespan of two years for carton in Europe. Given 

this, the assumed lifespan of three months per cycle seems more than reasonable. 

Because of the uncertainty, sensitivity analysis on the lifespan and the recycling rates 

will be carried out to see how they affect the results. The average lifespan of 

sawnwood is assumed as 40 years (Pingoud et al. 2001). 

 

For simplicity and because of large uncertainties, carbon at landfills or in soil is not 

considered. For sawnwood, it is assumed that after 40 years all the carbon is released 

back to the atmosphere. Thus based on the methodology, the carbon storage for 

sawnwood is calculated by multiplying the amount of carbon in the sawnwood (50 % 

of the dry weight) by 40. As per the methodology used, the size of the carbon pools 
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is only determined by the estimated lifespan of the product that holds the carbon, 

hence the recycling of the fibre-based products has to be considered. The assumed 

recycling rate is applied to a geometric series, which is then divided by the number 

of uses the fibre has (first use + recycling). This gives the average carbon content of 

the products over the cellulose fiber’s whole lifecycle, which can then be multiplied 

by the length of the total lifecycle of the fibre. The formula for the calculation is 

presented below (3). The multiplier L in a sense, represents the lifespan the product 

would have to have, in case it was not recycled at all, to be equally as good as the 

recycled product. 

 

 

 

where r is the recycling rate for the fibre, n is the number of times the fibre is 

recycled and t is the total lifespan of the fibre in years. 

 

The forest carbon pool is based on the total biomass of the trees at the forest stands. 

MOTTI estimates the forest growth in segments of five years. For each five year 

segment, the average biomass is by calculated by multiplying the annual average, 

calculated on basis of change in the biomass, by 5. The wood biomass (t/ha) is 

converted to carbon, by multiplying the biomass by a factor of 0.5, based on the 

assumption of 50 % carbon content. The cumulative carbon stock over the whole 

rotation is divided by the rotation length of the stand, to give the sustainable level of 

carbon (tC/ha), that the steady-state stand can maintain. 

 

5.7 Calculation of avoided emissions 

The climatic benefits of forestry vary depending on the management practices as 

well as the material substitution, as wood is used instead of other materials. For 

example, when wood raw material is used for energy purposes instead of packaging, 

there likely is a positive climatic impact from the energy use in itself, as fossil fuels 

are substituted by wood. However, since the reduced or “lost” amount of fibre-based 

packaging material is then in turn substituted with other more energy intensive 

packaging materials, such as plastics, the overall effect could turn out negative. 
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The climatic impacts of these changes in the wood-use are studied with the help of 

carbon displacement factors. The carbon displacement factor is an index of 

efficiency, with which the use of forest biomass reduces the net greenhouse gas 

emissions to the atmosphere. The carbon displacement factor is defined by Sathre 

and O’Connor (2008) as (4) 

 

 

 

where GHGnonwood and GHGwood are the greenhouse gas emissions resulting 

from the use of non-wood and wood alternatives, and WUwood and WUnonwood 

are the amounts of wood remaining in the end-products, expressed in mass units of 

biogenic C in the wood.  

 

The resulting amount of avoided emissions achieved by the wood-use is expressed in 

tons of carbon. A displacement factor of zero would indicate that the wood 

alternative is just as good as the non-wood alternative, while a displacement factor of 

1 would mean that by utilizing wood with a carbon content of 1 ton (~5 m
3
 or ~2 t of 

roundwood), an emission reduction of 1 ton of C could be achieved. In this study the 

annual wood allocations are applied to the displacement factors (t/ha/y of wood in 

final product multiplied by displacement factor for the product) to represent the 

annual avoided emissions from wood use in tC / ha / y.  

 

The displacement factors used for the calculation of avoided emissions will be 2 for 

sawnwood (Sathre and O’Connors 2008) and 0.8 for paper and energy wood (Sathre 

and O’Connors 2008, Pingoud et al. 2010). Based on the literary analysis in chapters 

4.3, it is reasonable to assume that fibre-based packaging materials have an overall 

positive climatic impact compared to the use of alternative materials, especially in 

Finland as the national recycling and energy systems are highly favourable to wood 

use. Therefore a displacement factor of 1.5 for packaging materials will be applied. 

For example in the case of liquid packaging board, based on the carbon content of 

the fibre-based products and the greenhouse gas emissions compared to alternatives, 

displacement factors as high as 3 – 4 could be calculated. As with the carbon pools, a 
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sensitivity analysis will be carried out to see how changing the displacement factor, 

i.e., altering how good of an alternative the fibre-based packaging is assumed to be 

affects the results. The critical values for displacement factors where the avoided 

emissions between the baseline and the alternative scenario are at equilibrium will 

also be determined, in order to see how far they are from the assumed average of 1.5. 

This will also allow seeing how realistic it would be to utilize packaging as a way to 

reduce the overall emissions in each scenario. If the equilibrium displacement factor 

for packaging is very high in the given scenario, it is unlikely that packaging would 

be a realistic option whereas a low factor would indicate otherwise. 
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6 RESULTS 

 

6.1 Forest and forest product carbon pools 

The total carbon pools, including the forest and forest products, varied between 157 – 

182 tCO2/ha for Scots Pine on Vaccinium stands and 237 – 242 tCO2/ha Myrtillus 

stands. As expected in the light of the previous findings, the carbon pools for the 

Norway Spruce stands were considerably higher than on the Scots Pine stands, 

ranging between 222 – 304 tCO2/ha on Myrtillus sites and 310 – 413 tCO2/ha on 

Oxalis Myrtillus sites.  

 

6.1.1 Baseline 

In the baseline the average carbon pools for Scots Pine were 174 tCO2/ha on 

Vaccinium sites and 238 tCO2/ha on Myrtillus sites. For Norway Spruce the total 

pools were 279 tCO2/ha on Myrtillus sites and 404 tCO2/ha on Oxalis Myrtillus sites 

(Figure 12). 

 

Figure 12. Carbon stocks in the baseline for each species. 

 

The product carbon pools foremost depend on how much high the site sawlog supply 

is, because the sawlogs are manufactured in to long-lived products, that can capture 

the carbon for decades. The carbon pools are therefore relatively smaller on stands 
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which produce more pulpwood. OMT Norway Spruce and MT Scots Pine stands 

both produced relatively more sawlogs than MT Norway Spruce or VT Scots Pine 

stands, and it can be observed that on these stands with relatively higher share of 

sawlogs, the product pools also contributed more to the total pools. 

 

In Scots Pine stands, packaging accounts for 1.2 – 1.5 % of the total product pools, 

while in the Norway Spruce stands their share is less than a percent. Pulp products 

combined contributed between 2.1 – 4.6 % to the product pools, while all wood 

products together represented some 19.5 – 27.9 % of the total carbon pools, being 

relatively largest when the most sawnwood is produced. Energy wood is not present, 

as it is considered not having any carbon storing benefits whatsoever. The detailed 

carbon pools are presented in Table 10 for each species and site type. 

 

Table 10. Baseline forest product, forest and total carbon pools (tCO2/ha). 

tCO2/ha Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Sawnwood 32,4 58,7 62,4 110,4 

Paper 1,0 1,4 1,0 1,6 

Packaging 0,5 0,7 0,5 0,8 

Product total 34,0 60,8 64,0 112,8 

packaging, % of total 1,54 % 1,16 % 0,81 % 0,70 % 

pulp, % of total 4,61 % 3,47 % 2,42 % 2,10 % 

Forest stock 140,0 176,9 215,5 291,4 

Total stock 174,0 237,7 279,5 404,2 

% products 19,54 % 25,57 % 22,88 % 27,91 % 

% forest 80,46 % 74,43 % 77,12 % 72,09 % 

 

 

6.1.2 Reduced pulpwood demand (RDP) scenario 

As a result of pulpwood being less valuable, the management regime changed and 

the average rotation lengths on all the stands were elongated and the relative share of 

sawlog supply increased. The changes in the raw material yields and rotation length 

have an effect on both the product and forest carbon pools. The total pools vary 

between 182 – 239 tCO2/ha for Scots Pine and 304 – 413 tCO2/ha for Norway 

Spruce, showing an overall increase in the range of 0.4 – 8.7% (Table 11). 
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Table 11. Carbon stock changes from Baseline to RPD regime (tCO2/ha). 

  Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Change tCO2 %  tCO2 % tCO2 % tCO2 % 

Sawnwood 2,34 7,2 % 2,05 3,5 % 5,61 9,0 % 2,25 2,0 % 

Paper -0,05 -4,4 % -0,10 -7,2 % -0,02 -1,5 % -0,07 -4,6 % 

Packaging -0,02 -4,4 % -0,05 -7,2 % -0,01 -1,5 % -0,04 -4,6 % 

Product total 2,28 6,7 % 1,90 3,1 % 5,59 8,7 % 2,14 1,9 % 

packaging, % of total 
 

-0,2 % 
 

-0,1 % 
 

-0,1 % 
 

0,0 % 

pulp, % of total 
 

-0,5 % 
 

-0,3 % 
 

-0,2 % 
 

-0,1 % 

Forest Stock 6,17 4,4 % -1,05 -0,6 % 18,78 8,7 % 6,40 2,2 % 

Total stock 8,45 4,9 % 0,85 0,4 % 24,36 8,7 % 8,54 2,1 % 

% products 
 

0,3 % 
 

0,7 % 
 

0,0 % 
 

-0,1 % 

% forest 
 

-0,3 % 
 

-0,7 % 
 

0,0 % 
 

0,1 % 

 

Notably, the average forest carbon pools decreased for MT Scots Pine, while on the 

other stands the effects are the opposite. When the price of pulpwood decreased, the 

silviculture intensified so that more pulpwood was harvested early on, and the 

number of trees per hectare was considerably less compared to the baseline. 

Meanwhile the pulpwood price had a relatively small effect on the rotation length, so 

the overall impact for carbon sequestration remained negative. In all the stands, the 

relative contribution from pulpwood products decreased as the sawlog supply 

increased.  

 

In absolute terms, the forest carbon pools grew fastest on the Norway Spruce stands. 

This resulted in zero, or a marginally negative effect, on product carbon pool share 

on the Norway Spruce stands. In the Scots Pine stands, the product share of the 

carbon pools increased by 0.3 – 0.7 %. In absolute terms, the average product carbon 

pools increased in all cases, as did the forest carbon pools, with the exception of MT 

Scots Pine. Even so, the increased product pool was able to offset the decreased 

forest pool, so that in all the stands, the total pools increased between 0.9 – 8.7 %. 

VT Scots Pine and MT Norway Spruce, which both had lower carbon pools than 

their counterparts (sites) in the baseline, showed a greater increase in their carbon 

pools (Figure 13). 

 



58 

 

 

 

Figure 13. Carbon stock changes from Baseline to RPD scenario. 

 

6.1.3 Sawlog scenario 

The first end-use scenario is similar to RPD, with the exception that rather than 

burdening all the pulpwood products, including energy, the full amount of material 

reduction is taken from packaging. Hence it is assumed the decreased packaging 

demand causes a shift in production to sawlogs. Compared to RPD, this shows a 

relatively small impact, as the management regimes are the same, and as the 

methodology considers paper from the carbon pool perspective just as good as 

packaging. Same amount of material goes to paper manufacturing and energy use, as 

would in the baseline. Since now relatively more wood raw material is used for 

energy purposes, which has no carbon storing benefits, rather than for packaging 

which does, the scenario shows slightly worse than RPD, yet better than the baseline. 

The results are in principle the same as with RPD, however the product carbon pools 

are approximately 1 – 3 % lower (yet 1.8 – 8.7 % higher than in baseline) as more 

energy wood is used (Table 12). 
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Table 12. Carbon stock changes from Baseline to Sawlog scenario (tCO2/ha). 

  Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Change tCO2 %  tCO2 % tCO2 % tCO2 % 

Sawnwood 2,34 7,2 % 2,05 3,5 % 5,61 9,0 % 2,25 2,0 % 

Paper 0,00 0,0 % 0,00 0,0 % 0,00 0,0 % 0,00 0,0 % 

Packaging -0,09 -17,3 % -0,21 -30,3 % -0,03 -6,7 % -0,17 -21,8 % 

Product total 2,25 6,6 % 1,84 3,1 % 5,57 8,7 % 2,08 1,8 % 

packaging, % of total 
 

-0,3 % 
 

-0,4 % 
 

-0,1 % 
 

-0,2 % 

pulp, % of total 
 

-0,5 % 
 

-0,4 % 
 

-0,2 % 
 

-0,2 % 

Forest Stock 6,17 4,4 % -1,05 -0,6 % 18,78 8,7 % 2,08 2,2 % 

Total stock 8,43 4,8 % 0,79 0,3 % 24,35 8,7 % 8,47 2,1 % 

% products 
 

0,3 % 
 

0,7 % 
 

0,0 % 
 

-0,1 % 

% forest 
 

-0,3 % 
 

-0,7 % 
 

0,0 % 
 

0,1 % 

  

6.1.4 Energy scenario 

In the Energy scenario, rather than management regime changing, it is assumed that 

the demand simply shifts from packaging to energy use, with no impact on the forest 

management. As there are no carbon storing benefits with the use of energy wood, 

the carbon pools are diminished by the amount of carbon in the wood that is now 

used for energy purposes, rather than packaging. The forest carbon is not affected by 

this scenario, therefore only the changes in packaging, product and the total carbon 

pools are presented in Table 13.  

 

Table 13. Carbon stock changes from Baseline to Energy scenario (tCO2/ha). 

  Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Change tCO2 %  tCO2 % tCO2 % tCO2 % 

Packaging -0,09 -17,29 % -0,21 -30,33 % -0,03 -6,66 % -0,17 -21,85 % 

Product total -0,09 -0,27 % -0,21 -0,35 % -0,03 -0,05 % -0,17 -0,15 % 

Total stock -0,09 -0,05 % -0,21 -0,09 % -0,03 -0,01 % -0,17 -0,04 % 

  

The effects on the packaging carbon pools vary between 6.7 % – 30 % of lost carbon, 

while the total product pools decrease between 0.05 % – 0.35 %. The effects are 

more notable on the Scots Pine stands, as they have a relatively higher share of 

packaging production than the Norway Spruce stands, due to the higher average 

pulpwood supply from the stands. On the MT Norway Spruce stands, the pulpwood 

price drop caused only a very small decrease in the amount of available wood raw 

material, and therefore only a small amount of fibre shifted from packaging to energy 

use, causing little effect on the carbon pools. 
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6.1.5 Tapio scenario 

Tapio scenario is somewhat different from the other scenarios in the sense that rather 

than altering the price of pulpwood, to see how it affects forest management and the 

wood supply and, subsequently, the carbon pools and the avoided emissions, a totally 

different kind of management regime is applied on the stands. Instead of maximizing 

the bareland value of the forest, the regime follows the silvicultural guidelines 

developed by the Forestry Development Centre Tapio. The allocation of wood raw 

material is kept proportionally the same as in the baseline, is order to see the climatic 

impacts of producing the same product mix, as would be produced in the baseline.  

 

Compared to the baseline, the change of the regime had two major effects on the 

silviculture. For Scots Pine, the silviculture under the economically optimal 

management is much more intensive, with more frequent and heavier thinnings. For 

Norway Spruce, the management is more similar between the two regimes, however 

the average rotation lengths under Tapio were slightly shorter than in the baseline. 

For MT Scots Pine the change in the regime caused fewer harvests and also slightly 

elongated the rotation length. All stands under the Tapio management had lower 

annual wood yields compared to the baseline. 

 

Managing the stands under Tapio caused the total carbon pools to change between 

2.0 – 23.1 %. On MT Scots Pine stands the change was positive, as the total pools 

increased by 2 %, or 4.7 tCO2/ha, whereas on all the other stands the impacts were 

negative. On the VT Scots Pine stands the total pool decreased by 17 tCO2/ha, while 

on Norway Spruce stands the pools decreased as much as 57.8 – 93.5 tCO2/ha. The 

Norway Spruce stands had considerably smaller annual wood yields, and the trees 

had smaller basal areas and standing volume at the time of the final harvest, hence 

the impact was much more substantial (Figure 14).  
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Figure 14. Carbon pool change from Baseline to Tapio. 

 

The product pools showed a sharp decrease as well. On one stand however, the 

decreased product pool was offset by the increased forest pool, as was the case with 

MT Scots Pine, so that the stand showed an overall positive change in the carbon 

pools. It can also be observed, that on all the stands, the product pools changed 

relatively less than the forest pools, and therefore the total pools were more affected 

by the rate of carbon sequestration in the forests, than the changes in the raw material 

yields. The effects were either the opposite, in the case of Scots Pine, or much less 

dramatic, under the economically optimal forest management when the pulpwood 

price decreased. The share of wood product pools from the total carbon pools was 

higher than in the baseline on VT Scots Pine and the Norway Spruce stands. Because 

the allocation of wood raw material was kept proportionally fixed to the baseline, the 

contribution of each wood assortment within the product pool is the same as in the 

baseline. The results are presented below in Table 14. 
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Table 14. Carbon stock change from Baseline to Tapio regime (tCO2/ha). 

  
Scots Pine 

 (VT) 
Scots Pine  

(MT) 
Norway Spruce 

(MT) 
Norway Spruce 

(OMT) 

Change tCO2 %  tCO2 % tCO2 % tCO2 % 

Sawnwood -2,89 -8,9 % -1,68 -2,9 % -8,13 -13,0 % -16,85 -15,3 % 

Paper -0,09 -8,9 % -0,04 -2,9 % -0,13 -13,0 % -0,24 -15,3 % 

Packaging -0,05 -8,9 % -0,02 -2,9 % -0,07 -13,0 % -0,12 -15,3 % 

Product total -3,03 -8,9 % -3,03 -2,9 % -8,33 -13,0 % -17,21 -15,3 % 

packaging, % of total 1,54 % 0,0 % 1,16 % 0,0 % 0,81 % 0,0 % 0,70 % 0,0 % 

pulp, % of total 4,61 % 0,0 % 3,47 % 0,0 % 2,42 % 0,0 % 2,10 % 0,0 % 

Forest Stock -13,93 -9,9 % 6,42 3,6 % -49,42 -22,9 % -76,29 -26,2 % 

Total stock -16,96 -9,7 % 4,68 2,0 % -57,74 -20,7 % -93,50 -23,1 % 

% products 19,72 % 0,2 % 24,36 % -1,2 % 25,08 % 2,2 % 30,77 % 2,9 % 

% forest 80,28 % -0,2 % 75,64 % 1,2 % 74,92 % -2,2 % 69,23 % -2,9 % 

 

6.1.6 Sensitivity analysis 

Sawnwood has approximately 12 – 23 times higher carbon storing potential per cubic 

meter of harvested wood used, than packaging materials or other pulpwood products. 

This is based on the assumptions about the life spans, the sawnwood yield from 

sawlogs and the pulp yields from pulping and the end-of-life management options, as 

discussed in the methodology chapter. With a longer lifespan and a higher recycling 

rate, the gap could be considerably reduced. For example by doubling the lifespan of 

a pulp product to 6 months from the assumed 3, the carbon storing potential of 

sawnwood would only be 6 – 11 times higher than that of pulpwood, depending 

whether the pulp is chemically or mechanically pulped. The significance of the 

recycling and the lifespan of the pulpwood products is illustrated below, by altering 

the lifespan and recycling rate of the fibre-based packaging materials using the 

overall average pulp yield in Finland (Figure 15). 
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Figure 15. Carbon bound in packaging materials depending on the lifespan and 

recycling rate. 

 

6.2 Avoided emissions from wood use 

The climatic impacts of the changes in the wood-use are studied with the help of 

carbon displacement factors obtained through an extensive literature analysis. In a 

sense, the displacement factor represents an index of efficiency, with which the use 

of forest biomass reduces the net greenhouse gas emissions to the atmosphere, by 

utilizing wood instead of alternative materials.  

 

The avoided emissions in the scenarios varied on average between 3.2 – 3.5 tCO2/ha 

for Scots Pine on Vaccinium stands and 5.5 – 5.6 tCO2/ha Myrtillus stands, and 

between 4.6 – 5.6 tCO2/ha for Norway Spruce on Myrtillus stands and 7.7 – 9.1 

tCO2/ha on Oxalis Myrtillus stands. The variation was considerably larger for 

Norway Spruces, due to the Tapio regime having a relatively larger impact on the 

wood supply on the Norway Spruce stands.   

 

6.2.1 Baseline 

In the baseline the avoided emissions for Scots Pine were 3.50 tCO2/ha on 

Vaccinium site and 5.63 tCO2/ha/y on Myrtillus site. For Norway Spruce the avoided 

emissions were 5.31 tCO2/ha/y on Myrtillus sites and 9.05 tCO2/ha/y on Oxalis 
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Myrtillus sites (Figure 16). The amount of avoided emissions is relatively highest on 

stands that produce the most sawnwood, as it is assumed that sawnwood carries the 

highest substitution benefits. However, since the wood products are now compared to 

alternative materials with the same functional value or use, such as plastics in the 

case of packaging materials, rather than to one another, in which case sawnwood 

benefits from the considerably longer lifecycle, the importance of the other wood 

products is now more evident.  

 

 

Figure 16. Avoided emissions in the Baseline. 

 

The packaging materials contribute between 15.4 – 18.4 % (0.6 – 0.9 tCO2/ha/y) of 

the total avoided emissions on the Scots Pine stands, which produce relatively more 

pulpwood than the Norway Spruce stands, on which the packaging materials 

accounted between 10.8 – 12 % (0.6 – 1.0 tCO2/ha/y) of the total avoided emissions 

(Table 15).  
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Table 15. Avoided emissions in the Baseline (tCO2/ha/y). 

tCO2/ha/y Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Sawnwood 1,62 2,93 3,12 5,52 

Paper 0,69 0,92 0,68 1,04 

Energy 0,55 0,91 0,88 1,51 

Packaging 0,64 0,86 0,63 0,97 

Total 3,50 5,63 5,31 9,05 

% Sawnwood 46,34 % 52,13 % 58,74 % 61,04 % 

% Paper 19,60 % 16,40 % 12,75 % 11,48 % 

% Energy 15,69 % 16,10 % 16,56 % 16,72 % 

% Packaging 18,37 % 15,37 % 11,95 % 10,76 % 

 

OMT Norway Spruce stands clearly show the highest avoided emissions in the 

baseline. The superiority of the stands is no longer as evident as before, as MT Scots 

Pine has higher associated avoided emissions than MT Norway Spruce, which earlier 

showed superior carbon pools than the MT Scots Pine stand. Interestingly the MT 

Norway Spruce stands have approximately 12.8 % lower annual wood yield, and the 

product carbon pools are almost the same between the two in the baseline. The MT 

Norway Spruce produces more sawlogs however, which is more beneficial for the 

avoided emissions (and the carbon pools), and thus the avoided emissions are only 

about 5.7 % lower, despite the lower wood yield. 

 

6.2.2 Reduced pulpwood demand (RPD) scenario 

The total avoided emissions in the scenario varied between 3.5 – 5.5 tCO2/ha/y for 

Scots Pine and 5.6 – 9.0 tCO2/ha/y for Norway Spruce. The relative share of paper, 

energy and packaging has now decreased, with varying effects to the overall avoided 

emissions. The RPD scenario is foremost dependent on the stands to supply more 

sawlogs, to compensate for the lost amount pulpwood and the decreased avoided 

emissions thereof.  

 

On stands which had higher relative share of sawlog production in the baseline, the 

increased amount was not enough and the avoided emissions decreased by 1.6 % 

(0.09 tCO2/ha/y) for MT Scots Pine and 0.5 % (0.05 tCO2/ha/y) for OMT Norway 

Spruce. On VT Scots Pine and MT Norway Spruce stands however, the increased 

sawlog production was enough to offset the lost pulpwood. In fact, on the MT 

Norway Spruce stands, the total avoided emissions increased by as much as 4.7 %, as 
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the pulpwood price drop had relatively little effect on paper, energy and packaging, 

while the sawlog supply increased considerably (Table 16). 

 

Table 16. Avoided emissions change from baseline to RPD (tCO2/ha/y). 

  Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Change tCO2 %  tCO2 % tCO2 % tCO2 % 

Sawnwood 0,12 7,23 % 0,10 3,50 % 0,28 8,99 % 0,11 2,04 % 

Paper -0,03 -4,36 % -0,07 -7,24 % -0,01 -1,46 % -0,05 -4,58 % 

Energy -0,02 -4,36 % -0,07 -7,24 % -0,01 -1,46 % -0,07 -4,58 % 

Packaging -0,03 -4,36 % -0,06 -7,24 % -0,01 -1,46 % -0,04 -4,58 % 

Total 0,04 1,01 % -0,09 -1,64 % 0,25 4,68 % -0,05 -0,54 % 

% Sawnwood 
 

2,85 % 
 

2,72 % 
 

2,42 % 
 

1,58 % 

% Paper 
 

-1,04 % 
 

-0,93 % 
 

-0,75 % 
 

-0,47 % 

% Energy 
 

-0,83 % 
 

-0,92 % 
 

-0,97 % 
 

-0,68 % 

% Packaging 
 

-0,98 % 
 

-0,87 % 
 

-0,70 % 
 

-0,44 % 

 

6.2.3 Sawlog scenario 

RPD and Sawlog scenarios share the same management regime, however now the 

full effect of the decreased pulpwood supply is burdened on the packaging materials. 

Because packaging materials have better substitution benefits than paper or energy 

use, this scenario shows worse than the RPD, in which the relative share of 

packaging materials was higher. The total avoided emissions range between 3.51 – 

5.47 tCO2/ha/y for Scots Pine and 5.55 – 8.95 tCO2/ha/y on Norway Spruce.  

 

The shift in demand and the subsequent increase in the sawlog production caused the 

avoided emissions from packaging materials to decrease by 17.3 – 30.3 % on the 

Scots Pine and 6.7 – 21.9 % on the Norway Spruce stands, now accounting for only 

11.0 – 15.2 % of the total avoided emissions for Scots Pine and 8.5 – 10.7 % for the 

total avoided emissions for Norway Spruce.  

 

The increased amount of sawlog production on the VT Scots Pine stand was just 

barely able to offset the overall impact by 0.2 %, whereas the MT Norway Spruce 

stand still showed clearly higher avoided emissions due to the increased sawlog 

supply. The MT Scots Pine and OMT Norway Spruce stands again showed a 

negative overall impact, and slightly more so, than in the RPD scenario. On some 

stands it is thus possible for the demand to shift from packaging or pulpwood 
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products to sawnwood, without a negative overall impact. The likelihood of this 

seems to depend on the relative share of sawlog production in the start (Table 17). 

 

Table 17. Change in avoided emissions from baseline to sawlog scenario 

(tCO2/ha/y). 

  Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Change tCO2 %  tCO2 % tCO2 % tCO2 % 

Sawnwood 0,12 7,23 % 0,10 3,50 % 0,28 8,99 % 0,11 2,04 % 

Paper 0,00 0,00 % 0,00 0,00 % 0,00 0,00 % 0,00 0,00 % 

Energy 0,00 0,00 % 0,00 0,00 % 0,00 0,00 % 0,00 0,00 % 

Packaging -0,11 -17,29 % -0,26 -30,33 % -0,04 -6,66 % -0,21 -21,85 % 

Total 0,01 0,17 % -0,16 -2,84 % 0,24 4,48 % -0,10 -1,11 % 

% Sawnwood 
 

3,26 % 
 

3,40 % 
 

2,53 % 
 

1,94 % 

% Paper 
 

-0,03 % 
 

0,48 % 
 

-0,55 % 
 

0,13 % 

% Energy 
 

-0,03 % 
 

0,47 % 
 

-0,71 % 
 

0,19 % 

% Packaging 
 

-3,20 % 
 

-4,35 % 
 

-1,27 % 
 

-2,26 % 

 

6.2.4 Energy scenario 

The results in the energy scenario for the avoided emissions are similar to those 

earlier observed on the carbon pools. Without exception, the total avoided emissions 

decreased, as the demand shifted from packaging materials to energy use. The 

overall impact was between 0.4 – 0.6 % for Scots Pine and 0.1 – 0.3 % for Norway 

Spruce. The effects were relatively smaller on the Norway Spruce stands, as these 

stands had a higher contribution coming from the sawnwood products and hence 

were less affected, than the Scots Pine stands (Table 18). 

 

Table 18. Change in the avoided emissions from baseline to energy scenario 

(tCO2/ha/y). 

  Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Change tCO2 %  tCO2 % tCO2 % tCO2 % 

Sawnwood 0,00 0,00 % 0,00 0,00 % 0,00 0,00 % 0,00 0,00 % 

Paper 0,00 0,00 % 0,00 0,00 % 0,00 0,00 % 0,00 0,00 % 

Energy 0,10 17,83 % 0,23 25,50 % 0,04 4,23 % 0,19 12,38 % 

Packaging -0,11 -17,29 % -0,26 -30,33 % -0,04 -6,66 % -0,21 -21,85 % 

Total -0,01 -0,38 % -0,03 -0,56 % -0,01 -0,09 % -0,03 -0,28 % 

% Sawnwood 
 

0,18 % 
 

0,29 % 
 

0,06 % 
 

0,17 % 

% Paper 
 

0,07 % 
 

0,09 % 
 

0,01 % 
 

0,03 % 

% Energy 
 

2,87 % 
 

4,22 % 
 

0,72 % 
 

2,12 % 

% Packaging 
 

-3,12 % 
 

-4,60 % 
 

-0,79 % 
 

-2,33 % 
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6.2.5 Tapio scenario 

The Tapio regime produces considerably less sawlogs and pulpwood than the 

baseline. Since now only the annual wood yields, and the associated avoided 

emissions from the substitution are considered, the scenario shows considerably 

worse results, than the baseline. To compare the effects, it is assumed that the same 

product mix is produced here under the silvicultural guidelines developed by Tapio, 

as would be under the economically optimal regime of the baseline.  

 

The total amount of avoided emissions under Tapio ranged between 3.19 – 5.47 

tCO2/ha/y on the Scots Pine and 4.62 – 7.67 tCO2/ha/y on the Norway Spruce stands. 

The effects of the management regime were stronger on the Norway Spruce stands 

and therefore they show a sharper 13 – 15.2 % decrease in the avoided emissions. 

The impact on the Scots Pine stands was more modest, between 2.9 – 8.9 %, yet still 

considerable (Table 19). 

 

Table 19. Avoided emissions change from baseline to Tapio scenario (tCO2/ha/y). 

  Scots Pine (VT) Scots Pine (MT) Norway Spruce (MT) Norway Spruce (OMT) 

Change tCO2 %  tCO2 % tCO2 % tCO2 % 

Sawnwood -0,14 -8,91 % -0,08 -2,86 % -0,41 -13,02 % -0,84 -15,26 % 

Paper -0,06 -8,91 % -0,03 -2,86 % -0,09 -13,02 % -0,16 -15,26 % 

Energy -0,05 -8,91 % -0,03 -2,86 % -0,11 -13,02 % -0,23 -15,26 % 

Packaging -0,06 -8,91 % -0,02 -2,86 % -0,08 -13,02 % -0,15 -15,26 % 

Total -0,31 -8,91 % -0,16 -2,86 % -0,69 -13,02 % -1,38 -15,26 % 

% Sawnwood 
 

0,00 % 
 

0,00 % 
 

0,00 % 
 

0,00 % 

% Paper 
 

0,00 % 
 

0,00 % 
 

0,00 % 
 

0,00 % 

% Energy 
 

0,00 % 
 

0,00 % 
 

0,00 % 
 

0,00 % 

% Packaging 
 

0,00 % 
 

0,00 % 
 

0,00 % 
 

0,00 % 

 

6.3.6 Sensitivity analysis and critical displacement factors 

Carrying out the sensitivity analysis shows the point where the use of fibre-based 

packaging materials becomes a climatic benefit. It is carried out by changing the 

displacement factor of the fibre-based packaging material between 0 and 4. From the 

sensitivity analysis, it can be observed that rather quickly, even using moderate 

displacement factors, the use of packaging materials starts to increase the overall 

avoided emissions.  
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In the RPD scenario MT Scots Pine and OMT Norway Spruce show that even using 

a displacement factor of zero, the shift from baseline would have an adverse impact 

on the the avoided emissions. On the other hand, in VT Scots Pine stands, the 

decreased fibre-based packaging supply would only have a negative impact, in case 

the substitution benefits were considerably high (over 3 and up). For some specific 

purposes, substituting alternative materials with fibre packaging could be this 

beneficial, but at a large-scale it is highly unlikely. MT Norway Spruce on the other 

hand produced so much more sawlogs, that on these stands, it is impossible to see 

any achievable benefits in regard to the baseline (Figure 17). 

 

 

Figure 17. RPD scenario sensitivity analysis of avoided emissions compared to the 

baseline by altering the packaging displacement factor.  

 

In the Sawlog end-use scenario, the avoided emissions react more strongly to the 

change of the displacement factor, as it now affects a bigger portion of the total wood 

yield. The decreased demand for fibre-based packaging, and the subsequent decrease 

of available wood raw material, is now fully burdened on packaging, as opposed to 

the RPD scenario, in which paper and energy used were also affected. This causes 

fibre-based packaging first showing a negative impact, which then quickly and 

steeply changes to positive. VT Scots Pine showed earlier just barely positive total 

change in the avoided emissions with the displacement factor of 1.5, and it can now 
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be observed, that if slightly more greenhouse gas emissions could be avoided, with 

the use of fibre-based packaging, the overall impact would have been negative as 

well. MT Norway Spruce again clearly shows a positive change, however now 

decreasing more rapidly. MT Scots Pine and OMT Norway Spruce would benefit 

from more fibre-based packaging, even using displacement factors under 1 (Figure 

18).  

 

 

Figure 18. Sawlog scenario sensitivity analysis of avoided emissions compared to the 

baseline by altering the packaging displacement factor. 

 

Fibre-based packaging on all stands surpasses energy use at the same point. The 

difference is on how steeply before and after the point, fibre-based affects the 

avoided emissions. When fibre-based packaging can be utilized in such a manner that 

it displaces emissions by a factor of 1.3 or higher, the use of wood for packaging 

rather than energy is preferable (Figure 19). 
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Figure 19. Energy scenario sensitivity analysis of avoided emissions compared to the 

baseline by altering the packaging displacement factor. 

 

As for the Tapio scenario, it can be observed that the scenario could only achieve 

higher avoided emissions than the baseline, by assuming an unrealistically low 

displacement factor for fibre-based packaging. In fact, it would only be as good as 

the baseline, if the use of fibre-based packaging materials was extremely 

unfavorable, compared to the alternative packaging materials. It should be noted 

however, that due to the different approaches (economically optimal management in 

other scenarios vs. the silvicultural guidelines here), the implications here are not 

straightforward (Figure 20). 
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Figure 20. Tapio scenario sensitivity analysis of avoided emissions compared to the 

baseline by altering the packaging displacement factor. 

 

6.3 Integrated analysis of the carbon pools and the avoided emissions 

In some cases the climatic benefits conflict with each other. For instance a stand in 

an alternative scenario could have higher carbon pools, but lower avoided emissions, 

than in the baseline. Because of the avoided emissions from the annual wood use, at 

some point in the future, the avoided emissions could close the gap between steady-

state carbon, after which point the scenario with the higher avoided emissions, would 

become the more favorable one.  

 

In some cases there are also win-win scenarios, situations when both the pools and 

the avoided emissions react positively to the change. There were four such instances, 

two associated with the RPD and two with the Sawlog scenarios. The VT Scots Pine 

and MT Norway Spruce stands both had higher carbon pools and avoided emissions, 

whereas the MT Scots Pine and OMT Norway Spruce stands had higher carbon pools 

but lower avoided emissions. It can be estimated that the MT Scots Pine stand could 

close the gap between the carbon pools in only 5 – 9 years, whereas for the OMT 

Norway Spruce it would take longer, between 85 – 174 years, yet still within the 

range of the typical 100 year time horizon often used in lifecycle studies. 
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Without exception, the Energy scenario showed lower carbon pools as well as lower 

avoided emissions in regard to the baseline, and therefore it was a lose-lose scenario 

across the board. Tapio is similar, though in absolute terms showed even worse 

results than the Energy scenario. In the case of MT Scots Pine however, the carbon 

pools were some 4.68 tCO2/ha higher than in the baseline. The avoided emissions at 

the same time were 0.16 tCO2/ha/y lower and therefore by utilizing wood to 

substitute for other more energy intensive materials, the carbon pool gap between the 

baseline and Tapio would be closed in no more than 29 years. The summary table of 

the carbon pools and the avoided emissions, along with how many years it would 

take to compensate for the difference, are presented below in Table 20. 

 

Table 20. Comparison between the carbon pools (tCO2/ha) and the avoided 

emissions greenhouse gas emissions (tCO2/ha/y). 

Change to baseline CO2/ha CO2/ha/y Years to compensate 

Reduced pulpwood demand 

Scots Pine (VT) 8,45 0,04 Win-Win 

Scots Pine (MT) 0,85 -0,09 9 

Norway Spruce (MT) 24,36 0,25 Win-Win 

Norway Spruce (OMT) 8,54 -0,05 174 

Sawlogs 

Scots Pine (VT) 8,43 0,01 Win-Win 

Scots Pine (MT) 0,79 -0,16 5 

Norway Spruce (MT) 24,35 0,24 Win-Win 

Norway Spruce (OMT) 8,47 -0,10 85 

Energy 

Scots Pine (VT) -0,09 -0,01 Lose-Lose 
Scots Pine (MT) -0,21 -0,03 Lose-Lose 

Norway Spruce (MT) -0,03 -0,01 Lose-Lose 

Norway Spruce (OMT) -0,17 -0,03 Lose-Lose 

Tapio 

Scots Pine (VT) -16,96 -0,31 Lose-Lose 

Scots Pine (MT) 4,68 -0,16 29 

Norway Spruce (MT) -57,74 -0,69 Lose-Lose 

Norway Spruce (OMT) -93,50 -1,38 Lose-Lose 
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7 DISCUSSION 

 

7.1 Summary of results 

The use of wood raw material for fibre-based packaging and other wood-based 

products seems favorable, when considering climate change mitigation aspect of 

forestry and wood use. Fibre-based packaging materials displace fossil carbon 

emissions by substituting more energy intensive materials, and delay biogenic carbon 

re-emissions to the atmosphere at least until the end of their lifecycle.  

 

The results showed that the product carbon pools were in the range of 20 – 30 % of 

total pools, hence it is fair to say that the forest products are significant carbon sinks.  

The amount of carbon bound to fibre-based packaging materials ranged between 0.7 

– 1 % of the product pools, or 0.5 – 0.9 % of the total pools. It is quite significant, 

considering that the carbon in packaging and pulpwood products is often neglected, 

and the opportunities for the delayed emissions from pulp products are not 

considered or taken in to account.  

 

With the exception of MT Scots Pine, the RPD scenario had the highest carbon pools 

on all the stands. With MT Scots Pine, Tapio showed some 4.7 tCO2/ha higher total 

pools in regard to the baseline. This was due to the higher rate of carbon 

sequestration in the standing forest stock under the Tapio management. The forest 

management in the baseline and the RPD for MT Scots Pine stands was much more 

intensive with more thinnings than under the Tapio management. In the case of RPD 

and the Sawlog scenarios, the product carbon pools were actually higher than under 

Tapio management; this was however offset by their lower forest carbon. As for the 

total carbon pools, on all but MT Scots Pine stands, Tapio proved to be inferior, in 

the case of Norway Spruce, showing some 20.7 – 23.1 % lower total pools than the 

baseline. At most, the carbon pools increased by 8.7 %, as was the case in the RPD 

scenario and the OMT Norway Spruce stands. 

 

As there are no carbon storing benefits associated with the use of energy wood, the 

Energy scenario showed lower average pools than baseline, RPD and Sawlog on all 

the stands. While the impacts observed were marginal, it should be noted that any 

material used for energy purposes, instead of wood products, will decrease the 
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carbon pools and increase the amount of carbon re-entering the atmosphere. If paper 

and packaging were treated differently, the Sawlog scenario would show better or 

worse results, depending on which of the products can hold the carbon for longer. 

The carbon pools are presented in the following summary Table 21, arranged in an 

order from the highest to the lowest. 

 

Table 21. Carbon pools (tCO2/ha) summary table, where SW is sawnwood, P is 

paper, Pa is packaging and Ptot is the product total. 

Species Scenario SW P Pa Ptot % Pa % Pulp Forest Total 

Scots Pine (VT) RPD 34,8 1,0 0,5 36,3 1,4 % 4,1 % 146,2 182,5 

Scots Pine (VT) Sawlog 34,8 1,0 0,4 36,3 1,2 % 4,1 % 146,2 182,5 

Scots Pine (VT) Baseline 32,4 1,0 0,5 34,0 1,5 % 4,6 % 140,0 174,0 

Scots Pine (VT) Energy 32,4 1,0 0,4 33,9 1,3 % 4,4 % 140,0 173,9 

Scots Pine (VT) Tapio 29,5 1,0 0,5 31,0 1,5 % 4,6 % 126,1 157,1 

Scots Pine (MT) Tapio 57,0 1,4 0,7 59,0 1,2 % 3,5 % 183,3 242,3 

Scots Pine (MT) RPD 60,7 1,3 0,7 62,7 1,0 % 3,1 % 175,8 238,5 

Scots Pine (MT) Sawlog 60,7 1,4 0,5 62,6 0,8 % 3,0 % 175,8 238,5 

Scots Pine (MT) Baseline 58,7 1,4 0,7 60,8 1,2 % 3,5 % 176,9 237,7 

Scots Pine (MT) Energy 58,7 1,4 0,5 60,6 0,8 % 3,1 % 176,9 237,5 

Norway Spruce (MT) RPD 68,0 1,0 0,5 69,5 0,7 % 2,2 % 234,3 303,9 

Norway Spruce (MT) Sawlog 68,0 1,0 0,5 69,5 0,7 % 2,2 % 234,3 303,8 

Norway Spruce (MT) Baseline 62,4 1,0 0,5 64,0 0,8 % 2,4 % 215,5 279,5 

Norway Spruce (MT) Energy 62,4 1,0 0,5 63,9 0,8 % 2,4 % 215,5 279,5 

Norway Spruce (MT) Tapio 54,3 0,9 0,4 55,6 0,8 % 2,4 % 166,1 221,7 

Norway Spruce (OMT) RPD 112,7 1,5 0,8 114,9 0,7 % 2,0 % 297,8 412,8 

Norway Spruce (OMT) Sawlog 112,7 1,6 0,6 114,9 0,5 % 1,9 % 297,8 412,7 

Norway Spruce (OMT) Baseline 110,4 1,6 0,8 112,8 0,7 % 2,1 % 291,4 404,2 

Norway Spruce (OMT) Energy 110,4 1,6 0,6 112,6 0,5 % 2,0 % 291,4 404,1 

Norway Spruce (OMT) Tapio 93,6 1,3 0,7 95,6 0,7 % 2,1 % 215,1 310,7 

 

The applied default values for displacement factors drive the results about avoided 

emissions. Based on the literature analysis, sawnwood had the highest applied 

displacement factor values and therefore scenarios with increased sawlog production 

generally yield the highest avoided emissions. Fibre-based products were not able to 

fully compete with sawlog in avoided emissions, but they outperformed energy use 

clearly. The results from the avoided emissions indicate similarities in the relative 

superiority of the different scenarios, as the results from the carbon pools. Again the 

RPD scenario fared well, with the highest associated average avoided emissions 

achieved on two of the stands. However, unlike with the carbon pools, the 
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interpretation is not as straight forward, as on the other two stands, the avoided 

emissions in regard to the baseline were lower. On MT Scots Pine and OMT Norway 

Spruce stands, the avoided emissions in the baseline were slightly higher than in any 

of the alternative scenarios, as the shift to increased sawlog production or energy use 

could not offset the diminished packaging production and material substitution 

thereof. Consequently MT Scots Pine and OMT Norway Spruce stands were also the 

two stands which showed the smallest increment in sawlog production, when the 

management regime changed. Sawlogs were not able to offset the lost pulpwood and 

packaging materials, in these two cases.   

 

As with the carbon pools, Tapio scenario provided the least climatic benefits. Energy 

use proved worse than the baseline on all the stands. It did however, in the case of 

MT Scots Pine and OMT Norway Spruce, fare better than the RPD or the Sawlog 

scenarios. From the resource allocation point of view, the results indicate that it is 

justified to use wood raw material for packaging purposes, if mitigating climate 

change is one of the decision making factors. In the calculations, the relative amount 

of avoided emissions from the use of fibre-based packaging materials was close to 

the relative amount of raw material allocated to that purposes. Allocating pulpwood 

to fibre-based packaging was more effective, than allocating the same material to 

paper or energy purposes. The summary of the avoided emissions, arranged from the 

highest to the lowest, is presented below in Table 22. 
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Table 22. Summary of avoided emissions, where CTB is the change to baseline (%).  

Species Scenario SW P E Pa Total CTB % SW % P % E % Pa 

Scots Pine (VT) RPD 1,74 0,66 0,53 0,62 3,54 1,0 % 49,2 % 18,6 % 14,9 % 17,4 % 

Scots Pine (VT) Sawlog 1,74 0,69 0,55 0,53 3,51 0,2 % 49,6 % 19,6 % 15,7 % 15,2 % 

Scots Pine (VT) Baseline 1,62 0,69 0,55 0,64 3,50 0,0 % 46,3 % 19,6 % 15,7 % 18,4 % 

Scots Pine (VT) Energy 1,62 0,69 0,65 0,53 3,49 -0,4 % 46,5 % 19,7 % 18,6 % 15,3 % 

Scots Pine (VT) Tapio 1,48 0,62 0,50 0,59 3,19 -8,9 % 46,3 % 19,6 % 15,7 % 18,4 % 

Scots Pine (MT) Baseline 2,93 0,92 0,91 0,86 5,63 0,0 % 52,1 % 16,4 % 16,1 % 15,4 % 

Scots Pine (MT) Energy 2,93 0,92 1,14 0,60 5,60 -0,6 % 52,4 % 16,5 % 20,3 % 10,8 % 

Scots Pine (MT) RPD 3,04 0,86 0,84 0,80 5,53 -1,6 % 54,9 % 15,5 % 15,2 % 14,5 % 

Scots Pine (MT) Sawlog 3,04 0,92 0,91 0,60 5,47 -2,8 % 55,5 % 16,9 % 16,6 % 11,0 % 

Scots Pine (MT) Tapio 2,85 0,90 0,88 0,84 5,47 -2,9 % 52,1 % 16,4 % 16,1 % 15,4 % 

Norway Spruce (MT) RPD 3,40 0,67 0,87 0,63 5,56 4,7 % 61,2 % 12,0 % 15,6 % 11,3 % 

Norway Spruce (MT) Sawlog 3,40 0,68 0,88 0,59 5,55 4,5 % 61,3 % 12,2 % 15,9 % 10,7 % 

Norway Spruce (MT) Baseline 3,12 0,68 0,88 0,63 5,31 0,0 % 58,7 % 12,7 % 16,6 % 12,0 % 

Norway Spruce (MT) Energy 3,12 0,68 0,92 0,59 5,31 -0,1 % 58,8 % 12,8 % 17,3 % 11,2 % 

Norway Spruce (MT) Tapio 2,71 0,59 0,77 0,55 4,62 -13,0 % 58,7 % 12,7 % 16,6 % 12,0 % 

Norway Spruce (OMT) Baseline 5,52 1,04 1,51 0,97 9,05 0,0 % 61,0 % 11,5 % 16,7 % 10,8 % 

Norway Spruce (OMT) Energy 5,52 1,04 1,70 0,76 9,02 -0,3 % 61,2 % 11,5 % 18,8 % 8,4 % 

Norway Spruce (OMT) RPD 5,63 0,99 1,44 0,93 9,00 -0,5 % 62,6 % 11,0 % 16,0 % 10,3 % 

Norway Spruce (OMT) Sawlog 5,63 1,04 1,51 0,76 8,95 -1,1 % 63,0 % 11,6 % 16,9 % 8,5 % 

Norway Spruce (OMT) Tapio 4,68 0,88 1,28 0,82 7,67 -15,3 % 61,0 % 11,5 % 16,7 % 10,8 % 

 

7.2 Previous studies 

The long-term equilibrium steady-state represents a theoretical sustainable state with 

no changes in the inventory; the amount of wood-based products in use stays 

constant over time, as the supply equals the decay, while the forest growth similarly 

remains stable. The steady-state methodology was previously used by Pingoud et al. 

(2010) to study the climatic impacts of elongated rotation periods, increased average 

basal area and the sawlog supply. Given the different approach and the goals, a direct 

comparison is difficult. For the same reason, it is not sensible to directly compare the 

results to any other previous study either, as the methodologies and the goals are 

even more diverged. Regardless, a review in the magnitudes, and more importantly 

to what the results imply for forestry and wood-based products, gives insight and 

reveals some similarities between the results of the studies and the conclusions 

thereof.   

 

Elongated rotations periods are generally considered beneficial for the carbon 

balance. For instance Liski et al. (2001) and Kaipainen et al. (2004) assert that 
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lengthened rotations will positively affect the overall carbon balance. Results from 

Pingoud et al. (2010) indicate that elongating the rotation period could have a 

positive impact on both the carbon pools (forest and product pools) and the avoided 

emissions from wood-use, thus presenting a win-win scenario.  Their study 

considered wood used in construction and energy, while treating pulpwood (for 

paper) similarly to energy wood. They found that lengthening the rotation period 

from the currently recommended, and increasing the average basal area of the forest, 

lead to higher production and supply of sawlogs. This led to larger carbon pools and 

a higher level of avoided emissions, as fossil energy intensive materials were 

increasingly substituted by sawnwood. The same basic idea was explored in the 

reduced pulpwood demand and sawlog scenarios of this study, which effectively 

increased the sawlog supply, while reducing the pulpwood supply. The set-up 

intended to reveal what the impacts of the current fibre production are. When the 

price of pulpwood decreased, the economically optimal rotation periods were 

elongated, by approximately four years, and the relative share of sawlog supply 

increased by 3 – 5 percentage points. This resulted in higher carbon pools, and the 

overall impact on the carbon balance was positive on all the stands.  

 

Kaipainen et al. (2004) found that elongated rotations sometimes caused the 

harvesting potential to decrease. This results when the new rotation exceeds the 

maximum yield rotation. The effects from the decreased wood supply were however 

compensated by the increased forest carbon pools, and the overall impact was 

positive. Similar reaction to wood supply was observed in this study, when the forest 

management changed and the rotations were slightly elongated, as a result of a 

demand shift away from fibre-based packaging. On two of the stands, the total 

harvesting potential was slightly decreased from the baseline, but the increased 

carbon pools compensated for the loss. The use of sawnwood in construction and in 

other long-lived products has great potential for climate change mitigation because of 

its low energy intensity and long lifecycle (Sathre and O’Connor 2008, Reid et al. 

2004). The average basal area and the relative share of sawlogs will generally 

increase with the forest age. If a shift in demand results in changes to the forest 

management, as observed in this study, and the increased sawlogs supply is able to 

compensate for the lost pulpwood, the impact on the carbon balance will be positive. 
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The carbon pools will increase hand-to-hand with the avoided emissions, as long as 

the increased sawlog production is able to off-set the lost pulpwood.  

 

The silvicultural guidelines developed by the Forestry Development Centre Tapio are 

the current basis for forest management in Finland. The guidelines take into account 

many different economical, ecological and social considerations. What this means 

purely from the climatic point of view is that the guidelines are not optimal for 

mitigating climate change. Meanwhile the economically optimal management 

practices maximize the bareland value of the forest, without considering other than 

economic factors. This tends to increase and drive the mean annual increment (MAI) 

closer to its culmination point, increasing the mean annual growth, the wood yields 

and the climatic benefits thereof. For instance Nerg (2009) noted that with rotation 

lengths approximately 10 – 20 years longer than those recommended by Tapio, the 

annual carbon sequestration rates were higher. Similarly, Pingoud et al. (2010) show 

that elongating the rotations from the currently recommended could increase both the 

carbon pools, as well as avoided emissions from wood use.  

 

Kujanpää et al. (2009) notes that an important factor to consider is the time horizon, 

with which any climatic problem is approached, as to prevent the global warming 

rapid action has to be taken within the next 20 – 50 years. They also outline and 

discuss three different generic approaches to carbon footprinting, an important tool in 

quantifying the carbon impacts. In the carbon uptake approach, only the biogenic 

carbon that is bound to the harvested wood product is taken in to consideration. All 

the carbon is eventually released back to the atmosphere at the end of the product 

lifecycle. In the lost carbon stock approach, the carbon which is removed from the 

forest is calculated as an emission. It takes in to account the lost carbon sequestration 

potential in the forest due to harvesting, which is then allocated to the product, based 

on the amount of wood raw material used by the application. Due to the 

methodology, the lost carbon stock approach favours products made from recycled 

fibre, as the lost sequestration potential is less significant when non-virgin fibres are 

used. The net carbon sequestration approach is based on the underlying idea of net 

forest growth due to sustainable forest management. The proponents argue that the 

use of wood raw material contributes to the markets, which in turn stimulates the 
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sustainable forest management. The model allocates a portion of the annual net forest 

growth to the forest products, therefore reducing the forest product carbon footprint.  

 

Eriksson et al. (2010) emphasize the need for active forest management, due to 

managed forests removing carbon from the atmosphere much faster than unmanaged 

forests. They assert that it is possible to keep a high forest carbon stock, while at the 

same time carry out sustainable harvests. The more difficult question is if and how to 

link sustainable forest management and carbon sequestration to consumer demand, 

which would justify including the carbon sequestration to the carbon footprint, as 

discussed earlier. The argument is that on certain areas, such as in the Northern 

Europe, the purchase of timber by the industry contributes to the application of 

efficient forest management practices, which then in turn ensure the high growth rate 

and large and increasing carbon stocks. According to the proponents, the main driver 

for sustainable forest management is the economic return from the forest. The link 

they propose follows the principle idea that reduced demand causes reduced 

production, which reduces harvests and the timber prices, postponing forest 

operations and thus decreasing the carbon sequestration rates. The study shows that 

in comparison to a theoretical reference scenario of an old non-managed forest, the 

carbon sequestration in the managed forests is indeed higher. However, the causality 

between the consumer demand and the net growth of forest biomass still remains 

hazy, and what would happen if no consumer demand existed is difficult to say. 

Furthermore, the question how the net carbon sequestration should be credited for 

wood demand is not straight forward, in case the wood harvests would completely 

cease. The net carbon sequestration would still continue for several decades at a 

significant rate, and therefore one might argue only the difference between the 

current situation and the no-harvest scenario hereon, should be used as a credit for 

wood demand.  

 

The forest industry as a whole is in a unique position because biomass in the future 

will be in increasingly high demand by also the energy sector (Laurijssen et al. 

2009). This opens the questions whether or not wood raw material, namely 

pulpwood, will be available for all the interested parties that utilize it in their 

operations. Already in Sweden there have been instances when pulpwood has been 

more valuable as bioenergy, rather than feedstock biomass for the forest industry. 
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The Swedish Forest Owners Association (Mellanskog) president Lars Gabrielsson 

has stated that it is simply the price of energy resources that determines the end-use 

of pulpwood and whether it is burned for energy or not (Timber Community 2010). 

The Forestry Centre (Metsäkeskus) has similarly noted that the improved price of 

energy wood is making it increasingly competitive against pulpwood in Finland as 

well (Metsäkeskus 2010). One might question the forest owners’ willingness to 

harvest pulpwood for energy purposes, but according to a recent survey, two-thirds 

of Finnish forest owners had no objections to energy harvests from pulpwood 

(Karttunen et al. 2010). Hetemäki and Hänninen (2009) similarly assert that from the 

economic or environmental point of view, there is no reason to limit pulpwood 

outside of the energy use. 

 

7.3 Reliability of the results 

The reliability of the results is affected by a number of factors, such as the wood and 

biomass yields obtained from MOTTI, and the parameters and assumptions taken in 

calculating the carbon pools and avoided emissions.  

 

To begin with, the study relies on the forest growth simulations carried out on 

MOTTI software. According to Hynynen et al. (2005), the growth and the wood 

yield components of MOTTI are the most reliable individual components in the 

software, whereas the biomass model is more tentative. They further note that 

MOTTI is not able to account for certain risks in forestry, such as damage from 

insects, forest fires, wind and other similar natural occurrences. Regardless of some 

of MOTTI’s short-comings or rather simplifications, it is a valuable tool suitable for 

this kind of research. The modeling data in MOTTI includes sample plots from some 

4400 sites, and over 68000 trees from throughout Finland. MOTTI is based on the 

newest available empirical growth models and it is accurate and specific in regards to 

the tree species, the geographical location, and the forest site type of the stand. 

 

After the stand simulations, the results become dependent on secondary data, as the 

wood yields from the simulations, are converted to the climatic indicators used in the 

study; carbon pools and avoided emissions. All the assumptions taken, as described 

in the methodology chapter, should be therefore naturally considered when 

interpreting the results. Necessary simplifications were taken and for instance carbon 



82 

 

 

at landfills and carbon in the soil were not included. In the context of this study, the 

inclusion of carbon at landfills would likely not had  a considerable impact, because 

of the high recycling rate in Finland, whereas soil carbon might have had a more 

significant impact. There are large uncertainties related to soil and litter carbon, 

which is the reason why they were not considered, as the results would have been 

much more unreliable than those related to the forest and product carbon pools. 

 

The forest carbon pools were obtained by converting the average stand biomass from 

MOTTI to carbon by a factor of 0.5, and further to carbon dioxide by a factor of 

44/12 (~3.67), both of which are widely used in other studies. In reality the amount 

of carbon in wood slightly differs between tree species. The product carbon pools 

were obtained similarly by converting the wood yields to carbon and carbon dioxide, 

but in addition the wood yields had to be converted to mass units. This was done by a 

factor of 0.4 (400kg/m
3
), which is a reasonable assumption for the softwood density 

of Norway Spruce and Scots Pine, and earlier used for instance by Pingoud et al. 

(2010). 

 

Obtaining and choosing the displacement factors used for the avoided emissions was 

slightly more problematic than other factors used in the study. The displacement 

factors are fairly simple to calculate for specific and individual functions or products, 

but much more difficult for larger product groups or materials; they are highly 

sensitive to the application of the product and material. A large amount of studies on 

wood used in construction exists, and therefore the displacement factor for 

sawnwood was also fairly simple to obtain. Based on a literature review of wood 

construction studies, Sathre and O’Connor (2008) concluded that a displacement 

factor of 2.0 could be viewed as reasonable middle estimate for an end-product 

sawnwood displacement factor. Therefore the displacement factor of 2.0, relative to 

product carbon (as opposed to raw material carbon), is applied in this study. They 

also discuss the energy use and note that typically the displacement factors suggested 

for energy wood range between 0.5 and 1. Pingoud et al. (2010) use a displacement 

factor of 0.89 for pulpwood and energy wood. The biggest problem with pulpwood is 

finding realistic substitutes for paper. Conventional printed media can be substituted 

by for instance electronic paper, but the possible scenarios are very case-dependant.  
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No previous studies on displacement factors for fibre-based packaging materials 

exist as of to date. It is simple to calculate a single product specific displacement 

factor based on the lifecycle studies. However, a displacement factor for the fibre-

based packaging materials as a whole was impossible to obtain in the scope of this 

study. Based on the literature analysis in chapter 4, it is reasonable to assume that 

fibre-based packaging as a whole has a positive impact on the climate when 

substituting alternative materials. Further, a sensitivity analysis was conducted to see 

at which point, and from how far from the assumed factor of 1.5, the substitution is 

no longer beneficial to the environment. For the most parts, the sensitivity analysis 

only changed the magnitude of the results. 

 

Finally, the financial performance of forestry should be considered, as the alternative 

management regimes are based on economically optimal forest management. The 

price data and the interest rate used in the optimization affect the results as they are 

the basis for the simulations in MOTTI. Considering the price of pulpwood, it would 

not seem very realistic to assume a steeper price drop than the 10 € applied. On the 

contrary, the increased demand for energy wood in the future could increase the price 

of pulpwood. In this study however, it was more interesting to examine what kind of 

effects the decreased supply would have. Furthermore a very low price of pulpwood 

(nearing zero) decreases the reliability of the optimization. The interest rate of 3 % is 

often applied, and it can be considered a reasonable for this kind of investments. A 

higher interest rate would imply a higher risk or the availability of better alternative 

investment opportunities. This decreases the present value of the future cash flows, 

and therefore would likely shorten the rotation periods. This in turn would decrease 

the gap between Tapio management and the economically optimal management 

regimes. 

 

 

 

 

 

 

 



84 

 

 

8 CONCLUSIONS AND DEMAND FOR FURTHER RESEARCH 

 

Packaging materials are carbon storages 

While not as significant carbon storages as sawnwood or other long-lived products, 

packaging materials as well as pulpwood products in general, should be taken in to 

consideration as effective carbon sinks. Packaging materials clearly contribute to the 

carbon pools and delay the re-emission of carbon to the atmosphere. The results 

showed that contribution from pulpwood products ranged between 2 – 4 % of the 

total product pools. In absolute terms, per cubic meter of harvested wood used, 

mechanical pulp binds almost twice as much carbon as sawnwood or chemical pulp. 

As some 0.26 Tg of fibre-based packaging materials are annually consumed in 

Finland, the total amount of biogenic carbon bound to the consumed fibre-based 

packaging materials is roughly 0.5 TgCO2. How much of this is bound to the 

materials at any given moment, or how much it delays the re-emission of carbon to 

the atmosphere on a national scale, is uncertain. 

 

Fibre-based packaging materials help to avoid greenhouse gas emissions 

It is clear that wood, or any other single material to that fact, is not unilaterally 

always the best option for packaging. Regardless, it is reasonable to assume, that the 

overall impact of using fibre-based packaging materials, from sustainably managed 

forests, is beneficial to the environment. Furthermore, it also appears the climatic 

benefits from fibre-based packaging materials (through substitution of alternative 

materials) used in primary and secondary packaging, are relatively higher than those 

of fibre-based materials used for tertiary packaging functions. The reasons for this 

could be logistical and geographical, but to ensure the best possible courses of action 

in packaging and logistics, this certainly calls for further research in the future.  

 

Increasing material recycling and reuse is highly preferable 

Increased recycling and reuse is highly preferable as recycling and reuse effectively 

lower the product carbon footprint and delay the re-emission of biogenic carbon to 

the atmosphere, by elongating the lifespan of fibres and the carbon bound therein. 

The end-of-life management of wood products has a high impact on the product’s 

climate friendliness.  Reusable and durable products, and products made from 
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recycled non-virgin fibres, have much lower impact on the environment than 

products that are not reused, have a short lifecycle and are not recycled. 

 

Forests should managed and used for raw material rather than left unattended 

Managing forests resources sustainably and using forest products in a responsible 

manner is a climate change mitigation strategy that enables lowering the amount of 

carbon in the atmosphere with relative ease, compared to many other mitigation 

strategies. The results from this and previous studies support the notion that actively 

managed forests have higher climatic benefits than leaving the forests unmanaged. 

Furthermore, responsible use of forest resources for raw materials and manufacturing 

of forest products enables substituting other more energy intensive materials, thus 

lowering the carbon emissions at the source.  

 

Economically optimal management practices are climatically preferable to Tapio 

Based on the results, economically optimal forest management regimes yield more 

wood annually and have higher climatic benefits than managing the forests according 

to the recommended current practices by the Forestry Development Centre Tapio. 

The economically optimal management regimes showed clearly higher climate 

change mitigation potential than the regimes following the guidelines. In fact, 

managing the stands according to the silvicultural guidelines provided the least 

climatic benefits out of all scenarios. This is interesting and worth noting, as the 

guidelines are the current basis for the management practices in Finland. 

 

Possibility for win-win scenarios 

The results indicate the possibility that win-win scenarios exist by shifting 

production from pulpwood to sawlogs; on some of the stands in the RPD and sawlog 

scenarios, both carbon pools and avoided emissions increased from the baseline 

simultaneously. Additionally, the results showed that a change from the current 

recommended forest management practices in Finland also yield higher associated 

climatic benefits in relation to the carbon pools and avoided emissions. This supports 

the notion that the generic mitigation strategies are not necessarily mutually 

exclusive as it is possible to simultaneously utilize sequestration and substitution 

strategies, in which both the carbon pools and the avoided emissions are increased. 
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Use of virgin fibre for energy purposes over forest products should be avoided 

In the future the share of renewable energy will all but certainly increase. In Finland 

and the European Union this is guaranteed by the European Union RES-directive 

which mandates the renewable energy targets for all the Member States. In Finland 

the share of renewables is set at 38 %, or in terms of primary energy, approximately 

39 TWh (Finnish Forest Research Institute 2010). About half of this is expected to 

come through the increased use of wood chips. From the environment point of view, 

it is critical to ensure the wood raw material availability for the forest industry and 

the manufacturing of forest products, if pulpwood is increasingly used as bioenergy 

rather than feedstock biomass for the forest industry. The shift from packaging 

material to energy use can adversely affect the carbon pools and the avoided 

emissions. The use of virgin fibres for energy purposes, rather than feedstock 

biomass for the forest industry, should be critically considered if optional to each 

other. Only cellulose fibres no longer viable for use in the manufacturing process 

should be condemned to the final use recycling options, such as incineration with 

energy recovery. It is important to remember however, that both energy and fibre-

based packaging are beneficial in their own applications. If there is an abundance of 

wood raw material available, then the increased use of wood energy is a win-win, as 

emissions can be avoided in both the applications simultaneously with no adverse 

impacts due to scarce resources whatsoever. 

 

Further research on alternative packaging materials is necessary 

In the future it would be highly desirable and interesting to examine different 

transport packaging systems, namely corrugated boxes and reusable plastic 

containers, closer to the Finnish context. The average transport distances, 

manufacturing of materials, recycling, energy systems and the logistical 

infrastructure in general, vary considerably between nations and geographic 

locations. Few publicly available scientific papers on the subject exist, despite the 

importance, even internationally. The Paper and Paperboard Packaging 

Environmental Council (PPEC 2011) understandably asserts that in environmental 

terms, there’s no clear winner in which packaging system is better. The 

Confederation of European Paper Industries (CEPI 2011) even goes as far as to say 

the corrugated board packaging is in fact the better option. In support of their 

argument, the plastic industry on the other hand gladly cites Singh et al. (2006), one 
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of the few studies, if not the only comparative study on corrugated board and 

reusable plastic containers by the scientific community to date. 

 

Unified carbon footprint methodology is needed 

The carbon footprint of wood-based products has been extensively studied in recent 

years, by both the industry and the scientific community. No unified methodology 

for assessing the product carbon footprint exists as of yet. While in principle the 

same, the methodologies for calculating the footprints differ in, for instance, how the 

biogenic carbon in the growing forest stock is accounted for, or rather if it is 

accounted for at all. The inclusion of biogenic carbon sequestration in managed 

forests would show very beneficial for the wood products, as it would in many cases 

offset a large portion of the total wood product carbon footprint. For clarity and a 

multitude of other reasons, it is important that a unified methodology can be found 

and agreed upon, in the near future.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

 

9 REFERENCES 

Banar, M., Cokaygil, Z. 2009. A life cycle comparison of alternative cheese 

packages. Clean. 37(2): 136-141. 

Bix, L., Rifon, N., Lockhart, H., de la Fuente, J. 2003. The Packaging Matrix: 

Linking Package Design Criteria to the Marketing Mix. IDS Packaging. [Cited 

11.5.2011]. http://www.idspackaging.com/Common/Paper/Paper_47/PdfImge.pdf 

BSI. 2008. PAS 2050 – Specification for Assessing the Lifecycle Greenhouse Gas 

Emissions of Goods and Services. British Standards Institute. 

Buchanan, A.H., Levine, S.B. 1999. Wood-based building materials and atmospheric 

carbon emissions. Environmental Science and Policy 2(6): 427-437.  

CEPI. 2007. Framework for the development of Carbon Footprints for paper and 

board products. Confederation of European Paper Industries publication. 

CEPI. 2011. Frequently Asked Questions. Confederation of European Paper 

Industries webpage. [Cited 1.5.2011]. 

http://www.cepi.org/Content/Default.asp?pageid=227 

Commission Decision 2005/270/EC of 22 March 2005 establishing the formats 

relating to the database system pursuant to Directive 94/62/EC of the European 

Parliament and of the Council on packaging and packaging waste.  

Detzel, A., Wellenreuther, F., Krüger, M. 2008. Carbon Footprint of Milk and Juice 

Containers in Spain. IFEU GmbH publication. 

Directive 94/62/EC of the European Parliament and the Council of 20 December 

1994 on packaging and packaging waste. 

Directive 2008/98/EC of the European Parliament and of the Council of 19 

November 2008 on waste and repealing certain Directives. 

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 

2009 on the promotion of the use of energy from renewable sources and amending 

and subsequently repealing Directives 2001/77/EC and 2003/30/EC.  

Eriksson, E., Stripple, H., Karlsson, P-E. 2009. Executive Summary for Billerud 

Carbon Footprint – overview documentation. 

Eriksson, E., Karlsson, P-E., Hallberg, L., Jelse, K. 2010. Carbon  Footprint  of  

Cartons  in  Europe  –  Carbon  Footprint  methodology  and  biogenic carbon 

sequestration. IVL Report B1924. 

EPA. 2006. Life cycle analysis: Principles and practice. United States Environmental 

Protection Agency. EPA/600/R-06/060.  

Eurostat. 2010. Recycling rates for packaging waste. Eurostat website. [Cited 

12.12.2010]. 

http://epp.eurostat.ec.europa.eu/tgm/refreshTableAction.do?tab=table&plugin=1&pc

ode=ten00063&language=en 

http://www.idspackaging.com/Common/Paper/Paper_47/PdfImge.pdf
http://www.cepi.org/Content/Default.asp?pageid=227
http://epp.eurostat.ec.europa.eu/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00063&language=en
http://epp.eurostat.ec.europa.eu/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00063&language=en


89 

 

 

FAO. 2006. Global Forest Resources Assessment 2005: Progress towards sustainable 

forest management. Food and Agriculture Organization of the United Nations. FAO 

Forestry Paper 147. 

Finnish Forest Industries. 2010. Tackle Climate Change: Use Wood. Finnish Forest 

Industries webpage. [Cited 16.6.2011].   

http://www.forestindustries.fi/Infokortit/tackleclimatechangeusewood/Documents/Ta

ckle%20climate%20change_brochure.pdf 

Finnish Forest Industries. 2011. Forest Industries Statistics Service Tilda. Finnish 

Forest Industries webpage. [Cited 17.8.2011]. 

http://www.forestindustries.fi/statistics/Pages/Default.aspx 

Finnish Forest Research Institute. 2010. The Statistical Yearbook of Forestry 2010. 

Gielen, D., Moriguchi, Y. 2001. Sustainable chemistry: From theory to practice. 

Journal of packaging science & technology Japan 10(5): 221-232.  

Gower, S.T. 2003. Patterns and mechanisms of the forest carbon cycle. Annual 

Review of Environment and Resources 28: 169-204. 

Grönman, K. 2009. Mahdollisuudet pakkausten hiilijalanjäljen pienentämiseen. Case: 

kuituvalos. Master’s thesis. ISSN 1798-1328. Lappeenranta University of 

Technology. 124 p. 

Hekkert, M.P., Joosten, L.A.J., Gielen, D.J., Worrell, E., Turkenburg, W.C. 2000a. 

Reduction of CO2 emissions by improved management of material and product use: 

the case of primary packaging. Resources, Conservation and Recycling 29(1-2): 33-

64.  

Hekkert, M.P., Joosten, L.A.J., Gielen, D.J., Worrell, E., Turkenburg, W.C. 2000b. 

Reduction of CO2 emissions by improved management of material and product use: 

the case of transport packaging. Resources, Conservation and Recycling 30(1): 1-27. 

Hekkert, M.P., Gielen, D.J., Worrell, E., Turkenburg, W.C. 2001. Wrapping Up 

Greenhouse Gas Emissions: An Assessment of GHG Emission Reduction Related to 

Efficient Packaging Use. Journal of Industrial Ecology 5(1): 55-75. 

Hetemäki, L., Hänninen, R. 2009. Arvio Suomen puunjalostuksen tuotannosta ja 

puunkäytöstä vuosina 2015 ja 2020. Metlan työraportteja 122. 

Holopainen, M., Viitanen, K. 2009. Käsitteistä ja epävarmuudesta metsäkiinteistöjen 

taloudellisen arvon määrittämisessä. Metsätieteen aikakausikirja 2/2009: 135-140. 

Honkatukia, J., Simola, A. 2011. Selvitys Suomen nykyisestä ja tulevasta 

puunkäytöstä. ISSN 1795-3340 (PDF). Government Institute for Economic Research. 

VATT Tutkimukset XXX/2011. 

http://www.tem.fi/files/29793/VATT_Selvitys_puunkaytostaFinal.pdf 

Hotanen, J-P., Nousiainen, H., Mäkipää, R., Reinikainen, A., Tonteri, T. 2008. 

Metsätyypit – opas kasvupaikkojen luokitteluun. Metsäkustannus. ISBN 978-952-

5694-22-2. 192 p. 

http://www.forestindustries.fi/Infokortit/tackleclimatechangeusewood/Documents/Tackle%20climate%20change_brochure.pdf
http://www.forestindustries.fi/Infokortit/tackleclimatechangeusewood/Documents/Tackle%20climate%20change_brochure.pdf
http://www.forestindustries.fi/statistics/Pages/Default.aspx
http://www.tem.fi/files/29793/VATT_Selvitys_puunkaytostaFinal.pdf


90 

 

 

Hynynen J., Siitonen J., Sievänen R., Ahtikoski A. & Liski J. 2005. Applying the 

MOTTI simulator to analyse the effects of alternative management schedules on 

timber and non-timber production. Forest Ecology and Management 207 (1-2): 5-18. 

Häkkinen, T., Vares, S. 2009. LCA of beverage cups with special focus on the effect 

of end-of-life scenarios on the assessement results. VTT LCA Symposium 

proceedings. 

International Energy Agency. 2011. “Prospect of limiting the global increase in 

temperature to 2ºc is getting bleaker”. International Energy Agency webpage. [Cited 

10.9.2011]. http://www.iea.org/index_info.asp?id=1959 

ISO. 2011. ISO Standards. International Organization for Standards webpage. [Cited 

6.5.2011]. http://www.iso.org/iso/iso_catalogue.htm 

IPCC. 2001. Climate Change 2001: Mitigation. Contribution of Working Group III 

to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 

Cambridge University Press. 

IPCC. 2007. Climate Change 2007: Contribution of Working Group III to the Fourth 

Assessment Report of the Intergovernmental Panel on Climate Change. B. Metz, 

O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds). Cambridge University Press.   

ITA. 2010. Packaging Machinery: Sustainability and Competitiveness. U.S. 

Department of Commerce International Trade Administration. Sustainable 

Manufacturing Initiative Sector Focus Study Series. 

Jelse, K., Eriksson, E., Einarson, E. 2009. Life Cycle Assessment of consumer 

packaging for liquid food - LCA of Tetra Pak and alternative packaging on the 

Nordic market. IVL Report. 

Jernström, A. 2002. Deinkability of Finnish recovery paper. Master’s Thesis. 

Lappeenranta University of Technology. 83 p. 

Järvi-Kääriäinen, T., Ollila, M. 2007. Toimiva Pakkaus. ISBN 978-951-8988-41-3. 

314 p. 

Kaipainen T., Liski J., Pussinen A. & Karjalainen T. 2004. Managing carbon sinks 

by changing rotation length in European forests. Environmental Science & Policy 7 

(3): 205-219. 

Karttunen, K., Föhr, J., Tapio, R. 2010. Energiapuuta Etelä-Savosta. 

Tutkimusraportti. Teknillinen tiedekunta. LUT Energia. Lappeenrannan teknillinen 

yliopisto. 

Kauppi, P. E., Posch, M., Hänninen, P., Henttonen, H. M., Ihalainen, A., 

Lappalainen, E., Starr, M., Tamminen, P. 1997. Carbon Reservoirs in Peatlands and 

Forests in the Boreal Regions of Finland. Silva Fennica 31(1): 13-25. 

Knüpfer, S., Puttonen, V. 2004. Moderni rahoitus. WSOY.  ISBN 951-0-29886-7. 

218 p. 

http://www.iea.org/index_info.asp?id=1959


91 

 

 

Kujanpää, M., Pajula, T., Hohenthal, C. 2009. Carbon footprint of a forest product – 

challenges of including biogenic carbon and carbon sequestration in the calculations. 

VTT Symposium documents.  

Lamlom, S.H., Savidge, R.A. 2003. A reassessment of carbon content in wood: 

variation within and between 41 North American species. Biomass and Bioenergy 

25(4): 381-388. 

Larvio, M. 2008. Carbon balance of fibre-based package. Master’s thesis. 

Lappeenranta University of Technology. 95 p. 

Laturi, J., Mikkola, J. & Uusivuori, J. 2008. Carbon reservoirs in wood products-in-

use in Finland: current sinks and scenarios until 2050. Silva Fennica 42(2): 307–324. 

Laurijssen, J., Marsidi, M., Westenbroek, A., Worrell, E., Faaij A. 2009. Paper and 

biomass for energy?: The impact of paper recycling on energy and CO2 emissions. 

Resources, Conservation and Recycling 54(12): 1208-1218. 

Lindblad, J. & Verkasalo, E.  2001.  Teollisuus- ja kuitupuuhakkeen kuiva-

tuoretiheys ja painomittauksen muuntokertoimet. Metsätieteen aikakauskirja 3/2001: 

411–431. 

Liski J. 2000. Millainen kiertoaika eduksi metsien hiilitaloudelle? Metsätieteen 

aikakausikirja 4/2000: 639 - 642. 

Liski, J., Pussinen, A., Pingoud, K., Mäkipää, R., Karjalainen, T. 2001. Which 

rotation length is favorable to carbon sequestration?. Canadian Journal of Forest 

Research (31):2004-2013. 

Lockhart, H. 1997. A paradigm for packaging. Packaging Technology and Science 

10:237-252. 

Luyssaert, S., Schulze, E-D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., 

Ciais, P.,
 
Grace, J. 2008. Old-Growth forests as global carbon sinks. Nature 455: 

213-215. 

MCPFE. 1993. Resolution H1 - General Guidelines for the Sustainable Management 

of Forests in Europe. Second Ministerial Conference on the Protection of Forests in 

Europe. Helsinki, Finland.  

MetINFO. 2010. Metsätietopalvelu. Finnish Forest Research Institute webpage. 

http://www.metla.fi/metinfo/ 

Metsäkeskus. 2010. Energiapuu puukaupassa. Metsäkeskus web page. [Cited 

29.7.2011]. http://www.metsakeskus.fi/web/fin/metsakeskukset/Keski-

Suomi/metsaenergiainfo/energiapuun_korjuu/energiapuu_puukaupassa.htm 

Metsäteho. 2010. Puunkorjuu ja puutavaran kaukokuljetus vuonna 2009. Metsätehon 

katsaus nro 43. 

Ministry of Agriculture and Forestry. 2007. State of Finland’s Forests 2007 Based on 

the Criteria and Indicators of Sustainable Forest Management. Final report of the 

expert group appointed by the Ministry of Agriculture and Forestry.   



92 

 

 

Mourad, A.L., Garcia, E.E.C., Vilela, G.B., Zuben, F.V. 2008. Influence of recycling 

rate increase of aseptic carton for long-life milk on GWP reduction. Resources, 

Conservation and Recycling 52(4): 678-689. 

Nerg, K. 2009. The effect of forest rotation age on carbon sequestration and on the 

profitability of forestry. Master’s thesis. University of Helsinki. 88 p. 

Nors, M., Pajula, T., Pihkola, H. 2009. Calculating the carbon footprint of a Finnish 

newspaper and magazine from cradle to grave. VTT Symposium Proceedings. 

Pasqualino, J., Meneses, M., Castells, F. 2011. The carbon footprint and energy 

consumption of beverage packaging selection and disposal. Journal of Food 

Engineering 103(4): 357-365. 

Perez-Garcia, J., Lippke, B., Comnick, J., Manriquez, C. 2005. An assessment of 

carbon pools, storage, and wood products market substitution using life-cycle 

analysis results. Wood and Fiber Science 37: 140-148. 

Pilz, H., Brandt, B., Fehringer, R. 2010. The impact of plastics on life cycle energy 

consumption and greenhouse gas emissions in Europe Executive summary report. 

Denkstatt publication. 

Pingoud, K., Savolainen, I., and Seppälä, H. 1996. Greenhouse impact of the Finnish 

forest sector including forest products and waste management. Ambio (25): 318–326. 

Pingoud, K., Perälä, A-L., Pussinen, A. 2001. Carbon dynamics in wood products. 

Mitigation and Adaptation Strategies for Global Change 6: 91–111, 2001. 

Pingoud, K., Pohjola, J., Valsta, L. 2010. Assessing the integrated climatic impacts 

of forestry and wood products. Silva Fennica 44(1): 155-175. 

PPEC. 2011. Corrugated boxes or plastic crates? The Paper and Paperboard 

Packaging Environmental Council webpage. [Cited 5.6.2011].                                                

http://www.ppec-paper.com/pdfFiles/factsheets/corrugateplastic2.pdf 

PYR. 2010. Pakkausalan Ympäristörekisteri webpage. [Cited 10.5.2011]. 

http://www.pyr.fi/tilastot/pakkausmaarat.html#1 

Pöyry. 2010. Energiantuotannon investoinnit ja investointipäätökset 2000-2009.  

Reid, H., Huq, S., Inkinen, A., MacGregor, J., Macqueen, D., Mayers, J., Murray, L., 

Tipper, R. 2004. Using wood products to mitigate climate change: A review of 

evidence and key issues for sustainable development. International Institute for 

Environment and Development paper.  

Ryan M. G., Harmon M. E., Birdsey R. A., Giardina C. P., Heath L. S., Houghton R. 

A., Jackson R. B., Mckinley D. C., Morrison J. F., Murray B. C., Pataki D. E., Skog 

K. E. 2010. A Synthesis of the Science on Forests and Carbon for U.S. Forests. 

Issues in Ecology. Report Number 13. 

Sathre R. & O’Connor J. 2008. A Synthesis of Research on Wood Products & 

Greenhouse Gas Impacts. FPInnovations Forintek, Techinical Report TR-19.79 p. 

http://www.ppec-paper.com/pdfFiles/factsheets/corrugateplastic2.pdf
http://www.pyr.fi/tilastot/pakkausmaarat.html#1


93 

 

 

Schlamadinger, B., Marland, G. 1996. The role of forest and bioenergy strategies in 

the global carbon cycle. Biomass and Bioenergy 10(5–6): 275–300. 

Singh, S.P., Chonhenchob, V., Singh, J. 2006. Life Cycle Inventory and Analysis of 

Re-usable Plastic Containers and Display-ready Corrugated Containers Used for 

Packaging Fresh Fruits and Vegetables. Packaging Technology and Science 2006 19: 

279-293.  

Singh, J.A., Krasowski, A. 2010. Life Cycle Inventory Comparison of Paper and 

Plastic Based Packaging Systems for Strawberry Distribution. Journal of Applied 

Packaging Research 2010 4(4): 203-221. 

Skog, K.E., Nicholson, G.A. 1998. Carbon Cycling Through Wood Products: The 

Roles of Wood and Paper Products in Carbon Sequestration. Forest Products 

Journal.48(7/8): 75-83. 

Soimakallio, S., Savolainen, I., Pingoud, K., Sokka, L., Tsupari, E., Ekholm, T., 

Lindroos T. J., Koponen, K. 2009. Climate impacts related to biomass utilisation. 

VTT LCA Symposium Proceedings. 

Song, C., Woodcock, C.E. 2003. A regional forest ecosystem carbon budget model: 

impacts of forest age structure and landuse history. Ecological Modelling 164(1): 33-

47. 

Statistics Finland. 2011a. Suomen kasvihuonekaasupäästöt 1990-2009. Katsauksia 

2011/1. 

Statistics Finland. 2011b. Greenhouse gasses. Official Statistics of Finland (OSF) 

webpage. [Cited 19.5.2011]. http://stat.fi/til/khki/index_en.html. 

Sustainable Packaging Coalition. 2009. Sustainable Packaging Indicators and 

Metrics Framework Version 1.0. Sustainable Packaging Coalition publication. 

Timber Community. 2010. Mellanskog threatens to burn up the pulpwood. Timber 

Community webpage. [Cited 18.7.2011]. 

http://www.timbercommunity.com/content/mellanskog-threatens-burn-pulpwood.  

Twede, D., Selke, S.E.M. 2005. Cartons, Crates and Corrugated Board: Handbook of 

Paper and Wood Packaging Technology. ISBN 1-932078-42-8. 505 p. 

UNFCCC. 2003. Estimation, reporting and accounting of harvested wood products. 

UNFCCC technical paper. 

Valsta, L., Linkosalo, T., Salminen, O. 1996. Stand Management Assistant (SMA): 

A Tool for Forest Stand Management Analysis. The Finnish Forest Research 

Institute. Research Papers 612: 85-106. 

Vogtländer, J.G. 2004. Corrugated Board Boxes and Plastic Container Systems: an 

analysis of costs and eco-costs. Federation for Corrugated Board Manufacturers 

publication.  

Wellenreuther, F., Krüger, M., Detzel, A., Mönckert, J. 2008. LCA of Beverage 

Cartons and Plastic Bottles in Spain. IFEU GmbH publication. 

http://www.timbercommunity.com/content/mellanskog-threatens-burn-pulpwood


94 

 

 

World Packaging Organisation. 2008. Market Statistics and Future Trends in Global 

Packaging. http://www.worldpackaging.org/publications/documents/market-

statistics.pdf 

Zabaniotou, A., Kassidi, E. 2003. Life cycle assessment applied to egg packaging 

made from polystyrene and recycled paper. Journal of Cleaner Production 11(5): 

549-559.  

 

http://www.worldpackaging.org/publications/documents/market-statistics.pdf
http://www.worldpackaging.org/publications/documents/market-statistics.pdf

