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PART A 

 

i. List of original publications  

This thesis is based on the following original publications, which are referred to in the text by 

their roman numerals. 

I Wang H, Liaw YC, Stone D, Kalyuzhniy O, Amiraslanov I, Tuve S, Verlinde CL, 

Shayakhmetov D, Stehle T, Roffler S, Lieber A. (2007) Identification of CD46 Binding 

Sites within the Adenovirus Serotype 35 Fiber Knob. Journal of Virology, 81(23):12785-92.

II Wang H, Liu Y, Li Z, Tuve S, Stone D, Kalyushniy O, Shayakhmetov D, Verlinde CL, 

Stehle T, McVey J, Baker A, Peng KW, Roffler S, Lieber A. (2008) In vitro and in vivo 

properties of adenovirus vectors with increased affinity to CD46. Journal of Virology, 

82(21):10567-79. 

III Wang H, Tuve S, Erdman DD, Lieber A. (2009) Receptor usage of a newly emergent 

adenovirus type 14. Virology, 387(2):436-41. 

IV Wang H, Liu Y, Li ZY, Fan X, Hemminki A., Lieber A. (2010) A recombinant adenovirus 

type 35 fiber knob protein sensitizes lymphoma cells to rituximab therapy. Blood, 

115(3):592-600. 

V Wang H, Li ZY, Liu Y, Persson J, Beyer, I, Möller T, Koyuncu D, Drescher MR, Strauss 

R, Zhang X, Wahl JK, Urban N, Drescher C, Hemminki A, Fender P, Lieber A. (2011)  

Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14.Nature Medicine, 

17(1):96-104. 

VI Wang H, Li ZY, Lara S, Hemminki A, Lieber A. (2011) Multimerization of adenovirus 

serotype 3 fiber knob domains is required for efficient binding of virus to desmoglein 2 and 

subsequent opening of epithelial junctions. Journal of Virology, 85(13):6390-402. 
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ii. Abbreviations 

aa Amino acids 
Ad Adenovirus 
Ad# Adenovirus serotype # 
Ad5/# Chimeric adenovirus (Ad5 capsid with fiber protein of serotype #) 
Ad#K Adenovirus serotype # fiber knob 
ATCC American Type Tissue Culture Collection 
bp Base pair 
CAR Coxsackie-adenovirus receptor 
CBB Coomassie Brilliant Blue staining 
CDC Complement-dependent cytotoxicity 
CMV Cytomegalovirus 
CPE Cytopathic effect 
DNA Deoxyribonucleic acid 
DSG2 Desmoglein 2 
E.coli Escherichia coli 
EMT Epithelial‐mesenchymal transition 
FBS Fetal bovine serum 
Fig. Figure 
FITC Fluorescein isothiocyanate 
GFP  Green fluorescent protein 
3HAd Adenovirus labeled with (methyl-3H)thymidine 
HRP Horseradish peroxidase 
IPTG Isopropyl β-D-1-thiogalactopyranoside 
ITR Inverted terminal repeat 
i.v. Intravenous 
Ka Association rate constant 
Kd Dissociate rate constant 
kD Kilodalton 
mAb Monoclonal antibody 
MOI Multiplicity of infection 
NHS Normal human serum 
Ni-NTA agarose Ni-nitrilotriacetic acid agarose 
PBS Phosphate-buffered saline 
PBS-T Phosphate-buffered saline +0.5% Tween20 
PE Phycoerythrin 
pfu Plaque-forming unit 
sCAR Soluble CAR 
sCD46 Soluble CD46 
SCR Short consensus repeat domains 
SPR Surface Plasmon Resonance 
TAA Tumor associated antigens 
vp Viral particle 
wt Wild type 
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iii. Abstract 

Human adenoviruses (Ads) have been classified into six species (A to F) currently containing 

55 serotypes. For almost 2 decades vectors derived from group C serotype Ad5 have been 

extensively used for gene transfer studies. These Ad5 based vectors are able to efficiently infect 

many mammalian cell types (including both mitotic and post-mitotic cells) through interaction 

with a primary attachment receptor, the coxsackie and adenovirus receptor (CAR).  Despite the 

many advantages of Ad5 based vectors a number of limitations have affected their therapeutic 

application to many diseases. Although they can transduce many tissue types, Ad5 based vectors 

are unable to efficiently transduce several potential disease target cell types, including 

hematopoietic stem cells and malignant tumor cells. Therefore, newer vectors have been 

developed based on Ad serotypes other than Ad5. This thesis focuses on species B Ads. Species 

B Ads are comprised of three groups based on their receptor usage.  Group 1 of species B Ads 

(Ad16, 21, 35, 50) nearly exclusively utilize CD46 as a receptor; Group 2 (Ad3, Ad7, 14) share a 

common, unidentified receptor/s, which is not CD46 and which was tentatively named receptor X; 

Group 3 (Ad11) preferentially interacts with CD46, but also utilizes receptor X if CD46 is 

blocked.   

Species B group Ads are important human pathogens. Species B group 2 serotypes are 

isolated from patients with respiratory tract infections, whereas the Group 1 viruses are described 

as causing kidney and urinary tract infections. B-group Ad infections often occur in 

immunocompromised patients, including AIDS patients, recipients of bone marrow transplants, 

or chemotherapy patients. Recent studies performed in U.S. military training facilities indicate an 

emergence of diverse species B serotypes at the majority of sites. This included the group 1 

serotype 21 and the group 2 serotypes 3, 7, and 14.  

CD46-targeting vectors derived from Ad35 and Ad11 are important tools for in vitro gene 

transfer into human stem cells, including hematopoietic stem cells and induced pluripotent stem 

cells.  Ad35 and Ad11 have been used as tools for cancer therapy, because CD46 appears to be 

uniformely overexpressed on many cancers. Furthermore, receptor X-targeting vectors, i.e 

vectors derived from Ad3 or vectors containing Ad3 fibers have shown superior in the 

transduction of tumor cells both in vitro and in vivo and are currently being used clinically in 

cancer patients.  
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While extensive basic virology studies have been done on Ad5, the information of species B 

group 1 interaction with CD46 is limited. Furthermore, the receptor for a major subgroup of 

species B Ads (receptor X) is unknown. The goal of this thesis was it therefore to better 

understand virological and translational aspects of species B Ads. The specific findings described 

in this thesis include i) the identification of CD46 binding sites within the Ad35 fiber knob, ii) the 

study of the in vitro and in vivo properties of Ad vectors with increased affinity to CD46. iii) the 

study of the receptor usage of a newly emergent Ad14a,  iv) the identification of desmoglein 2 as 

the receptor for Ad3, Ad7, Ad11, and Ad14, v) the delineation of structural details of Ad3 virus 

interaction with DSG2, and vi) the analysis of functional consequences of Ad3-DSG2 interaction. 

As a result of these basic virology studies two Ad-derived recombinant proteins have been 

generated that can be used to enhance cancer therapy by monoclonal antibodies.  
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PART B 

 

REVIEW OF THE LITERATURE 

 

1 Introduction 

Adenoviral vectors are currently one of the most commonly used viral vector systems in the 

field of gene therapy and have successfully been employed to transduce a wide variety of cell 

types. They are easy to manipulate, have a relatively large insertion capacity and can be purified 

to titres of up to 1013 infectious units (iu)/ml. They are able to transduce both dividing and non-

dividing cells but are mostly incapable of genome integration into host cell chromosomes.   

 2 Adenovirus structure and life cycle  

Ads were first discovered in 1953 as agents, which spontaneously caused degeneration of  

                 

Figure 1 Three dimensional model of an Ad virion viewed along an icosahedral three-fold axis (A). Representative 
section of an Ad virion illustrating the current understanding  of polypeptide component and DNA interactions (B). 
This figure was modified from Shenk  (1996) Adenoviridae: The viruses and their replication. Fundamental Virology, 
979-1016. Eds: Fields.B.N, Knipe.D.M & Howley.P.M. Lippincott-Raven Publishers, Philadelphia  

primary cell cultures from human adenoid tissue (Rowe et al., 1953). Since then 55 human 

serotypes of the adenoviridae family have been identified and divided into 4 genera 

(aviadenovirus, atadenovirus, mastadenovirus, siadenovirus) and 6 species (A-F) (de Jong et al., 

A. B.
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2008). Ads have been shown to be responsible for a variety of illnesses including upper 

respiratory disease, epidemic conjunctivitis, and infantile gastroenteritis (Shenk, 1996).   

Most studies analyzing the structure of Ads have been done with human serotypes 2 and 5, 

and have revealed that Ads have an icosahedral shape (20 triangular surfaces and 12 vertices) 

measuring about 90nm in diameter (Figure 1A). The virion has a protein shell (capsid) made up 

of 252 capsomere subunits composed of 240 hexons and 12 pentons. Each hexon is surrounded 

by 6 neighbouring subunits (Figure 2A) while each penton is surrounded by 5 neighbouring 

subunits and has a fiber projecting from its vertex (Figure 2B). Within the capsid are 4 

polypeptides alongside a single copy of the double stranded DNA genome covalently attached at 

its 5’ end to the terminal protein polypeptide (Figure 1B).  

 

Figure 2 Electron microscopy images of Ad5. A hexon surrounded by six hexons and a penton surrounded by five 
hexons are marked by dots (A). Six fibers of twelve are visible projecting from penton capsomeres (B). Free penton 
capsomeres containing penton base and fiber are visible (C). Magnification is X 285 000. This figure was modified 
from Shenk.T (1996) Adenoviridae: The viruses and their replication. Fundamental Virology, 979-1016. Eds: 
Fields.B.N, Knipe.D.M & Howley.P.M. Lippincott-Raven Publishers, Philadelphia  

The protruding fiber is the moiety within the Ad capsid that mediates a high affinity binding 

to the primary attachment receptor. Each Ad capsid has 12 fibers linked to penton bases. Each 

fiber consists of a tail domain that is anchored within the penton base, a shaft domain consisting 

of repeats of up to 14 aa that form β-sheets (with the number of repeats ranging from 6 to 23 in 

different serotypes), and the C-terminal homo-trimeric knob domain. For CAR- and CD46-

interacting Ads, the knob domain binds with high affinity to the receptor and soluble fiber knobs 

completely block infection.  

The genome of Ad (Figure 3) is typically around 36 kbp in length and has inverted terminal 

repeat (ITR) sequences of around 100-140 bp at each end which play important role in DNA 

A. B. C.
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replication as they contain viral origins of replication. A cis-acting packaging sequence is present 

within several hundred base pairs of the left hand ITR and directs interaction of the genome with 

encapsidating proteins. Furthermore, the genome contains 5 early transcription units (E1A, E1B, 

E2, E3 and E4), two delayed early units (IX and IVa2) and one major late unit that is processed to 

generate 5 families of late RNAs (L1-L5). It has been demonstrated that, with the exception of E4 

(Leppard, 1997), each early and late transcription unit encodes a series of polypeptides with 

related functions. Two E1A proteins are known to activate transcription and induce the cell to 

enter the S phase of the cell cycle (Shenk, 1996). Two E1B proteins are known to interact with 

E1A gene products (Shenk, 1996). Three E2 proteins are known to function in DNA replication. 

E3 proteins mostly play a role in modulation of the anti-viral host response to Ads and are 

therefore dispensable for in vitro replication (Wold et al., 1999). Late proteins are either capsid 

components, or proteins involved in capsid assembly (Shenk, 1996). 

  

Figure 3  Linear representation of the Ad5 genome. The genome is divided into 100 relative map units and the r and 
l  strands are transcribed in a rightward and leftward direction respectively.   The ITRs are shown in red  ( ←) and the 
packaging  signal  in   blue (- ) whilst early (E), delayed early (IX and IVa2) and late (L) transcription units are 
shown along with the viral proteins produced from each region.  
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The Ad life cycle (Figure 4) begins when the Ad fiber knob binds to a high affinity cell 

surface receptor. Most Ad species, except those belonging to subspecies  B and some from 

subspecies D, are able to use the coxsackievirus-Ad receptor (CAR) on the cell surface for 

primary Ad attachment (Bergelson et al., 1997b; Roelvink et al., 1998). The Ad then undergoes 

receptor-mediated endocytosis and this is mediated by interactions between an Arg-Gly-Asp 

(RGD) motif within the viral penton base and cell surface αvβ3 and αvβ5 integrins (Wickham et al., 

1993). Once internalized, a drop in pH within the endosome results in a conformational change in 

capsid structure, endosome disruption and release into the cytoplasm (Svensson, 1985). Hereafter, 

viral capsids become localized to the nucleus through a process that involves microtubules and 

dynein (Leopold et al., 2000). To enable this, a stepwise disassembly of Ad particles is necessary 

which involves fiber release, penton base dissociaton, DNA capsid scaffold protein degradation 

or shed, and elimination of the capsid stabilizing minor protein (Greber et al., 1993). When the 

capsid reaches the nuclear membrane the viral genome is injected into the nucleus, and associates 

with the nuclear matrix through interaction with the terminal protein (Fredman and Engler, 1993) 

and the process of early gene transcription begins.   

The process of early gene transcription is initiated with the production of the viral E1A 

transactivator from a constitutive E1 promoter and has 3 main consequences.  First, affected cells 

enter the S phase of the cell cycle to replicate the DNA. This is achieved through a number of 

processes including inhibition of the retinoblastoma tumour suppressor (pRb) by E1A, inhibition 

of the p53 tumour suppressor by E1B-55K and direct inhibition of apoptosis by the Bcl-2 

homologue E1B-19K. The second consequence is the inhibition of host anti-viral responses and 

this is done by inhibition of α and β interferon responses by E1A proteins and VA RNAs, 

retention of MHC I molecules in the endoplasmic reticulum by E3-gp19K, inhibition of tumour 

necrosis factor alpha (TNF-α) mediated cytolysis by the E3 14.5K/10.4K complex or E3 14.7K, 

down regulation of Fas cell surface expression by the E3 14.5K/10.4K complex, which inhibits 

Fas mediated apoptosis of virus infected cells, and inhibition of FLICE (caspase 8) which plays a 

role in TNF and Fas mediated apoptosis (Chen et al., 1998). The third consequence is the 

synthesis of gene products needed for viral DNA replication. 

Following synthesis of the early gene products, the processes required for virus production 
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Figure 4 Ad life cycle. The Ad knob binds to its primary receptor (CAR) ① after which the penton base interacts 

with the secondary receptors (αvβ3/αvβ5 integrins) ② that in turn trigger the process of endocytosis ③. Once 

endocytosed acidification of the endosome triggers a conformational change in the viral capsid ④ that is then 

released into the cytoplasm and translocates to the nucleus ⑤. The viral genome then enters the nucleus ⑥ and from 

its episomal location undergoes transcription ⑦ and then replication ⑧. Viral gene products are then produced in the 

cytoplasm following translation ⑨ and capsid proteins localize to the nucleus where virus assembly occurs ⑩. Virus 

can then be released from the cell following lysis. Modified from Stone et al. 2000 (Stone et al., 2000). 

are able to begin. DNA replication occurs within the nucleus and after transcription of the 

delayed early IX and IVa2 transcripts the major late promoter becomes activated by the IVa2 

gene product and promotes production of late RNA species. The late RNA species are translated 

to produce capsid proteins within the cytoplasm but capsid assembly does not occur until these 

proteins are translocated to the nucleus. Virus assembly and genome packaging then occurs in the 

nucleus and Ad cannot be released from the cell until it is lysed. This cell lysis requires disruption 

of intermediate filaments (which are components of the cytoskeleton) such as vimentin and 
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cytokeratin K18, and results in the collapse of the cell and lysis (Belin and Boulanger, 1987; 

Chen et al., 1993).  

3 Species B adenoviruses 

Of the currently identified human Ads, 9 serotypes belong to species B and they have been 

further divided into subgroups B:1 (Ads 3, 7, 16, 21 and 50) and B:2 (Ads 11, 14, 34 and 35) 

based on DNA homology. Typically B:1 serotypes are isolated from patients with respiratory 

tract infections, whereas the B:2 viruses, with the exception of Ad11a and 14 (Mei et al., 1998), 

are described as causing kidney and urinary tract infections (Shindo et al., 1986) (Shields et al., 

1985) (Hierholzer et al., 1975), while both B:1 and B:2 Ads have been associated with 

conjunctivitis (Sawada et al., 1987) (Saitoh-Inagawa et al., 2001). B-species Ad infections often 

occur in immunocompromised patients, including AIDS patients, recipients of bone marrow 

transplants, or chemotherapy patients. In general, B-species Ad infections (with the exception of 

Ad3 and Ad7) are relatively rare as reflected by the low percentage (<10%) of humans with 

neutralizing antibodies against B-species Ads that have been found in Europe, USA, Asia, and 

Africa (Vogels et al., 2003) (D'Ambrosio et al., 1982) (Nwanegbo et al., 2004).  

Table 1 Ad disease table (Modified from Stone et al., 2006) 

Disease Most affected groups Principle serotype 

Acute febrile pharyngitis  Infants/young children 1, 2, 3, 5, 6, 7 

Pharyngoconjunctival fever School children 3, 7, 14 

Acute respiratory disease Military recruits 3, 4, 7, 14, 21 

Pneumonia Infants/young children 1, 2, 3, 7 

Pneumonia Military recruits 4, 7 

Epidemic keratoconjunctivitis Any age group 8, 11, 19, 37 

Pertussis-like syndrome Infants/young children 5 

Acute hemorrhagic cystitis Infants/young children 11, 21 

Gastroenteritis Infants/young children 40, 41 

Hepatitis Infants/children with liver transplants 1, 2, 5 

Persistence of virus in urinary tract 
 
Myocarditis 

Immunosupressed patients 
 
Infants/young children 

11, 34, 35 
 

5, 3 
(Serotype 3, 7, 11, 14, 21, 34 and 35 belongs to species B Ad) 



17 
 

Unlike species A, C, D, E and F Ads, the B species Ads are not able to utilize CAR as a 

primary attachment receptor (Roelvink et al., 1998), and this reflects their different tissue tropism 

and subsequent disease pathogenesis. Our lab (Gaggar et al., 2003b), and others (Segerman et al., 

2003b) (Sirena et al., 2004) demonstrated that B species Ads are able to use the complement 

regulatory protein CD46 as a primary attachment receptor. CD46 is a membrane protein that is 

expressed on all nucleated human cells, and is also used as a receptor by keratoconjunctivitis 

causing D species Ads (Wu et al., 2004), measles virus laboratory strains (Dorig et al., 1993), 

human herpes virus 6 (Santoro et al., 1999), pathogenic Neisseria (including Neisseria 

meningitidis, Neisseria gonorrhoeae) and Streptococcus pyogenes (Johansson et al., 2003). In 

humans, there are four major isoforms of CD46 (BC1, BC2, C1 and C2), depending on the 

alternative splicing of a region encoding an extracellular domain and the choice between one or 

two cytoplasmic tails, Cyt-1 and Cyt2 (Purcell et al., 1991). CD46 expression is greatly 

upregulated in malignant tumor cells (Hara et al., 1992b) (Kinugasa et al., 1999b) (Murray et al., 

2000a) (Thorsteinsson et al., 1998) and hematopoietic stem cells (Cho et al., 1991) (Manchester 

et al., 2002).  

In addition to CD46, recently we had found the existence of an unknown receptor (receptor X) 

(Tuve et al., 2006) for several B species Ads. Receptor X is an abundantly expressed glycoprotein 

that interacts with Ads in a Ca2+-dependent manner. This receptor is expressed at high levels on 

human mesenchymal and undifferentiated embryonic stem cells, as well as on human cancer cell 

lines. Competition studies with unlabeled and labeled Ads, recombinant Ad fiber knobs, and 

soluble CD46 and CD46 antibodies revealed three different subgroups of species B Ads, in terms 

of their receptor usage. Group I (Ad16, -21, -35, and -50) nearly exclusively uses CD46. Group II 

(Ad3, -7p, and -14) utilizes receptor X and not CD46. Group III (Ad11p) preferentially interacts 

with CD46, but also utilizes receptor X if CD46 is blocked. Interaction of group II and III Ads 

with receptor X occurs via the fiber knob. Collectively, we will refer to all receptor X-utilizing 

serotypes (Ad3, Ad7, Ad14 and Ad11) as AdB-2/3.  

The first attempts to identify receptor X date back to 1995. These initial studies indicated the 

interaction of Ad3 with a ~130 kDa HeLa cell protein (Di Guilmi et al., 1995). In recent years,  

several candidates for receptor X such as CD46, CD80 and/or CD86 were suggested (Fleischli et 

al., 2007; Short et al., 2004; Short et al., 2006; Sirena et al., 2004). However, we and others have 
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thus far been unable to verify that these proteins can serve as the high affinity receptor for AdB-

2/3 (Gaggar et al., 2003b; Gustafsson et al., 2006; Marttila et al., 2005; Persson et al., 2008; 

Segerman et al., 2003a; Tuve et al., 2006). Studies by us and others actually provide evidence that 

CD46, CD80 and CD86 are not receptor X. One possibility that could reconcile these 

controversial findings would be that Ad3 indeed interacts with CD46, CD86 and/or CD80 but 

only with a low affinity, so that only when very high ectopic receptor expression levels are used 

in re-expression models, through an avidity effect, virus entry could be triggered. Indeed, in the 

studies on CD46 by Fleischli et al. and on CD80/86 by Short et al., very high (and arguable non-

physiologic) expression levels of these molecules were used on rodent CHO or BHK cells 

(Fleischli et al., 2007; Short et al., 2004). This hypothesis received experimental support by a 

recent study from Thilo Stehle’s group. They found that Ad7 and 14 knobs bind to CD46 with 

low affinity (which was about 2000 fold lower than that of Ad35 or Ad11 binding to CD46). The 

binding was not stable and quickly dissociated. The authors concluded that, unlike Ad11 and 

Ad35, Ad7 and Ad14 cannot induce conformational changes within the fiber knob that transform 

this interaction into a stable contact with high affinity (Persson et al., 2008). 

AdB-2/3 are common human pathogens. Since 2005, a simultaneous emergence of diverse 

species B serotypes at the majority of US military training facilities was observed. This included 

the group 1 serotype 21 and the group 2 serotypes 3, 7 and 14 (Metzgar et al., 2007). Ad14 

outbreaks also occurred in the civil population. During March-June 2007, a total of 140 cases of 

confirmed Ad14 respiratory illness were identified in clusters of patients in Oregon, Washington 

and Texas. Thirty eight percent of these patients were hospitalized, including 17% who were 

admitted to intensive care units; 5% of patients died (Louie et al., 2008). Similar outbreaks were 

reported in 2008 from Alaska and from China. Independent isolates of this new virus (designated 

Ad14a) from multiple locations were identical by genome restriction analysis and sequencing of 

the complete hexon and fiber genes, and were similar to but distinct from the Ad14 reference 

strain from 1955 (de Wit) (Louie et al., 2008). Compared to the Ad14 (de Wit), this new virus 

had a deletion of two aa residues in the fiber protein knob.   

One distinctive feature of AdB-2/3 is their ability to produce subviral dodecahedral particles 

during their replication, consisting of Ad fiber and penton base (Norrby et al., 1967). During Ad 

infection, free pentons and fibers are produced in excess and released with the virus progeny. For 
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a number of serotypes, pentons and fibers self-assemble in dodecahedra (PtDd) formed through 

interaction of 12 penton bases with protruding fibers. Published records for the formation of 

dodecahedra exist for Ad3, 9, 11, 13, 15, and 19 (Norrby et al., 1967).  We found that Ad7 and 14 

also form PtDd. Detailed studies have been done for Ad3 PtDd. Ad3 PtDd are assembled in the 

nucleus of Ad3 infected cells starting at 16 h post-infection and are arranged inside the nucleus 

along the nuclear membrane at 24 hours post-infection. PtDd are formed at an excess of 5.5 × 106 

PtDd per infectious virus (Fender et al., 2005). The massive production of PtDd strongly suggests 

that they have a role in virus infection. It is thought that PtDd enhance infectivity by disturbing 

tight junctions and thus favoring virus spreading (Walters et al., 2002). Furthermore, PtDd 

competition with virus for its receptor during secondary infection can contribute to virus escape 

and spreading. Finally, because PtDd localize with the nuclear pore complex, a role in regulation 

of nuclear import and export is possible.  

4 Development of species B adenoviruses as gene transfer vectors 

One of the major limitations to gene therapy is the need for effective gene delivery vehicles. 

Due to their natural high efficiency of exogenous gene transfer, viral vectors have been widely 

studied. The tropism of each virus is a major determinant of its therapeutic use and due to their 

ability to efficiently infect multiple therapeutic target cell population’s Ad vectors have shown 

considerable potential as vectors for delivery of therapeutic genes. For almost 2 decades vectors 

derived from species C serotype Ad5 have been extensively used for gene transfer studies. These 

Ad5 based vectors are able to efficiently infect many mammalian cell types (including both 

mitotic and post-mitotic cells) through interaction with the coxsackie and adenovirus receptor 

(CAR, (Bergelson et al., 1997b)), can be easily propagated to high titers, are replication deficient, 

are oncolytic, can accommodate relatively large inserts and are non-integrating.   

Despite the many advantages of Ad5 based vectors a number of limitations have affected their 

therapeutic application to many diseases. Although they can transduce many tissue types, Ad5 

based vectors are unable to efficiently transduce several potential disease target cell types, 

including hematopoietic stem cells HSCs (Neering et al., 1996) (Watanabe et al., 1996) and 

dendritic cells (DCs) (Arthur et al., 1997), without using high multiplicities of infection (MOI) 

and causing cytotoxicity or loss of cell function. This is primarily due to low expression of 

primary attachment receptor (CAR) and secondary internalizing receptor (integrins, (Wickham et 
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al., 1993))  on target cells.  Additionally, following systemic in vivo delivery of Ad5 vectors, 

acute vector-mediated toxicity is seen (due to uptake by cells of the reticuloendothelial system 

and subsequent production of pro-inflammatory cytokines/chemokines) and immune responses to 

adenoviral proteins promote clearance of virus and limit duration of transgene expression that 

induce Ad specific immune responses and the release of pro-inflammatory cytokines. Also, Ad5 

is an endemic virus and pre-existing humoral immunity to Ad5 is widespread among humans 

(Vogels et al., 2003) (D'Ambrosio et al., 1982) (Nwanegbo et al., 2004). The presence of anti-

Ad5 neutralizing antibodies will inhibit systemic vector application and repeated administration 

of the same serotype . Furthermore, upon systemic delivery, Ad5 based vectors are directed to the 

liver through pathways thought to involve binding to blood factors (Shayakhmetov et al., 2005).  

This liver sequestration is detrimental to therapeutic strategies that involve in vivo targeting of Ad 

vectors to other organs or even tumors.  

Many published reports have been focused on studying CD46 interacting (group 1) species B 

Ads, particularly Ad35 and its derivatives. Vectors based on Ad35 or Ad5 vectors containing 

Ad35 fibers have shown great promise as vehicles for gene transfer into multiple human cell 

types, including hematopoietic, embryonic, and mesenchymal stem cells (Stone and Lieber, 2006). 

Ad35-derived vectors also efficiently transduced cell lines derived from solid and liquid tumors. 

However, it was found  that cancer cells that were cultured under conditions that maintained 

epithelial features (similar to the tumor in situ), were refractory to infection by CD46-targeting 

Ads (Strauss et al., 2009a). Overall, epithelial cells are characterized by two key features, i) 

polarized basolateral and apical membranes that differ in density of surface molecules and ii) 

intercellular tight and adherens junctions that are affiliated with the underlying apical actin-

myosin ring. Tight and adherens junctions seal intercellular spaces and form permeability barriers, 

which prevent the flow of molecules across the epithelial layer and restrict the lateral diffusion of 

the apical and basolateral plasma membranes. Both CAR and CD46 are trapped in intercellular 

junctions of epithelial cancer cells and are not accessible to Ads that use these attachment 

receptors (Coyne and Bergelson, 2005; Strauss et al., 2009a). In contrast to group 1 Ads, AdB-2/3 

efficiently infect epithelial cancer cells, which is accomplished in part through induction of 

processes that are reminiscent of Epithelial-to-Mesenchymal Transition (EMT)(Strauss et al., 

2009a), a cellular transdifferentiation program where epithelial cells lose characteristics such as 

intercellular junctions and gain properties of mesenchymal cells (Thiery and Sleeman, 2006). 
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This feature makes AdB-2/3 important tools for gene transfer into epithelial cancer, which 

represents the bulk of solid cancers, and into normal epithelial cells (Yamamoto and Curiel, 

2010). 

4.1 Vectors utilizing species B adenovirus 

Over the last decade several groups have attempted to overcome the disadvantages of Ad5 

based vectors by developing Ad vectors that utilize elements of species B serotypes. These new 

Ad vectors show great promise for use in therapies where Ad5 based vectors have been 

unsuccessful. The cell binding characteristics of species B Ads were investigated for several 

therapeutic target cell populations. Studies have demonstrated efficient binding of species B Ads 

to human CD34 positive cells (Shayakhmetov et al., 2000; Stecher et al., 2001), to various 

epithelial cell lines (Mei et al., 1998), to cells of hematopoietic origin (Segerman et al., 2000), to 

neural cell lines (Skog et al., 2002), to primary neural tumor cells (Skog et al., 2004) and to 

endothelial and carcinoma cells (Zhang et al., 2003). Overall, the cell binding efficiency of these 

Ad serotypes demonstrates the potential of B species Ads as gene transfer vectors. More 

importantly, as species B Ad infections are relatively rare, the resulting low levels of pre-existing 

immunity in humans would enable B species vectors to be used more readily than Ad5 based 

vectors. This is relevant to both ex vivo and in vivo vector applications as both humoral and 

cellular elements of pre-existing immunity can be detrimental to genetic therapies through 

inhibition of vector transduction and elimination of transgene expression. The CAR-independent 

tropism of B species Ads would also be beneficial for certain therapeutic applications. By using 

different receptors as CD46 or receptor X, for cell entry B species Ads can infect target cell 

populations that Ad5 based vectors cannot. Taken together the lack of pre-existing immunity and 

enhanced tropism of species B Ads make them suitable  candidate viruses for development of 

improved gene transfer vectors.  Notably, it is unlikely that species B-Ad vectors can be re-

administered.  

4.1.1 Chimeric species B adenovirus vectors  

As a means to improve gene transfer vectors, several groups have attempted to harness the 

unique properties of B species Ads in the context of Ad 5 based vectors. The first example of this 

by Stevenson et al. demonstrated that fiber knob domains could be swapped between Ad 
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serotypes (Stevenson et al., 1995). An Ad5 vector possessing the fiber knob domain of Ad7 

(Ad5/7) was shown to bind to a different receptor than an Ad5 vector, demonstrating the 

feasibility of developing fiber chimeric Ad vectors. Around the same time Krasnykh and 

colleagues also developed a chimeric Ad5/3 virus possessing the fiber knob domain of Ad3 

(Krasnykh et al., 1996). Subsequently, chimeric Ad5 vectors possessing the fiber knob or fiber 

knob and shaft domains of the other species B serotypes including Ad11 (Goossens et al., 2001) 

(Stecher et al., 2001), Ad14 (Havenga et al., 2002), Ad16 (Havenga et al., 2001), Ad21 (Havenga 

et al., 2002), Ad34 (Havenga et al., 2002), Ad35 (Shayakhmetov et al., 2000) and Ad50 (Knaan-

Shanzer et al., 2001) were also developed, and data suggesting that these vectors are extremely 

efficient at infecting a variety of human target cell types has been generated. Human cells that can 

be readily transduced by species B fiber chimeric Ads include DCs (Rea et al., 2001), CD34 

positive HSCs (Shayakhmetov et al., 2000) (Knaan-Shanzer et al., 2001), mesenchymal stem 

cells (Olmsted-Davis et al., 2002), immortalized and primary tumor cells (Havenga et al., 2002) 

(Kanerva et al., 2002b) (Shayakhmetov et al., 2002b), synoviocytes (Goossens et al., 2001), 

retinal cells (Mallam et al., 2004), endothelial cells (Havenga et al., 2002), cardiovascular cells 

(Havenga et al., 2001), fibroblasts (Havenga et al., 2002), amniocytes (Havenga et al., 2002) and 

chondrocytes (Havenga et al., 2002). This is highly encouraging as it suggests species B Ad 

vectors may be useful for treating a variety of diseases. 

In an additional approach, aimed at avoiding pre-existing anti-adenovirus immunity, 2 studies 

demonstrated that the hexon of Ad5 could be substituted with that of another serotype. In the first 

study it was demonstrated that hexons from Ad3, Ad4 and Ad9 could be incorporated into 

infectious Ad5 virions (Ostapchuk and Hearing, 2001). Consequently this observation led the 

way to development of a species B chimeric Ad5/H3 vector based on Ad5, but containing the 

Ad3 hexon (Wu et al., 2002). Sera from mice pre-immunized with Ad5 could not inhibit in vitro 

infection by Ad5/H3. Furthermore, Ad5/H3 infection was not inhibited in vivo by pre-

immunization of animals with Ad5. Although it has been suggested that T-cells specific to Ad5 

may cross react with B species Ads in vitro (Smith et al., 1998) (Heemskerk et al., 2003), the data 

from Wu et al support the theory that B species Ad vectors may avoid pre-existing anti-Ad5 

immunity generated in vivo, as hexon is the major determinant of Ad neutralizing immunity. 

4.1.2 Species B adenovirus vectors  
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As a result of previous studies demonstrating that species B fiber/knob containing Ad vectors 

show improved infection of certain cell types, several groups have attempted to generate Ad 

vectors derived entirely from a species B Ad serotype. The first such species B Ad vector was 

based on serotype Ad7, was deleted in E1A, and contained a chloramphenicol acetyltransferase 

(CAT) expression cassette in the E1A region (Abrahamsen et al., 1997). This vector was 

constructed with DNA fragments from Ad7a and an Ad7a recombination reporter plasmid in 293 

cells. Efficient expression of CAT was seen after in vitro infection of A549 cells, while systemic 

delivery to BALB/C mice resulted in CAT expression in liver, spleen, kidney and lung at 3 days 

post injection. Subsequently, another method of generating E1/E3 deleted Ad7 vectors in cosmids 

was reported (Nan et al., 2003). An Ad7 HIV env expressing vector was generated for 

vaccination studies and shown to infect cell lines and CD4(+) T lymphocytes.  

The second serotype to be used in development of a B species Ad vector was Ad35 with 4 

groups recently publishing methods for generating E1/E3 deleted Ad35 vectors. The first group at 

Crucell in the Netherlands has developed system for generating Ad35 vectors by homologous 

recombination of 2 shuttle plasmids in PER.C6 cells expressing the Ad35 E1B-55K protein 

(Vogels et al., 2003). This vector system was not hampered by pre-existing Ad5 immunity and 

could efficiently infect DCs, SMCs and synoviocytes. The second group at Genetic Therapy Inc 

were the first to publish a sequence for the Ad35 genome (Seshidhar Reddy et al., 2003). In the 

same study they also introduced a system of making E1A deleted Ad35 vectors in PER.C6 cells 

or E1A/E1B deleted Ad35 vectors in 293 cells expressing Ad5 E1, E2A and E4 proteins. Ad35 

vectors did not efficiently transduce mouse cells and biodistribution studies in C57BL/6 mice 

revealed low levels of Ad35 in all organs evaluated, including liver, lung, spleen, and bone 

marrow, compared to Ad5. Minimal hepatotoxicity was seen with Ad35 and its half-life in mouse 

blood was found to be two to three times longer than that of Ad5. The third group developed 

E1A/E1B deleted Ad35 vectors and was able to grow them in 293 cells expressing Ad5 E1 and 

E4 (Sakurai et al., 2003a). In experiments with human CD34(+) cells Ad35, Ad5, and Ad5/35 

infected 53%, 5%, and 52% of cells at MOI 300 PFU/ml. The mean of fluorescence intensity in 

the CD34(+) cells transduced with the Ad35 vectors was 12-76 and 1.4-3 times higher than that 

in the cells transduced with the Ad5 and Ad5/35 vectors, respectively. In another study the same 

group showed that an Ad35 vector efficiently transduced CAR-positive and CAR-negative cells 

(Sakurai et al., 2003b). Biodistribution studies in C57BL/6 mice showed that Ad5 and Ad35 
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vectors were rapidly cleared from the bloodstream with a half-life of approximately 3 minutes. 

When compared to an Ad5 vector, Ad35 showed lower levels of gene transfer 48 hours after 

infection in all organs tested and vector genomes were almost completely cleared from liver 

between 1 and 48 hours post injection. PCR analysis showed that more Ad35 localized with non-

parenchymal liver cells, while Ad5 was localized with parenchymal and non-parenchymal liver 

cells at 1 and 48 hours. The fourth group reported both the sequence of Ad35 Holden strain and a 

system for making E1, E3 or E1/E3 deleted Ad35 vectors (Gao et al., 2003). Production of Ad35 

vectors was achieved by transient transduction of a plasmid encoding the Ad35 E1B gene in 

HEK293 cells. Testing showed that the Ad35-based vector efficiently infected both human and 

rhesus macaque DCs.  

As an alternative to Ad7 and Ad35 our lab sequenced the species B Ad serotype Ad11p 

(Stone et al., 2003) and developed an Ad11 vector system Ad11p. E1 deleted Ad11 vectors can 

be generated by homologous recombination in E.coli or homologous recombination in a 293 

based complementing cell line that expresses Ad11-E1B55K. We found that like fiber chimeric 

Ad5/11 vectors, Ad11 vectors infect cells in a CAR-independent/CD46 dependent manner. 

Similarly Ad11 vectors can also efficiently infect tumor cell lines, human dendritic cells and 

PBMC derived CD34(+) cells. Compared to Ad 5 and Ad5/11 vectors Ad11 vectors are cleared 

from blood plasma more rapidly 3 minutes after systemic administration to CD46 transgenic mice, 

although clearance over time was comparable. Analysis of blood cell fractions for genomes 

showed that more Ad11 genomes are associated with blood cells than Ad 5 or Ad5/11 genomes. 

Analysis of tissues for Ad genomes revealed that, unlike Ad5 and Ad5/11, Ad11 vector genomes 

are cleared from liver between 30 minutes and 72 hours post administration. Another group has 

also proposed developing Ad11 vectors and recently sequenced the Ad11 genome to this purpose 

(Mei et al., 2003). 

Most recently, Hemminki et al. reported the generation of the first selectively oncolytic Ad 

fully based on serotype 3 (Hemminki et al., 2011). Ad3-hTERT-E1A contains the promoter of the 

catalytic domain of human telomerase upstream of the E1A transcription site for tumor specific 

replication. In vitro experiment showed that this virus can kill cancer cell lines representing seven 

different major tumor types, although low toxicity was seen in non-malignant cells. In vivo data 

showed that the virus had anti-tumor efficacy in three different animal models. Compared to Ad5 
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or Ad5/3 based virus, the in vitro oncolysis mediated by Ad3-hTERT-E1A and wt Ad3 occurred 

more slowly, but in vivo data proved that these Ad3 based viruses are as potent as controls.  Anti-

tumor efficacy was retained in presence of neutralizing anti-Ad5 antibodies whereas Ad5 based 

controls were blocked.  

4.2 Applications of vectors utilizing species B adenovirus 

4.2.1 Animal models 

Before CD46 was identified as a receptor for B species Ads an appropriate small animal 

model for testing B species fiber chimeric or B species Ad vectors was not available. Previously 

it was known that B species Ads could infect human and primate, but not rodent, cells although 

the reason for this was unclear. While all human nucleated cells express CD46, the expression of 

the murine CD46 homologue is restricted to the testis, which would seem to explain the 

specificity of infection towards human and primate cells. The identification of CD46 as the B 

species Ad receptor has enabled the use of existing CD46 transgenic mouse strains with 

widespread CD46 expression for gene transfer studies. The most representative strain of CD46 

transgenic mice was developed using a ~400 kb yeast artificial chromosome (YAC) clone 

carrying the complete human CD46 gene (Kemper et al., 2001). The CD46 expression profile of 

these mice closely mimic’s that observed in humans, including the same pattern of isoform 

expression as the donor. Tissue-specific isoform expression in the kidney, salivary gland and 

brain, parallel to that seen in man, is also seen. Our lab have utilized this strain for in vivo 

biodistributiion studies of a fiber chimeric Ad5/35 vector (Gaggar et al., 2003b). After 

intravenous injection, viral genomes were found in the liver, spleen, bone marrow, and lung. 

However, compared to mice injected with Ad5, the levels of Ad5/35 genomes were more than 20-

fold lower in the liver (Shayakhmetov et al., 2002b). Ad5/35-mediated transgene expression in 

livers was seen only in sparse hepatocytes in the periportal region (in cells that are theoretically 

exposed to the highest dose of incoming virus). Transduced cells were also found in the spleen, 

specifically in the marginal zone of the red pulpa and appear to represent progenitors for dendritic 

cells (CD11c-positive). A study with Cy-3 labeled virus revealed that Ad5/35 uptake into Kupffer 

cells of CD46 transgenic mice was inefficient. 
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As an alternative to CD46 transgenic mice, large animal models are potentially available for 

species B Ad vector studies. Non-human primates could potentially be used since, unlike mice, 

they require CD46 expression for complement regulation. In baboons the CD46 expression 

profile is similar to humans (Hsu et al., 1997) and this would enable their use in gene transfer 

studies. As macaques have previously been used as host pathogens in measles (which also uses 

CD46 as a receptor) vaccine studies (Combredet et al., 2003), they could also be used in gene 

transfer studies.  

With the identification of CD46 and receptor X new animal models for testing chimeric B 

species or B species Ad vectors will be obtained. Each new model will give a more appropriate 

representation of likely vector characteristics and host responses in humans. It is important that 

future experiments use these new models to thoroughly test the safety profiles of these vectors 

following in vivo delivery.  

4.2.2 Cancer: Tumor targeting 

A major challenge in the field of cancer virotherapy is to achieve targeted infection of 

metastatic tumors following the intravenous administration of Ad vectors. In the past, vectors 

based on Ad5 have been used for in vivo gene transfer. However, because Ad5 vectors 

predominantly transduce hepatocytes after intravenous injection, and because tumor cells often 

do not express CAR, these vectors are unsuitable for tumor targeting (Bergelson et al., 1997a; Li 

et al., 1999; Miller et al., 1998; Okegawa et al., 2000). Several strategies have been pursued with 

the aim of achieving tumor-targeted infection with Ad5 vectors, including the genetic 

modification of Ad5 by the incorporation of peptide motifs into specific sites within viral capsids, 

the complete substitution of the Ad5 fiber with heterologous targeting moieties, and chemical 

modification of the Ad5 capsid (for a review see reference (Campos and Barry, 2007)). These 

approaches have succeeded in changing the tropism of Ad5 to receptors that are predominantly 

expressed on tumor cells, such as EGFR, FGF receptor, HER2/neu and specific integrins. 

Another strategy for redirecting Ad5 vectors to tumor cells exploits the natural diversity present 

within the Adenoviridae family. While most Ad serotypes use CAR as the primary attachment 

receptor, species B Ads use CD46 or receptor x. Although in humans CD46 is expressed on all 

nucleated cells at a low level, RNA and protein studies with biopsy samples have demonstrated 

that CD46 expression is significantly upregulated in malignant tumor cells, including cells from 
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breast, colon, liver and endometrial cancers (Fishelson et al., 2003; Kinugasa et al., 1999a; 

Murray et al., 2000b). The implication of this observation is that Ad5 vectors containing fibers or 

fiber knobs derived from species B Ads are of interest for tumor gene therapy. Studies in non-

human primates and CD46-transgenic mice that express CD46 in a pattern and at a level similar 

to that observed in humans demonstrated that hepatocyte transduction was significantly less 

pronounced with chimeric Ad5-based vectors that contained the B-species Ad35 fiber (Ad5/F35) 

compared with Ad5 vectors (Ni et al., 2005; Ni et al., 2006). In mouse models with pre-

established liver metastases, intravenously injected Ad5/F35 vectors achieved tumor-localized 

transgene expression; however, the transduction efficiency of tumor cells was generally  5% (Ni 

et al., 2006). In addition, several studies with Ad5 vectors containing Ad3 fibers or fiber knobs 

have demonstrated superior tumor cell transduction (Kanerva et al., 2002a; Kangasniemi et al., 

2006).  

Approximately 85 to 90% of all cancers arise from epithelial tissue, and epithelial tumor cells 

are therefore the main target for Ads used in antitumor therapies. Epithelial cells are defined by 

an apical-basal polarity that divides the plasma membrane into two specialized domains; the 

apical side that faces the lumen and the basolateral surface that connects to adjacent epithelial 

cells or to connective tissue. The apical-basal polarity of epithelial cells is reflected in the 

asymmetrical distribution of lipids and proteins, which is achieved by polarized trafficking and 

the establishment of intercellular junctional complexes (Turksen and Troy, 2004). A network of 

proteins in tight junctions seals the paracellular space near the apical surface, resulting in the 

epithelial cell layers assuming a barrier function (Madara, 1998). This permselective barrier 

function is based on occludins and claudins, two types of transmembrane proteins that have been 

identified among more than 40 proteins present within tight junctions (Furuse et al., 1993; 

Turksen and Troy, 2004). Cell adhesion between neighboring cells is initiated and maintained by 

components of adherens junctions, which are located just underneath tight junctions. In addition 

to these extracellular adhesive features, tight and adherens junctions are closely linked to the 

intracellular cytoskeleton and play important roles in cell signaling and in the regulation of gene 

transcription. Although cell membrane polarization in malignant epithelial cancer cells is often 

lost in multilayered tumors, other epithelial features, such as the presence of intercellular 

junctions, are maintained. Therefore, the epithelial phenotype of cancer cells and their ability to 

form a physical barrier represent mechanisms that restrict the access of drugs, antibodies, or 

immune cells to the tumor sites (Christiansen and Rajasekaran, 2004). Importantly, during the 
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progression toward metastatic competence, epithelial cells undergo an epithelial-mesenchymal 

transition (EMT), a cellular trans-differentiation program in which epithelial cells lose some of 

their characteristic features, such as tight and adherens junctions, and gain mesenchymal cell 

properties (Christiansen and Rajasekaran, 2006). 

A recent study identified a new obstacle for the Ad transduction of tumors that had not been 

previously observed. Using an epithelial ovarian cancer model, the targeted cancer cell itself, 

while being restricted to an epithelial phenotype, did not efficiently support the infection and 

replication of commonly used oncolytic Ads (targeted to CAR or CD46) (Strauss et al., 2009a) 

(Figure 5). It is worth noting that the majority of cells in xenograft tumors and in patient biopsies 

exhibit an epithelial phenotype. In this study, a variety of claudins and other epithelial 

intercellular junction proteins were demonstrated to exclude viral particles from the paracellular 

space and restrict the access of the particles to the primary Ad attachment receptors (CAR and 

CD46) or to cellular integrins. Viral receptors also colocalized with the tight junction protein 

claudin 7 in xenograft tumors and patient biopsies. Consequently, Ad spread was restricted to 

areas surrounding the injection needle track and to blood vessels in the tumor periphery following 

intratumoral and intravenous application, respectively. However, only a small proportion of 

xenograft tumor cells was able to adapt to tissue culture. Cells from tumor xenografts that were 

exclusively in an epithelial/mesenchymal hybrid stage, underwent EMT rapidly and generated a 

mesenchymal cell culture during passaging. This mesenchymal phenotype supported viral 

infection and resulted in efficient oncolysis (Strauss et al., 2011). Overall, these results 

demonstrated that even early passage, primary in vitro cultures do not adequately model the 

phenotype of epithelial cells in solid tumors. Moreover, these observations were reproduced using 

other epithelial cell lines, including cervical and colon cancer, where a similar discrepancy 

between in vivo and in vitro phenotypes was identified (Strauss et al., 2011). Given that the 

majority of the targeted Ad vectors have been selected and assessed in cultured tumor cells, it is 

unclear whether these vectors have been developed to target the correct phenotype, and, 

subsequently, whether they can infect and lyse the majority of cancer cells in a given epithelial 

tumor. Another important conclusion from this study was that mesenchymal tumors, such as 

sarcomas, may be a better target for the available oncolytic Ads than epithelial tumors. Notably, a 

recent study indicated that Ad5 vectors can also infect tumor cells via FX and cellular HSPGs 

(Gimenez-Alejandre et al., 2008). This pathway, however, is also a major mechanism for non-
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specific Ad5 sequestration to the liver, and research is underway to generate Ad5 vectors that are 

ablated for FX binding (Alba et al., 2009). However, it remains unclear whether avoiding FX-

mediated sequestration would compensate for the potential loss of tumor cell transduction 

through this pathway.  

The inaccessibility of Ad receptors in epithelial tumors is consistent with data from several 

earlier studies that used CAR-targeted Ad2 and Ad5 on human airway epithelial cells. 

Specifically, CAR was previously demonstrated to be an integral tight junction protein (Cohen et 

al., 2001), and apical Ad5 infection efficiency was limited on polarized epithelial cells (Walters et 

al., 1999). Similar to other tight junction proteins (e.g., claudins), CAR was demonstrated to form 

transcellular homodimers between neighboring cells (van Raaij et al., 2000), and overexpression 

of CAR led to increased transepithelial resistance (Cohen et al., 2001). The fiber protein of Ad2 

also exhibited a higher affinity for CAR than CAR displayed for itself and triggered CAR 

homodimer disruption (Freimuth et al., 1999). Walters et al demonstrated that following the 

initial infection of polarized airway epithelial layers with Ad2, the first-progeny virus were 

released to the basolateral surfaces, subsequently traveling through the paracellular space toward 

the apical side (Walters et al., 2002). The production of high levels of soluble Ad fiber protein 

and the release of defective viral particles resulted in disruption of CAR homodimers and a 

concomitant decrease in transepithelial resistance. This effect was also accompanied by a 

breakdown of tight junctions in general, which ultimately led to the release of functional viral 

particles to the apical surface. Although the investigators interpreted this effect as a consequence 

of the CAR-CAR disruption, the contribution of an intracellular signal triggered by fiber binding 

to CAR to the increased epithelial permeability could not be excluded. The possibility that the 

binding of viral pentons to integrins might have facilitated Ad movement across epithelial 

barriers was also suggested. However, the study left unclear how Ad2 can initiate an efficient 

infection on polarized airway epithelial layers (Goosney and Nemerow, 2003). 

Importantly, the loss of tight junctions is a hallmark of EMT, and EMT could be efficiently 

induced only by Ads targeting receptors other than CAR and CD46 when applied to the apical 

side of polarized epithelial ovarian cancer cell layers  (Strauss et al., 2009a). This result suggested 

superior infectious abilities for species AdB-2/3 that were targeted to receptor X on epithelial 

cells (i.e., Ad3, Ad7, Ad11 and Ad14). Experimental support that these Ad serotypes can induce 
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EMT-like processes (e.g., the removal of E-cadherin from the cell surface) (Strauss et al., 2011), 

provides a rationale for the construction of oncolytic viruses in the future based on these 

serotypes. It is expected that oncolytic viruses derived from AdB-2/3 are able to initially 

transduce more tumor cells and disseminate better in epithelial tumors than conventional Ad5-

based vectors. In the light of the concept of cancer stem cells, it might not be necessary to 

transduce 100% of tumor cells. It rather seems to be important to target the subfraction of 

malignant cells that drive tumor growth.    

 

 

Figure 5  Phenotypes of ovarian cancer cells and their susceptibility to oncolytic adenoviruses. (A) In situ, tumors or 
tumor xenografts consist almost exclusively of epithelial and epithelial/mesenchymal (E/M) hybrid cells, which are 
restricted to an epithelial phenotype. These cells are resistant to adenovirus (Ad) infection and oncolysis (shown by 
the red cross). (B) In vitro, E/M hybrid cells that adapt to tissue culture mostly exhibit a mesenchymal phenotype and 
generate mesenchymal cells during passaging. These cultures comprise cells susceptible to Ad infection and 
oncolysis (shown by the red tick). A minority of the E/M hybrid cells are epithelial-restricted and can be isolated and 
propagated by clonal cell expansion in vitro. (ECM extracellular matrix) 
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4.2.3 Cancer: Immunotherapy  

For many cancer gene therapists the concept of using the hosts own immune system to induce 

tumor specific immune responses in patients, by breaking tolerance, is very appealing but in order 

to achieve success an efficient method for delivery of tumor associated antigens (TAA) to antigen 

presenting cells (APCs) will be needed. Notably, the expression of TAAs in APCs ensures 

presentation in complex with MHCI molecules and efficient priming of CD8 T-cell responses. 

Previously, approaches that deliver TAAs to APCs, either ex vivo or in vivo have been utilized 

but to date no efficient TAA delivery system has been developed. Although Ad5 based vectors 

have been used as TAA delivery vehicles in cancer immunotherapy approaches the efficiency of 

gene transfer in human DCs has been poor. Several studies utilizing species B fiber chimeric Ads 

suggest they may be better vectors for delivery of TAAs in cancer immunotherapy treatments. 

The first study to investigate this tested a panel of chimeric Ads with alternate serotype fibers for 

infectivity of human DCs (Rea et al., 2001). Rea et al found that the most efficient vector was the 

Ad5/35 fiber chimera, which was 100-fold more potent than Ad5 for gene transfer and expression, 

and that Ad5/35 showed enhanced synergistic effects with other activation signals to trigger DC 

maturation. They also showed that DCs infected with an Ad5/35 vector expressing the melanoma 

associated TAA gp100 were able to generate gp100-specific CTL, and that in vivo delivery of the 

Ad5/35 vector enabled in vivo targeting of DCs. A subsequent study by the same group 

demonstrated that Ad5/35 was the best species B fiber chimeric Ad for infecting human DCs 

(Havenga et al., 2002). Further experiments from the same group then demonstrated that an Ad35 

vector was extremely efficient at infecting DCs without being hampered by pre-existing Ad5 

immunity. In an attempt to utilize Ad5/35 vectors for tumor immunotherapy vectors expressing 

the TAAs latent membrane antigens (LMP) 1 and 2 and CAMEL/NY-ESO-ORF2 have also been 

generated. In one study using LMP-2 as a TAA the vector Ad5/35-LMP-2 generated strong LMP-

specific CTL responses in mice, a human CTL response to LMP antigens with expanded T cells 

lysing autologous target cells sensitized with LMP-2 CTL epitopes, and was also successfully 

used to reverse the outgrowth of LMP-1-expressing tumors in mice (Duraiswamy et al., 2004). It 

is important to note however that the mouse studies should be repeated in CD46 transgenic 

animal. In another study the author’s show how peripheral blood can be used to produce DCs 

expressing LMP-2 after Ad5F35 transduction, and how an initial reactivation of LMP-2-specific 

CTLs can be followed by stimulation with lymphoblastoid cell lines overexpressing LMP-2 from 
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the same vector. Large numbers of LMP-2-specific cytotoxic lymphocytes are produced that 

contain both CD4+ and CD8+ T cells and recognize multiple LMP-2 epitopes (Bollard et al., 

2004). In further studies efficient generation of CAMEL/NY-ESO-ORF2 specific immune 

responses were seen following infection of human peripheral blood mononuclear cells (PBMCs) 

or DCs with an Ad5/35-CAMEL/NY-ESO-ORF2 vector (Slager et al., 2003) (Slager et al., 2004). 

The preliminary data suggests that species B fiber chimeric and species B Ad vectors will be 

useful vectors for tumor immunotherapy as TAA specific immune responses can be generated in 

vitro upon infection of human DCs. Until recently it was not possible to find out if anti tumor 

immune responses in vitro translate to anti tumor immune responses in vivo due to lack of a 

relevant mouse tumor model. Since CD46 transgenic mice can now be used for in vivo animal 

studies of species B fiber chimeric and species B Ad vectors it should be possible to test the 

immunotherapy potential of these vectors in a relevant mouse tumor model.  

4.2.4 Vaccination 

Ad5 based vectors have been extensively studied for use in vaccination against disease (For 

review see Tatsis and Ertl 2004). Although protective immunity can be conferred by Ad5 based 

vectors the ability of species B fiber chimeric Ads to infect APCs more efficiently has led to 

investigations into their use in vaccine development. Since Ad5/35 vectors showed the most 

efficient DC transduction studies have concentrated on their use as vaccines. In one report a fiber 

chimeric Ad5/35 vector was shown to infect cultured human DCs and circulating myeloid derived 

DCs with greater efficiency than Ad5, which resulted in increased T-cell activation ex vivo 

(Ophorst et al., 2004). In contrast Ad5/35 was less immunogenic in monkeys than Ad5. Also, 

mice with pre-existing Ad5-specific immunity showed no increase in anti-transgene immunity 

over Ad5. The investigators concluded that Ad5/35 is unable to circumvent anti-Ad5 immunity 

limiting its in vivo utility. In another study the efficacy of Ad5 and Ad35 vaccines expressing 

simian immunodeficiency virus (SIV) gag was assessed in mice with pre-existing anti-Ad5 

immunity (Barouch et al., 2004). Levels of anti-Ad5 immunity similar to those found in humans 

inhibited the immunogenicity of an Ad5-gag vector but not the cellular immune responses elicited 

by an Ad35-gag vector. Cross-reactive Ad5/Ad35-specific CD4(+) T lymphocytes were found, 

but they were unable to suppress vaccine immunogenicity. A further study investigated an Ad35 

vector for use in HIV vaccination (Kostense et al., 2004). Analysis of serum from European or 
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African patients revealed that seroprevalence to Ad35 was much lower than for Ad5, indicating 

Ad35 might be used as a vaccine vehicle. Overall these studies support the observations discussed 

in the cancer: immunotherapy section of this review and suggest that species B fiber chimeric and 

species B Ad vectors will be useful in the development of vaccines.  

4.2.5 Hematopoietic gene transfer 

Hematopoietic stem cells (HSCs) are an important target for gene therapy of diseases 

including sickle cell anemia and thalassemia. As efficient and stable transduction of HSCs is an 

important prerequisite for hematopoietic gene therapy, Ad5 based vectors are not considered 

good vectors for this purpose since they are unable to infect HSCs efficiently, due to low levels of 

CAR and integrin expression. In order to circumvent this problem studies have investigated the 

potential of utilizing B species Ad fibers to target Ad infection of HSCs. Following initial studies 

showing wild type B species Ad11p and Ad35 are able to bind human hematopoietic cells with 

high efficiency (Shayakhmetov et al., 2000) (Segerman et al., 2000; Stecher et al., 2001), the 

utility of species B fiber chimeric Ads for hematopoietic gene transfer was subsequently tested. In 

a pilot study Shayakhmetov et al demonstrated that a fiber chimeric Ad5/35 vector was able to 

infect umbilical cord blood (UCB) derived cells with potential stem cell capacity more efficiently 

than an Ad5 vector (Shayakhmetov et al., 2000). Both CD34(+) and CD34(+) c-Kit(+) cells were 

infected more readily with the Ad5/35 vector. In a subsequent study the same authors were able 

to demonstrate delivery of γ-globin to hematopoietic cells with an integrating Ad5/35 vector 

deleted of all viral genes (Shayakhmetov et al., 2002a). In another study the transduction of 

undifferentiated human hematopoietic cells by species B fiber chimeric Ads was analyzed 

(Knaan-Shanzer et al., 2001). Efficient transduction of UCB derived monocytes, granulocytes, 

and undifferentiated CD34(+) CD33(-) CD38(-) CD71(-) cells was seen with Ad5/35 and Ad5/50 

chimeras showing the best levels of infection. In a study by Stecher et al efficient infection of 

PBMC derived CD34(+) cells was seen with an Ad5/11 vector (Stecher et al., 2001). A study by 

Yotnda et al demonstrated efficient infection of CD34(+) and CD34(-)lin(-) hematopoietic 

progenitor cells and Hoechst negative 'side population' (SP) cells of bone marrow with Ad5/35 

but not Ad5 based vectors (Yotnda et al., 2001). In an analysis of transplantation efficiency one 

study demonstrated that CD34(+) cells infected with an Ad5/35 vector and sorted for GFP 

expression were able to consistently reconstitute bone marrow in the NOD/SCID mouse with 
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multilineage differentiation (Nilsson et al., 2004a). The same group was also able to demonstrate 

highly efficient infection of primary chronic myeloid leukemic (CML) cells and chronic 

lymphocytic leukemia (CLL) B cells with an Ad5/35 vector (Nilsson et al., 2004b). More recently 

a helper-dependent (HD) fiber chimeric Ad5/35 vector was developed which showed enhanced 

infection of erythroid K562 cells (Balamotis et al., 2004). Finally, a study utilizing an Ad35 

vector was able to demonstrate that CD34(+) cells were as infectable with an Ad35 vector as with 

an Ad5/35 vector (Sakurai et al., 2003a). When these observations are looked at together it 

suggests that Ad vectors targeted through B species fibers are good candidates for delivery of 

therapeutic genes in hematopoietic gene therapy, particularly if these vectors are harnessed with 

an integration mechanism (for example by using phage integrases or transposons). 

4.2.6 Other therapies 

In addition to the studies mentioned above species B fiber chimeric Ads have shown the 

ability to infect other cell types and organs implicated in disease. One such example is 

synoviocytes which have previously been utilized for local delivery of anti-inflammatory proteins 

in therapies for arthritis, and are infected inefficiently by Ad5 vectors. In a study utilizing several 

fiber chimeric Ads an Ad5/16 vector was able to transduce synoviocytes more efficiently than 

any other Ad vector (Goossens et al., 2001). Another area of interest is cardiovascular disease 

where 2 studies have investigated the ability of fiber chimeric Ads to infect cell types targeted in 

vascular gene therapy. In the first study an Ad5/16 vector was found to infect primate 

cardiovascular cells and tissues more efficiently than other Ad vectors tested (Havenga et al., 

2001). Similarly efficient infection was seen in the second study using an Ad5/3 vector to infect 

human smooth muscle cells from the aorta, coronary, renal, popliteal and pulmonary arteries (Su 

et al., 2001). Ad5/3 was also able to transduce fresh human arterial tissues. Such a vector might 

be of use in treating patients with cardiovascular disease - such as coronary artery restenosis 

following angioplasty. A further area of interest is osteogenesis where studies have investigated 

the use of B species fiber chimeric Ads to induce bone formation. In one study an Ad5/35 vector 

was used to deliver the human bone morphogenetic 2 (BMP2) gene to human bone marrow 

derived mesenchymal stem cells (hBM-MSCs) (Olmsted-Davis et al., 2002). These transduced 

cells were then used in an in vivo heterotopic bone formation assay and mineralized bone was 

only radiologically identified in muscle that received hBM-MSCs infected with the Ad5/35 
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vector. In a second study the same group was able to demonstrate heterotopic bone formation in 

the same assay using hBM-MSCs, primary human skin fibroblasts (SFs), or a human diploid fetal 

lung cell line (MRC-5), infected with an Ad5/35-BMP2, but not Ad5-BMP2, vector (Gugala et al., 

2003). Considering recent reports that MSC home to tumors upon re-transplantation (Studeny et 

al., 2002) an application of B-species fiber containing vectors in a combined gene/cell tumor 

therapy approach could also be envisioned. An additional organ of interest has been the eye 

where Ad5/3 and Ad5/35 vectors have been used for transduction experiments.  A study by Von 

Seggern et al showed that an Ad5/3 vector selectively transduced cilary bodies after intraocular 

injection of mice, which is of interest for treating diseases like glaucoma (Von Seggern et al., 

2003). A study by Mallam et al showed that human retinoblastoma cells could be efficiently 

infected by an Ad5/35 vector in vitro  (Mallam et al., 2004). The same study showed that mice 

given a single subretinal injection of Ad5/35-GFP showed transduction of cells in all layers of the 

retina especially photoreceptors and occasional neuronal cells, and Muller cells as well as retinal 

pigment epithelial cells. Mice given Ad5-GFP only showed transduction of retinal pigment 

epithelial cells and occasional photoreceptors and Muller cells. These studies demonstrate how 

species B fiber chimeric or species B Ad vectors will be useful tools in developing treatment of 

many diseases. 

4.2.7 Clinical use of species B Ads 

A number of publications report the clinical use of species B Ads or Ads containing species B 

Ad fibers. One groups of studies performed at Baylor Medical Center used Ad5/35 vectors to 

modify patient T-cells ex vivo to express CMV and EBV antigens.   The authors showed that 

adoptive immunotherapy with these peripheral blood-derived T lymphocytes effectively 

prevented viral disease after conventional stem cell transplantation (Hanley et al., 2009; 

Knippertz et al., 2009; Leen et al., 2009; Leen et al., 2006; Micklethwaite et al., 2010). Another 

group of studies performed at the University of Helsinki used Ad3-derived viruses or Ad5 viruses 

containing Ad3 fiber for tumor therapy. These preliminary phase I studies showed that 

intratumoral, intracavitary and intravenous injection of Ad5/3 or Ad3 oncolytic vectors into 

humans was safe and might have exerted anti-tumor efficacy (Escutenaire et al., 2011; Hemminki 

et al., 2010; Koski et al., 2010; Pesonen et al., 2010). 
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5 Obstacles in mAb therapy of cancer  

5.1 Obstacles in rituximab therapy  

Monoclonal antibodies (mAbs) has emerged as a class of novel oncology therapeutics. To 

date, there are 27 marketed therapeutic mAbs, including 10 specific for malignant disease, and 

there are hundreds of mAbs currently in clinical development.  Among the FDA-approved mAbs 

for hematological malignancies, rituximab (Mabthera, Rituxan) is regarded as one the first 

successful targeted treatments for cancer. Rituximab is a humanized unconjugated IgG1 mAb 

against CD20. CD20 is expressed on the surface of normal B-lymphocytes and B-cell lymphoma 

but not on hematopoietic stem cells, pro-B cells, and plasma cells. Rituximab is currently used for 

the treatment of B-cell non-Hodgkins lymphoma (NHL), mantle cell lymphoma, hairy cell 

leukemia, chronic lymphocytic leukemia. The most common B-cell lymphoid cancer is NHL, 

with an estimated 66,120 new cases of B-cell NHL diagnosed in 2008 and an estimated 19,160 

deaths from this disease occurred last year in the United States 

(http://www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf). Notably, since the 

introduction of rituximab therapy for B-cell NHL, the 5-year survival rate increased only 16%, 

from 48% (1975-1977) to 64% (1996-2003), indicating that many patients are or become resistant 

to rituximab treatment.   

Therapeutic mAbs confer killing of tumor cells by one or more mechanisms, including 

blocking and/or deregulating vital survival pathways and stimulating immune effector 

mechanisms, i.e., antibody-dependent cell mediated cytotoxicity (ADCC) and complement-

dependent cytotoxicity (CDC). A series of studies have shown that rituximab is very effective in 

inducing CDC on B-cell lymphoma cells (Bellosillo et al., 2001; Di Gaetano et al., 2003; Golay 

et al., 2006; Harjunpaa et al., 2000; Reff et al., 1994; van der Kolk et al., 2001). The therapeutic 

potential of rituximab is significantly limited due to the ability of hematopoietic malignancies to 

block CDC by the over-expression of membrane complement regulatory proteins, such as CD46, 

CD55, and CD59 (Fishelson et al., 2003; Hara et al., 1992a; Ong et al., 2006). Several preclinical 

studies have shown that tumor cells can be sensitized to rituxmab induced CDC by CD55 and/or 

CD59 blocking antibodies (Guo et al., 2008; Ziller et al., 2005). A similar effect was seen with 

anti-sense oligonucleotides against CD55 and CD46, whereby these studies showed a 

predominant role of CD46 in protection of tumor cells against CDC (Zell et al., 2007). In addition 
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to blocking complement activation, CD55 and CD59 are also involved in T-cell activation 

(Deckert et al., 1992; Hamann et al., 1998). This might give tumor cells that lost these two 

proteins a selective advantage in escaping immune-mediated destruction and might explain why 

CD55 and CD59 are often absent on tumors (Hara et al., 1992a). Therefore,  it is generally 

thought that CD46 alone can protect tumor cells from complement lysis (Madjd et al., 2005). 

Because of this as well as the observation that CD46 is uniformly expressed at high levels on 

many malignancies (Rushmere et al., 2004; Surowiak et al., 2006; Varela et al., 2008) (Hara et al., 

1992b; Kinugasa et al., 1999b; Murray et al., 2000a; Thorsteinsson et al., 1998), including 

hematological malignancies (Hara et al., 1992a) (Ong et al., 2006),  our strategy to sensitize 

tumor cells to mAbs is centered around CD46.  

CD46, a membrane-linked glycoprotein that is expressed on all cells except red blood cells, 

attaches to complement fragments C3b and C4b that are bound to host cells and then serves as a 

cofactor for their targeted destruction by the plasma serine protease Factor I [reviewed in 

(Liszewski et al., 1996)]. CD46 is also a receptor for a number of pathogens, including measles 

virus, Neisseria gonorrhea and N. meningitides, group A streptococcus, and human herpes virus 6. 

Our lab and others reported that CD46 is a high-affinity receptor for a series of human Ad 

serotypes including Ad35 (Gaggar et al., 2003a; Sirena et al., 2004; Tuve et al., 2006). Ad35 

engages CD46 via residues in the C-terminal trimeric fiber knob domain (Gaggar et al., 2003a). 

Binding of Measles virus (MV) or Ad35 to CD46 will lead to the downregulation of CD46 

expression on the cell surface (Gill et al., 2003; Gill et al., 2005; Russell, 2004; Sakurai et al., 

2007). It has been suggested that CD46 maybe internalized with virus without degradation after 

Ad35 infection, because of surface expression levels of CD46 are reduced but the total cellular 

protein levels of CD46 are not significantly decreased (Sakurai et al., 2007). 

5.2 Obstacles in  trastuzumab and cetuximab therapy  

Trastuzumab targets the human epidermal growth factor receptor 2 (Her2/ ErbB-2). The 

receptor for cetuximab is the human epidermal growth factor receptor 1 (Her1/ErbB-1). Both 

receptors belong to the family of tyrosine kinase receptors and initiate signaling through several 

pathways which promote cell survival and proliferation (Harari et al., 2007). Trastuzumab is used 

as a first line therapy in Her2/neu positive breast cancer patients and has also been approved for 

metastatic Her2/neu positive gastric cancer. Current FDA-approved indications for cetuximab 
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include colorectal, head and neck, lung, and pancreatic cancer (Wheeler et al., 2010). Most 

patients with early stage breast or colon cancer have a measurable tumor response to trastuzumab 

and cetuximab therapy (in combination with chemotherapy). However, in patients with advanced 

or recurrent disease, the response rate to these mAbs is only 8% to 10% (Adams and Weiner, 

2005).  

The mechanisms of trastuzumab and cetuximab action include the activation of antibody-

dependent or complement-dependent cytotoxicity, and interference with tyrosine kinase receptor 

signaling that is required for tumor cell survival (Wheeler et al., 2010). A unifying aspect among 

these mechanisms is that tumor cell growth inhibition is dependent on the binding of mAbs to 

their corresponding receptors. Therefore, molecules that prevent access and binding to the 

receptor, either by physically inhibiting intratumoral transport from blood vessels to malignant 

cells or masking of receptors, are predicted to block trastuzumab and cetuximab activity (Lesniak 

et al., 2009). Among these molecules are tumor stroma proteins such as collagen or laminin (Li et 

al., 2004). In a recent study, we demonstrated that transient degradation of these stroma proteins 

significantly improved trastuzumab therapy (Beyer et al., 2010).  

In addition to obstacles formed by tumor stroma proteins, the epithelial phenotype of cancer 

cells also creates physical barriers to cancer therapy (Strauss and Lieber, 2009; Strauss et al., 

2009b).  Several studies demonstrated that the expression or upregulation of epithelial proteins 

correlated with increased resistance to trastuzumab (Fessler et al., 2009) and cetuximab 

(Oliveras-Ferraros et al., 2011) therapy of breast and colorectal cancer, respectively. Epithelial 

cells maintain several intercellular junctions (tight junctions, adherens junctions, gap junctions, 

and desmosomes), a feature which is often conserved in epithelial cancers in situ and in cancer 

cell lines (Turley et al., 2008). Epithelial junctions are composed of adhesive dimers consisting of 

cadherin molecules derived from two neighboring cells (Koeser et al., 2003). Desmogleins 1, 2, 

and 3 (DSG1-3) and desmocollins 1, 2, and 3 (DSC1-3) are subclasses of cadherins. DSC2 and 

DSG2 are widely expressed and are found together in desmosomes of the basal layer of epithelial 

cells. The cytoplasmic tails of the desmosomal cadherins link the plasma membrane to the 

cytoskeleton through a complex of proteins, which include plakoglobin, desmoplakin, and 

plakophilins. Desmoglein 2 (DSG2) is overexpressed in a series of epithelial malignancies, 

including breast cancer (Wang et al., 2011), ovarian cancer (Wang et al., 2011), lung cancer 
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(Wang et al., 2011), gastric cancer (Biedermann et al., 2005), squamous cell carcinomas (Harada 

et al., 1996), melanoma (Schmitt et al., 2007), metastatic prostate cancer (Trojan et al., 2005), and 

bladder cancer (Abbod et al., 2009). In contrast to normal epithelial tissues, epithelial tumors lack 

strict cell polarization, implying that a fraction of DSG2 molecules are not trapped in tight 

junctions (Ines Beyer, manuscript submitted). We speculate that this allows for initial entry of 

DSG2-binding viruses into the tumors. The production of PdDd and progeny virus then triggers 

further junction opening in a positive feed-forward manner, and lateral spread of virus.  
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AIMS OF THE STUDY 

 

1. To identify the CD46 binding sites within the Ad35 fiber knob using an expression library 

of Ad35 knobs with random mutations. Additional methods to accomplish this aim 

include SPR and competition binding analysis, as well as X-ray crystallography (I). 

 

2. To study the in vitro and in vivo properties of Ad vectors with increased affinity to CD46. 

This involves the construction of Ad vectors containing Ad35 knob mutants with higher 

affinity to CD46 and testing them on cell lines and in mouse models with pre-established 

CD46high liver metastases (II). 

 

3. To study the receptor usage of a newly emergent Ad14a by competition analysis with 

radio-labeled viruses (III).  

 

4.  To study whether a high affinity Ad35 fiber knob can enhance the anticancer efficacy of 

monoclonal antibodies. Methods to address this aim include complement assays in vitro 

on lymphoma cell lines and safety and efficacy studies in preclinical models of lymphoma 

(IV).  

 

5. To identify the receptor for Ad3, Ad7, Ad11, and Ad14. Potential receptor candidates will 

be identified using a new Western blot technique with Ad3 particles as a probe and 

subsequent mass-spectrometry. The role of the identified proteins as Ad3 receptor(s) will 

be validated by gain-of-function studies using ectopic expression of corresponding 

cDNAs in cells that do not bind Ad3, and by loss-of-function studies using siRNA (V).  

 

6. To study structural details of Ad3 virus interaction with DSG2 (VI).  

 

7. To study the functional consequences of Ad3-DSG2 interaction (V, VI).  
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MATERIALS AND METHODS 

1 Cultured Cells and culture media 

The listed cells (Table 2) were used throughout this thesis. All media and tissue culture 

supplements were obtained from Gibco BRL, Gaithersburg, MD unless indicated. All cell lines 

were cultured in the recommended growth medium supplemented with 10% FCS, 2mM L-

glutamine, and penicillin-streptomycin solution. All cells were cultured at 37℃, 5% CO2, and 95% 

humidity in cell culture incubators (Thermo Scientific).  

Table2 : Cells used in this study 

Cell line Origin Source Study 

HEK-293 Transformed embryonic kidney cells Microbix1 I, II, III, V, VI 

HeLa Human cervical adenocarcinoma ATCC 2 CCL-2 I, II, III, IV, V, VI 

A549 Human lung adenocarcinoma  ATCC CCL-185 III,  

K562 Human leukemia  ATCC CCL-243 II, V 

Ramos Burkitt's lymphoma ATCC CRL-1596 II, V 

CHO-CD46 CHO cells expressing human CD46 Prof. J. Atkinson3 II,  

MO7e Human erythroleukemia Prof. L. Pegoraro4 II,  

Raji Burkitt's lymphoma ATCC CCL-86 IV, V 

Mino B cell non-Hodgkin's lymphoma ATCC CRL-3000 IV, 

Farage Non-Hodgkin's B cell lymphoma ATCC CRL-2630 IV, 

BJAB EBV-negative B cell lymphoma  Prof. E. A. Clark5 IV, V 

U937 Histiocytic lymphoma ATCC CRL-1593.2 V 

Karpas-299 Human T cell lymphoma DSMZ ACC31 IV, 

BT474 Ductal mammary carcinoma ATCC HTB-20 V 

T84 Human colon carcinoma ATCC CCL-248 V, VI 

CaCO-2 Human epithelial colorectal adenocarcinoma  ATCC HTB-37 V 

1Microbix (Toronto, Canada) 
2American type culture collection (Manassas, VA, USA) 
3Washington University, St.Louis 
4 Istituto di Medicina Interna, Università de Torino, Italy. 
5University of Washinton, Seattle 
 

2 Proteins and antibodies 
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Recombinant human Desmoglein-1 (DSG1) (V) and Desmoglein-2 (DSG2) (V, VI) protein 

were from Leinco Technologies, Inc. (St. Louis, MO). Recombinant Ad3 penton-dodecahedra 

(PtDd) (V, VI) and base dodecahedra (BsDd) (V) were produced in insect cells and purified as 

described previously (Fender et al., 1997).  Rituximab (IV) was from Genentech Inc. Daclizumab 

(IV) was from Roche Pharmaceuticals. Polyclonal rabbit antibodies against purified recombinant 

Ad3K and Ad35K++ knob (V) were produced by pickCell Laboratories. Anti-DSG2 mAbs 20G1, 

7H9, 13B11, 10D2 and 8E5 (V) were purified from hybridoma culture supernatant using HiTrap 

protein G (GE Healthcare, Piscataway, NJ) following the manufacturer’s protocol. Table 3 listed 

some antibodies used in this thesis. 

Table 3 : Antibodies used in this study 

Antibody name/clone Source Study 

Mouse anti-human CD46 antibody (clone J 4.48) Fitzgerald  I, II, III 

Goat anti –mouse IgG HRP BD Pharmingen I, II, III, V, VI 

Rabbit polyclonal anti-His6 HRP Abcam I, II 

Anti-human CD46 (clone MEM-258) Serotec  II, III, IV 

PE-conjugated anti-human CD46 (clone E4.3) Santa Cruz Biotech. II,  IV 

Rabbit polyclonal anti-cathepsin B antibody  Oncogene II 

PE-mouse  anti-human CD20( clone 2H7) BD Pharmingen IV 

FITC-mouse mAb anti-CD46 antibody BD Pharmingen IV, V 

FITC-Rabbit anti-E-cadherin BD Biosciences V 

Polyclonal goat anti-DSG2 R&D systems V, VI 

Mouse anti-DSG2 (clone 6D8) Hycult Biotechnology V, VI 

Mouse anti –DSG2 (clone AH12.2) Santa Cruz Biotech. V 

Rabbit anti-Claudin 7 Abcam V, VI 

FITC-Goat anti-adenovirus Millipore V, VI 

Monoclonal anti-6xHis(MCA1396) Serotec VI 

3 Oligonucleotides 

All Oligonucleotides were purchased as lyophilized, salt-free stocks from Integrated DNA 

Technologies (IDT). The following table (Table 4) lists oligonucleotides used for generating 

recombinant Ad fiber proteins. The PCR products were then cloned into the E.coli expression 

vector pQE30 or pQE100.  
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Table 4: Oligonucleotides for Ad fiber proteins 

Primer Direction Sequence Study 

Ad35 knob Forward 5’CATCACGGATCCGGTGACATTTGTATAAAGGATAGT3’ I, II, IV 

Ad35 knob Reverse 5’AGCTAATTAAGCTTAGTTGTCGTCTTCTGTA3’ I, II, IV 

Ad14/Ad14a 
knob 

Forward 5’CAGACTGGATCCAATTCAAACAACATTTGCATTGATGACAA
TATTAACACC3’ 

III 

Ad14/Ad14a 
knob 

Reverse 5’AGACTAAGCTTTCAGTCGTCTTCTCTGATGTAGTAAAAGGT
AAATGGGGAGGTAACTAGG3’ 

III 

Ad3 S6/Kn Forward 5’CTGATGAATTCTTGATCAGGGGTTTTAAGTCTTAAATGTGTT
AATCC3’ 

VI 

Ad3 S6/Kn Reverse 5’AGCTAATTAAGCTTAGTCATCTTCTCTAATATAGG3’ VI 

Ad3 S5/Kn Forward 5’ TTACTGATGAATTCTTGATCA 
GGCTCCCTCCAACTTAAAGTGGGAAGTGGT3’ 

VI 

Ad3 S5/Kn Reverse 5’AGCTAATTAAGCTTAGTCATCTTCTCTAATATAGG3’ VI 

Ad3 S4/Kn Forward 5’TTACTGATGAATTCTGGATCC 
TTAGAAGAAAACATCAAAGTTAACAC3’ 

VI 

Ad3 S4/Kn Reverse 5’AGCTAATTAAGCTTAGTCATCTTCTCTAATATAGG3’ VI 

Ad3 S3/Kn Forward 5’TTACTGATGAATTCTGGATCC 
CATTCTATAAATTTACCAATAGGAAACGGT3’ 

VI 

Ad3 S3/Kn Reverse 5’AGCTAATTAAGCTTAGTCATCTTCTCTAATATAGG3’ VI 

Ad3 S2/Kn Forward 5’TTACTGATGAATTCTGGATCC 
AACAAACTTTGCAGTAAACTCGGAAATGG3’ 

VI 

Ad3 S2/Kn Reverse 5’AGCTAATTAAGCTTAGTCATCTTCTCTAATATAGG3’ VI 

Ad3knob 
( S/Kn) 

Forward 5’ACCATCACGGATCCAATTCTATTGCACTGAA3’ V, VI 

Ad3 knob 
( S/Kn) 

Reverse 5’AGCTAATTAAGCTTAGTCATCTTCTCTAATATAGG3’ V, VI 

Ad3 
K(E)/S2/Kn 

Forward 5’ATCTAGGATCCGGTGGCGGTTCTGGCGGTGGCTCCGGTGGC
GGTTCTAACAAACTTTGCAGTAAACTCGGAAATGGTCTTACA
TTTGACT3’ 

VI 

Ad3 
K(E)/S2/Kn 

Reverse 5’AGCTAATTAAGCTTAGTCATCTTCTCTAATATAGG3’ VI 

Ad3 
K(E)/S/Kn 

Forward 5’TTATTGCTACTGGATCCGGTGGCGGTTCTGGCGGTGGCTCC
GGTGGCGGTTCTAATTCTATTGCACTGAAAAATAACAC3’ 

VI 

Ad3 
K(E)/S/Kn 

Reverse 5’AGCTAATTAAGCTTAGTCATCTTCTCTAATATAGG3’ VI 

pQE30-Kcoil Forward 5’GATCAAAGGTAAGCGCTTTAAAGGAGAAAGTTTCAGCACTT
AAAGAAAAGGTATCCGCTTTAAAGGAGAAAGTTTCAGCACTT
AAAGAAAAAGTGTCCGCTCTGAAAGAAG3’ 

VI 

pQE30-Kcoil Reverse 5’GATCCTTCTTTCAGAGCGGACACTTTTTCTTTAAGTGCTGAA
ACTTTCTCCTTTAAAGCGGATACCTTTTCTTTAAGTGCTGAAA
CTTTCTCCTTTAAAGCGCTTACCTTT3’ 

VI 

pQE30-Ecoil Forward 5’GATCAGAGGTAAGCGCTTTAGAGAAAGAAGTTTCAGCACTT
GAGAAGGAGGTATCCGCTTTAGAGAAAGAAGTTTCAGCACTT
GAGAAGGAAGTGTCCGCTCTGGAAAAAG3’ 

VI 

pQE30-Ecoil Reverse 5’GATCCTTTTTCCAGAGCGGACACTTCCTTCTCAAGTGCTGAA
ACTTCTTTCTCTAAAGCGGATACCTCCTTCTCAAGTGCTGAAA
CTTCTTTCTCTAAAGCGCTTACCTCT3’ 

VI 
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4 Adenoviruses 

Wt Ad3 (GB strain) (IV, V, VI), Ad7p (Gomen strain) (V), Ad11p (Slobitski strain) (V), 

Ad14 (DeWit strain) (IV, V) and Ad35 (Holden strain) (I, II, III, V) were obtained from the 

American Type Culture Collection (ATCC). Ad14a (IV, V) is a new genomic variant of Ad14, 

provided by the Center for Disease Control and Prevention (Atlanta, GA). wtAd were propagated 

in HeLa cells or A549 cells, and purified by standard CsCl gradient methods. 

All Ad5-based GFP vectors contained a 2.3-kb, cytomegalovirus (CMV) promoter-driven 

enhanced green fluorescent protein (EGFP) gene (derived from pEGFP-1 (Clontech, Palo Alto, 

CA) inserted into the E3 region of Ad genome. Chimeric Ad5/35 vector was generated earlier and 

described elsewhere (Shayakhmetov et al., 2000). To generate Ad5/35+ and Ad5/35++ (II), the 

corresponding wt Ad35 fiber knob of Ad5/35 was replaced by knob mutant (Asn217Asp, 

Thr245Pro, and Ile256Leu) and knob mutant (Asp207Gly and Thr245Ala) respectively. Ad5/3L-

GFP and Ad5/3S-GFP (VI) vectors were constructed in this study. These Ad5-based vectors are 

deleted for E1/E3 and contain the Ad3 fiber knob (Ad5/3L-GFP) or the Ad3 fiber shaft and fiber 

knob (Ad5/3S-GFP). 

Ad3-GFP (V, VI) is a wt Ad3-based vector, the region from nucleotide 29892 to 30947 of 

Ad3 genome (Genbank accession no. DQ086466) was replaced by a ~2kb CMV-GFP-pA 

transgene cassette, which was in the E3 region in front of the fiber gene. The recombinant Ad3-

GFP viral genome was released by specific restriction enzyme digestion and transfected into 293 

cells using a standard calcium phosphate method. After a first round of rescuing on 293 cells, 

HeLa cells were infected with the cell lysate containing Ad3-GFP virus for further virus 

propagation.  

5 In vitro studies with adenoviruses 

5.1 Production of recombinant fiber protein (I - VI) 

To produce recombinant Ad fiber proteins, the E.coli expression vectors pQE30 or pQE100 

from Qiagen were used. Protein expression was induced for 5 hours by addition of IPTG to a 

final concentration of 1mM. Cells were harvested and cell pellets were re-suspended in lysis 

buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole), followed by incubation with 
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1mg/ml lysozyme for 30 minutes on ice and subsequent sonication. Cellular debris was removed 

by centrifugation and the supernatant was incubated with Ni-NTA agarose at 4oC for 3 hours. 

Beads were washed with 50 mM NaH2PO4, 300 mM NaCl, 60 mM imidazole and 20% glycerol, 

and recombinant knob protein was eluted with 50 mM NaH2PO4, 300 mM NaCl, 250 mM 

imidazole and 20% glycerol. The fiber knob proteins were dialyzed against 20mM Hepes, 200 

mM NaCl, 17% glycerol, and stored at - 80℃ after aliquoting. 

5.2 Ad labeling with [methyl-3H] thymidine (I, II, III, V) 

To label Ads with [methyl-3H]thymidine, 5 × 107 HeLa or 293 cells were grown in 175-cm2 

flasks with 15 ml of DMEM-10% FCS and infected with wt Ad at an MOI of 50 or higher, 1 mCi 

of [methyl-3H]thymidine (Amersham, Arlington Heights, Ill.) was added to the medium, and cells 

were further incubated at 37°C until complete cytopathic effect was observed. Then cells were 

harvested, pelleted, washed once with cold phosphate-buffered saline (PBS), and resuspended in 

5 ml of PBS. Virus was released from the cells by four freeze-thaw cycles. Cell debris was 

removed by centrifugation, and viral material was subjected to ultracentrifugation in CsCl 

gradients and subsequent dialysis as previously described. Virus purification and dialysis removed 

unincorporated radioactivity. Ad particle concentrations were determined spectrophotometrically 

by measuring the optical density at 260 nm (OD260), using the extinction coefficient for wt Ad5, 

260 = 9.09 × 10-13 OD ml cm virion-1. The virion-specific radioactivity was measured by a liquid 

scintillation counter and was always in the range of 10-5 to 10-4 cpm per virion. 

5.3 Competition attachment studies (I, II, III, V) 

Adherent cells were detached from culture dishes by incubation with Versene and washed 

with PBS. A total of 1.8x105 cells / tube were resuspended in 100 μl of ice-cold adhesion buffer 

(DMEM supplemented with 2 mM MgCl2, 1%FCS, and 20 mM HEPES) containing 3H-labeled 

Ad at an MOI of 8,000 VP per cell. After 1 h of incubation at 4°C, cells were pelleted and 

washed twice with 0.5 ml of ice-cold wash-buffer (PBS, 1%FBS). After the last wash, the 

supernatant was removed and the cell-associated radioactivity was determined with a scintillation 

counter. The number of viral particles (VP) bound per cell was calculated by using the virion 

specific radioactivity and the number of cells. For competition studies, the competitors (fiber 

knobs or antibodies) were allowed to attach for 60 min at 4°C in attachment buffer and non-
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bound knob removed by washing cells twice with PBS before cells were resuspended in 

attachment buffer containing 3H-labeled Ad.  

5.4 Ad labeling with Cy3 ( II,  IV, V, VI) 

To label Ad capsids with Cy3 (red) fluorochrome (Cy3 Bifunctional Reactive Dyes; 

Amersham Pharmacia Biotech, United Kingdom), we used the manufacturer's protocol without 

modifications. The ratio between the volumes of Ad and labeling reagent was 1/9. Labeled viruses 

were dialyzed against 10 mM Tris-HCl, pH 7.5, 10 mM MgCl2, and 10% glycerol solution at 4°C 

overnight to remove unincorporated chemicals. The concentrations of dye-labeled viruses were 

determined by quantitative Southern blotting. 

5.5 In vitro complement-mediated lysis assays (IV) 

5 x 104 lymphoma cells/well were plated in triplicate in 96 well plates with RPMI 

complemented with 10% heat-inactivated FBS, pre-incubated with PBS, 25µg/ml CD46 antibody 

(MEM-258, Serotec), or 25g/ml Ad35 knob proteins. Eight hours later, 15µg/ml Rituximab was 

added to cells and incubated at room temperature for 30 minutes. NHS was added to a final 

dilution of 1:5 and cells were incubated at 37oC for another 3 hours. Viable cells in each well 

were counted after trypan blue staining. Each sample was in triplicate and each well was counted 

four times. Three independent studies were performed. 

 5.6 Cell membrane protein preparation (V) 

Total cellular membrane proteins were prepared as described earlier (Gaggar et al., 2007). 

Briefly, attached cells were detached with versene, washed 2 times with ice-cold PBS, cell pellets 

were then re-suspended in ice-cold homogenization buffer (20 mM Hepes, 1.5 mM MgCl2, 5 mM 

KCl, 150 mM NaCl, 15% glycerol, 0.25 M sucrose, 0.1 mM EDTA, 2 mM β-mercaptoethanol, 1 

mM PMSF). After disruption with a 3 ml syringe and 21G needle, the lysate was centrifuged at 

400 x g for 15 minutes. The supernatant was diluted with 2 times volume of PBS and centrifuged 

at 35,000 rpm for 1 hour in a Beckman ultracentrifuge. The membrane protein pellet was 

resuspended in solubilization buffer (50 mM Hepes, 5 mM MgCl2, 5 mM KCl, 150 mM NaCl, 

15% glycerol, 0.25 M sucrose, 0.1 mM EDTA, 2 mM β-mercaptoethanol, 1 mM PMSF, 0.5% 

detergent. The use of Brij96V( Fluka, St Louis, MO) as a detergent was intrumental as 
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desmosomal proteins are highly insoluble. 

 5.7 Mass spectroscopy analysis of proteins (V) 

The specific protein bands were cut from SDS-PAGE and digested with Trypsin Gold 

(Promega) according to manufacturer’s protocol. The samples were processed on a Finnigan LCQ 

LC/MS (Finnigan) and data were processed using Sequest (M. Hackett, University of 

Washington). 

 5.8 Surface plasmon resonance (SPR) analyses (I, II, IV, V, VI) 

All analyses were carried out on a BIAcore 3000 instrument. For biacore analysis of the 

recombinant knob-CD46 interaction, Ad35 knob and soluble CD46 peptide (sCD46-P), 

containing the knob interacting CD46 domains SCR-1 and SCR-2 were diluted to no less than 20 

nM in 20 mM sodium acetate (pH 4). Ad35 knob protein was immobilized on CM5 chips and 

varying concentrations of sCD46-P were injected over the activated surface until the desired 

surface densities were achieved. Activated, coupled surfaces were then quenched of reactive sites 

with 1 M ethanolamine (pH 8) for 3-5 min. All data was collected at 1Hz using two replicate 

injections for each concentration of analyte. Flow rates during the experiment were maintained at 

50 l/min and HBSEP running buffer was supplemented with 0.1 mg/ml bovine serum albumin 

(BSA) to block the nonspecific binding. To completely remove remaining amounts of sCD46-P 

bound to the sensor chip surface, regenerations were performed by double 30 seconds injections 

of 20 mM sodium acetate solution (pH 4). 

For biacore analysis of the DSG2 interaction, HBS-N (GE-Healthcare, Pittsburgh, PA) 

supplemented with 2 mM CaCl2 was used as running buffer in all experiments at a flowrate of 5 

ul min-1. Immobilisation on CM4 sensorchip (BIAcore) was performed using DSG2 (Leinco 

Technology, Inc) at 0.1 mg ml-1 diluted in 10 mM sodium acetate buffer pH4.2 injected for 10 

minutes on EDC-NHS activated flow-cell. A control flow-cell was activated by EDC-NHS and 

inactivated by ethanolamine. Different concentration of PtDd, BsDd, Ad3 fiber knobs were 

injected for 5 minutes followed by 3 minutes dissociation time and the signal was automatically 

subtracted from the background of the ethanolamine deactivated EDC-NHS flow cell. For the Ad 
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binding experiments, a similar protocol was used with the injection of wt Ad2, Ad3 and Ad5 at 

5x 109 vp per ml.  

6 Mouse strains (II, IV, V, VI) 

CB-17/lcrCr1-scid-bgBR (CB17-SCID-beige) mice were purchased from Charles River 

Laboratories. CD46 transgenic C57Bl/6 mice line MCP8B (C57-CD46) were generously 

provided by Dr. Branka Horvat (INSERM, Paris, France) (Marie et al., 2002). (This line has been 

crossed into the C57Bl/6 background for 9 generations.) These mice express CD46 at levels 

similar to human cells. The transgene is a CD46 C1 isoform under the control of the ubiquitously 

active hydroxymethyl-glutaryl coenzyme A reductase (HMGR) promoter.  In these mice CD46 

protein expression was on non-lymphoid tissues as well as on activated T and B lymphocytes, 

macrophages, (Horvat et al., 1996) and on dendritic cells generated either from CD34+ bone 

marrow cells or from CD14+ peripheral blood monocytes (DiPaolo et al., 2006). All experiments 

involving animals were conducted in accordance with the institutional guidelines set forth by the 

University of Washington and were approved by the University Institutional Animal Care and 

Use Committee. All mice were housed in specific pathogen-free facilities. 

 7 Statistical analysis (I - VI) 

 All results are expressed as mean +/- SD. Statistical significance was evaluated using 

GraphPad Prism version 4.00c for Macintosh (GraphPad Software, San Diego, CA). Student`s T-

test or ANOVA for multiple testing were applied when applicable. A p-value <0.05 was 

considered significant. 
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RESULTS AND DISCUSSION 

1 Identification of CD46 binding sites within the Ad35 fiber knob (I). 

In the past several years, gene transfer vectors based on species B Ads have shown promise 

for cell and gene therapy. Vectors derived from species B Ads or Ad5 vectors containing fibers 

from species B Ads efficiently transduce human cell types that are relatively refractory to 

infection with classical serotype Ad5 vectors. The most commonly used species B vectors contain 

Ad35 fibers (Ad35 or Ad5/F35), and therefore most studies on the interaction of species B Ads 

with CD46 have focused on Ad35. Ad35 binds through its trimeric fiber knob to CD46 with a 

high avidity (Shayakhmetov and Lieber, 2000; Tuve et al., 2006). While the interacting residues 

within CD46 have been localized to the two distal extracellular domains of CD46 (SCR1 and 

SCR2) (Fleischli et al., 2005; Gaggar et al., 2003a; Gaggar et al., 2005; Sakurai et al., 2006), the 

contact areas within the Ad35 knob have not been reported so far.   

The structure of a CD46 interacting Ad knob (Ad11), which is similar overall to other Ad 

knobs, was recently published (Persson et al., 2007). Crystallization of recombinant Ad11 knob 

bound to CD46 domains SCR1 and SCR2 revealed three critical contact regions within the FG, 

HI, and IJ loops of the fiber knob. This model is supported by studies demonstrating that binding 

of Ad11 virus to CD46 can be abolished by introduction of a single aa substitution (Arg279Gln) 

within the Ad11 HI loop (Gustafsson et al., 2006). Although there is overlap in tropism between 

Ad11 and Ad35, Ad11 virus binds to CD46 with a higher avidity (Tuve et al., 2006), which 

implies that the mechanism of Ad11-CD46 interaction cannot necessarily be translated to Ad35. 

 1.1 Interaction of recombinant Ad35 fiber knob and CD46 

 Recombinant Ad35 knob containing an N-terminal 6-His tag was produced in E.coli and 

purified by affinity chromatography on Ni-agarose. The purified Ad35 knob formed trimers and 

only the trimeric form of Ad35 interacted with soluble CD46 (sCD46) (Figure 1A in study I). 

We used SPR to study the affinity and stochiometry of interaction between recombinant Ad35 

knob, and a peptide containing the knob interacting CD46 domains SCR1 and SCR2 (sCD46-P). 

Because preliminary experiments indicated that binding of Ad35 knob to the sensor surface 

containing immobilized sCD46-P was complex and could not be modeled by a simple 1:1 
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interaction scheme, we used surfaces with covalently attached Ad35 knob and injected varying 

concentrations of sCD46-P. The KD of Ad35 knob to sCD46 was 15.55(5) nM (Figure 1B in 

study I). As the BiaCore instrument measures the mass of molecules bound to the sensor surface, 

we found the surface protein complex contains one molecule of soluble sCD46-P per monomer of 

Ad35 knob, that means a 1:1 interaction model.  

1.2 Identification of the amino acid residues that are critical for CD46 binding  

We generated a library of Ad35 knob mutants expressed in E.coli. We used mutagenic PCR 

(Cadwell and Joyce, 1992, 1994) in an approach that on average generated one to two aa 

mutations per knob. The Ad35 knob mutant library in XL-1 blue E.coli was plated on agar plates 

and knob expression was induced by IPTG. We used a two step colony blot protocol to 

simultaneously screen the library for knob trimerization and binding to sCD46. Notably, fiber 

knob trimerization is required for Ad binding to receptors (Hong and Engler, 1996) and analysis 

of trimerization allowed us to exclude mutations that reduce CD46 binding by causing major 

conformational changes within the Ad35 knob. Knob trimerization was assessed with the anti-

6xHis-HRP antibody that recognizes only trimeric knob forms.  Binding of CD46 was assessed 

by sCD46 and an anti-CD46 monoclonal antibody that does not interfere with the Ad35 knob-

CD46 interaction. DNA from colonies that were positive for trimerization but negative for CD46 

binding was sequenced. A first screening round of ~10,000 colonies revealed four aa residues 

(Phe242, Arg279, Ser282, Glu302) that abolished Ad35 knob binding to CD46 without affecting 

knob trimerization in colony assays. The identified residues were in areas that encompassed the 3 

contact regions reported for the Ad11 knob. Further rounds of screening did not uncover other 

regions, indicating that all the detectable CD46 interacting areas had been found.  

To assess the functional properties of mutants, knobs containing substitutions in positions 

242, 279, 282 and 302 were purified. These mutations completely ablated binding to sCD46 as 

analyzed by Western blot and SPR. An example for mutant Arg279Cys is shown in Figure 3 in 

study I. As a more relevant functional assay, we used Ad35 knob mutants as competitors for 

attachment of Ad35 virus to HeLa cells, a cell line that expresses ~50,000 CD46 molecules per 

cell (Tuve et al., 2006).  While 5ng of wt Ad35 knob almost completely inhibited Ad35 binding, 

Ad35 knobs with mutations Phe242Ser, Arg279Cys, Ser282Pro, and Glu302Val were not able to 

block Ad35 binding at the highest concentration tested (20ng). However, when the positively 
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charged Arg279 residue was substituted for a similar histidine, or the negatively charged Glu302 

was substituted for negatively charged aspartate, the ability to block Ad35 binding was not 

completely ablated. In short, competition studies validated the functional importance of the Ad35 

residues identified by library screening.  

1.3 Ad35 fiber knob crystal structure and model of Ad35-CD46 interaction 

To properly evaluate the residues identified by library screening, the Ad35 crystal structure 

was resolved by x-ray crystallography at 2.0 Å resolution, and the crystal structure for the Ad35 

fiber knob was superimposed onto the Ad11-CD46 structure (Persson et al., 2007).  Within the 

Ad11-CD46 structure, CD46 was shown to flex from its native bent conformation to a 

straightened rod like conformation. For binding of Ad35 to CD46, it is also likely that CD46 

adopts a straightened conformation, however, the degree of flexing is impossible to predict 

accurately. For modeling the Ad35-CD46 interaction, we assumed that CD46 had the same 

conformation as in the Ad11-CD46 structure. Overall analysis of the Ad35 and Ad11 structures 

revealed that the FG loop of Ad35 gets closer to CD46 domain SCR1 than the FG loop of Ad11, 

while the IJ loop of Ad11 is 2 aa longer in length than the IJ loop of Ad35 allowing it to get 

closer to CD46 domain SCR2 (Figure 4 and 5  in study I).  

Phe242 protrudes from the FG loop into the region between the FG and HI loops but is not in 

close enough proximity to directly interact with CD46 domain SCR1. However, the neighboring 

aa Asn243 and Thr246 likely form hydrogen (H) bonds with the carbonyl group of aa Tyr36 and 

the side chain of Tyr67 in SCR1 respectively. Furthermore, Phe242 likely stabilizes the proximity 

of the FG and HI loops to SCR1, by creating a region of hydrophobicity between the FG loop, HI 

loop and SCR1.. As with Arg 280 of Ad11, Arg279 in the Ad35 structure forms a salt bridge with 

Glu63 of SCR1, which is stabilized by docking of the hydrophobic portion of Arg279 against the 

Phe35 side chain of CD46. Ser282 in the Ad35 knob, which corresponds to aa Asn283 of Ad11, 

forms an H-bond with the carbonyl group of aa Tyr28 in SCR1. Glu302 of the Ad35 knob 

projects from the IJ loop into the space between the IJ and GH loops. It appears to stabilize the 

spatial proximity of the IJ and GH loops within the monomer by directly forming 2 H-bonds with 

Ser262 within the GH loop and one H-bond with Tyr259 in the GH loop.  



52 
 

Our model of Ad35-CD46 interaction differs from the model of Ad11-CD46 interaction in 

number of ways: i) The FG loop of the Ad35 knob is closer to CD46 than the Ad11 FG loop, ii) 

The IJ loop of Ad35 is shorter and does not get as close to CD46 as the Ad11 IJ loop, iii) We 

suggest a role for the GH loop, through interaction with Glu302, in stabilizing the interaction of 

the Ad35 IJ loop with CD46, iv) we have delineated the role of Phe242 in forming a 

‘hydrophobic sandwich’ that stabilizes the FG and HI loops alongside SCR1 upon binding. 

The existence of multiple contact residues, and the fact that the contact areas in the FG and 

HI loops are on opposite sides of the Ad35 monomer to the contact area in the IJ loop, implies 

that one CD46 unit binds between two Ad35 knob monomers (as described for the Ad11-CD46 

interaction). This indicates that CD46-interacting species B Ads developed a different strategy to 

bind to their receptor than Ads that interact with CAR (Roelvink et al., 1999). For example, 

within the Ad5 knob the critical CAR binding residues cluster only in one area of the knob (Kirby 

et al., 2000; Roelvink et al., 1999).  

 

 

2  In vitro and in vivo properties of Ad vectors with increased affinity to CD46 (II) 

Because of the importance of species B Ads as a pathogen and application of species B-

derived vectors for gene transfer, we studied the interaction between Ad35 and CD46 in more 

detail. Ad35 engages CD46 via residues in the C-terminal trimeric fiber knob domain (Gaggar et 

al., 2003a). Within CD46 the Ad35-interacting areas are located in the two distal extracellular 

domains of the receptor (Fleischli et al., 2005; Gaggar et al., 2005). In the previous section, we 

identified the aa residues within the Ad35 knob that mediate binding to CD46. In the present 

study we used the same expression library of Ad35 fiber knob with random mutations to screen 

for Ad35 knob mutants with increased binding to CD46 compared to wt Ad35 knob. Our goal 

was to construct Ad vectors with substantially increased affinity for CD46. The rational for such 

vectors comes from studies with phage antibody expression libraries (Vaughan et al., 1996), and 

more recently from studies with aptamers, protein-binding oligonucleotides (Shamah et al., 2008). 

The goal of phage and aptamer library screening is to identify variants with the highest affinity, 
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because in in vitro and in vivo studies with single-chain variable fragment (scFv) fragments and 

aptamers, higher affinity usually directly translates into more efficient binding to receptor-

positive cells. Along this line, attempts were undertaken to incorporate high affinity ligands into 

measles virus (Hasegawa et al., 2007) and Ad vectors (Belousova et al., 2008; Campos et al., 

2004; Zeng et al., 2008) in order to increase efficacy and specificity of target cell infection in vivo 

or to establish new receptor-ligand systems for the propagation of vectors.  

2.1 Ad35 fiber knobs with increased affinity for CD46 

 We generated a library of Ad35 knob mutants expressed in E. coli strain M15. The 

expression from colonies was only allowed for 20 minutes after induction at room temperature. 

By using the Western blot with sCD46 approach described in 1.2., out of 10,000 colonies plated, 

twenty colonies with the most intense CD46 signals were picked and plasmid DNA was 

sequenced. 20% of colonies did not contain mutations. The knob sequences of the remaining 

colonies had single or combined substitutions of aa residues Asp207, Thr245, or Ile256 

Recombinant mutant knob proteins were purified and their affinity to sCD46 was measured by 

SPR in comparison to wt Ad35 knob and Ad35 knob that contained a Arg279Cys substitution 

resulting in ablation of CD46 binding (Figure 1B in study II). The KD (equilibrium dissociation 

constant) of wt knob was 14.64 nM, while the KD for knob mutants with the single substitutions 

Asp207Gly, Thr245Ala, and Ile256Leu were 1.77, 7.64, and 10.96 nM, respectively. This 

translates into an 8.3, 1.9, and 1.3 fold higher affinities, compared to wt knob. The majority of 

identified knob mutants contained two or three of the above listed substitution. The highest 

affinity (0.63 nM; 23.2 fold higher than wtAd35 knob) had a knob mutant with a double 

Asp207Gly - Thr245Ala substitution. Two of the identified knobs with multiple mutations had 

substitutions Asn217Asp or Thr226Ala, however, when analyzed individually, these substitutions 

had no impact on knob affinity. The association kinetics was comparable for all knobs. However, 

the dissociation rate constants inversely correlated with the knob affinities. This indicates that 

knobs with higher affinity dissociate slower from CD46 than wt Ad35 knob.  

In an attempt to understand the structural basis for increased affinity of our knob mutants to 

CD46, we superimposed the crystal structure of the Ad35 knob with that of CD46 (Persson et al., 

2007). For the Asp207Gly mutant, the hydrophobic Ile13 residue of CD46 is the closest aa R 

group to Asp207, unlike the polar Asp residue, glycine is hydrophobic (lacking a side chain), so 
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an Asp207Gly substitution may enable the Ad35 DE loop to approach CD46 more closely near 

Ile13. Subsequently the HI loop would also get closer to CD46. For the Thr245Ala mutant, 

according to our original Ad35-CD46 binding model, the Ad35 Thr246 residue is important for 

binding and interacts with CD46 Tyr67. It seems Thr245Ala influences the loop conformation in 

this region and then may make the Thr246 to Tyr67 interaction stronger since the FG loop can 

move closer to CD46.  For the  Ile256Leu, Ad35 residue Ile256 is oriented towards the central 

core of the fiber trimer in the center of the G sheet, our model suggests that the methyl groups of 

Leu256 would be closer to Asn271 than those of Ile256, and the increased repulsion would likely 

push the G and H sheets further apart. How this affects Ad35-CD46 affinity is unclear, but it may 

be due to increased stability of the knob trimer.  

2.2 Ad vectors containing Ad35 fiber knobs with increased affinity to CD46  

Ad particles possess 12 fibers. Since one Ad35 fiber knob binds to three CD46 molecules at 

the same time one virus can potentially bind to a maximum of 36 CD46 molecules on a cell. We 

hypothesized that upon virus binding subsequent events such as clustering of receptor proteins 

and receptor-mediated signaling will be different between individual solubleAd35 knob 

molecules and corresponding knobs in the context of virions.  In order to investigate this, we 

generated viruses containing Ad35 knobs with increased affinity to CD46. The coding sequences 

of Ad35 fibers, which are the CD46 interacting moiety within the Ad35 capsid, were transferred 

into Ad5 vectors to replace the corresponding Ad5 fiber sequence. We created three types of such 

chimeric vectors, Ad5/35, which contained the wt-Ad35 fiber, Ad5/35+, which contained the 

Asn217Asp, Thr245Pro, and Ile256Leu  mutations resulting in a 3-fold higher affinity of fiber 

knob to CD46, and Ad5/35++, which contained the Asp207Gly, Thr245Ala substitutions, 

resulting in a 23.2 fold higher affinity. Ad5/35+ and Ad5/35++ genomes also contained 

additional XhoI and HindIII restriction sites, which allowed us to confirm the identity of virus 

preparation after amplification and purification in CsCl gradients by restriction endonuclease 

analysis of viral DNA. To measure the binding between purified Ad particles and CD46 by SPR, 

biotinylated virions were immobilized on Bioacore sensorchips and subsequently injected with 

sCD46 analyte. The affinities of Ad5/35+ and Ad5/35++ were 4.2x and 60x higher compared to 

the virus that contained the wtAd35 knob (Figure 3 in study II). While the association kinetics 
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were comparable for all three viruses, dissociation from sCD46 was slower for Ad5/35+ and 

Ad5/35++ viruses.   

2.3 In vitro studies with Ad vectors with increased affinity to CD46 

We tested whether higher knob affinities might translate into higher viral particle avidities 

and better vector transduction of cells (Figure 4 and 5 in study II). A set of CHO cell clones that 

expressed different densities of human CD46 (3,406; 5,221; 18,598; and 101,442 CD46 

molecules per cell) (Anderson et al., 2004) were used. Transduction rates of CHO-CD46 cell 

clones with the Ad5/35 vector (measured based on mean GFP fluorescence) correlated with 

CD46 receptor density on clones. Disappointingly, when Ad5/35+ and Ad5/35++ were included 

into the studies, significantly higher transduction rates were not observed, regardless of the 

receptor density present on CHO-CD46 cells. CHO cells do not express surface integrins which 

are thought to be required for Ad5/35 infection (Murakami et al., 2007; Shayakhmetov D M, 

2004). Furthermore, non-primate cells are refractory to infection with Ad5/35 (Shayakhmetov et 

al., 2000). We therefore performed further transduction studies on human cell lines of different  

tissue origins. No difference were seen in the transduction between Ad5/35, Ad5/35+, and 

Ad5/35++ HeLa cells, A549 cells and 293 cells. However, transduction of suspension cultures 

K562, MO7e, and Ramos was higher for Ad5/35+ and Ad5/35++, although the difference only 

reached significance (p<0.05) for Ad5/35+ and Ad5/35++ on MO7e cells. 

Higher virion avidity might affect virus entry and intracellular trafficking. We did not see 

difference at attachment and internalization rate for these three viruses in MO7e cells. 

Intracellular trafficking of Ad5/35 and Ad5/35++ virions was studied using FITC-labeled anti-

cathepsin B antibodies to visualize late endosomes (Figure 6 in study II). In agreement with 

earlier studies (Shayakhmetov et al., 2003), the vast majority of Ad5/35 particles co-localized 

with the endosomal marker at 1 hour post-infection,  and there was no difference between Ad5/35 

and Ad5/35++. However, when analyzed at 4 hours post-infection, more Ad5/35++ particles were 

still associated with endosomes inside the cytoplasm, whereas a large amount of Ad5/35 particles 

were found on the cell surface as free particles or associated with endosomal membranes. This is 

also in agreement with a previous report that Ad5/35 particles can be recycled back to the cell 

surface (Shayakhmetov et al., 2004; Shayakhmetov and Lieber, 2000). Apparently, the slower 

dissociation of Ad5/35++ from CD46 decreases this retrograde transport and allows more Ad 
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genomes to reach the nucleus, which might, in part, explain the higher transduction efficiencies of 

Ad5/35++ in MO7e cells.  

2.4 Tumor targeting after intravenous vector injection  

Ad5/35 vectors have shown promise for targeting of tumors because the majority of tumor 

types overexpress CD46 compared to normal tissue (Stone and Lieber, 2006). However, after i.v. 

injection, interaction of Ad5/35 vectors with CD46high tumors is affected by unspecific 

sequestration, involving high affinity interactions with soluble blood factors (Kalyuzhniy et al., 

2008; Shayakhmetov et al., 2005; Waddington et al., 2008), blood cells (Lyons et al., 2006; Stone 

et al., 2007), and tissue macrophages (Worgall et al., 1997). This unspecific Ad sequestration and 

degradation affects the majority of intravenously injected viral particles and greatly reduces the 

efficiency of tumor cell transduction. We hypothesized that Ad5/35 vectors with increased 

affinity to CD46 would have an advantage in competing with non-CD46 mediated sequestration 

and demonstrate better tumor transduction after i.v. injection. To test this hypothesis, TC1-CD46 

cells were injected into the portal vein of C57Bl/6-CD46tg mice to establish liver metastases. 

Three weeks after TC1-CD46 transplantation, tumor-bearing mice were intravenously injected 

with Ad5/35 and Ad5/35++ at dose of 5x109 pfu per mouse and GFP expression was analyzed on 

tumor and organ sections 3 days later (Figure 8 in study II). Quantitation of GFP-positive tumor 

cells/mm2 of consecutive liver sections (20 sections per mouse, 3 mice per virus) revealed a 6.1 

(+/-1.8) fold higher transduction efficiency of TC1-CD46 metastases with Ad5/35++ compared to 

Ad5/35. Other than in tumors, GFP expressing cells were only found in individual cells in the 

liver parenchyma and the marginal zones of the spleen. Transduction of sparse normal cells in the 

liver and spleen had no side effects. No abnormal elevation in serum transaminases or changes in 

blood cell counts were observed in animals that were injected with Ad5/35 vectors. There was no 

significant difference in the number of GFP expressing cells between the two viruses in these 

tissues. This is not surprising as transduction of liver with Ad5/35 vectors is not mediated through 

CD46 but through interaction of Ad5 hexon with coagulation factor X and cellular HSPGs 

(Kalyuzhniy et al., 2008; Waddington et al., 2008).  To better quantitate the number of GFP-

expressing cells in this mouse model, microdissected tumors were digested by collagenase and 

versen. Cell suspensions were analyzed for CD46 and GFP using flow cytometry (Figure 8C in 

study II). In cell suspensions, transduced TC1-CD46 tumor cells appear as CD46high/GFP+ cells. 
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In mice injected with Ad5/35 and Ad5/35++, the percentage of GFP+ cells in the CD46high cell 

fractions was 6.3% (+/-2.9%) and 23.9% (+/-9.5%), respectively. Taken together, our in vivo data 

demonstrated that Ad5/35++ is superior in transduction of CD46high  liver metastases after i.v. 

vector administration.   Notably, although metastases were dissected under a microscope, 

analyzed tumors still contained remnants of normal liver parenchyma. Normal hepatocytes can 

however be distinguished from tumor cells based on their lower CD46 expression.  

 

 

3  Receptor usage of a newly emergent Ad14 (Ad14a) (III) 

Recently, cases of severe respiratory illness in military and civilian populations have been 

associated with a new genomic variant of Ad14, designated Ad14a. The prototype Ad14, Ad14-

de Wit, and Ad14a are identical in the fiber knob sequences except for a deletion of two amino-

acids (Lys and Glu) at aa positions 251/252 found in Ad14a. This mutation is located within the 

F-G loop directly adjacent to the G-beta sheet. A comparison of Ad14a with other species B Ads 

revealed that 252Glu is conserved in species B serotypes. Furthermore, a 3D-model of Ad14a that 

we generated based on the published crystal structures of Ad3, Ad11, Ad16, and Ad35 (Durmort 

et al., 2001; Pache et al., 2008; Persson et al., 2007; Wang et al., 2007) indicated that the Lys/Glu 

deletion in Ad14a might change the structure of the FG loop and its proximity to the neighboring 

knob monomer. Taken these findings together, we speculated that the Lys/Glu mutation within 

Ad14a might change the fiber structure and thus the receptor usage of Ad14a, which in turn might 

account for the apparent higher virulence of Ad14a as compared the Ad14-de Wit.  

To test this, we performed competition studies in 293 cells for virus attachment to investigate 

whether Ad14-de Wit and Ad14a use the same receptor(s) (Figure 2A in study III). We found 

that attachment of 3H-Ad14-de Wit or 3H-Ad14a was inhibited to the same degree by Ad14-de 

Wit and Ad14a. This suggests that Ad14-de Wit and Ad14a utilize the same receptor(s). This 

receptor is not CD46 because anti-CD46 antibodies that block interaction of Ad35 with CD46 

(Tuve et al., 2006) did not compete for attachment of 3H-Ad14-de Wit and 3H-Ad14a. 

Furthermore, CD46-interacting serotype Ad35 did not affect the binding of 3H-Ad14-de Wit. On 
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the other hand, pre-incubation of cells with Ad3, significantly reduced 3H-Ad14-de Wit binding 

(p<0.05). Furthermore, attachment of 3H-Ad3 was efficiently blocked by pre-incubation with 

Ad14-de Wit but not by pre-incubation with Ad35 virus or anti-CD46 antibodies as shown before 

(Tuve et al., 2006). Along this line, Ad14-de Wit and Ad3 did not block binding of the CD46-

interacting 3H-Ad35. In summary, these data show that Ad14-de Wit and Ad14a recognize the 

same receptor (which is not CD46) and that this receptor is also used by Ad3 (Tuve et al., 2008; 

Tuve et al., 2006). To study quantitative differences in Ad14-de Wit and Ad14a binding to test 

cells, we measured the avidity of both viruses as described previously using Scatchard blots 

(Figure 2C in study III). (Tuve et al., 2006). The Ka for Ad14-de Wit and Ad14a were 

5.438x109M-1 and 9.062x109M-1, respectively. Therefore, Ad14a binds to 293 cells at a 1.67-fold 

higher affinity than Ad14-de Wit.  

In our competition studies described above, we used complete virus particles. We then used 

the recombinant Ad14-de Wit and Ad14a knobs which were produced in E.coli as competitors in 

virus attachment studies. 0.4g or 4g knob proteins were used as competitors. Both Ad14-de 

Wit knob and Ad14a knob blocked attachment of Ad14-de Wit and Ad14a virus. In the presence 

of 0.4µg Ad14-de Wit and Ad14a knobs, Ad14-de Wit attachment was reduced by 65.1 and 

68.3%, respectively. Ad14a attachment decreased 75.2 and 75.5% after Ad14-de Wit knob and 

Ad14a knob incubation, respectively. A 10-fold higher concentration of knobs (4g) did not 

proportionally decrease Ad14-de Wit or Ad14a attachment. Notably, in previous studies with 

Ad5 and Ad35 viruses (Tuve et al., 2006), we found that the corresponding Ad5 and Ad35 knobs 

inhibited virus binding more than 95% at concentrations lower than 0.4 g (Tuve et al., 2006).  

We also tested how the higher affinity of Ad14a affects subsequent infection steps. For Ad5, 

and apparently also for species B Ads, following initial attachment, RGD motifs within the 

penton base interact with cellular integrins triggering endocytosis of Ad particles (Murakami et al., 

2007; Wickham et al., 1993). To study Ad14-de Wit and Ad14a internalization, test cells were 

incubated 3H-Ad14-de Wit or 3H-Ad14a virus on ice to allow for attachment. Then, cells were 

moved to a 37oC incubator for the indicated time periods. Cells were then washed with PBS and 

incubated with trypsin at 37oC for 20 minutes to remove surface bound virus. The number of 

internalized viral particles was measured based on cell associated radioactivity. Our 

internalization study (Figure 4 in study III) did not reveal significant differences between Ad14-
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de Wit and Ad14a. Taken together, our data indicate that the 251Lys/252Glu deletion in the 

Ad14a fiber and the 366AspAsn mutation in the Ad14a penton did not significantly influence 

the attachment and internalization of this virus. Most likely, differences in post-internalization 

steps or in the ability to elude the host immune response account for the higher virulence of 

Ad14a compared to Ad14-de Wit. Based on the findings of this study we group Ad14a into 

species B group 2, which so far consisted of Ad3, Ad7p and Ad14-de Wit.  

 

 

4  A recombinant Ad35 fiber knob protein sensitizes lymphoma cells to rituximab therapy 

(IV) 

Monoclonal antibodies (mAbs) have emerged as a class of novel oncology therapeutics. 

Rituximab is a humanized unconjugated IgG1 mAb against CD20 and has been used for the 

treatment of B-cell non-Hodgkins lymphoma (NHL), mantle cell lymphoma, hairy cell leukemia, 

chronic lymphocytic leukemia. However, resistance to rituximab treatment has also been found in  

many patients, this is partly due to the  over-expression of membrane complement regulatory 

proteins, such as CD46, CD55, and CD59 (Fishelson et al., 2003; Hara et al., 1992a; Ong et al., 

2006) on tumor cells. The trimeric structure of the Ad35 knob leads to a tight association with 

CD46 and cross-linking of several CD46 molecules on the membrane of cancer cells. Based on 

this we hypothesized that Ad35 fiber knobs can be used to block or remove CD46 and sensitize 

lymphoma cells to rituximab therapy. For our studies, we selected a Ad35 knob mutant 

(Ad35K++) which had a higher affinity (0.63 nM) to CD46 than did the natural Ad35 fiber knob 

(14.6 nM).  

4.1 Removal of CD46 from cell surface by Ad35K++ 

 Flow cytometry studies showed high and relatively uniform levels of CD46 on primary 

chronic lymphocytic leukemia (B-CLL) cells and test lymphoma cell lines. We first studied the 

effect of Ad35K++ on CD46 levels in Raji cells, a CD20-positive, human Burkitt’s lymphoma 

cell line. i) Flow cytometry showed that incubation of Raji cells with Ad35K++ resulted in a 90% 

decrease of CD46 levels within 6 hours, after which surface CD46 was restored (Figure 1B in 
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study IV). The effect of the wt Ad35 fiber knob (Ad35K) was less pronounced. No decrease in 

CD46 levels was seen with an Ad35 knob that was ablated for CD46 binding (Ad35K-279) or 

with a monoclonal antibody specific to a CD46 epitope different from that of the anti-CD46 

detection antibody. Together with a decrease of surface CD46, we also found less cell-bound 

Ad35K and Ad35K++ knob after 6 hours of incubation, indicating that CD46 and Ad35 knobs are 

taken up together (Figure 1C in study IV). ii) Immunofluorescence microscopy for CD46 and 

Ad35K++ knob further corroborated less surface CD46 in Ad35K++ treated cells compared to 

cells incubated with Ad35K-279 at 30 min and 60min after adding knob proteins. At 12 hours or 

24 hours, cells treated with Ad35K++ demonstrated predominantly cytoplasmic CD46 staining, 

whereby it appeared that CD46 signals were less than before incubation, indicating degradation 

of internalized CD46-Ad35K++. CD46 reappeared on the cells surface by 48 hours. Internalized 

CD46 and Ad35K++ did not co-localize with the late endosomal marker cathepsin B. Instead 

both proteins co-stained with caveolin, an early endosomal marker at early time points. Taken 

together, this indicates that the internalized CD46-Ad35K++ complex is either directly released 

from early endosomes to the cytosol or sorted to a compartment different from late endosomes or 

lysosomes, where subsequent degradation occurs. Overtime, de novo produced CD46 reappears 

on the cell surface. iii)   Previous studies have shown that transduction with Ad35-fiber 

containing Ad vectors directly correlates with the density of CD46 on the cell surface (Anderson 

et al., 2004). In transduction studies with a GFP-expressing Ad35 vector (Ad35-GFP) that uses 

CD46 for infection, we found that pre-incubation of Raji cells with Ad35K++ decreased GFP 

expression levels more than 1000-fold, compared to cells incubated with Ad35K-279. Note that 

the non-mutated Ad35K protein conferred less protection from Ad35-GFP infection.  

Taken together, these studies show that Ad35K++ incubation of Raji cells results in transient 

removal of CD46 from the cell surface.   

4.2 Incubation of lymphoma cells with Ad35K++ sensitizes them to rituximab-mediated 

complement-dependent cytolysis (CDC) in vitro  

We then studied whether Ad35K++ incubation would render lymphoma cells more 

susceptible to CDC induced by rituximab. Initial experiments were done with Raji cells (Figure 

2A in study IV). Incubation of Raji cells with rituximab followed by normal human serum (NHS), 

used as a source of complement, resulted in killing of about 70% of Raji cells within 3 hours. It is 
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noteworthy that the remaining viable Raji cells had CD20 levels that were about 50-fold lower 

than the mean CD20-fluorescence level of the control population (no rituximab or no NHS). To 

test whether the efficacy of rituximab-mediated CDC can be increased by Ad35K++-triggered 

internalization of CD46, we incubated Raji cells with Ad35K-279, Ad35K, and Ad35K++ for 8 

hours. Ad35K and Ad35K++ increased rituximab/NHS-mediated cell killing by about 2 and 10 

fold respectively, compared to rituximab/NHS alone. The sensitizing effect of Ad35K++ was 

seen at doses as low as 25ng/ml. Ad35K-279 had no effect on rituximab/NHS-mediated killing. 

Pre-incubation of Raji cells with anti-CD46 mAb in combination with rituximab/NHS was 

significantly less efficient than pre-incubation with Ad35K or Ad35K++ (anti-CD46mAb vs 

Ad35K: p=0.024).  We speculate that this is due to the fact that an Ad35 fiber knob 

simultaneously binds to several CD46 molecules and that this cross-linking mediates 

internalization of the knob-CD46 complex. Another potential reason could that the affinity of 

Ad35 knobs to CD46 is higher than that of anti-CD46 antibodies, although we did not measure 

the latter. Incubation of Raji cells with CD46 ligands (anti-CD46mAb, Ad35K, or Ad35K++) 

together with NHS caused a ~30% decline in cell viability, most likely as a result of CDC when 

CD46 is blocked. To test the specificity of rituximab-mediated CDC of CD20-positive lymphoma 

cells, we used the humanized mAb daclizumab that binds to CD25, which is not expressed on 

Raji cells. There was no significant cell killing mediated by this antibody when combined with 

NHS.  

To consolidate our findings on Raji cells, we performed studies with other CD20-positive cell 

lines, including BJAB (EBV-negative Burkitt’s lymphoma), Farage (non-Hodgkin’s B cell 

lymphoma), and Mino (Mantle cell lymphoma). In all cell lines tested we found a significant 

increase in rituximab/NHS-mediated cell killing when cells were pre-incubated with Ad35K++ 

(Figure 2B in study IV). Furthermore, we used primary cells from B-CLL patients. Pre-

incubation of B-CLL cells with Ad35K++ knob significantly increased the efficacy of 

rituximab/NHS treatment. Notably, the cell sample that was most resistant to 

Ad35K++/rituximab killing (CCL-3) had the lowest percentage of CD20-positive cells and the 

lowest CD20 levels. No cell killing was detected when normal human peripheral blood 

mononuclear cells were incubated with Ad35K++/rituximab/NHS.   
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In summary, the in vitro studies show that Ad35K++ pre-incubation of primary B-CLL cells 

and lymphoma cell lines increases the cytotoxity of rituximab. 

4.3 Ad35K++ improves anti-tumor efficacy of rituximab in vivo  

To establish a xenograft lymphoma model, we intravenously injected Raji cells into 

immunodeficient SCID/beige mice. At different time points after injection, mice were sacrificed 

and blood, spleen, lymph nodes, and bone marrow were analyzed for the presence of Raji cells by 

flow cytometry for human CD20 and immunofluorescence microscopy. HuCD20-positive Raji 

cells were predominantly found in the spleen and lymph nodes and were very sparse in the spleen. 

The percentage of huCD20-positive cells increased from 20(+/-4)% (bone marrow) and 5(+/-1.2)% 

(lymph nodes) at day 10 p.i. to 75(+/-6)% and 42(+/-8)% at day 14 p.i. At days 15 or 16 after Raji 

cell injection, mice developed hind leg paralysis (due to tumor growth inside the spinal cord), a 

symptom that we eventually used as an endpoint in Kaplan-Meyer survival studies. To better 

reflect the situation in end-stage cancer patients, we decided to test our therapy approach in a 

challenging model by starting the treatment only 2 days before the animals would reach the 

experimental endpoint.  For therapy studies, 14 days after implantation of Raji cells, mice 

received either 50µg (2.5mg/kg) of Ad35K++ protein or 50µg of CD46-binding ablated Ad35K-

279 protein (Figure 3B in study IV). Ten hours later, either PBS or 50µg of rituximab was 

injected via the tail vein. One group of mice was sacrificed 12 hours later and the effect of 

Ad35K++, rituximab, and Ad35K++/rituximab on killing of Raji cells in vivo was measured 

based on the percentage of huCD20-positive cells in the bone marrow and lymph nodes. 

Compared to Ad35K-279-treated control mice, no significant therapeutic effect was observed 

when Ad35K++ or rituximab (at a dose of 2mg/kg) were injected alone. However, the 

combination of Ad35K++ and rituximab resulted in a significant decrease (>2-fold) in huCD20-

positive cell (p<0.03). These findings were confirmed in survival studies (Figure 3D in study IV). 

There was a remarkable increase in survival (by 3 days) when mice were treated with 

Ad35K++/rituximab compared to rituximab only or Ad35K-279 treatment (rituximab vs 

Ad35K++/rituximab: p=0.0050; Ad35K-279 vs Ad35K++/rituximab: p=0.0016) N=10. There 

was no difference in survival between the control (Ad35K-279) and Ad35K++ only groups. 

Rituximab at a dose of 2.5mg/kg alone did not exert a significant therapeutic effect in vivo 

(Ad35K-279 vs rituximab: p=0.1289), however a further increase to a dose of 12.5mg/kg resulted 
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in therapeutic efficacy. (Notably, doses from 2 to 25mg/kg of rituximab are used in clinical 

settings.)  In an attempt to further increase the therapeutic efficacy of our approach, we applied a 

second cycle of Ad35K++/rituximab treatment 72 hours after the first injection of rituximab. 

Repeated injection of Ad35K++/rituximab increased the medium survival times to 24 days, 

compared to 16.5 days after treatment with rituximab alone.  

We then tested our approach in a second tumor model using the human NHL cell line Farage 

(Figure 4 in study IV). i.v. injection of 5x106 cells into SCID/beige mice resulted in onset of 

morbidity/paralysis at day 23. At this time, Farage cells had massively infiltrated the bone 

marrow, mesenteric lymph nodes, and spleen as shown by immunofluorescence microscopy with 

anti-huCD20 antibodies. In these organs huCD20-positive cells displayed a predominantly 

nodular neoplastic growth pattern, which is characteristic for follicular NHL in humans. 

Treatment of mice was started at day 21 after injection of Farage cells. As seen with Raji cells, 

Ad35K++/rituximab treatment resulted in a significant reduction of huCD20-positive cells in all 

affected tissues compared to rituximab treatment alone (p<0.05 for Ad35K++/rituximab vs all 

other groups). The median survival times for PBS-, rituximab-, and Ad35K++/rituximab-treated 

mice were 25, 27, and 32 days, respectively. The difference between rituximab and 

Ad35K++/rituximab was significant (p=0.04) (N=10).  

These studies suggest that Ad35K++ can improve the efficacy or rituximab therapy.  

4.4 Safety and immunogenicity of intravenous Ad35K++ injection  

Because in mice the homologue of CD46 is expressed only in the testis, transgenic mice that 

express huCD46 in a pattern and at levels similar to humans are a better model for safety studies. 

We intravenously injected the same dose of Ad35K++ that was used in the therapy studies into 

huCD46 transgenic, immunocompetent C57Bl/6 mice (strain MCP-8B) (Marie et al., 2002). 

Notably, immunodeficient mice that are transgenic for human CD46 are not available. Analyses 

of blood cell counts and other hematological parameters at 6 and 48 hours after Ad35K++ 

injection did not show abnormalities. At necropsy (day 14 p.i.), no pathological or histological 

changes were found in all organs analyzed (brain, lung, heart, liver, kidney, intestines, bone 

marrow, and testis).  
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To assess the potential immunogenicity of Ad35K++ and the possibility for repeated injection 

in settings without immuno-suppression, we measured Ad35K++ specific antibodies in serum of 

cancer patients (Figure 5 in study IV). None of the 20 serum samples tested contained antibodies 

that reacted with either Ad35K or Ad35K++. On the other hand, 18 serum samples contained 

antibodies specific to Ad5 hexon, Ad5 fiber knob, and Ad5 penton. This outcome is not 

surprising. While the vast majority of humans have neutralizing antibodies against Ad5 virus, less 

than 10% of humans have neutralizing antibodies against Ad35 virus (Abbink et al., 2007), 

implying that Ad35K++ can be applied at least once in most humans. However, it is expected that 

injection of Ad35K++ will trigger the production of Ad35K++ antibodies in immunocompetent 

patients. In an attempt to assess whether anti-Ad35K++ antibodies affect Ad35K++-mediated 

sensitization to rituximab therapy, we injected Ad35K++ into huCD46 transgenic mice. We 

compared a standard vaccination scheme involving three subsequent subcutaneous Ad35K++ 

injections with i.v. injection of Ad35K++ used in our in vivo studies before. While we detected 

antibodies that reacted with Ad35K++ and, to a lesser degree, with Ad35K in mice that received 

Ad35K++ subcutaneously, no detectable antibodies were observed when Ad35K++ was given 

intravenously. This is probably due to inefficient uptake of Ad35K++ by antigen-presenting cells 

after i.v. injection. We also used the serum from vaccinated or naïve mice together with 

Ad35K++ in rituximab-mediated CDC assays. Regardless of the presence of anti-Ad35K++ 

antibodies, we found the same stimulating effect of Ad35K++ in cell killing. This might be due to 

the fact that the Ad35K++ interaction with CD46 is of very high affinity and cannot be disrupted 

by polyclonal anti-Ad35K++ antibodies that develop in Ad35K++ injected mice. The finding that 

Ad35K++ induced antibodies reacted less with Ad35K than with Ad35K++ was interesting and 

we speculated that small conformational changes within the fiber knob can lead to loss or 

decrease of immunogenicity. Based on this one could imagine that a set of different Ad35K 

mutants (with different epitopes) could be used for in multiple cycle treatment regimens.  

Overall, our data in huCD46 transgenic mice indicate that i.v. injection of Ad35K++ is safe 

and that repeated Ad35K++ application can potentially have a therapeutic effect in patients that 

do not receive immunosuppressive chemotherapy.   
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 5  Desmoglein 2 is a receptor for Ad3, 7, 11, and 14 (V) 

We have suggested a new grouping of species B Ads based on their receptor usage (Tuve et 

al., 2006). Group 1 (Ad16, 21, 35, 50) nearly exclusively utilize CD46 as a receptor; Group 2 

(Ad3, Ad7, 14, 14a) share a common, unidentified receptor/s, which is not CD46 and which was 

tentatively named receptor X; Group 3 (Ad11) preferentially interacts with CD46, but also 

utilizes receptor X if CD46 is blocked. Collectively, we refer to all receptor X-utilizing serotypes 

(Ad3, Ad7, Ad14, Ad14a and Ad11) as AdB-2/3. For initial studies on the identification of 

receptor X we focused on Ad3.   

5.1 DSG2 is a receptor for AdB-2/3 viruses 

Previous studies showed that Ad3 binds at nanomolar affinity to a high-density cellular 

receptor (Tuve et al., 2006). First we sought to identify the Ad3 capsid protein that mediates high-

affinity binding to cells, which we would later use to search for the high-affinity receptor X. 

Notably, high-affinity binding of Ad5 to CAR and Ad35 binding to CD46, respectively, is 

mediated by the corresponding fiber knob (Leopold and Crystal, 2007). Our previous studies, 

however, revealed that a recombinant, timeric Ad3 knob could not completely block Ad3 virus 

binding even when very high concentrations were used, indicating that other or additional capsid 

moieties are involved in Ad3 binding (Tuve et al., 2008). Consequently, we utilized recombinant 

Ad3 dodecahedra composed of Ad3 penton bases (BsDd) or Ad3 penton bases and fibers (PtDd) 

(Fender et al., 1997) to compete for Ad3 binding. We found that PtDd but not BsDd blocked 

attachment of Ad3 to cells (Figure 1a in study V). PtDd also blocked binding of other AdB-2/3, 

e.g. Ad14, Ad14a, as well as Ad11, if CD46 is also blocked. PtDd did, however, not inhibit 

binding of Ad5 and only partially blocked Ad35 binding. Preincubation of cells with PtDd 

resulted in a better Ad3 binding inhibition than Ad3 knob mixed with BsDd. The ability of PtDd 

to compete with Ad3 was also confirmed in transduction studies, where PtDd efficiently blocked 

an Ad3 vector (Ad3-GFP) but not the transduction of an Ad35 vector (Ad35-GFP (that uses 

CD46 as a receptor). Ad3-GFP (Constructed in this study) and Ad35-GFP (Gao et al., 2003) are 

wt Ad3- and Ad35-based vectors containing a CMV-GFP expression cassette inserted into the E3 

region.  
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To select an optimal cell line for receptor X identification, we compared Ad3 virus binding to 

several human and animal cell lines. Ad3 did not bind to rodent cells suggesting that receptor X 

was not expressed or not accessible to Ad3 in these cells.  Of the 10 human cell lines initially 

tested (HeLa, K562, SKOV3, 293, HT29, SKHep1, Saos, Y79, Ramos), Ad3 binding was absent 

only on Ramos (human Burkitt’s lymphoma) cells.  

To identify Ad receptor candidates, HeLa cell membrane proteins were solubilized, separated 

on polyacrylamide gels, and blotted. Blots were hybridized with viral particles and binding was 

visualized with virus fiber knob specific antibodies. Specific gel bands were excised and analyzed 

by tandem mass-spectroscopy (MS/MS). First, we tested whether this assay can detect a known 

Ad receptor, CD46. When filters were incubated with CD46-targeting Ad5/35++ virions, a single 

band was found that matched CD46. Incubation of filters with Ad3 virions revealed two bands 

with molecular weights of 160 kDa and 90 kDa (Figure 1e in study V). In addition to these two 

bands, Ad3 PtDd also reacted with HeLa proteins in the range of 130 kDa.  Both 160 and 90 kDa 

bands were absent in Ramos cells, i.e. cells that do not bind Ad3. The ~130 kDa PtDd-binding 

band appeared in both HeLa and Ramos cells suggesting that it is not an Ad3 virus receptor. 

MS/MS-analysis of the 160 kDa band identified 14 peptides matching human desmoglein 2 

(DSG2) (Figure 1f in study V). IP/Western analyses of HeLa membrane proteins demonstrated 

that both the 160 and 90 kDa bands were recognized by DSG2-specific antibodies.  This is in 

aggreement with previous Western blot studies showing that the 160 kDa band represents full 

size DSG2, and that the 90 kDa band is a DSG2 variant that lacks the intracellular domain, the 

transmembrane domain, and the juxtamembrane extracellular anchor domain (Kowalczyk et al., 

1994; Nava et al., 2007).  

BIAcore SPR studies with sensors containing immobilized recombinant human DSG2 

demonstrated that Ad3, but not Ad2 or Ad5, virions interact with DSG2 (Figure 1g-i in study V). 

Recombinant PtDd but not BsDd particles bound to DSG2. The KD of PtDd –DSG2 interaction 

was 2.5 nM. PtDd binding to immobilized DSG2 was specific as soluble DSG2 competed with it. 

SPR analysis of binding kinetics also showed that Ad3 fiber knob dissociates faster from DSG2, 

which suggests the existence of additional DSG2 binding site(s) within the fiber shaft and/or the 

requirement of fiber multimerization for high affinity binding to DSG2. 
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Loss- and gain-of-function studies were performed on cell lines to validate DSG2 as a critical 

receptor for AdB-2/3 binding/infection (Figure 2 and 3 in study V). Recombinant DSG2 protein 

blocked the binding of Ad3 as well as other AdB2/3 Ads, i.e. Ad7, Ad14, Ad14a, and Ad11 to 

HeLa cells, but not the binding of Ad5 and Ad35. Ad3-GFP infection was efficiently inhibited by 

DSG2 protein but not by other structurally related members of the cadherin superfamily 

(desmoglein 1-DSG1 and desmocollin 1-DSC1) (Getsios et al., 2004). This study also showed 

that DSG2 protein had no effect on transduction by the CD46-targeting vector (Ad35-GFP). 

Significant inhibition of Ad3 attachment was observed with mAbs against extracellular domains 

3 and 4.  Transfection of HeLa cells with a pool of DSG2-specific siRNAs resulted in ~7-fold 

downregulation of surface DSG2 levels. Ad3 attachment was 3 fold lower in DSG2-siRNA 

treated HeLa cells compared to control siRNA-treated cells (p<0.001). GFP expression levels 

after infection with Ad3-GFP were 13.9-fold lower in DSG2-siRNA transfected cells than in 

control siRNA transfected cells. DSG2-specific siRNA did not affect transduction with the CAR-

targeting vector Ad5-GFP. However, DSG2- siRNA transfection also decreased binding and 

transduction with the CD46-specific vectors Ad35-GFP and Ad5/35-GFP. DSG2-siRNA did not 

decrease CD46 levels in HeLa cells. At this point we cannot explain this phenomenon.  

siRNA mediated DSG2 downregulation also decreased viral cytolysis and spread in cells that 

were infected at 100% confluence at an MOI of one Ad3-GFP pfu per cell (Figure 2f and2g  in 

study V). 

For gain-of-function studies, we selected a series of cell lines with different DSG2 expression 

levels and measured Ad3-GFP transduction. All cell lines that lacked DSG2 expression 

(lymphoma Ramos, Raji, Mino, and HH cells) were refractory to Ad3-GFP transduction but 

could be transduced by the CD46 targeting Ad5/35-GFP vector (because CD46 is expressed on 

these cells. DSG2-positive K562 cells, on the other hand, could be efficiently transduced with 

Ad3-GFP. About 70% of BJAB cells were DSG2 positive and, correspondingly, the percentage 

of GFP-positive cells reached a plateau at about 50%. To conclusively prove the critical role of 

DSG2 in Ad3 infection, we ectopically expressed DSG2 via lentivirus vector gene transfer in the 

histiocytic lymphoma cell line U937, which is refractory to Ad3-GFP transduction. Ectopic 

DSG2 expression in U937-DSG2 cells conferred efficient Ad3 attachment and transduction, 

whereas Ad35 attachment and Ad5/35-GFP transduction were unaffected in these cells.  
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These studies demonstrated that DSG2 is a crucial receptor for AdB-2/3 infection.  

5.2 DSG2 localization in human cells (Figure 4 in study V) 

 As expected, we found DSG2 in cell membranes of normal epithelial tissues (foreskin and 

colon) and epithelial cancers (breast and ovarian cancer). Confocal immunofluorescence 

microscopy studies of polarized colon cancer T84 and CaCo-2 cells demonstrated colocalization 

of DSG2 and the intercellular junction protein Claudin 7. In stacked XZ image sections (or XY 

sections taken at different depth of the cell layer), DSG2 appears at the distal end of intercellular 

junctions. DSG2 also colocalized with the adherens junction protein E-cadherin in epithelial cells.  

Fifteen minutes after adding Cy3-labelled Ad3 to polarized cells, viral particles were detectable 

in association with junction-localized DSG2. Similar results were obtained with normal small 

airway epithelial cells incubated with PtDd for 15 min as shown by triple labeling of Cy5-PtDd, 

DSG2, and E-cadherin. PtDd signals were on cell membranes and in the cytoplasm, most likely 

reflecting internalized particles.    

In contrast to polarized epithelial cell lines, in non-polarized cells, such as HeLa cells, 

intercellular junctions (i.e. membrane-localized Claudin 7 and E-cadherin signals) were absent.  

DSG2 and Ad3 were found dispersed over the cell surface. 

These studies showed that the target for AdB-2/3, DSG2, is localized in epithelial junctions.  

5.3 Ad3 interaction with DSG2 triggers EMT 

 Recently, we found that AdB-2/3 interaction with epithelial ovarian cancer cells triggered 

EMT. EMT is characterized by increased expression of mesenchymal markers, increased 

expression of extracellular matrix compounds, decreased expression of epithelial markers, altered 

location of transcription factors, and activation of kinases (Turley et al., 2008).  Here, we 

attempted to prove that Ad3 interaction with DSG2 triggers EMT-like events. To avoid potential 

side effects of viral gene expression on cell morphology, the studies utilized ultraviolet light 

(UV)-inactivated Ad particles and recombinant Ad3 PtDd. Overall, the results with both types of 

particles were similar.  Incubation of epithelial cancer cells with PtDd (Figure 5 in study V) or 

UV-inactivated Ad3 caused remodeling of junctions as reflected by the decrease in of 

membrane/junction-localized Claudin 7 or E-cadherin signals. Furthermore, after PtDd treatment 
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we found stronger immunofluorescence signals of the mesenchymal markers Vimentin and 

Lipocalin 2. To identify intracellular signaling pathways triggered by PtDd interaction with 

DSG2, we studied mRNA expression profiles. Twelve hours after incubation of polarized BT474 

cells with PBS, BsDd, or PtDd, mRNA was analyzed using Affymetrix human ST gene arrays. 

We found that PtDd treatment resulted in >1.5-fold upregulation of 430 genes and >1.5-fold 

down-regulation of 352 genes when compared to PBS-treated cells. The list of altered genes was 

further processed by Pathway‐Express software (Khatri et al., 2006). This computation suggested 

that PtDds mediated marked activation of a number of signaling pathways involved in EMT, 

including phosphatidylinositol, extracellular signal-regulated kinase 1 and 2(ERK1/2) (also 

known as mitogen-activated protein kinase (MAPK), Wnt, adherens junctions, focal adhesion, 

and regulation of actin cytoskeleton signaling pathways.  

Western blot analysis using phosphorylation-specific antibodies showed that PtDd, but not 

BsDd, triggered the activation of PI3K and MAPK/ERK1/2, i.e. key kinases involved in EMT. 

Activation of these pathways was also triggered by DSG2-specific mAbs (6D8, and to a lesser 

degree 10D2, and 13B11) but not with mAbs directed against CD46. PtDd activation of pathways 

was mediated by DSG2, because MAPK/ERK1/2 and PI3K phosphorylation was decreased in 

cells transfected with DSG2 siRNA but not in control siRNA treated cells. Finally, PtDd-

triggered phosphorylation of kinases was absent when cells were pretreated with the ERK1/2 

inhibitor UO126 or the PI3K inhibitor Wortmannin.  

Taken together, our data suggest that Ad3 or Ad3PtDd binding to DSG2 triggers EMT in 

epithelial cells and thus allows for breaching the barrier for infection of epithelial tissues.    

5.4 Ad3 and PtDd increase access to receptors that are trapped in intercellular junctions 

 To test whether Ad3 virion- or Ad3 PtDd-triggered EMT also results in opening of 

intercellular junctions, we studied barrier properties in monolayer of epithelial cells (Figure 6 in 

study V). First we measured the flux of 4 kDa FITC-dextran through confluent polarized BT474 

cells cultured in transwell chambers. We found that PtDd but not BsDd incubation significantly 

increased the permeability coefficient compared to PBS. We then tested whether Ad3 or PtDd-

triggered EMT and transient junction-opening would increase access to proteins that are normally 

not accessible due to epithelial cell junctions. An example for such a junction-localized receptor 
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is CD46, the high-affinity receptor for Ad35 and Ad5/35 (Strauss et al., 2009a). We confirmed 

that a large number of CD46 molecules localizes to junctions of BT474 cells. PtDd pre-treatment 

significantly increased the attachment of 3H-Ad35 to BT474 cells when compared to BsDd 

treatment. An enhancing effect of PtDd on transduction of CD46-targeting Ad vectors was also 

demonstrated in vivo in subcutaneous epithelial tumors. Intravenous injection of PtDd eight hours 

before application of Ad5/35-bGal increased viral transduction. Beta-galactosidase activity, 

measured in tumor lysates 3 days after Ad injection, was 2.3(+/-0.2)x105 rlu/g protein, 2.7(+/-

0.6)x105 rlu/µg, and 38(+/-3.5)x105 rlu/µg for mice that were mock-injected, BsDd-coinjected, 

and PtDd-coinjected, respectively.  

In another line of experiments in breast cancer cell cultures, we found that Her2/neu, the 

receptor for the widely used monoclonal antibody Herceptin (trastuzumab) co-stained with the 

intercellular junction protein Claudin 7. This suggests that not all Her2/neu molecules are 

accessible to Herceptin. Incubation of the Her2/neu-positive breast cancer cell line BT474 with 

PtDd triggered relocalization of Her2/neu to the cell surface. To consolidate this observation, we 

tested whether Ad3 or Ad3PtDd would improve BT474 cell killing by Herceptin. In agreement 

with earlier studies (Bostrom et al., 2009), Herceptin caused death of approximately 25% of 

BT474 cells cells. Pre-incubation of BT474 cells with UV-inactivated Ad3 particles or PtDd 

increased Herceptin cytotoxicity by more than 2-fold. Incubation with UV-inactivated Ad5 

particles or BsDd had no effect on Herceptin killing. In addition, Herceptin and PtDd/Herceptin 

had no cytotoxic effect on the Her2/neu-negative breast cancer cell line MDA-MB-231. The 

enhancing effect of PtDd and Ad3 on Herceptin killing of BT474 cells was mediated by DSG2, as 

downregulation of DSG2 in BT474 cells by DSG2 siRNA abolished this effect. We also studied 

whether inhibition of key pathways involved in EMT affects the enhancing effect of PtDd on 

Herceptin cytotoxicity. These studies showed that inhibtion of PI3K by Wortmannin, as well as 

inhibition of MAPK/ERK by UO126 counteracted PtDd enhancement of Herceptin therapy. 

Importantly, i.v. injection of PtDd (2 mg/kg) into BT474-M1-tumor-bearing mice before 

Herceptin treatment resulted in elimination of tumors, an outcome that could not be achieved with 

Herceptin injection alone.  

These studies have practical implications for the improvement of mAb therapy of cancer. 
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 6  Multimerization of Ad3 fiber knob domains is required for efficient binding of virus to 

desmoglein 2 and subsequent opening of epithelial junctions (VI) 

The protruding fiber is the moiety within the Ad capsid that mediates a high affinity binding 

to the primary attachment receptor. For CAR- and CD46-interacting Ads, the C-terminal homo-

trimeric knob domain binds with high affinity to the receptor and soluble fiber knobs completely 

block infection. Studies of Ad5 showed that the main interaction between Ad5 and CAR involves 

one Ad5 fiber knob monomer and one CAR monomer, implying that one trimeric fiber knob 

binds to three CAR molecules (Kirby et al., 2000). The KD of Ad5 fiber knob interaction with 

CAR is 20-25nM (Lortat-Jacob et al., 2001). Studies of Ad35 (Wang et al., 2007) and Ad11 

(Persson et al., 2007) showed that one CD46 molecule binds between two Ad35 or Ad11 knob 

monomers. This creates a rigid complex between the trimeric knob and three CD46 units. 

Moreover, CD46 has a bent configuration, that upon interaction with Ad knob, becomes 

straightened, thereby allowing additional CD46 and knob domains to interact with each other to 

give a high-affinity interaction (Persson et al., 2007). Surface plasmon resonance (SPR) analyses 

of soluble CD46 and Ad35 knobs showed a KD of ~15.35 nM. The specifics of Ad35 and Ad11 

interaction with CD46 could also explain why CD46-interacting species B Ads are released more 

slowly from endosomes upon uptake into cells than Ad5 (Kalin et al., 2010).  

In the previous study, we identified desmoglein 2 (DSG2) as the main receptor for a group of 

species B Ads, including Ad3.  Ad3 virus binds to DSG2 with a nanomolar affinity (Tuve et al., 

2006). However, in contrast to CAR- and CD46-binding Ads, trimeric Ad3 fiber knob was unable 

to completely block Ad3 virus binding, even when very high fiber knob concentrations were used, 

indicating that other or additional capsid moieties were involved in Ad3 binding (Tuve et al., 

2008).  Efficient blocking of Ad3 infection was achieved with recombinant Ad3 penton-

dodecahedral particles (PtDds), consisting of 12 Ad3 fibers linked to penton bases (Norrby et al., 

1967). Ad3 fiber and penton must be physically linked, because pre-incubation of cells with Ad3 

fiber knobs mixed with penton bases did not block Ad3 binding to the degree seen with PtDds 

(Wang et al., 2011). These findings suggest that DSG2 interacting domain(s) within Ad3 are 

formed by the fiber or fiber/penton only in the spatial constellation that is present in viral 

particles, i.e. Ad3 virions or PtDds. SPR studies with recombinant PtDds showed a KD of 2.5 nM.  

These studies also demonstrated that Ad3 fiber knob dissociated faster from DSG2 than PtDds do. 
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This again indicates that high affinity binding of Ad3 requires additional DSG2 binding site(s) 

within the fiber shaft, fiber multimerization, and/or a specific spatial constrain of fiber knobs. 

6.1 Chimeric Ad5 vectors containing Ad3 fibers use DSG2 as a receptor 

 Our previous studies indicated that DSG2 interacting domain(s) within Ad3 are formed by 

the fiber or fiber/penton only in the spatial constellation that is present in viral particles, i.e. Ad3 

virions or PtDds. To assess a potential role of Ad3 penton (which is present in PtDds) in binding 

to DSG2, we generated an Ad vector that contained Ad3 fibers (Ad5/3S-GFP), but had all other 

capsid proteins (including the penton) derived from Ad5. To evaluate whether the Ad3 fiber shaft 

had a cucial role in Ad3-DSG2 interaction, e.g. contained DSG2 additional binding sites, we also 

generated a chimeric Ad5/3 vector that had the Ad3 shaft substituted by the Ad5 shaft (Ad5/3L-

GFP). Notably, while the Ad3 fiber shaft contains 6 shaft repeat motifs, the Ad5 shaft is longer 

and contains 22 shaft motifs.  For comparison, we also used an Ad3-GFP vector constructed in 

previous study. We analyzed whether Ad5/3S-GFP and Ad5/3L-GFP vectors use DSG2 for 

infection (Figure 1 in study VI). Attachment of 3H-labeled Ad vectors to HeLa cells was blocked 

by recombinant DSG2 protein to the same degree for Ad3-GFP, Ad5/3S-GFP, and Ad3/5L-GFP.  

As expected, recombinant  DSG2 also blocked transduction of all three vectors as measured 

based on GFP intentsity 18 hours after infection of HeLa cells. PtDd, used as a competor for 

DSG2 interaction domains within the Ad virions, blocked Ad3-GFP, Ad5/3S-GFP, and Ad3/5L-

GFP transduction to similar levels. To prove the crucial role of DSG2 in the infection of Ad3 and 

Ad5/3 vectors, we transfected HeLa cells with siRNA specific to DSG2 mRNA or control siRNA. 

DSG2 mRNA knockdown significantly decreased Ad3-GFP, Ad5/3S-GFP, and Ad3/5L-GFP 

transduction (p<0.001). Taken together, these studies show i) Ad5/3 vectors use DSG2 as a 

receptor.  ii) the DSG2 interacting domains of Ad3 are located within the fiber. It appears that the 

Ad pentons (within PtDds or Ad5 and Ad3 virions) merely provides a scaffold for the correct 

spatial constellation of Ad3 fiber knobs for interaction with DSG2.    

6.2 Crosslinking of Ad3 fiber knobs is required for efficient binding to DSG2  

We then focused our attention on the Ad3 fiber (Figure 2 in study VI). We produced in E. coli 

a series of recombinant Ad3 fiber knob proteins, containing the fiber knob and increasing 

numbers of Ad3 shaft repeats (from one to six repeats). Western blot analyses using DSG2 or 
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antiAd3 fiber knob antibodies showed that all recombinant fiber knobs formed trimers. As 

observed previously (Wang et al., 2011), the Ad3 fiber knob plus one shaft domain did not bind 

DSG2 in Western blot analyses, indicating a potential steric influence of the shaft motif on the 

Ad3 knob conformation. However, when used in competition studies, all recombinant fiber knob 

proteins inhibited Ad3-GFP transduction significantly less than PtDds. We then attempted to test 

whether Ad3 fiber knob dimerization would increase DSG2 binding. Because all recombinant 

fiber knobs contained an N-terminal His tag,we mixed Ad3 fiber knobs with antibodies against 

the His tag to achieve their crosslinking (Figure 2F-H in study VI). When anti-His antibodies 

crosslinked fiber knobs were used as competitors, a significant inhibition of Ad3-GFP 

transduction (compared to fiber knobs mixed with control IgG) was observed, suggesting that 

dimers of Ad3 fiber knobs are required for DSG2 binding. This appeared to be a new Ad binding 

strategy unique to Ad3, because anti-His antibody crosslinking of the Ad35 fiber knobs had no 

effect on infection by the CD46-interacting vector Ad35-GFP.    

6.3 Ad3 fiber knob dimers block Ad3 infection  

Crosslinking with antibodies enhanced the blocking effect of Ad3 fiber knobs containing 

fewer shaft motifs than the wt Ad3 fiber knob. For a potential biotechnological application of 

Ad3 fiber knobs as junction openers, we focused our further studies on fiber knob variants with 

the minimum number of shaft motifs, i.e. S-5,6. Based on the finding that fiber knob cross-

linking increased binding to DSG2, we generated dimers of S2/Kn by incorporating dimerization 

domains. To avoid the spontaneous fiber knob dimerization and potential formation of inclusion 

bodies during production in E.coli, we utilized a hetero-dimeric system consisting of E-coil and 

K-coil peptides, which interact with each other with high affinity (Litowski and Hodges, 2002). 

Two fiber knob variants containing five repeats of EVSALEK (K-coil) and KVSALKE (E-coil) 

respectively, a G/S rich-flexibility domain followed by two shaft motifs and the homotrimeric 

fiber knob domain were generated (Figure 3 in study VI). Ad3-K/S2/Kn and Ad3-E/S2/Kn were 

produced separately in E.coli and purified by affinity chromatography. For dimerization, both 

purified proteins were mixed at a 1:1 concentration ratio. The mixture of Ad3-K/S2/Kn and Ad3-

E/S2/Kn blocked Ad3 infection as efficiently as PtDds. Interestingly, Ad3-K/S2/Kn alone had the 

same competing strength as the mixture of both peptides, while Ad3-E/S2/Kn alone only 

inefficiently blocked infection. This suggests that Ad3-K/S2/Kn is able to homodimerize, while 
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Ad3-E/S2/Kn is not. In support of this, we found that further crosslinking with anti-His 

antibodies increased the blocking effect of Ad3-E/S2/Kn (p<0.05) but not that of Ad3-K/S2/Kn.  

6.4 Binding of a minimal dimeric Ad3 fiber knob protein to DSG2  

We then attempted to produce the smallest Ad3 fiber knob dimer possible, containing the K-

coil or E-coil dimerization domain, only one shaft motif, and the homotrimeric Ad3 fiber knob 

(Ad3-K/S/Kn and Ad3-E/S/Kn) (Figure 4 in study VI). Because of their smaller size, such 

proteins have potential advantages in egress from blood vessels, tissue penetration and, 

theoretically, also contain fewer immunogenic epitopes. Ad3-K/S/Kn and Ad3-E/S/Kn were 

produced in E.coli and purified by affinity chromatography. Analysis by polyacrylamid gel 

electrophoresis showed that the vast majority of Ad3-K/S/Kn and Ad3-E/S/Kn were present as 

trimers (~65-70kDa). Ad3-K/S/Kn alone and in combination with Ad3-E/S/Kn were analyzed by 

negative stain electron microscopy to assess their assembly status. Dimers of fiber knobs and 

aggregates thereof were found for both Ad3-K/S/Kn and Ad3-K/S/Kn+Ad3-E/S/Kn, but larger 

aggregates were less abundant in Ad3-K/S/Kn preparations. Both Ad3-K/S/Kn and Ad3-

K/S/Kn+Ad3-E/S/Kn blocked Ad3 attachment to HeLa cells at a level comparable to PtDds. Pre-

incubation of HeLa cells with Ad3-K/S/Kn and Ad3-K/S/Kn+Ad3-E/S/Kn did not affect Ad5 

attachment. As expected, Ad3-K/S/Kn and Ad3-K/S/Kn+Ad3-E/S/Kn also efficiently inhibited 

Ad3 infection.  A side-by-side comparison of the fiber knobs with two and one shaft motif did not 

reveal significant differences in their ability to block Ad3 infection.  

6.5 SPR analysis of dimeric Ad3 fiber knob binding to DSG2  

To study the interaction of Ad3-K/S/Kn and Ad3-K/S/Kn+Ad3-E/S/Kn with DSG2 in more 

detail, we performed surface plasmon resonance (SPR) studies (Figure 5 in study VI). We 

initially designed binding experiments, in which DSG2 molecules were allowed to bind to 

immobilized fiber knobs. For immobilization, fiber knobs were biotinylated and linked via 

streptavidin to sensorchips. Kinetics analyses showed that both Ad3-K/S/Kn and Ad3-

K/S/Kn+Ad3-E/S/Kn similarly recognized DSG2 with a low dissociation at the end of injection. 

Clearly, the binding of soluble DSG2 to fibers only poorly mimics the physiological interaction 

between a cell surface and the virus. We therefore immobilized the DSG2 receptor at the 

sensorchip surface and injected Ad3-K/S/Kn and Ad3-K/S/Kn+Ad3-E/S/Kn, and, for comparison, 
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PtDd and (monomeric) Ad3 fiber knob at concentrations that give a similar SPR response. The 

outcome of these studies should depend on the valence of the fiber knobs. i.e. trimeric for Ad3 

fiber knob (monomer), 2x trimeric for Ad3-K/S/Kn and Ad3-K/S/Kn+Ad3-E/S/Kn, 12x trimeric 

for PtDd). It is further complicated by the fact that within PtDd not all fibers can simultaneously 

interact with DSG2. While the association of the fiber knob dimers was similar, there were clear 

differences in the dissociation behavior. Ad3 fiber knob (monomer) dissociated faster than the 

other three ligands. Almost no dissociation was seen for PtDd and Ad3-K/S/Kn+Ad3-E/S/Kn. 

Ad3-K/S/Kn dissociation was between that of Ad3 fiber knob (monomer) and Ad3-K/S/Kn+Ad3-

E/S/Kn. Although complex, these data clearly show that dimeric Ad3-K/S/Kn and Ad3-

K/S/Kn+Ad3-E/S/Kn dissociate slower from DSG2 than does Ad3 fiber knob (monomer). This 

can be explained by an avidity mechanism, implying that Ad3-K/S/Kn and Ad3-K/S/Kn+Ad3-

E/S/Kn bind to several DSG2 molecules; a mechanism that allows achieving an overall low 

dissociation rate and highly stable attachment. Notably, although it is possible that all dimers in 

Ad3-K/S/Kn+Ad3-E/S/Kn are formed by Ad3-K/S/Kn, differences in dissociation rates argue 

against it. Further studies are required to prove this in detail.  

Interaction of Ad3 with several DSG2 molecules is supported by immunofluorescence 

analyses of epithelial cells. These studies, using Cy3-labelled Ad3 virions, suggest that one virion 

clusters several DSG2 proteins around itself. As outlined later, we hypothesize that this specific 

clustering of receptors has functional consequences with regards to triggering intracellular 

signaling and opening of epithelial junctions. Notably, previously we showed that PtDd binding 

to DSG2 triggers an epithelial-to-mesenchymal transition (EMT) in epithelial cells resulting in 

transient opening of intercellular junctions (Wang et al., 2011). 

6.6 Multimeric DSG2 ligands (Ad3 virions, PtDds, Ad3-K/S/Kn) trigger opening of 

epithelial junctions 

 Epithelial cells maintain several intercellular junctions (tight junctions, adherens junctions, 

gap junctions, and desmosomes), a feature which is often conserved in epithelial cancers in situ 

and in cancer cell lines (Turley et al., 2008). Figure 6A in study VI shows confocal 

immunofluorescence microscopy images of polarized colon carcinoma T84 cells. Shown are the 

cells from the lateral side, i.e. stacked XZ-layers. In the upper panel, intercellular junctions are 

visible as long vertical streaks marked by the adhesion junction protein claudin 7. DSG2 (green) 
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is localized at the apical end of claudin 7 signals. The tight junction protein ZO-1 can be found 

further apical of DSG2 (lower panel). The latter is also visualized in XY images, which show a 

“chicken-wire” network of tight junctions marked by ZO-1 at the apical cell surface, whereas a 

section taken 1um deeper shows DSG2 staining (Figure 6B in study VI). Importantly, exposure 

of T84 cells to Ad3-K/S/Kn triggered partial dissolution of epithelial junctions, reflected in 

decreased staining for DSG2 and ZO-1, in comparison to untreated cells .   

Opening of epithelial junctions be Ad3-K/S/Kn was further confirmed by electron microscopy 

(EM) studies.  EM images of untreated epithelial cells show intact tight and desmosomal 

junctions as judged by the exclusion of the apically applied dye ruthenium red from basolateral 

space (Figure 6D in study VI). The dye appears as an electron-dense line along the cell 

membrane surface. Incubation of epithelial cells with Ad3-K/S/Kn resulted in leakage of 

ruthenium red deep into the lateral space within 1 hour of Ad3-K/S/Kn addition. Disassembly of 

desmosomes in Ad3-K/S/Kn treated cells is clearly visible in Figure 6E.  In addition to Ad3-

K/S/Kn, opening of epithelial junctions was observed in confocal immunofluorescence and EM 

studies also with Ad3 virions, PtDds, and Ad3-K/S/Kn+Ad3-E/S/Kn. Exposure of cells to Ad3 

fiber knob (monomer) or Ad3-E/S/Kn, i.e. DSG2 ligands that are unable to multimerize, had no 

effect on epithelial junctions. These studies indicate that opening of epithelial junctions requires 

dimers or multimers of Ad3 fiber knobs.  

In addition to leakage studies with ruthenium red, we used three functional assays to 

demonstrate opening of epithelial junctions by Ad3-K/S/Kn. i) Exposure of polarized epithelial 

cells to Ad3-K/S/Kn increased the transepithelial permeability within 30 minutes, as shown by 
14C-PEG-4000 transflux studies (Figure 7A in study VI). ii) Previous studies showed that in 

polarized breast cancer BT474-M1 cells, Her2/neu, the target for Herceptin/trastuzumab, is 

trapped in epithelial junctions, and that incubation of BT474-M1 cells with Ad3 PtDds increases 

access to Her2/neu and increases trastuzumab killing of cancer cells (Wang et al., 2011). Here we 

used this assay to study the effect of additional DSG2 ligands on trastuzumab cytotoxicity (Figure 

7B in study VI).We found that Ad3-K/S/Kn significantly increased killing of BT474-M1 cells by 

trastuzumab. In contrast, DSG2 ligands that are not able to dimerize, i.e. Ad3-E/S/Kn and a series 

of anti-DSG2 antibodies, had significant effect on trastuzumab killing. iii) CAR, the receptor for 

Ad5, is localized in tight junctions of polarized T84 epithelial cells.  (Coyne and Bergelson, 
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2005). This is shown by confocal immunofluorescence microscopy in T84 cells (Figure 7C and D 

in study VI). Incubation of these cells with Ad3-K/S/Kn greatly increased CAR staining, which 

now appeared along the lateral membranes and at the cells surface. We speculated that this is the 

result of disassembly of tight junctions and better accessibility of CAR to anti-CAR antibodies 

that were applied to the apical side of T84 cells. Another potential read-out for disruption of tight 

junctions and CAR accessibility is transduction with a CAR-targeting Ad vectors. Infection of 

polarized T84 cells with Ad5-GFP at an MOI of 250pfu/cell resulted in transduction of 8(+/-2)% 

of cells (based on GFP-positive cells counted 20 hours after infection) (Figure 7E in study VI). 

Ad5-GFP infection in the presence of Ad3-K/S/Kn yielded 38(+/-9)% of GFP positive cells.  

Ad3-GFP in the presence of dilution buffer or Ad3-K/S/Kn transduced 17(+/-6)% or 68(+/-17)% 

of T84 cells, respectively. This is in agreement with an earlier study, showing that Ad3 infects 

polarized epithelial cells more efficiently than Ad5 (Strauss et al., 2009b).  This is most likely due 

to its ability to bind to DSG2 and trigger junction opening. Ad3-K/S/Kn increased Ad3-GFP 

transduction. We speculate that the relatively small size of the Ad3-K/S/Kn protein and its high 

concentration initially help reach more DSG2 receptors than can be targeted with Ad3 virions to 

open the tight junctions.      

Overall, our functional studies show that Ad3-K/S/Kn can trigger opening of epithelial 

junctions, while ligands that are unable to multimerize have no effect on junctions.  The small 

recombinant protein Ad3-K/S/Kn has potential as a co-therapeutic for mAbs.  
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SUMMARY AND CONCLUSIONS 

Species B Ads are important human pathogens and have great potential as in vitro and in vivo 

gene transfer vectors. The goal of this thesis was to better understand virological and translational 

aspects of species B Ads. As outlined below, the specific aims outlined on page 38 have been 

accomplished.  

Aim 1. Identify the CD46 binding sites within the Ad35 fiber knob. Studies with random 

mutant Ad35 fiber knob library identified four aa residues (Phe242, Arg279, Ser282, Glu302) 

that abolished Ad35 knob binding to CD46 without affecting knob trimerization. Crystal structure 

analysis revealed two main contact areas on the opposite sites of the fiber knob. This implies that 

one CD46 unit binds between two Ad35 knob monomers and indicates that CD46-interacting 

species B Ads developed a different strategy to bind to their receptor than Ads that interact with 

CAR.  The specific configuration of Ad35 binding to CD46 could also explain why CD46 

interacting species B Ads are released more slowly from endosomes upon uptake into cells than 

Ad5 (Shayakhmetov et al., 2003). The rigid binding of Ad35 fiber knob to CD46 is also 

important for our approach to sensitize tumor cells to mAb therapy (see Aim 4). 

Aim 2. Study the in vitro and in vivo properties of Ad vectors with increased affinity to 

CD46. Gene transfer vectors containing Ad35 fibers have shown promise for cancer and stem cell 

gene therapy. We attempted to improve the in vitro and in vivo infection properties of these 

vectors by increasing their affinity to the Ad35 fiber receptor CD46. The rationale for such 

vectors comes from studies with phage antibody expression libraries and more recently from 

studies with aptamers, protein-binding oligonucleotides. The goal of phage and aptamer library 

screening is to identify variants with the highest affinity, because in in vitro and in vivo studies 

with single-chain variable fragment fragments and aptamers, higher affinity usually directly 

translates into more-efficient binding to receptor-positive cells. We constructed Ad vectors 

containing either the wt Ad35 fiber knob (Ad5/35) or Ad35 knob mutants with 4-fold- and 60-

fold-higher affinity to CD46 (Ad5/35+ and Ad5/35++, respectively). In in vitro studies with cell 

lines, the higher affinities of Ad5/35+ and Ad5/35++ to CD46 did not translate into 

correspondingly higher transduction efficiencies, regardless of the CD46 receptor density present 

on cells. However, in vivo, in a mouse model with preestablished CD46high liver metastases, i.v. 

injection of Ad5/35++ resulted in more-efficient tumor cell transduction. We conclude that 
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Ad5/35 vectors with increased affinity to CD46 have an advantage in competing with non-CD46-

mediated sequestration of vector particles after i.v. injection. 

Aim 3. Study the receptor usage of a newly emergent Ad14a. A new genomic variant of Ad 

14, designated Ad14a, has been recently associated with several outbreaks with fatal 

consequences. Compared to the Ad14 reference strain (de Wit), this new virus had a deletion of 

two aa residues in the fiber protein knob. We tested whether this mutation changed receptor usage 

of Ad14a compared to Ad14-de Wit. Competition studies with radio-labeled viruses revealed that 

both Ad14-de Wit and Ad14a used the same receptor X. Taken together, our data indicate that the 

251Lys/252Glu deletion in the Ad14a fiber and the 366Asp→Asn mutation in the Ad14a penton 

did not significantly influence the attachment and internalization of this virus. Most likely, 

differences in post-internalization steps or in the ability to elude the host immune response 

account for the higher virulence of Ad14a compared to Ad14-de Wit. The identification of 

receptor X (see Aim 5) has great importance for understanding the pathogenesis of Ad14a 

infections and the development of anti-viral therapeutics.  

Aim 4. Study whether a high affinity Ad35 fiber knob can enhance the anticancer efficacy 

of monoclonal antibodies. mAbs have emerged as a class of novel oncology therapeutics. 

Despite their commercial successes, each of these mAbs is only effective in a minority of patients. 

It is now recognized that one of the major impediments to their therapeutic efficacy is the 

overexpression of complement inhibitory proteins, e.g. CD46, on the cell surface of solid tumors 

and hematologic malignancies. To address the problem we capitalized on our earlier finding that 

Ad35 uses CD46 as a high-affinity attachment receptor. From an E.coli expression library of 

Ad35 fiber knob mutants, we selected a variant (Ad35K++) that had a higher affinity to CD46 

than the natural Ad35 fiber knob. Ad35K++ is produced as a soluble protein in E.coli and is 

purified by affinity chromatography. Ad35K++ binding results in the transient removal of CD46 

from the surface of lymphoma, leukemia, and other tumor cells, including breast and colon cancer 

cells, for approximately 72 hours post treatment. During this time period, tumor cells that are 

normally resistant to mAb therapy become susceptible and can be killed by complement 

dependent cytotoxicity. In in vitro studies, we demonstrated an enhancing effect of Ad35K++ for 

the following mAbs: rituximab/Rituxan (used for the treatment of B-cell non-Hodgkin’s 

lymphoma), alemtuzumab/Campath (for chronic lymphocytic leukemia), trastuzumab/Herceptin 
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(for breast cancer), and certiximab/Erbitux for colon cancer) and ofatumumab/Arzerra (for 

lymphoma and CLL). Thus far, in vivo studies have been completed for the combination of 

Ad35K++ and the CD20-targeting mAb rituximab.  In these studies, we demonstrated in two 

murine lymphoma models that rituximab plus Ad35K++ achieved superior anti-tumor effects and 

animal survival when compared to animals treated with rituximab alone. For example, sixty 

percent of mice injected with human lymphoma Raji cells were cured with Ad35K++ / rituximab 

treatment, while all mice treated with only rituximab died within 19 days after Raji cell 

transplantation. Based on these efficacy data we are currently planning to gather sufficient safety 

data in mice and non-human primates to submit an IND application for a phase I clinical trial for 

a combination therapy of Ad35K++ and rituximab in non-Hodgkin’s lymphoma patients.   

Aim 5. Identify the receptor for Ad3, Ad7, Ad11, and Ad14. We have identified desmoglein 

2 (DSG2) - a calcium-binding transmembrane glycoprotein and component of the epithelial cell-

cell adhesion structure -as the primary high-affinity receptor used by Ad3, Ad7, Ad11, and Ad14. 

Loss- and gain-of-function studies confirmed DSG-2 to be crucial for the binding, infection and 

spread of these serotypes. Further studies demonstrated that chimeric Ad5 vectors with Ad3 

fibers also use DSG2 as a receptor. Murine DSG2 cannot be used as an AdB-2/3 receptor. Based 

on this finding we are currently generating mice that contain the human DSG2 locus and express 

DSG2 in a pattern and at levels similar to humans.  

Aim 6. Study structural details of Ad3 virus interaction with DSG2. While Ad binding CAR 

and CD46 involves only a high affinity interaction between the fiber knob domain and the 

cellular receptor, we found that binding of Ad3 to DSG2  requires multimerization of the fiber 

knob domain.  We therefore designed two recombinant Ad3 fiber knob domains containing 

dimerization domains. Both proteins can be can be produced in E.coli and purified by affinity 

chromatography. Upon mixing they dimerize (Ad3K-K dimer). Ad3K-K efficiently and 

specifically blocked Ad3 infection. Ad3K-K is a minimal Ad3-derived DSG2 ligand formed by 

two fiber knob domains. This protein, with a molecular weight of approximately 50 kDa, is 

produced in E. coli and can be easily purified. Ongoing crystal structure analyses are aimed 

towards the identification of aa residues that are involved in the interaction of Ad3K-K with 

DSG2. With regards to DSG2, we found that  Ad3 binding involved the third and fourth 

extracellular domain of DSG2. Ad3K-K is used as a co-therapeutic in Aim 7.   
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Aim 7. Study the functional consequences of Ad3-DSG2 interaction. We also studied the 

consequences of adenoviral-DSG-2 interaction, following exposure to Ad3 virions or Ad3K-K, 

using epithelial cancer cell lines. Pathways involved in epithelial-to-mesenchymal transition were 

found to be activated, leading to transient intercellular junction opening. This finding has 

implications for Ad spread in epithelial tissues and for cancer therapy as intercellular junctions 

represent physical obstacles for access and intratumoral dissemination of anti-cancer therapeutics. 

We demonstrated that pre-incubation of cancer cell lines with Ad3K-K increased the cytotoxicity 

of trastuzumab and cetuximab - monoclonal antibodies which bind to the Her2/neu receptor and 

EGFR respectively. In vivo, in mice carrying Her2/neu-positive breast cancer xenografts, pre-

injection of Ad3K-K significantly increased the therapeutic efficacy of trastuzumab.  

In summary, these studies provide a basis for a better understanding of species B virus 

infection and pathology. The identification of DSG2 as a receptor has implication for the field of 

cancer virotherapy because Ad3-based vectors and Ad3-fiber containing Ad5 vectors are being 

used clinically. Finally the identification of two small species B Ad-derived proteins (Ad35K++ 

and Ad3K-K) is of importance for the improvement of cancer therapy with mAbs and our current 

efforts are focused on the clinical testing of these proteins.  
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