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ABSTRACT

Context. Turbulent fluxes of angular momentum and enthalpy or heatalugtationally affected convection play a key role in deter
mining differential rotation of stars.

Aims. We compute turbulent angular momentum and heat transpdunations of the rotation rate from stratified convectione W
compare results from spherical and Cartesian models inaime parameter regime in order to study whether restrictechgey
introduces artefacts into the results.

Methods. We employ direct numerical simulations of turbulent cortigetin spherical and Cartesian geometries. In order twialie
the computational cost in the spherical runs and to reachgasspatial resolution as possible, we model only parts efl#titude
and longitude. The rotational influence, measured by théo@®number or inverse Rossby number, is varied from zemotghly
seven, which is the regime that is likely to be realised irsitlar convection zone. Cartesian simulations are perfdimeverlapping
parameter regimes.

Results. For slow rotation we find that the radial and latitudinal wdnt angular momentum fluxes are directed inward and equa-
torward, respectively. In the rapid rotation regime theiahflux changes sign in accordance with earlier numericsililits, but in
contradiction with theory. The latitudinal flux remains ripequatorward and develops a maximum close to the equatGartesian
simulations this peak can be explained by the strong ‘banaltsi. Their effect in the spherical case does not appebetas large.
The latitudinal heat flux is mostly equatorward for slow tmta but changes sign for rapid rotation. Longitudinal Haat is always

in the retrograde direction. The rotation profiles vary frami-solar (slow equator) for slow and intermediate rotatio solar-like
(fast equator) for rapid rotation. The solar-like profilee dominated by the Taylor-Proudman balance.
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1. Introduction defined by Reynolds averaging of products of fluctuating quan

) ) . tities, v.i.z., the fluxes of angular momentum and heat,aesp
The surface of the Sun rotates differentially: the rotai® yely are

riod at the pole is roughly 35 days as opposed to 26 days at

the equator. Furthermore, the internal rotation of the Sas h, — —— L
been revealed by helioseismology (e.g. Thompson &t al)2003% = %it»
the radial gradient of2 is small in the bulk of the convec- F, = cpp u/T". (2)

tion zone, whereas regions of strong radial differentition
are found near the base and near the surface of the conugere overbars denote azimuthal averaging, primes denate flu
tion zone. According to dynamo theory, large-scale sheayspl tuations about the average,; is the Reynolds stress;; is
an important role in generating large-scale magnetic fi@ds the turbulent convective energy flua,is the velocity, T is the
Moffatt[1978; Krause & Radler 1980). More specificallydef temperaturep is density, and:p is the specific heat at constant
scale shear lowers the threshold for dynamo action and tie cyressure.
bined effect of helical turbulence and shear yields odoitia Much effort has been put into computing these correlations
large-scale magnetic fields, resembling the observed solar ysing analytical theories (e.g. Riidiger 1980, 1982; Kitztov
tivity pattern (e.g. Yoshimura 1975). It is even possibleltve ¢ Riidiger[1993; Kitchatinov et al. 1994). Most of the analyt
a large-scale dynamo in nonhelical turbulence with shear (g studies, however, rely on approximations such as fico
Brandenburg 2005; Yousef et al. 2008a, 2008b; Brandenliurgsgoothing, the applicability of which in the stellar enviroents
al.[2008). Thus, it is of great interest to study the proce#isat can pe contested. In order to get more insight, idealised nu-
generate large-scale shear in solar and stellar convextio®s. erical simulations, often working in Cartesian geomeigye
Differential rotation of the Sun and other stars is thouglfeen extensively used to compute the stresses for modas#y |
to be maintained by rotationally influenced turbulence ieith Reynolds numbers (e.g. Pulkkinen et[al. 1993; Brummell et al
convection zones. In hydrodynamic mean-field theoriesedf st7998: Chari 2001; Kapyla et al. 2004; Rudiger et al. 2005b)
lar interiors the effects of turbulence appear in the forntuof However, the Cartesian simulations have yielded some jmagz!
bulent fluxes of angular momentum and enthalpy or heat (¢ésults, such as the latitudinal angular momentum flux tgain
Rudiger 1980; Rudiger & Hollerbach 2004). These fluxestman very strong maximum very close to the equator (e.g. Chan:2001
Hupfer et al 2005) and a sign change of the corresponding ra-
Send offprint requests te-mail:pet ri . kapyl a@el si nki . fi dial flux (Kapyla et al_2004). Neither of these effects dsn
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recovered from theoretical studies or simpler forced tlethee 2. Model

imulations (Kapyla & Brandenburg 2 . . T

S ;a;[ct). S Iapy af}f&t ?hd? bbulg tOOS) i Our spherical model is similar to that used by Kapyla et al.
otation also affects the turbulent convective energystra 20104a) but without magnetic fields. We model a segment of a

port. In fact, in the presence of rotation, the turbulentthe ar, i.e. a “wedge”, in spherical polar coordinates wiiere, )

transport due to convection is no longer purely radial (e'gen’ote the radius’, colatitude, and longitude. The rada'ai—, I

Brandenburg et al. 1992; Kitchatinov et al. 1994). In a Splet yina) and longitudinal extents of the computational dam
such anisotropic heat transport leads to latitude-depernem- are gi\;en by0.65R < r < R, 0y < 6 < 180° — 6, and

perature and entropy distributipns. Suph variations cai_nbe 0 < ¢ < ¢o, respectively, where? is the radius of the star.
fhe Reynolds sress and molecular difusion,the evolafahe. " 1l Of ur rns we ke, — 15° andgy — 90°. In Cartesian
X o " geometry, the coordinatés, y, z) correspond to radius, latitude

azimuthal component of vorticityy = V x @, is governed by and longitude of a box located at a colatitugleOur domain
spans from0.65R < = < R, —0.35R < y < 0.35R and

0wy ) o’ _ _ —0.35R < z < 0.35R, i.e., the extension of the horizontal di-

5 —remfo—+ ?(VP X VD)s, (3) rections is twice the vertical one, as has been used in prsvio
Cartesian simulations (e.g. Kapyla etlal. 2004).

R ) o ) In both geometries, we solve the following equations of com-
whered/dz = €2 - V is the derivative along the unit vector of pregsible hydrodynamics,

the rotation vecto2 = (cosd,—sin b, 0), andp is the pressure.

The last term on the rhs describes the baroclinic term whach cD np _ -V - u, (5)
be written as t
Du 1
1 B g 3 E:g—Qqu—I——(V-QupS—Vp), (6)
?(Vﬁ x Vp)y = (VT x V3)y =~ ~ron 80" (4) P
Ds 1 2
= = — (V-KVT+208% —Teool) . 7
Dl = o7 (V-KVT+20S ) (7

whereg = |g| is the acceleration due to gravity,is the spe-
cific entropy, andVT = g/cp has been used for the adiabatiovhereD/Dt = 0/0t 4+ u - V is the advective time derivative,
temperature gradient. In the absence of latitudinal egtgyp- v is the kinematic viscosityis' is the radiative heat conductivity,
dients, the solution of EqLJ3) is given by the Taylor—Proagim andg is the gravitational acceleration given by

theorem, i.e99Q2/9z = 0. In general, however, the thermody- GM

namics cannot be neglected and latitudinal gradients ebpnt g = ——-7, (8)
influence the rotation profile of the star via the baroclimia. " L )

Such an effect is widely considered to be instrumental imlore WhereG is the gravitational constant/ is the mass of the star,
ing the Taylor—Proudman balance in the solar case (e.g. Ble dr is the unit vector in the radial _(jlreg:tlon. Note that in the
2005; Miesch et al, 2006). Local simulations can be used to de@'tesian case corresponds to thedirection so that all radial
termine the latitudinal heat flux but by virtue of periodicima- Profiles in spherical coordinates directly apply to the €siein
aries, no information about the latitudinal profile of eplyaan model. We omit the centrifugal force in our models. This is-co
be extracted from a single simulation. Earlier local stedieg- Nected with the fact that the Rayleigh number is much less tha
gest that in the presence of rotation the latitudinal heatilu In the Sun, which is unavoidable and constrained by the numer
directed towards the poles (e.g. Rudiger et al. 2D05b) azahm ical resolutlpn available. This implies .th.at the chh numise
field models in spherical geometry indicate that such a flagise 1arger than in the Sun. Nevertheless, it is essential to heade

to warm poles and a cooler equator (e.g. Brandenburg et igfic Coriolis numbers. i.e. the Coriolis force has to bgéarby
1992), thus alleviating the Taylor—Proudman balance. the same amount that the turbulent velocity is larger, bthouit

It is possible that the use of Cartesian geometry and pe?)|gn|f|cantly altermg_ the hydrostatic balance that is dataed
odic boundaries give rise to artefacts which are not preisent y gravity ‘fi”d centnfug_al forces. .

fully spherical geometry. In the present paper we undertiaée The fluid obeys the ideal gas law with= (y —1)pe, where
computation of Reynolds stress and turbulent heat tranpar 7 = ¢P/¢v = 5/3is the ratio of specific heats in constant pres-
simulations in spherical geometry as functions of rotatamd sure and volume, res_pectwely, a@ck evT is the internal en-
compare them with Cartesian simulations of the same systgﬁgy' The rate of strain tensBris given by

located at different latitudes. One of the most importamigof S;; = 3 (u;;; + uj;;) — 3055V - u, 9

the paper is to find out whether the present results in Cartes}, ere the semicolons denote covariant differentiatioe (dira
geometry compare with early similar studies and to testagéh et al.[ 2009 for details)

results are still valid when spherical geometry is used. Asa The computational domain is divided into three parts: a

side result we also obtain angular velocity profiles as a'funl%wer convectively stable layer at the base, convectivelstar
tion of rotation from our spherical simulations which, howe ble layer and a cooling layer at the top mimicking the effects

are dominated by the Taonr-Proudm_an balance i_n the regilE)]faradiative losses at the stellar surface. The radial jpost
most relevant to the Sun. Thus we fail in reproducing thersol@I '

; \ o 71,72,73,74) = (x1,2T2,23,74) = (0.65,0.7,0.98,1)R give
rotation profile which IS a common problem _that can current 1e Iozca':tgion4s> of th(e 1botiom3 ofi%e d(gmain bottom arzd tgp ef th
be overcome only by introducing some additional poorly corl, ’

X Lo . onvectively unstable layer, and the top of the domain,eesp
strained terms, e.g. a latitudinal entropy gradient, bydhather : i
than self-consistently (e.g. Miesch et al. 2006). Anothgpor- tively. The last term on the rhs of £q1 (7) describes coolntye

tant use for the results will be the more ambitious futuresrur?urface layer given by
2 2

where subgrid-scale models of the turbulent effects carsbkd u

_ Cs Cs0
to overcome the Taylor-Proudman balance. Leoot = Tof(r) <7030 ) ; (10)
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where f(r) is a profile function equal to unity in > r3; and
smoothly connecting to zero below, aig is a cooling lumi-

nosity chosen so that the sound speed in the uppermost layer
N

2
S

relaxes toward?, = c2(r = r4).

2.1. Initial and boundary conditions

For the thermal stratification we adopt a simple setup thabea
described analytically rather than adopting profiles frosokar

or stellar structure model as in, e.g., Brun etlal. (2004) Lidfea
piecewise polytropic setup which divides the domain inte¢h

layers. The hydrostatic temperature gradient is given by
oT —g

= 11
ar  ev(y—1)(m+1)’ (11)

wherem = m(r) is the radially varying polytropic index. This
gives the logarithmic temperature gradi&fnot to be confused
with the operatoV) as
V=0mT/0lnp=(m+1)"" (12)
The stratification is unstable ¥ — V,q > 0 whereV,q =
1 — 1/, corresponding ton < 1.5. We choosen = 6 for
the lower overshoot layer, whereas = 1 is used in the con-
vectively unstable layer. Density stratification is ob&rby re-
quiring hydrostatic equilibrium. The thermal conductjig ob-
tained by requiring a constant luminosifythroughout the do-
main via

L

K= t=ar/or (13)

In order to expedite the initial transient due to thermadxation,
the thermal variables have a shallower profile, correspantti

p o< T14, in the convection zone and = 1 is only used for the
thermal conductivity. This gives approximately the rightrepy
jump that corresponds to the required flux (cf. Brandenbtirg
al.[2005%). In Figll we show the initial and final stratificatsoof
specific entropy, temperature, density, and pressure farticp
ular run.

heat flux in sphericall sbnvection
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Fig. 1. Radial profiles of entropy, temperature, density, and pres-
sure in the initial state (solid lines) and the in the sardatate
(dashed) of Run B0O. Reference valugsandp, are taken from
the bottom of the convectively unstable layer in the inigite.
The dotted vertical lines ab = 0.7R andrz = 0.98 R denote
the bottom and top of the convectively unstable layer, respe
tively.

2.2. Nondimensional quantities
Dimensionless quantities are obtained by setting
R=GM=py=cp=1, a7

wherepy is the density at,, The units of length, velocity, den-
sity, and entropy are then given by

[w] \/GM/Ra [p]ZPOa [S]ZCP'

Fhe Cartesian simulations have been arranged so that the thi
ness of the layers is the sange= —(GM /%), and R, which
is still our unit length, has no longer the meaning of a radiie
simulations are governed by the Prandtl, Reynolds, Cariahd

=R, [U] (18)

In the spherical models the radial and latitudinal bourearigay|eigh numbers, defined by

are taken to be impenetrable and stress free, according to

. aU(y . ug aU¢ . U¢ .
Upr = 0; 87' - r I ar - r (T - 7’1, 7’4), (14)
N =0, 29 ot (0= 09m—8).  (15)
89 7’”‘97 9 ae 7u¢ - 077T 0)-

rms 2 Q
Pr:L,Re:u , Co= 0 , (29)
X0 vk UrmsKs
GM (Ar)* 1 ds
_ _ == 2
Ra vxoR? cpdr/, ’ (20)

On the latitudinal boundaries we assume that the thermadiynawherexo = K/(pmcp) is the thermal diffusivityks = 27/Ar

quantities have zero first derivative, thus suppressingfheas
through the boundary.

is an estimate of the wavenumber of the energy-carryingssddi
Ar = r3 — ro is the thickness of the unstable laygy, is the

In Cartesian coordinates we use periodic boundary condgnsity in the middle of the unstable layerat = (r3 +12)/2,

tions in the horizontal directiong (@ndz), and stress free con-gng,,

ditions in thex direction, i.e.,
ou,

Ouy
i T P

The simulations were performed using theneiL Cop],
which uses sixth-order explicit finite differences in spaoce a
third-order accurate time stepping method (see Mitra &G09
for further information regarding the adaptation of theneiL
CobE to spherical coordinates).

(16)

(x = 21, 24).

! http://pencil-code. googl ecode. conl

= /3 (u2 +u2) is the rms velocity. The latter ne-

glects the contribution from th@-component of velocity which
is dominated by large-scale differential rotation whickeleps
when rotation is included, and where the angular bracketstée
volume averaging. The entropy gradient, measured,dh the
initial non-convecting state, is given by

o vm - vad
. Hp ’

whereV,, = (0lnT/01np), , and Hp is the pressure scale
height atr,.

1 ds

21
cp dr (1)
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Table 1. Summary of the runs.

Run grld Ra Ma Re Co Ether Ekin Emer/Ekin Erot/Ekin AQ/Qeq
A0 128 x 256 x 128 3.1-10° 0.023 38 0.00 0.116 7.71-107° 0.045 0.004 -
Al 128 x 256 x 128 3.1-10% 0.022 36 0.13 0.114 6.86-10~° 0.016 0.022 —0.15
A2 128 x 256 x 128 3.1-10° 0.022 36 0.25 0.114 7.18-107° 0.015 0.073 —0.31
A3 128 x 256 x 128 3.1-10% 0.022 37 0.50 0.113 1.16-107* 0.010 0.438 —1.03
A4 128 x 256 x 128 3.1-10% 0.029 48 0.94 0.112 1.05-1073 0.016 0.927 —1.74
A5 128 x 256 x 128 3.1-10° 0.022 36 2.56 0.111 9.87-10~* 0.002 0.949 —0.37

A6 128 x 256 x 128 3.1-10% 0.018 30 6.09 0.114 2.32-10*  0.000 0.824 +0.20
BO 128 x 512 x 256 8.6-10%° 0.020 54 0.00 0.113 5.78-10~°  0.036 0.009 —

B1 128 x 512 x 256 8.6-10% 0.020 57 1.34 0.112 6.45-10~%  0.009 0.927 —1.10
B2 128 x 512 x 256 8.6-10° 0.018 50 3.06 0.113 1.15-10"*  0.001 0.689 +0.12
B3 128 x 512 x 256 8.6-10% 0.016 44 6.93 0.113 1.77-10"*  0.000 0.833 +0.20
C1 128 x 256 x 128 1.7-107 0.008 12 7.42 0.113 1.87-10~°  0.000 0.640 +0.09

Notes. HereMa = tyms/\/GM/R, AQ = Qeq — Qpole, WhereQoq = Q(r4,0 = 90°) and Qpoie = Q(ra,0 = o). Ewner = (pe) and
Ein = (3pu?) are the volume averaged thermal and total kinetic energisgectively, in units oM po/R. Eme: = 1 (p(u3 + u3)) and
Erot = 1 (pu3) are the kinetic energies of the meridional circulation aifigtential rotation. In Run C1 we usé = 7.5 - 107> andPr = 6.7.

Fig.2. Radial velocityu, at a small distancer(= 0.9R) below the surface from Runs BO-B3. The scales giyen units
of the local sound speed. For visualization purposes, theadtois duplicated fourfold in the longitudinal directioBee also
http://ww. hel sinki.fi/~kapyl a/ novi es. htm

The energy that is deposited into the domain at the basenisre initialized from scratch, whereas in Set B a nonrogatin
controlled by the luminosity parameter simulation BO was run until it was thermally relaxed. Thegun
with rotation (B1-B3) were then started from this snapsimok a
r— L (22) computations carried out until a new saturated state wateeh
po(GM)3/2R/2’ In Fig.[D we compare the initial and final stratification of sifie
) o entropy, temperature, density, and pressure for Run BO.
where L = 4mriF, is the constant luminosity, anéfi, = Visualizations ofu, at a small distance below the surface are
—(KOT/0r)|r—y, is the energy flux imposed at the lowelshown in Fig[® for Runs BO-B3. The convective velocitigs
boundary. We useC = 1.4 - 107" in most of our models. can be decomposed in terms of poloida)j and toroidal /1)

Furthermore, the stratification is determined by the pressiparts following Lavely & Ritzwoller[(1992)
scale height at the surface

(v = DevTy 23 up =Real Y {uf (NYi# + o (r) VY] } (24)
§= T GM/R (23) k.l
whereT, = T(r = r4). Similar parameter definitions were useds, = Real Y _ {wh!(r)# x VY}'}, (25)
by Dobler et al.[(2006). We usg = 0.020, which results in a Kl

density contrast of0? across the domain.

whereY} (6, ) are spherical harmonics. The geometry and am-
plitude of the poloidal velocity are completely defined Ay,
andul! since, assuming approximate mass conservatjdrand
Our main goal is to extract the turbulent fluxes of angular me#’ are related as

mentum and heat as functions of rotation from our simulation
In order to achieve this we use a moderately turbulent motel a ,,; Or(r? pukl(r))
vary the rotation rate, quantified by the Coriolis numbespfr P (r) = prk(k + 1)
zero to roughly six in Set A (see Tallé 1). We also perform a

subset of these simulations at higher resolution in Set Baand he poloidal flow has characteristics of Bénard conveatilis
single run (C1) with a lower Mach number. The runs in Set Avith upwellings at the centres of cells and downdraughtden t

3. Results

(26)
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Fig. 3. Vertical Reynolds stress),.;, from Set A.

peripheries. The toroidal flows are characterised by thapla
tude and geometry given !, k, andl respectively. In contrast
to poloidal flows, their nature resembles that of rotatiets pr
horizontal vortices. In Fid.]2, we observe that so cabedana
cells become prominent in the radial velocity with an increa
in the Coriolis number. Such velocity flows are poloidal flow
given by spherical harmonig! (6, ). For Run B3 in Figl2, we
find maximum power at = 16. Note that the reality of the ba-

heat flux in spheriagl sbnvection
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Fig. 4. Horizontal Reynolds stresé}.%,, from Set A.

where A;;;, describes the nondiffusive contribution-gffect)
and \V;;; the diffusive part (turbulent viscosity), cf. Rudiger
(1989). However, disentangling the two contributions ig no

Straightforward, see e.g. Snellman et al. (2009) and Kapy!

al. (2010b). We postpone a detailed study of the turbulenstr
port coefficients to a future study and concentrate on comgar
the total stress with simulations in Cartesian geometry.

nana cells in the Sun is hotly debated. Even though significan 't IS convenient to display the components of the Reynolds
power is found at wavenumbers corresponding to giant cells§tress In non-dimensional form (indicated by a tilde), ande-

the surface velocity spectra of the Sun, no distinct pealbbas

found at those wavenumbers (Chou ef al. 1991; Hathaway et al.
2000). Global helioseismology caps the maximum radiala«lo

ity of the banana cells & m s~! (Chatterjee & Antia 2009).

3.1. Reynolds stress

The angular momentum balance of a star is governed by the cans

servation law (Rudiger 1989)
0

ot

wherew = rsin @ is the lever arm an@i,., = (u,,uy) is the

meridional circulation. The latter term on the rhs des®itie

effects of the Reynolds stress componépig andQg4, which

describe radial and latitudinal fluxes of angular momentus,
spectively. The stress is often parameterised by turbttans-

port coefficients that couple small-scale correlation$uétge-

scale quantities, i.e.

(pw’Q) = -V - [ﬁw (wﬁﬁmer + W)} , 27)

ouy,

Qij = Nij Q% — -/\[ijkla—xl7

(28)

Ine

i = u;ug/ufms, (29)
whereu,ms = urms(r, 0) is the meridional rms-velocity. The
averages are calculated over the azimuthal direction and ti
also foru,,s. In the following, we refer to the three off-diagonal
gcomponents@,.4, Qsg, and Q,q, as vertical, horizontal, and
ridional components, respectively. Representativateefor

the vertical stress componeft., are shown in Fig.13. We find
that for slow rotation (Run A1)Q,, is small and does not ap-
pear to show a clear trend in latitude. In Run A2 with ~ 0.25

the stress is more consistently negative within the comnxedgt
unstable layer, showing a symmetric profile with respechi t
equator. These two runs tend to show the largest signal hear t
latitudinal boundaries which is most likely due to the boaryd
conditions there. Similar distortions are also seen in &ngd-
scale flows (see Sedi._8.4). In the intermediate rotatioimmeg
(Runs A3-A5)(),., is predominantly negative, although regions
of opposite sign start to appear near the equator. In Run A6
the stress is mostly positive. Qualitatively similar résware ob-
tained from the runs in Set B. Therefore there is a sign change
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Fig.5. Latitudinal profiles on(w andQ for Runs A4, A5, and A6 (from left to right). The red dottedds show data from
corresponding Runs B1, B2, and B3 from= 0.8 R. The open red diamonds in the top panels denote Cartesias ¢dAIR-cA4,

cD1-cD4, and cE1-cE4, from left to right. The blue squarethintop-middle panel show the values @f,. computed from
Fourier-filtered velocity fields from Runs cD1-cD4. Notetthaly a part of the full latitudinal range is shown.

roughly atCo = 2. A similar phenomenon has been observed ican see from here that peaks@}_;'"'* (dashed line) appear

Cartesian simulations (Kapyla et al. 2004).

We find that the horizontal stres@,%, is always positive
(negative) in the northern (southern) hemisphereGor< 1,
i.e. antisymmetric about the equator, see Eig. 4. For irgeim
ate rotation (Runs A4 and A5) the stress is observed to cha
sign at high latitudes. In Figl 5 we plot the latitudinal plediof
the horizontal stress and the mean angular velocity atrdifte

depths for the Runs A4—AB6. It can be seen that near the bott

of the convection zone, the profile of the stress becomes m§ . 2 .
b :ﬁﬁjs in the context of Cartesian runs in Séct._3.2.1. Howeve

and more concentrated about the equator as the Coriolis n
ber increases. An especially abrupt change can be obsawe

Run A5 (Co ~ 2). A similar peak also persists in Runs A6, B3nents likeQ,

rchSeg

at+6° as well as at-20° latitude, whereas peaks @5, "
appear at:10° latitude, and highest peaks @,"'"** appear

at +60° latitude. Comparing Fid.]4 with Fig. 3.2, we see that
low rotation (Runs Al and A2), a major contribution to the
ress may come from giant cells with an angular dependence
Y%, whereas at highefo (Run A6), the stress may have con-

YJiRutions from banana cells with angular dependeri¢e. We

Il return to the question regarding the contributionasfdna

ere also exists symmetric contribution @, from compo-

16,1616 1yt we do not see any significant symmetric

and C1 with the largest Coriolis numbers. Note, howevet, thpart in the horizontal stresses from the numerical simueti

the sign of the latitudinal differential rotation change<’a in-
creases to six for Run A6.

Using Egs. [(2ZB)£(25), we can calculate the str@gs =
S @55 by azimuthal averaging, with

(

whereP} () are the associated Legendre polynomials ang

kk'l kl, k'l k K’ I pl
Q — — Tk — —_ptpL
r2 060 90 w2 koK

0p = EUP Wt

(30)

On this basis, zonal flows of the formf*+ x VY}* can be said
to be negligible in spherical convection simulations. Teesnal
flows correspond to a row of horizontal vortices with theince
tres on the equator.

Finally, let us discuss the stress componénp. It does
not directly contribute to angular momentum transport, ibut
can be important in generating or modifying meridional @irc
lation, and it has routinely been considered also in eastigd-
ies (e.g. Pulkkinen et dl. 1903; Rieutord et[al. 1994; Kamt
al.[2004). Figur€l7 shows the stress compoKgntfrom Set A.

rsing. Itis easy to see that the contribution to the azimuthallye find that for slow rotation (Run A1) the stress is quite weak
averaged)y,, is always zero from cross-correlation between twand shows several sign changes as a function of latituds. It i

poloidal velocity fields. Finite contributions @y, instead come

not clear whether this pattern is real or an artefact of firsuf

from correlations between poloidal flow and toroidal flow hawient statistics. For intermediate rotation (Runs A2—A@),

ing the same azimuthal degre&Vhile it is difficult to calculate
the net stress without knowing the power in each triptet’, 1),
it is possible to look for certain combinations that can cibate

shows an antisymmetric profile with respect to the equatimigbe
positive in the northern hemisphere and negative in thehsout
in accordance with earlier Cartesian results (e.g. Kaglal.

to the peaks o)y, near the equator as obtained from numer004). Although the theory for this stress component is 8ot a

cal simulations in spherical geometry. We illustrate thgudar
part on’gg'l, for particular values ok, &’ andl in Fig.[3.2. We

well developed as that of the other two off-diagonal commisie
Rudiger et al.[(2005a) state th@f.s should always be negative
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Fig. 6. Angular part on’g;ﬁ'l normalized by the maximum value ®2
for four different cases characterized by triplétsk’, ) as in-
dicated by the legend. The latitudes of the peaks for théetsp
are indicated on the respective curves. 0.0

0.0

in the northern hemisphere, which is at odds with our resul
However, in our rapid rotation models (Runs A5-A6) the sign
found to change.

-0.56

p o
3.2. Comparison with Cartesian simulations 0.2 04 0.8 0.8 0.2 04 0.6 0.8 0.2 0.4 0.6 0.8

Before describing the Reynolds stress obtained from our si - =
ulations in Cartesian coordinates, we note that the rmcheIoEl'g' 7. Meridional Reynolds stres&)., from Set A.
ties in the Cartesian runs are in general almost twice as kasg

in the spherical ones with the same input parameters (campar
e.g., Run AO in Tablgll and Run cAOQ in Table 2). We argue i
Sect[3.B that this is the result of adopting a radial depecelef
gravity in the plane-parallel atmosphere.

The radial profiles of the three off-diagonal components
the Reynolds stress in Cartesian coordinates agree witiopise
studies (Kapyla et al. 2004; Hupfer et al. 2005) for thegean
of latitudes and Coriolis number explored here (comparelig
with bottom panel of Fig. 11 of Kapyla et al. 2004 and Figs.
and 5 of Hupfer et al. 2005). For moderate rotation (Runs cA
cA4), the vertical componer... (left panels of FiglB) is neg-
ative in the bottom part of the convection zone and almosi z
at the top. The cases witto ~ 2.3 (Runs cD1-cD4) show neg-
ative values at the bottom and positive values at the topef tf .: : .
convection zone. FoCo =~ 4.0 (Runs cE1-cE4), the amplitude tlor_15 with COHOIIS. numbers of roughly fgur (Runs CE1_¢.E4
of the positive part of the stress near the surface increzsgs - nally, the meridional Reynolds stre€3,, corresponding
the negative part at the bottom decreases. We notice thapthe 10 @Q-¢, is positive in the entire convection zone for moderate
tial distribution ofQ...., as well as its variation with the Coriolis rotation (Runs cAl-cA4). For largélo, Q. is negative in the
number, are in a fair agreement with the corresponding sphé@wer part of the domain (see the right panels of Elg. 8). &imi
cal runs in the same range 66 (Runs A3-A5). In the spher- behaviour occurs in the spherlce_al case vv_lth intermedidseion
ical Run A6 with the highest Coriolis number of roughly six(Runs A3—A5). In the most rapidly rotating case (Run A6) an-
the stress is observed to become predominantly positivieein ©ther sign change occurs near the equator (se¢Fig. 7), ughich
convection zone. This is not seen in the Cartesian countsrp&0t observed in Cartesian runs. This, however, could again b
that reach Coriolis numbers of roughly four (Runs cE1—ci), €xplained by the smalleto in the Cartesian runs.
which the negative peak near the bottom still persistspatsh
it has decreased in magnitude. The difference is possitaytalu
the lower Coriolis number in the Cartesian runs. It is notetyo
that also the symmetry of this stress component with regpectThe large amplitude of the horizontal Reynolds stress, ipgak
the equator (so that it has a radial profiledat 0) is captured around=+7° latitude, has been an intriguing issue for several
by the Cartesian simulations. years (e.g. Chan 2001; Hupfer et al. 2005, 2006). One fdutdr t

Radial profiles of the horizontal stress:)yz, from the
artesian simulations are shown in the middle panels of&ig.
and latitudinal profiles in FidL]5 with open squares and diadso
&ood agreement with the spherical runs is also observedifor t
component, with positive values concentrated both at thatal
the bottom of the convective layer. Note that in Fiy. 8, the up
permost peak moves inwards with increasing rotation batwee
Sets cA and cD, and at the same time as the lowermost peak in-
freases in amplitude. In spherical Runs A4 and A5 the stress
Is somewhat more widely distributed than in the correspond-
ing Cartesian runs. For the spherical Run A6 with the highest

oriolis number of roughly six, the stress changes signemnéh

ion near the surface, which is not visible in the Cartesiamns

3.2.1. Filtering banana cells
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Fig. 8. From left to right: radial profiles of).., Qyz andey from Cartesian Runs cAl—cA4 (top panels), Runs cD1-cD4dhaid
panels), and Runs cE1-cE4 (bottom panels). The red dianmrdsspond to the radial profiles of the stresses in the &pather
Runs A4—A6. The blue squares in the middle panel show Fafiltered data from Run cD2.

might be contributing to the Reynolds stress are the lacgées with blue square symbols in Figl 5. The radial variatior(f.

banana cell-like flows that develop near the equator (eagyl&’
et al[2004; Chah 2007). Such flows vary in the azimuthpdl{-
rection and can lead to overestimation of the contributittone
bulence, especially if averaging is performed over the atfial
(=) direction. We explore this possibility by filtering out then-
tribution coming from the large-scale structures obseimdte
yz-plane (the so-called banana cells observed in spherivalsi
lations). The procedure used in this analysis is descrileéab

We perform a Fourier decomposition of the horizontal v

locities and find out at which Fourier mode the contributidn

at7° for Run ¢D2 is shown with blue square symbolsin Eig. 8. It
is clear from these figures that a flatter behavior in latitwde a
reduced amplitude of the stress is obtained in comparistreto
non-filtered values. The maximum, however, still residesiad
+7°, which is at odds with theory (e.g. Rudiger & Kitchatinov
2007).

e?f'?" Turbulent heat transport

9 non-rotating convection the radial heat flux,

the large scales peaks in the spectra. We find that the maximum

is usually situated at wavenumbgr= 2. Next we remove this

mode from the spectra and make an inverse Fourier transfor

tion, thus obtaining the velocity field without the contriiaun
from the large-scale motions. Finally, we comp@g. from the
filtered velocities.

P = cppul T,

(31)

transports all of the energy through the convection zone.

Horizontal stress),. computed from filtered velocity fields According to mixing length theory, velocity and temperatur

for Runs cD1-cD4 for different latitudesat= 0.9 R are plotted

fluctuations are related via2 ~ (AT/T)gl, where( is the
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Table 2. Summary of the runs in Cartesian coordinates. C ; ' Py — —
101 : 3 015} | EAG E ]
N st=18 7" | i} 1
Run LatitudeRe Co Ma Fy Emer/Ex Erot/Fx sk =
cA0  0° 63 0.00 0.038 1.7-10-7 0.052  0.001 f ]
cAl 0° 64 0.85 0.039 2.9-10-7 0.001  0.288 o B[ .
cA2 T° 65 0.84 0.039 2.0-107% 0.021 0.017 = C ]
CA3 14° 65 0.84 0.039 1.8-10~* 0014  0.007 = 4f .
cA4 21° 65 0.85 0.039 1.8-10"* 0.012  0.008 : ]
cB1 ©0° 61 1.49 0.037 4.5-10"% 0.000 0.623 _r ]
cB2 7° 70 1.30 0.042 2.4-10"* 0.023  0.012 : ]
cB3 14° 68 1.33 0.041 2.0-10"* 0.012  0.007 0 : ;
cB4 21° 68 1.34 0.041 1.9-10~* 0.005  0.009 _of : , , 1
cCl1 ©0° 60 2.14 0.036 2.8-10"* 0.000 0.347
cC2 7° 76 1.68 0.046 2.5-10"* 0.029  0.031 0.7 0.8 0.9 1.0
cC3 14° 72 1.77 0.044 22-10~* 0.013  0.011 /R
cC4 21° 72 1.78 0.043 2.1-10"* 0.004  0.011 Fig.10. Turbulent heat conductivity; from Runs A0 (solid
cDl 0° 69 2.38 0.042 7.5-10"% 0.000  0.584 line) and BO (dashed line). The inset shows the radial heat flu
cD2 7° 78 2.09 0.047 2.5-107" 0.029  0.018 F, (solid line) and an analytical expression given in Hgl (36)
cD3 14° 47 232 0.043 2.0-107* 0.009  0.013 (dashed line) normalized by the heat flux-at
cD4 21° 70 2.36 0.042 2.1-10"* 0.003 0.005
o -3
EE; (;o gg i:g 8:81? 112,1874 8:822 8:322 These quantities are shown in Hig. 9 for non-rotating sitire
CE3 14° 34 4.2 0039 1.5-10-* 0.005  0.005 in Cartesian (Run (_:AO) and spherical (Run AQ) geometrieseHe
CE4 21° 31 47 0035 1.3-10* 0.001 _ 0.008 we use the coefficients
_ <’UJ;2/C§>CZ kT o <AT/T>CZ (33)
Notes. Here, we use a resolution 68 x 1282 grid points. For the sets (F,./pc§>zc/zg’ 7 (F,./pc§>zc/zg’ ’

of Runs cA—cD,Ra ~ 3.1 x 10°, and for the set of Runs cRa ~ i
1.4 x 10°. Thermal energy in all of the cases &, ~ 0.117. Al Where(.)cz denotes an average over the convection zone. For

quantities are computed using the same definitions and tieatian ©Oth geometries we obtaif, ~ 0.4 andkr ~ 1.3, values that

factors as in Tablel 1. are in good agreement with previous results (Brandenbuag et
2005). Note, however, that the magnitude of the flux in Cétes
coordinates is around four times larger than that in the i5gdle

0.04 P T 5\2/3 T j one, implying a difference of!/? ~ 1.6 in the radial velocities
I r pCS :

} -1 .2 2 N
e ku ur/cs 2\

according to Eq.[(33). This is roughly the same factor seen in
the rms velocities (compare Runs A0 and cAO0). This diffeeenc
arises from the fact that we are considering a depth depénden
gravity also in the Cartesian simulations. In sphericalrgeo

try, the luminosity is constant and the flux decreases ousvar
proportional tor—2, whereas in Cartesian geometry the flux is
constant. This means that for the same profile of thermalwond

‘ tion, a significantly larger portion of the energy is trangpd by

~ 1 convection in the Cartesian case.

] The radial turbulent heat transport may also be described in
. terms of a turbulent heat conductivity (e.g. Rudiger 1989)

1O F. = cppul T = —pTx: V5, (34)

) ) ) ) from which we can solve the turbulent heat conductivity as
Fig.9. Normalized radial turbulent heat flux raised to the 2/3

power as a function of (z) (solid lines). The dashed and dot- cpuy 1’ (35)

0.03

0.02

Lo b binnnnn

0.01

T T T T T T T [ RTTT T T T T T T T T T T T T[T r T

0.00

dashed lines correspond to the square of the radial velanity Xo =~ V.5
temperature fluctuations scaled with the coefficiégntandkr,

. The result, normalized by a reference vajug = u,ms/ (3k¢),
respectively. The upper (lower) red (black) curves comesito .
Run cAO (Run AQ). for Runs A0 and B0 are shown in Fig.]10. Here averages over

longitude and latitude are considered. We find that the vafue

Xt IS almost ten times the reference value. The apparentlg larg

value is most likely due to the normalization factor which is

based on a volume average of the rms velocity and a more or less

arbitrary length scal@;1 (see also Kapyla et &l. 2010b). The
mixing length andy? = ¢ and AT = V/T"2. Thus, the three sharp peaks and negative valuesygftowards the bottom and
quantities are related via: top of the convectively unstable region reflect the sign glesof

the entropy gradient which is not captured by Eq] (35).
According to first-order smoothing (e.g. Rudigier 1989 th

5 < F >2/3 radial flux can be written as

(32) FFOSA) — - w25 TV,5, (36)
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Fig. 12. Turbulent heat fluxeg,. (top row), Fy (middle row), andF¢ (bottom row) from Runs Al (left column), A4 (middle
column), and A6 (right column). Linestyles as in Hi§). 5. Thedts show the curves of the respective panels with diffeeiing of
the vertical axis. The symbols included in the top and midoltes correspond to vertical flux from Runs cA1-cA4 (middié&icon)
and cE1—cE4 (right column) scaled down by a factor of foue the text for details). Diamonds corresponds te 0.9 R, squares
tox = 0.8R and triangles ta: = 0.7R. The dashed lines in the right panels show the data frem0.9R from Run C1 scaled up
by a factor of four.

1.5F T T T T T 1 Fig.[10, wherer. is used as a fit parameter. A reasonable fit
I ———— Run Al : ’. E O . . . .
‘o S Run A3 i E within the convection zone is obtained if the Strouhal numbe
il Run A6 Py ]
F -~ — Run B3 : i 1 St = Totrmskr, (37)
0.5 F Run C1 : AN N
{3 0.0 g \' ____________________ L A NET L is ar_ound 1.6 which is consistent with previous results_frmm
$ ' e o “ - 1] vection (e.g. Kapyla et al. 2010b). Note that the ratig x+o
< TR NG T "1 gives a measure of the Strouhal number because in the general
-0.5p¢ Vg ! 7 casexio = 37culn, = Sturms/(3ke), whereas in Fig[{10) we
- Vi ] assumet = 1.
-1.0 r ‘*’\",/' ; 1 In rotating convection Eq[(34) no longer holds and the heat
-15F | ) , ; , . ] flux becomes latitude-dependent. In mean-field theory this c
be represented in terms of an anisotropic turbulent heatwmmn
30 60 990 120 150 tivity (Kitchatinov et al[ 1994)
Fig. 11. Off-diagonal componenyy, of the turbulent heat con- Xii = Xt0i; + ik + xaa;, (38)

ductivity according to Eq[{39) from Runs Al (solid line), A3
(dashed), A6 (dot-dashed), B3 (triple-dot-dashed), andréd

whered;; ande;;, are the Kronecker and Levi—Civita tensors
dashed).

and(); is the unit vector along théh component of2. This
indicates that non-zero latitudinal and azimuthal heatefuare
also present in rotating convection. However, in order tm€o
pute all relevant coefficients from Ed._(38), a procedurelaim
wherer, is the correlation time of turbulence. We compare thi the test scalar method (Brandenburg €t al. 2009) woul@-be r
actual radial heat flux with the rhs of E{.{36) in the inset afuired in spherical coordinates. In most of our runs, howeve

10
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Fig. 13. Top row: radial profiles of entropy from six colatitudes adigated by the legend in the leftmost panel from Runs Al (left
column), A4 (middle column), and A6 (right column). Bottoowr: latitudinal entropy profiles for the same runs as in thearpow

at three radial positions indicated by the legend in thepaftel. The dashed curve in the lower right panel shows data-at.9 R
from Run C1.

the radial gradient of entropy is greater than the latitaome. runs with slow (Run Al), intermediate (Run A4), and rapid
Thus we can approximate the latitudinal heat flux by (Run AB) rotation in Set A. Additional data from Run C1 with
= - = - _ a lower Mach number is shown for comparison. We find that
Fo = =pTXorVrS = PTXroV o5 ~ =pTXor Vi, (39) F, shows little latitudinal variation except near the latita
from which the off-diagonal componeny, can be computed boundaries for slow and moderate rotation (Runs A1-A3). For
in analogy to Eq.[(35). Note that the sign gf, gives the di- intermediate rotatiori”, peaks at mid latitudes (Runs A4—A5)
rection of the latitudinal heat flux so that positive (nega)ival- whereas in the most rapidly rotating cases (Runs A6 and C1)
ues indicate equatorward (poleward) in the northern (svadh the maxima occur near the equator and at the latitudinal dboun
hemisphere. According to Eq§.(38) aid](38),x sinfcosf, aries. This behaviour follows the trend seen in the entrapfilp
indicating a sign change at the equator. (Fig[13): the radial gradient of entropy shows only a mingi-va
Representative results from Runs Al, A3, A6, B3, and Cdtion as a function of latitude in the most slowly rotatingisu
are shown in Fig.[(I1). For slow rotation (Run ALy, is (A1-A3).In Runs A4 and A5 the gradient is the steepest at mid
small and shows no coherent latitude dependence. In the intatitudes and at the equator in Run A6. We find that the entropy
mediate rotation regime (Run A3)y, is positive (negative) in gradient can become positive at certain latitudes, e.gedlmthe
the northern (southern) hemisphere. In the most rapidlgt+otpole for Run A4 and around latitudes30° in Run A6.
ing case (Runs A6 and B3), the sign changes so that the heatThe horizontal fluxesFy and F}, are negligibly small in
flux is towards the poles. Qualitatively similar results ate comparison to the radial flu¥, in the slow rotation regime
tained from a rapidly rotating Run C1 with a lower Mach numéRun Al). The latitudinal flux is consistent with zero for all
ber. The smoother latitude profile gf.¢ in this run reflects depths in Run Al (see Fid.112). For intermediate rotation
the smoother entropy profile (see Hig] 13). The qualitatiee b(Runs A2—A4) the latitudinal flux is mostly equatorward. Foe
haviour as a function of rotation is similar to that foundacél most rapidly rotating cases the sign changes so that in Réns A
simulations (Kapyla et al. 2004). Comparing with Fig] 1@ wand C1F, is mostly poleward in the convection zone. The mag-
find xo, /Xt = Xxor/Xrr = 0.1, Which is of the same order of njtude of the latitudinal flux also increases so that the maxn
magnitude as in local convection models Kapyla etlal. 800yalues, that are located near the surface, can become caligpar
and forced turbulence Brandenburg et al. (2009). We postpagith the radial flux. The azimuthal flux is also small and al&ay
a more detailed study of the turbulent transport coeffisi¢at negative, i.e., in the retrograde direction, in accordanite the
a future publication and discuss the different componeftised results of Riidiger et al._(2005a).

turbulent heat fluxes. We present the components of congecti  |n some of the panels in Fig.112 we also present results from

energy flux as Cartesian simulations (see the red symbols) for the same thr

o= F/pc? (40) depths. As discussed above, the fluxes are larger in this-geom
! s etry, due to which we have scaled the fluxes down by a fac-

where longitudinal averages are used. tor of four in this figure. We find that the latitude profiles of

Figure[12 shows the normalized turbulent heat fluxes #® radial and latitudinal heat fluxes in the Cartesian sitinhs
functions of latitude at three different radial positionsm three are in rather good agreement with the spherical results iBhi

11
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Fig. 15. Differential rotation parametéi, according to Eq[(41)
from Sets A (stars), B (diamonds), and Run C1 (cross). The dot
ted horizontal line indicates the zero level.

sistent with the present results. Run A5 represents a toapsi
case where bands of faster and slower rotation appear, agiere
Run A6 a solar-like equatorial acceleration is seen. Simtriém-
sitory profiles have recently been reported by Chan (RO1®. T
rotation profile in Run A6 is dominated by the Taylor—-Proudma
balance and the latitudinal shear is concentrated in adstistrip

of £30° about the equator. Simila&n—profiles have been ob-
tained earlier from more specifically solar-like simulatsde.g.
Brun & Toomre 2002; Brun et gl. 2004; Ghizaru et al. 2010).

In the slow rotation regime (Runs A1-A2) the kinetic en-
ergy of meridional circulation and differential rotatioreecom-
%arable and comprise a few per cent of the total kinetic gnerg
(columns 9 and 10 in Tabld 1). Increasing the Coriolis number
further, increases the fraction of kinetic energy in théedén-
tial rotation whereas that of the meridional circulatiomegns
. ) ) ] _ at first constant (Runs A3—A4), and finally drops close to zero
more clear in the rapidly rotating cases cE1-cE4 in comparisRuns A5-A6). In the three most rapidly rotating cases tlie di
to Run A6 (see the right panels of Figl 12), where the largé pegrential rotation comprises more than 80 per cent of the ot
of F, at the equator, and the sharp peakFofat low latitudes petic energy. We also find that the meridional circulatiooveba
are reproduced. coherent patteronly for intermediate rotation rates (Runs A3—

We find that the latitudinal entropy profiles show a locahs) where a single counter-clockwise cell per hemisphere ap
maximum (slow and intermediate rotation) or a minimum at theears. In Run A6 the meridional flow is concentrated in a num-
equator (rapid rotation), see the bottom panels of Eig. b8.6h- per of small cells in accordance with earlier results (e.@dd¢h
tropy profiles in the most rapidly rotating simulations (R4 et al[2000; Brun & Toomre 2002). We note that the rotation pro
and B3) are similar to that obtained by Miesch et al. (200@)es in Runs B3 and C1 are similar to that in Run A6.
but driffers from the more monotonic profiles of e.g. Brun et al e surface differential rotation of stars can be observa-
(2002) and the lower Mach number case Run C1. tionally studied using photometric time series (e.g. H&91)
or with Doppler imaging methods (for a review, see Collier-
Cameron 2007). The amount of surface differential rotalias
been determined for some rapidly rotating pre- or main-eage
The rotation profiles from the runs in Set A are shown istars with varying spectral type (F, G, K, and M), systemati-
Fig.[14. For slow rotation (Runs A1-A2), a clear large-scale cally showing solar-type differential rotation patternma faster
dial shear, almost independent of latitude, develops. Mewe equator and slower poles. The strength of the differentie-r
theQ—profiles in these runs are clearly different at high laisid tion shows a clear trend as function of the effective tempeea
which is probably an artefact due to the latitudinal bouretar the shear being larger for hotter stars (see Fig. 1 compifed b
As the Coriolis number is increased, the radial shear resnai@ollier-Cameron 2007). Analysis of photometric time sgria-
negative, equatorial deceleration grows, and the isocwstof terpreting the period variations seen in the light curveyamisa
Q) tend to align more with the rotation vector (Runs A3—-A4) being due to differential rotation (e.g. Hall 1991), havéabs
in accordance with the Taylor—Proudman theorem. Similér anlished a relatiomMQ/Qy ~ Q~™, with the values of. ~ 0.8—
solar rotation profiles have been reported also by Rieutbatl e 0.9. The observational results are in rough agreement -t
(1994), Dobler et al..(2006), Brown (2009), and Chan (201Q)ktical predictions (e.g. Kitchatinov & Rudiger 1999)ettheory
Such rotation profiles are usually the result of strong merigredicting slightly weaker differential rotation in thepid rota-
ional circulation (Kitchatinov & Rudiger 2004) which is @o tors than the actually observed values.

Bl 1 1 L 5 1 1 | 1 1

0.2 04 0.8 0.8 0.2 04 0.8 0.8 0.2 04 08 0.8

Fig. 14. Azimuthally averaged flows from the runs in Set A. Th
contours showf) = 7y /(rsinf) + o and the white arrows
denote the meridional circulation.

3.4. Large-scale flows
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We parameterise the differential rotation in our simulagio more easily suppressed than in a system where convectisi tra

with the quantity ports a larger fraction. We also find that decreasing the Mach
number alleviates this effect. The latitudinal heat fluxjs&tor-
ko = $leq — pole — AQ (41) ward for slow rotation and changes sign arodifud~ 1. A pole-
Qeq Qeq’ ward heat flux is often used in breaking the Taylor—Proudman

_ _ balance (e.g. Brandenburg etlal. 1992). Longitudinal hest fl
whereQeq = (rq,6 = 90°) andQo1e = (14,0 = 6p). The s mostly in the retrograde direction irrespective of theation
results for the runs witlCo # 0 listed in TabldL are shown in yate.

Fig.[15. We find that the anti-solar differential rotatiorage at The turbulent heat conductivity, is of the order of first-
Co ~ 1 and thatkg, turns positive for roughly’o ~ 3. The val-  order smoothing estimate with Strouhal number of the ordler o
ues in the rapid rotatiork(, ~ 0_.2) end are comparable W|th th_eunity_ The off-diagonal componeny, is typically an order of
Sun (see also Chan 2010). Itis not clear, however, how tealismagnitude smaller than the diagonal compongrin the rapid

it is to compare the current simulations with observatio®s, rotation regime. Similar results have been obtained ptsio
even to argue that slowly rotating stars have anti-soldemifh- from local convection simulations (e.g. Pulkkinen et al93p
tial rotation. It is clear that in the Sun the Coriolis nUmbﬂTd and forced turbulence (Brandenburg et al. 2009) In meda-fie
the radial length scale of convection, vary much more thahén models where anisotropic heat transport is invoked to btieak
current m_odels so that it is not possible to repro_duce eql_ka\ato-raybr_proudman balance, the anisotropic part is typicafl
acceleration and surface shear layer self-consistentty sSm- the same order of magnitude as the isotropic contributian (e
gIe simulation. The situation may be different in slow rotat Brandenburg et al. ]_992) It is conceivable that the amr
but observing their differential rotation is much more diffit. ~contribution increases when the fraction of convectivergye
However, investigating the scaling &f, in the rapid rotation flux is increased. However, such a study is not within the scop
regime is likely worth pursuing. of the present paper.

We find that in the slow and intermediate rotation regimes the
differential rotation is anti-solar: the equator is ratatislower
than the high latitudes. Such rotation profiles also comeiith
The present results have demonstrated that the basic fiespethe occurrence of coherent meridional circulation thatds-c
of Reynolds stress and turbulent heat flux found in Cartesig@intrated in a single counter-clockwise cell. In the rapidtion
simulations are reproduced by simulations in sphericdlshed regime, solar-like equatorial acceleration is obtainedthe dif-
wedges. This includes the signs of the off-diagonal Compm’]efel’entia| rotation is confined to latitudeis30° and the isocon-
of Q;;. In particular, the vertical stresg),,, is negative in both tours are aligned with the rotation vector. In order to rejice
hemispheres whefo is small, but becomes positive near thetoEﬂa solar rotation profile at least two major obstacles remai
(and possibly also deeper down) wh@ais large. This trend is Firstly, the Taylor—Proudman balance must be broken. Aiposs
well reproduced by the Cartesian simulations wh@re is also  bility is to use subgrid-scale models where the presenttsesu

negative for smalCo, but becomes positive near the top whefPr anisotropic heat transport can work as a guide. Secondly
Co is large. These results coincide with earlier results gfa the Coriolis number should decrease near the surface sththat

et al. [2004). transport of angular momentum is inward near the surfaad;le

The horizontal stres§j,, with the counterpar@, . in the ing to a surface shear layer as in the Sun. Here we can again
Cartesian model, is found to be positive in the northern hentittroduce a subgrid-scale Reynolds stress guided by treepte
sphere and have local maxima near the top and bottom of figgults. Studying such models, however, is postponed toeut
domain. In spherical runQs, is found to change sign near thePapers.
poles fPr intermediate rotation. For rapid rOtat'?bz ':eaCheS AcknowledgementsWe thank D. Mitra for useful discussions. The computa-
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