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ABSTRACT
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in
a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic
boundary conditions. In fully periodic systems the level ofturbulence generated by the MRI
strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic
viscosity and magnetic diffusion, is decreased. No MRI or dynamo action belowPm = 1

is found, agreeing with earlier investigations. Using vertical field conditions, which allow
magnetic helicity fluxes out of the system, the MRI is found tobe excited in the range0.1 ≤

Pm ≤ 10, and that the saturation level is independent ofPm. The non-vanishing magnetic
helicity fluxes alleviate catastrophic quenching and allowstrong large-scale magnetic fields
to develop. When vertical field conditions are used, the Shakura–Sunyaev viscosity parameter
has a value of the order of∼ 0.2.
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1 INTRODUCTION

The realization of the astrophysical signifigance of the magnetoro-
tational instability (Balbus & Hawley 1991), first discovered in the
context of Couette flow (Velikhov 1959; Chandrasekhar 1960),
seemed to resolve the long-standing problem of the mechanism
driving turbulence in accretion disks. Early numerical simulations
produced sustained turbulence, large-scale magnetic fields and out-
ward angular momentum transport (e.g. Brandenburg et al. 1995;
Hawley et al. 1995). These results also showed that a significant
qualitative difference exists between models where an imposed uni-
form magnetic field is present as opposed to the situations where
such field is absent: the saturation level of turbulence and angular
momentum transport are substantially higher when a non-zero ver-
tical net flux is present (e.g. Brandenburg et al. 1995; Stoneet al.
1996). Also the presence of an imposed net toroidal field seemed
to enhance the transport (Stone et al. 1996).

In the meantime, a lot of numerical work has been done
with zero net flux setups that omit stratification and adopt fully
periodic or perfectly conducting boundaries in order to study
the saturation behaviour of the MRI in the simplest possible
setting (e.g. Fromang & Papaloizou 2007; Fromang et al. 2007;
Liljeström et al. 2009; Korpi et al. 2010). Due to the boundary con-
ditions, the initial net flux in conserved and no helicity fluxes
out of the system are allowed. The results of these investigations
have shown that as the numerical resolution of the simulations
increases, or equivalently as the explicit diffusion decreases, the
level of turbulence and angular momentum transport transport de-
crease, constituting a convergence problem for zero net fluxMRI
(Fromang et al. 2007). Runs with explicit diffusion show that sus-

taining turbulence becomes increasingly difficult as the magnetic
Prandtl number,Pm = ν/η, whereν is the viscosity andη the
magnetic diffusivity, is decreased (Fromang et al. 2007). Currently
the convergence problem is without a definite solution. It has been
suggested that this issue could be related to thePm-dependence
of the fluctuation dynamo (e.g. Schekochihin et al. 2007). Ithas
even been argued that the MRI in periodic zero net flux systems
would vanish in the limit of high Reynolds numbers and that a
large-scale dynamo would be needed to sustain the MRI and tur-
bulence (Vishniac 2009). Notably, large-scale dynamos have no
problems operating at low magnetic Prandtl numbers as long as
the relevant Reynolds and dynamo numbers exceed critical values
(Brandenburg 2009).

From the point of view of mean-field dynamo theory
(Brandenburg & Subramanian 2005), systems with fully periodic
of perfectly conducting boundaries are rather special. In such
closed setups magnetic helicity, defined as a volume averageof
A · B, whereA is the vector potential andB = ∇ × A the
magnetic field, is a conserved quantity in ideal MHD. In the pres-
ence of magnetic diffusion, magnetic helicity can change only on a
timescale based on microscopic diffusivity, which is usually a very
long in any astrophysical setting. Such a behaviour, which has been
captured in numerical simulations (Brandenburg 2001), is well de-
scribed by simple mean-field models taking into account mag-
netic helicity conservation (e.g. Blackman & Brandenburg 2002).
This would mean that generating appreciable large-scale mag-
netic fields, which are possibly vital for sustaining the MRI,
can take a very long time. Furthermore, the saturation value
of the mean magnetic field decreases inversely proportionalto

c© 0000 RAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14922499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1004.2417v1
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the magnetic Reynolds number (e.g. Cattaneo & Hughes 1996;
Brandenburg 2001). In dynamo theory this detrimental effect to
the large-scale dynamo is known as the catastrophic quenching
(Vainshtein & Cattaneo 1992).

The situation, however, changes dramatically if magnetic
helicity flux out of the system is allowed. In particular, the
Vishniac & Cho (2001) flux, which requires large-scale velocity
shear to be present and flows along the isocontours of shear, is a
potential mechanism that can drive a magnetic helicity flux out of
the system and alleviate catastrophic quenching. Evidencefor its
importance exists from convection simulations in a shearing box
setup (Käpylä et al. 2008, 2010b).

In an accretion disk the direction of the Vishniac–Cho flux is
perpendicular to the plane of the disk. In a real disk this direction is
never periodic and also probably not perfectly conducting.Follow-
ing this idea we study a system that is isothermal, non-stratified,
and the magnetic field has a zero net flux initially. However, we
allow a magnetic helicity flux through the vertical boundaries by
letting the magnetic field cross them. We thus enable also theshear-
driven flux. We show that if the MRI is excited, a large-scale dy-
namo is also excited and that the saturation level of the turbulence,
large-scale magnetic field, and angular momentum transportare es-
sentially independent ofPm. This is contrasted by periodic simu-
lations where we find a strongPm-dependence in accordance with
earlier studies. Our results also suggest that for a givenPm the
results (level of turbulence and angular momentun transport) are
independent of the magnetic Reynolds number.

The remainder of the paper is organised as follows: in Sect. 2
we describe our model, and in Sect. 3 and 4, we present our results
and conclusions.

2 THE MODEL

In an effort to keep the system as simple as possible, we assume
that the fluid is non-stratified and isothermal. The diffusion pro-
cesses are modeled with explicit Laplacian diffusion operators with
constant coefficients. A similar model was used by Liljestr¨om et al.
(2009) and Korpi et al. (2010), although in these models higher or-
der hyperdiffusive operators were used instead of the Laplacian
ones. The computational domain is a cube with volume(2π)3. We
solve the usual set of hydromagnetic equations in this geometry

DA

Dt
= −SAyx̂− (∇U)TA− ηµ0J , (1)

D ln ρ

Dt
= −∇ ·U , (2)

DU

Dt
= −SUxŷ − c2s∇ ln ρ− 2Ω×U

+
1

ρ
(J ×B +∇ · 2νρS), (3)

whereD/Dt = ∂/∂t + (U + U
(0)

) · ∇ is the advective time
derivative,A is the magnetic vector potential,B = ∇ ×A is the
magnetic field, andJ = µ−1

0 ∇ × B is the current density,µ0 is
the vacuum permeability,η andν are the magnetic diffusivity and
kinematic viscosity, respectively,ρ is the density,U is the velocity,
andΩ = Ω0(0, 0, 1) the rotation vector. The large-scale shear is

given byU
(0)

= (0, Sx, 0), with q = −S/Ω0 = 1.5, correspond-
ing to Keplerian rotation, in all runs. We use isothermal equation
of statep = c2sρ, characterised by a constant speed of sound,cs.
In the present models we choose the sound speed so that the Mach
number remains of the order of 0.1 or smaller in order to minimize

the effects of compressibility. The rate of strain tensorS is given
by

Sij = 1
2
(Ui,j + Uj,i)− 1

3
δij∇ ·U , (4)

where the commas denote spatial derivatives. The initial magnetic
field can be written in terms of the vector potential as

A = A0 cos(kAx) cos(kAz)êy, (5)

where the amplitude of the resulting magnetic field that containsx
andz–components is given byB0 = kAA0. We usekA/k1 = 1,
Ω0 = 2

3
·10−1csk1, andA0 = 1

3
·10−1√µ0ρ0csk

−1
1 in all models.

The values ofkA, Ω0 andA0 are selected so that both the
wavenumber with the largest growth rate,kmax = Ω0/uA = 2,
whereuA = B0/

√
µ0ρ0 is the Alfv́en velocity, and the largest

unstable wavenumber,kcrit =
√
2qkmax ≈ 3.5, are well resolved

by the grid. The other condition for the onset of MRI, namelyβ >
1, whereβ = 2µ0p/B

2
0 is the ratio of thermal to magnetic pressure,

is also satisfied asβ = 1800 for the maximum values of the initial
magnetic field.

We use the PENCIL CODE1 which is a high-order explicit fi-
nite difference method for solving the equations of compressible
magnetohydrodynamics. Resolutions of up to5123 are used, see
Figure 1 for a snapshot of a high resolution run.

2.1 Boundary conditions

In all models the y-direction is periodic and shearing-
periodic boundary conditions are used for thex-direction
(Wisdom & Tremaine 1988). On thez-boundaries we use two sets
of conditions. Firstly, we apply periodic boundaries (denoted as
PER) which do not allow a net flux of magnetic helicity out of the
system.

Secondly, we apply a vertical field (VF) condition for the mag-
netic field, which is fulfilled when

Bx = By = 0, (6)

at thez-boundaries. In this case we use impenetrable, stress-free
conditions for the velocity according to

∂zUx = ∂zUy = Uz = 0. (7)

The novel property of the VF conditions is that they allow mag-
netic helicity fluxes out of the domain, enabling the shear-driven
magnetic helicity flux (Vishniac & Cho 2001), that we expect to
occur in the vertical direction along the isocontours of shear.

2.2 Units, nondimensional quantities, and parameters

Dimensionless quantities are obtained by setting

k1 = cs = ρ0 = µ0 = 1 , (8)

whereρ0 is the mean density. The units of length, time, velocity,
density, and magnetic field are then

[x] = k−1
1 , [t] = (csk1)

−1 , [U ] = cs ,

[ρ] = ρ0 , [B] =
√

µ0ρ0c2s . (9)

1 http://pencil-code.googlecode.com
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Magnetorotational instability driven dynamos at low magnetic Prandtl numbers 3

Table 1. Summary of the runs. The Mach number (Ma) is given by equation (14),̃Brms = Brms/Beq, and ˜
Bi =

√

B
2
i /Beq, whereBeq is defined via

equation (13).R̃xy = Rxyk21/Ω
2
0 andM̃xy = (ρ0µ0)−1Mxyk21/Ω

2
0, whereRxy andMxy are computed from equations (17) and (18), respectively.

Finally,αSS is given by equation (16).

Run grid Cm Rm Pm Ma B̃rms
˜
Bx

˜
By R̃xy M̃xy αSS BC

A0 1283 5 · 103 – 5 – – – – – – – PER
A1 1283 104 208 5 0.021 2.09 0.09 0.51 0.012−0.085 0.098± 0.011 PER
A2 1283 1.5 · 104 326 5 0.022 2.04 0.08 0.54 0.015−0.092 0.107± 0.008 PER
A3 2563 3 · 104 706 5 0.024 1.92 0.07 0.35 0.016−0.103 0.119± 0.018 PER

A4 2563 3 · 104 377 2 0.013 1.78 0.04 0.31 0.004−0.025 0.029± 0.008 PER
A5 2563 6 · 104 625 2 0.010 1.83 0.04 0.33 0.003−0.017 0.021± 0.003 PER

A6 2563 3 · 104 211 1 0.007 1.28 0.02 0.34 0.000−0.003 0.003± 0.001 PER
A7 2563 6 · 104 348 1 0.006 1.57 0.02 0.31 0.001−0.003 0.004± 0.001 PER

B0 1283 1.5 · 104 – 20 – – – – – – – VF
B1 1283 1.5 · 104 557 10 0.037 2.76 0.12 2.30 0.034−0.187 0.221± 0.013 VF
B2 1283 1.5 · 104 530 5 0.035 2.06 0.12 1.18 0.036−0.190 0.225± 0.012 VF
B3 1283 1.5 · 104 632 2 0.042 2.33 0.12 1.91 0.045−0.181 0.226± 0.003 VF
B4 1283 6.0 · 103 307 1 0.051 1.95 0.13 1.54 0.060−0.216 0.276± 0.036 VF
B5 1283 1.5 · 104 637 1 0.042 2.24 0.12 1.82 0.046−0.175 0.221± 0.021 VF
B6 2563 3.0 · 104 1242 1 0.041 1.77 0.11 0.97 0.040−0.201 0.241± 0.022 VF
B7 2563 1.5 · 104 687 0.5 0.046 1.69 0.12 1.04 0.046−0.197 0.242± 0.025 VF
B8 5123 1.5 · 104 719 0.2 0.048 1.55 0.11 0.87 0.044−0.200 0.244± 0.042 VF
B9 5123 1.5 · 104 897 0.1 0.060 1.78 0.12 1.39 0.066−0.243 0.309± 0.053 VF

The simulations are controlled by the following dimensionless pa-
rameters: the magnetic diffusion in comparison to viscosity is mea-
sured by the magnetic Prandtl number

Pm =
ν

η
. (10)

The effects of viscosity and magnetic diffusion are quantified re-
spectively by the parameters

Cm =
cs
ηk2

1

,
Cm

Pm
=

cs
νk2

1

. (11)

We also define the fluid Reynolds numbers

Re =
urms

νk1
, Rm =

urms

ηk1
= PmRe, (12)

whereurms is the root-mean-square (rms) value of the velocity,
better decribing the nonlinear outcome of the simulations.Further-
more, we often measure the magnetic field in terms of the equipar-
tition field which is defined via

Beq =
√

µ0〈ρu2
rms〉, (13)

where the brackets denote volume averaging. A convenient mea-
sure of the turbulent velocity is the Mach number

Ma =
urms

cs
. (14)

We define the mean quantites as horizontal averages

F i(z, t) =
1

LxLy

∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2

Fi(x, y, z, t)dxdy. (15)

Often an additional time average over the statically saturated state
is also taken. The size of error bars is estimated by dividingthe
time series into three equally long parts. The largest deviation of
the average for each of the three parts from that over the fulltime
series is taken to represent the error.

Figure 1. Velocity componentUx from the periphery of the domain for
Run B9 withPm = 0.1, Cm = 1.5 · 104, andRe ≈ 9 · 103. See also
http://www.helsinki.fi/∼kapyla/movies.html for anima-
tions.

3 RESULTS

We perform two sets of simulations listed in Table 1 where we use
either periodic (Set A) or vertical field (Set B) boundary conditions.
In Set A, Runs A0–A3 were started with the initial conditionsde-
scribed in Section 2 whereas Runs A4–A6 were continued from a
snapshot of Run A3 in the saturated state, see Fig. 2. Run A7 was

c© 0000 RAS, MNRAS000, 000–000



4 P. J. Käpylä & M. J. Korpi

Figure 2. Mach number defined via equation (14) for Runs A3–A7. The
thick solid line shows the Mach number for Run B9 withPm = 0.1 and
VF boundaries.

Figure 3.Mach number (upper panel) and magnetic energy (lower panel)as
functions of magnetic Prandtl number for periodic (triangles) and vertical
field (diamonds) boundary conditions. The magnetic field is normalised by
the rms value of the initial field.

continued from a snapshot of Run A6 with a two times lower diffu-
sivities at roughly150Torb. The minimum duration of the runs in
Set A is100Torb whereTorb = 2π/Ω is the orbital period. Runs in
Set B were all started from scratch and typically ran a significantly
shorter time than those in Set A, e.g.∼ 30Torb in the low–Pm
cases (see Fig. 2), because final saturation occurs much faster.

3.1 Saturation level of the MRI

3.1.1 Periodic case

Earlier studies have shown that exciting the MRI in a periodic
zero net flux system becomes increasingly harder as the magnetic
Prandtl number is decreased (Fromang et al. 2007). Furthermore,
the saturation level of the turbulence has been reported to decrease
as a function ofPm. This has been conjectured to be associated
with the difficulties of exciting a small-scale or fluctuation dynamo
at low Pm (e.g. Schekochihin et al. 2007). It is, however, unclear
how the saturation level of the small-scale dynamo is affected by
this. It is conceivable that at magnetic Reynolds numbers close to
marginal it takes a long time to reach saturation and that thecurrent
simulations have not been run long enough. On the other hand,if
catastrophic quenching is to blame, themeanmagnetic field should
decrease asRm−1 (e.g. Brandenburg & Subramanian 2005, and
references therein). A further possibility is the scenariosuggested
by Vishniac (2009): in the absence of an outer scale for the mag-
netic field, the microscopic diffusivities determine the minimum
lenght scale of MRI, which leads to turbulence intensity decreasing
proportional toRm−2/3.

We study this issue by performing runs keepingPm fixed and
increasing the Reynolds numbers. We find that the saturationlevel
of turbulence, measured by the Mach number and root mean square
value of magnetic field, are unaffected whenCm is increased by a
factor of three for the casePm = 5 (Runs A1–A3) and by a fac-
tor of two for the casesPm = 2 (Runs A4–A5) andPm = 1
(Runs A6–A7), see Table 1 and Fig. 3. Furthermore, the Mach
number and rms magnetic field, normalised with the rms value
of the initial field, increase roughly linearly withPm. ThePm-
dependence of rms magnetic field normalised to the equipartition
field strength, listed in Table 1, shows a much weaker trend. This
is to be expected asBeq is proportional to the rms velocity which,
on the other hand, is a produced by the magnetic field itself. Since
the parameter range of our simulations is rather limited, nodefi-
nite conclusions can be drawn. However, taking the results at face
value, it appears thatPm, notCm, is the parameter that determines
the saturation level in the periodic zero net flux case. According to
our results, the catastrophic quenching and the diffusivity-limited
MRI length scale scenarios would be ruled out. Although there is
the possibility that our calculations have not been run longenough,
the results seem to suggest the small-scale dynamo being harder to
excite asPm decreases.

3.1.2 Vertical field case

We find that the saturation behaviour is markedly different when
vertical field boundary conditions are applied (Table 1 and Fig. 3).
The saturation level of turbulence depends only weakly on the
Prandtl number: the difference of the values ofurms between
Pm = 0.1 andPm = 10 cases is roughly 50 per cent. Further-
more, the Mach number decreases as function ofPm, the trend be-
ing weaker but opposite to the periodic case. This is likely caused
by the increase of viscosity by two orders of magnitude rather than
the intrinsic dependence of the MRI onPm. This conjecture is sup-
ported by the saturation values of the magnetic fields which are
independent ofPm (lower panel of Fig. 3). The runs in Set B,
however, seem to fall into two distinct regimes of magnetic field
strength, where the magnetic energy differs by roughly a factor
of two. The reason for this apparent discrepancy is that a differ-
ent mode of the large-scale magnetic field is excited in the dif-
ferent branches (see below). Similar behaviour of the large-scale

c© 0000 RAS, MNRAS000, 000–000



Magnetorotational instability driven dynamos at low magnetic Prandtl numbers 5

Figure 4. Horizontally averaged horizontal magnetic fieldsBx (top panel)
andBy (middle) for Run A3 withCm = 3 · 104 andPm = 5. The lower
panel shows the square of the rms-value of the magnetic field.

Figure 5. Same as Fig. 4 but for Run B1 withCm = 1.5 · 104 andPm =
10.

dynamo has previously been seen in isotropically forced turbulece
(Brandenburg & Dobler 2002).

3.2 Large-scale magnetic fields

In the runs with periodic boundaries we occasionally see the
emergence of large-scale magnetic fields with a sinusoidal depen-
dence onz (see Fig. 4), i.e.k/k1 = 1, in accordance with ear-

lier investigations (Lesur & Ogilvie 2008). Similar large-scale dy-
namos have recently been reported from nonhelically forcedturbu-
lence with shear where the MRI is absent (e.g. Yousef et al. 2008;
Brandenburg et al. 2008). As in the forced turbulence case a strong
large-scale field is not present at all times and the fields undergo
apparently random sign changes that are not fully understood (see,
however, Lesur & Ogilvie 2008; Brandenburg et al. 2008). Thein-
termittent nature of the large-scale fields could also explain the ap-
parent lack of catastrophical quenching of the time averaged mean
magnetic field (see Table 1).

In the vertical field runs a strong large-scale dynamo is al-
ways excited continuously. The two branches of solutions that are
visible in the total magnetic energy (Fig. 3) are due to different
modes of the large-scale field. This is illustrated in Fig. 5 where
the horizontally averaged horizontal magnetic field components are
shown as a function of time. As is common for dynamos with
strong shear, the streamwise component of the magnetic fieldis
much stronger than the cross-stream one. Although the initial con-
dition of the magnetic field is the same in all runs, the large-scale
field which develops in the non-linear stage can choose any ofthe
available wavenumbers consistent with the vertical boundary con-
dition Bx = By = 0. In practice, the dominant large-scale com-
ponent isk/k1 = 1 or k/k1 = 1

2
in our simulations. The large-

scale dynamo tends to accumulate energy at the smallest possi-
ble wavenumber (Brandenburg 2001), i.e. the largest spatial scale.
However, if the dominant mode is on some intermediate scale ini-
tially, those modes can also be long-lived (Brandenburg & Dobler
2002). Ultimately the large-scale field evolves towards final satura-
tion where the largest possible scale dominates which was seen in
Brandenburg & Dobler (2002) and in some of our runs (cf. Fig. 5).
The fact that the magnetic energy in Runs B2, B6, B7, and B8 is
smaller is due to the fact that the large-scale field is predominantly
of thek/k1 = 1 flavour, and that final saturation of the large-scale
magnetic field has not yet occured.

Although the source of the turbulence and the nature of the
dynamos (kinematic vs. nonlinear) is different between thenon-
helically forced turbulence simulations (e.g. Yousef et al. 2008;
Brandenburg et al. 2008) and the non-stratified MRI runs suchas
those presented here, it is conceivable that the large-scale field gen-
eration mechanism is the same. Since the periodic system is homo-
geneous, the cause of the large-scale fields cannot be theα-effect
of mean-field dynamo theory (Moffatt 1978; Krause & Rädler
1980), which is in simple systems proportional to the density
gradient or the turbulence inhomogeneity due to boundaries(e.g.
Giesecke et al. 2005; Käpylä et al. 2010a). However, a fluctuat-
ing α with zero mean can also drive a large-scale dynamo when
shear is present (e.g. Vishniac & Brandenburg 1997; Sokolov1997;
Silant’ev 2000; Proctor 2007) This is the most likely sourceof the
large-scale magnetic fields in the present case. Furthermore, it is
possible that the shear–current andΩ×J–effects can drive a large-
scale dynamo (Rädler 1969; Rogachevskii & Kleeorin 2003, 2004),
although present evidence from numerical models does not support
this (Brandenburg et al. 2008).

In the VF runs the impenetrable stress-freez-boundaries make
the turbulence inhomogeneous near the boundary. This leadsto
generation of mean kinetic helicityH(z) = ω · u, whereω =
∇ × u is the vorticity. The quantityH is important, because
the mean-fieldα-effect is, in simple settings, proportional to it
(e.g. Krause & Rädler 1980). Such contributions, however,will not
show up in volume averages because the sign of the helicity, and
thus of theα-effect, are different near the different boundaries. Fig-
ure 6 shows the horizontally averaged kinetic helicity for Run B7.

c© 0000 RAS, MNRAS000, 000–000



6 P. J. Käpylä & M. J. Korpi

Figure 6. Horizontally averaged kinetic helicityH from Run B6. The inset
shows the volume averaged rms-value ofH. The shaded area denotes the
error estimates.

Figure 7. Viscosity parameterαSS as a function ofPm for the runs listed
in Table 1. The dotted lines showαSS = const = 0.23 andαSS ∝ Pm2.0

for reference.

Here we average also in time over the saturated state of the run.
In most of the volume the kinetic helicity is consistent withzero,
although there are regions close to the boundaries where non-zero
values are present. The rms-value ofH, however, is at least five
times greater than its mean (see the inset of Fig. 6). Note also
that the normalization factor contains the integral scalek1. A more
proper definition would be to use the scale where turbulent energy
peaks which is likely at least a factor of few greater thank1. Thus
our estimates for the normalised helicity can be consideredas up-
per limits. The rather small values of mean helicity and the domi-
nance of fluctuations suggest that the generation mechanismof the
large-scale fields could indeed be the incoherentα–shear dynamo.
However, a conclusive answer can only be obtained by extracting
the turbulent transport coefficients and by performing mean-field
modeling of the same system (see e.g. Gressel 2010).

3.3 Angular momentum transport

The main effect of turbulence in astrophysical disks is to enhance
diffusion which enables efficient accretion. In accretion disk theory
it is customary to parametrise the turbulent viscosityνt in terms

of the Shakura–Sunyaev viscosity parameterαSS, which relatesνt
with the local gas pressure (Shakura & Sunyaev 1973).

We define the Shakura–Sunyaev viscosity parameter as
(Brandenburg et al. 2004)

αSS =
[Rxy −Mxy/(µ0ρ)]k

2
1

Ω2
0

, (16)

where

Rxy ≡ 〈uxuy〉 = 〈UxUy〉 − 〈UxUy〉, (17)

is the Reynolds stress and

Mxy ≡ 〈bxby〉 = 〈BxBy〉 − 〈BxBy〉, (18)

the Maxwell stress, and where the angular brackets denote volume
averaging. Here we decompose the velocity and magnetic fieldinto
their mean (U ,B), taken here as the horizontal average, and fluc-
tuating (u, b) parts. The mean velocities show no systematic large-
scale pattern and the remaining signalU ∼ O(0.05urms) is likely
a residual of averaging over a finite number of cells. The contri-
bution of mean flows to the angular momentum transport and the
dynamo process is thus likely to be negligible.

For the runs in Set A we find essentially the same scaling,
consistent withPm2.0, with magnetic Prandtl number as in the
case of the turbulent kinetic and magnetic energies, see Fig. 7.
This is consistent with the mixing length estimate of turbulent
viscosity which is proportional to the turbulence intensity (e.g.
Snellman et al. 2009). The numerical values ofαSS decrease from
≈ 0.1 for Pm = 5, toαSS ≈ 3 · 10−3 for Pm = 1. In Set B, on
the other hand,αSS is essentially independent of magnetic Prandtl
number. The value ofαSS is consistently of the order of 0.2, which
is significantly greater than that found in runs with periodic bound-
aries. Here the qualitative behaviour ofαSS resembles that of the
turbulent kinetic energy, whereas the two different dynamomodes
seen in magnetic energy are not visible in the angular momentum
transport.

3.4 Discussion

A possible clue to understand the convergence problem in zero
net flux simulations comes from MRI models with density strati-
fication: in them the level of turbulence does converge when the
Reynolds numbers are increased (Davis et al. 2010), even with
perfect conductor of periodic boundaries. Furthermore, such se-
tups exhibit a large-scale dynamo (e.g. Brandenburg et al. 1995;
Stone et al. 1996; Gressel 2010) where the magnetic helicity
changes sign at the midplane (Gressel 2010).

Recent numerical results from a different setting suggest that
a diffusive flux of magnetic helicity also exists (Mitra et al. 2010).
Such a flux can alleviate catastrophic quenching by transporting
oppositely signed magnetic helicity to the midplane where anni-
hilation occurs. This could explain the successful convergence of
the stratified MRI runs. In the non-stratified case with periodic
or perfectly conducting boundaries, however, no net flux of mag-
netic helicity occurs and the large-scale dynamo is catastrophically
quenched, shutting off the MRI. When a flux is allowed by chang-
ing to vertical field boundary conditions, this limitation is removed
and the large-scale dynamo can operate without hindrance. How-
ever, this hypothesis requires further study and more careful analy-
sis of the helicity fluxes that we postpone to a future publication.

c© 0000 RAS, MNRAS000, 000–000
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4 CONCLUSIONS

We present three-dimensional numerical simulations of themag-
netorotational instability in an isothermal non-stratified setup with
zero net flux initially. Using fully periodic boundaries, that do
not allow magnetic helicity fluxes out of the system or the gen-
eration of a mean flux, we encounter the convergence problem
(Fromang et al. 2007) of the MRI: turbulent kinetic and magnetic
energies, and the angular momentum transport increase approxi-
mately proportional to the magnetic Prandtl number. Intermittent
large-scale magnetic fields are observed in the periodic runs. In-
creasing the Reynolds numbers moderately at a givenPm does not
appear to markedly change the results in the saturated.

When vertical field boundary conditions, allowing a magnetic
helicity flux, are used, the MRI is excited at least in the range
0.1 ≤ Pm ≤ 10 for our standard value ofCm = 1.5 · 104. We
find that the saturation level of the turbulence and the angular mo-
mentum transport are only weakly dependent on the Prandtl num-
ber and that strong large-scale fields are generated in all cases. The
Shakura–Sunyaev viscosity parameter has consistently a value of
αSS ≈ 0.2 in the vertical field case. We conjecture that the opera-
tion of the MRI at lowPm is due to the efficient large-scale dynamo
in the system, that only works if magnetic helicity is allowed to es-
cape (see also Vishniac 2009) or annihilate at the disk midplane
due to an internal diffusive flux (Mitra et al. 2010). Exploring even
lower values ofPm is infeasible at the moment due to prohibitive
computational requirements but there are no compelling arguments
against a large-scale dynamo operating at lowPm (Brandenburg
2009).

The current results highlight the close connection betweendy-
namo theory and the theory of magnetised accretion disks (see also
Blackman 2010) and the importance of studying the results ina
common framework (e.g. Gressel 2010). Clearly, a more thorough
study is needed in order to substantiate the apparently crucial role
of magnetic helicity fluxes for the excitation and saturation of the
MRI. We plan to address these issues in future publications.
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Rädler, K.-H., 1969, Monatsber. Dtsch. Akad. Wiss. Berlin, 11,
194

Rogachevskii I., Kleeorin N. 2003, Phys. Rev. E, 68, 036301
Rogachevskii I., Kleeorin N. 2004, Phys. Rev. E, 70, 046310
Schekochihin, A.A., Iskakov, A. B., Cowley, S. C., McWilliams,
J. C., Proctor, M. R. E. & Yousef, T. A, 2007, NJP, 9, 300

Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337
Silant’ev N. A. 2000, A&A, 364, 339
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