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ABSTRACT

Numerical simulations of the magnetorotational instap{IMRI) with zero initial net flux in

a non-stratified isothermal cubic domain are used to dermatrshe importance of magnetic
boundary conditions. In fully periodic systems the levetwbulence generated by the MRI
strongly decreases as the magnetic Prandtl numibei),(which is the ratio of kinematic
viscosity and magnetic diffusion, is decreased. No MRI anaiyio action belowPm = 1

is found, agreeing with earlier investigations. Using it field conditions, which allow
magnetic helicity fluxes out of the system, the MRI is foundbéoexcited in the range1 <
Pm < 10, and that the saturation level is independenPaf. The non-vanishing magnetic
helicity fluxes alleviate catastrophic quenching and algtmng large-scale magnetic fields
to develop. When vertical field conditions are used, the 8rekSunyaev viscosity parameter
has a value of the order of 0.2.
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1 INTRODUCTION taining turbulence becomes increasingly difficult as theymesic
Prandtl numberPm = v/n, wherev is the viscosity and; the
magnetic diffusivity, is decreased (Fromang et al. 200T)réhtly

the convergence problem is without a definite solution. & been
suggested that this issue could be related toithedependence

of the fluctuation dynamo (e.q. Schekochihin et al. 2007hal$
even been argued that the MRI in periodic zero net flux systems
would vanish in the limit of high Reynolds numbers and that a
large-scale dynamo would be needed to sustain the MRI and tur
bulence [(Vishniac 2009). Notably, large-scale dynamos hav
problems operating at low magnetic Prandtl numbers as leng a
the relevant Reynolds and dynamo numbers exceed crititava

The realization of the astrophysical signifigance of the medgro-
tational instability [(Balbus & Hawley 1991), first discoeerin the
context of Couette flowl (Velikhoy 1959; Chandrasekhar 1960)
seemed to resolve the long-standing problem of the meahanis
driving turbulence in accretion disks. Early numerical giations
produced sustained turbulence, large-scale magnetis field out-
ward angular momentum transport (e.g. Brandenburg et 86;19
Hawley et al! 1995). These results also showed that a signific
qualitative difference exists between models where an sagaini-
form magnetic field is present as opposed to the situatioresevh
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such field is absent: the saturatior? IeveI. of turbulence aggilar (Brandenbulf 2009).

momentum transport are substantially higher when a noozar

tical net flux is present (e.q. Brandenburg et al. 1995; Stbrad. From the point of view of mean-field dynamo theory
1996). Also the presence of an imposed net toroidal field sdem (Brandenburg & Subramanian 2005), systems with fully m#do
to enhance the transport (Stone et al. 1996). of perfectly conducting boundaries are rather special. Uohs

In the meantime, a lot of numerical work has been done closed setups magnetic helicity, defined as a volume aveshge
with zero net flux setups that omit stratification and adopiy fu A - B, where A is the vector potential and = V x A the
periodic or perfectly conducting boundaries in order todgtu magnetic field, is a conserved quantity in ideal MHD. In thespr
the saturation behaviour of the MRI in the simplest possible ence of magnetic diffusion, magnetic helicity can chandg on a
setting (e.g. Fromang & Papaloizou 2007; Fromang et al. 2007 timescale based on microscopic diffusivity, which is ugualvery

Liliestrdm et all 2009; Korpi et al. 2010). Due to the bourydeon- long in any astrophysical setting. Such a behaviour, whashbeen
ditions, the initial net flux in conserved and no helicity #gx captured in numerical simulatiors (Brandenhurg 2001),68 de-
out of the system are allowed. The results of these invegiiga scribed by simple mean-field models taking into account mag-

have shown that as the numerical resolution of the simulatio netic helicity conservation (e.g. Blackman & Brandencu@f2).
increases, or equivalently as the explicit diffusion dases, the This would mean that generating appreciable large-scalg- ma

level of turbulence and angular momentum transport tramsi@ netic fields, which are possibly vital for sustaining the MRI
crease, constituting a convergence problem for zero netMiigk can take a very long time. Furthermore, the saturation value
(Fromang et al. 2007). Runs with explicit diffusion showtthas- of the mean magnetic field decreases inversely proportitmal
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the magnetic Reynolds number (e.g. Cattaneo & Hughes| 1996;

Brandenbuig 2001). In dynamo theory this detrimental éffec
the large-scale dynamo is known as the catastrophic quegchi
(Vainshtein & Cattaneo 1992).

The situation, however, changes dramatically if magnetic
helicity flux out of the system is allowed. In particular, the
Vishniac & Cho (2001) flux, which requires large-scale véloc
shear to be present and flows along the isocontours of sisear, i
potential mechanism that can drive a magnetic helicity flukaf
the system and alleviate catastrophic quenching. Evidésrcies
importance exists from convection simulations in a sheahiox
setup(Kapyla et al. 2008, 2010Db).

In an accretion disk the direction of the Vishniac—Cho flux is
perpendicular to the plane of the disk. In a real disk thieation is
never periodic and also probably not perfectly conductirailow-
ing this idea we study a system that is isothermal, nonis&at
and the magnetic field has a zero net flux initially. Howeves, w
allow a magnetic helicity flux through the vertical bounéarby
letting the magnetic field cross them. We thus enable alssitbar-
driven flux. We show that if the MRI is excited, a large-scaje d
namo is also excited and that the saturation level of thautanze,
large-scale magnetic field, and angular momentum tranape#s-
sentially independent d?Pm. This is contrasted by periodic simu-
lations where we find a strorigm-dependence in accordance with
earlier studies. Our results also suggest that for a gRenthe
results (level of turbulence and angular momentun transpoe
independent of the magnetic Reynolds number.

The remainder of the paper is organised as follows: in Skct. 2

we describe our model, and in Sddt. 3 hhd 4, we present outsesu
and conclusions.

2 THE MODEL

In an effort to keep the system as simple as possible, we @&sum
that the fluid is non-stratified and isothermal. The diffusfro-
cesses are modeled with explicit Laplacian diffusion ofpesawith
constant coefficients. A similar model was used by Liljestret al.
(2009) and Korpi et all (2010), although in these modelsdrigin-

der hyperdiffusive operators were used instead of the lcégla
ones. The computational domain is a cube with volyae)®. We
solve the usual set of hydromagnetic equations in this gggme

% = —SA,@— (VU) A - o, )
Dlnp
> = VU @)
% = _SU.§-AEVInp—22xU
—|—%(J><B+V~21/p5)7 3)

whereD/Dt = 9/0t + (U + U"”) - V is the advective time
derivative, A is the magnetic vector potentidg = V x A is the
magnetic field, andl = 5 'V x B is the current densityyo is
the vacuum permeability; andv are the magnetic diffusivity and
kinematic viscosity, respectively,is the densitylJ is the velocity,
and©2 = (0,0, 1) the rotation vector. The large-scale shear is
given byT” = (0, Sz, 0), with g = —S/Qo = 1.5, correspond-
ing to Keplerian rotation, in all runs. We use isothermal attpn

of statep = ¢2p, characterised by a constant speed of sound,

In the present models we choose the sound speed so that tie Mac

number remains of the order of 0.1 or smaller in order to mirém

the effects of compressibility. The rate of strain tenSds given
by

Sij = 3(Ui; +Uji) — 36,V - U, 4)

where the commas denote spatial derivatives. The initigimatc
field can be written in terms of the vector potential as

A = Agcos(kax) cos(kaz)éy, (5)

where the amplitude of the resulting magnetic field that aioistz
and z—components is given by = ka Ao. We useka /k1 = 1,
Qo = 210" ¢sk1, andAg = 3-107 " /mopocsk; " inall models.

The values ofka, Q¢ and Ag are selected so that both the
wavenumber with the largest growth ratg,.x = Qo/ua = 2,
whereua Bo/\/iopo is the Alfvén velocity, and the largest
unstable wavenumbek,.is = v/2¢kmax =~ 3.5, are well resolved
by the grid. The other condition for the onset of MRI, namgly-

1, where3 = 2uop/ B3 is the ratio of thermal to magnetic pressure,
is also satisfied a8 = 1800 for the maximum values of the initial
magnetic field.

We use the ENCIL CODE] which is a high-order explicit fi-
nite difference method for solving the equations of comgités
magnetohydrodynamics. Resolutions of upst@® are used, see
Figure] for a snapshot of a high resolution run.

2.1 Boundary conditions

In all models the y-direction is periodic and shearing-
periodic boundary conditions are used for thedirection
(Wisdom & Tremaine 1988). On theboundaries we use two sets
of conditions. Firstly, we apply periodic boundaries (debas
PER) which do not allow a net flux of magnetic helicity out ofth
system.

Secondly, we apply a vertical field (VF) condition for the mag

netic field, which is fulfilled when
B, = B, =0, (6)

at thez-boundaries. In this case we use impenetrable, stress-free
conditions for the velocity according to

0:U, = 0.U, = U. = 0. ™

The novel property of the VF conditions is that they allow mag
netic helicity fluxes out of the domain, enabling the shaareth
magnetic helicity flux|(Vishniac & Cho 2001), that we expeat t
occur in the vertical direction along the isocontours ofsshe

2.2 Units, nondimensional quantities, and parameters
Dimensionless quantities are obtained by setting
8

wherepg is the mean density. The units of length, time, velocity,
density, and magnetic field are then

ki=cc=po=po=1,

[I] = kfl ) [t] = (Csk‘il)il ) [U] =6Gs,

[p] = po, [Bl= v/ popocs . 9)

L http://pencil-code.googlecode.com
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Table 1. Summary of the runs. The Mach numbeéi4) is given by equatiod (14)Bms = Brms/Beq, andﬁi = \/E?/ch, whereBeq is defined via
equation [(IB) Ry = Rayk?/Q2 and Mey = (popo) ~' Mayyk? /Q2, where Ry, and My, are computed from equatiorfs{17) aid](18), respectively.

Finally, asg is given by equatiorf (16).

Run  grid Cm Rm Pm Ma Bums Bz By Ry Moy ass BC
A0 1283  5.103 - 5 - - - - - - - PER
Al 1283 10 208 5 0.021 2.09 0.09 051 0.012—0.085 0.098+0.011 PER
A2 1283 1.5.-10* 326 5 0.022 204 0.08 0.54 0.015-0.092 0.107 +£0.008 PER
A3 2563  3.10% 706 5 0.024 192 0.07 0.35 0.016—0.103 0.119+0.018 PER
A4 2563  3.10% 377 2 0.013 178 0.04 0.31 0.004—0.025 0.029 +0.008 PER
A5 2563  6-10% 625 2 0.010 1.83 0.04 0.33 0.003—0.017 0.021+0.003 PER
A6 2563  3.10% 211 1 0.007 1.28 0.02 0.34 0.000-0.003 0.003+0.001 PER
A7 2563  6-10% 348 1 0.006 157 0.02 0.31 0.001-—0.003 0.004+0.001 PER
BO 1283  1.5-10% - 20 - - - - - - - VF
BL 1283 1.5.-10* 557 10 0.037 276 0.12 230 0.034—0.187 0.221+0.013 VF
B2 1283 1.5.10* 530 5 0.035 206 0.12 1.18 0.036—0.190 0.225+0.012 VF
B3 1283 1.5-10* 632 2 0.042 233 012 1.91 0.045-0.181 0.226 +0.003 VF
B4 1283 6.0-10% 307 1 0.051 195 0.3 1.54 0.060—0.216 0.276+0.036 VF
B5 1283 1.5-10%* 637 1 0.042 224 012 1.82 0.046-—0.175 0.221+0.021 VF
B6 2563 3.0-10% 1242 1 0.041 177 011 0.97 0.040-0.201 0.2414+0.022 VF
B7 2563 1.5-10* 687 05 0.046 169 0.12 1.04 0.046—0.197 0.242+0.025 VF
B8 5123 1.5-10* 719 0.2 0.048 155 0.11 0.87 0.044—0.200 0.244+0.042 VF
B9 5123  1.5-10* 897 0.1 0.060 178 0.12 139 0.066—0.243 0.3094+0.053 VF

The simulations are controlled by the following dimensesd pa-
rameters: the magnetic diffusion in comparison to visgasitmea-
sured by the magnetic Prandtl number

Pm = —.
n

(10)

The effects of viscosity and magnetic diffusion are quasdifie-
spectively by the parameters

Cs Cm ¢
We also define the fluid Reynolds numbers
Urms _ Urms __
Re = Tk Rm = e PmRe, (12)

where u,ms is the root-mean-square (rms) value of the velocity,
better decribing the nonlinear outcome of the simulatiisther-
more, we often measure the magnetic field in terms of the aquip
tition field which is defined via

Beq =\ Mo <pugms>7

UI‘II’)S
Ma = cs (14) http://ww. hel sinki.fi/~kapyl a/ novi es. ht m for anima-
We define the mean quantites as horizontal averages tions.
. 1 La/2  pLy/2
Fi(z,t) = Fi(xz,y, z,t)dxdy. 15
=0=77 /Lm/z/Ly/2 (w2 Odudy 93 resuurs

(13)

where the brackets denote volume averaging. A convenieat me
sure of the turbulent velocity is the Mach number

Figure 1. Velocity componentU,, from the periphery of the domain for
Run B9 withPm = 0.1, Cm = 1.5 - 10%, andRe ~ 9 - 103. See also

Often an additional time average over the statically s&tdratate
is also taken. The size of error bars is estimated by dividirey
time series into three equally long parts. The largest dieviaof
the average for each of the three parts from that over theifiod
series is taken to represent the error.
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We perform two sets of simulations listed in Table 1 where @@ u
either periodic (Set A) or vertical field (Set B) boundary ditions.
In Set A, Runs A0O-A3 were started with the initial conditiades

scribed in Sectiohl2 whereas Runs A4—A6 were continued from a
snapshot of Run A3 in the saturated state, seefFig. 2. Run A7 wa
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Figure 2. Mach number defined via equatidn {14) for Runs A3-A7. The
thick solid line shows the Mach number for Run B9 withn = 0.1 and
VF boundaries.
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Figure 3. Mach number (upper panel) and magnetic energy (lower pagel)
functions of magnetic Prandtl number for periodic (triggjland vertical
field (diamonds) boundary conditions. The magnetic fieldoiswalised by
the rms value of the initial field.

continued from a snapshot of Run A6 with a two times lowendiff
sivities at roughlyl507,,1,. The minimum duration of the runs in
Set A is1007,,1 whereT,,1, = 27/ is the orbital period. Runs in
Set B were all started from scratch and typically ran a sigaifily
shorter time than those in Set A, eq. 30751 in the lowPm
cases (see Fifj] 2), because final saturation occurs mueh fast

3.1 Saturation level of the MRI
3.1.1 Periodic case

Earlier studies have shown that exciting the MRI in a pedodi
zero net flux system becomes increasingly harder as the tiagne
Prandtl number is decreased (Fromang £t al. |12007). Furtdrerm
the saturation level of the turbulence has been reporteddredse
as a function ofPm. This has been conjectured to be associated
with the difficulties of exciting a small-scale or fluctuatidynamo
at low Pm (e.g..Schekochihin et al. 2007). It is, however, unclear
how the saturation level of the small-scale dynamo is afibdty
this. It is conceivable that at magnetic Reynolds numbeysecto
marginal it takes a long time to reach saturation and thatuinent
simulations have not been run long enough. On the other lifand,
catastrophic quenching is to blame, theanmagnetic field should
decrease a®m ! (e.g.|Brandenburg & Subramanian 2005, and
references therein). A further possibility is the scenariggested
by |Vishniac (2009): in the absence of an outer scale for thg-ma
netic field, the microscopic diffusivities determine thenimum
lenght scale of MRI, which leads to turbulence intensityrdasing
proportional toaRm ™23,

We study this issue by performing runs keepihg fixed and
increasing the Reynolds numbers. We find that the saturbsiah
of turbulence, measured by the Mach number and root meanesqua
value of magnetic field, are unaffected whém is increased by a
factor of three for the casBm = 5 (Runs A1-A3) and by a fac-
tor of two for the case®m = 2 (Runs A4-A5) andPm = 1
(Runs A6-A7), see Tablel 1 and F[d. 3. Furthermore, the Mach
number and rms magnetic field, normalised with the rms value
of the initial field, increase roughly linearly witRm. The Pm-
dependence of rms magnetic field normalised to the equiparti
field strength, listed in Tablé 1, shows a much weaker trehis T
is to be expected aB. is proportional to the rms velocity which,
on the other hand, is a produced by the magnetic field itsgléeS
the parameter range of our simulations is rather limiteddef-
nite conclusions can be drawn. However, taking the resufzca
value, it appears th&m, notCm, is the parameter that determines
the saturation level in the periodic zero net flux case. Adicgy to
our results, the catastrophic quenching and the diffysiiitited
MRI length scale scenarios would be ruled out. Althoughdhier
the possibility that our calculations have not been run lemgugh,
the results seem to suggest the small-scale dynamo beidgrttar
excite asPm decreases.

3.1.2 \ertical field case

We find that the saturation behaviour is markedly differenew
vertical field boundary conditions are applied (TdHle 1 aitd[B).
The saturation level of turbulence depends only weakly an th
Prandtl number: the difference of the values «wf,s between
Pm = 0.1 andPm = 10 cases is roughly 50 per cent. Further-
more, the Mach number decreases as functidprof the trend be-
ing weaker but opposite to the periodic case. This is likelysed
by the increase of viscosity by two orders of magnitude raien
the intrinsic dependence of the MRI &mn. This conjecture is sup-
ported by the saturation values of the magnetic fields whieh a
independent of°m (lower panel of Fig[B). The runs in Set B,
however, seem to fall into two distinct regimes of magnettdfi
strength, where the magnetic energy differs by roughly #ofac
of two. The reason for this apparent discrepancy is that fardif
ent mode of the large-scale magnetic field is excited in tlie di
ferent branches (see below). Similar behaviour of the lagde

(© 0000 RAS, MNRASDOG, 000-000
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Figure 4. Horizontally averaged horizontal magnetic fielels (top panel)
and B, (middle) for Run A3 withCm = 3 - 10 andPm = 5. The lower
panel shows the square of the rms-value of the magnetic field.
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Figure 5. Same as FidJ4 but for Run B1 withm = 1.5 - 10 andPm =
10.

dynamo has previously been seen in isotropically forceloulece

(Brandenburg & Doblér 2002).

3.2 Large-scale magnetic fields

In the runs with periodic boundaries we occasionally see the
emergence of large-scale magnetic fields with a sinusoieladio-
dence onz (see Fig[h), i.ek/ki = 1, in accordance with ear-

(© 0000 RAS, MNRASD0Q, 000—-000

lier investigations|(Lesur & Ogilvie 2008). Similar largeale dy-
namos have recently been reported from nonhelically forgdal-
lence with shear where the MRI is absent (20
IBrandenburg et &l. 2008). As in the forced turbulence cas®ag
large-scale field is not present at all times and the fieldergu
apparently random S|gn changes that are not fully undedsteee,
however € 2008; Brandenburg et al. 2008). Fhe
termittent nature of the large-scale fields could also enple ap-
parent lack of catastrophical quenching of the time avetagean
magnetic field (see Tablé 1).

In the vertical field runs a strong large-scale dynamo is
ways excited continuously. The two branches of solutioas #ine
visible in the total magnetic energy (Fig. 3) are due to diffe
modes of the large-scale field. This is illustrated in Elg. eve
the horizontally averaged horizontal magnetic field congms are
shown as a function of time. As is common for dynamos with
strong shear, the streamwise component of the magneticifield
much stronger than the cross-stream one. Although thalicioin-
dition of the magnetic field is the same in all runs, the lasgale
field which develops in the non-linear stage can choose attyeof
available wavenumbers consistent with the vertical boondan-
dition B, = B, = 0. In practice, the dominant large-scale com-
ponent isk/k1 = 1 or k/ki =  in our simulations. The large-
scale dynamo tends to accumulate energy at the smallest poss
ble wavenumbe 01), i.e. the largest dzatide.
However, if the dominant mode is on some intermediate soale i
tially, those modes can also be long-lived (Brandenburg &IBio
@). Ultimately the large-scale field evolves towardsl| fsadura-
tion where the largest possible scale dominates which wesise
IBrandenburg & Doblér (2002) and in some of our runs (cf. Fg. 5
The fact that the magnetic energy in Runs B2, B6, B7, and B8 is
smaller is due to the fact that the large-scale field is predantly
of thek/k:1 = 1 flavour, and that final saturation of the large-scale
magnetic field has not yet occured.

Although the source of the turbulence and the nature of the
dynamos (kinematic vs. nonlinear) is different betweenriba-
helically forced turbulence simulations (elg. Yousef {2008;
IBrandenburg et al. 2008) and the non-stratified MRI runs ssch
those presented here, it is conceivable that the large-eid gen-
eration mechanism is the same. Since the periodic systeamis-h
geneous, the cause of the large-scale fields cannot he-#fifect
of mean-field dynamo theory (Moffait 1978; Krause & Radler
), which is in simple systems proportional to the dgnsit
gradient or the turbulence inhomogeneity due to bounddees
Giesecke et al. 2005; Kapyla et al. 2010a). However, a (et
ing o with zero mean can also drive a large-scale dynamo when
shear is present (elg. Vishniac & Brandenburg 1997; Sok9ev ;
Silant'eVl200Df Proctfr 2007) This is the most likely souné¢he
large-scale magnetic fields in the present case. Furthefnitds
possible that the shear—current dnc J—effects can drive a large-
scale dynamo (Rad er 1969; Rogachevskii & Kleeorin 200843,
although present evidence from numerical models does ppost
this (Brandenburg et al. 2008).

In the VF runs the impenetrable stress-feeleoundaries make
the turbulence inhomogeneous near the boundary. This keads
generation of mean kinetic helicitf{(z) = w-u, wherew =
V x w is the vorticity. The quantityH is important, because
the mean-fielda-effect is, in simple settings, proportional to it
(e.glKrause & Radlkr 1980). Such contributions, howew#tnot
show up in volume averages because the sign of the helicity, a
thus of then-effect, are different near the different boundaries. Fig-
ure[@ shows the horizontally averaged kinetic helicity fanRB7.

al-
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H/ (e Uenns)

Figure 6. Horizontally averaged kinetic helicity from Run B6. The inset
shows the volume averaged rms-valuetaf The shaded area denotes the
error estimates.
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Figure 7. Viscosity parametenggs as a function ofPm for the runs listed
in Table[1. The dotted lines shawsyg = const = 0.23 andagg o< Pm?°
for reference.

Here we average also in time over the saturated state of the ru
In most of the volume the kinetic helicity is consistent witro,
although there are regions close to the boundaries whergeron
values are present. The rms-value7f however, is at least five
times greater than its mean (see the inset of Hig. 6). Note als
that the normalization factor contains the integral séaleA more
proper definition would be to use the scale where turbuleatgn
peaks which is likely at least a factor of few greater thanThus
our estimates for the normalised helicity can be considasedp-
per limits. The rather small values of mean helicity and thmid
nance of fluctuations suggest that the generation mechaniitme
large-scale fields could indeed be the incoheterghear dynamo.
However, a conclusive answer can only be obtained by extact
the turbulent transport coefficients and by performing riiéeld
modeling of the same system (see e.g. Gressel 2010).

3.3 Angular momentum transport

The main effect of turbulence in astrophysical disks is thagrte
diffusion which enables efficient accretion. In accretitskdheory
it is customary to parametrise the turbulent viscosifyin terms

of the Shakura—Sunyaev viscosity parametgs, which relates,
with the local gas pressure (Shakura & Sunyaev 1973).

We define the Shakura—Sunyaev viscosity parameter as
(Brandenburg et al. 2004)

[Rwy - Mwy/(NOP)]k%

ass = a2 ) (16)
where

Rey = (uguy) = (UxU,) — (TT,), (17)
is the Reynolds stress and

May = (biby) = (B B,) — (B.By), (18)

the Maxwell stress, and where the angular brackets denaieneo
averaging. Here we decompose the velocity and magnetidffiteld
their mean U, B), taken here as the horizontal average, and fluc-
tuating (u, b) parts. The mean velocities show no systematic large-
scale pattern and the remaining sighal O(0.05u,ms ) is likely

a residual of averaging over a finite number of cells. The rgont
bution of mean flows to the angular momentum transport and the
dynamo process is thus likely to be negligible.

For the runs in Set A we find essentially the same scaling,
consistent withPm?-°, with magnetic Prandtl number as in the
case of the turbulent kinetic and magnetic energies, sedfFig
This is consistent with the mixing length estimate of tuemil
viscosity which is proportional to the turbulence intepsie.g.
Snellman et al. 2009). The numerical valuesw§ decrease from
~ 0.1for Pm = 5,t0 ass ~ 3 - 1073 for Pm = 1. In Set B, on
the other handqyss is essentially independent of magnetic Prandtl
number. The value afss is consistently of the order of 0.2, which
is significantly greater than that found in runs with pergdound-
aries. Here the qualitative behaviour @§s resembles that of the
turbulent kinetic energy, whereas the two different dynanuales
seen in magnetic energy are not visible in the angular mament
transport.

3.4 Discussion

A possible clue to understand the convergence problem io zer
net flux simulations comes from MRI models with density $trat
fication: in them the level of turbulence does converge winen t
Reynolds numbers are increased (Davis et al. 12010), evem wit
perfect conductor of periodic boundaries. Furthermorehsse-
tups exhibit a large-scale dynamo (€.g. Brandenburgl et98%;1
Stone et al. 1996, Gressel 2010) where the magnetic helicity
changes sign at the midplane (Gressel 2010).

Recent numerical results from a different setting sugdest t
a diffusive flux of magnetic helicity also exists (Mitra et|aD10).
Such a flux can alleviate catastrophic quenching by tramisgor
oppositely signed magnetic helicity to the midplane whereia
hilation occurs. This could explain the successful corereg of
the stratified MRI runs. In the non-stratified case with pdico
or perfectly conducting boundaries, however, no net flux agm
netic helicity occurs and the large-scale dynamo is catphically
guenched, shutting off the MRI. When a flux is allowed by chang
ing to vertical field boundary conditions, this limitatiamremoved
and the large-scale dynamo can operate without hindranoe- H
ever, this hypothesis requires further study and more cbaefly-
sis of the helicity fluxes that we postpone to a future pulilica

(© 0000 RAS, MNRASDOG, 000-000
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4 CONCLUSIONS

We present three-dimensional numerical simulations ofntiag-
netorotational instability in an isothermal non-stratifigetup with
zero net flux initially. Using fully periodic boundaries, athdo
not allow magnetic helicity fluxes out of the system or the-gen

eration of a mean flux, we encounter the convergence problem

(Fromang et al. 2007) of the MRI: turbulent kinetic and mdgne
energies, and the angular momentum transport increasexappr
mately proportional to the magnetic Prandtl number. Inteemt
large-scale magnetic fields are observed in the periodis. iim
creasing the Reynolds numbers moderately at a gimardoes not
appear to markedly change the results in the saturated.

When vertical field boundary conditions, allowing a magneti
helicity flux, are used, the MRI is excited at least in the &ng
0.1 < Pm < 10 for our standard value dfm = 1.5 - 10*. We
find that the saturation level of the turbulence and the argab-
mentum transport are only weakly dependent on the Prandit nu
ber and that strong large-scale fields are generated insdbcahe
Shakura—Sunyaev viscosity parameter has consistentljua vé
ass =~ 0.2 in the vertical field case. We conjecture that the opera-
tion of the MRI at lowPm is due to the efficient large-scale dynamo
in the system, that only works if magnetic helicity is allave es-
cape (see also Vishniac 2009) or annihilate at the disk raidpl
due to an internal diffusive flux (Mitra et al. 2010). Explogieven
lower values ofPm is infeasible at the moment due to prohibitive
computational requirements but there are no compellingraemts
against a large-scale dynamo operating at Iowv (Brandenburg
2009).

The current results highlight the close connection betvasen
namo theory and the theory of magnetised accretion disksa(se
Blackmain 2010) and the importance of studying the resul in
common framework (e.g. Gressel 2010). Clearly, a more thgito
study is needed in order to substantiate the apparentlyatmate
of magnetic helicity fluxes for the excitation and satunatis the
MRI. We plan to address these issues in future publications.
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