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Abstract 

Six Bifidobacterium strains, i.e., Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B, were isolated 

from domestic goose (Anser domesticus), European hamster (Cricetus cricetus), European rabbit 

(Oryctolagus cuniculus), emperor tamarin (Saguinus imperator) and pygmy marmoset (Callithrix 

pygmaea), respectively. Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic and 

fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA and ITS 

sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core 

genome revealed that bifidobacterial strains Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B 

exhibit close phylogenetic relatedness to Bifidobacterium choerinum LMG 10510, Bifidobacterium 

hapali DSM 100202, Bifidobacterium saguini DSM 23967 and Bifidobacterium stellenboschense DSM 

23968. Further genotyping based on the genome sequence of the isolated strains combined with 

phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far 

recognized Bifidobacterium species. Thus, Bifidobacterium anseris sp. nov. (Goo31D = LMG 30189T = 

CCUG 70960T), Bifidobacterium criceti sp. nov. (Ham19E = LMG 30188T = CCUG 70962T), 

Bifidobacterium imperatoris sp. nov. (Tam1G = LMG 30297T = CCUG 70961T), Bifidobacterium 

italicum sp. nov. (Rab10A = LMG 30187T = CCUG 70963T), Bifidobacterium margollesii sp. nov. 

(Uis1B = LMG 30296T = CCUG 70959T) and Bifidobacterium parmae sp. nov. (Uis4E = LMG 30295T 

= CCUG 70964T) are proposed as novel Bifidobacterium species. 

 

Keywords: phylogenetic, next generation sequencing, genomics, metagenomics, bifidobacteria, 

Bifidobacterium 
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Introduction 

Bifidobacteria are one of the most noteworthy microbial groups belonging to the Actinobacteria phylum, 

and are common inhabitants of the gastro-intestinal (GIT) of mammals, birds and social insects [1-3]. 

Notably, this group of microorganisms is believed to confer a range of health-promoting properties to its 

host, such as modulation of immune response, modulation of mucosal physiology of the host and 

inhibition of pathogen proliferation [4-6]. Furthermore, bifidobacteria are known to be abundantly 

present in those animals that provide parental care to their offspring and several species belonging to this 

genus are reported to be among the first gut colonizers of newborns [7-10]. Currently 59 taxa, 

representing 50 species and nine subspecies have been formally recognized as members of the genus 

Bifidobacterium [11-18]. 

A recent metagenomics-based study, based on Internally Transcribed Spacer (ITS) rRNA profiling and 

aimed at exploring the gut microbiota biodiversity across the mammalian branch of the tree of life, 

identified a number of putative novel taxa belonging to the genus Bifidobacterium [19]. Interestingly, 

these data revealed the presence of 89 putative novel bifidobacterial taxa in addition to the previously 

described (sub)species [19]. The 291 analysed animal hosts included the domestic goose (Anser 

domesticus), a winged animal that belongs to the Anatidae family, the European hamster (Cricetus 

cricetus), a rodent that belongs to the Cricetidae family, the European rabbit (Oryctolagus cuniculus), a 

lagomorph belonging to the Leporidae family, and the emperor tamarin (Saguinus imperator) and pygmy 

marmoset (Callithrix pygmaea), two primates harboring the Callitrichidae family that live in the 

Amazonian lowland. 

In the current study, we describe the identification of novel bifidobacterial species based on 16S rRNA 

and ITS profiling, followed by genomic comparison as based on whole genome sequencing. Genomic 

investigation as well as phylogenetic and phenotypic analyses allowed the identification of six proposed 

novel bifidobacterial species isolated from animal feces, being related to Bifidobacterium choerinum 
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LMG 10510, Bifidobacterium hapali DSM 100202, Bifidobacterium tissieri DSM100201, 

Bifidobacterium saguini DSM 23967 and Bifidobacterium stellenboschense DSM 23968. 

 

Materials and Methods 

Bifidobacterial selection. Fecal samples of several animals were collected by biologist supervisors of 

Italian zoo’s and Italian Natural Parks in collaboration with the Laboratory of Probiogenomics, 

University of Parma, Italy. One gram of fecal sample of a domestic goose (Anser domesticus), European 

hamster (Cricetus cricetus), European rabbit (Oryctolagus cuniculus), Emperor tamarin (Saguinus 

imperator) and Pygmy marmoset (Callithrix pygmaea) was mixed with nine ml of phosphate-buffered 

saline (PBS), pH 6.5. Serial dilution and subsequent plating were performed using de Man-Rogosa-

Sharpe (MRS) agar, supplemented with 50 μg/ml mupirocin (Delchimica, Italy) and 0.05 % (wt/col) L-

cysteine hydrochloride. Agar plates were incubated for 48 h at 37°C in a chamber (Concept 400; Ruskin) 

with anaerobic atmosphere (2.99 % H2, 17.01 % CO2 and 80 % N2). Morphologically different colonies 

that developed on MRS plates were randomly picked and re-streaked in order to isolate purified bacterial 

strains. All isolates were subjected to DNA isolation and characterized as previously described by 

Turroni et al. [20]. 

ERIC-PCR genotyping. The isolates were subjected to molecular typing through the use of 

Enterobacterial Repetitive Intergenic Consensus sequences (ERIC) PCR. ERIC-PCR was carried out 

using ERIC-1 (5′-ATGTAAGCTCCTGGGGATTCAC-3′) and ERIC-2 (5′-

AAGTAAGTGACTGGGGTGAGCG-3′) primers  following a previously described procedure [21]. 

Amplification of 16S rRNA gene and associated ITS sequences. Partial 16S rRNA gene sequences 

were amplified from extracted DNA using primer pair Probio_Uni/Probio_Rev, which targets the V3 
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region of the 16S rRNA gene sequence [22]. Partial ITS sequences of the six novel bifidobacterial taxa 

were amplified using primer pair Probio-bif_Uni/Probiobif_Rev [23]. 

Genome sequencing and assemblies. DNA extracted from the bifidobacterial isolates was subjected to 

whole genome sequencing using MiSeq (Illumina, UK) at GenProbio srl (Parma, Italy) following the 

supplier’s protocol (Illumina, UK). Fastq files of the paired-end reads obtained from targeted genome 

sequencing of the isolated strains were used as input for the genome assemblies through the 

MEGAnnotator pipeline [24]. MIRA (version 4.0.2) software was used for de novo assembly of each 

bifidobacterial genome sequence [25], while protein-encoding open reading frames (ORFs) were 

predicted using Prodigal [26]. 

Bifidobacterial core genome evaluation. For the 59 genomes of bifidobacterial type strains and the six 

novel sequenced genomes, a pan-genome calculation was performed using the PGAP pipeline [27]. The 

ORF content of each bifidobacterial genome was organized in functional gene clusters using the GF 

(Gene Family) method involving comparison of each protein to all other proteins using BLAST analysis 

(cut-off E-value of 1 x 10-5 and 50 % identity over at least 80 % of both protein sequences). Sequences 

were then clustered in protein families named clusters of orthologous genes (COGs), using MCL (graph-

theory-based Markov clustering algorithm) [28] and protein families shared between all genomes, named 

core COGs, were defined by selecting the families that contained at least one single protein member for 

each genome. 

Phylogenetic and phylogenomic comparisons. The collected bifidobacterial 16S rRNA gene sequences 

were aligned using MAFFT [29], as well as the ITS, housekeeping genes and core gene sequences. 

Bifidobacterial phylogenetic trees were constructed using the neighbor-joining method in Clustal W, 

version 2.1 [30] and were built using FigTree (http://tree.bio.ed.ac.uk/software/figtree/). For each 

genome pair, a value of average nucleotide identity (ANI) was calculated using the program JSpecies, 
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version 1.2.1 [31]. The identity percentage between 16S rRNA gene or ITS sequences was calculated 

with MatGat, version 2.03 (Matrix Global Alignment Tool), using the BLOSUM 50 alignment matrix 

[32]. The Genome-to-Genome Distance Calculator (GGDC) version 2.1 was employed to estimate the 

DNA-DNA hybridization (DDH) between bifidobacterial taxa, using the recommended “Formula 2” 

(identities / high-scoring segment pairs length) [33]. 

Phenotypic characterization. The morphology of six novel bifidobacterial taxa was determined using 

phase-contrast microscopy after incubation of each strain under anaerobic conditions at 37°C for 24h. 

Growth was assessed, using MRS broth, under aerobic or anaerobic conditions at different temperatures 

(20, 25, 30, 35, 37, 40 and 45 °C) and at different pH values (pH 3.5, 4.0, 4.5, 5.0, 5.5 and 6.0) (Table 

1).  

Gram staining was performed with LIVE BacLight™ Bacterial Gram Stain Kit (ThermoFisher 

Scientific) as previously described by Duranti et al. [11]. The six identified, novel bifidobacterial taxa 

were grown on MRS medium without glucose supplemented with 1 % (wt/vol) of a particular sugar. 

Cultures were cultivated in the wells of a 96-well microtiter plate, with each well containing a different 

sugar, and incubated in an anaerobic cabinet at 37°C. The optical densities at 600nm (OD600) was 

determined using a plate reader (Biotek, VT, USA) at two different time points, 24 and 48 h. Growth 

assays were carried out in duplicate and non-inoculated MRS medium was used as a negative control. 

Carbohydrates tested in this study include arabinose, arabinogalactan, cellobiose, fructo-

oligosaccharides, fructose, fucose, galactose, galacto-oligosaccharides, glucose, glycogen, inulin, 

lactose, maltodextrin, maltose, maltotriose, mannitol, mannose, melibiose, N-acetyl-D-galactosamine, 

N-acetyl-D-glucosamine, pullulan, raffinose, rhamnose, ribose, sorbitol, starch, sucrose, trehalose, 

turanose and xylose (Table 2). The six novel isolates and their closest related species, i.e., B. choerinum 

LMG10510, B. tissieri DSM100201, B. hapali DSM100202, B. saguini DSM23967 and B. 
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stellenboschense DSM 23968T, were also investigated for enzymatic activities, using API 50 CHL and 

Rapid ID 32 test kits (BioMérieux) (Table 2). The cell-wall peptidoglycan composition was analyzed 

following the protocols previously described by Schumann [34]. Cellular fatty acids methyl esters were 

determined according to the protocol described by Miller [35] with slight modifications [36]. The results 

analyzed using MIS Standard Software (Microbial ID) and showed that palmitic, myristic and oleic acid 

were the dominant fatty acids (Table S1). 

Bifidobacterial genome sequences. Whole Genome Shotgun projects were deposited at 

DDBJ/ENA/GenBank under the accession numbers MVOG00000000, MVOH00000000, 

NMWT00000000, NMWU00000000, NMWV00000000 and NMYC00000000. The versions described 

in this paper are accessible under the following numbers: MVOG01000000, MVOH01000000, 

NMWT01000000, NMWU01000000, NMWV01000000 and NMYC01000000. 

 

Results and Discussion 

Novel bifidobacterial strain selection and in vitro characterization. Fecal samples were screened in 

order to assess the bifidobacterial population of the gut environment of a variety of animals, including 

goose, hamster, rabbit and monkeys (Table 3). A combination of culture-based, molecular-based and 

genomics-based methods was applied in order to obtain a detailed characterization of each strain. A total 

of 32 bifidobacterial strains were isolated from stool samples from five different animals, including 

domestic goose (Anser domesticus), European hamster (Cricetus cricetus), European rabbit (Oryctolagus 

cuniculus), emperor tamarin (Saguinus imperator) and pygmy marmoset (Callithrix pygmaea). The 

genotypic characterization by ERIC-PCR revealed the presence of three known species, B. choerinum, 

B. saguini and B. stellenboschense by means of comparison to ERIC profiles of the type strains of the 

respective species (Fig. S1). Furthermore, a representative strain belonging to each putative novel 

species, was characterized in detail, i.e., strains Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B, 
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which correspond to the bifidobacterial taxa previously identified with the names new_taxa_72, 

new_taxa_71, new_taxa_70, new_taxa_45, new_taxa_77 and new_taxa_61, respectively [19]. These 

strains represent Gram-positive bacteria, that are all non-motile, non-sporulating and F6PKK-positive. 

Growth of all isolates and known correlated species was examined on 30 different carbon sources (Table 

2). As shown in Table 2, fermentation capabilities for all sugars, except for glucose, appear to be variable 

among the novel strains. Interestingly, metagenomic analyses performed by Milani et al [19].  identified 

the presence of these new taxa in other animals, i.e. Dolphin (Delphinus delphis), European hedgehog 

(Erinaceus europaeus), leopard (Panthera pardus) and Norwegian forest cat (Felis catus). This suggests 

that these bifidobacterial taxa can be found in other mammalian species. 

Phylogenetic analyses based on 16S rRNA and ITS hypervariable regions. A first characterization 

of the isolated bifidobacterial taxa was performed through 16S rRNA gene and ITS sequencing, followed 

by comparison with the same sequenced molecular markers retrieved from public databases. Notably, 

the ability to distinguish closely related bifidobacterial taxa based on an ITS sequence dataset of 48 

bifidobacterial type strains has previously been described [23]. The 16S rRNA gene sequences of 

Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B showed identity values ranging from 96.2 % to 

98.6 % with respect to B. choerinum LMG 10510, Bifidobacterium saguini DSM 23967, Bifidobacterium 

stellenboschense DSM 23968 and Bifidobacterium tissieri DSM 100201 (Table 3). Furthermore, the 

hypervariable ITS sequences of the six isolated strains displayed identity values ranging from 65.7 % to 

89 % against Bifidobacterium biavatii DSM 23969 and B. saguini DSM 23967 (Table 3). Notably, 

identity values of hypervariable ITS sequences identified among the nine subspecies of the genus 

Bifidobacterium range from 90.4 % to 98.9 % between Bifidobacterium animalis and Bifidobacterium 

longum subspecies. Thus, data retrieved from the ITS analysis highlight a high degree of sequence 

diversity between the isolates from the classified members of the genus Bifidobacterium. Therefore, the 

hypervariable region of the ITS sequence corresponding to the region between primers Probio-
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bif_Uni/Probio-bif_Rev [23], was employed to build a phylogenetic tree to better assess the phylogenetic 

relatedness between strains (Fig. S2). In a similar fashion, a phylogenetic tree based on 16S rRNA gene 

sequences was constructed (Fig. S3). These two phylogenetic trees displayed similar results for four of 

the six isolated strains. In this context, Goo31D and Rab10A share the same phylogenetic position in 

both trees with B. choerinum LMG 10510, while Tam1G and Uis4E are placed on the same phylogenetic 

branch together with B. saguini DSM 23967 and B. stellenboschense DSM 23968, respectively (Figs. S2 

and S3). Notably, both Ham19E and Uis1B do not cluster with any bifidobacterial strain in the ITS-based 

phylogenetic tree. Furthermore, based on the 16S rRNA gene-based tree, both of these isolates are related 

to B. choerinum LMG 10510 and the B. tissieri DSM 100201-Bifidobacterium vansinderenii LMG 30126 

pair [11-18], respectively (Fig. S3). 

Phylogenetic analysis based on housekeeping genes. In order to further explore the genetic differences 

between the six isolated strains and the currently recognized (sub)species of the Bifidobacterium genus, 

nucleotide identity between five genes, i.e. those of hsp60, rpoB, dnaJ, dnaG and clpC, which are 

considered to represent molecular clocks in (bifido)bacterial taxonomy, was evaluated [37, 38]. These 

five selected housekeeping genes showed identity values (at deduced amino acid level) ranging from 

82.3 % to 100 % for Uis1B dnaG and Tam1G clpC, with respect to B. tissieri DSM 100201 and B. 

saguini DSM 23967 gene sequences (Table S2). Thus, in order to unveil the phylogenetic relatedness 

between isolates Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B on the one hand, and currently 

recognized (sub)species of the genus Bifidobacterium on the other, a phylogenetic tree was constructed 

based on the amino acid sequences of the above-mentioned house-keeping genes (Fig. S4). 

The phylogenetic tree based on the five housekeeping genes displayed a higher robustness compared to 

that achieved by 16S rRNA gene sequences, as displayed by the bootstrap values (Figs. S3 and S4). 

While Goo31D, Ham19E and Rab10A displayed genetic relatedness with B. choerinum LMG 10510, 

Tam1G and Uis4E shared the same branches of B. saguini DSM 23967 and B. stellenboschense DSM 
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23968, respectively. Furthermore, among the so far identified bifidobacterial strains, Uis1B displayed 

the highest level of housekeeping gene diversity when compared with other bifidobacteria, sharing a 

phylogenetic position closer to that of B. tissieri DSM 100201 and B. vansinderenii LMG 30126. Thus, 

an in depth in silico analysis based on genome sequences was performed in order to better classify these 

novel bifidobacterial isolates. 

Phylogenomic characterization of the novel bifidobacterial taxa. To get insights into the genetic 

similarities between Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B, and publicly available 

genome sequences of the genus Bifidobacterium, the six isolated genomes were decoded by means of a 

Next Generation Sequencing (NGS) approach. The sequenced bifidobacterial strains were each shown 

to contain a single chromosome ranging in length from 2,155,882 to 2,820,211 for Ham19E and Uis4E, 

respectively, with an average fold coverage ranging from 55.52 to 139.27 (Table 3). The genome 

sequences of each isolated taxon were used to assess the genetic similarity at genomic level with respect 

to other currently recognized bifidobacterial (sub)species by Average Nucleotide Identity (ANI) analysis 

[39]. The assembled genome of Tam1G exhibits the highest ANI value (94.55 %) against B. saguini 

DSM 23967, while the Uis4E genome sequence is strictly correlated with B. stellenboschense DSM 

23968 (93.45 %) (Table 3). Furthermore, Uis1B displays the highest ANI value (88.04 %) with respect 

to Bifidobacterium hapali DSM 100202, while Goo31D, Ham19E and Rab10A exhibit ANI values that 

range from 91.8 % to 87.81 % with respect to B. choerinum LMG 10510 (Table 3). In this context, it 

should be noted that two strains displaying an ANI value <95 % are considered to belong to two distinct 

species [31]. Notably, these observed ANI values are below the assigned threshold value used for species 

recognition, supporting the notion that the investigated strains possess a unique genomic composition as 

compared to currently recognized bifidobacterial taxa (for which a genome sequence is available) [39]. 

Furthermore, strains Goo31D, Ham19E and Rab10A that exhibit a high level of genomic identity to B. 

choerinum LMG 10510, reveal the highest ANI value of 91.76 % between Ham19E and Rab10A, once 
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again generating an ANI value below 95 %. Besides, Uis1B showed similar ANI values with respect to 

the phylogenetic correlated taxa B. tissieri DSM 100201 (86.81 %) and B. vansinderenii LMG 30126 

(86.77 %), revealing similar genomic relatedness with three strains isolated from monkeys. 

Genome sequencing of Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B also allowed us to 

compare the genetic makeup between these strains and other members of the Bifidobacterium genus. A 

comparative study was undertaken to determine orthology between bifidobacterial strains. Notably, such 

an in silico analysis allows the identification of 259 clusters of orthologous genes (COGs) shared by all 

bifidobacterial taxa, representing the core genome of currently sequenced Bifidobacterium 

representatives. Of note, conserved genes, which represent paralogs within bifidobacterial genomes, were 

not considered, and a phylogenetic core genome tree was built based on the concatenation of 233 protein 

sequences (Fig. 1). The phylogenetic tree based on the core genome confirmed the positioning of the six 

isolated strains within the Bifidobacterium genus that were observed in the phylogenetic analyses based 

on five housekeeping genes (Fig. S4). Moreover, the subdivision in seven bifidobacterial phylogenetic 

groups allowed the distribution of the identified strains into two major groups, i.e., Bifidobacterium 

pseudolongum group for Goo31D, Ham19E and Rab10A, and B. longum group for Tam1G and Uis4E. 

In contrast, Uis1B does not belong to any of the so far identified bifidobacterial phylogenetic groups, yet 

shares a phylogenetic position close to other bifidobacterial strains that have been isolated from monkeys 

[11], [13]. 

According to phylogenetic analyses based on ITS, 16S rRNA and housekeeping gene sequences, and 

phylogenomic analyses based on the bifidobacterial core gene sequences, strains Goo31D, Ham19E, 

Rab10A, Uis4E and Uis1B are shown to be genetically different from any other bifidobacterial type 

strain characterized to date. Thus, the novel taxon, Bifidobacterium anseris sp. nov., Bifidobacterium 

criceti sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium parmae sp. nov. and Bifidobacterium 

margollesii sp. nov., are proposed here. Furthermore, a Genome-to-Genome Distance analysis was 
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performed to examine in depth the genomic relatedness between Tam1G and the phylogenomic 

correlated strain B. saguini DSM 23967 [33]. This analysis estimates a DNA-DNA hybridization (DDH) 

based on the recommended “Formula 2” (identities / high-scoring segment pairs length) of 55.2 % 

(confidence interval 52.5 - 57.9 %). The assignment of Tam1G to a novel bifidobacterial species was 

based on an ANI value below 95 % and an estimated DDH of well below 70 % when compared to its 

closest relative B. saguini DSM 23967, thus corroborating that Bifidobacterium imperatoris sp. nov. 

should be considered a novel bacterial species. 

Description of Bifidobacterium italicum sp. nov. 

Bifidobacterium italicum (i.ta.li.cum, N.L. gen. n. italicum pertaining to Italy; country where the type 

strain was isolated). 

Cells are Gram-positive, non-motile, non-sporulating and F6PPK-positive and, when grown in MRS 

broth under anaerobic condition, showed a small rod morphology (Fig. 2). Cells grow in both anaerobic 

and aerobic conditions. Colony diameter, when grown on MRS agar, ranges from 1.0 to 2.5 mm. 

Furthermore, colonies grown on the surface of an MRS agar plate are white and circular, while embedded 

colonies are white and elliptical. Moreover, after 48h the cells incubated under aerobic and anaerobic 

conditions are able to grow at temperatures that range from 25 to 42°C, but not at 20oC or 45oC (Table 

1). Moreover, the cells grow at pH 5-6 (Table 1). 

Fermentation profiles of B. italicum LMG 30187 revealed that it is able to ferment a wide range of simple 

and complex carbohydrates, including cellobiose, glucose, maltodextrin, maltose, melibiose and pullulan 

(i.e., reaching a final OD600 of ≥ 0.51). In contrast, B. italicum LMG 30187 displays little if any growth 

on arabinogalactan, fructo-oligosaccharides, galactose, galacto-oligosaccharides, glycogen, inulin, 

lactose, maltotriose, mannitol, mannose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, raffinose, 

ribose, sorbitol, starch, sucrose, trehalose and turanose (i.e., final OD600 is ≤ 0.5) (Table 2). Furthermore, 
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the strain is unable to grow on arabinose, cellobiose, fructose, fucose, rhamnose and xylose. Positive 

enzymatic activities are observed for α-arabinosidase, β-glucuronidase, glutamic acid decarboxylase, 

alkaline phosphatase, arginine arylamidase, leucyl-glycine arylamidase, pyroglutamic acid arylamidase, 

glutamyl glutamic acid and serine arylamidase. In contrast, only weak reactions were observed for α-

galactosidase, β-galactosidase and α-glucosidase activities (Table 2). Moreover, N-acetyl-β-

glucosaminidase, arginine dihydrolase and β-glucosidase activities were not detected (Table 2).  

The peptidoglycan type is L-Lys-L-Ser-L-Ala2. The major fatty acids identified are palmitic, myristic, 

oleic acid and stearic acid-dimetylacetal (Table S1). 

Phylogenetic analysis of B. italicum LMG 30187 highlights that this strain is closely related to B. 

choerinum LMG 10510. 

The type strain Rab10A (=LMG 30187T=CCUG 70963T) was isolated from a faecal sample of a 

European rabbit (Oryctolagus cuniculus). The DNA G+C content is 65.45 %. Digital Protologue 

Taxonumber: TA00239. 

Description of Bifidobacterium criceti sp. nov. 

Bifidobacterium criceti (cri.ce.ti, N.L. gen. n. criceti of cricetus, common scientific name of European 

hamster, Cricetus cricetus).  

Cells are Gram-positive, non-motile, non-sporulating and F6PPK-positive and, when grown in MRS 

broth under anaerobic conditions, was shown to exhibit a small rod morphology (Fig. 2). Cells grow in 

anaerobic and aerobic conditions. The colony diameter, when grown on MRS agar, ranges from 1.0 to 

2.5 mm. Furthermore, colonies grown on the surface of an MRS agar plate are white and circular, while 

the embedded colonies are white and elliptical. Moreover, after 48h the cells incubated in aerobic and 
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anaerobic conditions are able to grow from 25 to 42°C, but do not grow at 20°C or 45°C (Table 1). 

Moreover, the cells grow at pH 5-6 (Table 1).   

Fermentation profiles of B. criceti LMG 30188 revealed that it is able to ferment a wide range of simple 

and complex carbohydrates, including cellobiose, galacto-oligosaccharides, glucose, glycogen, 

maltodextrin, maltose and pullulan (i.e., reaching a final OD600 of ≥ 0.51). In contrast, B. criceti LMG 

30188 displays little if any growth on arabinogalactan, fructo-oligosaccharides, galactose, inulin, lactose, 

maltotriose, mannitol, mannose, melibiose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, 

raffinose, rhamnose, ribose, sorbitol, starch, sucrose, trehalose, turanose and xylose. (i.e., final OD600 is 

≤ 0.5) (Table 2). Furthermore, the cells are not able to grow on arabinose, cellobiose, fructose and fucose. 

Positive enzymatic activities were observed for arginine dihydrolase, alkaline phosphatase, arginine 

arylamidase, glutamyl glutamic acid and serine arylamidase. Only a weak reaction was detected for 

leucyl-glycine arylamidase (Table 2). Moreover, α-galactosidase, β-galactosidase, α-glucosidase, β-

glucosidase, α-arabinosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, glutamic acid 

decarboxylase and pyroglutamic acid arylamidase activities were not detected (Table 2). 

The peptidoglycan type is L-Lys-L-Ala2-L-Ser. The major fatty acids identified are palmitic, myristic, 

oleic acid and stearic acid-dimetylacetal (Table S1). 

Phylogenetic analysis of B. criceti LMG 30188 shows that this strain is highly related to B. choerinum 

LMG 10510 and B. italicum LMG 30187. 

The type strain Ham19E (=LMG 30188T=CCUG 70962T) was isolated from the stool sample of a 

European hamster (Cricetus cricetus). The DNA G+C content is 62.53 %. Digital Protologue 

Taxonumber: TA00243. 

Description of Bifidobacterium anseris sp. nov. 
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Bifidobacterium anseris (an.se.ris, N.L. gen. n. anseris of anser; common scientific name of domestic 

goose (Anser domesticus)).  

Cells are Gram-positive, non-motile, non-sporulating and F6PPK-positive and, when grown in MRS 

broth under anaerobic condition, was shown to exhibit a small rod morphology (Fig. 2). Cells grow under 

anaerobic and aerobic conditions. The colony diameter, when grown on MRS agar, ranges from 1.0 to 

2.5 mm. Furthermore, colonies grown on the surface of an MRS agar plate are white and circular, while 

the embedded colonies are white and elliptical. Moreover, incubation under aerobic or anaerobic 

conditions show that this strain is able to grow from 25 to 42°C, yet incapable of growth at 20°C and 

45°C (Table 1). Moreover, the cells grown at pH 5-6 (Table 1).   

Fermentation profiles of B. anseris LMG 30189 revealed that it is able to ferment a wide range of simple 

and complex carbohydrates, including galacto-oligosaccharides, lactose, glucose, glycogen, 

maltodextrin, maltose, melibiose, pullulan and sucrose (i.e., reaching a final OD600 of ≥ 0.51). In contrast, 

B. anseris LMG 30189 displays little if any growth on arabinogalactan, fructo-oligosaccharides, 

galactose, maltotriose, mannitol, mannose, raffinose, rhamnose, ribose, sorbitol, starch, turanose and 

xylose. (i.e., final OD600 is ≤ 0.5) (Table 2). Furthermore, the strain does not exhibit growth on arabinose, 

cellobiose, fructose, fucose, inulin, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine and trehalose. 

Positive enzymatic activities are observed for arginine dihydrolase, glutamic acid decarboxylase, alkaline 

phosphatase, arginine arylamidase, leucyl-glycine arylamidase and glutamyl glutamic acid (Table 2). 

Moreover, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, α-arabinosidase, β-

glucuronidase, N-acetyl-β-glucosaminidase pyroglutamic acid arylamidase and serine arylamidase 

activity were not detected (Table 2).  

The peptidoglycan type is L-Lys-L-Ser-L-Ala. The major fatty acids identified are palmitic, myristic, 

oleic acid and stearic acid-dimetylacetal (Table S1). 
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Phylogenetic analysis of B. anseris LMG 30189 highlights that this strain is highly related to B. 

choerinum LMG 10510 and B. italicum LMG 30187. 

The type strain Goo31D (=LMG 30189T=CCUG 70960T) was isolated from the stool sample of a 

domestic goose (Anser domesticus). The DNA G+C content is 64.3 %. Digital Protologue Taxonumber: 

TA00244. 

Description of Bifidobacterium parmae sp. nov. 

Bifidobacterium parmae (par.ma.e, N.L. gen. n. parmae of Parma; name of the city where the type strain 

was isolated and molecularly characterized). 

Cells are Gram-positive, non-motile, non-sporulating and F6PPK-positive and, when grown in MRS 

broth under anaerobic condition, showed a rod morphology as well as cells with a branched or Y-shape, 

known as bifid-morphology (Fig. 2). Cells grow in anaerobic and aerobic conditions. The diameters of 

each colony, when grown on MRS agar, ranges from 1.0 to 2.0 mm. Furthermore, colonies grown on the 

surface of an MRS agar plate are white and circular, while embedded colonies are white and elliptical. 

Moreover, when incubated under aerobic or anaerobic conditions the strains is capable of growth from 

25 to 42°C, yet is unable to grow at 20°C and 45°C (Table 1). Moreover, the strain was shown to grow 

at pH 4-6 (Table 1).   

Fermentation profiles of B. parmae LMG 30295 revealed that it is able to ferment a wide range of simple 

and complex carbohydrates, including cellobiose, fructo-oligosaccharides, fructose, galactose, galacto-

oligosaccharides, glucose, glycogen, inulin, lactose, maltodextrin, maltose, maltotriose, mannitol, 

mannose, melibiose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, raffinose, rhamnose, ribose, 

sorbitol, starch, sucrose, trehalose, turanose and xylose (i.e., reaching a final OD600 of ≥ 0.51). In contrast, 

B. parmae LMG 30295 displays little if any growth on arabinose, arabinogalactan, fucose and pullulan 

(i.e., final OD600 is ≤ 0.5) (Table 2). Positive enzymatic activities are observed for α-arabinosidase, 
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glutamic acid decarboxylase, alkaline phosphatase, arginine arylamidase, leucyl-glycine arylamidase, 

pyroglutamic acid arylamidase and glutamyl glutamic acid. In contrast, weak activities were observed 

for β-galactosidase, β-glucuronidase and serine arylamidase (Table 2). Moreover, arginine dihydrolase, 

α-galactosidase, α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase activities were not 

detected (Table 2). 

The peptidoglycan type is L-Lys-D-Asp. The major fatty acids identified are palmitic, myristic, oleic acid 

and stearic acid-dimetylacetal (Table S1). 

Phylogenetic analysis of B. parmae LMG 30295 highlights that this strain is highly related to B. 

stellenboschense DSM 23968. 

The type strain Uis4E (=LMG 30295T=CCUG 70964T) was isolated from the stool sample of a pygmy 

marmoset (Callithrix pygmaea). The DNA G+C content is 65.81 %. Digital Protologue Taxonumber: 

TA00242. 

Description of Bifidobacterium margollesii sp. nov. 

Bifidobacterium margollesii (mar.gol.les’i.i N.L. gen. n. margollesii of Margolles; named after Professor 

Abelardo Margolles, in recognition of his extensive contributions to our current knowledge on 

bifidobacterial biology).  

Cells are Gram-positive, non-motile, non-sporulating and F6PPK-positive and, when grown in MRS 

broth under anaerobic condition, were shown to exhibit a rod morphology as well as branched structures 

with a “Y” at the end, known as bifido-shaped (Fig. 2). Cells grow in anaerobic and aerobic conditions. 

The diameters of each colony, when grown on MRS agar, ranges from 1.0 to 2.5 mm. Furthermore, 

colonies grown on the surface of an MRS agar plate are white and circular, while embedded colonies are 

white and elliptical. Moreover, when grown under aerobic and anaerobic conditions for 48 hours the 
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strain was shown to grow from 30 to 42°C, yet was not able to grow at 20°C, 25°C or 45°C (Table 1). 

Moreover, the cells grown at pH 4-6 (Table 1).   

Fermentation profiles of B. margollesii LMG 30296 revealed that it is able to ferment a wide range of 

simple and complex carbohydrates, including arabinogalactan, cellobiose, fructo-oligosaccharides, 

galactose, glucose, inulin, lactose, maltotriose, mannitol, mannose, melibiose, N-acetyl-D-glucosamine, 

N-acetyl-D-galactosamine, ribose, sorbitol, starch, trehalose, turanose and xylose (i.e., reaching a final 

OD600 of ≥ 0.51). In contrast, B. margollesii LMG 30296 displays little if any growth on arabinose, 

fructose, fucose, galacto-oligosaccharides, glycogen, maltodextrin, maltose, pullulan, raffinose, 

rhamnose and sucrose (i.e., final OD600 is ≤ 0.5) (Table 2). Positive enzymatic activities were observed 

for arginine dihydrolase, alkaline phosphatase, arginine arylamidase and glutamyl glutamic acid (Table 

2). Moreover, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, α-arabinosidase, β-

glucuronidase, N-acetyl-β-glucosaminidase, glutamic acid decarboxylase, leucyl-glycine arylamidase, 

pyroglutamic acid arylamidase and serine arylamidase activities were not detected (Table 2). 

The peptidoglycan type is L-Lys-L-Ala-L-Ser. The major fatty acids identified are palmitic, myristic, 

oleic acid and stearic acid-dimetylacetal (Table S1). 

Phylogenetic analysis of B. margollesii LMG 30296 highlights that this strain is highly related to B. 

hapali DSM 100202, B. tissieri DSM100201 and B. vansinderenii LMG 30126. 

The type strain Uis1B (=LMG 30296T=CCUG 70959T) was isolated from the stool sample of a Pygmy 

marmoset (Callithrix pygmaea). The DNA G+C content is 61.91 %. Digital Protologue Taxonumber: 

TA00241. 

Description of Bifidobacterium imperatoris sp. nov. 

Bifidobacterium imperatoris (i.mpe.ra.to.ris N.L. gen. n imperatoris of imperator; common scientific 

name of Saguinus imperator).  
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Cells are Gram-positive, non-motile, non-sporulating and F6PPK-positive and, when grown in MRS 

broth under anaerobic conditions, exhibits a rod-shape morphology as well as a branched structure with 

a “Y” at the end, known as bifido-shaped (Fig. 2). Cells grow under anaerobic and aerobic conditions. 

The diameters of each colony, when grown on MRS agar, ranges from 1.0 to 3 mm. Furthermore, colonies 

grown on the surface of an MRS agar plate are white and circular, while embedded colonies are white 

and elliptical. Moreover, the strain when incubated under aerobic conditions for 48 hours was shown to 

grow from 30 to 42°C, while under anaerobic conditions it was shown to exhibit growth at a temperature 

range from 25°C to 42°C, yet are unable to grow at 20°C and 45°C (Table 1). Moreover, the cells 

exhibited growth at pH 5-6 (Table 1).   

Fermentation profiles of B. imperatoris LMG 30297 revealed that it is able to ferment a wide range of 

simple and complex carbohydrates, including arabinose, fructo-oligosaccharides, galactose, glucose, 

glycogen lactose, galacto-oligosaccharides, glycogen, maltodextrin, maltose, maltotriose, mannitol, 

raffinose, ribose, sucrose, turanose and xylose (i.e., reaching a final OD600 of ≥ 0.51). In contrast, B. 

imperatoris LMG 30297 displays little if any growth on arabinogalactan, cellobiose, fructose, fucose, 

inulin, mannose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, pullulan, rhamnose, sorbitol, 

starch and trehalose (i.e., final OD600 is ≤ 0.5) (Table 2). Positive enzymatic activities are observed for 

arginine dihydrolase, glutamic acid decarboxylase, alkaline phosphatase, arginine arylamidase, leucyl-

glycine arylamidase, and glutamyl glutamic acid. In contrast, little activity was observed for α-

arabinosidase and serine arylamidase (Table 2). Moreover, α-galactosidase, β-galactosidase, α-

glucosidase, β-glucosidase, β-glucuronidase, N-acetyl-β-glucosaminidase and pyroglutamic acid 

arylamidase activities were not detected (Table 2).  

The peptidoglycan type is L-Lys-Gly. The major fatty acids identified are palmitic, myristic, oleic acid 

and stearic acid-dimetylacetal (Table S1). 
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Phylogenetic analysis of B. imperatoris LMG 30297 highlights that this strain is highly related to B. 

saguini DSM 23967. 

The type strain Tam1G (=LMG 30297T=CCUG 70961T) was isolated from the stool sample of an 

emperor tamarin (Saguinus imperator). The DNA G+C content is 56.13 %. Digital Protologue 

Taxonumber: TA00245. 

 

Conclusions 

A combination of phylogenetic, genomic and phenotypic analyses allowed to differentiate strains 

Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B from each of the type strains of the so far 

recognized Bifidobacterium species. In this context, the combined phylogenetic analyses involving 16S 

rRNA gene, ITS, selected housekeeping genes and core genome sequences reveal that the isolated strains 

exhibit close phylogenetic relatedness with Bifidobacterium choerinum LMG 10510, Bifidobacterium 

hapali DSM 100202, Bifidobacterium saguini DSM 23967 and Bifidobacterium stellenboschense DSM 

23968. Recently, three putative novel species, i.e., Bifidobacterium aerophilum, Bifidobacterium 

avesanii and Bifidobacterium ramosum have been proposed by Michelini et al. [12]. However, we have 

decided not to include these taxa in our analyses because they have not been validated by the International 

Committee on Systematic Bacteriology. Nevertheless, comparison between 16S partial gene sequences 

of these putative novel species showed identity values below 95.6 % when compared with Goo31D, 

Ham19E, Rab10A, Tam1G, Uis4E and Uis1B 16S sequences, clearly supporting that these letter strains 

are belonging to different bifidobacterial species. 

The performed ANI analyses that are aimed at assessing genetic similarity levels between the six novel 

taxa showed strains Goo31D, Ham19E, Rab10A, Uis4E and Uis1B do not belong to any other identified 

bifidobacterial species sequenced so far, and are thus proposed as Bifidobacterium anseris sp. nov. 

(Goo31D = LMG 30189T = CCUG 70960T), Bifidobacterium criceti sp. nov. (Ham19E = LMG 30188T 
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= CCUG 70962T), Bifidobacterium italicum sp. nov. (Rab10A = LMG 30187T = CCUG 70963T), 

Bifidobacterium margollesii sp. nov. (Uis1B = LMG 30296T = CCUG 70959T) and Bifidobacterium 

parmae sp. nov. (Uis4E = LMG 30295T = CCUG 70964T), respectively. Furthermore, Tam1G displays 

ANI percentage with B. saguini DSM 23967 similar to the threshold value used for species recognition 

[31]. Nevertheless, GGDC analysis highlights an estimated DDH value well below 70 %, so we propose 

to assign the name Bifidobacterium imperatoris sp. nov. (Tam1G = LMG 30297T = CCUG 70961T) to 

this isolate. In addition, in order to increase the number of bifidobacterial isolates and to provide a 

complete overview of the bifidobacterial population in other mammalian species, further isolation 

attempts are ongoing based on metagenomics analyses performed. 
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Figure Legends 

Figure 1. Phylogenetic tree of the Bifidobacterium genus based on the concatenation of 233 core amino 

acid sequence genes of Goo31D, Ham19E, Rab10A, Tam1G, Uis4E and Uis1B and members of the 

Bifidobacterium genus. The core genes-based tree shows the subdivision of the seven phylogenetic 

groups of the Bifidobacterium genus represented with different colors. The phylogenetic tree was built 

by the neighbor-joining method with corresponding sequences of Scardovia inopinata JCM 12537 being 

employed as outgroup. Bootstrap percentages above 50 are shown at node points, based on 1000 

replicates of the phylogenetic tree. 
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Figure 2. Rab10A, Ham19E, Goo31D, Uis4E, Uis1B and Tam1G cellular morphologies as determined 

by the use of phase-contrast microscopy. Bar, 10 µm. 
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Table 1. Phenotypic information for strains representing the putative novel species and their closest 

related species. 

Ae aerobic; An anaerobic. 

Symbols: -, no growth; + poor growth as measured by 0.5 ≤ OD600; ++ growth as measured by 0.51 ≤ OD600 ≤ 0.8; +++ 

good growth as measured by 0.81 ≤ OD600 ≤ 1.9; ++++ very good growth as measured by OD600 ≥ 1.91 
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Table 2. Fermentation profiles and enzymatic activities of novel bifidobacterial species and their closest related species. 
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Arabinose + ++ + + + + - + + + - + + + - - - - - - - - 

Arabinogalactan + + + + + + ++ ++ - + + + + + + + + + + + + + 

Cellobiose + + + + ++ +++ +++ +++ + + + ++ + + - - - - - - - - 

Fructo-oligosaccharides ++ ++ ++ ++ ++ ++ +++ +++ ++ +++ + +++ +++ +++ + + + + + + + + 

Fructose + + +++ +++ +++ +++ + + ++ +++ + +++ +++ +++ - - - - - - - - 

Fucose + + + + + + + + + + - + + + - - - - - - - - 
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Trehalose + + + + ++ +++ ++ +++ + + + +++ +++ +++ + + + + - - + + 
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Turanose + ++ + ++ + +++ ++ ++ + ++ ++ ++ +++ +++ + + + + + + + + 

Xylose + ++ - - + +++ ++ ++ - - - - - - - - - + - + + + 

Enzymatic activity                       

Arginine dihydrolase + + - + + + - + + + w 

α - Galactosidase - - - - - - w - - - - 

β - Galactosidase - - w - - - w - - - - 

α - Glucosidase - - - - - - w - - - - 

β - Glucosidase - - - - - - - - - - - 

α - Arabinosidase w + + - - - + - - - - 

β - Glucuronidase - - w - - - + - - - - 

N-acetyl-β -

Glucosaminidase 
- w - - - - - - - - w 

Glutamic acid 

decarboxylase 
+ - + - - - + + - + + 

Alkaline phosphatase + + + + + + + + + + + 

Arginine arylamidase + + + + + + + + + + + 

Leucyl-glycine 

arylamidase 
+ + + - + + + + w + + 

Pyroglutamic acid 

arylamidase 
- - + - + - + - - - - 

Glutamyl glutamic acid 

arylamidase 
+ + + + + - + + + + + 

Serine arylamidase w + w - + - + w + - + 

24 twenty-four hours; 48 forty-eight hours. 
Symbols: -, no growth; + poor growth as measured by 0.5 ≤ OD600; ++ growth as measured by 0.51 ≤ OD600 ≤ 0.8; +++ good growth as measured by 0.81 ≤ OD600 ≤ 1.9; ++++ very 

good growth as measured by OD600 ≥ 1.91. 

Enzymatic activity: +, Positive; -, Negative; w, Weakly Positive 
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Table 3. General Genetic features 

*Predicted number of rRNA loci 

 

 

 Rab10A Ham19E Goo31D Tam1G Uis4E Uis1B 

Biological origin European rabbit European hamster Domestic goose Emperor tamarin Pygmy marmoset Pygmy marmoset 

Average Coverage 104.3 108.6 115.4 55.52 139.27 66.93 

Contigs 72 44 9 62 44 80 

Genome length 2,276,351 2,155,882 2,166,761 2,639,899 2,820,211 2,789,387 

Average GC percentage 65.45 62.53 64.3 56.13 65.81 61.91 

Predicted ORFs 1,825 1,733 1,681 2,215 2,247 2,281 

tRNA 52 53 52 59 62 60 

rRNA* 4 4 4 4 6 3 

16S identity 
98.36%                   

B. choerinum 

97.32%                   B. 

choerinum 

97.65%                   

B. choerinum 

99%                         

B. saguini 

96.8%                      B. 
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96.2%                       

B. tissieri 

ITS identity 
87.2%                      

B. choerinum 

68.6%                       

B. animalis 

84.7%                      

B. choerinum 

89%                          

B. saguini 

81.3%                       

B. 

stellenboschense 

65.7%                        

B. biavatii 

ANI value 
91.8%                      

B. choerinum 

87.81%                   B. 

choerinum 

91.47%                   

B. choerinum 

94.55%                    

B. saguini 

93.45%                    

B. 

stellenboschense 

88.04%                     

B. hapali 
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