
Compression of Weighted Graphs

Hannu Toivonen
Department of Computer Science and HIIT

University of Helsinki, Finland
hannu.toivonen@cs.helsinki.fi

Fang Zhou
Department of Computer Science and HIIT

University of Helsinki, Finland
fang.zhou@cs.helsinki.fi

Aleksi Hartikainen
Department of Computer Science and HIIT

University of Helsinki, Finland
aleksi.hartikainen@helsinki.fi

Atte Hinkka
Department of Computer Science and HIIT

University of Helsinki, Finland
atte.hinkka@cs.helsinki.fi

ABSTRACT
We propose to compress weighted graphs (networks), moti-
vated by the observation that large networks of social, bi-
ological, or other relations can be complex to handle and
visualize. In the process also known as graph simplification,
nodes and (unweighted) edges are grouped to supernodes
and superedges, respectively, to obtain a smaller graph. We
propose models and algorithms for weighted graphs. The in-
terpretation (i.e. decompression) of a compressed, weighted
graph is that a pair of original nodes is connected by an
edge if their supernodes are connected by one, and that the
weight of an edge is approximated to be the weight of the
superedge. The compression problem now consists of choos-
ing supernodes, superedges, and superedge weights so that
the approximation error is minimized while the amount of
compression is maximized.

In this paper, we formulate this task as the ’simple
weighted graph compression problem’. We then propose a
much wider class of tasks under the name of ’generalized
weighted graph compression problem’. The generalized task
extends the optimization to preserve longer-range connec-
tivities between nodes, not just individual edge weights. We
study the properties of these problems and propose a range
of algorithms to solve them, with different balances between
complexity and quality of the result. We evaluate the prob-
lems and algorithms experimentally on real networks. The
results indicate that weighted graphs can be compressed ef-
ficiently with relatively little compression error.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks;
H.2.8 [Database Applications]: Data Mining; H.4
[Information Systems Applications]: Miscellaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

General Terms
Algorithm, Experimentation, Performance

Keywords
Weighted Graph, Network, Compression, Graph Mining

1. INTRODUCTION
Graphs and networks are used in numerous applications

to describe relationships between entities, such as social re-
lations between persons, links between web pages, flow of
traffic, or interactions between proteins. In many applica-
tions, relationships have weights that are central to any use
or analysis of graphs: how frequently do two persons com-
municate or how much do they influence each other’s opin-
ions; how much web traffic flows from one page to another
or how many cars drive from one crossing to another; or how
strongly does one protein regulate the other one?

We propose models and methods for the compression of
weighted graphs into smaller graphs that contain approxi-
mately the same information. In this process, also known as
graph simplification in the context of unweighted graphs [12,
14], nodes are grouped to supernodes, and edges are grouped
to superedges between supernodes. A superedge then rep-
resents all possible edges between the pairs of nodes in the
adjacent supernodes.

This problem is different from graph clustering or parti-
tioning where the aim is to find groups of strongly related
nodes. In graph compression, nodes are grouped based on
the similarity of their relationships to other nodes, not by
their (direct) mutual relations.

As a small example, consider the co-authorship social net-
work in Figure 1a. It contains an excerpt from the DBLP
Computer Science Bibliography1, a subgraph containing Ji-
awei Han and Philip S. Yu and a dozen related authors.
Nodes in this graph represent authors and edges represent
co-authorships. Edges are weighted by the number of co-
authored articles.

Compressing this graph just by about 30% gives a simpler
graph that highlights some of the inherent structure or roles
in the original graph (Figure 1b). For instance, Ke Wang
and Jianyong Wang have identical sets of co-authors (in this
excerpt from DBLP) and have been grouped together. This
is also an example of a group that would not be found by

1http://dblp.uni-trier.de/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14922321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jiawei Han

Jian Pei

36

Philip S. Yu

43

Xifeng Yan

47

Xiaoxin Yin

16

Hong Cheng

25

Wei Fan

8

Jiong Yang

11

Charu C. Aggarwal

6

Jianyong Wang

17

11Ke Wang

20

Haixun Wang

1221

9

8

2522

69

9

7

Aidong Zhang

11 Daxin Jiang

12

1813

14 45

(a) Before compression (14 nodes, 26 edges)

Jiawei Han

Philip S. Yu

43

Jiong Yang, Wei Fan, Xifeng Yan

22

Ke Wang, Jianyong Wang

15

Charu C. Aggarwal

6

Hong Cheng, Xiaoxin Yin

20

Jian Pei

36

23 10

14

69

8

11Haixun Wang

12

45

Daxin Jiang, Aidong Zhang

15

12

(b) After some compression (9 nodes, 16 edges)

Figure 1: A neighborhood graph of Jiawei Han in the DBLP bibliography.

traditional graph clustering methods, since the two nodes
grouped together are not directly connected. Daxin Jiang
and Aidong Zhang have been grouped, but additionally the
self-edge of their supernode indicates that they have also
authored papers together.

Groups that could not be obtained by the existing com-
pression algorithms of [12, 14] can be observed among the
six authors that (in this excerpt) only connect to Jiawei
Han and Philip S. Yu. Instead of being all grouped together
as structurally equivalent nodes, we have three groups that
have different weight profiles. Charu C. Aggarwal is a group
by himself, very strongly connected with Philip S. Yu. A sec-
ond group includes Jiong Yang, Wei Fan, and Xifeng Yan,
who are roughly equally strongly connected to both Jiawei
Han and Philip S. Yu. The third group, Hong Cheng and
Xiaoxin Yin, are more strongly connected to Jiawei Han.
Such groups are not found with methods for unweighted
graphs [12, 14].

In what we define as the simple weighted graph compres-
sion problem, the approximation error of the compressed
graph with respect to original edge weights is minimized
by assigning each superedge the mean weight of all edges
it represents. For many applications on weighted graphs
it is, however, important to preserve relationships between
faraway nodes, too, not just individual edge weights. Mo-
tivated by this, we also introduce the generalized weighted
graph compression problem where the goal is to produce a
compressed graph that maintains connectivities across the
graph: the best path between any two nodes should be ap-
proximately equally good in the compressed graph as it is
in the original graph, but the path does not have to be the
same.

Compressed weighted graphs can be utilized in a num-
ber of ways. Graph algorithms can run more efficiently on
a compressed graph, either by considering just the smaller
graph consisting of supernodes and superedges, or by de-
compressing parts of it on the fly when needed. An interest-
ing possibility is to provide an interactive visualization of a
graph where the user can adjust the abstraction level of the
graph on the fly.

The main contributions of this paper are the following.
1. We present the simple and generalized weighted graph

compression problems. The compressed graphs can be de-
compressed easily, or they can be used without a separate
decompression by many graph algorithms.

2. We analyze the problem and derive successive bounds
for the distances between graphs.

3. We present several algorithms for the weighted graph
compression problems. The algorithms exhibit different
time/quality trade-offs.

4. We give extensive experimental results on real weighted
graphs. The experiments show that weighted graphs can be
compressed effectively and efficiently, and that compression
can have surprisingly little effect on clustering.

The rest of this paper is organized as follows. We for-
mulate and analyze the weighted graph compression prob-
lems in Section 2. Related work is briefly reviewed in Sec-
tion 3. We give algorithms for the weighted graph compres-
sion problems in Section 4 and evaluate them experimentally
in Section 5. Section 6 contains concluding remarks.

2. PROBLEM DEFINITION
The goal is to compress a given weighted graph into a

smaller one. We address two variants of this problem. In
the first one, the simple weighted graph compression prob-
lem, the goal is to produce a compressed graph that can
be decompressed into a graph similar to the original one. In
the second variant, the generalized weighted graph compres-
sion problem, the decompressed graph should approximately
preserve the strengths of connections between all nodes.

2.1 Weighted and compressed graphs
We start by defining concepts and notations common to

both problem variants of weighted graph compression.

Definition A weighted graph is a triple G = (V,E,w),
where V is a set of vertices (or nodes), E ⊂ V × V is a set
of edges, and w : E → R+ assigns a (non-negative) weight
to each edge e ∈ E. For notational convenience, we define
w(u, v) = 0 if (u, v) 6∈ E.

In this paper, we actually assume that graphs and edges
are undirected, and in the sequel use notations such as
{u, v} ∈ V × V in the obvious way. The definitions and
algorithms can, however, be easily adapted for the directed
case. In the compressed graph we also use self-edges, i.e.,
an edge from a node back to itself. The following definition
of a compressed graph largely follows the definition of graph
summarization for the unweighted case [12]. The essential
role of weights will be defined after that.

Definition A weighted graph S = (V ′, E′, w′) is a com-
pressed representation (or compressed graph) of G if V ′ =
{v′1, . . . , v′n} is a partition of V (i.e., v′i ⊂ V for all i,
∪iv′i = V , and v′i ∩ v′j = ∅ for all i 6= j). The nodes v′ ∈ V ′
are also called supernodes, and edges e′ ∈ E′ are also called
superedges.

We use the notation com : V → V ′ to map original nodes
to the corresponding supernodes: com(u) = v′ if and only if
u ∈ v′ ∈ V ′.

The idea is that a supernode represents all original nodes
within it, and that a single superedge represents all possi-
ble edges between the corresponding original nodes, whether
they exist in G or not. Apparently, this may cause structural
errors of two types: a superedge may represent edges that do
not exist in the original graph, or edges in the original graph
are not represented by any superedge. (Our algorithms only
commit the first kind of errors, i.e., they will not miss any
edges, but they may introduce new ones.) In addition, edge
weights may have changed in compression. We will next
formalize these issues using the concepts of decompressed
graphs and graph dissimilarity.

Definition Given G and S as above, the decompressed
graph dec(S) of S is a weighted graph dec(S) = (V,E′′, w′′)
such that E′′ = {{u, v} ∈ V × V | {com(u), com(v)} ∈ E′}
and w′′({u, v}) = w′({com(u), com(v)}). (By the definition
of compressed representation, V = ∪ni=1V

′
i .)

In other words, a decompressed graph has the original
set of nodes V , and there is an edge between two nodes
exactly when there is a superedge between the corresponding
supernodes. The weight of an edge equals the weight of the
corresponding superedge.

Definition Given G and S as above, the compression ratio
of S (with respect to the original graph G) is defined as

cr(S) = |E′|
|E| .

The compression ratio measures how much smaller the
compressed graph is. The number of supernodes vs. original
nodes is not included in the definition since nodes are ac-
tually not compressed, in the sense that their identities are
preserved in the supernodes and hence no space is saved.
They are also always completely recovered in decompres-
sion.

2.2 Simple weighted graph compression
Compression ratio does not consider the amount of er-

rors introduced in edges and their weights. This issue is
addressed by a measure of dissimilarity between graphs. We
first present a simple distance measure that leads to the
simple weighted graph compression problem.

Definition The simple distance between two graphs Ga =
(V,Ea, wa) and Gb = (V,Eb, wb), with an identical set of
nodes V , is

dist1(Ga, Gb) =

√ ∑
{u,v}∈V×V

(wa({u, v})− wb({u, v}))2.

(1)

This distance measure has an interpretation as the Eu-
clidean distance between Ga and Gb in a space where each

pair of nodes {u, v} ∈ V × V has its own dimension. Given
the distance definition, the dissimilarity between a graph G
and its compressed representation S can then be defined sim-
ply as dist1(G, dec(S)). The distance can be seen as the cost
of compression, whereas the compression ratio represents the
savings. Our goal is to produce a compressed graph which
optimizes the balance between these two. In particular, we
will consider the following form of the problem.

Definition Given a weighted graph G and a compression
ratio cr, 0 < cr < 1, the simple weighted graph compression
problem is to produce a compressed representation S of G
with cr(S) ≤ cr such that dist1(G, dec(S)) is minimized.

Other forms can be just as useful. One obvious choice
would be to give a maximum distance as parameter, and
then seek for a minimum compression ratio. In either case,
the problem is complex, as the search space consists of all
partitions of V . However, the compression ratio is non-
increasing and graph distance non-decreasing when nodes
are merged to supernodes, and this observation can be used
to devise heuristic algorithms for the problem, as we do in
Section 4.

2.3 Generalized weighted graph compression
We next generalize the weighted graph compression prob-

lem. In many applications, it is not the individual edge
weights but the overall connectivity between nodes that mat-
ters, and we propose a model that takes this into account.
The model is based on measuring the best paths between
nodes, and trying to preserve these qualities. We start with
some preliminary definitions and notations.

Definition Given a graph G = (V,E,w), a path P is a set
of edges P = {{u1, u2}, {u2, u3}, . . ., {uk−1, uk}} ⊂ E. We

use the notation u1
P
; uk to say that P is a path between

u1 and uk, and that u1 and uk are the endnodes of P .

The definition of how good a path is and which is the best
one depends on the kind of graph and the application. For
the sake of generality, we parameterize our formulation by a
path quality function q. For example, in a flow graph where
edge weights are capacities of edges, path quality q can be
defined as the maximum flow through the path (i.e., as the
minimum edge weight on the path). In a probabilistic or
uncertain graph where edge weights are probabilities that
the edge exists, q often is defined as the probability that
the path exists (i.e., as the product of the edge weights).
Without loss of generality, we assume that the value of any
path quality function is positive, and that a larger value of
q indicates better quality. We also parameterize the gener-
alized definition by a maximum path length λ. The goal of
generalized weighted graph compression will be to preserve
all pairwise connectivities of length at most λ.

Definition Given a weighted graph G = (V,E,w), a path
quality function q, and a positive integer λ, the λ-connection
between a pair of nodes u and v is defined as

Qλ(u, v;G) =

{
max

P⊂E:u
P
;v,|P |≤λ

q(P) if such P exists

0 otherwise,

i.e., as the quality of the best path, of length at most λ,
between u and v. If G is obvious in the context, we simply
write Qλ(u, v).

Definition LetGa andGb be weighted graphs with an iden-
tical set V of nodes, and let λ be a positive integer and q
a path quality function as defined above. The generalized
distance between Ga and Gb (with respect to λ and q) is

distλ(Ga, Gb) =

√ ∑
{u,v}∈V×V

(Qλ(u, v;Ga)−Qλ(u, v;Gb))2.

(2)

Definition Given a weighted graph G and a compression
ratio cr, 0 < cr < 1, the generalized weighted graph compres-
sion problem is to produce a compressed representation S of
G with cr(S) ≤ cr such that distλ(G, dec(S)) is minimized.

The simple weighted graph compression problem defined
earlier is an instance of this generalized problem with λ = 1
and q({e}) = w(e). In this paper, we will only consider the
two extreme cases with λ = 1 and λ = ∞. For notational
convenience, we often write dist(·) instead of distλ(·) if the
value of λ is not significant.

2.4 Optimal superedge weights and mergers
Given a compressed graph structure, it is easy to set the

weights of superedges to optimize the simple distance mea-
sure dist1(·). Each pair {u, v} ∈ V × V of original nodes
is represented by exactly one pair {u′, v′} ∈ V ′ × V ′ of su-
pernodes, including the cases u = v and u′ = v′. In order
to minimize Equation 1, given the supernodes V ′, we need
to minimize for each pair {u′, v′} of supernodes the sum∑
{u,v}∈u′×v′(w({u, v}) − w′({u′v′}))2. This sum is mini-

mized when the superedge weight is the mean of the original
edge weights (including “zero-weight edges” for those pairs
of nodes that are not connected by an edge):

w′({u′, v′}) =

∑
{u,v}∈u′×v′ w({u, v})

|u′| |v′| , (3)

where |x| is the number of original nodes in supernode x.
The compression algorithms that we propose below work

in an incremental, often greedy fashion, merging two supern-
odes at a time into a new supernode (following the ideas of
references [12, 14]). The merge operation that these algo-
rithms use is specified in Algorithm 1. It takes a graph and
its two nodes as parameters, and it returns a graph where
the given nodes are merged into one and the edge weights of
the new supernode are set according to Equation 3. Line 6
of the merge operation sets the weight of the self-edge for
the supernode. When λ = 1, function W (x, y) returns the
sum of weights of all original edges between x and y using
their mean weight Q1({x, y};S). The weight of the self-edge
is then zero and the edge non-existent if neither u or v has
a self-edge and if there is no edge between u and v.

Setting superedge weights optimally is much more compli-
cated for the generalized distance (Equation 2) when λ > 1:
edge weights contribute to best paths and therefore distances
up to λ hops away, so the distance cannot be optimized in
general by setting each superedge weight independently. We
use the merge operation of Algorithm 1 as an efficient, ap-
proximate solution also in these cases, and leave more opti-
mal solutions for future work.

2.5 Bounds for distances between graphs
Our algorithms for the compression problem produce the

compressed graph S by a sequence of merge operations, i.e.,

Algorithm 1 merge(u, v, S)

Input: Nodes u and v, and a compressed graph S =
(V,E,w) s.t. u, v ∈ V

Output: A compressed graph S′ obtained by merging u
and v in S

1: S′ ← S {i.e., (V ′, E′, w′)← (V,E,w)}
2: z ← {u ∪ v}
3: V ′ ← V ′ \ {u, v} ∪ {z}
4: for all x ∈ V s.t. u 6= x 6= v, and {u, x} or {v, x} ∈ E

do
5: w′({z, x}) = |u|Qλ({u,x};S)+|v|Qλ({v,x};S)

|u|+|v|

6: w′({z, z}) = W (u,u)+W (v,v)+W (u,v)
|z|(|z|−1)/2

7: return S′

8: function W (x, y):
9: if x 6= y then

10: return Qλ({x, y};S)|x||y|
11: else
12: return Qλ({x, x};S)|x|(|x| − 1)/2

as a sequence S0 = G,S1, . . . , Sn = S of increasingly com-
pressed graphs. Since the distance function dist(·) is a met-
ric and satisfies the triangle inequality (recall its interpre-
tation as Euclidian distance), the distance of the final com-
pressed graph S from the original graph G can be upper-
bounded by

dist(G, dec(S)) ≤
∑n
i=1 dist(dec(Si−1), dec(Si)).

An upper bound for the distance between two graphs can
be obtained by considering only the biggest distance over
all pairs of nodes. Let Ga and Gb be weighted graphs
with an identical set V of nodes, and denote the maxi-
mum distance for any pair of nodes by dmax(G1, G2) =
max{u,v}∈V×V |(Qλ(u, v;Ga)−Qλ(u, v;Gb))|. We now have
the following bound:

dist(G1, G2) ≤
√∑

{u,v}∈V×V dmax(G1, G2)2

∝ dmax(G1, G2).
(4)

This result can be used by compression algorithms to bound
the effects of potential merge operations.

2.6 A bound on distances between nodes
We now derive an upper bound for dmax(S, S′) above

when S′ = merge(u, v, S) for some nodes u and v in V (cf.
Algorithm 1). Let dmax(u, v;S) be the maximum difference
of weights between any two edges merged together as the
result of merging u and v:

dmax(u, v;S) =

max{ max
x:{u,x} or {v,x}∈E

(|Qλ(u, x;S)−Qλ(v, x;S)|),

|Qλ(u, u;S)−Qλ(v, v;S)|, (5)

|Qλ(u, u;S)−Qλ(u, v;S)|,
|Qλ(v, v;S)−Qλ(u, v;S)| }.

The first element is the maximum over all edges to neighbor-
ing nodes x, and the rest are the differences between edges
that are merged into the self-edge.

For λ = 1 it is fairly obvious that we have the bound

dmax(S,merge(u, v, S)) ≤ dmax(u, v;S), (6)

since all effects of merge operations are completely local to
the edges adjacent to the merged nodes. The situation is
more complicated for λ = ∞ since a merger can also affect
arbitrary edges. Luckily, many natural path quality func-
tions q have the property that a change in the weight of an
edge (from w(e) to w′(e)) changes the quality of the whole
path (from q(P) to q′(P)) at most as much as it changes the
edge itself:

|q(P)− q′(P)|
q(P)

≤ |w(e)− w′(e)|
w(e)

.

Path quality functions q that have this property include the
sum of edge weights (e.g., path length), product of edge
weights (e.g., path probability), minimum edge weight (e.g.,
maximum flow), maximum edge weight, and average edge
weight. Based on this property, we can infer that the biggest
distance after merging u and v will be seen on the edges
connecting u, v and their neighbors, i.e., that the bound of
Equation 6 holds also for λ =∞ for many usual path quality
functions.

Based on Equations 4 and 6, we have a fast way to bound
the effect of merging any two nodes. We will use this bound
in some of our algorithms.

3. RELATED WORK
Graph compression as presented in this paper is based

on merging nodes that have similar relationships to other
entities i.e., that are structurally most equivalent — a
classic concept in social network analysis [11]. Structural
equivalence and many other types of relations between (su-
per)nodes have been considered in social networks under
block modeling (see, e.g., [3]), where the goal is both to iden-
tify supernodes and to choose among the different possible
types of connections between them. Our approach (as well
as that of references [12, 14], see below) uses only two types:
“null” (no edges) and “complete” (all pairs are connected),
as these seem to be best suited for compression.

Graph compression has recently attracted new interest.
The work most closely related to ours is by Navlakha et
al. [12] and Tian et al. [14], who independently proposed to
construct graph summaries of unweighed graphs by grouping
nodes and edges to supernodes and superedges. We general-
ize these approaches in two important and related directions:
to weighted graphs, and to long-range, indirect (weighted)
connections between nodes.

Both above-mentioned papers also address issues we do
not consider here. Navlakha et al. [12] propose a repre-
sentation which has two parts: one is a graph summary
(in our terminology, an unweighted compressed graph), the
other one is a set of edge corrections to fix the errors intro-
duced by mergers of nodes and edges to superedges. Tian
et al. [14] consider labeled graphs with categorical node
and edge attributes, and the goal is to find relatively ho-
mogeneous supernodes and superedges. This approach has
been generalized by Zhang et al. [17] to numerical node at-
tributes which are then automatically categorized. They
also addressed interactive drill-down and roll-up operations
on graphs. Tian et al. used both top-down (divisive) and
bottom-up (agglomerative) algorithms, and concluded that
top-down methods are more practical in their problem [14],
whereas Navlakha et al. had the opposite experience [12].
This difference is likely due to different use of node and edge
labels. The methods we propose work bottom-up since we

have no categorical attributes to guide a divisive approach
like Tian et al. had.

Unweighted graph compression techniques have been used
to simplify graph storage and manipulation. For exam-
ple, Chen et al. [4] successfully applied a graph compres-
sion method to reduce the number of embeddings when
searching frequent subgraphs in a large graph. Navlakha
et al. [13] revealed biological modules with the help of com-
pressed graphs. Furthermore, Chen et al. [5] incorporated
the compressed graph notion with a generic topological
OLAP framework to realize online graph analysis.

There are many related but subtly different problems.
Graph partitioning methods (e.g. [8, 6]) aim to find groups
of nodes that are more strongly connected to each other than
to nodes in other groups. Extraction of a subgraph, whether
based on a user query (e.g. [7, 10]) or not (e.g., [16, 9, 15])
produces a smaller graph by just throwing out edges and
nodes. Web graph compression algorithms aim to produce
as compact a representation of a graph as possible, in dif-
ferent formats (e.g., [1, 2]). For more related work, we refer
to the good overviews given in references [12, 14].

4. ALGORITHMS
We next propose a series of algorithms for the weighted

graph compression problem. All of the proposed algorithms
work more or less in a greedy fashion, merging two (su-
per)nodes and their edges at a time until the specified com-
pression rate is achieved. All these algorithms have the fol-
lowing input and output:

Input: weighted graph G = (V,E,w), compression ratio cr
(0 < cr < 1), path quality function q, and maximum
path length λ ∈ N.

Output: compressed weighted graph S = (V ′, E′, w′) with
cr(S) ≤ cr, such that dist(G, dec(S)) is minimized.

Brute-force greedy algorithm. The brute-force greedy
method (Algorithm 2) computes the effects of all possible
pairwise mergers (Line 4) and then performs the best merger
(Line 5), and repeats this until the requested compression
rate is achieved. The algorithm generalizes the greedy algo-
rithm of Navlakha et al. [12] to distance functions distλ(·)
that take the maximum path length λ and the path quality
function q as parameters.

Algorithm 2 Brute-force greedy search

1: S ← G {i.e., (V ′, E′, w′)← (V,E,w)}
2: while cr(S) > cr do
3: for all pairs {u, v} ∈ V ′ × V ′ do {(*)}
4: d{u,v} ← dist(G, dec(merge(u, v, S)))
5: S ← merge(arg min{u,v} d{u,v}, S)
6: return S

(*) 2-hop optimization can be used, see text.

The worst-case time complexity for simple weighted graph
compression is O(|V |4), and for generalized compression
O(|V |3|E| log |V |). We omit the details for brevity.

2-hop optimization. The brute-force method, as well as all
other methods we present here, can be improved by the 2-
hop optimization. Instead of arbitrary pairs of nodes, the 2-
hop optimized version only considers u and v for a potential
merger if they are exactly two hops from each other. Since

2-hop neighbors have a shared neighbor that can be linked
to the merged supernode with a single superedge, some com-
pression may result. The 2-hop optimization is safe in the
sense that any merger by Algorithm 1 that compresses the
graph involves 2-hop neighbors.

The time saving by 2-hop optimization can be significant:
for the brute-force method, for instance, there are approxi-
mately O(deg |E|) feasible node pairs with the optimization,
where deg is the average degree, instead of the O(|V |2) pairs
in the unoptimized algorithm.

For the randomized methods below, a straight-forward im-
plementation of 2-hop optimization by random walk has a
nice property. Assume that one node has been chosen, then
find a random pair for it by taking two consequtive random
hops starting from the first node. Now 2-hop neighbors with
many shared neighbors are more likely to get picked, since
there are several 2-hop paths to them. Such pairs, with
many shared neighbors, lead to better compression. A uni-
form selection among all 2-hop neighbors does not have this
property.

Thresholded algorithm. We next propose a more prac-
tical algorithmic alternative, the thresholded method (Al-
gorithm 3). It iterates over all pairs of nodes and merges
all pairs (u, v) such that dmax(u, v;S) ≤ Ti (Lines 5–6).
The threshold value Ti is increased iteratively in a heuristic
manner whenever no mergers can be done with the current
threshold (Lines 2 and 4).

Algorithm 3 Thresholded algorithm

1: for all 0 ≤ i ≤ K do
2: Ti ← 2−K+i

3: S ← G {i.e., (V ′, E′, w′)← (V,E,w)}
4: for all i = 0, . . . ,K do
5: while there exists a pair {u, v} ∈ V ′ × V ′ such that

dmax(u, v;S) ≤ Ti do {(*)}
6: S ← merge(u, v, S)
7: if cr(S) ≤ cr then
8: return S

(*) 2-hop optimization can be used, see text.

Different schemes for setting the thresholds would give
different results and time complexity. The heuristic we have
used has K = 20 exponentially growing steps and aims to
produce relatively high-quality results faster than the brute-
force method. Increasing the threshold in larger steps would
give a faster method, but eventually a random compression
(cf. Algorithm 5 below). We will give better informed, faster
methods below.

The time complexity is O(|V |4) for the simple and
O(|V |4 + |V |2|E| log |V |) for the generalized problem. These
are upper bounds for highly improbable worst cases, and in
practice the algorithm is much faster. See experiments in
Section 5 for details on real world performance.

Randomized semi-greedy algorithm. The next algorithm is
half random, half greedy (Algorithm 4). In each iteration,
it first picks a node v at random (Line 3). Then it chooses
node u so that the merge of u and v is optimal with respect
to dmax(u, v;S) (Line 6). With 2-hop optimization, this al-
gorithm is a generalized version of the randomized algorithm
of Navlakha et al. [12].

The worst-case time complexity of the algorithm is

Algorithm 4 Randomized semi-greedy algorithm

1: S ← G {i.e., (V ′, E′, w′)← (V,E,w)}
2: while cr(S) > cr do
3: randomly choose v ∈ V ′
4: for all nodes u ∈ V ′ do {(*)}
5: du ← dmax(v, u;S)
6: S ← merge(arg minu du, v, S)
7: return S

(*) 2-hop optimization can be used, see text.

O(|V |3) for the simple and O(|V |2|E| log |V |) for the gen-
eralized problem.

Random pairwise compression. Finally, we present a
naive, random method which simply merges pairs of nodes
at random without any aim to produce a good compression
(Algorithm 5). The uninformed random method provides a
baseline for the quality or other methods that make informed
decisions about mergers.

Algorithm 5 Random pairwise compression

1: S ← G {i.e., (V ′, E′, w′)← (V,E,w)}
2: while cr(S) > cr do
3: randomly choose {u, v} ∈ V ′ × V ′{(*)}
4: S ← merge(u, v, S)
5: return S

(*) 2-hop optimization can be used, see text.

The time complexity of the random algorithm is O(|V |2)
for the simple and O(|V ||E| log |V |) for the generalized prob-
lem. The random algorithm is essentially the fastest possi-
ble compression algorithm that uses pairwise mergers. It
therefore provides a baseline (lower bound) also for runtime
comparisons.

Interactive compression. Thanks to the simple agglomer-
ative structure of the methods, all of them lend themselves
to interactive visualization of graphs where the abstraction
level can be adjusted dynamically. This simply requires that
the merge operations save the hierarchical composition of
the supernodes produced. A drill-down operation then cor-
responds to backtracking merge operations, and a roll-up
operation corresponds to mergers.

5. EXPERIMENTS
We next present experimental results on the weighted

graph compression problem using algorithms introduced in
the previous section and real data sets. With these experi-
ments we aim to address the following questions. (1) How
well can weighted graphs be compressed: what is the trade-
off between compression (lower number of edges) and dis-
tance to the original graph? (2) How do the different algo-
rithms fare in this task: how good are the results they pro-
duce? (3) What are the running times of the algorithms?
And, finally: (4) How does compression affect the use of the
graph in clustering?

5.1 Experimental setup
We extracted test graphs from the biological Biomine

database2 and from a co-authorship graph compiled from

2http://biomine.cs.helsinki.fi

0.2 0.4 0.6 0.8

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Compression ratio

di
st

 /
pa

ir
of

 n
od

es
 (

R
M

S
E

)

0.1 0.3 0.5 0.7 0.9

Random
Semi−greedy
Semi−greedy−hop2
Thresholded
Thresholded−hop2

(a) λ = 1

0.
00

0.
05

0.
10

0.
15

0.
20

Compression ratio

di
st

/p
ai

r
of

 n
od

es
 (

R
M

S
E

)

0.1 0.3 0.5 0.7 0.9

Random
Semi−greedy
Semi−greedy−hop2
Thresholded
Thresholded−hop2

(b) λ = ∞

0.
00

0.
05

0.
10

0.
15

0.
20

Compression ratio

di
st

/p
ai

r
of

 n
od

es
 (

R
M

S
E

)

0.1 0.3 0.5 0.7 0.9

●

●

●

●

●

●

●

●

●●

Random
Semi−greedy
Semi−greedy−hop2
Thresholded
Thresholded−hop2
Brute−force

(c) Small graphs, λ = 1

Compression ratio

S
ec

on
ds

0.
1

1
10

50

0.1 0.3 0.5 0.7 0.9

Thresholded
Thresholded−hop2
Semi−greedy
Semi−greedy−hop2
Random

(d) λ = 1

Figure 2: (a)-(c): Distance between the compressed and
the original graph as a function of compression ratio. (d):
Running times of algorithms.

the DBLP computer science bibliography. Edge weights are
in [0, 1], and the path quality function is the product of
weights of the edges in the path. Below we briefly describe
how the datasets were obtained.

A set of 30 connection graphs, each consisting of around
1000 nodes and 2411 to 3802 edges (median 2987 edges; aver-
age node degree 2.94) was used in most of the tests. These
graphs were obtained as connection graphs between three
sets of related genes (different gene sets for each of the 30
replicates) so that they contain some non-trivial structure.
We mostly report mean results over all 30 graphs.

A set of 30 smaller graphs was used for tests with the
time-consuming brute-force method. These graphs have 50
nodes each and 76 to 132 edges (median 117 edges; average
node degree 2.16).

Two series of increasingly larger graphs were used to com-
pare the scalability of the methods. The sizes in one series
range from 1000 to 5000 nodes and from 2000 to 17000 edges,
and in the other series from 10 000 to 200 000 nodes and
about 12 000 to 400 000 edges.

The algorithms were implemented in Java, and all the
experiments were run on a standard PC with 4 GB of main
memory and an Intel Core 2 Duo 3.16 GHz processor.

5.2 Results
Compressibility of weighted graphs. Figures 2a and 2b give

the distance between the compressed and original graphs as
a function of the compression ratio. For better interpretabil-
ity, the distance is represented as the root mean square er-
ror (RMSE) over all pairs of nodes. Overall, the distances
are small. Compression to half of the original size can be
achieved with errors of 0.03 (λ = 1) or 0.06 (λ = ∞) per

node pair. Especially for λ = ∞ graphs compress very
nicely.

Comparison of algorithms. Figure 2c complements the
comparison with results for the smaller graphs, and now
including the brute-force method (λ = 1). The brute-force
method clearly produces the best results (but is very slow
as we will see shortly). Note also how small graphs are
relatively harder to compress and the distances are larger
than for the standard set of larger graphs.

The thresholded method is almost as good for compression
ratios 0.8-0.9 but the gap grows a bit for smaller compres-
sion ratios. The semi-greedy version, on the other hand, is
not as good with the larger compression ratios, but has a rel-
atively good performance with smaller compression ratios.
The random method is consistently the worst. A few early
bad mergers already raise the distance for high compression
ratios. Experiments on larger graphs could not be run with
the brute force methods.

Efficiency of algorithms. Mean running times of the algo-
rithms (except brute-force, see below) over the 30 standard
graphs are shown in Figure 2d. The differences in the run-
ning times are big between the methods, more than two
orders of magnitude between the extremes.

The 2-hop-optimized versions are an order of magnitude
faster than the unoptimized versions while the results were
equally good (cf. Figure 2c). 2-hop optimization thus very
clearly pays off.

The brute-force method is very slow compared to the other
methods (results not shown). Its running times for the small
graphs were 1.5–5 seconds with λ = 1 where all other meth-
ods always finished within 0.4 seconds. With λ = ∞, the
brute-force method spent 20–80 seconds whereas all other
methods used less than 0.5 second.

Running times with λ =∞ are larger than with λ = 1 by
an order of magnitude, for the semi-greedy versions by two
orders of magnitude (not shown).

We evaluated the effect of graph size on running times of
the three fastest algorithm, using the series of increasingly
large graphs and a fixed compression ratio 0.8 (Figures 3a
and 3b). For λ = 1 the random method should be linear (and
deviations are likely due to random effects). The thresholded
method seems in practice approximately quadratic as is to
be expected: for any value of λ, it will iterate over all pairs of
nodes. The semi-greedy algorithm has a much more graceful
behavior, even if slightly superlinear. Relative results are
similar for λ =∞.

Additional scalability experiments were run with larger
graphs from both biological and co-authorship domains, us-
ing the semi-greedy algorithm with 2-hop optimization, com-
pression ratio cr = 0.8, and λ = 1 (Figures 3c and 3d). The
algorithm compressed graphs of upto 400000 edges in less
than 10 minutes (biology) or in less than 3 minutes (co-
authorship). The biological graphs contain nodes with high
degrees, and this makes the compression algorithms slower.

Effect of compression on node clustering results. We next
study how errors introduced by weighted graph compression
affect methods that work on graphs. As a case study, we
consider node clustering and measure the difference of clus-
ters in the original graph vs. clusters in (the decompressed
version of) the compressed graph.

We applied the k-medoids clustering algorithm on the 30
standard graphs. We set k = 3, corresponding to the three
gene groups used to obtain the graphs. The proximity be-

Number of edges

S
ec

on
ds

0
1

2
3

4

2295 5515 8455 13481 16538

Random
Semi−greedy−hop2
Thresholded−hop2

(a) Biological graphs, λ = 1

Number of edges

S
ec

on
ds

0
20

0
40

0
60

0
80

0

2295 5515 8455 13481 16538

Random
Semi−greedy−hop2
Thresholded−hop2

(b) Biological graphs, λ = ∞

Number of edges

S
ec

on
ds

0
10

0
30

0
50

0

12238 104597 235051 331160 416348

Semi−greedy−hop2

(c) Large biological graphs,
λ = 1

Number of edges

S
ec

on
ds

0
40

80
12

0
16

0
20

0

28578 108352 296761 437660

Semi−greedy−hop2

(d) Large co-authorship
graphs, λ = 1

Figure 3: Running times of weighted graph compression al-
gorithms on graphs of various sizes from different sources.

tween two nodes was computed as the product of weights
(probabilities) of edges on the best path. We measure the
difference between clusterings by the fraction of node pairs
that are clustered inconsistently in the clusterings, i.e., as-
signed to the same cluster in one graph and to different
clusters in the other graph.

According to the results, the thresholded and semi-greedy
compression methods can compress a weighted graph with
little effect on node clustering (Figure 4). The effect is small
especially when λ =∞, where the inconsistency ratio is less
than 0.1 (the thresholded method) or 0.3 (the semi-greedy
method) for a wide range of compression ratios. The effects
of the thresholded and semi-greedy versions are larger for
λ = 1, especially when the compression ratio cr becomes
smaller. This is because a clustering based solely on im-
mediate neighborhoods is more sensitive to individual edge
weights, whereas Q∞(·) can find a new best path elsewhere
if an edge on the current best path is strongly changed.

Surprisingly, the semi-greedy method performs best in this
comparison with compression ratio cr ≤ 0.2. With λ = ∞
even an aggressive compression introduced relatively little
changes to node clustering. In the other extreme, clusters
found in randomly compressed graphs are quite—but not
completely—different from the clusters found in the original
graph. Close to 50% of pairs are clustered inconsistently,
whereas a random clustering of three equally sized clusters
would have about 2/3 inconsistency.

Examples on compressed co-authorship graphs. As a fi-
nal, rough illustration of weighted graph compression on
real graphs, Figure 5 shows weighted graph compression on
a co-authorship graph. The graph has been extracted from
the DBLP computer science bibliography and contains the

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

Compression ratio

●

●

●

●

●

0.1 0.3 0.5 0.7 0.9

0.
0

0.
2

0.
4

0.
6

●

●

●

●
●

●

●
●

●

●

0.
0

0.
2

0.
4

0.
6

Thresholded−hop2
Semi−greedy−hop2
Random

(a) λ = 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
● ●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

Compression ratio

●

●

●

●

●

●

●

●

●

●

●

0.1 0.3 0.5 0.7 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

●
●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

Thresholded−hop2
Semi−greedy−hop2
Random

(b) λ = ∞

Figure 4: Effect of compression on node clustering. Y -axis
is the fraction of node pairs clustered inconsistently in the
original and the compressed graph.

Jiawei Han

Ke Wang

0 . 9 9 0

Qiming Chen

0 . 8 6 0

Meichun Hsu

0 . 7 7 0

Umeshwar Dayal

0 . 8 6 0

Jian Pei

1

Xin Jin

0 . 9 9 0

Wen Jin

0 . 9 4 0

Jeffrey Xu Yu

0 . 8 6 0

Nick Cercone

0 . 9 8 0

Yongjian Fu

0 . 9 9 0

Ada Wai-Chee Fu

0 . 7 7 0Krzysztof Koperski

0 . 9 8 0 Osmar R. Zaïane

0 . 9 8 0

Chao Liu 0001

0 . 9 8 0

Philip S. Yu

1

Charu C. Aggarwal

0 . 9 4 0

Jianyong Wang

1

Guozhu Dong

0 . 9 9 0

Xiaolei Li

1

Zhenhui Li

0 . 9 6 0

Hongyan Liu

0 . 9 6 0

Dong Xin

1

Jae-Gil Lee

0 . 9 8 0

Hector Gonzalez

0 . 9 9 0

Qiaozhu Mei

0 . 9 6 0

Hong Cheng

1

ChengXiang Zhai

0 . 9 8 0

Michael J. Carey

0 . 3 9 0

AnHai Doan

0 . 7 7 0

Beng Chin Ooi

0 . 6 3 0

Zhaohui Xie

0 . 9 4 0

Ling Liu

0 . 9 6 0

Jiong Yang

0 . 9 9 0

Anthony K. H. Tung

0 . 9 9 0

Yizhou Sun

0 . 9 9 0

Yintao Yu

0 . 9 6 0

Wei Fan

0 . 9 8 0Sangkyum Kim

0 . 9 8 0

Cindy Xide Lin

0 . 9 8 0

Bolin Ding

0 . 9 8 0 Zhijun Yin

0 . 9 6 0

Tianyi Wu

0 . 9 9 0

Ling Feng

0 . 9 1 0

Yandong Cai

0 . 9 4 0

Hwanjo Yu

0 . 9 8 0

Xiaoxin Yin

1

Chen Chen

0 . 9 9 0

Feida Zhu

0 . 9 9 0

Xifeng Yan

1

Jing Gao

1

Latifur Khan

0 . 9 4 0

Zheng Shao

0 . 9 6 0

Kevin Chen-Chuan Chang

0 . 9 8 0

Laks V. S. Lakshmanan

0 . 9 9 0

Deng Cai

1

Xiaofei He

1

David Wai-Lok Cheung

0 . 9 1 0

Bin He

0 . 7 7 0

Raymond T. Ng

0 . 9 9 0

Hongjun Lu

0 . 9 8 0

Ying Lu

0 . 9 6 0

Bhavani M. Thuraisingham

0 . 9 4 0

Benjamin W. Wah

0 . 9 4 0

Rakesh Agrawal

Christos Faloutsos

0 . 7 7 0

Surajit Chaudhuri

0 . 8 6 0

David J. DeWitt

0 . 9 6 0

Hector Garcia-Molina

0 . 8 6 0

Johannes Gehrke

0 . 9 4 0

Alon Y. Halevy

0 . 8 6 0

Joseph M. Hellerstein

0 . 8 6 0

Laura M. Haas

0 . 8 6 0

Miron Livny

0 . 7 7 0

Jeffrey F. Naughton

0 . 7 7 0

Raghu Ramakrishnan

0 . 9 1 0

Sunita Sarawagi

0 . 9 6 0

Jennifer Widom

0 . 7 7 0

Yirong Xu

0 . 9 9 0

Jerry Kiernan

1

Ramakrishnan Srikant

1

H. V. Jagadish

0 . 9 9 0

Dimitrios Gunopulos

0 . 9 1 0

Narain H. Gehani

0 . 9 6 0

Shaul Dar

0 . 9 1 0

Arun N. Swami

0 . 9 4 0

John C. Shafer

0 . 9 8 0Kyuseok Shim

0 . 8 6 0

Jeffrey D. Ullman

0 . 6 3 0

Yannis E. Ioannidis

0 . 8 6 0

David Maier

0 . 6 3 0

Michael Stonebraker

0 . 9 1 0

Hady Wirawan Lauw

0 . 6 3 0

0 . 8 6 0

0 . 8 6 0

1

0 . 9 9 0

0 . 7 7 0

0 . 9 6 0

1

1

0 . 8 6 0

0 . 7 7 01

Nathan Goodman

0 . 9 1 0

Philip A. Bernstein

0 . 9 8 00 . 9 6 0

Janet L. Wiener

0 . 9 4 0

Alkis Simitsis

0 . 9 4 0

0 . 7 7 0

1

0 . 7 7 0

0 . 8 6 0

0 . 6 3 0

Yufei Tao

0 . 9 9 0

0 . 6 3 0

1

0 . 9 9 0

0 . 9 8 0

0 . 9 9 0

Xiaokui Xiao

0 . 9 1 0

0 . 6 3 00 . 9 8 0

0 . 7 7 0

Michail Vlachos

Eamonn J. Keogh

0 . 9 9 0

Marios Hadjieleftheriou

0 . 8 6 0

1

0 . 9 8 0

Nick Koudas

0 . 8 6 0

Divesh Srivastava

1

0 . 9 9 0

S. Muthukrishnan

0 . 9 9 0

Ting Yu

0 . 9 4 0

Flip Korn

0 . 9 1 0 Gautam Das

0 . 7 7 0

0 . 9 9 0

Gerhard Weikum

0 . 7 7 0

1

0 . 9 4 0

0 . 9 1 0

0 . 8 6 0

1

0 . 7 7 0

Michael J. Franklin

0 . 9 6 0

0 . 8 6 0

0 . 9 8 0

0 . 8 6 0

0 . 8 6 0

0 . 7 7 0

0 . 7 7 0

Sihem Amer-Yahia

0 . 8 6 0

0 . 9 1 0

0 . 7 7 0

0 . 8 6 0

0 . 6 3 0

0 . 6 3 00 . 9 1 0

Aoying Zhou

0 . 9 8 0

0 . 9 1 0

0 . 9 1 0

0 . 9 9 0

Kian-Lee Tan

0 . 9 9 0

0 . 9 8 01

0 . 9 9 0

0 . 3 9 0

0 . 6 3 0

0 . 9 8 0

0 . 6 3 0

0 . 8 6 0

0 . 9 4 0

0 . 6 3 0

0 . 6 3 0

0 . 7 7 0

0 . 6 3 0

0 . 6 3 0

0 . 8 6 0

0 . 6 3 0

0 . 9 8 0

0 . 3 9 0

1

0 . 7 7 0

0 . 9 6 0

1

Spiros Papadimitriou

0 . 9 9 0

Jimeng Sun

0 . 9 4 0 Balakrishna R. Iyer

1

Hui-I Hsiao

0 . 9 4 0

Hanghang Tong

0 . 8 6 0

Gang Luo

0 . 9 6 0

Yuqing Wu

Stelios Paparizos

0 . 9 1 0

0 . 9 8 0

0 . 8 6 0

1

0 . 9 8 0

0 . 9 6 0

0 . 6 3 0

0 . 8 6 0

0 . 6 3 0

0 . 9 1 0

0 . 8 6 0

0 . 6 3 0 0 . 9 9 00 . 6 3 0 0 . 6 3 00 . 6 3 0

0 . 6 3 0

0 . 8 6 0

0 . 8 6 0

0 . 6 3 0

0 . 9 1 0

0 . 9 8 0

0 . 9 1 0

0 . 7 7 00 . 9 1 0 0 . 9 4 0

Kaushik Chakrabarti

0 . 8 6 0

Venkatesh Ganti

0 . 9 6 0

0 . 8 6 0 0 . 9 4 0

0 . 7 7 0 0 . 6 3 0

0 . 6 3 0

0 . 8 6 0

10 . 9 4 0

0 . 9 6 0

0 . 9 6 0

0 . 9 4 0

0 . 6 3 0

0 . 9 9 0

0 . 9 6 0

0 . 9 6 0

0 . 8 6 0

0 . 8 6 0

0 . 6 3 0

0 . 8 6 0

0 . 6 3 0

0 . 8 6 0

0 . 9 1 0

0 . 9 4 0

0 . 9 8 0

0 . 8 6 0

0 . 6 3 0

0 . 9 9 0

0 . 6 3 0

0 . 9 8 0

0 . 6 3 0

0 . 6 3 0

0 . 9 9 0

1

0 . 9 9 0

0 . 9 1 0

0 . 7 7 0

0 . 9 1 0

0 . 9 9 0

1

0 . 9 6 0

HweeHwa Pang

0 . 9 1 0

Jignesh M. Patel

0 . 6 3 0

0 . 7 7 0

Jayavel Shanmugasundaram

0 . 8 6 0

0 . 6 3 0

0 . 6 3 0

0 . 7 7 0

0 . 9 1 0

0 . 7 7 0

0 . 9 8 0

0 . 9 9 0 0 . 7 7 0

0 . 7 7 0

0 . 8 6 0

0 . 6 3 0

0 . 8 6 0

0 . 9 1 0

0 . 9 1 00 . 9 9 0

Luis Gravano

0 . 9 6 0

10 . 7 7 0

0 . 6 3 0

0 . 7 7 0

0 . 7 7 0

0 . 6 3 0

0 . 7 7 0

10 . 9 9 0

0 . 9 9 0

Pedro DeRose

0 . 9 9 0

Warren Shen

0 . 9 9 0

0 . 9 1 0

0 . 8 6 0

0 . 9 6 0

0 . 9 4 0

0 . 9 9 0

1

0 . 8 6 0

0 . 8 6 0

0 . 9 1 0

0 . 9 1 0

0 . 8 6 0

0 . 8 6 0

Brian F. Cooper

0 . 8 6 0

0 . 8 6 0

0 . 9 8 0

0 . 9 4 0

0 . 9 1 0

0 . 6 3 0

0 . 9 4 0

0 . 8 6 0

0 . 6 3 0

1

1

0 . 9 4 0

0 . 6 3 0

0 . 6 3 0

0 . 7 7 0

0 . 6 3 0

0 . 9 9 0

0 . 6 3 0

0 . 8 6 0

0 . 6 3 0

0 . 6 3 0

0 . 7 7 0 0 . 9 4 0

0 . 7 7 0

0 . 8 6 0

0 . 6 3 0

0 . 8 6 0

0 . 8 6 0

0 . 6 3 0

0 . 7 7 0

0 . 9 6 0

0 . 9 1 0

0 . 9 8 0

0 . 8 6 0

0 . 9 1 0

0 . 8 6 0

0 . 9 1 0

0 . 8 6 0

0 . 7 7 0

0 . 7 7 0

1

0 . 8 6 0

0 . 9 4 0

0 . 8 6 0

0 . 9 9 00 . 9 1 0 0 . 7 7 00 . 6 3 0

0 . 9 8 0

0 . 8 6 0

0 . 9 6 0

0 . 8 6 0

0 . 6 3 0

0 . 9 6 0

0 . 6 3 0

0 . 6 3 0

0 . 6 3 0

0 . 9 1 0

0 . 6 3 0

1

1

0 . 9 9 0

0 . 9 4 0

Zhenjie Zhang

0 . 9 4 0 1

0 . 9 9 0

0 . 9 1 0

0 . 9 4 0

0 . 9 1 0

Adriane Chapman

0 . 7 7 0

0 . 9 9 0

0 . 7 7 0

0 . 7 7 0

0 . 9 4 0

0 . 7 7 0

0 . 8 6 0

0 . 9 9 0

0 . 9 4 0

0 . 6 3 0

0 . 9 9 0

0 . 7 7 0

1

0 . 9 4 0

0 . 9 8 0

0 . 9 8 0

0 . 9 9 0

0 . 9 9 0

0 . 6 3 0

Inderpal Singh Mumick

0 . 8 6 0

Praveen Seshadri

0 . 9 9 0

S. Sudarshan

1

0 . 8 6 0

0 . 7 7 0

0 . 7 7 0

0 . 9 9 0

0 . 8 6 01

0 . 8 6 0

1

Gao Cong

0 . 6 3 0

0 . 9 1 0 0 . 7 7 0

0 . 9 4 0

0 . 9 8 0

0 . 9 9 0

0 . 7 7 0

0 . 9 9 0 0 . 8 6 0

0 . 9 9 00 . 9 1 0 0 . 9 9 0

0 . 6 3 0 0 . 8 6 0

0 . 6 3 0

0 . 7 7 0

0 . 9 1 0

0 . 7 7 0 0 . 7 7 0

0 . 6 3 0

0 . 6 3 0

0 . 6 3 0

0 . 7 7 0

0 . 6 3 0

0 . 6 3 0

0 . 6 3 0

0 . 6 3 0

0 . 7 7 0 0 . 6 3 0

0 . 9 8 0

0 . 9 4 0

0 . 9 6 0

Cong Yu

0 . 8 6 0

0 . 9 1 0

Yunyao Li

0 . 7 7 0

0 . 9 9 00 . 9 9 0

0 . 7 7 00 . 7 7 0

0 . 9 9 0

Huahai Yang

0 . 9 4 0

0 . 9 8 0

0 . 9 9 0

0 . 9 8 0

0 . 6 3 0

0 . 6 3 0

0 . 7 7 0

0 . 7 7 0

0 . 6 3 0

0 . 9 8 00 . 9 9 0

0 . 9 9 0

0 . 9 4 0

1

0 . 9 9 0

0 . 9 8 0

0 . 7 7 0

0 . 6 3 0

Andrew Nierman

0 . 9 1 0

0 . 9 6 0

0 . 9 1 00 . 8 6 0

Theodore Johnson

0 . 7 7 0

0 . 7 7 0

0 . 7 7 0

0 . 9 4 0

0 . 9 8 0

0 . 8 6 0

0 . 9 1 0

0 . 9 8 0

0 . 8 6 0

0 . 9 9 0

0 . 8 6 0

1

0 . 9 9 0

0 . 6 3 0

0 . 9 6 0

0 . 7 7 0

0 . 8 6 0

0 . 9 6 0

0 . 7 7 0

0 . 9 1 0

Shurug Al-Khalifa

0 . 8 6 0

0 . 9 1 0

0 . 9 8 0

0 . 8 6 0

0 . 6 3 0

1

0 . 9 9 0

0 . 9 4 0

1

0 . 9 8 0

0 . 9 1 0

0 . 9 1 0

0 . 7 7 0

0 . 9 9 0

0 . 9 1 0

0 . 6 3 0 1

0 . 8 6 0

Andreas Paepcke

0 . 9 8 0

0 . 8 6 0

0 . 9 1 0

0 . 6 3 0

0 . 7 7 0

0 . 9 8 0

0 . 6 3 0

0 . 9 9 0

0 . 7 7 0

SungRan Cho

0 . 9 1 0

1

1

1

0 . 7 7 0

Nuwee Wiwatwattana

0 . 9 1 0

0 . 9 4 0

Carson Kai-Sang Leung

0 . 7 7 0 Fereidoon Sadri

0 . 9 9 0

Iyer N. Subramanian

0 . 9 8 0

0 . 9 8 0

0 . 7 7 0

0 . 7 7 0

0 . 7 7 0

0 . 9 1 0

0 . 9 8 0

0 . 9 1 0

10 . 9 9 0

1

0 . 9 8 0

1

0 . 9 8 0

0 . 9 1 0

0 . 6 3 0

0 . 7 7 0

0 . 7 7 0

0 . 7 7 0

Timos K. Sellis

0 . 6 3 0

0 . 9 9 0

0 . 7 7 0

0 . 7 7 0

0 . 9 6 0

0 . 9 9 0

0 . 8 6 0

0 . 8 6 0

1

0 . 8 6 0

0 . 9 8 0

0 . 9 4 0

1

1

0 . 6 3 0

Ben Kao

1

0 . 8 6 0

0 . 9 9 0

0 . 9 1 0

0 . 9 9 0

1

0 . 9 9 0

0 . 9 4 0

0 . 9 1 0

0 . 9 8 0

0 . 9 1 0

0 . 9 9 0

0 . 6 3 0

0 . 8 6 0

0 . 6 3 0

0 . 9 1 0

0 . 8 6 0

1

0 . 6 3 00 . 7 7 0

0 . 9 6 0

1

0 . 8 6 0

0 . 8 6 01

0 . 8 6 0

0 . 7 7 0

0 . 9 8 0

0 . 9 1 0

0 . 9 6 0

0 . 9 4 0

0 . 8 6 0

0 . 9 1 0

0 . 9 4 0

0 . 9 9 0

0 . 9 4 0

0 . 9 9 0

0 . 8 6 0

0 . 8 6 0

0 . 9 8 0

0 . 9 1 0

0 . 9 8 0

0 . 9 4 0

0 . 9 1 0

0 . 9 6 0

0 . 9 8 0

0 . 9 1 0

1

0 . 7 7 0

0 . 8 6 0

0 . 7 7 0

1

0 . 9 9 0

0 . 9 4 0

0 . 8 6 0 0 . 6 3 0

0 . 9 9 0

1

0 . 9 1 00 . 9 4 0

0 . 9 1 0

1

(a) G, 150 nodes, 613 edges

Jiawei Han & others no type

Rakesh Agrawal & others

no type

Supernode:132

no type

Supernode:4

no type

Supernode:10

no type

Supernode:11

no type

Supernode:113

no type

Supernode:137

no type

Supernode:14

no type

Supernode:141

no type

Supernode:148

no type

Supernode:16

no type

Supernode:18

no type

Supernode:19

no type

Supernode:3

no type

Supernode:41

no type

Supernode:42

no type

Supernode:5

no typeSupernode:51

no type

Supernode:70

no type

Supernode:77

no type

Supernode:91

no type

Supernode:92

no type

no type

Supernode:22

no type

Supernode:37

no type

no type

no typeno type no type no type

no type

no type

no type

no type

Supernode:147

no type

Supernode:44

no type

Supernode:46

no type

Supernode:56

no type

Supernode:69

no type

Supernode:8

no type

Supernode:0

no type

no type

no type

no typeno typeno type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type no type

no type

no type

no type

no type

Supernode:29

no type

no type

no typeno typeno type

no type

no type

no type no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

no typeno type

no type no type

no type

no type

no type

no type

no type

no type

no type

no type

no type

Supernode:23

no type

no type

no type

no type

no type

no type

no type

no type

(b) S, cr = 0.2, 34 nodes, 114 edges

Figure 5: A joint DBLP co-authorship neighborbood graph
G of Jiawei Han and Rakesh Agrawal and its compressed
version S (λ =∞).

union of the co-authorship neighborhoods of Jiawei Han and
Ragesh Agrawal. The number of jointly authored articles is
used as the edge weight.

Even if details are not visible, compression clearly helps to
bring out the structures of the social network. For instance,
different roles of co-authors with respect to other authors in
the network can be seen. Many supernodes have self-edges
to indicate the average strength of connection between au-
thors within the supernode. An interactive graphical display
of the compressed graphs, with a possibility to explore the
graph and its different abstraction levels, would be a valu-
able tool for a better understanding of the structure of the
social networks.

6. CONCLUSIONS
We presented the problem of weighted graph compres-

sion, derived bounds for it, and gave algorithms and exper-
imental results on real datasets. We proposed two forms

of the problem: a simple one, where the compressed graph
should preserve edge weights, and a generalized one, where
the compressed graph should preserve strengths of connec-
tions of upto λ hops. The generalized form may be valuable
especially for graph analysis algorithms that rely more on
strengths of connections than individual edge weights.

The results indicate the following. (1) Weighted graphs
can be compressed quite a lot with little loss of information.
(2) The generalized weighted graph compression problem
is promising as a pre-processing step for computationally
complex graph analysis algorithms: clustering of nodes was
affected very little by generalized compression. (3) Weighted
graphs can be compressed efficiently. E.g., the semi-greedy
method processed a 16 000 edge graph in 2 seconds.

An additional good property of the proposed methods,
built in to the problem definition, is that compressed graphs
are graphs, too. This gives two benefits. First, some graph
algorithms can be applied directly on the compressed graph
with reduced running times. Second, representing graphs
as graphs is user-friendly. The user can easily tune the ab-
straction level by adjusting the compression ratio (or the
maximum distance between the compressed and the origi-
nal graph). This can also be done interactively to support
visual inspection of a graph.

There are several directions in which this work can be
developed further. Different merge operations may be con-
sidered, also ones that remove edges. More efficient algo-
rithms can be developed for even better scalability to large
graphs. It could be useful to modify the methods to guaran-
tee a bounded edge-wise or node pair-wise error, or to also
accommodate categorical labels.

7. ACKNOWLEDGMENTS
This work has been supported by the Algorithmic Data

Analysis (Algodan) Centre of Excellence of the Academy
of Finland (Grant 118653) and by the European Commis-
sion under the 7th Framework Programme FP7-ICT-2007-C
FET-Open, contract no. BISON-211898.

8. REFERENCES
[1] M. Adler and M. Mitzenmacher. Towards compressing

web graphs. In Data Compression Conference, pages
203–212, 2001.

[2] P. Boldi and S. Vigna. The webgraph framework I:
compression techniques. In WWW ’04: Proceedings of
the 13th international conference on World Wide Web,
pages 595–602, New York, NY, USA, 2004. ACM.

[3] S. P. Borgatti and M. G. Everett. Regular
blockmodels of multiway, multimode matrices. Social
Networks, 14:91–120, 1992.

[4] C. Chen, C. Lin, M. Fredrikson, M. Christodorescu,
X. Yan, and J. Han. Mining graph patterns efficiently
via randomized summaries. In 2009 Int. Conf. on Very
Large Data Bases, pages 742–753, Lyon, France,
August 2009. VLDB Endowment.

[5] C. Chen, X. Yan, F. Zhu, J. Han, and P. Yu. Graph
OLAP: Towards online analytical processing on
graphs. In ICDM ’08: Proceedings of the 2008 Eighth
IEEE International Conference on Data Mining, pages
103–112, Washington, DC, USA, 2008. IEEE
Computer Society.

[6] U. Elsner. Graph partitioning - a survey. Technical
Report SFB393/97-27, Technische Universität
Chemnitz, 1997.

[7] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast
discovery of connection subgraphs. In KDD ’04:
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 118–127, New York, NY, USA, 2004. ACM.

[8] P.-O. Fjällström. Algorithms for graph partitioning: A
Survey. In Linköping Electronic Atricles in Computer
and Information Science, 3, 1998.

[9] S. Hauguel, C. Zhai, and J. Han. Parallel PathFinder
Algorithms for Mining Structures from Graphs. In
2009 Ninth IEEE International Conference on Data
Mining, pages 812–817. IEEE, 2009.

[10] P. Hintsanen and H. Toivonen. Finding reliable
subgraphs from large probabilistic graphs. Data
Mining and Knowledge Discovery, 17:3–23, 2008.

[11] F. Lorrain and H. C. White. Structural equivalence of
individuals in social networks. Journal of
Mathematical Sociology, 1:49–80, 1971.

[12] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph
summarization with bounded error. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 419–432,
New York, NY, USA, 2008. ACM.

[13] S. Navlakha, M. Schatz, and C. Kingsford. Revealing
Biological Modules via Graph Summarization.
Presented at the RECOMB Systems Biology Satellite
Conference. J. Comp. Bio., 16:253–264, 2009.

[14] Y. Tian, R. Hankins, and J. Patel. Efficient
aggregation for graph summarization. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
pages 567–580, New York, NY, USA, 2008. ACM.

[15] H. Toivonen, S. Mahler, and F. Zhou. A framework for
path-oriented network simplification. In Advances in
Intelligent Data Analysis IX, volume 6065/2010, pages
220–231, Berlin/Heidelberg, May 2010.
Springer-Verlag.

[16] G. T. Toussaint. The relative neighbourhood graph of
a finite planar set. Pattern Recognition, 12(4):261–268,
1980.

[17] N. Zhang, Y. Tian, and J. Patel. Discovery-driven
graph summarization. In Data Engineering (ICDE),
2010 IEEE 26th International Conference on, pages
880–891. IEEE, 2010.

