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ABSTRACT

Context. Turbulent fluxes of angular momentum and enthalpy or heat dueto rotationally affected convection play a key role in deter-
mining differential rotation of stars.
Aims. We compute turbulent angular momentum and heat transport asfunctions of the rotation rate from stratified convection. We
compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry
introduces artefacts into the results.
Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate
the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude
and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero toroughly
seven, which is the regime that is likely to be realised in thesolar convection zone. Cartesian simulations are performed in overlapping
parameter regimes.
Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equa-
torward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in
contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator.In Cartesian
simulations this peak can be explained by the strong ‘bananacells’. Their effect in the spherical case does not appear tobe as large.
The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heatflux is always
in the retrograde direction. The rotation profiles vary fromanti-solar (slow equator) for slow and intermediate rotation to solar-like
(fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor–Proudman balance.

Key words. convection – turbulence – Sun: rotation – stars: rotation

1. Introduction

The surface of the Sun rotates differentially: the rotationpe-
riod at the pole is roughly 35 days as opposed to 26 days at
the equator. Furthermore, the internal rotation of the Sun has
been revealed by helioseismology (e.g. Thompson et al. 2003):
the radial gradient ofΩ is small in the bulk of the convec-
tion zone, whereas regions of strong radial differential rotation
are found near the base and near the surface of the convec-
tion zone. According to dynamo theory, large-scale shear plays
an important role in generating large-scale magnetic fields(e.g.
Moffatt 1978; Krause & Rädler 1980). More specifically, large-
scale shear lowers the threshold for dynamo action and the com-
bined effect of helical turbulence and shear yields oscillatory
large-scale magnetic fields, resembling the observed solarac-
tivity pattern (e.g. Yoshimura 1975). It is even possible todrive
a large-scale dynamo in nonhelical turbulence with shear (e.g.
Brandenburg 2005; Yousef et al. 2008a, 2008b; Brandenburg et
al. 2008). Thus, it is of great interest to study the processes that
generate large-scale shear in solar and stellar convectionzones.

Differential rotation of the Sun and other stars is thought
to be maintained by rotationally influenced turbulence in their
convection zones. In hydrodynamic mean-field theories of stel-
lar interiors the effects of turbulence appear in the form oftur-
bulent fluxes of angular momentum and enthalpy or heat (cf.
Rüdiger 1989; Rüdiger & Hollerbach 2004). These fluxes canbe
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defined by Reynolds averaging of products of fluctuating quan-
tities, v.i.z., the fluxes of angular momentum and heat, respec-
tively, are

Qij = u′

iu
′

j, (1)

Fi = cPρ u′

iT
′. (2)

Here overbars denote azimuthal averaging, primes denote fluc-
tuations about the averages,Qij is the Reynolds stress,Fi is
the turbulent convective energy flux,u is the velocity,T is the
temperature,ρ is density, andcP is the specific heat at constant
pressure.

Much effort has been put into computing these correlations
using analytical theories (e.g. Rüdiger 1980, 1982; Kitchatinov
& Rüdiger 1993; Kitchatinov et al. 1994). Most of the analyti-
cal studies, however, rely on approximations such as first-order
smoothing, the applicability of which in the stellar environments
can be contested. In order to get more insight, idealised nu-
merical simulations, often working in Cartesian geometry,have
been extensively used to compute the stresses for modestly large
Reynolds numbers (e.g. Pulkkinen et al. 1993; Brummell et al.
1998; Chan 2001; Käpylä et al. 2004; Rüdiger et al. 2005b).
However, the Cartesian simulations have yielded some puzzling
results, such as the latitudinal angular momentum flux having a
very strong maximum very close to the equator (e.g. Chan 2001;
Hupfer et al. 2005) and a sign change of the corresponding ra-
dial flux (Käpylä et al. 2004). Neither of these effects canbe
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recovered from theoretical studies or simpler forced turbulence
simulations (Käpylä & Brandenburg 2008).

Rotation also affects the turbulent convective energy trans-
port. In fact, in the presence of rotation, the turbulent heat
transport due to convection is no longer purely radial (e.g.
Brandenburg et al. 1992; Kitchatinov et al. 1994). In a sphere,
such anisotropic heat transport leads to latitude-dependent tem-
perature and entropy distributions. Such variations can beim-
portant in determining the rotation profile of the Sun: neglecting
the Reynolds stress and molecular diffusion, the evolutionof the
azimuthal component of vorticity,ω = ∇× u, is governed by

∂ωφ

∂t
= r sin θ

∂Ω
2

∂z
+

1

ρ2
(∇ρ×∇p)φ, (3)

where∂/∂z = Ω̂ · ∇ is the derivative along the unit vector of
the rotation vector,̂Ω = (cos θ,− sin θ, 0), andp is the pressure.
The last term on the rhs describes the baroclinic term which can
be written as

1

ρ2
(∇ρ×∇p)φ = (∇T ×∇s)φ ≈ −

g

rcP

∂s

∂θ
. (4)

whereg = |g| is the acceleration due to gravity,s is the spe-
cific entropy, and∇T ≈ g/cP has been used for the adiabatic
temperature gradient. In the absence of latitudinal entropy gra-
dients, the solution of Eq. (3) is given by the Taylor–Proudman
theorem, i.e.∂Ω/∂z = 0. In general, however, the thermody-
namics cannot be neglected and latitudinal gradients of entropy
influence the rotation profile of the star via the baroclinic term.
Such an effect is widely considered to be instrumental in break-
ing the Taylor–Proudman balance in the solar case (e.g. Rempel
2005; Miesch et al. 2006). Local simulations can be used to de-
termine the latitudinal heat flux but by virtue of periodic bound-
aries, no information about the latitudinal profile of entropy can
be extracted from a single simulation. Earlier local studies sug-
gest that in the presence of rotation the latitudinal heat flux is
directed towards the poles (e.g. Rüdiger et al. 2005b) and mean-
field models in spherical geometry indicate that such a flux leads
to warm poles and a cooler equator (e.g. Brandenburg et al.
1992), thus alleviating the Taylor–Proudman balance.

It is possible that the use of Cartesian geometry and peri-
odic boundaries give rise to artefacts which are not presentin
fully spherical geometry. In the present paper we undertakethe
computation of Reynolds stress and turbulent heat transport from
simulations in spherical geometry as functions of rotation, and
compare them with Cartesian simulations of the same system
located at different latitudes. One of the most important goals of
the paper is to find out whether the present results in Cartesian
geometry compare with early similar studies and to test if these
results are still valid when spherical geometry is used. As a
side result we also obtain angular velocity profiles as a func-
tion of rotation from our spherical simulations which, however,
are dominated by the Taylor-Proudman balance in the regime
most relevant to the Sun. Thus we fail in reproducing the solar
rotation profile which is a common problem that can currently
be overcome only by introducing some additional poorly con-
strained terms, e.g. a latitudinal entropy gradient, by hand rather
than self-consistently (e.g. Miesch et al. 2006). Another impor-
tant use for the results will be the more ambitious future runs
where subgrid-scale models of the turbulent effects can be used
to overcome the Taylor–Proudman balance.

2. Model

Our spherical model is similar to that used by Käpylä et al.
(2010a) but without magnetic fields. We model a segment of a
star, i.e. a “wedge”, in spherical polar coordinates where(r, θ, φ)
denote the radius, colatitude, and longitude. The radial, lati-
tudinal, and longitudinal extents of the computational domain
are given by0.65R ≤ r ≤ R, θ0 ≤ θ ≤ 180◦ − θ0, and
0 ≤ φ ≤ φ0, respectively, whereR is the radius of the star.
In all of our runs we takeθ0 = 15◦ andφ0 = 90◦. In Cartesian
geometry, the coordinates(x, y, z) correspond to radius, latitude
and longitude of a box located at a colatitudeθ. Our domain
spans from0.65R ≤ x ≤ R, −0.35R ≤ y ≤ 0.35R and
−0.35R ≤ z ≤ 0.35R, i.e., the extension of the horizontal di-
rections is twice the vertical one, as has been used in previous
Cartesian simulations (e.g. Käpylä et al. 2004).

In both geometries, we solve the following equations of com-
pressible hydrodynamics,

D ln ρ

Dt
= −∇ · u, (5)

Du

Dt
= g − 2Ω× u+

1

ρ
(∇ · 2νρS−∇p) , (6)

Ds

Dt
=

1

ρT

(

∇ ·K∇T + 2νS2 − Γcool

)

, (7)

whereD/Dt = ∂/∂t + u · ∇ is the advective time derivative,
ν is the kinematic viscosity,K is the radiative heat conductivity,
andg is the gravitational acceleration given by

g = −
GM

r2
r̂, (8)

whereG is the gravitational constant,M is the mass of the star,
and r̂ is the unit vector in the radial direction. Note that in the
Cartesian casex corresponds to ther direction so that all radial
profiles in spherical coordinates directly apply to the Cartesian
model. We omit the centrifugal force in our models. This is con-
nected with the fact that the Rayleigh number is much less than
in the Sun, which is unavoidable and constrained by the numer-
ical resolution available. This implies that the Mach number is
larger than in the Sun. Nevertheless, it is essential to havereal-
istic Coriolis numbers. i.e. the Coriolis force has to be larger by
the same amount that the turbulent velocity is larger, but without
significantly altering the hydrostatic balance that is determined
by gravity and centrifugal forces.

The fluid obeys the ideal gas law withp = (γ − 1)ρe, where
γ = cP/cV = 5/3 is the ratio of specific heats in constant pres-
sure and volume, respectively, ande = cVT is the internal en-
ergy. The rate of strain tensorS is given by

Sij =
1
2 (ui;j + uj;i)−

1
3δij∇ · u, (9)

where the semicolons denote covariant differentiation (see Mitra
et al. 2009 for details).

The computational domain is divided into three parts: a
lower convectively stable layer at the base, convectively unsta-
ble layer and a cooling layer at the top mimicking the effects
of radiative losses at the stellar surface. The radial positions
(r1, r2, r3, r4) = (x1, x2, x3, x4) = (0.65, 0.7, 0.98, 1)R give
the locations of the bottom of the domain, bottom and top of the
convectively unstable layer, and the top of the domain, respec-
tively. The last term on the rhs of Eq. (7) describes cooling in the
surface layer given by

Γcool = Γ0f(r)

(

c2s − c2s0
c2s0

)

, (10)
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wheref(r) is a profile function equal to unity inr > r3 and
smoothly connecting to zero below, andΓ0 is a cooling lumi-
nosity chosen so that the sound speed in the uppermost layer
relaxes towardc2s0 = c2s (r = r4).

2.1. Initial and boundary conditions

For the thermal stratification we adopt a simple setup that can be
described analytically rather than adopting profiles from asolar
or stellar structure model as in, e.g., Brun et al. (2004). Weuse a
piecewise polytropic setup which divides the domain into three
layers. The hydrostatic temperature gradient is given by

∂T

∂r
=

−g

cV(γ − 1)(m+ 1)
, (11)

wherem = m(r) is the radially varying polytropic index. This
gives the logarithmic temperature gradient∇ (not to be confused
with the operator∇) as

∇ = ∂ lnT/∂ ln p = (m+ 1)−1. (12)

The stratification is unstable if∇ − ∇ad > 0 where∇ad =
1 − 1/γ, corresponding tom < 1.5. We choosem = 6 for
the lower overshoot layer, whereasm = 1 is used in the con-
vectively unstable layer. Density stratification is obtained by re-
quiring hydrostatic equilibrium. The thermal conductivity is ob-
tained by requiring a constant luminosityL throughout the do-
main via

K =
L

4πr2∂T/∂r
. (13)

In order to expedite the initial transient due to thermal relaxation,
the thermal variables have a shallower profile, corresponding to
ρ ∝ T 1.4, in the convection zone andm = 1 is only used for the
thermal conductivity. This gives approximately the right entropy
jump that corresponds to the required flux (cf. Brandenburg et
al. 2005). In Fig. 1 we show the initial and final stratifications of
specific entropy, temperature, density, and pressure for a partic-
ular run.

In the spherical models the radial and latitudinal boundaries
are taken to be impenetrable and stress free, according to

ur = 0,
∂uθ

∂r
=

uθ

r
,

∂uφ

∂r
=

uφ

r
(r = r1, r4), (14)

∂ur

∂θ
= uθ = 0,

∂uφ

∂θ
= uφ cot θ (θ = θ0, π − θ0). (15)

On the latitudinal boundaries we assume that the thermodynamic
quantities have zero first derivative, thus suppressing heat fluxes
through the boundary.

In Cartesian coordinates we use periodic boundary condi-
tions in the horizontal directions (y andz), and stress free con-
ditions in thex direction, i.e.,

ux =
∂uy

∂x
=

∂uz

∂x
= 0 (x = x1, x4). (16)

The simulations were performed using the PENCIL CODE1,
which uses sixth-order explicit finite differences in spaceand a
third-order accurate time stepping method (see Mitra et al.2009
for further information regarding the adaptation of the PENCIL
CODE to spherical coordinates).

1 http://pencil-code.googlecode.com/

Fig. 1. Radial profiles of entropy, temperature, density, and pres-
sure in the initial state (solid lines) and the in the saturated state
(dashed) of Run B0. Reference valuesT0 andp0 are taken from
the bottom of the convectively unstable layer in the initialstate.
The dotted vertical lines atr2 = 0.7R andr3 = 0.98R denote
the bottom and top of the convectively unstable layer, respec-
tively.

2.2. Nondimensional quantities

Dimensionless quantities are obtained by setting

R = GM = ρ0 = cP = 1 , (17)

whereρ0 is the density atr2, The units of length, velocity, den-
sity, and entropy are then given by

[x] = R , [U ] =
√

GM/R , [ρ] = ρ0 , [s] = cP . (18)

The Cartesian simulations have been arranged so that the thick-
ness of the layers is the same,g = −(GM/x2)x̂, andR, which
is still our unit length, has no longer the meaning of a radius. The
simulations are governed by the Prandtl, Reynolds, Coriolis, and
Rayleigh numbers, defined by

Pr =
ν

χ0
, Re =

urms

νkf
, Co =

2Ω0

urmskf
, (19)

Ra =
GM(∆r)4

νχ0R2

(

−
1

cP

ds

dr

)

rm

, (20)

whereχ0 = K/(ρmcP) is the thermal diffusivity,kf = 2π/∆r
is an estimate of the wavenumber of the energy-carrying eddies,
∆r = r3 − r2 is the thickness of the unstable layer,ρm is the
density in the middle of the unstable layer atrm = (r3 + r2)/2,

andurms =
√

3
2 〈u

2
r + u2

θ〉 is the rms velocity. The latter ne-

glects the contribution from theφ-component of velocity which
is dominated by large-scale differential rotation which develops
when rotation is included, and where the angular brackets denote
volume averaging. The entropy gradient, measured atrm in the
initial non-convecting state, is given by
(

−
1

cP

ds

dr

)

rm

=
∇m −∇ad

HP
, (21)

where∇m = (∂ lnT/∂ ln p)rm , andHP is the pressure scale
height atrm.
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Table 1. Summary of the runs.

Run grid Ra Ma Re Co Ẽther Ẽkin Emer/Ekin Erot/Ekin ∆Ω/Ωeq

A0 128 × 256 × 128 3.1 · 106 0.023 38 0.00 0.116 7.71 · 10−5 0.045 0.004 −
A1 128 × 256 × 128 3.1 · 106 0.022 36 0.13 0.114 6.86 · 10−5 0.016 0.022 −0.15
A2 128 × 256 × 128 3.1 · 106 0.022 36 0.25 0.114 7.18 · 10−5 0.015 0.073 −0.31
A3 128 × 256 × 128 3.1 · 106 0.022 37 0.50 0.113 1.16 · 10−4 0.010 0.438 −1.03
A4 128 × 256 × 128 3.1 · 106 0.029 48 0.94 0.112 1.05 · 10−3 0.016 0.927 −1.74
A5 128 × 256 × 128 3.1 · 106 0.022 36 2.56 0.111 9.87 · 10−4 0.002 0.949 −0.37
A6 128 × 256 × 128 3.1 · 106 0.018 30 6.09 0.114 2.32 · 10−4 0.000 0.824 +0.20
B0 128 × 512 × 256 8.6 · 106 0.020 54 0.00 0.113 5.78 · 10−5 0.036 0.009 −
B1 128 × 512 × 256 8.6 · 106 0.020 57 1.34 0.112 6.45 · 10−4 0.009 0.927 −1.10
B2 128 × 512 × 256 8.6 · 106 0.018 50 3.06 0.113 1.15 · 10−4 0.001 0.689 +0.12
B3 128 × 512 × 256 8.6 · 106 0.016 44 6.93 0.113 1.77 · 10−4 0.000 0.833 +0.20
C1 128 × 256 × 128 1.7 · 107 0.008 12 7.42 0.113 1.87 · 10−5 0.000 0.640 +0.09

Notes. HereMa = urms/
√

GM/R, ∆Ω = Ωeq − Ωpole, whereΩeq = Ω(r4, θ = 90◦) andΩpole = Ω(r4, θ = θ0). Ẽther = 〈ρe〉 and
Ẽkin = 〈 1

2
ρu2〉 are the volume averaged thermal and total kinetic energies,respectively, in units ofGMρ0/R. Emer = 1

2
〈ρ(u2

θ + u2
φ)〉 and

Erot =
1

2
〈ρu2

φ〉 are the kinetic energies of the meridional circulation and differential rotation. In Run C1 we useL = 7.5 · 10−5 andPr = 6.7.

Fig. 2. Radial velocityur at a small distance (r = 0.9R) below the surface from Runs B0–B3. The scales giveur in units
of the local sound speed. For visualization purposes, the domain is duplicated fourfold in the longitudinal direction.See also
http://www.helsinki.fi/∼kapyla/movies.html

The energy that is deposited into the domain at the base is
controlled by the luminosity parameter

L =
L

ρ0(GM)3/2R1/2
, (22)

whereL = 4πr21Fb is the constant luminosity, andFb =
−(K∂T/∂r)|r=r1 is the energy flux imposed at the lower
boundary. We useL = 1.4 · 10−4 in most of our models.
Furthermore, the stratification is determined by the pressure
scale height at the surface

ξ =
(γ − 1)cVT4

GM/R
, (23)

whereT4 = T (r = r4). Similar parameter definitions were used
by Dobler et al. (2006). We useξ = 0.020, which results in a
density contrast of102 across the domain.

3. Results

Our main goal is to extract the turbulent fluxes of angular mo-
mentum and heat as functions of rotation from our simulations.
In order to achieve this we use a moderately turbulent model and
vary the rotation rate, quantified by the Coriolis number, from
zero to roughly six in Set A (see Table 1). We also perform a
subset of these simulations at higher resolution in Set B anda
single run (C1) with a lower Mach number. The runs in Set A

were initialized from scratch, whereas in Set B a nonrotating
simulation B0 was run until it was thermally relaxed. The runs
with rotation (B1–B3) were then started from this snapshot and
computations carried out until a new saturated state was reached.
In Fig. 1 we compare the initial and final stratification of specific
entropy, temperature, density, and pressure for Run B0.

Visualizations ofur at a small distance below the surface are
shown in Fig. 2 for Runs B0–B3. The convective velocitiesu

′

can be decomposed in terms of poloidal (u
′

P) and toroidal (u′

T)
parts following Lavely & Ritzwoller (1992)

u
′

P = Real
∑

k,l

{

ukl
P (r)Y l

k r̂ + vklP (r)∇Y l
k

}

(24)

u
′

T = Real
∑

k,l

{

wkl
T (r)r̂ ×∇Y l

k

}

, (25)

whereY l
k(θ, φ) are spherical harmonics. The geometry and am-

plitude of the poloidal velocity are completely defined byk, l,
andukl

P since, assuming approximate mass conservation,vklP and
ukl
P are related as

vklP (r) =
∂r(r

2ρukl
P (r))

ρrk(k + 1)
. (26)

The poloidal flow has characteristics of Bénard convectioncells
with upwellings at the centres of cells and downdraughts on the
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Fig. 3. Vertical Reynolds stress,̃Qrφ, from Set A.

peripheries. The toroidal flows are characterised by their ampli-
tude and geometry given bywkl

T , k, andl respectively. In contrast
to poloidal flows, their nature resembles that of rotation, jets or
horizontal vortices. In Fig. 2, we observe that so calledbanana
cells become prominent in the radial velocity with an increase
in the Coriolis number. Such velocity flows are poloidal flows
given by spherical harmonicY l

k(θ, φ). For Run B3 in Fig. 2, we
find maximum power atl = 16. Note that the reality of the ba-
nana cells in the Sun is hotly debated. Even though significant
power is found at wavenumbers corresponding to giant cells in
the surface velocity spectra of the Sun, no distinct peak hasbeen
found at those wavenumbers (Chou et al. 1991; Hathaway et al.
2000). Global helioseismology caps the maximum radial veloc-
ity of the banana cells at50 m s−1 (Chatterjee & Antia 2009).

3.1. Reynolds stress

The angular momentum balance of a star is governed by the con-
servation law (Rüdiger 1989)

∂

∂t
(ρ̟2Ω) = −∇ ·

[

ρ̟
(

̟Ωumer + u′

φu
′

)]

, (27)

where̟ = r sin θ is the lever arm andumer = (ur, uθ) is the
meridional circulation. The latter term on the rhs describes the
effects of the Reynolds stress componentsQrφ andQθφ, which
describe radial and latitudinal fluxes of angular momentum,re-
spectively. The stress is often parameterised by turbulenttrans-
port coefficients that couple small-scale correlations with large-
scale quantities, i.e.

Qij = ΛijkΩk −Nijkl
∂uk

∂xl
, (28)

Fig. 4. Horizontal Reynolds stress,̃Qθφ, from Set A.

whereΛijk describes the nondiffusive contribution (Λ-effect)
andNijkl the diffusive part (turbulent viscosity), cf. Rüdiger
(1989). However, disentangling the two contributions is not
straightforward, see e.g. Snellman et al. (2009) and Käpylä et
al. (2010b). We postpone a detailed study of the turbulent trans-
port coefficients to a future study and concentrate on comparing
the total stress with simulations in Cartesian geometry.

It is convenient to display the components of the Reynolds
stress in non-dimensional form (indicated by a tilde), and to de-
fine

Q̃ij = u′

iu
′

j/u
2
rms, (29)

whereurms = urms(r, θ) is the meridional rms-velocity. The
averages are calculated over the azimuthal direction and time
also forurms. In the following, we refer to the three off-diagonal
components,Qrφ, Qθφ, andQrθ, as vertical, horizontal, and
meridional components, respectively. Representative results for
the vertical stress componentQrφ are shown in Fig. 3. We find
that for slow rotation (Run A1),Qrφ is small and does not ap-
pear to show a clear trend in latitude. In Run A2 withCo ≈ 0.25
the stress is more consistently negative within the convectively
unstable layer, showing a symmetric profile with respect to the
equator. These two runs tend to show the largest signal near the
latitudinal boundaries which is most likely due to the boundary
conditions there. Similar distortions are also seen in the large-
scale flows (see Sect. 3.4). In the intermediate rotation regime
(Runs A3–A5),Qrφ is predominantly negative, although regions
of opposite sign start to appear near the equator. In Run A6
the stress is mostly positive. Qualitatively similar results are ob-
tained from the runs in Set B. Therefore there is a sign change
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Fig. 5. Latitudinal profiles ofQ̃θφ and Ω̃ for Runs A4, A5, and A6 (from left to right). The red dotted lines show data from
corresponding Runs B1, B2, and B3 fromr = 0.8R. The open red diamonds in the top panels denote Cartesian Runs cA1–cA4,
cD1–cD4, and cE1–cE4, from left to right. The blue squares inthe top-middle panel show the values ofQyz computed from
Fourier-filtered velocity fields from Runs cD1–cD4. Note that only a part of the full latitudinal range is shown.

roughly atCo = 2. A similar phenomenon has been observed in
Cartesian simulations (Käpylä et al. 2004).

We find that the horizontal stress,̃Qθφ, is always positive
(negative) in the northern (southern) hemisphere forCo < 1,
i.e. antisymmetric about the equator, see Fig. 4. For intermedi-
ate rotation (Runs A4 and A5) the stress is observed to change
sign at high latitudes. In Fig. 5 we plot the latitudinal profiles of
the horizontal stress and the mean angular velocity at different
depths for the Runs A4–A6. It can be seen that near the bottom
of the convection zone, the profile of the stress becomes more
and more concentrated about the equator as the Coriolis num-
ber increases. An especially abrupt change can be observed for
Run A5 (Co ≈ 2). A similar peak also persists in Runs A6, B3
and C1 with the largest Coriolis numbers. Note, however, that
the sign of the latitudinal differential rotation changes asCo in-
creases to six for Run A6.

Using Eqs. (24)–(25), we can calculate the stressQθφ =
∑

k,k′,t Q
kk′l
θφ by azimuthal averaging, with

Qkk′l
θφ =

1

2
vklP wk′l

T

(

1

r2
∂P l

k

∂θ

∂P l
k′

∂θ
−

l2

̟2
P l
kP

l
k′

)

, (30)

whereP l
k(θ) are the associated Legendre polynomials and̟ =

r sin θ. It is easy to see that the contribution to the azimuthally
averagedQθφ is always zero from cross-correlation between two
poloidal velocity fields. Finite contributions toQθφ instead come
from correlations between poloidal flow and toroidal flow hav-
ing the same azimuthal degreel. While it is difficult to calculate
the net stress without knowing the power in each triplet(k, k′, l),
it is possible to look for certain combinations that can contribute
to the peaks ofQθφ near the equator as obtained from numeri-
cal simulations in spherical geometry. We illustrate the angular
part ofQkk′l

θφ , for particular values ofk, k′ andl in Fig. 3.2. We

can see from here that peaks inQ16,17,15
θφ (dashed line) appear

at ±6◦ as well as at±20◦ latitude, whereas peaks inQ16,17,16
θφ

appear at±10◦ latitude, and highest peaks inQ16,17,8
θφ appear

at ±60◦ latitude. Comparing Fig. 4 with Fig. 3.2, we see that
at slow rotation (Runs A1 and A2), a major contribution to the
stress may come from giant cells with an angular dependence
Y 8
16, whereas at higherCo (Run A6), the stress may have con-

tributions from banana cells with angular dependenceY 16
16 . We

shall return to the question regarding the contribution of banana
cells in the context of Cartesian runs in Sect. 3.2.1. However
there also exists symmetric contribution toQθφ from compo-
nents likeQ16,16,16

θφ , but we do not see any significant symmetric
part in the horizontal stresses from the numerical simulations.
On this basis, zonal flows of the formwkk

T r̂ ×∇Y k
k can be said

to be negligible in spherical convection simulations. These zonal
flows correspond to a row of horizontal vortices with their cen-
tres on the equator.

Finally, let us discuss the stress componentQrθ. It does
not directly contribute to angular momentum transport, butit
can be important in generating or modifying meridional circu-
lation, and it has routinely been considered also in earlierstud-
ies (e.g. Pulkkinen et al. 1993; Rieutord et al. 1994; Käpylä et
al. 2004). Figure 7 shows the stress componentQrθ from Set A.
We find that for slow rotation (Run A1) the stress is quite weak
and shows several sign changes as a function of latitude. It is
not clear whether this pattern is real or an artefact of insuffi-
cient statistics. For intermediate rotation (Runs A2–A4),Qrθ

shows an antisymmetric profile with respect to the equator being
positive in the northern hemisphere and negative in the south,
in accordance with earlier Cartesian results (e.g. Käpyl¨a et al.
2004). Although the theory for this stress component is not as
well developed as that of the other two off-diagonal components,
Rüdiger et al. (2005a) state thatQrθ should always be negative
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Fig. 6. Angular part ofQkk′l
θφ normalized by the maximum value

for four different cases characterized by triplets(k, k′, l) as in-
dicated by the legend. The latitudes of the peaks for the triplets
are indicated on the respective curves.

in the northern hemisphere, which is at odds with our results.
However, in our rapid rotation models (Runs A5–A6) the sign is
found to change.

3.2. Comparison with Cartesian simulations

Before describing the Reynolds stress obtained from our sim-
ulations in Cartesian coordinates, we note that the rms veloci-
ties in the Cartesian runs are in general almost twice as large as
in the spherical ones with the same input parameters (compare,
e.g., Run A0 in Table 1 and Run cA0 in Table 2). We argue in
Sect. 3.3 that this is the result of adopting a radial dependence of
gravity in the plane-parallel atmosphere.

The radial profiles of the three off-diagonal components of
the Reynolds stress in Cartesian coordinates agree with previous
studies (Käpylä et al. 2004; Hupfer et al. 2005) for the range
of latitudes and Coriolis number explored here (compare Fig. 8
with bottom panel of Fig. 11 of Käpylä et al. 2004 and Figs. 3
and 5 of Hupfer et al. 2005). For moderate rotation (Runs cA1–
cA4), the vertical component̃Qxz (left panels of Fig. 8) is neg-
ative in the bottom part of the convection zone and almost zero
at the top. The cases withCo ≈ 2.3 (Runs cD1–cD4) show neg-
ative values at the bottom and positive values at the top of the
convection zone. ForCo ≈ 4.0 (Runs cE1–cE4), the amplitude
of the positive part of the stress near the surface increasesand
the negative part at the bottom decreases. We notice that thespa-
tial distribution ofQ̃xz, as well as its variation with the Coriolis
number, are in a fair agreement with the corresponding spheri-
cal runs in the same range ofCo (Runs A3–A5). In the spher-
ical Run A6 with the highest Coriolis number of roughly six,
the stress is observed to become predominantly positive in the
convection zone. This is not seen in the Cartesian counterparts
that reach Coriolis numbers of roughly four (Runs cE1–cE4),in
which the negative peak near the bottom still persists, although
it has decreased in magnitude. The difference is possibly due to
the lower Coriolis number in the Cartesian runs. It is noteworthy
that also the symmetry of this stress component with respectto
the equator (so that it has a radial profile atθ = 0) is captured
by the Cartesian simulations.

Fig. 7. Meridional Reynolds stress,̃Qrθ, from Set A.

Radial profiles of the horizontal stress,̃Qyz, from the
Cartesian simulations are shown in the middle panels of Fig.8,
and latitudinal profiles in Fig. 5 with open squares and diamonds.
Good agreement with the spherical runs is also observed for this
component, with positive values concentrated both at the top and
the bottom of the convective layer. Note that in Fig. 8, the up-
permost peak moves inwards with increasing rotation between
Sets cA and cD, and at the same time as the lowermost peak in-
creases in amplitude. In spherical Runs A4 and A5 the stress
is somewhat more widely distributed than in the correspond-
ing Cartesian runs. For the spherical Run A6 with the highest
Coriolis number of roughly six, the stress changes sign in the re-
gion near the surface, which is not visible in the Cartesian simu-
lations with Coriolis numbers of roughly four (Runs cE1–cE4).

Finally, the meridional Reynolds stress,Q̃xy, corresponding
to Q̃rθ, is positive in the entire convection zone for moderate
rotation (Runs cA1–cA4). For largerCo, Q̃xy is negative in the
lower part of the domain (see the right panels of Fig. 8). Similar
behaviour occurs in the spherical case with intermediate rotation
(Runs A3–A5). In the most rapidly rotating case (Run A6) an-
other sign change occurs near the equator (see Fig. 7), whichis
not observed in Cartesian runs. This, however, could again be
explained by the smallerCo in the Cartesian runs.

3.2.1. Filtering banana cells

The large amplitude of the horizontal Reynolds stress, peaking
around±7◦ latitude, has been an intriguing issue for several
years (e.g. Chan 2001; Hupfer et al. 2005, 2006). One factor that
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Fig. 8. From left to right: radial profiles of̃Qxz, Q̃yz, andQ̃xy from Cartesian Runs cA1–cA4 (top panels), Runs cD1–cD4 (middle
panels), and Runs cE1–cE4 (bottom panels). The red diamondscorrespond to the radial profiles of the stresses in the spherical
Runs A4–A6. The blue squares in the middle panel show Fourier-filtered data from Run cD2.

might be contributing to the Reynolds stress are the large-scale
banana cell-like flows that develop near the equator (e.g. K¨apylä
et al. 2004; Chan 2007). Such flows vary in the azimuthal (z) di-
rection and can lead to overestimation of the contribution of tur-
bulence, especially if averaging is performed over the azimuthal
(z) direction. We explore this possibility by filtering out thecon-
tribution coming from the large-scale structures observedin the
yz-plane (the so-called banana cells observed in spherical simu-
lations). The procedure used in this analysis is described below.

We perform a Fourier decomposition of the horizontal ve-
locities and find out at which Fourier mode the contribution of
the large scales peaks in the spectra. We find that the maximum
is usually situated at wavenumberq = 2. Next we remove this
mode from the spectra and make an inverse Fourier transforma-
tion, thus obtaining the velocity field without the contribution
from the large-scale motions. Finally, we computeQyz from the
filtered velocities.

Horizontal stressQyz computed from filtered velocity fields
for Runs cD1–cD4 for different latitudes atr = 0.9R are plotted

with blue square symbols in Fig. 5. The radial variation ofQyz

at7◦ for Run cD2 is shown with blue square symbols in Fig. 8. It
is clear from these figures that a flatter behavior in latitudewith a
reduced amplitude of the stress is obtained in comparison tothe
non-filtered values. The maximum, however, still resides around
±7◦, which is at odds with theory (e.g. Rüdiger & Kitchatinov
2007).

3.3. Turbulent heat transport

In non-rotating convection the radial heat flux,

Fr = cPρu′

rT
′, (31)

transports all of the energy through the convection zone.
According to mixing length theory, velocity and temperature
fluctuations are related viau′2

r ∼ (∆T/T )gℓ, whereℓ is the
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Table 2. Summary of the runs in Cartesian coordinates.

Run LatitudeRe Co Ma Ẽk Emer/Ek Erot/Ek

cA0 0◦ 63 0.00 0.038 1.7 · 10−4 0.052 0.001
cA1 0◦ 64 0.85 0.039 2.9 · 10−4 0.001 0.288
cA2 7◦ 65 0.84 0.039 2.0 · 10−4 0.021 0.017
cA3 14◦ 65 0.84 0.039 1.8 · 10−4 0.014 0.007
cA4 21◦ 65 0.85 0.039 1.8 · 10−4 0.012 0.008
cB1 0◦ 61 1.49 0.037 4.5 · 10−4 0.000 0.623
cB2 7◦ 70 1.30 0.042 2.4 · 10−4 0.023 0.012
cB3 14◦ 68 1.33 0.041 2.0 · 10−4 0.012 0.007
cB4 21◦ 68 1.34 0.041 1.9 · 10−4 0.005 0.009
cC1 0◦ 60 2.14 0.036 2.8 · 10−4 0.000 0.347
cC2 7◦ 76 1.68 0.046 2.5 · 10−4 0.029 0.031
cC3 14◦ 72 1.77 0.044 2.2 · 10−4 0.013 0.011
cC4 21◦ 72 1.78 0.043 2.1 · 10−4 0.004 0.011
cD1 0◦ 69 2.38 0.042 7.5 · 10−4 0.000 0.584
cD2 7◦ 78 2.09 0.047 2.5 · 10−4 0.029 0.018
cD3 14◦ 47 2.32 0.043 2.0 · 10−4 0.009 0.013
cD4 21◦ 70 2.36 0.042 2.1 · 10−4 0.003 0.005
cE1 0◦ 50 3.7 0.045 1.2 · 10−3 0.000 0.685
cE2 7◦ 36 4.0 0.041 1.6 · 10−4 0.025 0.009
cE3 14◦ 34 4.2 0.039 1.5 · 10−4 0.005 0.005
cE4 21◦ 31 4.7 0.035 1.3 · 10−4 0.001 0.008

Notes. Here, we use a resolution of64× 1282 grid points. For the sets
of Runs cA–cD,Ra ≈ 3.1 × 106, and for the set of Runs cE,Ra ≈
1.4 × 106. Thermal energy in all of the cases is̃Ether ∼ 0.117. All
quantities are computed using the same definitions and normalization
factors as in Table 1.

Fig. 9. Normalized radial turbulent heat flux raised to the 2/3
power as a function ofr (x) (solid lines). The dashed and dot-
dashed lines correspond to the square of the radial velocityand
temperature fluctuations scaled with the coefficientsku andkT ,
respectively. The upper (lower) red (black) curves correspond to
Run cA0 (Run A0).

mixing length andgℓ = c2s and∆T =
√

T ′2. Thus, the three
quantities are related via:

∆T

T
∼

u′2
r

c2s
∼

(

Fr

ρc3s

)2/3

. (32)

Fig. 10. Turbulent heat conductivityχt from Runs A0 (solid
line) and B0 (dashed line). The inset shows the radial heat flux
Fr (solid line) and an analytical expression given in Eq. (36)
(dashed line) normalized by the heat flux atr1.

These quantities are shown in Fig. 9 for non-rotating simulations
in Cartesian (Run cA0) and spherical (Run A0) geometries. Here
we use the coefficients

ku =
〈u′2

r /c
2
s 〉CZ

〈Fr/ρc3s 〉
2/3
CZ

, kT =
〈∆T/T 〉CZ

〈Fr/ρc3s 〉
2/3
CZ

, (33)

where〈.〉CZ denotes an average over the convection zone. For
both geometries we obtainku ≈ 0.4 andkT ≈ 1.3, values that
are in good agreement with previous results (Brandenburg etal.
2005). Note, however, that the magnitude of the flux in Cartesian
coordinates is around four times larger than that in the spherical
one, implying a difference of41/3 ≈ 1.6 in the radial velocities
according to Eq. (33). This is roughly the same factor seen in
the rms velocities (compare Runs A0 and cA0). This difference
arises from the fact that we are considering a depth dependent
gravity also in the Cartesian simulations. In spherical geome-
try, the luminosity is constant and the flux decreases outwards
proportional tor−2, whereas in Cartesian geometry the flux is
constant. This means that for the same profile of thermal conduc-
tion, a significantly larger portion of the energy is transported by
convection in the Cartesian case.

The radial turbulent heat transport may also be described in
terms of a turbulent heat conductivity (e.g. Rüdiger 1989)

Fr = cPρu′

rT
′ ≡ −ρTχt∇rs, (34)

from which we can solve the turbulent heat conductivity as

χt = −
cPu′

rT
′

T∇rs
. (35)

The result, normalized by a reference valueχt0 = urms/(3kf),
for Runs A0 and B0 are shown in Fig. 10. Here averages over
longitude and latitude are considered. We find that the valueof
χt is almost ten times the reference value. The apparently large
value is most likely due to the normalization factor which is
based on a volume average of the rms velocity and a more or less
arbitrary length scalek−1

f (see also Käpylä et al. 2010b). The
sharp peaks and negative values ofχt towards the bottom and
top of the convectively unstable region reflect the sign change of
the entropy gradient which is not captured by Eq. (35).

According to first-order smoothing (e.g. Rüdiger 1989), the
radial flux can be written as

F (FOSA)
r = −τcu2

r ρ T∇rs, (36)
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Fig. 12. Turbulent heat fluxes̃Fr (top row), F̃θ (middle row), andF̃φ (bottom row) from Runs A1 (left column), A4 (middle
column), and A6 (right column). Linestyles as in Fig. 5. The insets show the curves of the respective panels with different scaling of
the vertical axis. The symbols included in the top and middlerows correspond to vertical flux from Runs cA1–cA4 (middle column)
and cE1–cE4 (right column) scaled down by a factor of four (see the text for details). Diamonds corresponds tox = 0.9R, squares
to x = 0.8R and triangles tox = 0.7R. The dashed lines in the right panels show the data fromr = 0.9R from Run C1 scaled up
by a factor of four.

Fig. 11. Off-diagonal componentχθr of the turbulent heat con-
ductivity according to Eq. (39) from Runs A1 (solid line), A3
(dashed), A6 (dot-dashed), B3 (triple-dot-dashed), and C1(red
dashed).

whereτc is the correlation time of turbulence. We compare the
actual radial heat flux with the rhs of Eq. (36) in the inset of

Fig. 10, whereτc is used as a fit parameter. A reasonable fit
within the convection zone is obtained if the Strouhal number

St = τcurmskf , (37)

is around 1.6 which is consistent with previous results fromcon-
vection (e.g. Käpylä et al. 2010b). Note that the ratioχt/χt0

gives a measure of the Strouhal number because in the general
caseχt0 = 1

3τcu
2
rms = Sturms/(3kf), whereas in Fig. (10) we

assumeSt = 1.
In rotating convection Eq. (34) no longer holds and the heat

flux becomes latitude-dependent. In mean-field theory this can
be represented in terms of an anisotropic turbulent heat conduc-
tivity (Kitchatinov et al. 1994)

χij = χtδij + χΩεijkΩ̂k + χΩΩΩ̂iΩ̂j , (38)

whereδij andεijk are the Kronecker and Levi–Civita tensors
and Ω̂i is the unit vector along theith component ofΩ. This
indicates that non-zero latitudinal and azimuthal heat fluxes are
also present in rotating convection. However, in order to com-
pute all relevant coefficients from Eq. (38), a procedure similar
to the test scalar method (Brandenburg et al. 2009) would be re-
quired in spherical coordinates. In most of our runs, however,
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Fig. 13. Top row: radial profiles of entropy from six colatitudes as indicated by the legend in the leftmost panel from Runs A1 (left
column), A4 (middle column), and A6 (right column). Bottom row: latitudinal entropy profiles for the same runs as in the upper row
at three radial positions indicated by the legend in the leftpanel. The dashed curve in the lower right panel shows data atr = 0.9R
from Run C1.

the radial gradient of entropy is greater than the latitudinal one.
Thus we can approximate the latitudinal heat flux by

Fθ = −ρTχθr∇rs− ρTχrθ∇θs ≈ −ρTχθr∇rs, (39)

from which the off-diagonal componentχθr can be computed
in analogy to Eq. (35). Note that the sign ofχθr gives the di-
rection of the latitudinal heat flux so that positive (negative) val-
ues indicate equatorward (poleward) in the northern (southern)
hemisphere. According to Eqs. (38) and (39),Fθ ∝ sin θ cos θ,
indicating a sign change at the equator.

Representative results from Runs A1, A3, A6, B3, and C1
are shown in Fig. (11). For slow rotation (Run A1),χθr is
small and shows no coherent latitude dependence. In the inter-
mediate rotation regime (Run A3),χθr is positive (negative) in
the northern (southern) hemisphere. In the most rapidly rotat-
ing case (Runs A6 and B3), the sign changes so that the heat
flux is towards the poles. Qualitatively similar results areob-
tained from a rapidly rotating Run C1 with a lower Mach num-
ber. The smoother latitude profile ofχrθ in this run reflects
the smoother entropy profile (see Fig. 13). The qualitative be-
haviour as a function of rotation is similar to that found in local
simulations (Käpylä et al. 2004). Comparing with Fig. 10 we
find χθr/χt ≡ χθr/χrr ≈ 0.1, which is of the same order of
magnitude as in local convection models Käpylä et al. (2004)
and forced turbulence Brandenburg et al. (2009). We postpone
a more detailed study of the turbulent transport coefficients to
a future publication and discuss the different components of the
turbulent heat fluxes. We present the components of convective
energy flux as

F̃i = Fi/ρ cs
3, (40)

where longitudinal averages are used.
Figure 12 shows the normalized turbulent heat fluxes as

functions of latitude at three different radial positions from three

runs with slow (Run A1), intermediate (Run A4), and rapid
(Run A6) rotation in Set A. Additional data from Run C1 with
a lower Mach number is shown for comparison. We find that
F̃r shows little latitudinal variation except near the latitudinal
boundaries for slow and moderate rotation (Runs A1–A3). For
intermediate rotationFr peaks at mid latitudes (Runs A4–A5)
whereas in the most rapidly rotating cases (Runs A6 and C1)
the maxima occur near the equator and at the latitudinal bound-
aries. This behaviour follows the trend seen in the entropy profile
(Fig 13): the radial gradient of entropy shows only a minor vari-
ation as a function of latitude in the most slowly rotating runs
(A1–A3). In Runs A4 and A5 the gradient is the steepest at mid
latitudes and at the equator in Run A6. We find that the entropy
gradient can become positive at certain latitudes, e.g. close to the
pole for Run A4 and around latitudes±30◦ in Run A6.

The horizontal fluxes,Fθ and Fφ are negligibly small in
comparison to the radial fluxFr in the slow rotation regime
(Run A1). The latitudinal flux is consistent with zero for all
depths in Run A1 (see Fig. 12). For intermediate rotation
(Runs A2–A4) the latitudinal flux is mostly equatorward. Forthe
most rapidly rotating cases the sign changes so that in Runs A6
and C1F̃y is mostly poleward in the convection zone. The mag-
nitude of the latitudinal flux also increases so that the maximum
values, that are located near the surface, can become comparable
with the radial flux. The azimuthal flux is also small and always
negative, i.e., in the retrograde direction, in accordancewith the
results of Rüdiger et al. (2005a).

In some of the panels in Fig. 12 we also present results from
Cartesian simulations (see the red symbols) for the same three
depths. As discussed above, the fluxes are larger in this geom-
etry, due to which we have scaled the fluxes down by a fac-
tor of four in this figure. We find that the latitude profiles of
the radial and latitudinal heat fluxes in the Cartesian simulations
are in rather good agreement with the spherical results. This is
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Käpylä et al.: Reynolds stress and heat flux in spherical shell convection

Fig. 14. Azimuthally averaged flows from the runs in Set A. The
contours showΩ = uφ/(r sin θ) + Ω0 and the white arrows
denote the meridional circulation.

more clear in the rapidly rotating cases cE1–cE4 in comparison
to Run A6 (see the right panels of Fig. 12), where the large peak
of Fr at the equator, and the sharp peak ofFθ at low latitudes
are reproduced.

We find that the latitudinal entropy profiles show a local
maximum (slow and intermediate rotation) or a minimum at the
equator (rapid rotation), see the bottom panels of Fig. 13. The en-
tropy profiles in the most rapidly rotating simulations (RunA6
and B3) are similar to that obtained by Miesch et al. (2000)
but differs from the more monotonic profiles of e.g. Brun et al.
(2002) and the lower Mach number case Run C1.

3.4. Large-scale flows

The rotation profiles from the runs in Set A are shown in
Fig. 14. For slow rotation (Runs A1–A2), a clear large-scalera-
dial shear, almost independent of latitude, develops. However,
theΩ–profiles in these runs are clearly different at high latitudes,
which is probably an artefact due to the latitudinal boundaries.
As the Coriolis number is increased, the radial shear remains
negative, equatorial deceleration grows, and the isocontours of
Ω tend to align more with the rotation vector (Runs A3–A4) –
in accordance with the Taylor–Proudman theorem. Similar anti-
solar rotation profiles have been reported also by Rieutord et al.
(1994), Dobler et al. (2006), Brown (2009), and Chan (2010).
Such rotation profiles are usually the result of strong merid-
ional circulation (Kitchatinov & Rüdiger 2004) which is con-

Fig. 15. Differential rotation parameterkΩ according to Eq. (41)
from Sets A (stars), B (diamonds), and Run C1 (cross). The dot-
ted horizontal line indicates the zero level.

sistent with the present results. Run A5 represents a transitory
case where bands of faster and slower rotation appear, whereas in
Run A6 a solar-like equatorial acceleration is seen. Similar tran-
sitory profiles have recently been reported by Chan (2010). The
rotation profile in Run A6 is dominated by the Taylor–Proudman
balance and the latitudinal shear is concentrated in a latitude strip
of ±30◦ about the equator. SimilarΩ–profiles have been ob-
tained earlier from more specifically solar-like simulations (e.g.
Brun & Toomre 2002; Brun et al. 2004; Ghizaru et al. 2010).

In the slow rotation regime (Runs A1–A2) the kinetic en-
ergy of meridional circulation and differential rotation are com-
parable and comprise a few per cent of the total kinetic energy
(columns 9 and 10 in Table 1). Increasing the Coriolis number
further, increases the fraction of kinetic energy in the differen-
tial rotation whereas that of the meridional circulation remains
at first constant (Runs A3–A4), and finally drops close to zero
(Runs A5–A6). In the three most rapidly rotating cases the dif-
ferential rotation comprises more than 80 per cent of the total ki-
netic energy. We also find that the meridional circulation shows a
coherent patternonly for intermediate rotation rates (Runs A3–
A5) where a single counter-clockwise cell per hemisphere ap-
pears. In Run A6 the meridional flow is concentrated in a num-
ber of small cells in accordance with earlier results (e.g. Miesch
et al. 2000; Brun & Toomre 2002). We note that the rotation pro-
files in Runs B3 and C1 are similar to that in Run A6.

The surface differential rotation of stars can be observa-
tionally studied using photometric time series (e.g. Hall 1991)
or with Doppler imaging methods (for a review, see Collier-
Cameron 2007). The amount of surface differential rotationhas
been determined for some rapidly rotating pre- or main-sequence
stars with varying spectral type (F, G, K, and M), systemati-
cally showing solar-type differential rotation pattern with a faster
equator and slower poles. The strength of the differential rota-
tion shows a clear trend as function of the effective temperature,
the shear being larger for hotter stars (see Fig. 1 compiled by
Collier-Cameron 2007). Analysis of photometric time series, in-
terpreting the period variations seen in the light curve analysis
being due to differential rotation (e.g. Hall 1991), have estab-
lished a relation∆Ω/Ω0 ≈ Ω−n, with the values ofn ≈ 0.8–
0.9. The observational results are in rough agreement with theo-
retical predictions (e.g. Kitchatinov & Rüdiger 1999), the theory
predicting slightly weaker differential rotation in the rapid rota-
tors than the actually observed values.
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We parameterise the differential rotation in our simulations
with the quantity

kΩ ≡
Ωeq − Ωpole

Ωeq
=

∆Ω

Ωeq
, (41)

whereΩeq = Ω(r4, θ = 90◦) andΩpole = Ω(r4, θ = θ0). The
results for the runs withCo 6= 0 listed in Table 1 are shown in
Fig. 15. We find that the anti-solar differential rotation peaks at
Co ≈ 1 and thatkΩ turns positive for roughlyCo ≈ 3. The val-
ues in the rapid rotation (kΩ ≈ 0.2) end are comparable with the
Sun (see also Chan 2010). It is not clear, however, how realistic
it is to compare the current simulations with observations,i.e.
even to argue that slowly rotating stars have anti-solar differen-
tial rotation. It is clear that in the Sun the Coriolis number, and
the radial length scale of convection, vary much more than inthe
current models so that it is not possible to reproduce equatorial
acceleration and surface shear layer self-consistently ina sin-
gle simulation. The situation may be different in slow rotators
but observing their differential rotation is much more difficult.
However, investigating the scaling ofkΩ in the rapid rotation
regime is likely worth pursuing.

4. Conclusions

The present results have demonstrated that the basic properties
of Reynolds stress and turbulent heat flux found in Cartesian
simulations are reproduced by simulations in spherical shells and
wedges. This includes the signs of the off-diagonal components
of Qij . In particular, the vertical stress,Qrφ, is negative in both
hemispheres whenCo is small, but becomes positive near the top
(and possibly also deeper down) whenCo is large. This trend is
well reproduced by the Cartesian simulations whereQxz is also
negative for smallCo, but becomes positive near the top when
Co is large. These results coincide with earlier results of Käpylä
et al. (2004).

The horizontal stressQθφ, with the counterpartQyz in the
Cartesian model, is found to be positive in the northern hemi-
sphere and have local maxima near the top and bottom of the
domain. In spherical runsQθφ is found to change sign near the
poles for intermediate rotation. For rapid rotation,Qyz reaches
a maximum near the top (or surface) around±7◦ latitude –
in agreement with earlier results (e.g. Chan 2001; Hupfer et
al. 2005). We show that large-scale velocities due to the ba-
nana cells near the equator are the main contribution toQyz in
Cartesian calculations. The spherical simulations reproduce such
a sharp peak in the regimeCo & 1, the peak being limited to a
radially narrow region near the bottom of the domain. We find
that the results for the Reynolds stress are weakly dependent on
the Reynolds and Mach numbers.

Furthermore, we find thatQrθ is positive in the northern
hemisphere, although for large values ofCo the sign changes
at bottom of the convection zone. For the largest value ofCo,
Qrθ is negative throughout the entire convection zone. A similar
trend is seen in the Cartesian simulations, whereQxy is mostly
positive but becomes negative near the bottom of the convection
zone when rotation becomes strong enough, in accordance with
Käpylä et al. (2004)

The radial heat flux shows a strong dependence on latitude
only when rotation is fairly rapid, i.e.Co & 1. This is associ-
ated with regions of the convection zone where the radial entropy
gradient is decreased or even becomes positive. A partial expla-
nation is that our setup is such that roughly 80 per cent of the
energy is transported by radiative diffusion making convection

more easily suppressed than in a system where convection trans-
ports a larger fraction. We also find that decreasing the Mach
number alleviates this effect. The latitudinal heat flux is equator-
ward for slow rotation and changes sign aroundCo ≈ 1. A pole-
ward heat flux is often used in breaking the Taylor–Proudman
balance (e.g. Brandenburg et al. 1992). Longitudinal heat flux
is mostly in the retrograde direction irrespective of the rotation
rate.

The turbulent heat conductivityχt is of the order of first-
order smoothing estimate with Strouhal number of the order of
unity. The off-diagonal componentχθr is typically an order of
magnitude smaller than the diagonal componentχt in the rapid
rotation regime. Similar results have been obtained previously
from local convection simulations (e.g. Pulkkinen et al. 1993)
and forced turbulence (Brandenburg et al. 2009). In mean-field
models where anisotropic heat transport is invoked to breakthe
Taylor–Proudman balance, the anisotropic part is typically of
the same order of magnitude as the isotropic contribution (e.g.
Brandenburg et al. 1992). It is conceivable that the anisotropic
contribution increases when the fraction of convective energy
flux is increased. However, such a study is not within the scope
of the present paper.

We find that in the slow and intermediate rotation regimes the
differential rotation is anti-solar: the equator is rotating slower
than the high latitudes. Such rotation profiles also coincide with
the occurrence of coherent meridional circulation that is con-
centrated in a single counter-clockwise cell. In the rapid rotation
regime, solar-like equatorial acceleration is obtained, but the dif-
ferential rotation is confined to latitudes±30◦ and the isocon-
tours are aligned with the rotation vector. In order to reproduce
the solar rotation profile at least two major obstacles remain.
Firstly, the Taylor–Proudman balance must be broken. A possi-
bility is to use subgrid-scale models where the present results
for anisotropic heat transport can work as a guide. Secondly,
the Coriolis number should decrease near the surface so thatthe
transport of angular momentum is inward near the surface, lead-
ing to a surface shear layer as in the Sun. Here we can again
introduce a subgrid-scale Reynolds stress guided by the present
results. Studying such models, however, is postponed to future
papers.
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Käpylä, P. J., Korpi, M. J. & Tuominen, I. 2004, A&A, 422, 793
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Rüdiger & Kitchatinov, L.L. 2007, inThe Solar Tachocline, eds. D.W. Hughes,

R. Rosner, N.O. Weiss, (Cambridge University Press), 128
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