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Using different analytical methods (the quasi-linear apph, the path-integral technique and tau-relaxation
approximation) we develop a comprehensive mean-field yifeora pumping effect of the mean magnetic field
in homogeneous non-rotating helical turbulence with inegidarge-scale shear. The effective pumping velocity
is proportional to the product ef effect and large-scale vorticity associated with the sheeat causes a separa-
tion of the toroidal and poloidal components of the mean retigfield along the direction of the mean vorticity.
We also perform direct numerical simulations of sheareluience in different ranges of hydrodynamic and
magnetic Reynolds numbers and use a kinematic test-fieldauéd determine the effective pumping velocity.
The results of the numerical simulations are in agreemetht the theoretical predictions.

PACS numbers: 47.65.Md

I. INTRODUCTION in direct numerical simulations (DNS) [25], but there has so
far been no theory for this new effect, nor has there been a
The origin of cosmic magnetic fields is one of the funda-Systematic survey of DNS for determining the dependence of
mental problems in theoretical physics and astrophysids. | PUMping on magnetic Reynolds and Prandtl numbers as well
generally believed that solar and galactic magnetic fietds a @s the turbulent Mach number. - _
caused by the combined action of helical turbulent motions The goal of the present study is to develop a comprehensive
of fluid and differential rotatior [127]. In most of thesedtu theory of mean-field pumping in homogeneous helical turbu-
ies, differential rotation plays merely the role of enhaigthe  lence with shear and to perform systematic numerical simu-
magnetic field in the toroidal direction. However, in recentlations designed for detailed comparison with the thecaéti
years there has been increased interest in mean-field effediredictions. Itis important to emphasize that the pumpihg o
caused specifically by turbulent shear flows. This interest i the large-scale magnetic field discussed usually in thealite
caused by discoveries of the shear dynamol[8, 9] and vortidure has always been connected with inhomogeneous turbu-
ity dynamo [10/ 11] in non-helical homogeneous turbulencdence [3: 26, 27], but here we study the pumping for homoge-
with a large-scale shear. In particular, recent numerigal e Neous, albeit helical turbulence.
periments|[12-17] have clearly demonstrated the existehce
a shear dynamo of a large-scale magnetic field in non-helical
turbulence or turbulent convection with superimposeddarg
scale shear. However, the origin of the shear dynamo is still
subject of active discussions [8,/9] 15| 18-23]. We consider homogeneous helical turbulence with a linear
There are three additional phenomena that are also relatgdear velocityy = (0, Sz, 0). Averaging the induction equa-
to the presence of shear. One is the vorticity dynamo, wisich ition over an ensemble of turbulent velocity field yields the
the self-excitation of large-scale vorticity in a turbuterwith ~ mean-field equation:

IIl. GOVERNING EQUATIONS
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large-scale shear. It has been predicted theoreticallyll1p 9B - o

and detected in recent numerical experiments [13, 14, 24]. — =Vx (U><B +uxb— anB) , (1)
The vorticity dynamo can also affect the dynamo process of ot

the mean magnetic field. Another phenomenon is a non-zerohere&; = (u x b); = a;;B; + b;j: VB, is the mean

« effect in non-helical turbulence with shear when the systenelectromotive forcepx andb are the fluctuations of velocity

is inhomogeneous or density stratified. In that case there iand magnetic field, overbars denote averaging over an ensem-
an o effect [8,/18] that can lead to an alpha-shear dynamoble of turbulent velocity fieldsB is the mean magnetic field,
Finally, when homogeneous turbulence with shear is heliUU is the mean velocity that includes only the imposed large-
cal, there is an effective pumping velocity x oW of the  scale shear, ang is the magnetic diffusion due to electrical
large-scale magnetic field, wheW¥ is the large-scale vortic-  conductivity of the fluid. Note that the pat; B; in the ex-

ity caused by shear. This effect has so far only been foung@ression for the mean electromotive force determines the ef

fective pumping velocityy; = —%eijkaij, and thex tensor,

QG = %(aij + Cle'), i.e.,gi(a) = Oziij + (‘7 X E)Z, while
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the following equations for fluctuations of velocity and mag HereG, (k,w) = (vk? — iw) ™!, G,(k,w) = (nk* — iw) ™!,

netic field: and §;; is the Kronecker tensor. The statistical properties

ou o 1 1 o of the background velocity fluctuations with a zero large-
— =-U-Vu— (u-V)U-=Vp+—[(b-V)B scale shean(?), are assumed to be given. For derivation of
ot . P Amp Egs. [6)-I8) we use the identity

+(B-V)b] + vAu+u + ¥, 2) B o,
ob _ - /UQ k-Q)dQ =i(V,U,
pri (B-V)u— (u-V)B+ (b-V)U — (U-V)b (@) ) ( ) ok, Ok’

4 Ab+ bV, 3) which is valid in the framework of the mean-field approach,

i.e., itis assumed that there is scale separation. Equ(ion
wherev is the kinematic viscosityj is the mean density of the (8) coincide with those derived by [18], and they allow us
incompressible fluid flowp is the fluctuation of total (hydro- to determine the cross-helicity ten (H) = wl¥ b(1)>
dynamic and magnetic) pressure, the magnetic permeabilit%/ (1 b(O)
of the fluid is included in the definition of the magnetic field, ( )
v andb" are the nonlinear terms, afdf ) is the stirring ~ €mij f 9;; (k,w)dkdw to the mean electromotive force
force for the background velocity fluctuations. caused by sheared helical turbulence. We are interested firs

We begin by deriving expressions for the pumping effectof all in the contributions to the mean electromotwge force
that are valid in different regimes, where fluid and magneticvhich are proportional to the mean magnetic field, E6Y)
Reynolds numbers are both small, both are large, or only thei; B; + (v x B);. For the integration in-space and irk-
fluid Reynolds number is large, but the magnetic Reynoldspace we have to specify a model for the background shear-
number is small. These results will then be compared witHree helical turbulence (witlB = 0), which is determined by

. This procedure yields the contnbquﬁél) =

those of DNS in the corresponding regimes. equation:
E(k)® ki k;
) =@ = ZEE [ (5, 2)
A. Small magnetic and hydrodynamic Reynolds numbers &
()0 = e - (Vxw) @) (©)

We use the quasi-linear or second order correlation ap- .
proximation (SOCA) applied to shear flow turbulence (seeVhereE(k) is the energy spectrum (e.g., a power-law spec-
[18,[20]). This approach is valid for small magnetic and hy-trum, E(k) oc (k/ke)~? with the exponentt < ¢ < 3
drodynamic Reynolds numbers. To exclude the pressure terf@" the wavenumbers; < k < k4, wherek; andkq are
from the equation of motiorl{2) we Ca|cu|aﬁx(v><u) the forcing and dissipation wavenumbers), ang is the
then we rewrite the obtained equation and . (3) in Fouriefully anusymmetnc Levi-Civita tensor. We consider thvef
scale and small-scale vanables) neglect nonlinear ténms ®(w) = vk?/[r (w? + v?k*)]. This model for the frequency
Egs. [2)(B), but retain molecular dissipative terms irséhe function corresponds to the correlation function
equatlons _We seek a solutlon for fluctuations o_f velocity an (s (£)u (¢ + 7)) o exp(—T vk?). (10)
magnetic fields as an expansion for weak velocity shear:

In that case, and under the assumption of small magnetic and

w=u® +u® 4 (4)  hydrodynamic Reynolds numbers, the effective pumping ve-
b=0b + M 4 (5) locity, v, and the off-diagonal components of the tensgr
are given by
where (@) 9
1(q Pm 2 T4
— = R « W, 11
B (k,w) = Gy (k, w) [i(k'B)éij _ (51.3. km% v 2 (1 + Pm) e’ Tra (11)
n P —
B0 ayy = CUD) CPE D Pm g (0T, (12)
Gy ) (Vi Bon) | 0l (k). 6) 5  (1+Pm)
k —4
d k
0 C = Ek) | — dk
u (k,w) = G, (k <2qu5”7 + 6ij kqmr o~ 5iq5jp> 1(q) . (k) ( kf)
3
o _(a=1Y [1=(ki/ka)T* } 13
< Vel @ (73) [t 49
0
b (e, w) { - 5”' kmaT wherea, = —(7¢/3) (u - (V x w)), Pm = v/7y is the

magnetic Prandtl numbeRe = 7¢ (u?)(®) /v is the hydro-

i kg 9 dynamic Reynolds numbeRm = RePm is the magnetic
314 Reynolds number; = ¢ /u.ms is the turnover time, where

¢ = 1/ks is the energy-containing (forcing) scale of a ran-

0)
+61q§”)} (k,w) (VU )} (8) dom velocity field, andi,,,s = +/(u?)(©). For the integration

+5Zm5m) (V1 Bom ] WD (K, w) + [5



For linear shear velocityJ = (0, Sz, 0), the mean vorticity ot
isW = VxU = (0,0,5), and the mean symmetric tensor dgi;(k) . — (H)y | 19
(0U0);; = (V;U; + V,;U;)/2 has only two nonzero compo- ~— gt i(k-B)[fij (k) = hij(k) = hij "]+ I

nents: (90U )12 = (0U)21 = S/2. Therefore,a;; has two +J5mn (@) gmn + Ngij, (18)
non-zero off-diagonal components caused by both, shear and ) .

helical turbulencev» — a1, while the effective pumping ve- Where hereafter we omit the argument®1d R in the correla-

locity, v, has only one component directed along the verticafion functions and neglect small termsO(V=). HereF; is

o - ven i i Ohi;(k e = -
in w-space we use the integrals(k) given in Appendix’A. i(k) — i(k-B)dy; + Iihj I Eisjmn(U)hmn + N'hy,

axis,y = (0,0,7): related to the forcling term an¥ = 9/0R. In Eqs.AI(IS),
) @i(k) = (47p) " [gij(k) — gji(=K)], and N fij, Nhij,
y = Ci(q) < Pm > Re? . Sh, (14) ./_\/'gl-j, are the th_ird-(_)rder moments appearing d_ue to the non-
2 1+Pm linear terms which include also molecular dissipation &rm
_ _ Ci(g) (2Pm+1)Pm _ , The tensors?, . (U), E,,,(U) andJ3,, (U) are given
i =0 = T T pmye e oS (19 by

whereSh = 7; S'is the shear parameter. As follows from s (77) = (2kiq§mp§jn + 2k;8imOpn — OimOiq0pm
Egs. (1) and{d5); x Pm? ande,, « Pm for Pm < 1, ! ' '
while for Pm > 1 the effective pumping velocity andc,, 0 —
are independent dm. For all values of the magnetic Prandtl —0iq0jndpm + 5im5.inkqa—kp VipUq,

numbers;y anda;o are positive. This asymptotic behavior
which is valid forRe < 1, is in agreement with FigEl 1 ahdl 2 Efjmn (U) = (5im5jq5pn + 6m0igOpm
(see Sect. Ill). Note that the diagonal components of the ten

soray; in this case are 0 —
im nk ar 3
(o) Ru +imd; qakp)VpUq
a=-22 (7> 7t (u- (V x u)) @, _
3 \l+Pm JE i (O) = (%jqzsimapn — SimOpniq + 0jndpm0iq
(16)
kaq -2 0 —
Colg) = [ E(k) (ﬁ) i FoimOinka g )VPU v
ke ks P
(g —=1Y\ [1— (ke/ka)?t! 17 wherek;; = kik;/k?. The source tgrmg;, 1}, andr?, which
“\g+1 1— (ke/kq)t 1| (17) contain the large-scale spatial derivatives of the magfietd

B, are given in|[9]. Next, in Eqs[{18) we split the tensor for
magnetic fluctuations into nonhelical,;, and heIicaI,hl(.f),
B. Large magnetic and hydrodynamic Reynolds numbers parts. The helical part of the tensor of magnetic fluctuation
hz(.f) depends on the magnetic helicity and it follows from
To determine the the effective pumping velocity and themagnetic helicity conservation arguments (see, e.gl./32p-
tensora;; in homogeneous helical turbulence with mean ve-and [7] for a review).
locity shear for large magnetic and hydrodynamic Reynolds The second-moment equations include the first-order spa-
numbers we use the procedure which is similar to that appliegal differential operators\’ applied to the third-order mo-
in [9] in earlier investigations of shear flow turbulence.tLe ments M (). A problem arises how to close the system,
us derive equations for the second moments. We apply thege | how to express the set of the third-order tera/ (™D
two-scale approach, e.g., we use large séale (z +y)/2,  through the lower momente (1 (see, e.g./[33-35]). We use
K = ki + k2 and small scale = —y, k = (k1 — k2)/2  the spectrat-closure-approximation which postulates that the
yariables (s_ee, e.g.._[28]). We derive equations for thewel  yaviations of the third-moment term&/,'M(HI)(k), from the
ing correlation functions: contributions to these terms due to the background turlselen
fij (k) = L(uisuy), hij(k) = L(bs; b)), N ML) (k), are expressed through the similar deviations of
s the second momentd/ ") (k) — M (L0) (k):
9ij(k) = (47p)~" L(bi; uy ), . .
NM(III)(k) _ NM(III,O)(k)
1

- (Im) _ paLo)
L(a;c) = /(a(k + K/2)c(—k+ K/2)) exp i K-R) dK, - 1(k) MU (k) — MELO (k)}’ (19)

where

(s 1s]

. (see, e.g.,L[33, 86, B7]), wherg(k) is the scale-dependent
and(...) denotes averaging over ensemble of turbulent veloc;g|axation time, which can be identified with the correlatio
|ty field. The equations for these correlation functions aréime, 7, of the turbulent velocity field for large hydrodynamic
given by (see.[9]) and magnetic Reynolds numbers. The quantities with the su-
ofii(k) . — f P . perscript(0) correspond to the background shear-free turbu-
ot =i(k-B)®ij + I; + I}, (U) fn + Fij + Nfij,  lence with a zero mean magnetic field. We apply the spectral



T approximation only for the nonhelical patf; of the tensor C. Large magnetic Reynolds numbers and small

of magnetic fluctuations. Note that a justification of thap- hydrodynamic Reynolds numbers

proximation for different situations has been performeain

number of numerical simulations and analytical studies,(se  To develop a mean-field theory for large magnetic Reynolds

e.g., [7/38-45]). numbers and small hydrodynamic Reynolds numbers we use
We take into account that the characteristic time of varmati - stochastic calculus for a random velocity field. To derive an

of the magnetic fieldB is substantially longer than the corre- equation for the mean magnetic field we use an exact solu-

lation time 7¢. This allows us to obtain a stationary solution tion of the induction equation for the total fielg (which is

for Egs. [I8) for the second-order moment&(!) (k), which  the sum of the meaB and fluctuating parts) with an initial

are the sums of contributions caused by shear-free andshearcondition B(t = to,x) = B(to, ) in the form of a func-

turbulence. The contributions to the mean electromotivegfo tional integral:

caused by a shear-free turbulence and sheared non-hetfical t 2

bulence are given irl [9]. In particular, the contributions t Bi(t,x) = (Gi;(t,to,§) exp(§ - V) B;(to, @))w, (26)

the electromotive force caused by the sheared turbuleade re (see, e.g.,[46, 47]), where the operamp(é . V) is deter-

ED) = emji S/ gl(f)(k)dk, where the corresponding contri- mined by

butions to the cross-helicity tensgj”.g) in the kinematic ap- . 1 .
proximation, are given by ! exp(§-V) =" & v)r, (27)
k=0
gff)(k:) =7 (k) [Jf;mn 7, (k) (k-B) £ = ¢ —x (see AppendikB). The Wiener trajectddit, to, x)
. is determined by
+7,(k) (k-B) I S0 (20)

t—to
tto) == [ oltn &) do+ (20) P wlt - to)
and we use the following model for the background shear-free 0

helical turbulence (witlB = 0): (28)
- wheret, = t — o, and the velocity fieldv is the sum of
0y _ 4 S (0) _ L KRy 21 (0) the mean shear velocity and fluctuatingu parts. We con-
= (u,(k k, =|(0; . ; ;
fit = (k) us(=k.)) [( Tk? ) (w’) sider large magnetic Reynolds number, but take into account

E(k)
St k2’

small yet finite magnetic diffusiom. The magnetic diffu-
sion can be described by a random Wiener proeegs that
is defined by the following propertiestw;(t)).,, = 0 and
where the energy spectrum (k) = (¢ — 1) (k/ke)™%,  (w;(t + 7)w; (t))w = 76;;, Wwhere(-),, denotes the averaging
ke = 1/¢; and the length/; is the maximum scale of tur- over the statistics of the Wiener random process. The foncti

etk (u- (Vx u)><0>} (21)

bulent motions. The turbulent correlation time7gk) = Gi;(t, s, &) is determined by equation:
271t (k/ke)1=9. Therefore, for large magnetic and hydrody- e
namic Reynolds number the effective pumping velocity, M = Nu.Gij(t, s, ), (29)
and the off-diagonal components of the tensgr caused by ds
sheared helical turbulence are given by with the initial conditionG;; (t = s) = ¢;; andN,; = V,v;.
The form of the exact solutiofi (P6) allows us to separate the
_ 2 W 22) averaging over random Brownian motion of particles (ilee, t
T T averaging over a random Wiener proceas3)) and a random
4 _ velocity u.
ag=—¢ (- 2q) 7t o (OU )i (23) We consider a random flow with a small yet finite Strouhal

o number (that is the ratio the correlation time of a randonaflui
Since the mean symmetric tens@U);; has only two flow to the turnover timé /u,ms). A random velocity field
nonzero component§dU )1, = (90U )21 = S/2, the tensor  with a small Strouhal number can be modelled by a random

a;; has only two non-zero off-diagonal components; =  Vvelocity field with a constant renewal time Assume that in
ae1. In particular, the intervals .. (—7,0); (0, 7); (1, 27); . .. the velocity fields
are statistically independent and have the same statistitis

§ = 2 o Sh (24) implies that the velocity field looses memory at the presatib
3 "7 instantst = m7, wherem = 0,4+1,+2,.... This velocity

2 2 field cannot be considered as a stationary velocity field for
arz=om = ¢ (5- 2q) @, Sh = —35h (25 gralltimesw ., however, it behaves like a stationary field for
t > 7. Averaging Eq.[(2Z6) over the random velocity field we
where we have used the Kolmogorov kinetic energy spectrurgyrive at the equation for the mean magnetic fid,
exponeny = 5/3 in Eq. (25). The diagonal components of _
the tensory;; in this case are. = «., (see, e.g./[1./3]). These 9B;
results for large magnetic and hydrodynamic Reynolds num- ot
ber are in qualitative agreement with DNS performed.in [25]. +Diimn Vi VnBj, (30)

= [V X (ﬁXE)L + Aiijij
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(see AppendikB), where area = —(1/3) (tu- (V x u))© (see, e.9./[46, 51]). In the
1 next section we discuss comparison with new systematic DNS
Aijm = =({Em Gij))w (31)  designed for comparison with our theoretical predictions.
T
1 - .
Di'mn:_ m nGl w 32
’ g7 {(6mén Gis)) (32) lll. COMPARISON WITH DNS

the angular brackets) denote an ensemble average over the

random velocity field. Therefore, the mean magnetic field is A.  Numerical model

determined by double averaging over two independent ran-

dom processes, i.e., by the ensemble average over the randonOur DNS model is identical to that used In [25]. We be-

velocity field and by the average over Wiener random procesgin by testing the analytical results numerically usingethr

w(t). dimensional simulations of isotropically forced turbuten
We are interested in the lowest-order contributions to then a fully periodic cube of sizé27)3. The uniform shear

mean electromotive force which are proportional to the mea/ = (0, Sz, 0) is imposed using the shearing box method and

magnetic fieldgi(“) = ai; Bj, wherea;; = (1/2)&inm Anjm the gas obeys an isothermal equation of state charactdryzed

and the tensod,;;,,, reads: the constant speed of sound We solve the continuity and
L . Navier—Stokes equations in the form
Az]m = __/ dt / dtl [vm(taé):lx [v]vz(t/aé)] ) Dl
7o Jo < y> "l U.Vinp-V.U, (38)
(33) Dt

wherex — y and [v,,(t,£)] _ denotes the Eulerian velocity
determined at the Wiener trajectafychat passes through the bu
point x at instantt. Hereafter the angular brackets denote D¢
double averaging over a random velocity field and over thgpere the imposed shear is subsumed in the advective deriva-
statistics of the Wiener process. tive

For small hydrodynamic Reynolds numbers we seek the so-

=-U-VU - SUI:(] —Cfv1np+f+Fvlea (39)

lutions of the linearized Navier-Stokes equatign (2) faaim- D 0 0

pressible velocity field: as superpositions of the Orr-Kelvin Dt~ ot T Sxa_y' (40)
random shearing wavea(t,r) = [w(t,ko)explik(t) -

r]dky, where kg = (kzo,ky, k), k() = (kw0 — Herep is the densitylJ is the velocity,f describes the forc-

Skyt, ky, k.) (see, e.g.[[23, 48-50]). Therefore, the effec-ing, andF;,c = p~ "V - (2pv'S) is the viscous force, whete
tive pumping velocity;y, and the off-diagonal components of is the kinematic viscosity, and
the tensory;; are given by

Sij = %(Uiyj + Uj_’i) — %V U (41)
— — /
Tn = E”ﬂ dij =7 Akmm T 4r / dt / dt is the traceless rate of strain tensor. The forcing funcfios
L
) ot K 5 ) (34) Oveniniszl
Qi = % (aij + aji) = % (Einm Anjm + €jnm Am'm) fz,t) = Re{ka'(t) explik(t) - @ +ig(1)]}, (42)
_ , wherex is the position vector. The wavevecte(t) and the
- __/ dt / dt” (€inm ki (¢') + €jum Ki(t') random phase-m < ¢(t) < « change at every time step, so

/ f(z,t) is 6-correlated in time. The normalization factdris

X {om(t ko) vn(t', ko). (35) chosen on dimensional grounds toSe= fyc(|k|cs/dt)/2,
Using these equations and Eds. (C13)=(C10) in Appentix Gvhere fy is a nondimensional forcing amplitude. At each
we obtain the effective pumping velocity, = (0,0,v), and  timestep we select randomly one of many possible wavevec-
the off-diagonal components;» = a9 of the tensory;; for  tors in a certain range around a given forcing wavenumber.
large magnetic Reynolds numbers and small hydrodynami¢he average wavenumber is referred tdiasin the present
Reynolds numbers: study we always usg;/k; = 5. We force the system with

transverse helical waves [53],
. C1(q)

o, ShRe?, (36)

Q12 = (g1 = <02(q) Re l — %1((]) R62> Oy Sh,
Tt

nohel - 8ij — o€ ks,

(37) whereo = 1 for the fully helical case with positive helicity of

the forcing function,

whereRe <« 7/7t < 1. The diagonal components of the
tensora;; in this case obtained using path-integral approach §:°h°1> =(kxe)/\Vk?— (k-e)2, (44)



is a non-helical forcing function, ané is an arbitrary unit 10726 T AN
vector not aligned wittk; note that| f|?> = 1. We use fully . Re = 0.16, C\(q) = 1~05E
helical forcing, i.ec = 1, in all of our runs. 1073k g 1» """""" i

The boundary conditions in theandz directions are peri-
odic, whereas shearing-periodic conditions are used in:the
direction. The simulations are governed by the fluid and mag- _
netic Reynolds numbers, the magnetic Prandtl number, ang
the shear and Mach numbers: >~

e 3
" Re = 0.04, C,(q) = 1.2 ]

u Y y 107°F 0 o 3
Re— Lms  pm_ tms p Y (45) .
vks nki n R
sh Ma — trms 0% 7 3
=—"_ Ma= .
urmskf ’ Cs ‘ ."9
-
Hereu,ms is the root mean square velocity of turbulent mo- 10 ' ' :
tions andn is the magnetic diffusivity. We use theeRciIL 0.01 0.10 p 1.00 10.00
m

Copd] to perform the simulations.

FIG. 1. Pumping coefficient = 1 (a21 — a12) normalized byo =
%urms as a function ofPm for two values ofRe (Sets Al and A2).
The shear parameter Sh —0.20 (—0.13) for Re = 0.04 (0.16).
Analytical results according to Eq._(114) are overplottethvdotted
lines. The values of’; (¢) are used as fit parameters and indicated in

the legends.

B. Test field method

We apply the kinematic test-field method (see, elg., [15
54,155]) to compute the effective pumping velocity,and all
components of the tenses;;. The essence of this method is
that a set of prescribed test fiel?%) and the flow from the
DNS are used to evolve separate realizations of small-scale

fieldsb(®9) . Neither the test field8B 9 nor the small-scale

fields b9 act back on the flow. These small-scale fields

are then used to compute the electromotive f@te? cor-
responding to the test fielB®?), The number and form of

the test fields used depends on the problem at hand. For tHé&
! . P P gnalytical results derived in Sect. II; see Talle I. Thepetu

purposes of the present study we use uniform horizontal te
fields B = (By,0,0) andB®) = (0, By, 0), in which case
the series expansion of the electromotive force contaihs on

C. Results

We perform several sets of simulations where we vary the
rameter®m, Rm, Sh, and Ma individually to study the

used here is prone to exhibit the so-called vorticity dynamo
[1Q,24], due to which large-scale vorticity is generatet a
complications can arise in the interpretation of the sirtioite

a single term ) .
¢ data. Here we restrict the studied parameter range so that th

values of Re and Sh are subcritical for the vorticity dynamo.

(a) _
& =ayB;. (46) In our runs where the Reynolds numbers are of the order of
We present the results using the quantities: unity or less, a low grid resolution &f2? is often sufficient.
Indeed, in Table Il we show the results obtained for differ-
a = %(au + as), (47)  ent resolutions ranging from6? to 1283 for Rm around 1,
O1g = Orgy = %(am +an), (48) which demonstrates good convergence of the results within
L error bars.
’}/ = 5((121 — CL12). (49)

We useqy = %urms as a normalization factor when present-
ing numerical results. Errors are estimated by dividing the
time series into three equally long parts and computing time
averages for each of them. The largest departure from the Figure[d shows our results faras a function of magnetic
time average computed over the entire time series repgeserirandtl numbePm. We find that the numerical results coin-
the error. This definition of the error bar gives an indicatio cide with the analytical formula, Eq._{114). Values of theard
about the mean value that one would obtain for shorter partsf ¢, (¢) ~ 1 fit the DNS results within the error estimates.

of the time series. With this definition, the error bars do-nor Figure[2 shows the results far» as a function ofPm for
mally become shorter for longer runs, provided the timeeseri two values of Re. The data far;, shows significantly larger

is Stationary. This would not be the case for the rms value Oﬂuctuations than the Corresponding resu|t3}foH0\Never' the
the deviations, which might sometimes also be of interest. DNS results seem to fall in line with the analytical expressi
Eqg. (I5), although the value 6f; (¢) needed to fit the data is
an order of magnitude larger than in the case/ofThis can

be explained by comparing Eq§.[36) aqdl (37), which show
thaty o Re?, while a2 o Re(7/7¢), wherer is the flow

1. Dependence oAm

1 http://pencil-code.googlecode.com/



TABLE |. Summary of the runs.

Set Re Pm Sh Ma grid
Al 0.04 0.05...25 —0.20 0.010 32%...64°
A2 016 0.02...20 —0.13 0.016 32%...64°
B1 0.08...81 1 —0.025 0.080  32%...256°
B2 0.08...83 1 —0.075 0.080  323...256°
B3 0.08...3.5 1 —0.25 0.080 328
B4 0.08...0.4 1 —2.5 0.080 323
Cl 0.04 1 —-0.020...-0.19  0.010 32°
C2 0.16 1 -0.012...-0.12  0.016 328
C3 045 1 —0.009...-0.09 0.023 323
C4 1.3 1 —0.006...—0.07 0.032 323
D1 0.08 1 —0.010 0.002...0.41 328
TABLE Il. Convergence study of and a2; for Rm = 1t.3and | . o PR
Sh= —0.06 from simulations with different grid sizes. 0.100F Re = 0.16, Cx(q) = 1 - % .
e i
RuUN v/a0[107%] a1 /ao[1072] grid S P
El 1.02+0.12 0944025 16° o s L
E2 1.05+0.07 0.89+020 323 g e 0
E3 0.99+0.06 0.83+0.55 64° ¥ 0.010 2 7 o Res004 Caq) = 0-15 -
E4 0944018 0.88+0.23 128 . s
T T . - ‘_9"‘.
1072k Re = 0.16, Ci(q) = 8 - 0.001 P . .
E ] 0.01 0.10 1.00 10.00
§{><§ ‘f ;f - Pm
o 1073 <1> % ....... i’ 4444444444 ‘i"
% {> % ] FIG. 3. a-effect as a function dPm normalized by, = %urms for
5 9 {)‘f’ Re = 0.04, C,(q) = 22 | the same runs as in Figl 1. ‘Analytical results according to{Ep_
T are overplotted with dotted lines. The valuessf(q) are used as fit
107*E ? Q E parameters and indicated in the legends.
10-5 I . . . in agreement with DNS results (see Figs. 1[and 2).
' T T In Fig.[3 we shown-effect (the diagonal elements In Fig. 3
0.01 0.10 Pml,OO 10.00 we show thex-effect (the diagonal elements of thg; tensor)

FIG. 2. Symmetric part ofi;;, c12 = % (a21 + a12) normalized by
g = %urms as a function oPm for the same runs as in Fig. 1. The
dotted lines show the analytical result according to Eq),(@4h the
values ofC (¢) indicated in the legends.

renovating time, andy = ¢¢/u,ms is the turnover time of

as a function of the magnetic Prandtl numben. These re-
sults are in a good agreement with the analytical redulis (16

2. Dependence oRm

Our results fory as a function of Rm are shown in F[gd. 4.
We find that for Rm smaller than roughly twe,is well de-
scribed by the analytical result, Ef.{14) obtained for Roi

turbulent eddies. Note that Egs.{36) aind (37) are obtaioed f and Re< 1. For greater Rny is consistent with a constant

large magnetic Reynolds numbers, white < 7/7¢ < 1.
This implies that for these conditiomss > ~. The latter is

value as a function of Rm, and is in accordance with Eq. (24)
derived for Rm> 1 and Re> 1. Note also that for the largest
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. 7 /Q// . o {} > "8 § ] _ / =R
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S 1073 o o ] S Ay 1.1
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F g I L) 0.7 ]
107°F 3 S 01 1.0 100 100.0 |
; I I I I ] s I I I Rm I
0.1 1.0 10.0 100.0 0.1 1.0 10.0 100.0
Rm Rm

FIG. 4. v as a function of Rm foPm = 1 and for four values of FIG. 6. a-effect as a function of Rm normalized by = %urms for
Sh (-0.025, —0.075, —0.25, and—2.5; see Sets Bl to B4). The two values ofRe (Sets B1 and B2). The dotted line is proportional
lines show the analytical results according to Eigsl (14)@diwith to Rm. The inset shows the normalized kinetic helicity offibev.
C1(q) = 1, for Sets B1 (dotted lines), B2 (dashed), B3 (dot-dashed),

and B4 (triple-dot dashed), respectively.

T T T T T T § %/', %
i — —-Sh=-25 | - - ]
0.02+ —..Sh = -025 107%F Rm=s16  _-Tx ¥ E
: i:f Tl s ] S e
L — .-;ﬂ:”"’ = -}.\ o __.Sh = -0025 [ -~ x Eb ]
0.00 _Fvb‘.\*\\ ........................................... - 10—3 E_an(- i3 uJ AAAAAAA .
g 3 B ‘%’ 4. 1 s RN S a0
N \'- \\ ) -9 S~ r EP A
% —0.02 ' \ _—h g NI ]
3 P \ ./{’ o 107 E""rm = 05 2 e
o 0.010 /$ ‘\ % 4 E é e =
00als ¥ AT ] e .
-0.04 2 AT \ Lok = 02 i
0.001 qf < Rm s
[ Rm = 0.04 _.-%7
-0.06 0.1 1.0 4 ”
Lo Rm . ) 10 - | .
0.1 1.0 10.0 100.0 0.01 0.10
Rm —Sh

FIG. 5. Symmetric contribution:. as a function of RmfoPm = 1 FIG. 7. Pumping velocityy = 3(a21 — a12) normalized byno as a

and four values of shear as indicated by the legend (Sets Ba)to  function of Sh forPm = 1 and different values of Rm as indicated
in the legend (Sets C1-C4). Analytical results accordinggs. (1)

with Ci(q) = 1, and [24) are overplotted with dotted and dashed

values of the shear parameter, Sh-2.5 (—0.25), there is a lines, respectively.

vorticity dynamo for Rm> 1 (Rm > 3), so no points are
plotted in those cases.

The off-diagonal component; 2, shown in Fig[h, is pro-
portional to Re for small Rm, while the analytical expres- In Fig.[d we showx as a function of Rm. We find that
sion [I5) yieldsays o« Re€. A sign change occurs for is proportional to Rm for small magnetic Reynolds numbers
Rm ~ 2, and the values ofi;» are consistently negative in in agreement with Eq_(16). For Rm greater than roughly five,
this regime in agreement with Eq._{25) derived for Rm 1 « decreases slightly, while the theory suggests ¢histinde-
and Re>> 1. The data is noisy but suggest that could be  pendent of Rm for Rms> 1. This inconsistency can be un-
independent of Rm at high Rm in an agreement with the anaderstood in terms of the relative kinetic heliciky/ (kru2,.),
lytical result [25). Furthermore, for small Rm the deperden whereH = w-u, which decreases by about 20 per cent be-
on shear is weak, although a clearer dependence on sheartigeen Rm 8 and 83 (see the inset in Eiy. 6). Since H,
seen for Rm greater than around 10. this explains the decrease@fwith Rm for Rm>> 1.
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10'1§ T S T T E flow since the DNS results are nearly independent of Mach
r 1 number for Ma< 0.05. This is shown in Fid.19, where we no-
I / ’I‘ 1 tice a sharp decline of for larger values of the Mach number.
107%F ¥----_ - % ==k 3 We are not aware of similar findings for mean-field transport
3 J[ ..... ‘I’* ---- % """"""""" Q E coefficients as a function of Mach number.
o
s F ot Y, SETT IS CURT, o E
~ 107°%F t ¢ 3
5 o 1, ________ E IV. DISCUSSION AND CONCLUSIONS
PR A G <I> :
10-4:_ o Rm = 0.04 | To clarify the physical effect related to the pumping ve-
E A Rm =02 locity, v, and the off-diagonal components of the tensgr
O Rm = 0.5 . . . Lo
x Rm = 1.3 we rewrite the contributions to the mean electromotivedorc
10-5 P X Rm =16 . . which are proportional to the mean magnetic field in the fol-
lowing form:
0.01 0.10 g
—Sh 51(5) = OéijEj + (’7 X E)z

= |4 x B®) 4 4T x BM| | (50)

FIG. 8. Symmetric contribution;2 normalized by, as a function _ '
of Sh forPm = 1 and different values of Rm as indicated in the whereB(7) is the toroidal mean magnetic field directed along
legend (Sets C1-C4). Runs with Rm 16 are shown with asterisks the mean shear velociy/ (along they axis), B(") is the
and connected by a dashed line. For these tuns< 0 so the plot  poloidal mean magnetic field directed perpendicular to poth
shows—auz. the mean shear velociy and the mean vorticity (along the

x axis), while the pumping velocities;(") and~("), of the
i L B S A toroidal and poloidal components of the mean magnetic field
are given by:

107 s ? 7 P =2 (a2 + ), (51)
SR S : T = 2 (13 — 7). (52)

=
[
o]
@
—
(=]
&
)
(=}

l Here we take into account the following identities for thé of
| diagonal components of the tenser = (£;9; + ;;:) @12
% | andaijﬁj =122 X (E(P) — E(T)), Wherealg = (21 and
&, y, z are the unit vectors directed alongy and z axes,
respectively.
It follows from these equations that, when, > v > 0,
the effective pumping velocity of the poloidal mean magneti
107° ! . . field is directed upward (along the axis), while the effec-
0.001 0.010 0.100 1.000 tive pumping velocity of the toroidal mean magnetic field is
Ma directed downward. Whens < 0, but|ais| > v, the sit-
uation is opposite, i.e., the effective pumping velocitythod
toroidal mean magnetic field is directed upward, while the ef
FIG. 9. Pumping coefficient = % (a1 — a12) as a function of the fective pumping velocity of the poloidal mean magnetic field
Mach number folPm = 1 (Set D1). The normalization factor is IS directed downward. Therefore, the effective pumping ve-
Q0 = %Urms, and Sh= —0.10. locity, v, as well as the off-diagonal components of the tensor
a4, resultin a separation of toroidal and poloidal components
of the mean magnetic field. This effect is very important for
large-scale dynamo action in shear flow turbulence.
Another reason for the different pumping velocity of
toroidal and poloidal components of the mean magnetic field
Figure[T shows the pumping velocitynormalized bycy  is a combination of the effects of rotation and stratificaim
as a function of the shear number, Sh,an = 1 and differ-  small-scale turbulence. The effect of the separation ofda
ent values of Rm. Linear dependenceyadn shear is clearly  and poloidal components of the mean magnetic field was early
seen in Figll7. This is in agreement with the analytical re{dentified in analytic calculations of rotating stratifiastiu-
sult of Eq. [(I#). Rather surprisingly, the data for, suggest |ence in [26/ 56], confirmed in DNS of rotating stratified con-
that there is no dependence on shear (Big. 8), in contradicti vection [57)58], and included in numerical mean-field mod-
with the analytical result of Eq._(15) that was derived foim  eling of the solar dynamo in [59]. Note also that a nonlinear
shearSm < 1. feedback of the mean magnetic field to turbulent fluid flow
Note that our theory has been developed for incompressibleauses a different pumping velocity of toroidal and polbida

Y/

3. Dependence on shear



10

components of the mean magnetic field [9]. The latter effect Li(k) = /G G, (GF)? du = 7w (3v+ 1)
was included in numerical mean-field modeling of the solar ATy 202 (v +n)? kS’
dynamo in[[60]. o e T

In summary, we have developed a mean-field theory for a I5(k) = /Gn G, G, dw = ma
pumping effect of the mean magnetic field in homogeneous
helical turbulence with imposed large-scale shear. In pat-a Is(k) = /G,7 G G dw = %,
ysis we use the quasi-linear approach, the path-integril te Avd (v +n)k
nigue and tau-relaxation approximation, which allow usde d Ii(k) = /G3 GG dw — m
termine all components of the tensor in different ranges of KA v(v+mn)3ks
hydrodynamic and magnetic Reynolds numbers. The pump- ) . T
ing effect depends on the effect and on shear. Using DNS Is(k) = /Gn G, G dw = POk

and the kinematic test-field method we were able to determine
all components of thex tensor from numerical simulations
of sheared helical turbulence. The major part of the numer- Appendix B: Derivation of Eqs. (28) and [30) in path-integrd
ical results for the effective pumping velocity, the diagbn approach

and off-diagonal components of thetensor are in a good

agreement with the theoretical results. However, the nismer 14 gerive Eq.[25) we use an exact solution of the induction
cal results for,; suggest that there is no dependence of the,quation with an initial conditioB(t = to, z) = B(to, z)
off-diagonal component on shear in contradiction with the a i the form of the Feynman-Kac formula:

alytical result. In addition, according to the numericaluis
a12(Re) is proportional to Re for small Rm, while the theory Bi(t,x) = (Gi;(t, t0, &) Bj(t0,€))w (B1)
yieldsa» o« R€. On the other hand, the change of the sign

" . and assume that
of ayo from positive for small Rm to negative for large Rm

observed in DNS is in agreement with the theoretical predic- B;(to, &) = /exp(i£ -q)B;(to,q) dq . (B2)
tions. ’ ’
Substituting Eq.[(BR) into Eq[_(B1) we obtain
ACKNOWLEDGMENTS Bi(t,x) = /<Gij (t,to, &) exp[ié - q))w
Numerous illuminating discussions with Alexander x Bj(to, q) exp(iq - =) dq , (B3)

Schekochihin on the shearing waves approach are kind
acknowledged. The numerical simulations were performe
with the supercomputers hosted by CSC — IT Center for Scid

Igvhereé = £ —x. In Eq. [B3) we expand the functienp|if -
] in Taylor series afy = 0:

ence in Espoo, Finland, who are administered by the Finnish R 1.
Ministry of Education. Financial support from the Academy exp(i§ - q) = Z 7 (i€-q)",
of Finland grant Nos. 136189, 140970, the Swedish Research k=0

Council grant 621-2007-4064, COST Action MP0806, andang use the identity:
the European Research Council under the AstroDyn Research . _ o _
Project 227952 are acknowledged. The authors acknowledge V¥exp(ix - q) = (iq)" exp(iz - q).

the hospitality of NORDITA. This allows us to rewrite Eq{B3) as follows:

oo 1 R )
Appendix A: The integrals of the Green functions Bi(t,z) = (Gi;(t, to, ) [Z %! €-V) bw
k=0
For the integration i-space in the case of small magnetic % /B_j(to, q) exp(iq-x)dq . (B4)
and hydrodynamic Reynolds numbers we used the following

integrals in Eqs[(11) and(112): After the inverse Fourier transformationB;(to,z) =

- | B;(to,q) exp(iq - =) dgq, in Eq. [B4) we obtain Eq[(26).

Iy(k) = /Gn G, G dw= Equation [[B2) can be formally considered as an inverse

v(v+n)kt Fourier transformation of the functiol;(ty,¢). Equa-
(k) = /Gz G2 G dw — 4 tion (28) has been also derived by a rigorous method, using th
K 202 (v +n)? k3’ Feynman-Kac formula and Cameron-Martin-Girsanov theo-
. 7 (50 + 1) rem (see [47]).
I(k) = /G% G, (G3)? dw = ORI Averaging Eq.[(26) over the random velocity field yields the
- equation for the mean magnetic field
Lk)= | G,G, (G dw = ————— — -
3(k) / n G (G))” duw 4v3 (v +n)3 k8 Bi((m+1)7,2) = ((Gi;(t, 5,€) exp(§ - V)))w

x 2u(v+n) + (v +n)? + 47, xB;(mT,x), (B5)
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where the angular brackets denote the ensemble average These equations were obtained by taking tveicd of Eq. (2).

over the random velocity field. Now we use the identity Equations[(CR) and{T3) have explicit solutions:
Bi(t+7,x) = exp (T%)Ei(t, x), (B6)
t
which follows from the Taylor expansion ug(t, ko) = k%(t) / dt’ G,,(t,t’) K2(¢) fa (2 ko),
00 a m 8 " 0
flt+7)= Z<T§) f(t)exp( m)m (C4)
m=1 u,(t, ko) = ulD(t, ko) + u'? (t, ko), (C5)
Therefore, Eqs[(B5 6) yield 1
P q_l:(E =B )_y o uy(t, ko) = i [k () uz (t, ko) + k2 u(t,ko)], (C6)
exp (T5>Bi(l€, iL‘) = (Gij + Gijfmvm + Aijmvm ty
_ A Wtk :/dt’éytt’zt’k c7
+Czjmnv v )B EeXp(TL)B (B?) 'LLZ (7 0) o (? )f( ? 0)7 ( )
whereG; = ((Gilw = 0y + Uiy T+ OUSTYL & = L@ ko = 25 k. / ar B0 (¢ k). (cB)
(EDw = ~Tit + OST)?), Aijm = ((EnGij)hw 0 k2(t')

Cijmn = <<§m§n ij))w, and we introduced the operatbr
which allows us to reduce the integral equation](B5) to a par-

tial differential equation. Indeed, EQ. (B7), which is réen  \hereG, (¢,#') = exp |:—I/j;t, dt”kQ(t”)}. Equations[{C4)—
in the form (C8) for a white-in-time forcing yield the following formas

eXp|: <L — aﬁﬂﬁ =B (B8) for non-instantaneous two-point correlation functions:
t
reduces to
0B .- k2(t)
22 _IB. ot ko) Dt K ot
Taylor expansion of the functioekp(rﬁ) reads X (ug(t ko) (1)( ko)), (C9)
exp(tL) = E+ 7L+ (rL)*/2+ ..,  (B10) (WM (t ko) ul (¥ ko)) = Gu(t,t)
whereF is the unit operator. Thus, EqE.(B7) ahd (B10) yield x (Dt ko) ul(t' ko)), (C10)
- 1 — _ éy tl,t”
L= Lij=—(Gij = 0ij + £mGijVim + Aijm Vi) (g (t, ko) wX D (' ko)) = 28 kyk. / dt” kgT”))
0
3
+DijmnVm Vi + O(V?), - 61D x (g (t, ko) u (1" ko)), (C11)
whereD;jmn = (Cijmn — AikmArjn)/27. This yields Eq. . L to G ()
). <’U,Z (t,ko) ux(t ,k0)> =25 kykz dt LY
‘ 0 k2(t")
X (uy (" ko) ul(t' ko)), (C12)

Appendix C: Orr-Kelvin random shearing waves for small
hydrodynamic Reynolds numbers

where fort” <t/
We explain here the details that led to the derivation of

Egs. [36) and[{37). We seek the solutions of the linearized

Eq. (2) for incompressible velocity field as superpositions . , - K2
of the Orr-Kelvin shearing waves: (ua(t”, ko) uy (t', ko)) = Gu(t',t") Bl
u(t,r) = / u(t, ko) explik(t) - r]dko,  (C1) x (ug (", ko) uz (t”, ko)), (C13)

(see, e.g..[[23, 48-50]), whekg = (kyo,ky,kz), k(t) =
(kzo — Skyt, k:y, k.) and we neglected weak Lorentz force. and fort” > ¢/
The amplitudes of the shearing waves satisfy the following

equations:
Ouy (L, k kyky ) -
W - [25 kQ(t()t) _y/g?(t)} U (t, ko) + fo, (¢ ko) (£ o)) = G (£ ) ;]j ((;”))
(C2) X (ua (¥ ko) w (1 ko). (C14)
3uzgft, kO) — 2Sk f) z(t,ko) _ sz(t) Uz(t,ko) + fz.

(C3)
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