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(2011) show that the GMM estimator is inconsistent, when the instruments are lags of 
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1 Introduction

In a recent paper, Lanne and Saikkonen (2011a) warn against the use of the generalized method of

moments (GMM; Hansen, 1982), when the instrumental variables are lags of noncausal variables.

With such instruments, the two-stage least squares (2SLS) estimator is shown to be inconsistent

under certain assumptions on the distribution of the error term in the regression model. In this

paper, I make no explicit assumptions on this distribution. Instead, the errors are implied by a

rational expectations equilibrium and are in fact prediction errors. GMM estimation is in this case

consistent even when the instruments are lags of noncausal variables. This result is in line with the

nature of rational expectations, as prediction errors are assumed to be uncorrelated with all lagged

information.

Lanne and Saikkonen (2011a) consider a linear regression model with a single regressor:

yt = δxt +ηt , (1)

and evaluate the situation in which xt is noncausal. A variable is noncausal, when it follows a

noncausal autoregressive process, that allows for dependence on both leading and lagging obser-

vations. A noncausal AR(r,s) process, as defined by Lanne and Saikkonen (2011b), depends on r

past and s future observations:

φ(L)ϕ(L−1)xt = εt , (2)

with φ(L) = 1− φ1L− ...− φrLr, ϕ(L−1) = 1−ϕ1L−1− ...−ϕrL−s, εt ∼ i.i.d.(0,σ2) and L is a

standard lag operator (Lkyt = yt−k). A noncausal AR process has an infinite-order moving average

(MA) representation that is both backward- and forward-looking:

xt = ϕ(L−1)−1
φ(L)−1

εt =
∞

∑
j=−∞

ψ jεt− j, (3)

in which ψ j is the coefficient of z j in the Laurent-series expansion of ϕ(z−1)−1φ(z)−1 (Lanne and

Saikkonen, 2011b). When xt is a vector, (2) defines a noncausal VAR(r,s) process (Lanne and

Saikkonen, 2009).
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Lanne and Saikkonen (2011a) make the following distributional assumption on the errors in (1)

and (2):

(εt ,ηt)
′ ∼ i.i.d.(0,Ω), (4)

with nonzero covariance: Ω12 = E [εtηt ] 6= 0. Since xt and ηt are correlated, OLS estimation of

equation (1) is inconsistent. However, the MA representation (3) reveals that also 2SLS estimation

is inconsistent when lags of xt are used as instruments, since these lags depends on εt and are

therefore correlated with ηt : E [xt−iηt ] = ψ−iE [εtηt ] = ψ−iΩ12, which is nonzero if ϕ j 6= 0, for

some j ∈ {1, ..,s} in equation (2).

The next section shows that inconsistency of the GMM estimator does not hold when ηt is a

prediction error. This result is derived for the linear regression model (1), with xt generated by

a Gaussian first-order noncausal (vector) autoregression. In section 3, simulations show that the

result is robust to non-Gaussian and higher-order autoregressive specifications of xt . In section

4, the result is illustrated by simulation of a nonlinear rational expectations model. Section 4

concludes.

2 Prediction errors

In empirical macroeconomics and finance, a regression model like (1) often represents a (linearized)

economic model, such as an Euler equation or Philips curve, in which yt is determined by a rational

expectations equilibrium (see, e.g. the survey by Hansen and West, 2002). This implies that the

error term ηt has the interpretation of a prediction error . Consider the following example:

yt = δEt−1 [xt ]

ηt = −δ (xt−Et−1 [xt ]) .
(5)

In this case, all lags of xt are uncorrelated with ηt and are therefore valid instruments regardless of

their dynamic properties:
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E [xt−iηt ] = E [xt−iEt−1 [ηt ]] {i≥ 1}

= E [xt−iEt−1 [−δ (xt−Et−1 [xt ])]]

= −δE [xt−i (Et−1 [xt ]−Et−1 [xt ])] = 0.

(6)

To see how this differs from the result by Lanne and Saikkonen (2011a), assume the regressor xt to

be generated by a Gaussian first-order noncausal autoregressive process, AR(0,1):

xt = αxt+1 + εt

=
∞

∑
j=0

α jεt+ j,
(7)

with εt ∼ N(0,σ2). Since xt is Gaussian, the noncausal process (7) is indistinguishable from a

causal AR(1,0) process, and its optimal forecast is identical to the causal case: Et−1 [xt ] = αxt−1

(Lanne et al., 2012). The realized prediction error (assuming the true value of α is known) is then:

et = xt−Et−1 [xt ]

= xt−αxt−1

(8)

The prediction error et is the true ’innovation’ in xt and is, other than in a causal autoregression,

not equal to the error term εt . In fact, from the MA representation of xt (7), it is straightforward to

see that the forecast error is correlated with lags and leads of εt :

E [etεt−i] = E [xtεt−i]−αE [xt−1εt−i]

=


0−ασ2 = −ασ2 {i = 1}

α iσ2−αα i+1σ2 = (1−α2)α iσ2 {i < 1}

0−0 = 0 {i > 1},

(9)

Since the implied error term ηt is an exact linear function of the forecast error et (ηt = −δet), ηt

is correlated with leads and lags of εt , which contradicts the assumption (4) made by Lanne and
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Saikkonen (2011a). The forecast errors et and ηt are, however, uncorrelated with lags of xt :

E [etxt−i] = E [xtxt−i]−αE [xt−1xt−i]

= α iE
[
x2

t
]
−αα i−1E

[
x2

t
]

= 0 {i≥ 1},
(10)

which means that lags of xt are valid instruments for estimating (1), regardless of whether xt is

causal or noncausal.

This result can be extended to a multivariate context. Let xt be a K-dimensional vector of

variables that is generated by a noncausal VAR(0,1) process:

xt = Bxt+1 + εt , (11)

with εt ∼ N(0,ΣB), while x∗t follows a causal VAR(1,0) process:

x∗t = Ax∗t−1 + ε
∗

t , (12)

with εt ∼N(0,ΣA). The processes xt and x∗t are identical in first- and second-order moments when:

B = Γ∗0A′Γ−1
0

ΣB = Γ∗0−BΓ0B′,
(13)

in which the covariance functions are defined by:

Γ0 = E [xtx′t ] = BΓ0B′+ΣB

Γ∗0 = E
[
x∗tx∗′t

]
= AΓ∗0A′+ΣA.

(14)

It is straightforward to verify that Γ0 = Γ∗0, when (13) holds. Under these conditions, also the

autocovariance functions of xt and x∗t are identical:

Γ−i = E
[
xtx′t+i

]
= BiΓ0

Γ∗i = E
[
x∗tx∗′t−i

]
= AiΓ∗0.

(15)
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Since Γ−i = Γ′i, the autocovariance function of the causal and noncausal processes are identical

if and only if BiΓ0 = Γ∗0A′i, or equivalently: Bi = Γ∗0A′iΓ−1
0 , which is satisfied for all i when B =

Γ∗0A′Γ−1
0 and Γ0 = Γ∗0.

The equivalence in first- and second-order moments implies that, under Gaussianity, the pro-

cesses (11) and (12) are indistinguishable, so Et−1 [xt ] = Axt is the optimal forecast for both the

causal and noncausal process (Lanne et al., 2012). The vector of forecast errors is then, analogues

to equation (8), et = xt −Axt−1. As in the univariate case (9)-(10) et is correlated with lags and

leads of εt , but uncorrelated with lags of xt :

E
[
etx′t−i

]
= Γ′−i−AiΓ0

= Γ0B′i−Γ0B′iΓ−1
0 Γ0 = 0 {i≥ 1}.

(16)

Under the assumption that the error term in a regression equation like (1) is a linear combination of

prediction errors: ηt = γ ′et, lags of xt are uncorrelated with this error term (E [ηtxt−i] = 0 ∀i≥ 1)

and are therefore valid instruments.

3 Non-Gaussian and higher-order processes

As the derivations in the previous section are already rather cumbersome, I use simulations to

show robustness of the result to non-Gaussian and higher-order autoregressive specifications of xt .

Consider the linear regression model (1), with xt generated by an AR(1,1) process:

(1−φL)(1−ϕL−1)xt = εt . (17)

I consider four different distributions for εt and ηt :

(εt ,ηt)
′ ∼ N(0,Ω) (a)

(εt ,ηt)
′ ∼ t3(0,Ω) (b)

εt ∼ N(0,σ2) (c)

εt ∼ t3(0,σ2), (d)

(18)
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in which Ω11 = Ω22 = σ2 and t3 refers to the t-distribution with three degrees of freedom. I

generate a sample of random errors according to each distribution (a)-(d) and use them to compute

xt following (17) and yt following (1). For the last two distributions (c)-(d), no explicit distribution

for ηt is formulated, but I assume it is a prediction error: ηt =−δ (xt−Et−1 [xt ]). In the Gaussian

case (c), the conditional expectation of xt is, as in section 2, identical to the conditional expectation

of a causal process with identical first- and second-order moments (Lanne et al., 2012). It can be

verified that the causal AR(2,0) process:

(1− (φ +ϕ)L+φϕL2)x∗t = εt (19)

has identical mean, variance and autocovariance function as (17). The conditional expectation,

under Gaussianity (c), of xt is therefore:

Et−1 [xt ] = (φ +ϕ)xt−1−φϕxt−2 (20)

For the t-distributed AR(1,1) process (d), I compute the conditional expectation of xt using the

simulation-based forecast method for non-Gaussian, noncausal univariate autoregressions, pro-

vided by Lanne et al. (2012). Given these conditional expectations, ηt can be computed for both

(c) and (d).

I calibrate σ2 = 1, Ω12 = Ω21 = 0.8, φ = ϕ = 0.5 and δ = 1, following a simulation exercise

by Lanne and Saikkonen (2011a). After computing samples of 50 and 1000 observations of εt , xt ,

ηt and yt , according to each distribution in (18), I estimate δ in model (1) by 2SLS, using xt−1 as

instrument. This process is repeated 10,000 times.

Table 1 shows the average estimates and standard deviations of δ for all four distributional

assumptions, which confirm the point made in section 2. Under assumptions (a) and (b), which is

the assumption made by Lanne and Saikkonen (2011a), the 2SLS estimator is clearly inconsistent.

However, under assumptions (c) and (d), when ηt is a prediction error, the 2SLS estimator is

consistent, despite noncausality of xt .
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4 Example: Consumption-based asset pricing

Consumption-based asset pricing was amongst the first applications of GMM (Hansen and Single-

ton, 1982). The model to estimate is an Euler equation relating financial returns (Rt =P−1
t−1(Pt +Dt))

to the marginal rate of substitution:

Et−1

[
β

u′(Ct)

u′(Ct−1)
Rt

]
= 1, (21)

in which Pt refers to asset prices, Dt to dividends and Ct to consumption. Multiplying the sample

equivalent of this optimality condition with a vector of predetermined instruments zt−1 and as-

suming a constant relative-risk aversion utility function (u(Ct) = (1−γ)−1C1−γ

t ) gives the required

moment conditions for GMM estimation:

T

∑
t=0

(
β

(
Ct

Ct−1

)−γ

Rt−1

)
zt−1 = 0. (22)

This approach has become leading practice in empirical finance (see e.g. Ludvigson, 2011, for a

recent survey). It is illustrative to see that a simple regression model, similar to (1), is obtained

after log-linearizing the Euler equation:

rt = µ + γ4ct +ηt , (23)

in which rt = log(Rt) and ct = log(Ct). Yogo (2004) shows that the error term ηt is in this case

indeed a linear combination of prediction errors, as assumed in section 2:

ηt = (rt−Et−1 [rt ])− γ (4ct−Et−1 [4ct ]) , (24)

I simulate returns and consumption according to (21), to verify that the GMM estimator is consis-

tent even if the instruments are noncausal. The first step is to define log consumption and dividend

growth as a first-order VAR process, (4ct ,4dt)
′ = xt , in which dt = log(Dt). This process may be

causal or noncausal, i.e. is generated by equation (12) or (11). The restrictions (13) apply, so both
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specifications are identical in their mean, variance and autocorrelation function. Given a simulated

sample of consumption and dividends, I generate returns following the approach of Tauchen and

Hussey (1991). Multiplying equation (21) by
Pt−1

Dt−1
, results in a nonlinear stochastic difference

equation describing the dynamics of the price-dividend (PD) ratio:

Pt−1

Dt−1
= Et−1

[
β

(
Ct

Ct−1

)−γ Dt

Dt−1

(
1+

Pt

Dt

)]
, (25)

which can be simulated by calibrating a dicrete-valued Markov chain that approximates the con-

ditional distribution of consumption and dividend growth. Details on this approximation for the

causal VAR are provided by Tauchen (1986) and this method can be implemented for the noncausal

VAR too, as the conditional distributions of the causal and noncausal processes are identical under

Gaussianity and the restrictions in (13). Returns are then computed from the simulated dividends

and PD ratios.

I consider two different calibrations of the matrices A and ΣA in (12), which are given in table

2. The first calibration (i) of A and ΣA is following Wright (2003) and is based on actual data

on annual consumption and dividend growth. In the second example (ii), consumption growth

follows a univariate AR(1,0) or AR(0,1) process, which is calibrated to have identical variance and

autocorrelation as consumption growth in the first calibration, while dividend growth is set equal

to consumption growth. This is an example of a “lucas-tree economy”, in which household income

consists of dividends alone. It is well known that in this case there exists a no-trade equilibrium in

which households consume their entire endowment of dividends (Lucas, 1978).

I use the simulated returns and consumption growth rates to estimate β and γ by two-step effi-

cient GMM, based on the moment conditions (22), using zt−1 =

(
1,

Ct−1

Ct−2
,Rt−1

)′
as instruments,

following Hansen and Singleton (1982). I consider 10,000 replications with sample sizes of 50 and

1000 observations.

Table 3 displays the simulation results. The main result is that for both calibrations, noncausal-

ity of the instruments seems to have no effect on the finite-sample or asymptotic properties of the

GMM estimator. In both cases, the GMM estimates of β and γ are rather poor in small samples,

but improve in larger samples. It is clear that the inconsistency of the estimator derived by Lanne
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and Saikkonen (2011a), does not hold under the assumptions in this model.

Figure 1 shows plots of the correlation between the Euler-equation errors ut = β̂

(
Ct

Ct−1

)−γ̂

Rt−

1 and lags and leads of εt and
Ct

Ct−1
. These correlation plots are consistent with the results derived

in section 2: When consumption is generated by a causal process, ut is only correlated with εt , but

not with its leads and lags. With noncausal consumption, on the other hand, the error term ut is

correlated with lags and leads of εt , so assumption (4) does not hold. Despite these intertemporal

correlations, the important point to notice is that lags of
Ct

Ct−1
are uncorrelated with ut , which means

they are valid instruments.

5 Conclusion

Instead of making explicit distributional assumptions on the error terms in a regression model, I

argue that these errors are to be interpreted as prediction errors. This interpretation is consistent

with the approach by Hansen and Singleton (1982), amongst others, who base GMM estimation

on moment conditions implied by rational-expectations theories. All variables included in the

information set on which agents condition to form expectations are in this case valid instruments,

whether they are causal or noncausal. This is good news to those who apply GMM, although other

caveats, such as weak instruments or misspecified economic theories, are of course still around to

complicate the tasks of applied econometricians.
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Tables and figures

TABLE 1: Simulation results
Distribution (a) (b) (c) (d)

(εt ,ηt)
′ ∼ N(0,Ω) (εt ,ηt)

′ ∼ t3(0,Ω) εt ∼ N(0,σ2) εt ∼ t3(0,σ2)

T 50 1000 50 1000 50 1000 50 1000

δ 1.633 1.596 1.630 1.596 1.025 1.001 1.067 0.995

(0.159) (0.031) (0.158) (0.031) (0.117) (0.023) (0.161) (0.063)

Notes: Average 2SLS estimates and standard deviations (in parenthesis) of δ , model (1), with instru-
ment xt−1, after 10,000 replications of sample size T . xt follows a noncausal autoregression (17). The
errors εt and ηt are either jointly i.i.d. (a)-(b), as in Lanne and Saikkonen (2011a), or εt is i.i.d. (c)-(d),
with ηt = −δ (xt −Et−1 [xt ]). For the Gaussian case (c), Et−1 [xt ] is computed by equation (20). For the
non-Gaussian case (d), Et−1 [xt ] is computed by a simulation-based method for forecasting non-Gaussian
noncausal autoregressions (with M = 50 and N = 1000, see Lanne et al., 2012, for details). Calibration:
Ω11 = Ω22 = σ2 = 1, Ω12 = Ω21 = 0.8, φ = ϕ = 0.5 and δ = 1.

TABLE 2: Calibration
A ΣA β γ

(i) (4ct ,4dt)
′ ≡ xt

(
−0.161 0.017
0.414 0.117

) (
0.0012 0.0018
0.0018 0.014

)
0.97 1.3

(ii) 4ct =4dt ≡ xt −0.14 0.009 0.97 1.3

Notes: Calibrations of A, ΣA, β and γ in the Euler equation (21) . The first calibration (i) follows Wright
(2003). In the second calibration (ii), consumption and dividends are identical as in a Lucas-tree economy
(Lucas, 1978). The autoregressive process may be causal or noncausal. The parameter values of the
noncausal autoregressive process are derived from A and ΣA according to equation (13)

TABLE 3: Simulation results
Causal Noncausal

Calibration (i) (ii) (i) (ii)

T 50 1000 50 1000 50 1000 50 1000

β 0.965 0.970 0.970 0.970 0.965 0.970 0.970 0.970

(0.030) (0.004) (0.001) (0.000) (0.030) (0.004) (0.001) (0.000)

γ 1.742 1.293 1.115 1.285 1.743 1.292 1.114 1.285

(3.556) (0.810) (0.202) (0.067) (3.580) (0.809) (0.190) (0.067)

Notes: Average two-step efficient GMM estimates and standard deviations (in parenthesis) of β and γ ,

model (21), after 10,000 replications of sample size T . Instruments are zt−1 =

(
1,

Ct−1

Ct−2
,Rt−1

)′
. Consumption

and dividends are generated by a causal or noncausal autoregressive process. Returns are computed
following the approach of Tauchen and Hussey (1991). Calibrations of the Euler equation and autoregressive
processes are given in Table 2.
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Figure 1: Correlations of errors and instruments: Correlations between residuals from GMM estimates

in Table 3: ut = β̂

(
Ct

Ct−1

)−γ̂

Rt −1 and lags and leads of εt and
Ct

Ct−1
, for calibration (i), top, and (ii), bottom.
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