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ABSTRACT 

 

Chronic periodontitis results from a complex aetiology, including the formation of a 

subgingival biofilm and the elicitation of the host’s immune and inflammatory response. The 

hallmark of chronic periodontitis is alveolar bone loss and soft periodontal tissue destruction. 

Evidence supports that periodontitis progresses in dynamic states of exacerbation and 

remission or quiescence. The major clinical approach to identify disease progression is the 

tolerance method, based on sequential probing. 

Collagen degradation is one of the key events in periodontal destructive lesions. Matrix 

metalloproteinase (MMP)-8 and MMP-13 are the primary collagenolytic MMPs that are 

associated with the severity of periodontal inflammation and disease, either by a direct 

breakdown of the collagenised matrix or by the processing of non-matrix bioactive substrates. 

Despite the numerous host mediators that have been proposed as potential biomarkers for 

chronic periodontitis, they reflect inflammation rather than the loss of periodontal attachment. 

The aim of the present study was to determine the key molecular MMP-8 and -13 interactions 

in gingival crevicular fluid (GCF) and gingival tissue from progressive periodontitis lesions 

and MMP-8 null allele mouse model. 

In study (I), GCF and gingival biopsies from active and inactive sites of chronic periodontitis 

patients, which were determined clinically by the tolerance method, and healthy GCF were 

analysed for MMP-13 and tissue inhibitor of matrix metalloproteinases (TIMP)-1. Chronic 

periodontitis was characterised by increased MMP-13 levels and the active sites showed a 

tendency of decreased TIMP-1 levels associated with increments of MMP-13 and total protein 



 

 

concentration compared to inactive sites. In study (II), we investigated whether MMP-13 

activity was associated with TIMP-1, bone collagen breakdown through ICTP levels, as well 

as the activation rate of MMP-9 in destructive lesions. The active sites demonstrated 

increased GCF ICTP levels as well as lowered TIMP-1 detection along with elevated MMP-

13 activity. MMP-9 activation rate was enhanced by MMP-13 in diseased gingival tissue. In 

study (III), we analysed the potential association between the levels, molecular forms, 

isoenzyme distribution and degree of activation of MMP-8, MMP-14, MPO and the inhibitor 

TIMP-1 in GCF from periodontitis progressive patients at baseline and after periodontal 

therapy. A positive correlation was found for MPO/MMP-8 and their levels associated with 

progression episodes and treatment response. Because MMP-8 is activated by hypochlorous 

acid in vitro, our results suggested an interaction between the MPO oxidative pathway and 

MMP-8 activation in GCF. Finally, in study (IV), on the basis of the previous finding that 

MMP-8-deficient mice showed impaired neutrophil responses and severe alveolar bone loss, 

we aimed to characterise the detection patterns of LIX/CXCL5, SDF-1/CXCL12 and RANKL 

in P. gingivalis-induced experimental periodontitis and in the MMP-8-/- murine model. The 

detection of neutrophil-chemoattractant LIX/CXCL5 was restricted to the oral-periodontal 

interface and its levels were reduced in infected MMP-8 null mice vs. wild type mice, 

whereas the detection of SDF-1/CXCL12 and RANKL in periodontal tissues increased in 

experimentally-induced periodontitis, irrespectively from the genotype. Accordingly, MMP-8 

might regulate LIX/CXCL5 levels by undetermined mechanisms, and SDF-1/CXCL12 and 

RANKL might promote the development and/or progression of periodontitis. 
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1. INTRODUCTION 

 

Periodontal diseases result from the interplay of diverse aetiologic factors, including the 

formation of a complex biofilm in the subgingival microenvironment, social and behaviour 

modulations, genetic or epigenetic traits and the host’s immune and inflammatory response 

(Haffajee and Socransky, 1994). 

The hallmark of chronic periodontitis is alveolar bone loss and soft periodontal tissue 

destruction (Vernal et al., 2004). Evidence supports that periodontitis progresses in 

dynamic states of exacerbation and remission (Jeffcoat and Reddy, 1991). The most 

common method used to diagnose attachment loss and, thereby, the disease progression, is 

to record the clinical attachment at sequential examinations by periodontal probing (Reddy 

et al., 1997). Periodontal supporting tissue homeostasis depends on extracellular proteolysis 

and remodelling, involving a tight balance among protease activities and inhibitors. 

Unhampered proteolysis results in collagenous matrix breakdown and the loss of 

periodontal supporting tissue. Pathologically enhanced expression and activation of host 

matrix metalloproteinases (MMPs) over the protective shield provided by their main tissue 

inhibitors (TIMPs) is a well-characterised feature in chronic periodontitis (Sorsa et al., 

2006). Although MMPs have been assumed to primarily play a matrix degradative role, a 

broader substrate degradome has shown proteolytic susceptibility to MMPs, including 

cytokines, chemokines, other MMPs and apoptotic signals. As a result, MMPs can also 

modulate immune and inflammatory responses, among other cellular processes (Folgueras 

et al., 2004; Sorsa et al., 2004; Sorsa et al., 2006). 
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Collagen degradation is regarded as one of the key events in periodontal destructive lesions 

(Golub et al., 1997; Kiili et al., 2002). The major collagenolytic MMPs associated with the 

severity of periodontal inflammation and disease are collagenase-2 (MMP-8) and 

collagenase-3 (MMP-13); whereas collagenase-1 (MMP-1) is primarily related to 

physiological periodontal tissue turnover (Kiili et al., 2002; Makela et al., 1994; Sorsa et 

al., 1988; Sorsa et al., 2004; Sorsa et al., 2006; Tervahartiala et al., 2000; Uitto et al., 2003). 

Despite the fact that many potential biomarkers have been proposed in chronic 

periodontitis, most of them demonstrate limited usefulness because they reflect periodontal 

inflammation rather than disease progression (Loos and Tjoa, 2005). While numerous 

cross-sectional studies have shown evidence that MMP levels parallel the severity of 

periodontal inflammation, much less data are available from active periodontal destructive 

lesions assessed by longitudinal studies. Pathologically excessive collagenase levels and 

activities in progressive periodontitis-affected tissue and oral fluids might provide a 

proteolytic signature of the underlying biological phenotype that might contribute to the 

development of chair-side point of care diagnostics, in order to improve clinical follow-ups, 

treatment decisions and future drug development (Leppilahti et al., 2011; Mantyla et al., 

2003; Mantyla et al., 2006; Sorsa et al., 2004; Sorsa et al., 2006). The purpose of this study 

was to find the key molecular collagenolytic MMP-interactions/cascades in gingival 

crevicular fluid (GCF) and gingival tissue from destructive periodontitis lesions and MMP-

8 null allele mouse model that might be suitable for potential point-of-care/chair-side 

diagnostic development for chronic periodontitis. 
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2. REVIEW OF THE LITERATURE 

 

2.1 General aspects of periodontal health and disease 

2.11 Healthy periodontium 

The periodontium is defined as the tissues supporting and surrounding the tooth and 

corresponds to the root cementum, periodontal ligament, alveolar bone and gingiva. The 

gingiva part that faces the tooth is known as the dentogingival junction. The junctional 

epithelium is crucial among the components of the dentogingival junction because it seals 

off the rest of the periodontal tissues from the oral environment and represents the first line 

of defence, while structural alterations represent the first step towards the development of 

periodontal disease. The epithelial attachment corresponds to the layer of the junctional 

epithelium that faces the tooth, providing the actual attachment among them. Even in 

clinically normal circumstances, the connective tissue supporting the junctional epithelium 

shows an inflammatory cell infiltrate composed of neutrophils and T lymphocytes that is 

regarded to influence the overlying epithelial phenotype (Nanci and Bosshardt, 2006) 

(Figure 1.). 

 

2.12  Periodontal diseases 

Periodontal diseases usually refer to the common inflammatory disorders of gingivitis and 

periodontitis caused by pathogenic microbiota harvested in the biofilm or dental plaque that 

forms adjacent to the teeth. Gingivitis is an inflammatory condition of the gingiva. 

Gingivitis can be modified by several factors, such as smoking and hormonal changes, and 
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it clinically displays the typical cardinal signs of inflammation (Kinane, 2001). 

Periodontitis follows gingivitis and is influenced by the host’s immune and inflammatory 

responses. Periodontitis involves the irreversible destruction of the supporting tissues, 

including the periodontal ligament, alveolar bone and soft tissues; if left untreated, it often 

leads to tooth loss (Kinane, 2001; Socransky and Haffajee, 2005) (Figure 1.). However, not 

all gingivitis progresses towards periodontitis; in addition, periodontitis does not affect all 

teeth evenly, but it does have both a subject and site predilection. Furthermore, only 

relatively few sites undergo extensive periodontal destruction within a given observation 

period. 

Chronic periodontitis is the most common form of periodontitis; it occurs primarily in 

adults, and it is generally a slowly progressing disease that is associated with the presence 

of subgingival calculus. Overall, periodontal disease progression can be considered a 

continuous process that undergoes periods of exacerbation (Kinane, 2001).  
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Figure 1. Healthy periodontium versus periodontitis 

HM: bacterial microbiota in health; PM: Periodontopathogens; G: Gingiva; AB: Alveolar 

bone; PL: Periodontal ligament; L: Infiltrating leukocytes; OC: Osteoclast. 

 

2.2 Clinical model of disease progression 

 

Chronic periodontitis has been proposed to progress in both a slow continuous manner and 

in short bursts of disease activity, followed by periods of disease inactivity or quiescence 

(Goodson et al., 1982; Goodson et al., 1984; Loe et al., 1978; Socransky et al., 1984). 
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Accordingly, periodontal tissue support is lost during short, acute episodes of disease 

activity or “bursts”, followed by variable periods of quiescence. Thus, the longitudinal 

sequential examination of clinical attachment by periodontal probing is the most common 

clinical method to diagnose progressive periodontal disease (Reddy et al., 1997). 

The tolerance method has been the most prevalent clinical approach to determine site-

specific attachment level changes (Haffajee et al., 1983) because of its potential for early 

detection. The method is based on longitudinal clinical examinations and recording the 

attachment loss. Progression is defined as attachment loss ≥ 2 mm during a 2 -month period 

at the site level (active sites) and at least 2 active sites must be identified to consider the 

patient as undergoing disease progression. 

 

2.3 Etiopathogenesis of chronic periodontitis 

2.31 Dental plaque 

Bacterial biofilms represent the primary aetiological factor in the initiation of gingival 

inflammation and subsequent destruction of periodontal supporting tissues (Haffajee and 

Socransky, 1994). There is strong evidence that suggests that Aggregatibacter (A.) 

actinomycetemcomitans, Porphyromonas (P.) gingivalis and Tannerella (T.) forsythia are 

periodontal pathogens when they are present in sufficient numbers and in susceptible hosts 

(Consensus report. Periodontal diseases: pathogenesis and microbial factors, 1996). 

P. gingivalis is a gram-negative, black-pigmented, strictly anaerobic asaccharolytic bacteria 

that has previously been involved in periodontal disease progression (Holt et al., 1999). P. 

gingivalis produces an array of potential virulence factors (Yilmaz, 2008), such as 
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lipopolysaccharide (LPS), capsule polysaccharides, hemagglutinins, fimbriae and cysteine 

proteases known as “gingipains” (Hajishengallis, 2009). Despite the reported differences in 

the prevalence of periodontal pathogens among ethnically or geographically distinct 

populations, P. gingivalis has shown to be the most frequent periodontal pathogen 

associated with periodontitis in the Chilean population (Herrera et al., 2008; Lopez et al., 

2004). Additionally, significantly elevated levels and mean percentages of P. gingivalis 

have been reported in active periodontal lesions compared with inactive ones (Lopez, 2000; 

Silva et al., 2008) and have been suggested to predict disease progression (Byrne et al., 

2009). 

 

2.32 Host response: General considerations 

Although chronic bacterial exposure is a prerequisite for the occurrence of periodontal 

tissue destruction, its presence alone is not sufficient to explain disease initiation and 

progression (Grossi et al., 1994). In fact, the major component of soft- and hard- tissue 

destruction associated with periodontitis results from the activation of the host’s immune-

inflammatory response to the bacterial challenge (Gemmell et al., 2002). On the basis of 

histopathological features, infection induces vascular and cellular changes with the 

formation of an inflammatory infiltrate, destruction of alveolar bone and apical migration 

of junctional epithelium (Kinane, 2001). The inflammatory process developed in 

periodontitis may be divided into three phases: acute, immune response and the chronic 

phase (Offenbacher, 1996). The transition from gingival health to early inflammation is 

characterised by a local increase in vascular permeability, redness, swelling and the 

recruitment and activation of polymorphonuclear neutrophils (PMNs) (Delima and Van 
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Dyke, 2003). Posterior influx of macrophages and antigen-presenting cells present the 

foreign antigens to T lymphocytes during the subsequent immune response phase, followed 

by the expansion of antibody-secreting plasma cells resulting in the development of a 

chronic lesion (Gemmell and Seymour, 2004). As a result of immune activation, the active 

expression of osteolytic cytokines, such as interleukin (IL)-1β and tumour necrosis factor 

alpha (TNF)-α, stimulates the alveolar bone resorption and collagen destruction via tissue-

derived MMPs, a major pathway for the breakdown of bony and soft connective tissue 

associated with periodontal activity (Buduneli and Kinane, 2011; Offenbacher, 1996). 

 

2.4 Gingival crevicular fluid 

 

In physiologic conditions, gingival crevicular fluid (GCF) is a transudate composed of 

molecules derived from serum. Host cells from gingival tissue, inflammatory leukocytes 

and bacteria from subgingival plaque can be harvested non-invasively from the gingival 

sulcus. With the onset of inflammation, increased vascular and epithelial permeability 

permits the extravasation of high molecular proteins from general circulation and 

periodontal tissues; thus, GCF shifts to an inflammatory exudate (Adonogianaki et al., 

1996; Buduneli and Kinane, 2011; Curtis et al., 1990; Oringer et al., 2002). In healthy 

subjects and under resting conditions, GCF flow rates correspond to approximately 0.1 

μL/min per tooth, but these rates can increase up to fivefold in subjects affected by 

gingivitis and periodontitis (Curtis et al., 1990; Pisano et al., 2005; Uitto et al., 2003). 

During the disease, GCF contains molecules involved in the destructive process, and these 
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molecules show significant potential as a source of disease biomarkers that might reflect 

soft and hard tissue catabolism (Loos and Tjoa, 2005). 

 

2.5 Matrix metalloproteinases 

 

Matrix metalloproteinases (MMPs) are genetically distinct but structurally related zinc-

dependent metalloendopeptidases. MMPs degrade extracellular matrix and further 

potentiate proteolysis and inflammation by processing bioactive non-matrix substrates, 

such as cytokines, chemokines and growth factors, and by activating other MMPs 

(Folgueras et al., 2004; McQuibban et al., 2001; McQuibban et al., 2002; Overall et al., 

2002; Sorsa et al., 2004; Sorsa et al., 2006). MMPs share a similar basic structure 

composed of three domains, the pro-peptide, catalytic and the hemopexin-like domain 

(Kessenbrock et al., 2010). The 23 MMPs expressed in humans can be classified into 

different subgroups based on their primary structures and substrate specificities: 

collagenases (MMP-1, -8 and -13), gelatinases (MMP-2 and -9), membrane-type MMPs 

(MT-MMPs, MMP-14, -15, -16, -17, -24 and -25) and other MMPs (Folgueras et al., 2004), 

(Figure 2.). 
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Figure 2. Structural classification of MMPs 

Reproduced with permission from The International Journal of Developmental Biology 

2004;48:411-24 (Folgueras et al., 2004). 

 

2.51  Regulation of MMP activity 

MMP proteolytic activity is subjected to a complex regulation through gene expression, 

compartmentalisation, and zymogen conversion, as well as the action of specific inhibitors. 

MMPs are initially expressed in an enzymatically inactive state because of the interaction 

of a cysteine residue of the pro-domain with the zinc ion of the catalytic site. The disruption 

of this interaction (cysteine switch) by proteolytic removal or chemical modification results 
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in enzyme activation. There are several proteinase cascades that mediate and amplify MMP 

activation, such as plasmin, furin and active MMPs, as well as chemical activators, such as 

reactive oxygen species (ROS) (Kessenbrock et al., 2010; Sorsa et al., 1992; Weiss et al., 

1985). Once activated, the most important physiological inhibitors are tissue inhibitors of 

MMPs (TIMPs) -1, -2, -3 and -4 (Kessenbrock et al., 2010), Thus, the pathophysiological 

significance of increased MMP expression in periodontitis will rely on their regulation by 

activating enzymes or compounds and endogenous inhibitors. 

 

2.52  Collagenolytic MMP involvement in chronic periodontitis 

Pathologically enhanced expression and activation of host MMPs over the protective shield 

provided by their TIMPs induced by bacterial infection and cytokines is a well 

characterised feature in chronic periodontitis. Many inflammatory mediators have been 

proposed as potential biomarkers, including MMPs; however, most of them demonstrate 

limited usefulness because they reflect periodontal inflammation rather than disease 

progression (Loos and Tjoa, 2005; Sorsa et al., 2006). Because type I collagen is the 

primary extracellular matrix component of soft and hard periodontal tissues, collagen 

degradation is one of the key factors in uncontrolled destructive lesions, driving the 

attention towards collagenolytic MMPs (Golub et al., 1997). The determination of MMP 

levels and activities in disease progression may aid in the identification of susceptible sites 

and individuals under the risk of developing periodontal attachment loss. 

Five decades ago, the first collagenolytic enzyme was discovered (Gross and Lapiere, 

1962), and it was promptly identified in human gingiva (Fullmer and Gibson, 1966; Gibson 
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and Fullmer, 1966) and GCF (Golub et al., 1976) in association with the degree and 

severity of gingival inflammation (Overall and Sodek, 1987). Since then, growing evidence 

has supported that collagenases along with other cooperative MMPs play a central role in 

periodontal tissue destruction (Sorsa et al., 2004). The major collagenolytic MMPs 

associated with the severity of periodontal inflammation and disease are collagenase-2 

(MMP-8) and collagenase-3 (MMP-13), whereas collagenase-1 (MMP-1) is more related to 

periodontal tissue turnover under physiological conditions (Kiili et al., 2002; Makela et al., 

1994; Sorsa et al., 1988; Sorsa et al., 2004; Sorsa et al., 2006; Tervahartiala et al., 2000; 

Uitto et al., 2003). GCF MMP-8 accounts for the bulk of collagenases, followed by MMP-

13 (Golub et al., 1997; Golub et al., 2008). During periodontal inflammation, latent 

proMMPs might become active by the cooperative action of other MMPs, such as MMP-

14, ROS and microbial proteases (Holopainen et al., 2003; Ilgenli et al., 2006; Knauper et 

al., 1996; Leeman et al., 2002). 

A reduction in GCF total collagenase activity has been associated with the improvement of 

clinical parameters and the decrease of bone resorption fragment carboxyterminal 

telopeptide of type I collagen (ICTP) in subantimicrobial dose doxycycline (SDD)-treated 

post-menopausal women exhibiting periodontitis and systemic osteopenia during a two-

year follow-up period (Golub et al., 2008). This finding supports a role for collagenases in 

bone loss and thus in disease progression, which can be reflected in GCF. 

Despite the genetic background underlying periodontal diseases, MMP-1, -2, -9 and -13 

gene polymorphisms studies undergone in different ethnic populations have been conducted 

without finding any associations with the susceptibility to chronic periodontitis, except for 
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the MMP-1 polymorphic allele forms (Chen et al., 2007; Pirhan et al., 2008; Pirhan et al., 

2009; Ustun et al., 2008). 

 

2.53  MMP-8 in periodontal destructive lesions 

Matrix metalloproteinase-8 (MMP-8) is the major collagenolytic MMP in GCF, and 

elevated levels have been widely associated with the severity of periodontal inflammation 

and disease (Emingil et al., 2004; Kiili et al., 2002; Kinane et al., 2003; Mantyla et al., 

2003; Sorsa et al., 2006; Sorsa et al., 2010). MMP-8 not only degrades the primary 

extracellular matrix components of the periodontium, but also regulates the immune 

response; MMPs influence the bioavailability and biological activity of cytokines by 

proteolytic processing of non-matrix bioactive molecules, thus modifying their biological 

activity or levels (Gutierrez-Fernandez et al., 2007; Nilsson et al., 2009). 

The elevation of active MMP-8 has been previously associated with the conversion of 

gingivitis to periodontitis and the progression of established periodontitis (Lee et al., 1995; 

Mantyla et al., 2006; Romanelli et al., 1999). Repeatedly elevated GCF MMP-8 

concentrations determined by longitudinal monitoring of periodontal responses during the 

maintenance phase after scaling and root planning (SRP) were reported to be associated 

with a lack of improvement in clinical parameters (Mantyla et al., 2006). Additionally, 

increases in MMP-8 and IL-1β during the first year of periodontal maintenance have been 

reported to be associated with increased odds of subsequent attachment loss; whereas 

elevated levels of pyridinoline cross-linked ICTP at baseline resulted in increased odds of 

alveolar bone density and height loss driven primarily by a placebo group related to SDD 



14 

adjunctive therapy experimental group. No associations were found between MMP-8 levels 

and bone loss (Reinhardt et al., 2010). Overall, MMP-8 levels could reflect soft periodontal 

tissue destruction and periodontal response to treatment (Sorsa et al., 2010). 

In spite of the well-known association between high MMP-8 levels and periodontitis, its 

biological functions are not completely clear (Gutierrez-Fernandez et al., 2007). MMP-8 

deficient mouse models reveal an impaired inflammatory response, characterised by 

abnormal neutrophil infiltration and expression of cytokines, such as transforming growth 

factor (TGF)-β (Gutierrez-Fernandez et al., 2007; Korpi et al., 2009). The recent 

development of the P. gingivalis-induced periodontitis MMP-8-deficient mice model 

unexpectedly showed extensive alveolar bone resorption (Kuula et al., 2009). 

Additionally, the destructive periodontal disease has been associated with and increased 

risk of cardiovascular complications. Recently, MMP-8 has been implicated in 

atherosclerotic plaque destabilisation by the thinning of the protective fibrous cap (Herman 

et al., 2001). P. gingivalis-induced experimental periodontitis in MMP-8 null mice have 

altered lipoprotein profiles, compared with wild types (Kuula et al., 2009). Similarly, A. 

Actinomycetemcomitans-infected mice displayed proatherogenic lipoprotein profiles, 

increased C-reactive protein (CRP), MMP-9 and lipid metabolism in serum of 

Apolipoprotein E-deficient mice, known to promote the development of atherosclerosis 

(Tuomainen et al., 2008). 
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2.54  MMP-13 in periodontal destructive lesions 

MMP-13 was first cloned from breast carcinoma (Freije et al., 1994) and is considered to 

play an important role in skeletal biology (Stahle-Backdahl et al., 1997). MMP-13 is 

expressed by sulcular epithelial cells, endothelial cells, macrophage-like cells, fibroblasts, 

plasma cells and osteoblasts (Hernandez et al., 2006; Nakamura et al., 2004; Rydziel et al., 

2000). Longitudinal studies in progression of chronic periodontitis, which was addressed 

clinically by the tolerance method, demonstrated that active sites had significantly elevated 

MMP-13 activity (Hernandez et al., 2006). On the basis of these data, MMP-13 might be 

associated with the progression of periodontal attachment loss. 

Evidence suggests that MMP-13 might initiate bone resorption by activating osteoclasts 

(Holliday et al., 1997) and proMMP-9 in vitro (Knauper et al., 1997b). Active MMP-9 

further digests denatured collagen derived from MMP-13 activity (Hill et al., 1995) and is 

thought to act over preosteoclast recruitment as well as to activate proMMP-13 and 

proMMP-2. Additionally, proMMP-13 can also be activated in vitro by active MMP-14, 

MMP-13 and MMP-2 (Knauper et al., 1996). Soluble forms of all of these MMPs have 

been described in periodontitis GCF and gingival tissue (Ilgenli et al., 2006; Tervahartiala 

et al., 2000), where they might act alone or by assembling proteolytic cascades. 

 

2.6 Myeloperoxidase 

 

Neutrophil-derived myeloperoxidase (MPO) is contained in primary (azurophilic) granules 

from neutrophils (Kowolik and Grant, 1983) and catalyses the formation of hypochlorous 
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acid (HOCl), a powerful antibacterial agent, which reflects the strength of oxidative stress 

(Wei et al., 2004). 

MPO GCF levels have previously been associated with the severity of periodontitis (Wei et 

al., 2004). Similarly, MMP-8 and MMP-9 are primarily released from neutrophils in a 

latent form and can be induced and activated during periodontal inflammation by host 

inflammatory mediators, such as TNF-α, IL-1β, ROS and MPO-produced hypochlorous 

acid (Saari et al., 1990), as well as microbial and host-derived proteases (Sorsa et al., 1992). 

MPO can inactivate pathogenic microbes by generating reactive oxygen species, 

oxidatively activate latent proMMP-8 and -9, as well as inactivate TIMPs (Saari et al., 

1990; Spallarossa et al., 2008; Wang et al., 2007). Thus, MPO can also oxidatively 

potentiate MMP-cascades in periodontal tissue destruction, becoming potentially 

deleterious (Saari et al., 1990). 

 

2.7 Cytokines 

 

Cytokines are soluble proteins that bind to specific receptors on target cells; they have 

transient expression and pleiotropic effects on target cell types. They play a fundamental 

role in inflammatory diseases, such as periodontitis (Preshaw and Taylor, 2011). The 

progression of periodontitis and its clinical outcome depend on the host’s immune 

response, leading to the recruitment of inflammatory cells, the generation of cytokines, the 

activation of osteoclasts (Seymour et al., 1993) and collagen destruction via tissue-derived 

matrix metalloproteinases (Offenbacher, 1996). 
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Cytokines regulate MMP expression. MMPs influence in turn the immune response 

regulating the biological activity of cytokines via proteolytic processing of non-matrix 

bioactive molecules (Sorsa et al., 2004; Tester et al., 2007; Van Lint et al., 2005). 

Furthermore, recent reports have demonstrated changes in cytokine levels associated with 

MMP expression and activity (Gutierrez-Fernandez et al., 2007; Nilsson et al., 2009). 

Chemokines are a superfamily of structurally related chemoattractant cytokines that direct 

the migration of leukocytes, regulate inflammation and cell trafficking. Among them, two 

primary families are classified based on the spacing of the first two cysteine residues: (1) 

the CXC chemokine family, such as IL-8/CXCL8, mouse lipopolysaccharide (LPS)-

induced CXC chemokine (LIX/CXCL5) and stromal-derived factor (SDF)-1/CXCL12; and 

(2) the CC chemokine family, which include the monocyte chemoattractant proteins 

(MCP)-1 to -4. In general terms, CXC chemokines attract PMN during the initial phases of 

inflammation, whereas CC chemokines target multiple leukocyte subsets (McQuibban et 

al., 2001; McQuibban et al., 2002). 

 

2.71  Mouse lipopolysaccharide (LPS)-induced CXC chemokines 

PMN are strategically localised between the bacterial biofilm and the junctional epithelium, 

where they represent the first line of defence among all leukocytes (Moughal et al., 1992; 

Tonetti et al., 1998). It is generally accepted that PMN contribute to a protective response 

against subgingival plaque, maintaining the integrity of attachment apparatus, whereas 

alterations in neutrophil function are associated with severe periodontal disease phenotypes 

(Kebschull et al., 2009). Mouse lipopolysaccharide (LPS)-induced CXC chemokine 
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(LIX/CXCL5) is the most abundant and potent murine chemoattractant for neutrophils in 

vitro and in vivo, representing the sole homologue of two closely related human 

chemokines, CXCL5 and CXCL6 (Kebschull et al., 2009; Kornman et al., 1997; Ruddy et 

al., 2004). 

MMP-8 deficient mice have shown decreased levels of PMN infiltration resulting from 

reduced LIX/CXCL5 mobilisation from the extracellular matrix (Van Lint et al., 2005). 

Recently, the differential expression of LIX/CXCL5 human homologue granulocyte 

chemotactic protein-2 (GCP-2/CXCL6) was reported to be upregulated in periodontal 

disease, which correlated positively with clinical parameters and periodontal pathogens 

(Kebschull et al., 2009). 

 

2.72  Stromal-derived factor-1 

Stromal-derived factor (SDF)-1/CXCL12 belongs to the CXC family of chemokines. 

Activation of its unique receptor CXCR4 is essential for its many functions, such as 

hematopoietic cell homing to bone marrow, promotion of chemotaxis, early development, 

cell function, bone resorption, aid in the survival of human osteoclasts and their monocytic 

precursors (in a manner similar to the early effects of the M-CSF+RANKL system), and 

enhance PMN migration. Recently, increased GCF SDF-1/CXCL12 levels have been 

associated with chronic periodontitis and periodontal tissue response to conventional 

treatment (Havens et al., 2008). 
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2.73  Receptor activator of NF-кB ligand 

The receptor activator of the NF-кB ligand (RANKL) is a crucial mediator required, along 

with the permissive colony stimulating factor (CSF)-1, for the full development of 

osteoclast precursors into mature multi-nucleated bone-resorbing cells (Fuller et al., 2007; 

Wright et al., 2005). RANKL exerts its biological effects directly through binding to its 

receptor RANK, inducing osteoclast differentiation, maturation, activation, and inhibiting 

their apoptosis (Lacey et al., 1998; Theill et al., 2002); whereas osteoprotegerin (OPG) is a 

decoy receptor that inhibits osteoclastogenesis through binding of RANKL (Simonet et al., 

1997). Inflammation and bone resorption during periodontitis have been widely associated 

with high RANKL levels and an augmented RANKL/OPG ratio (Vernal et al., 2006; 

Wright et al., 2005; Yu et al., 2003). Moreover, RANKL levels were found to be 

significantly higher in GCF from active sites versus inactive sites during progressive 

periodontitis (Vernal et al., 2004), suggesting its involvement in destructive periodontitis. 
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3. HYPOTHESIS AND AIMS OF THE STUDY 

 

Many potential biomarkers have been proposed in chronic periodontitis, but none of them, 

either alone or in combination, can be used to prevent irreversible periodontal breakdown. 

The characterisation of collagenolytic MMP levels and interactions in progressive 

periodontal lesions may aid in the development of chair-side point of care diagnostics, 

treatment decisions and future drug development. We propose that enhanced collagenase-

mediated proteolytic networks, involving enzyme activators, inhibitors and non-matrix 

bioactive substrates, are associated with chronic periodontitis progression in diseased 

periodontal tissues and are reflected in gingival crevicular fluid (GCF). Therefore, they 

might be utilised as potential biomarkers for disease progression. 

 

3.1 Aims of the study: 

 

1. To characterise the levels and relationships between MMP-13 to its major endogenous 

inhibitor TIMP-1 in GCF and gingival tissue from clinically progressive chronic 

periodontitis subjects and controls. 

2. To associate MMP-13 activity with levels of ICTP, TIMP-1 and MMP-9 activation 

rates in progressive chronic periodontitis. 

3. To identify potential oxidative (MPO) and proteolytic (MMP-14) interactions of MMP-

8 in GCF from clinically progressive chronic periodontitis at baseline and after 

conventional treatment. 
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4. To characterise the levels and tissue localisation patterns of potential cytokine MMP-8 

substrates in P. gingivalis-induced experimental periodontitis in MMP-8-/-mice v/s wild 

type (WT) mice.  
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4. MATERIALS AND METHODS 

 

4.1 Human studies (I-III) 

4.11 Study subjects (I-III) 

Patients with moderate to severe chronic periodontitis were enrolled in the study and were 

followed until they developed progression of the clinical disease. Patients were selected 

from the Center of Diagnostics and Treatment of Northern Metropolitan Health Services, 

Santiago. The inclusion criteria were a minimum of 14 natural teeth (excluding 3rd 

molars), at least 10 posterior teeth, at least 5-6 teeth had sites with probing depth ≥ 5mm, 

with attachment loss ≥ 3 mm and detectable bone loss via radiography; in addition, they 

must not have received previous periodontal treatment at the time of examination. 

Periodontally healthy volunteers also entered the study for control GCF collections. 

Exclusion criteria were as follows: history of systemic disorders, such as diabetes mellitus, 

osteoporosis and medications known to influence periodontal tissues, pregnancy or 

lactating females, and patient who had received antibiotic, anti-inflammatory, 

anticoagulant or hormonal drugs within the past six months prior to the study. 

4.12 Clinical examinations 

Probing depth (PD), clinical attachment loss (CAL), and dichotomous measurements of 

supragingival plaque accumulation (PA) and bleeding on probing from the base of the 

crevice (BOP) were recorded at six sites around the tooth. 

Disease activity was defined clinically by the tolerance method (Haffajee et al., 1983). At 

the site level, active sites exhibited attachment loss  ≥ 2.0 mm during the 2-month period. 
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Inactive sites were defined as those sites with probing depth and BOP equivalent to active 

sites, but without attachment loss during the same period. The patients were considered to 

undergo disease progression if they had a minimum of 2 active sites. Clinical parameter 

measurements were monitored at baseline, 2 and 4 months. 

When a patient was diagnosed as undergoing disease progression, GCF or gingival samples 

(when periodontal surgery was indicated) from both active and inactive sites were 

immediately taken at baseline and 2 months after treatment. Periodontal therapy consisted of 

scaling, root planning, and instruction of oral hygiene. The Institutional Reviews Board-

approved informed consent forms were signed by all of the study subjects. Upon the 

detection of disease progression, the patients immediately entered the treatment phase.  

4.13 Gingival crevicular fluid samples (I, II, III) 

After isolating the tooth with a cotton roll, supragingival plaque was removed, and GCF was 

collected for 30 s with paper strips (Proflow, Amityville, NY, USA). The volume of GCF was 

measured using a calibrated Periotron 8000 (Proflow, Amityville, NY, USA). GCF was 

extracted twice by centrifugation at 12.000 rpm for 5 min at 4°C in a standard volume of 

elution buffer containing 50 mM Tris-HCl pH 7.5, 0.2 M NaCl, 5 mM CaCl2 and 0.01% 

Triton X-100 and kept at -80°C, until MMP enzyme forms, activity and mediator levels were 

analyzed. 

4.14 Gingival tissue samples (I) 

An incision was made with a surgical blade through the gingival crevice to the alveolar crest. 

After washing, samples were homogenised in 0.15 M NaCl with a proteinase inhibitor 

cocktail (Roche Molecular Biochemicals, Mannheim, Germany), centrifuged at 13,000 x g for 

6 min at 4°C and kept under -80° until analysed for total levels of MMP-13 and TIMP-1. 
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4.15 Gingival explant cultures (II) 

Another group of gingival biopsies were prepared for explant cultures in 24-well plate with 

supplemented DMEM in a tissue/media ratio of 100:1 (w/v). After testing different MMP-13 

concentrations for 0.5-24 incubation hours, explant cultures were treated with or without 

recombinant MMP-13 (Chemicon, Temecula, California, USA) at a ratio of 1/3.000 (w/v) for 

1 h and 24 h and inactivated with 15 mM EDTA. Additional controls were made by adding 10 

µM CL-82198 (EMD Biosciences, San Diego, CA), a selective synthetic MMP-13 inhibitor, 

following the manufacturer’s recommendations. Culture supernatants were reserved for 

gelatine zymography assay. 

4.16 Determination of total protein concentration (I) 

Tissue homogenates and GCF total protein concentrations were measured by a Micro BCA 

kit (Pierce, Rockford, USA), following the manufacturer’s recommendations. Results were 

expressed as mg/mL of total protein content.  

4.17 Immunoblotting of MMP-8, MMP-13, MMP-14, MPO and TIMP-1 (I, III) 

MMP-8, MMP-14, MPO and TIMP-1 immunoreactivities in GCF and/or tissue 

homogenates were determined by immuno-Western blotting in non-reducing conditions 

using a specific rabbit polyclonal anti-human MMP-8 antibody (1:500 dilution as previously 

described), (Hanemaaijer et al., 1997; Sorsa et al., 1994; Sorsa et al., 1999; Tervahartiala et 

al., 2000), rabbit polyclonal anti-human MMP-14 antibody (1:500 dilution), (Biogenesis, 

Poole, England) and monoclonal anti-human MPO antibody (1:1000 dilution), (R&D 

Systems, Inc. Minneapolis, MN, USA). A positive control for MPO, consisting of 

recombinant protein, was added (R&D Systems, Inc. Minneapolis, MN, USA). Immuno-

Western blots were performed under reducing conditions using monoclonal anti-human 
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MMP-13 and TIMP-1 antibodies (Chemicon, Temecula, California, USA), which were both 

diluted 1:200. 

After confirming the mono specificity of MMP-13 and TIMP-1 antibodies by immuno-

Western blots, aliquots of GCF and tissue homogenates were applied in duplicates onto the 

PVDF membranes, while the following steps were performed as described for immuno-

Western blots. The quantification was conducted with a Bio-Rad model GS-700 Imaging 

Densitometer using the Quantity-One–program (Bio-Rad, Hercules, CA, USA). The results 

were expressed as arbitrary units (au/mL) and per mg of total protein. 

4.18 Determination of MMP-8, MPO, TIMP-1 and ICTP protein levels (II, III) 

MMP-8 protein levels were measured by a time-resolved immunofluorometric assay 

(Hanemaaijer et al., 1997). MPO was determined by enzyme-immunosorbent assay 

(Immundiagnostik AG, Bensheim, Germany) and TIMP-1 and MMP-8 additionally, by the 

Biotrak ELISA system (GE Healthcare, Amersham, Slough, Berkshire, UK). An enzyme 

immunoassay (EIA) was employed for measurement of ICTP levels (Orion Diagnostica, 

Espoo, Finland); each technique was performed by following the manufacturer’s 

recommendations. Protein concentrations were obtained from a standard curve and were 

expressed as ng/mL of eluted GCF. 

 

4.19 Activity assays: 

MMP-13 activity assay (II) 

The MMP-13 activity was measured in aliquots of GCF samples by the “Fluorokine E” 

activity fluorescent assay (R&D Systems, Inc. Minneapolis, USA), according to the 

manufacturer’s recommendations. GCF aliquots and standards were added to the wells, and 
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any MMP-13 present was bound to the immobilised MMP-13 antibody. After washing, a 

fluorogenic substrate linked to a quencher molecule was added, allowing a fluorescent signal 

after cleavage by active MMP-13. The enzyme activity was expressed as ng of the 

fluorescent product (ng FP) per mL of eluate. 

MMP-14 activity assay (III) 

The MMP-14 active enzyme was measured in GCF aliquots using an MMP-14 Biotrak 

activity assay system (GE Healthcare, Amersham, Slough, Berkshire, UK), following the 

manufacturer’s recommendations. Briefly, the standards (MMP-14) and the samples were 

added to a microplate, and MMP-14 was bound to the immobilised MMP-14 antibodies in the 

wells. The assay used the proform of a detection enzyme with an artificial sequence that was 

activated by captured active MMP-14 and was measured by adding a specific chromogenic 

peptide substrate and read via a microplate spectrophotometer at 405 nm. The total 

(active+proenzyme) MMP-14 in the samples was also measured by adding 

aminophenylmercuric acetate (APMA), (Sigma, St. Louis, MO, USA). Results were 

expressed as ng/mL of eluate. 

Gelatin zymography (II) 

To determine the MMP-9 and -2 activities, aliquots of supernatants from explant cultures 

were run under non-reducing denaturing conditions on 10% polyacrylamide gels containing 1 

mg/mL gelatine (Merck, Darmstadt, Germany); the gels were washed, incubated in 

developing buffer (20 mM Tris pH 7.4 and 5 mM CaCl2) for 17 h, stained and destained. The 

densitometric analysis was performed as described above and results were expressed as 

arbitrary units of density/mL of supernatant. 
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4.2 Animal studies (IV) 

4.21  Animals 

Study animals and specimens were previously manipulated and prepared by Kuula et al. 

(2009) and included 14-week-old male mice maintained in the experimental animal facilities 

of the University of Oulu, Oulu, Finland. The MMP-8-/- knock out (KO) mice from a mixed 

C57BL/6J/129 background (Balbin et al., 2003) and wild-type (WT) mice littermates, 

resulting from intercrossing of heterozygous mice, were included as controls (Balbin et al., 

2003; Korpi et al., 2008; Korpi et al., 2009). Experiments were conducted in accordance with 

the guidelines of the Animal Experimentation Committee of University of Oulu, Oulu 

Finland. 

 

4.22  Induction of experimental periodontitis 

The experimental groups were assigned as follows: WT-infected (n = 10), WT uninfected (n 

= 8), MMP-8 KO infected (n = 12) and MMP-8 KO uninfected (n = 10) (total N = 40). 

Statistical power analysis, based on a pilot study, was previously performed to determine an 

appropriate sample size. 

To eliminate the native flora from the oral cavity, the mice received 20 mg of kanamycin and 

20 mg of ampicillin in 1mL of sterile water twice daily for 3 days and were then allowed to 

clear it from their systems for 4 days prior to oral inoculation with P. gingivalis (strain 

ATCC33277, American Type Culture Collection). A suspension of approximately 0.1-0.2 mL 

of carboxymethyl cellulose with viable P. gingivalis was swabbed intraorally twice a day for 
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3 days, while negative controls received saline. Mice were killed 30 days after the last 

inoculation by cervical dislocation. The skulls were processed for routine HE and 

immunohistochemical analyses. 

4.23 Immunohistochemistry 

Immunohistochemistry was used to analyse the cytokine presence and levels with rabbit anti-

LIX/CXCL5 (Preprotech, EC, London, U.K.), mouse anti-SDF-1/CXCL12 (R&D Systems, 

Inc. Minneapolis, USA) and goat anti-RANKL (R&D Systems, Inc. Minneapolis, USA) 

antibodies; the presence of the studied cytokines was visualised with a Vectastain Elite ABC 

kit (Vector Labs, Burlingame, CA, USA) using biotinylated secondary antibodies and 3-

amino-9-ethylcarbazole (AEC) as chromogen. Randomly selected images were acquired using 

an Olympus BX61 microscope with an Olympus DP50 camera, as well as UPlanFl 40x/0.75 

NA and 20x/0.50 NA objectives. Immunoreactive mesenchymal cells from total cells and the 

immunoreactive area of gingival epithelia from total gingival epithelia, respectively, were 

analysed with a macro written for the public domain ImageJ software (Rasband, W.S., 

ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, 

http://rsb.info.nih.gov/ij/, 1997-2009). 

 

4.3 Statistical analysis 

 

Differences regarding dichotomic measurements were analysed by a chi-squared test; 

comparisons between two related groups, using a paired t-test or Wilcoxon test depended on 

the data distribution, whereas comparisons between two unrelated groups were analysed with 
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an unpaired t-test and Mann-Whitney test. An ANOVA with Bonferroni´s or Tukey`s post 

hoc test was performed for >2 independent groups and for comparisons with parametric data 

distribution. Pearson`s or Spearman’s correlation was applied to determine the association 

between variables. Comparisons between active, inactive –from progressive subjects– and 

healthy subjects were analysed separately using the linear mixed model. In each model 

(MMP, ICTP, TIMP), comparisons between groups were performed with an F-test, and 

denominator degrees of freedom were computed by the Kenward method, and further 

correction for the multiple testing was applied using the Tukey adjustment. 

A p value <0.05 was considered statistically significant. Statistical analyses were performed 

with Stata V10 software (StataCorp, Collage Station, TX, USA) and SAS proc Mixed (SAS 

Version 9.1, Copyright 1999-2001 SAS Institute Inc., Cary, NC, USA). 

  



30 

5. RESULTS 

 

5.1 Human studies 

5.11 Clinical parameters (I, II, III) 

Clinical features from periodontitis patients versus controls differed only regarding to 

periodontal clinical parameters. In periodontitis patients, all clinical parameters improved 

significantly after conventional periodontal treatment. 

 

5.12 GCF volumes and total protein concentrations in healthy and progressive 

periodontitis subjects (I) 

Mean GCF volumes and total protein concentration significantly increased in progressive 

periodontitis patients (n = 21 actives and 21 inactives), when compared with healthy subjects 

(n = 11). The mean GCF volumes were similar among active and inactive sites and the mean 

total protein concentrations were significantly different among all groups, decreasing from 

active sites to healthy ones (Table 1.). 

 

5.13 MMP-13 and TIMP-1 molecular forms in healthy and progressive periodontitis 

subjects (I) 

MMP-13 detection was limited to disease GCF as immunoreactive bands of ~60 kDa 

(proform), 56 kDa (intermediate forms), 48 kDa (active enzyme) and fragments (25-35 kDa); 

TIMP-1 was identified as a 34 kDa immunoreactive protein. 
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5.14 MMP-13, ICTP and TIMP-1 levels in healthy and progressive periodontitis 

subjects (I, II) 

MMP-13 protein levels were undetected in healthy GCF by either immunodot blot or 

immuno-Western blot, whereas all periodontitis sites showed positive results. A comparison 

of MMP-13 and TIMP-1 levels in tissue samples and GCF from active and inactive sites from 

progressive periodontitis subjects by immunodot blotting showed no significant differences 

among sites. Nevertheless, a trend to a positive correlation between TIMP-1 and MMP-13 

was found in inactive sites (r = 0.61, p = 0.2), compared with an inverse correlation for active 

sites (r = -0.5, p = 0.35). 

Regarding MMP-13 activity, even if there was a trend to increase from healthy to active sites 

in progressive patients, significant differences were found only for active sites that displayed 

the highest MMP-13 activity, compared with inactive and healthy sites. Similar changes were 

found for ICTP levels that showed the highest levels (p<0.05) in active sites versus inactive 

ones and healthy controls. TIMP-1 was not detected in all samples and percentages of 

detection, as well as mean levels, increased in healthy GCF compared with active and inactive 

sites, but the difference was significant only for percentages of detection (Table 1.). 

 

5.15 MMP-13 and gelatinase activation in periodontitis-affected gingival tissue (II) 

Adding of exogenous recombinant MMP-13 to gingival explants from periodontitis patients 

resulted in significantly increased proMMP-9 activation at 1 h and 24 h after enzyme addition 

and a trend towards higher MMP-2 activation rates. Almost no detectable active MMP-9 was 
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seen, despite the addition of MMP-13 when the CL-82198 MMP-13 selective inhibitor was 

used. Additionally, a strong positive correlation was found between the active MMP-9 and 

MMP-2 enzyme forms (r = 0.84, p<0.0001). 

 

5.16 MMP-8, MMP-14 and MPO molecular forms in GCF from progressive 

periodontitis (III) 

MMP-8 immunoreactivities were found as ~85 and ~64 kDa bands for pro and active PMN 

isoforms, respectively, ~55 and ~48 kDa for mesenchymal proform and active enzymes, 

respectively, for complexes of  ≥100 kDa and fragments ≤  46 kDa. MMP-14 soluble forms 

were found as ~50 kDa bands, whereas complexes and fragments were also detected. MPO 

immunoreactivities were identified at ~75, 90, 130 and 160 kDa. All enzyme forms were 

detected in all screened samples from both active and inactive sites. 

 

5.17 MMP-8, MMP-14 and MPO levels in GCF from progressive periodontitis at 

baseline and after treatment (III) 

Densitometric analysis of MMP-8 immunoreactivities demonstrated that PMN-type MMP-8 

forms predominated over the mesenchymal forms. Among all MMP-8 forms, active enzymes 

and the percentages of activation for both PMN and mesenchymal isotypes tended to increase 

at inactive sites, whereas all MMP-14 forms tended to increase at active sites, except for the 

complexes. Similarly, the analysis of protein levels for MMP-8, total and active MMP-14 and 

MPO demonstrated that only active and total MMP-14 levels tended to increase in active 

sites, but none of the differences were significant (Table 1.). 
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The total levels of MMP-8 and MPO were measured in progressive periodontitis sites at 

baseline and after periodontal treatment, showing significant reductions, except for MMP-8 in 

active sites. 

5.18 Association between MPO levels and MMP-8 in GCF (III) 

A positive correlation was found between total MPO with total MMP-8 (r = 0.74 inactives; r 

= 0.92 actives, p<0.05) and with its active forms (PMN isoform, r = 0.77; mesenchymal 

isoform, r = 0.69; p<0.05). This association was lost in inactive sites after periodontal 

treatment, but still remained for active sites. 

 

5.2 Animal studies: P. gingivalis-induced experimental periodontitis in 

MMP-8 null mice and controls (IV) 

 

Typical histopathological changes associated with chronic periodontitis were observed in P. 

gingivalis-infected mice. No differences were found in cytokine distribution by tooth 

localisation (p>0.05). 

5.21 LIX/CXCL5 expression 

LIX/CXCL5 was consistently expressed in the epithelia of gingival papilla from all studied 

mice; it was significantly reduced in the P. gingivalis-infected KO group compared with 

infected wild-type controls, with levels comparable to non-infected mice (Table 2.). 
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5.22 SDF-1/CXCL12 and RANKL expression 

SDF-1/CXCL12 and RANKL expression patterns were more ubiquitous in periodontal tissues 

than LIX/CXCL5, but were almost restricted to P. gingivalis-infected groups. Moreover, the 

frequencies of detection for both cytokines were significantly higher in infected groups 

compared with uninfected ones (Table 2.). SDF-1/CXCL12 was primarily expressed in 

periodontal ligaments and the strongest staining was localised to the vascular channels close 

to areas of alveolar bone resorption. The most striking RANKL expression was localised to 

the periodontal ligament and osteoclasts surrounding the alveolar crest. SDF-1/CXCL12 and 

RANKL levels showed no significant differences between KO and WT mice, but a significant 

positive correlation was found between both cytokines in all study groups (r = 0.40, p=0.01). 
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Table 1. Summary table of examined potential biomarkers in GCF from progressive 

periodontitis patients at baseline and healthy subjects 

  Active Inactive Controls N p 

GCF mean volume 
(µL) 

0.94±0.21 0.92±0.18 0.22±0.13 53 <0.05 

GCF Mean protein 
concentration (mg/mL) 

0.68±0.059 0.37±0.059 0.11±0.081 53 <0.05 

MMP-13 activity  
(ng FP/mL) 

1.49±0.46 1.17±0.20 1.03±0.18 53 <0.05 

ICTP  
(ng/mL) 

0.49±0.21 0.31±0.15 0.24±0.13 53 <0.05 

TIMP-1  
(% cases) 

47.60% 76.20% 100% 53 <0.05 

TIMP-1  
(ng/mL) 

0.319±0.09 0.286 ±0.10 0.673± 0.49 53 >0.05 

MMP-8  
(ng/mL) 

119.35 (196.92) 153.86 (185.52) --- 50 >0.05 

PMN MMP-8 active 
(au/mL) 

0.52 (0.80) 0.39 (0.92) --- 28 >0.05 

Mesenchymal MMP-8 
active (au/mL) 

0.45 (0.36) 0.15 (0.55) --- 28 >0.05 

MPO  
(ng/mL) 

287.94 (675.79) 660.05 (789.81) --- 50 >0.05 

MMP-14 active enzyme 
(ng/mL) 

6.89 (3.31) 5.57 (7.55) --- 50 >0.05 

MMP-14 total  
(ng/mL) 

18.80 (33.07) 16.82 (15.22) --- 50 >0.05 

 

Values expressed as means ± SD or medians (IQR). GCF mean volume: Controls vs. 

inactives and actives p<0.05; inactives vs. actives p>0.05; GCF mean protein 

concentration: Actives vs. inactives and healthy p<0.05; Inactives vs. healthy p<0.05; 

MMP-13 activity: actives vs. inactives and controls p<0.05; inactives vs. healthy, p>0.05; 

ICTP levels: actives vs. inactives and controls p<0.05; inactives vs. healthy, p>0.05. 
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Table 2. LIX/CXCL5, SDF-1/CXCL12 and RANKL expression in MMP-8 knock out 

and wild-type mice infected with P. gingivalis and controls 

 WT+Pg KO+Pg WT-Pg KO-Pg p 

LIX/CXCL5 0.366±0.153* 0.222±0.175* 0.276±0.121 0.183±0.116* <0.005 

SDF-1/CXCL12 (%) 54.5 41.1 16.3 7.3 <0.005 

RANKL (%) 80.0 65.0 12.8 6.4 <0.005 

 

Results expressed as means ±SD of total positive area/total area per field or percentage (%) of 

immunostained sites from total examined sites. Asterisks represent the group pairs that 

displayed significant differences for the post-hoc test (WT+Pg vs. KO+Pg and KO-Pg, 

p<0.05). 
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6. DISCUSSION 

 

Periodontitis is described as a multifactorial, irreversible and cumulative condition, initiated 

and propagated by bacteria and host factors (Buduneli and Kinane, 2011). Pathologically 

enhanced expression and activation of host MMPs induced by bacterial infection and 

cytokines are well-characterised features in chronic periodontitis. The resultant unhampered 

proteolysis might lead to periodontal damage and the perpetuation of the inflammatory 

response, favouring disease progression (Kessenbrock et al., 2010; Sorsa et al., 2006). 

Chronic periodontitis progression is a continuous process that undergoes dynamic periods 

of activity and remission (Jeffcoat and Reddy, 1991; Kinane, 2001). Accordingly, 

periodontal support is lost during short, acute episodes of disease activity or bursts. Though 

the hallmark of disease activity is the loss of soft or hard tissue attachment to the tooth, 

longitudinal recording of clinical attachment by the tolerance method has been the most 

commonly used approach to diagnose progressive periodontal disease (Reddy et al., 1997). 

Consequently, analysis of GCF samples from active versus inactive progressive sites can 

provide a closer view of the proteolytic events involved in supporting tissue breakdown and 

surrogate biomarkers. 

In this study, we show differences in protein composition among active, inactive and 

healthy sites, pointing towards increased proteolysis in the former sites. Enhanced 

collagenase levels and activity were found in chronic periodontitis and was associated with 

disease progression. Furthermore, enhanced collagenase-mediated proteolytic cascades 

seemed to interact with the immune-inflammatory components during the initiation and/or 
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progression of periodontitis. Based on these findings, GCF collagenase signatures can 

potentially be useful as biomarkers for disease progression. 

GCF has widely been regarded as a key source of potential biomarkers in periodontitis. 

During periodontitis, GCF shifts from a transudate to an exudate; consequently, the GCF 

volume and composition change as result of protein extravasation from serum, local 

synthesis and release of catabolic products derived from periodontally diseased tissues 

(Adonogianaki et al., 1996; Curtis et al., 1990; Oringer et al., 2002). In the present study, 

the analysis of volume and total protein content in GCF demonstrated differences between 

healthy and chronic periodontitis subjects, as expected. During progressive periodontitis, 

we found that GCF from active sites showed similar volumes, but nearly as twice as much 

total protein concentration as inactive sites. In accordance with our results, increases up to 

fivefold in GCF volume have previously been reported in subjects affected by gingivitis 

and periodontitis, compared with healthy controls (Pisano et al., 2005). During chronic 

periodontitis, inflammatory changes in both active and inactive sites were reflected in 

increased GCF volume and total protein concentration when compared with healthy sites; 

Nonetheless, active sites were expected to undergo a current periodontal tissue breakdown 

compared with their inactive counterparts; this breakdown can be reflected in the increased 

protein content in GCF due to the release of protein mediators and periodontal matrix 

breakdown products, where collagens type I and III are the main constituents of both 

periodontal ligament and alveolar bone (Alpagot et al., 2001). GCF volume and protein 

content varied considerably according to the periodontal status. Because most of protein 

and volume variations in GCF from healthy and periodontitis sites can be attributed to the 

increasing of vascular permeability triggered by local inflammatory process, the current 



39 

results confirm that the more sensitive method of standardisation was through the 

expression of target proteins under fixed periods (30 s) of fluid collection (Golub et al., 

1997; Lamster and Novak, 1992). 

The initial cleavage of periodontal collagens by collagenolytic MMPs is believed to play a 

pivotal role over the loss of periodontal supporting tissues. Conversely, the collagenase 

inhibitor TIMP-1 has been related to connective tissue regeneration (Sorsa et al., 2006). 

Among collagenases, MMP-8 and MMP-13, along with the gelatinase MMP-9, are the 

major MMPs associated with the severity of periodontal disease (Leppilahti et al., 2010; 

Sorsa et al., 2004; Sorsa et al., 2006; Teles et al., 2008; Tervahartiala et al., 2000). In GCF 

from chronic periodontitis subjects, MMP-8 and MMP-9 are the predominant MMPs, 

whereas MMP-13 comprises only 3-4% of total collagenases (Kiili et al., 2002; 

Tervahartiala et al., 2000) and even less or no MMP-1 has been detected (Golub et al., 

1997). 

MMP-13 was not detected in healthy GCF by immunoblot, but MMP-13 activity levels 

could be detected in both, healthy and disease GCF. MMP-13 expression is highly 

restricted to those situations in which rapid collagen turnover is required (Rydziel et al., 

2000). Despite the fact that MMP-13 levels did not differ among active and inactive sites, 

the MMP-13 activity was significantly higher in active sites compared with inactive and 

healthy ones. In accordance with these findings, active sites showed a tendency for MMP-

13 levels to increase along with decreasing levels of TIMP-1, displaying a negative 

correlation. These data suggested that periodontitis might be associated with augmented 

levels of MMP-13, whereas disease activity might derive, in part, from an unbalance 
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involving limited MMP-13 inhibition and a higher enzyme activation rate, resulting in 

increased MMP-13 activity. 

In progressive periodontitis, MMP-13 was primarily detected as a band of 56 kDa that 

could represent a partially activated form derived from the 60 kDa proenzyme (Golub et al., 

1997; Hernandez et al., 2006); some faint 48 kDa bands, corresponding to fully active 

forms, and partially degraded fragments with molecular weight between 35 and 25 kDa 

(Ilgenli et al., 2006). ProMMP-13 can be activated, among other MMPs, such as MMP-2 

and MMP-13 itself, by MMP-14 in the presence of TIMP-1. A first cleavage at the Gly35-

Ile36 site generates the intermediate fragment, while a second N-terminal Tyr85 cleavage 

generates the fully active enzyme (Knauper et al., 1996) that is highly unstable, generating 

fragments of low molecular weight (Knauper et al., 1997a). 

Similarly to MMP-13 activity, active sites showed increased ICTP levels, assumed to be 

primarily generated from bone collagen by MMPs (Fuller et al., 2007), when compared 

with inactive and healthy sites. The addition of MMP-13 to diseased gingival tissue explant 

cultures resulted in an enhanced proMMP-9 activation rate. Thus, MMP-13 might influence 

periodontitis progression by contributing to bone catabolism, either directly through its 

collagenolytic activity or indirectly through the enhancement of MMP-9 activation. 

Previously, an association between reduced levels of TIMP-1, higher total collagenase and 

gelatinase activity and the severity of clinical parameters was reported in periodontitis 

patients, along with significant reductions after periodontal treatment (Pozo et al., 2005). 

As collagenolytic and gelatinolytic activities are cooperative and sequential during the 

degradation of native collagen, the enhancement of MMP-9 activation by MMP-13 in 
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periodontitis might represent a pathogenic mechanism to potentiate and even perpetuate 

supporting tissue destruction. 

Besides sulcular epithelial cells, macrophage-like cells, fibroblasts and plasma cells, MMP-

13 is expressed by bone osteoblasts, where it is thought to participate in bone homeostasis 

(Hernandez et al., 2006; Rydziel et al., 2000). Additionally, MMP-13 is capable of 

activating proMMP-9 produced by osteoclasts in vitro (Rydziel et al., 2000). Therefore, a 

combination of MMP activity could reflect the release of ICTP fragment to GCF (Golub et 

al., 1997). The regulatory role of MMP-13 over other MMPs, such as MMP-9, implies that 

minimal changes in MMP-13 levels or activity can elicit proteolytic downstream cascades 

that might partially explain periodontitis progression. A previous clinical trial tested a sub-

antimicrobial dose doxycycline (SDD) treatment in post-menopausal women exhibiting 

periodontitis and systemic osteopenia during a two-year follow-up period (Golub et al., 

2008). The improvement of clinical parameters in the SDD group was associated with 

reduced total collagenase activity and a decrease of the bone resorption fragment ICTP. 

Interestingly, a strong positive correlation between GCF ICTP and total collagenase activity 

was found, supporting a role for collagenases in bone loss and thereby in disease 

progression, which can be reflected in GCF. 

MMP-8 corresponds to the main collagenase in GCF (Golub et al., 1997), and its active 

form has previously been associated with the conversion of gingivitis to periodontitis and 

progression of established periodontitis (Mantyla et al., 2006). In the current study, an 

increasing trend was seen for the MMP-8 enzyme in active sites versus inactive sites, but it 

was limited to the active forms from both, neutrophil and mesenchymal isotypes and their 
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respective percentages of activation, whereas the neutrophil MMP-8 was the predominating 

isotype (Golub et al., 1997; Golub et al., 2008). 

The main source of latent MMP-8 corresponded to neutrophils and could be activated 

during periodontal inflammation by reactive oxygen species (ROS) and by microbial and 

host-derived proteases (Sorsa et al., 1992), representing oxidative and proteolytic activation 

pathways, respectively. Furthermore, ROS can oxidatively inactivate TIMP-1 (Sorsa et al., 

2006). Previous in vitro results have shown that both, MPO-produced hypochlorous acid 

and MMP-14-mediated proteolysis can activate proMMP-8 (Holopainen et al., 2003; Saari 

et al., 1990). Accordingly, we found a significantly strong to moderate positive correlation 

between total MMP-8 levels, active MMP-8 forms and MPO in both, active and inactive 

sites at baseline; scaling and root planning (SRP) resulted in significant MPO and MMP-8 

reductions in all groups and the loss of MPO/MMP-8 association in treated inactive sites. 

Nevertheless, the MMP-8/MPO association remained in treated active sites, despite the 

reduced sample size. Conversely, no association was found between active forms of MMP-

8 and MMP-14, suggesting that the oxidative pathway might represent the most important 

activation mechanism for MMP-8 during periodontitis progression. 

Consistent with our findings, it has been reported that repeatedly elevated GCF MMP-8 

levels detected during the maintenance phase after SRP was associated with a lack of 

improvement in clinical parameters (Mantyla et al., 2006) and increased odds of subsequent 

attachment loss. No association was found between MMP-8 levels and alveolar bone loss in 

the latter study (Reinhardt et al., 2010). Thus, sustained MMP-8 levels might reflect 

periodontal breakdown, inflammation or sites at risk of further periodontal loss (Hernandez 
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et al., 2010; Sorsa et al., 2010). A strong MMP-8/MPO association after periodontal 

treatment might reflect the persistent activation of MMP-8 and the need for further therapy. 

In addition to its classical collagenolytic properties, MMP-8 might influence the immune 

response through proteolytic processing of non-matrix bioactive molecules, modifying their 

bioavailability and biological activity (Sorsa et al., 2004; Tester et al., 2007; Van Lint et al., 

2005). Since the recent developments of MMP-8 deficient mouse models, new concepts 

regarding the roles of MMP-8 are emerging. MMP-8 deficient mice have been found to 

display an altered neutrophil infiltration (Gutierrez-Fernandez et al., 2007; Korpi et al., 

2009). Furthermore, recent reports have demonstrated associations between MMP levels 

and activity with changes in processed forms of cytokines and in their protein levels 

(Gutierrez-Fernandez et al., 2007; Nilsson et al., 2009).  

A previous study had been conducted in a P. gingivalis-induced periodontitis MMP-8-

deficient mice model, where a more destructive periodontitis phenotype in MMP-8-/- 

animals was reported. In the current study, we complement these results by demonstrating 

that MMP-8 KO mice exhibited significantly reduced levels of chemokine LIX/CXCL5 

compared with their WT counterparts at the periodontal-oral interface. It is plausible that, 

given the potent chemoattractant effects of LIX/CXCL5 over PMN (Kebschull et al., 2009), 

these mice displayed impaired neutrophil infiltration to periodontal tissues, which might 

explain at some level the extensive alveolar loss observed in these mice. Nevertheless, 

given the pleiotropic and redundant character of cytokines, further studies are needed. At 

physiological levels, MMP-8 might be protective for periodontal tissues, whereas 

pathologically elevated MMP-8 levels or activity might result in excessive periodontal 

breakdown, explaining the apparently controversial results obtained from the clinical 
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studies and animal models. Additionally, a significantly higher frequency of detection for 

the cytokines RANKL and SDF-1/CXCL12 was found in P gingivalis-infected mice, 

irrespectively from the MMP-8 genotype, suggesting that they might play a role in the 

initiation and/or progression of periodontitis. 

In summary, the results of the current study suggest that collagenases MMP-8 and -13 are 

involved in periodontitis progression and that their pathogenic mechanism is not limited to 

direct periodontal matrix degradation; rather, they form complex networks involving the 

immune response, oxidative stress and proteinase cascades. The identification of these 

networks in biological samples, such as GCF, will contribute to the development of chair 

side/point of care diagnostic methods to complement clinical practice, to monitor the 

disease and to identify new targets for pharmacological therapy. 
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7. CONCLUSIONS 

 

1. Chronic periodontitis subjects show increased GCF volume, total protein concentration and 

MMP-13 detection compared to healthy controls. 

2. Active sites from progressive periodontitis subjects are associated with higher MMP-13 

activity and ICTP levels, and reduced detection of the inhibitor TIMP-1 compared with 

inactive sites. An unbalance between MMP-13 activation vs. inhibition might be involved 

in soft periodontal tissue and bone catabolism that characterizes active disease. 

3. MMP-13 enhances proMMP-9 activation rate in gingival tissue from subjects affected with 

chronic periodontitis. This MMP interaction might further potentiate proteolytic-mediated 

tissue destruction during disease. 

4. MPO and MMP-8 positive correlation and levels associate with progressive sites at 

baseline and after periodontal treatment.  

5. Experimentally-induced periodontitis is characterized by higher SDF-1/CXCL12 and 

RANKL detection in periodontitis-affected tissues. Thus, they might play a central role in 

disease pathogenesis and/or progression. 

6. The levels of the neutrophil-chemoattractant LIX/CXCL5 are reduced in infected MMP-8 

null mice vs. wild type mice and might result in reduced neutrophil chemotaxis at the oral-

periodontal interface and enhanced severity of periodontal disease in MMP-8 null mice. 



46 

7. Targeting of MMP-13/ICTP/MMP-9 and MMP-8/MPO interactions in GCF might be 

potentially useful to screen sites at risk of progression, evaluate response to treatment and 

pharmacological adjuvant therapies.   
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