
Department of Computer Science

Series of Publications A

Report A-2011-4

Lean Thinking in Software Development:

Impacts of Kanban on Projects

Marko Ikonen

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
XII, University Main Building, on 19th December 2011, at noon.

University of Helsinki

Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14922312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisors
Professor Pekka Abrahamsson (University of Helsinki, Finland)
Professor Jukka Paakki (University of Helsinki, Finland)

Pre-examiners
Professor Giancarlo Succi (Free University of Bolzano-Bozen, Italy)
Professor Juan Garbajosa (Technical University of Madrid, Spain)

Opponent
Professor Markku Oivo (University of Oulu, Finland)

Custos
Professor Pekka Abrahamsson (University of Helsinki, Finland)

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c© 2011 Marko Ikonen
ISSN 1238-8645
ISBN 978-952-10-7409-7 (paperback)
ISBN 978-952-10-7410-3 (PDF)
Computing Reviews (1998) Classification: D.2.9, K.6.3
Helsinki 2011
Unigrafia

Lean Thinking in Software Development: Impacts of

Kanban on Projects

Marko Ikonen

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
marko.ikonen@cs.helsinki.fi
http://www.cs.helsinki.fi/u/mjikonen/

PhD Thesis, Series of Publications A, Report A-2011-4
Helsinki, December 2011, 104+90 pages
ISSN 1238-8645
ISBN 978-952-10-7409-7 (paperback)
ISBN 978-952-10-7410-3 (PDF)

Abstract

The history of software development in a somewhat systematical way has
been performed for half a century. Despite this time period, serious fail-
ures in software development projects still occur. The pertinent mission
of software project management is to continuously achieve more and more
successful projects. The application of agile software methods and more
recently the integration of Lean practices contribute to this trend of con-
tinuous improvement in the software industry. One such area warranting
proper empirical evidence is the operational efficiency of projects. In the
field of software development, Kanban as a process management method
has gained momentum recently, mostly due to its linkages to Lean thinking.
However, only a few empirical studies investigate the impacts of Kanban
on projects in that particular area. The aim of this doctoral thesis is to
improve the understanding of how Kanban impacts on software projects.
The research is carried out in the area of Lean thinking, which contains a
variety of concepts including Kanban. This article-type thesis conducts a
set of case studies expanded with the research strategy of quasi-controlled
experiment. The data-gathering techniques of interviews, questionnaires,
and different types of observations are used to study the case projects,
and thereby to understand the impacts of Kanban on software develop-
ment projects. The research papers of the thesis are refereed, international
journal and conference publications. The results highlight new findings re-
garding the application of Kanban in the software context. The key findings

iii

iv

of the thesis suggest that Kanban is applicable to software development.
Despite its several benefits reported in this thesis, the empirical evidence
implies that Kanban is not all-encompassing but requires additional prac-
tices to keep development projects performing appropriately. Implications
for research are given, as well. In addition to these findings, the thesis
contributes in the area of plan-driven software development by suggesting
implications both for research and practitioners. As a conclusion, Kanban
can benefit software development projects but additional practices would
increase its potential for the projects.

Computing Reviews (1998) Categories and Subject
Descriptors:
D.2.9 Software Engineering: Management—productivity, programming

teams, software process models
K.6.3 Management of Computing and Information Systems: Software

Management—software development, software process

General Terms:
Human Factors, Management

Additional Key Words and Phrases:
Kanban, Lean thinking, Lean software development, project success,
software development project

Acknowledgments

Having proceeded to the end of an amazing journey in my one life-learning
experience, the time has come to take a breath and to look at what I have
done. As always, this kind of journey requires sacrifices in the name of
science. Long days, even longer nights, huge amounts of studying and lots
of work in order to find new and interesting discoveries on an international
scale. Meanwhile, those days are taken away from close friends and from
your own leisure. Some critical decisions have had to be made regarding
which things should be prioritized over others. After these days, nights,
and decisions, here it is, namely, my doctoral dissertation. Even though
I have felt lonely sometimes during the process, creating a dissertation is
teamwork. When I look at my dream team, I truly can state that I have
had great luck in enjoying all of the members’ contribution, friendliness,
and helpfulness toward me and my “baby”. The time has come to end
this wonderful journey, to proceed forward, and, the most pleasant part, to
utter commendations to my dear colleagues and friends who participated
in this delightful journey.

First of all, I would like to express the sincerest gratitude to my dear su-
pervisors: The invaluable contribution of Professor Jukka Paakki enabled
me to start the thesis process, and when Professor Pekka Abrahamsson
joined the team later I could not have wished for a better pair of super-
visors for my scientific firstborn, my doctoral thesis. Both professors are
shining examples for the university of how deeply committed guidance can
give wonderful results. I will never stop being amazed at how, every time
I had questions about my thesis work or a seemingly impossible problem,
my supervisors always found time for me – whether they were heading a
department or a faculty, or otherwise had their hands full of work. The
result of all this generosity is that, after careful preparation, all my in-
ternationally refereed articles that are incorporated into this thesis were
finished within 18 months. Without my two strong supervisors this would
hardly have been possible. These warm and dedicated professors are an
example of what scientific cooperation can be at its best.

v

vi

Former 1st Vice-Rector of the university, Professor Hannele Niemi, did
not hesitate to lavish her time on me, either; she gained an important role
for me when I worked in the IQ Form project, headed by her, in the final
stages of my Master degree programme. It is mostly thanks to her that I
decided to continue with my postgraduate degree in the first place.

Head of Studies at the Department of Computer Science, Jaakko Kurhila,
has also held an important role both because of his support for my post-
graduate studies and for enabling me to start publishing my scientific work
and supporting me throughout my thesis work.

Eteläsuomalainen osakunta (ESO, student union for southern Finland)
is another organization worth mentioning, as I have had the privilege of
spending time with academic friends from all disciplines from my freshman
year to this day. The Inspector Emeritus of the union, current Vice-Rector
of the university, Professor Kimmo Kontula and his lovely wife, Inspectrix
Emerita Heljä Kontula have supported my academic career.

Furthermore, the valued pre-examiners of my thesis, Professor Gian-
carlo Succi (Free University of Bolzano-Bozen, Italy) and Professor Juan
Garbajosa (Technical University of Madrid, Spain) deserve my heartfelt
gratitude. Because of the printing date of the thesis, I will thank my es-
teemed opponent, Professor Markku Oivo (University of Oulu) in advance.

The co-authors of the research papers who were not mentioned above,
i.e., Petri Kettunen, D.Sc. (Tech), Nilay Oza, PhD, Fabian Fagerholm,
Henri Karhatsu, and Elena Pirinen deserve my compliments. In spite of
all the hardship, causing occasional feelings of loneliness, which I have
experienced during my thesis work, I have never been alone, but surrounded
by the academic community, my dear colleagues and friends. Since it is
impossible to mention everyone by name or enumerate the ways in which
they have supported me and influenced my thesis, I want to offer my thanks
to everyone here and now, and I hope these thanks will find their marks
without further ado.

Naturally, my parents Risto and Raili play the most significant role in
the finishing of my thesis, as it would have been virtually impossible for me
to embark on this academic adventure without them.

This thesis work has been funded by the Graduate School on Software
Systems and Engineering (SoSE) in 2007–2009, the Cloud Software program
as a part of TIVIT (funded by TEKES) in 2010, and the Scalable High-
performing Software Design Teams (SCABO) project (funded by TEKES)
in 2011.

Helsinki, November 26th 2011
Marko Ikonen

List of Original Publications

This doctoral thesis is based on the following six original research papers
that are refereed international journal and conference publications.

Research Paper I: Ikonen, M.1 and Kurhila, J. (2009). Discovering
high-impact success factors in capstone software projects. In Proceedings
of the 10th ACM conference on SIG-information technology education, SIG-
ITE ‘09, pages 235–244, New York, NY, USA. ACM.
Cited in this Thesis as Paper I.

Research Paper II: Ikonen, M.2 and Abrahamsson, P. (2011). Opera-
tionalizing the concept of success in software engineering projects. Interna-
tional Journal of Innovation in the Digital Economy (IJIDE), 2(3):11–37.
IGI Global.
Cited in this Thesis as Paper II.

Research Paper III: Karhatsu, H., Ikonen, M.3, Kettunen, P., Fager-
holm, F., and Abrahamsson, P. (2010). Building blocks for self-organizing
software development teams: A framework model and empirical pilot study.
In Proceedings of the 2nd International Conference on Software Technology
and Engineering (ICSTE ‘10), volume 1, pages V1-297–V1-304. IEEE.
Cited in this Thesis as Paper III.

1Ikonen conducted the study and measured all the data and made the interviews and
analyzes. The paper was written and ideated mainly by him with the valuable suggestions
of the coauthor. The coauthor’s deep knowledge in Computer Science Education was
utilized.

2The paper was written mostly by Ikonen while both authors contributed equally to
the composing of the theme. Ikonen conducted the study and measured all the data and
made the interviews. The suggestions and contribution to the analysis from the coauthor
were valuable.

3Ikonen contributed significantly to the design and completeness of the paper. He
also refined the framework and was equally involved in the writing and finalizing process
of the paper with the coauthors.

vii

viii

Research Paper IV: Ikonen, M.4, Kettunen, P., Oza, N., and Abra-
hamsson, P. (2010). Exploring the sources of waste in Kanban software
development projects. In Proceedings of the 36th EUROMICRO Con-
ference on Software Engineering and Advanced Applications (SEAA ‘10),
pages 376–381, Los Alamitos, CA, USA. IEEE Computer Society.
Cited in this Thesis as Paper IV.

Research Paper V: Ikonen, M.5, Pirinen, E., Fagerholm, F., Kettunen,
P., and Abrahamsson, P. (2011). On the impact of Kanban on software
project work: An empirical case study investigation. In Proceedings of
the 16th International Conference on Engineering of Complex Computer
Systems (ICECCS ’11), pages 305–314, Los Alamitos, CA, USA. IEEE
Computer Society.
Cited in this Thesis as Paper V.

Research Paper VI: Ikonen, M. (2010). Leadership in Kanban software
development projects: A quasi-controlled experiment. In Abrahamsson, P.
and Oza, N., editors, Proceedings of the 1st International Conference on
Lean Enterprise Software and Systems (LESS 2010), volume 65, Part 2
of Lecture Notes in Business Information Processing, pages 85–98, Berlin
Heidelberg. Springer-Verlag.
Cited in this Thesis as Paper VI.

4Ikonen conducted the study and made all the interviews. The writing process and
analyzing was contributed equally by Ikonen and the second author while everyone par-
ticipated in the refining and finalizing of the paper, coordinated by Ikonen.

5Ikonen significantly contributed to the theme, structure, and finalizing of the paper.
The authors together refined the framework and wrote the paper. The data were gathered
and interviewed by Ikonen and the second author.

Contents

Abstract iii

Acknowledgments v

List of Original Publications vii

1 Introduction 1

1.1 Research Questions . 4

1.2 Scope of the Research . 8

1.3 Thesis Structure . 9

2 Lean Thinking 11

2.1 Origin . 12

2.2 Key Concepts . 13

2.2.1 Terminology . 13

2.2.2 Primary Goal in Lean Thinking 19

2.3 Implementation Practices 21

2.3.1 Lean Manufacturing vs. Lean Development 21

2.3.2 Principles . 22

2.3.3 Applying in Software Development 27

2.4 Relation to Agile Software Development 30

2.5 Kanban in Practice . 34

2.6 Summary . 39

3 Determining Software Project Success in Lean Thinking 41

3.1 Project Success . 41

3.1.1 Individual and Team Levels 42

3.1.2 Organization Level 45

3.2 Framework for Project Success 46

3.2.1 Decision power . 48

3.2.2 Stress . 50

ix

x Contents

3.2.3 Dynamics . 52
3.3 Summary . 53

4 Empirical Research Design 55
4.1 Studying Software Engineering 55
4.2 Research Approach . 57
4.3 Research Methods . 59
4.4 Collection of Empirical Evidence 60
4.5 Research Context . 61

4.5.1 Capstone Software Engineering Project Environment 61
4.5.2 Experimental R&D Laboratory ’Software Factory’ . 62
4.5.3 Real-life Business . 63

5 Research Contribution 65
5.1 Paper I – Discovering High-Impact Success Factors in Cap-

stone Software Projects . 65
5.2 Paper II – Operationalizing the Concept of Success in Soft-

ware Engineering Projects 67
5.3 Paper III – Building Blocks for Self-organizing Software De-

velopment Teams . 67
5.4 Paper IV – Exploring the Sources of Waste in Kanban Soft-

ware Development Projects 69
5.5 Paper V – On the Impact of Kanban on Software Project

Work . 70
5.6 Paper VI – Leadership in Kanban Software Development

Projects . 72
5.7 Summary . 73

6 Discussion 75
6.1 Implications for Research 75
6.2 Implications for Practice . 77

6.2.1 Implications for the Kanban-driven Approach 77
6.2.2 Implications for the Plan-driven Approach 80

7 Conclusions 83
7.1 Answering the Research Questions 84
7.2 Limitations of the Thesis 87
7.3 Future Research . 88

References 89

Chapter 1

Introduction

During the mid-nineties, initial requirements and documentation steps were
found to be frustrating and difficult to implement in practice in software
development projects. Meanwhile, plans and requirements of the projects
were reported to expire in a short period of time (Williams and Cockburn,
2003).

Systematic engineering approaches, including plan-driven software de-
velopment methods, were no longer considered to be the best way to pro-
duce software due to their problems (Takeuchi and Nonaka, 1986). Agile
software development practices (Abrahamsson et al., 2002) were challenging
this conventional philosophy in the topic. Regardless, agile methods, such
as Scrum (Sutherland, 1995)1, have been reported to have their own prob-
lems. Requirements traceability, for example, is not able to be performed
in an agile approach as it is established in conventional requirements man-
agement (such as ISO/IEC 12207:2008) (Espinoza and Garbajosa, 2011).
Moreover, years after executives who have attempted to solve problems
with the aid of the agile approach, still encounter the same complaints and
desires, as Anderson (2010) states: (1) their technology teams still suffer
with unreliableness, (2) their business is still too unresponsive and has not
acquired the agility anticipated, and (3) costs are still out of control. On
the other hand, Dı́az et al. (2009) show how the CMMI oriented organiza-
tions can map their practices to Scrum in order to improve their software
processes. Instead of such combining, Lean thinking has been adapted into

1The first references in the literature related to the term Scrum point to the article of
Takeuchi and Nonaka (1986) which presents an adaptive, quick, self-organizing product
development process originating from Japan (Schwaber and Beedle, 2002). Schwaber
(1995) then presents “Scrum Development Process” in Section 4.10 of the OOPSLA ‘95
Workshop on Business Object Design and Implementation. The author of the workshop
is Sutherland (1995).

1

2 1 Introduction

software engineering (Shalloway et al., 2009, 78–94). While the successful
history of Lean thinking, which gives the motivation for applying it to soft-
ware development, originates in the 1950s from Toyota’s car manufactur-
ing, it is a relatively novel philosophy in software engineering (Poppendieck
and Poppendieck, 2003). Kanban executes the Lean thinking in practice
(Becker and Szczerbicka, 1998; Chai, 2008). It is one of the key operation
management tools in Lean manufacturing (Liker, 2004, 176). It drives proj-
ect teams to visualize the workflow, limit work in progress (WIP) at each
workflow stage, and measure the cycle time (i.e., average time to complete
one task) (Kniberg, 2009). There is a strong practitioner-driven movement
supporting the idea of the use of Kanban in software engineering (Hiran-
abe, 2008; Shinkle, 2009; Shalloway et al., 2009). It is evident that the
outcomes of applying Kanban are expected to be high in software develop-
ment, as they have been in manufacturing. This expectation is reasonable
because of Kanban’s adaptability (it welcomes changes on the requirement
list), visualization (it eases management by visualizing the progress), and
prerequisites for its successful use (it drives team members to cooperation
and communication, among others) (Kniberg, 2009). This is not yet, how-
ever, confirmed by means of empirical studies: only a few studies have
empirically explored the dynamics of Kanban from the viewpoint of soft-
ware development. In addition, the relation between Kanban and waste2

in software development is, according to our knowledge, an area of study
that has not received much attention yet.

The software industry is in constant search of new ways of solving ex-
isting problems (Jacobson, 2009). The goals vary in different improvement
initiatives ranging from resolving time-to-market delay to reducing opera-
tion costs and increasing productivity. The conventional way of developing
software has widely been criticized (Larman and Basili, 2003; Poppendieck
and Poppendieck, 2003; Ramasubbu and Balan, 2009). This criticism ques-
tions the conventional belief in the ability to anticipate all the problems at
the beginning of the project: the outputs of this anticipation are schedules
and requirements, likely unrealistic ones because the customer and the pro-
ducer may not have guessed all the necessary requirements of the customer
at the beginning of the project. Shalloway et al. (2009, 1), for example, ar-
gue that unlike many other disciplines, software development usually does
not start with clearly defined requirements. Rather than a clearly defined,
up-front plan, reaching the goal is more a process of discovery (Royce, 1970;

2Waste can be understood as an unnecessary action that does not add value for the
customer or another representative that the work is done for. For more details, see
Chapter 2.2.1.

3

Espinoza and Garbajosa, 2011; Ramasubbu and Balan, 2009).

After all, a difference between theory and practice that makes the field
even more complex is the uncertainty. De Meyer et al. (2002) refer to
four types of uncertainty: variation, foreseen uncertainty, unforeseen uncer-
tainty, and chaos. Uncertainty is a rule, not an exception, and the greatest
chance to produce a successful project lies in companies which understand
this rule (De Meyer et al., 2002). Moreover, managing a software project
is complex because it is more than a formally designated set of tasks (Juri-
son, 1999). Typical software-related problems concerning management are
as follows: (1) Intangibility: software is difficult to manage without visi-
ble milestones to measure quality and progress. (2) Complexity: the sheer
complexity of software is not so understood and this leads not only to tech-
nical but management problems, too. (3) The volatility of requirements:
the pressure for software changes is high because software can be changed
more easily than hardware (Jurison, 1999).

Some project failures can be traced to malfunctioning group perfor-
mance, which is caused by inadequate attention to people and teamwork
issues (Jurison, 1999). People have a tendency to concentrate on the tech-
nical aspects (hardware and software) rather than the peopleware and im-
permanence (Gunson et al., 2003). In software engineering generally, the
correlation exists between contribution and social motivation without inter-
fering economics (Bonaccorsi and Rossi, 2004; Jensen and Scacchi, 2005).
Watson (2006, 12) states that “Managerial activities are always and in-
evitably implicated in issues of power and relative advantage and disad-
vantage between human groups and human individuals.”

Understanding is required on how human and organizational factors
affect the execution of software development tasks (Weinberg, 1971; Scac-
chi, 1984; DeMarco and Lister, 1987). The laws of physics are invalid for
human-oriented software processes (Pedrycz and Succi, 2007). In addition
to any area-specific skills and general management experience, the following
three characteristics are essential for a project manager: knowledge (about
project management), performance (ability to work while applying knowl-
edge of project management), and personality (leadership, attitudes, and
core personality in personal behavior when performing the project) (PMI,
2008, 13). Operating in a modern customer-driven business environment
provides a balanced mixture of soft and hard skills (Yasin et al., 2002).

The reasons mentioned above indicate that focusing on process issues
without notifying people is inadequate for the success of software projects.
This suggests focusing on people-oriented processes and hereby leads to
set the research questions of this thesis. In addition to establishing the

4 1 Introduction

research questions, the following sections set the boundaries for the scope
of the research, and describe the structure of the thesis.

1.1 Research Questions

Examples of the challenges mentioned above indicate that a conventional
plan-driven approach is not the solution. Therefore, this doctoral thesis
explores other ways to perform software development.

One of the newest fashions in the software industry is the attempt to
apply Lean production principles to software development. One key trait
of these principles is eliminating all kinds of waste from the development.
Moreover, respecting people and empowering teams are fundamental in
Lean thinking and they relate to the concept of self-organizing teams. Con-
sequently, similar ideas for waste removal and people respect have been
proposed to be adopted for software product development (Poppendieck
and Poppendieck, 2003).

Kanban has been applied to software production as a project manage-
ment process model (Hiranabe, 2008). The buzz is already in motion on
combining Kanban with the well established Scrum method in agile soft-
ware development. Kniberg (2009), for example, introduces similarities and
differences between Kanban and Scrum while Ladas (2009) combines parts
of Kanban and Scrum in practice. The low number of empirical studies
on exploring the internal dynamics and the process impact of Kanban in
software engineering, however, leads us to the research question that is set
as follows.

RQ1: How does Kanban impact on
software development projects?

In order to answer this question, this thesis divides it into three sub-
questions. First, an understanding is needed on what prevents or sup-
ports projects going forward. Second, since the literature suggests fo-
cusing not only on processes but people too, self-organization has to be
explored for comparability of the results between the case projects. This
self-organization is preferred by Kanban that supports Lean manufacturing.
Third, based on these two sub questions, we need to know how Kanban in-
fluences the progress of projects from the viewpoints of waste, project work,
and management. Focusing on Lean-based Kanban is reasonable since the

1.1 Research Questions 5

literature addressed above suggests that practices being used in software
development still have drawbacks. The three research sub-questions are set
as follows.

RQ1.1 Which constructs of software development projects affect
the outputs?

In order to study Kanban’s impact on software development projects, we
need a framework for issues affecting project outputs. The literature of soft-
ware engineering projects has focused on identifying isolated success factors
even though the issues behind the success rely on multidimensional con-
structions with multidisciplinary factors (Ikonen and Abrahamsson, 2010).
While the term of project success is understood in a variety of ways (Agar-
wal and Rathod, 2006), some definitions taking the customer into account
can be agreed to have an established position. Examples of such definitions
are the four dimensions of project success of Shenhar et al. (2001) and a
definition for success by the Project Management Institute in its PMBOK3

guide.
While the concept of success is often overlooked, the concept of project

management is equally little addressed theoretically. Koskela and Howell
(2002) argue that there is no explicit theory for project management but
rather that the theoretical foundation for project management has emerged
from the works of the Project Management Institute (see PMI (2008)). As
a resolution, Koskela and Howell (2002) propose a novel theory of project,
which portrays a project by a transformation view on operations. They
suggest that in the transformation view, a project is conceptualized as a
transformation of inputs to outputs. A project, then, is managed with a
number of principles.

As one of the guiding principles, Koskela and Howell (2002) identify the
principle of decomposing, which aims at decomposing the total transforma-
tion hierarchically into smaller transformations, tasks, and minimizing the
cost of each task independently. From the software viewpoint, this is not a
novel realization. In the most basic software engineering textbooks, such as
Sommerville (2007), a software project is viewed conventionally as a prob-
lem of decomposition. The challenge that the software project brings into
the project concept is the significant role of the human in the process of
software development (e.g., Boehm (1981); Clegg et al. (1996)). Besides,
this kind of development is a group activity (Tolvanen, 1998, 42) wherein
multiple people participate in different roles. This means that, in addi-
tion to individual points of view, the focus must include the team level.

3A Guide to the Project Management Body of Knowledge (PMBOK) (PMI, 2008).

6 1 Introduction

Moreover, transformation processes from conventional to Lean in software
engineering are not tangible artifacts as in other engineering fields. Cock-
burn (2002) suggests that what flows in software development is a series
of invalidated decisions that become validated only after they have been
implemented. Thereby, it can be suggested that any model aiming at de-
picting a software project success model should take these characteristics
into account.

Finally, as a solution for problems related to software development and
recognized in the literature, Lean principles are suggested to apply to the
area (Poppendieck and Poppendieck, 2003). These principles, in contrast
to conventional software development, take into account critical issues, such
as seeing the whole, empowering the teams, and eliminating waste. Hence,
also the human aspect appears to have been concerned in Lean thinking.

Having concerned the variety of isolated success factors, the problem
of the research question can be approached by first determining factors
that drive or restrain the progress of projects. Then, by categorizing these
factors as constructs, a holistic picture of their effects can be formulated.

RQ1.2 What are the key elements of self-organizing teams?

Self-organization has emerged as an important area of study also within
software engineering management, in particular with agile methods (Abra-
hamsson et al., 2002; Moe et al., 2009a,b). In addition, self-organizing is a
fundamental part of Lean thinking as mentioned above (i.e., the Lean prin-
ciple of empowering the teams, for example). For this reason, the research
question focuses on self-organizing teams instead of non-self-organizing
teams. Self-organizing teams benefit organizations (Behnke et al., 1993;
Guzzo and Dickson, 1996; Janz, 1998). Positive outcomes are often related
to performance effectiveness, member attitudes, and behavior (Cohen and
Bailey, 1997). Self-organizing teams can react to problems quickly since the
decision-making is close to the problem (Tata and Prasad, 2004). Instead
of waiting for a manager’s approval, such a team has the authority to take
necessary actions by itself (Moe et al., 2009a).

Self-organization has emerged as an important area of study also within
software engineering management, in particular with agile methods such
as Scrum. Despite the often claimed benefits, a shortage of conclusive
empirical studies exists in the area. Some results indicate no connection
between empowerment and success or that the project performance is not
increased (Reilly and Lynn, 2003). This contradiction indicates that self-
organization is not a panacea. Just calling a group self-organizing does
not automatically translate into better performance. The organizational

1.1 Research Questions 7

context like the reward system, supportive leadership, training, available
resources, and the structure of the organization influence how teams can
self-organize and perform (Cohen and Bailey, 1997; Tata and Prasad, 2004).

The problem of the research question can be approached by first con-
ducting an experimental, literature-based research model and then by eval-
uating this model empirically. The model can then be used for better
understanding of what makes a self-organizing team successful and how to
build such a team.

RQ1.3 What are the salient characteristics of Kanban that affect
the progress of software development projects?

The Kanban process model (Gross and McInnis, 2003) executes Lean think-
ing in practice (Becker and Szczerbicka, 1998; Chai, 2008) and is one of
the key operation management tools in Lean manufacturing (Liker, 2004,
176). Moreover, it provides a way to prevent waste, which is considered the
most important Lean principle (Poppendieck and Poppendieck, 2003). This
waste, such as unreasonableness or inventories, does not add value for the
customer. Thus, eliminating waste from projects is reasonable. Questions,
however, remain.

First, waste in software development, nevertheless, is mostly invisible
when compared with a pipeline in manufacturing (Poppendieck and Pop-
pendieck, 2003). Second, Kanban’s relation to waste is an area of study that
has not received much attention in software development. In other words,
it is not known whether Kanban benefits software development projects
wherein waste is more likely abstract than physical. Third, Kanban does
not seem to intervene in management despite its importance. Regarding
the self-organizing team principle, a relevant question in order to improve
project performance is, whether management is still necessary or it is only a
waste of time and resources. Kotter (1996, 7) and Watson (2002, 276–319),
however, claim that without leadership or management even a capable staff
head cannot reach goals well enough. The lack of a clear authority struc-
ture in software development is both a cause of chaos and freedom (Jensen
and Scacchi, 2005).

Thereby, investigating impacts of Kanban on software project work is
needed for answering the research question. The problem of the research
question can be approached by first conducting research models wherein
waste4 and work aspects (such as documentation) are salient points. Then,
by evaluating these models, influences of Kanban on the progress of the
projects can be illustrated.

4The term is introduced in Chapter 2.2.1.

8 1 Introduction

Figure 1.1: The scope of this thesis.

1.2 Scope of the Research

This doctoral thesis combines the research areas of software development
and software project management. A reason for this combining is the fact
that issues behind project success depend on multidimensional construc-
tions with multidisciplinary factors, as mentioned above. This thesis calls
into question some conventional practices in software development. Ac-
cording to Clegg et al. (1996), for example, software development can be
characterized as a series of sequentially organized phases of activities, such
as design, programming, and maintenance. While it can be characterized
so, controlling long phases against time in the rapidly changing area is
risky (Williams and Cockburn, 2003). The rapid adaptability into contin-
uously changing circumstances is one characteristics of Lean thinking that
is challenging the conventional philosophy (Poppendieck and Poppendieck,
2003).

Figure 1.1 illustrates the scope of the research which is the gray inter-
section of the three areas. The areas described below work as boundaries
for this scope. The concept of software development in this thesis relies on
the definition of Humphrey (1995, 4–5) regarding the software process:

“The software process is the sequence of steps required to de-
velop or maintain software... More specifically, the software
process sets out the technical and management framework for
applying methods, tools, and people to the software task.”

Management, instead, refers to the definition of Kotter (1996, 25–26):

“Management is a set of processes that can keep a complicated

1.3 Thesis Structure 9

system of people and technology running smoothly. The most
important aspects of management include planning, budgeting,
organizing, staffing, controlling, and problem solving.”

Good management cannot guarantee project success but bad manage-
ment often results in project failure, such as delayed software delivery, ex-
ceeded budgets, and unmet requirements (Sommerville, 2007, 93). Tradi-
tionally, the role of a project manager has included activities such as plan-
ning, delegating, resourcing, monitoring and reporting (Pressman, 1997,
24–25, 59–74). Blanchard (2001), however, argues that the leader’s role
has shifted dramatically: in the past, the leader was emphasized as boss
but today, leaders can no longer lead with position power alone. Rather,
they have to be partners with their team. The “command-and-control” role
of judging and evaluating has to be switched off (Blanchard, 2001).

Lean software development, based on Lean thinking (Ohno, 1988; Shingo,
1989; Womack and Jones, 2003) (Chapter 2), is one of the three areas of
interest in the scope of this thesis. The second area is the Kanban (Chap-
ter 2.5) way of doing things, which is also a foundational part of Lean
thinking. The third area is self-organization (Chapter 5.3), which also re-
lates to Lean thinking. Lean thinking, in contrast to agile methods, has
not been applied to the area of software development until recently.

A self-organizing team in this thesis refers to the definition for an au-
tonomous work group by Guzzo and Dickson (1996):

“Autonomous work groups are teams of employees who typi-
cally perform highly related or interdependent jobs, who are
identified and identifiable as a social unit in an organization,
and who are given significant authority and responsibility for
many aspects of their work, such as planning, scheduling, as-
signing tasks to members, and making decisions with economic
consequences (usually up to a specific limited value).”

These three areas combine software development and management into
a comprehensive base that is studied in this thesis.

1.3 Thesis Structure

This doctoral thesis is based on the following six original research papers
(cited as Paper I, II, III, IV, V, and VI) that are refereed international
journal and conference publications. In order to explore the research phe-
nomenon outlined in this thesis, each paper contributes to the increased
understanding of improvement in software development. By following this

10 1 Introduction

theme, the structure of this thesis has been modeled upon the research
papers.

Paper I creates the motivation for the research by showing that certain
factors of project success exist before the end part of projects. Due to the
fragmented area of project success in software engineering, Paper II ex-
plores the area and suggests a framework for project success. After having
evaluated this framework, further studies are conducted in order to examine
the Kanban-based Lean software development with the aid of the frame-
work. Due to this focus, the case projects consist of self-organized software
development teams. Thereby, Paper III explores self-organization. Then,
Paper IV, V, and VI explore the impacts of Kanban on software develop-
ment projects regarding waste, project work, and management. Together,
applying the results of Paper I, II, and III to Paper IV, V, and VI provides
new information regarding how the Kanban-way of doing things affects
software development.

The summary part of the thesis is structured as follows. This Chapter 1
describes the research questions, scope, and structure of the thesis. Chap-
ter 2 reviews the background of Lean thinking from its origin to applying it
to software development. Lean concepts are explained as well. Moreover,
the Kanban method is introduced and linked into the Lean context. Chap-
ter 3 is two-fold. First, it considers project success. Second, it presents a
framework for project success. In addition, this framework is mapped with
the Lean software development. Chapter 4 sets out the empirical research
design including the research approach, methods, and context in which the
research took place. Chapter 5 briefly states the research contribution of
the empirical research conducted in the six papers while Chapter 6 dis-
cusses the research findings. Finally, Chapter 7 concludes with a summary
of the results, answers the research questions, addresses limitations of the
study, and gives suggestions for future research.

Chapter 2

Lean Thinking

Satisfying the rapidly changing customer needs in software development
has become an emergent research area as the trend of agile software devel-
opment addressed above has shown. A correlation between the quality of
the process and the quality of the developed software has, however, been a
myth, as claimed by Fuggetta (2000). As an answer to the challenge of han-
dling unpredictability accentuated due to uncertainties in requirements and
technology, agile project management methodologies (Abrahamsson et al.,
2002, 2010) starkly deviate from the conventional project management doc-
trine. Recently, research has started figuring out whether the Lean way of
doing things is the answer for the challenge of managing software develop-
ment processes of the next generation (Middleton, 2001; Middleton et al.,
2005; Middleton and Joyce, 2011). Instead of “Lean way of doing things”,
this thesis uses the term Lean approach to refer to the way of doing things
by following Lean thinking.

Using plan-driven methods in software development projects is insuf-
ficient for successful execution, mostly because the future (in this case:
appropriate software product requirements and designs) is hard to antic-
ipate (Basili and Turner, 1975; Larman and Basili, 2003). In addition,
Poppendieck and Poppendieck (2003) anecdotally suggest that develop-
ment projects lack a systematic way of eliminating waste from the projects.
Overall, the Lean thinking is claimed to provide a more concrete way to
handle processes than the conventional one (Poppendieck and Poppendieck,
2007). This chapter reviews the background of the Lean thinking from its
origin to application of it to the software development. Lean concepts are
explained as well. Finally, comparing the Lean approach with the agile one
leads us to introduce and study Kanban.

11

12 2 Lean Thinking

2.1 Origin

Lean thinking can be traced to Toyota (Liker and Hoseus, 2008, 15). A
Japanese technique, called Just-In-Time (JIT) (Ohno, 1988)1 (Chapter 2.2.1)
originates in the late 1940s and early 1950s when Taiichi Ohno developed
kanbans2 in order to control production between processes and in order
to implement Just-In-Time manufacturing at Toyota (Gross and McInnis,
2003, 1).

The Statistical Process Control theory (Pfadt andWheeler, 1995), taught
by Edwards Deming in Japan in the 1950s, showed the importance of Qual-
ity Assurance (QA). Improved quality improves the throughput of a system
(Anders, 2004, 77–94). The Theory of Constraints, introduced in 1984 by
Goldratt (1984) provided a way for manufacturing to identify bottlenecks
in the production line: the capacity of the weakest link was considered the
current system constraint. During the same decade, JIT was catching on in
western manufacturing since it offered a way to reduce inventory (Anders,
2004, 13–28). This reduction had a significant effect on the profitability of
a manufacturing business (Anders, 2004, 13–28).

Yet another phenomenon of the 1980s was Total Quality Management
(TQM). The aim of TQM, in its turn, was to improve quality in order
to make manufacturing more profitable. In general, quality improves pro-
duction because it reduces rework. In the late 1980s, QA and JIT were
recognized as a part of the overall improvement of the manufacturing in-
dustry. Womack et al. introduced the term “Lean” in 1990 in their book
The Machine That Changed the World. This book documented the superior
Japanese automobile manufacturing processes that were the combination
of low inventory of Taiichi Ohno and Shigeo Shingo, and the JIT system
with the quality system of Edwards Deming. This combination is known as
the Toyota Production System (TPS). More recently, it is called The Toy-
ota Way according to Toyota’s perception that this management method
is applicable outside the production, as well (Anders, 2004, 5–6).

Shingo (1989, 67) reported that TPS, in practice, is 80% waste elim-
ination, 15% production system, and 5% Kanban. Part of the literature
(e.g., Anders (2004, 5–6)) considers TPS to be synonymous with the Kan-
ban system. However, this is a misunderstanding that arose since the con-
cept “rules of Kanban” has been interpreted, on one hand, as principles
of production but, on the other hand, as Kanban. Kanban from Toyota’s

1The original, Japanese edition Toyota seisan hoshiki by Taiichi Ohno was published
in 1978.

2I.e., index cards (Poppendieck and Poppendieck, 2007, 10).

2.2 Key Concepts 13

viewpoint, regardless, is simply a means of achieving just-in-time (Shingo,
1989, 67). Besides, the term “Lean” differs from the one historically used
in Toyota, was accepted within Toyota Motor Sales (in the United States),
and then became part of the local culture of that organization (Liker and
Hoseus, 2008, 468).

The TPS is probably the most famous example of how to attain suc-
cess with the aid of the Lean approach. Lean principles are, however, not
enough. What is needed is the culture built into the whole corporation.
The fourteen principles of doing things in Toyota, called the principles of
the Toyota Way, are statements of beliefs and values which are about Toy-
ota’s culture. This culture can be encapsulated in four items: (1) long-term
philosophy (the purpose and reasons of Toyota’s existence), (2) Lean pro-
cesses (which lead to operational excellence) which emphasize continuous
elimination of waste, (3) developing and challenging people and partners
through long-term relationships, and, (4) organizational learning driven by
problem solving and continuous improvement. Despite its success, the way
of doing things in Toyota is always changing (Liker and Hoseus, 2008).

2.2 Key Concepts

This chapter introduces key concepts of Lean thinking. Chapter 2.2.1 in-
troduces the terminology and Chapter 2.2.2 constitutes an overview of the
main goal of Lean thinking.

2.2.1 Terminology

Key concepts of Lean thinking are introduced below. In addition to these
concepts, The Toyota Way of doing things contains the elements of chal-
lenge, respect, and teamwork (Liker and Hoseus, 2008, 14–15). Even though
this set of concepts as a whole is too wide to focus on in this thesis, walking
the concepts through is necessary in order to understand the ideology and
fundamentals behind the Lean approach and its linkage to Lean software
development. The concepts excluding flow, Just-In-Time, pull, value, and
waste are Japanese words due to the Japanese origin of Lean thinking.

Andon

The Japanese term Andon refers to a system that notifies management,
maintenance, and other appropriate workers of a quality or process problem.
An electric signboard equipped with signal lights is an example of this kind
of system. Andon closely relates to the Jidoka (see below) quality control

14 2 Lean Thinking

method and provides workers with the possibility to stop production in
case of abnormality and immediately call for assistance. In Toyota, the
first step in Jidoka is identifying problems and each team member must be
able and willing to call attention to the problem. The Andon system makes
this calling easy for the members (Liker and Hoseus, 2008).

Flow

The English term flow in the context refers to the entire value stream, not
to productivity of individual steps in the stream. In a pipeline process, for
instance, we have to focus the time for ideas to go from beginning to end
so that the flow provides the greatest value. The term closely relates to
Just-In-Time (see below) (Shalloway et al., 2009, 223–224).

Gemba

By its meaning, “place,” applied in manufacturing it is understood as the
place where activity really happens, i.e., where the manufacturing work, for
example, is done. The term closely relates to Genchi Genbutsu (see below)
(Liker and Hoseus, 2008).

Genchi Genbutsu

The Japanese term Genchi Genbutsu is one of the key principles of the TPS
and means “going to see”. In order to understand the full impact of the
situation one has to physically go to the place where work is done (Gemba).
According to Lean thinking, problems are visible, which makes it sensible to
consider Genchi Genbutsu as a key approach in problem solving. It allows
management and other observers to see the performance in the manufac-
turing place where real value is created. Genchi Genbutsu facilitates seeing,
for example, whether people are following a repeatable standard process or
the material is flowing smoothly through the plant. The concept becomes
second nature to Toyota engineers (Liker and Hoseus, 2008).

Hansei

Hansei is a fundamental part of Japanese culture and means self-reflection.
The aim is to acknowledge one’s own mistakes and to commit to making
improvements. The Toyota culture requires executing Hansei-kan (a reflec-
tion meeting) despite the success level of the project or process executed.
The idea is to review what went wrong and what can be improved. In
TPS, only “no problem” is a problem during a Hansei-kai and the focus is

2.2 Key Concepts 15

on all the deficiencies of both the team and technical processes (Liker and
Hoseus, 2008).

Heijunka

Heijunka refers to production smoothing and it aims at reducing Muda
(see Section “Muda” in this chapter). The TPS develops the production
efficiency by following the Heijunka principle. The general value of utilizing
Heijunka is to produce intermediate products at a constant rate and to allow
further processing to be carried out at a predictable, constant rate. Toyota
applies the principle to its hiring policy as well (Liker and Hoseus, 2008).

Hoshin-kanri

While Hoshin means shining metal, compass, or pointing the direction and
Kanri means management or control, Hoshin-kanri translates into “direc-
tions and means management” and refers to policy deployment. Regarding
TPS, it is a system that sets objectives for improvement. It teaches people
to learn how to solve problems and continually improve their work. Hoshin-
kanri begins at the very top of Toyota and comes to agreements at each
level down to the team member. Every employee has a hoshin, defined
as particular measurable objectives that are reviewed throughout the year.
Hoshin both develops people through the job and increases performance as
an organization through teamwork. It interconnects the leadership’s vision,
values, and philosophies to the daily activity on the Gemba. As a process,
Hoshin (1) sets mid-to-long-term management plans and annual Hoshin,
(2) prioritizes activities and resources, (3) involves all members in targets
or means to achieve them, and (4) maintains the cycle of plan-do-check-
act and follow-ups during implementation. By putting all these together,
Hoshin-kanri is a mechanism for converting team members’ energy into ex-
ceptional levels of performance that guides the whole organization in one
direction, with the members taking the initiative (Liker and Hoseus, 2008).

Jidoka

Jidoka is considered the other pillar upon which the TPS has been built
and is considered to lead to continuous improvement. The TPS under-
stands Jidoka as automation with a human touch, often called “intelligent
automation”. The fundamental idea is that people should not serve ma-
chines but vice versa. Jidoka implements rather supervisory functions than
production functions. Stop-the-line is an example in case of abnormality.

16 2 Lean Thinking

Jidoka prevents overproduction and producing defective products. By eval-
uating the process and understanding the reasons behind a problem it can
better be ensured that the problem never occurs again (Liker and Hoseus,
2008).

Jishuken

By meaning voluntary self-study, Jishuken in the TPS refers to Toyota
Kaizen events that are performed with the primary purpose of developing
the skills of problem solving and leadership of the managers. Jishuken
expects managers to learn and find ways to improve processes. In the
sense of self-study, managers may interview team members, identify waste,
and make improvements based on their findings. The Jishuken events, are
however, driven and led by trained facilitators who are experts in Lean
(Liker and Hoseus, 2008).

Just-In-Time (JIT)

The idea of pull-driven JIT is that a production unit does not “push”
anything to the customer or unit next to it. This customer or unit rather
“pulls” the product needed. Such a policy prevents overproduction: if the
customer or unit “pulls” only those products really needed, the producing
unit only wastes its time and resources if it produces unnecessary products.
Furthermore, when products are ready just in time, inventories become
useless since the customer “pulls” the product to himself before the non-
value adding inventorying operation (Shingo, 1989).

Womack and Jones (2003, 349) defines the term Just-In-Time as follows:
“A system for producing and delivering the right items at the right time in
the right amounts.”

Kaizen

Kaizen refers to change for the better, either a philosophy or practices that
focus upon continuous improvement of processes, which aims at eliminat-
ing waste and overly hard work (Muri). In addition, the workplace gets
humanized and people learn how to perform. Usually Kaizen concerns all
personnel from the chief executive officer to assembly line employees. In the
TPS, it is commonly a local improvement with a local area or workgroup
related to their own environment and productivity improvements. The line
personnel is expected to stop the line when abnormality is revealed. Then,
tracing the reason for this abnormality leads to an improvement suggestion

2.2 Key Concepts 17

that eventually may initiate a Kaizen. The essence of Kaizen is the no-
tion that line workers, engineers, and managers collaborate continually to
identify incremental changes and systematize production tasks in order to
establish a smoother flow (Liker and Hoseus, 2008).

Kaikaku

Kaikaku means radical improvement within a limited time, in contrast to
Kaizen. The aim is to eliminate Muda. In TPS, such a radical improvement
may occur due to introducing new production techniques or equipment,
strategies, or knowledge. Typically it is initiated by management but can
also be launched by external factors, such as market conditions (Womack
and Jones, 2003).

Kanban

The Japanese word Kanban refers to a signboard. When the term is used
in manufacturing, it means a scheduling system that hints what, when,
and how much to produce. Toyota, for example, has successfully applied
Kanban in practice as one part of TPS resulting in a way for promoting
improvements (Hiranabe, 2008).

Kanban is basically a flow control mechanism for pull-driven Just-In-
Time production in which the upstream processing activities are triggered
by the downstream process demand signals. In general, Kanban has three
rules: (1) visualize the workflow, (2) limit work in progress (WIP) at each
workflow state, and (3) measure the cycle-time, i.e., average time to com-
plete one item (Kniberg, 2009).

Kanban does not intervene in management despite its importance, i.e.,
how to do things. Instead, it is inclusive of management. In other words,
management is involved and it is committed to abide by the methods the
teams have selected to do their work. In addition, management is part of
discussions about how the work is being tracked and performed. Kanban
combines defining and managing a workflow: this workflow based on queues
and control loops is managed by limiting WIPs (Shalloway et al., 2009, 98–
100).

Muda

Muda for waste means activity that is wasteful and does not add value or
is unproductive (Ohno, 1988; Shingo, 1989). Womack and Jones (2003, 43)
divide wasteful activity that has occurred along the value stream into two

18 2 Lean Thinking

types: steps that create no value but are unavoidable (type one Muda) and
steps that create no value and are immediately avoidable (type two Muda).

Mura

Mura refers to inconsistency in physical matter or the human spiritual
condition, and to unevenness. Uneven workloads is an example of Mura
(Ohno, 1988; Shingo, 1989).

Muri

Muri means unreasonableness, overburden, or absurdity (Ohno, 1988).

Pull

In the pull method, the next process withdraws the quantities it requires
from the preceding process (Ohno, 1988). See Section “Just-In-Time (JIT)”
in this chapter.

Value

Oppenheim et al. (2010) define the value for the present purpose as follows:

“Value is defined as the delivery of a complex system satisfying
all stakeholders, which implies a flawless product or mission de-
livered with at minimum cost, in the shortest possible schedule,
fully satisfying the customer and other stakeholders during the
product or mission lifecycle.”

In this sense, value-added activity satisfies the following three conditions:
(1) transform information or material or reduce uncertainty, (2) the cus-
tomer is willing to pay for it, and (3) it is done right the first time (Op-
penheim et al., 2010).

Waste

The English word waste in the sense of Lean thinking refers to the Japanese
word Muda (see Section “Muda” in this chapter) (Ohno, 1988).

Yokoten

To Yokoten is to spread across or propagate. In nature, Yokoten is mul-
tiplying of grafts and saplings of a large tree into many new trees. While
each new tree will grow differently in its separate, unique way, it will thrive

2.2 Key Concepts 19

with properly prepared weather and soil conditions as will its peers. Corre-
spondingly in the TPS, Yokoten is not cloning nor copying but improving
what has been seen. Toyota’s Kaizen process includes Yokoten (Liker and
Hoseus, 2008).

2.2.2 Primary Goal in Lean Thinking

The Lean concepts presented in Chapter 2.2.1 have a common goal: pro-
ducing value. Lean thinking emphasizes value-adding production. The
receiver of this value should be end users, customers, or other interested
parties. In order to produce value, waste elimination is considered as the
most important principle of Lean thinking (Poppendieck and Poppendieck,
2003).

Mandić et al. (2010), however, argue that defining a value in the context
of software engineering is difficult and complex. Shalloway et al. (2009, 14–
15) suggest that a primary goal of Lean thinking should be optimizing the
whole with sustainability and speed. This suggestion can be considered a
practical way how to produce value, i.e., how to reach that goal.

As an example, let us think of a feature of software being produced in
a software development project. Once this feature has been implemented,
it should be tested. If the production flow is uneven (Mura), it may be
that some features are produced faster than they are tested. In such a
case, the testing phase becomes a bottleneck resulting in overburdening
(Muri). In order to accelerate the production flow and prevent Muri, other
implementers should assist those who are testing software. As a result, the
flow gets smoother and the acceleration benefits the integration team who
does not have to wait without doing anything. Waiting is considered waste
since it does not add any value for the customer. In other words, waiting is
wasteful activity (type two Muda). This example demonstrates how value
can be produced by optimizing the whole and by focusing on the flow.

Since Lean thinking addresses waste elimination, the general-level terms
of Muda, Mura, and Muri (Chapter 2.2.1) have been refined into more
specific pieces in software development as has been done in manufacturing.
Shingo (1989) identifies seven types of manufacturing waste. Table 2.1
translates these items into software development.

Recognizing waste, however, can depend on the context. Emiliani et al.
(2005), based on Emiliani et al. (2003), extend the list of waste with behav-
iors that are recognized by senior managers in a Lean management system.
Meanwhile, Oppenheim (2004) summarizes the work of Millard3 wherein
the words further originated from the manufacturing waste are redefined

3R.L. Millard, Value stream analysis and mapping for product development. Master’s

20 2 Lean Thinking

Manufacturing Waste Software Development Waste
(Shingo, 1989) (Poppendieck and Poppendieck, 2007)

[In-process] inventory Partially done work
Over-production Extra features
Extra processing Relearning
Transportation Handoffs
Motion Task switching
Waiting Delays
Defects Defects

Table 2.1: The seven kinds of manufacturing waste (Shingo, 1989, 191)
translated into software development by Poppendieck and Poppendieck
(2007, 73–74).

in the context of product development as follows: Inventory means keeping
more information than needed. Over-production refers to creating unneces-
sary information while over-processing (extra processing) is about working
more than necessary to produce the outcome. Transportation, in its turn,
relates to inefficient transmittal of information. Unnecessary movement
(motion) is about people having to move to gain or access information.
Waiting means waiting for information, inputs, approvals, and releases,
among others. Finally, defects refer to insufficient quality of information
and requiring rework.

Nevertheless, in the area of software development, Poppendieck and
Poppendieck (2007, 73–82) suggest a classification of waste as follows:

• Partially done work, “inventory of software development” does not
guarantee that it works before completed, tested, and integrated. It
is not guaranteed that partially done work really solves the customer’s
problem either. Instead, it ties up resources.

• Extra features consume resources when tracked, compiled, integrated,
and tested. The more of these non-value adding “just-in-case” fea-
tures, the more complexity and potential defects there are.

• Relearning wastes resources and adds no value for the customer. Re-
discovering a known but forgotten thing is rework. Ignoring knowl-
edge that people bring to the workplace, in its turn, destroys utilizing
their potential.

thesis in Aeronautics and Astronautics, Massachusetts Institute of Technology, Cam-
bridge, MA, USA, June 2001.

2.3 Implementation Practices 21

• Handoffs leave the major part of knowledge behind in the mind of
originators. Tacit knowledge is difficult to transport to other people
through documentation. In brief, documents cannot contain all of the
information that the other people in line need to know.

• Task switching between jobs or tasks takes time, much because of
re-orientation and re-focusing. In addition, lack of immediate access
to other developers and other representatives disrupts concentration.

• Delays slow down realizing value for the customer. Waiting for peo-
ple to be available who are being busy in other areas causes waste.
Critical decision-making in developing requires a good understanding
of the situation from the developer. Moreover, it requires someone
with knowledge in the room to answer the remaining questions. Lack
of this understanding and knowledge results in a new decision prob-
lem: should the developer stop in order to try to find out the answer,
switch to another task, or just make a guess without stopping.

• Defects in the code take resources to fix them. Defects, even small
ones, revealed after weeks are typically more serious problems than
big defects found immediately.

This list of waste, summarized in Table 2.1, is a revision from Pop-
pendieck and Poppendieck (2003) where the translation of waste from man-
ufacturing to software development was introduced. The list does not con-
cern management but rather the development process of software. Yet, we
have not found feedback that could indicate its validity. Despite its lack of
scientific evidence, it is based on Lean thinking and experience of practice
of its developers.

2.3 Implementation Practices

The way of attaining value by following the Lean approach differs from area
to area where it is applied to, as stated in Chapter 2.2.2. The following
sections highlight such differences and provide examples.

2.3.1 Lean Manufacturing vs. Lean Development

Lean thinking has been adopted and successfully applied to a variety of
manufacturing areas from wood production (e.g., Cumbo et al. (2006)) to
car manufacturing (e.g., Liker and Hoseus (2008)). Cumbo et al. (2006),

22 2 Lean Thinking

among others, state that the quality of products and the efficiency of prod-
uct development in manufacturing have increased due to the Lean approach.

Transforming successfully from traditional ways to Lean, however, has
appeared to be problematic as shown below. Such problems are, for exam-
ple, obtaining open office space to locate teams together, gaining executive
support, and training and informing people to diminish resistance of change
(Parnell-Klabo, 2006). In that case study of Parnell-Klabo (2006), after re-
moving such obstacles, the lead-time for delivery was decreased by 40% to
50%. Karlsson and Åhlström (1996) mention more problems: First, creat-
ing a cross-functional focus is difficult when people feel comfortable with
their current function. Second, simultaneous engineering is unfamiliar for
people coming from sequential processes. Third, project coordination is
problematic due to misunderstandings of the unfamiliar work disciplines of
others. Moreover, managing a vision-based organization may not be fluent
when people are used to detailed specifications and instructions. Finally,
expecting cost estimations in a highly flexible product development pro-
cess hinders the relationship to customers. In the organizational context,
even getting familiarized with Lean thinking has been challenging for or-
ganizations (Liker and Hoseus, 2008, 27–31) due to the holistic entity of
Lean (Chapter 2.1). Typically, the Lean approach requires redefining the
work of functions, departments, and companies in order to enable a positive
contribution to value creation (Womack and Jones, 2003, 24).

Regarding management and processes, Koskela (2000, 187–189) iden-
tifies the following seven types of preconditions for a sound process: (1)
construction design, (2) components and materials, (3) workers, (4) equip-
ment, (5) space, (6) connection works, and (7) external conditions. Ber-
telsen et al. (2006) stress that in thesense of production management, the
seven types of preconditions of Koskela (2000) cannot be managed satisfac-
tory with a single management method. Regardless, there is no orthodox
Lean approach as shown by the overlapping Lean principles reported in
the literature (Chapter 2.3.2). Middleton and Joyce (2011), among others,
agree on this lack of orthodoxy.

2.3.2 Principles

Nowadays, Lean thinking has extended from Lean manufacturing to Lean
enterprise. The operational areas include Lean software development. Sim-
ilar to the non-problematic free transforming to Lean described in Chap-
ter 2.3.1, translating Lean practices from manufacturing and supply chain
management to software development has, in its turn, encountered chal-
lenges due to differences of operations and logistics to software and devel-

2.3 Implementation Practices 23

opment (Poppendieck and Poppendieck, 2007, 11–17).

The Lean principles presented in the literature vary depending on their
implementation context. Womack and Jones (2003, 16–26), for example,
present the five following Lean principles regarding Lean production:

• specify value

• identify the value stream

• create the flow

• establish the pull

• seek perfection.

Womack and Jones (2003) emphasize that customer value is created by pro-
ducers. For this reason, customers need producers. Henry Ford managed
to demonstrate the potential of flow with the assembly line of the Model
T Ford. Oppenheim (2004) states that the success of this assembly line
was the ability to split the complex craftwork into separate tasks of short
and equal duration. The real challenge of the continuous flow according
to (Ohno, 1988), however, was reaching the flow in low-production with-
out expensive assembly lines and, moreover, learning to rapidly change
over tools from one product to the next. In order to reduce inventories,
customers should “pull” products from producers as needed rather than
producers “push” unwanted products onto customers (Womack and Jones,
2003, 16–26).

Lean consumption, instead, relates to trade between the consumers and
the providers and it consists of the following six principles (Womack and
Jones, 2005):

• solve the customer’s problem completely by insuring that all the goods
and services work, and work together

• do not waste the customer’s time

• provide exactly what the customer wants

• provide what’s wanted exactly where it’s wanted

• provide what is wanted where it is wanted exactly when it is wanted

• continually aggregate solutions to reduce the customer’s time and
hassle.

24 2 Lean Thinking

The principles of Lean consumption closely relate to the principles of
Lean production. Customers on the entertainment electronics market, for
example, want everything (hardware, software, and support services) to
work together reliably and seamlessly. In such a complex process, things
are not likely to flow smoothly because of the providers’ inability to work
together to perfect the whole consumption process. This leads to the first
principle. Lean consumption principles suggest a holistic way, in addition
to solving the customer’s specific problem, to identify the systemic source of
the problem in order to fix it entirely. In contrast to the providers’ culture
of wasting the customers’ time, Lean providers look at the problem from the
customer’s viewpoint and prevent wasting customer’s time. Furthermore,
providing exactly what the customer wants emphasizes “pull”. The speed of
stock replenishment systems helps to restock precisely what a customer has
just pulled off the shelf. Providing what is wanted exactly where it is wanted
completes the previous principle. Lean logistics techniques make it possible
to offer a wide range of formats with uniform pricing and, meanwhile, to
serve every customer need (Womack and Jones, 2005).

The principle of when it is wanted needs aligning with the complex pro-
vision streams of multiple companies. This aligning would enable conditions
for customers wherein they share their plans with a producer and order the
product in advance, resulting in a customized product for a reduced price.
Such a purchasing model has already shown its potential in services like
vacation cruises. Finally, continuous aggregation of solutions to reduce the
customer’s time and hassle is possible by reducing supply bases for items
and by involving fewer suppliers with deeper knowledge, as Toyota does
(Womack and Jones, 2005).

Meanwhile, Nightingale (2009) introduces seven principles related to
Lean enterprise thinking:

• adopt a holistic approach to enterprise transformation

• identify relevant stakeholders and determine their value proposition

• focus on enterprise effectiveness before efficiency

• address internal and external enterprise interdependencies

• ensure stability and flow both within and across the enterprise

• cultivate leadership to support and drive enterprise behaviors

• emphasize organizational learning.

2.3 Implementation Practices 25

Even though the viewpoint lies in transformation, Lean principles are present.
A need for a holistic approach is highlighted through multiple instances.
Focusing only on some areas cannot make the process flow. Multiple stake-
holders, such as customers, suppliers, partners, and employees, find differ-
ent benefits, rewards, or worth for their contributions. Hence, the enterprise
has to distribute value to all of them. Enterprise effectiveness needs focus
before efficiency. The enterprise strategic objectives, the resources to pro-
duce value, and the value delivering mechanism must be understood before
optimization. In other words, “doing the right thing” comes before “doing
it right” (Nightingale, 2009).

The principle of internal and external enterprise interdependencies should
be addressed from the three aspects: what the enterprise can control, what
the enterprise influences, and what the constraints on the enterprise are.
Stability of value delivery helps to determine the enterprise’s current state
thus providing a baseline for improvement. Flow of value, instead, helps
to focus on improving the value delivery to the key stakeholders. Leader-
ship must be cultivated at all three levels: senior, middle management, and
grass-root (i.e., operational) level. When these levels have been aligned,
the transformation effort is expected to become self-sustaining. Finally,
the principle of emphasizing organizational learning should gain knowledge
about the organization’s processes and value-creating manners (Nightin-
gale, 2009).

In order to adopt Lean principles to software development, translations
that take into account the nature of software engineering, have been sug-
gested as follows (Poppendieck and Poppendieck, 2007):

• eliminate waste

• build quality in

• create knowledge

• defer commitment

• deliver fast

• respect people

• optimize the whole.

These principles are the revision of the original wording of Poppendieck
and Poppendieck (2003). Eliminating waste, i.e., eliminating activity that
is non-value-adding, is the primary principle of Lean production. Lean

26 2 Lean Thinking

software development has the same focus but the principle attempts to
shorten the timeline by removing such waste. The elimination is not pos-
sible without recognizing waste (Table 2.1). This recognizing, on its part,
requires a deep understanding of what the value is for a certain customer
(Poppendieck and Poppendieck, 2007).

Building quality in (formerly build integrity in) is another goal of the
development from the outset rather than testing the quality later. Queues,
such as defect tracking systems, are queues of rework, partially done work.
Create knowledge (formerly amplify learning), in its turn, addresses that
software development is a knowledge-creating process. Even a detailed de-
sign document written ahead does not prevent the fact that the detailed
design of software happens during coding. Locking down all guesses and an-
ticipations prematurely is a waste of time (Poppendieck and Poppendieck,
2007, 23–41).

Lean organizations should be aware that problems are always a part
of a complex environment and that they have to improve their processes
continually. Each abnormality should launch searching for the root cause
of the problem in order to eliminate it. Deferring commitment (formerly
decide as late as possible) is based on the fact that the more that is known
about the situation being decided, the less uncertainty there is and less
guesses have to be made. For this reason, locking critical design decisions
that will be difficult to change should be avoided: irreversible decisions
should be made as late as possible. The principle of delivering fast (formerly
deliver as fast as possible) prevents customers from changing their minds
because they do not have time to do so. Competing on the basis of time
typically brings cost advantages over the competitors when waste including
defects that cost money, has been minimized. The principle of build quality
in, mentioned above, enables sustaining high speed. High speed is not,
however, synonymous with botching up (Poppendieck and Poppendieck,
2007, 23–41).

Respecting people (formerly empower the team) also has a salient posi-
tion in the Toyota Product Development system4. Three of the four corner-
stones of that system relate to people as follows: (1) A people-respecting
company develops good leaders, which often relates to successful products.
(2) Expert technical workforce is required to maintain a competitive ad-
vantage in a certain area. (3) Teams are trusted to self-organize to meet
the goals given; instead of telling people what and how to do, people figure
this out by themselves (Morgan and Liker, 2006).

The final principle, optimize the whole (formerly see the whole), refers

4Not to be confused with Toyota Production System.

2.3 Implementation Practices 27

to the whole value stream from receiving an order to addressing a customer
need. Serious delays can usually be tracked to handoffs of responsibility
wherein the customers’ concerns have been forgotten (Poppendieck and
Poppendieck, 2007, 23–41).

The Lean principle of optimizing the whole closely relates to the concept
of flow. Flow is a fundamental part of Lean thinking as demonstrated above.
By focusing on flow, waste can be revealed in software development as well
(Reinertsen, 2009, 3–21). Oppenheim (2004) concludes that Lean principles
that have yielded benefits in production applications are valid in product
development, as well: work should be organized as an uninterrupted flow
that proceeds steadily through all processes without rework or backflow.

2.3.3 Applying in Software Development

Applying the Lean principles presented in Chapter 2.3.2 into software de-
velopment appears to be reasonable for, at least, two reasons. First, Lean
thinking takes into account drawbacks of the plan-driven production, as
presented above. The plan-driven production has focused on planning
everything from the outset of a project and is considered to be a heav-
ily documentation-based way (Sommerville, 2007). The waterfall model
(Royce, 1970) is an example of this way where the process is executed se-
quentially step-by-step through different software development disciplines,
such as requirement engineering, architecture design, and implementation.
Even though the original suggestion of Royce (1970) was to walk the pro-
cess through twice, the model still assumes that requirements are relatively
stable. Hence, lead-times have been allowed to be long. Second, soft-
ware markets today are highly dynamic, which forces producers to respond
rapidly to changes (Poppendieck and Poppendieck, 2007). Currently, the
software industry is expected to answer to this challenge of dynamicity.

The Lean approach provides advantages for industry sectors, such as
buffering in schedules, close cooperation with customers enabling reception
of feedback, and regularizing face-to-face meetings of managers (Karlsson
and Åhlström, 1996). It is realistic to expect reaching these advantages
also in software development, namely, Lean principles applied to differ-
ent sectors (Chapter 2.3.2) appear to have an interrelationship with Lean
thinking: these principles address such important concepts of the TPS as
Hansei, Heijunka, Jidoka, Jishuken, JIT, Kaizen, and Muda (Chapter 2.2.1)
from the viewpoint of producing value. Despite the different viewpoints of
Lean manufacturing and Lean development addressed by the literature in
Chapter 2.3.1, similarities exist as well (Table 2.2).

A small amount of research done, such as Morgan (1998), reports a

28 2 Lean Thinking

Lean Manufacturing Lean Development

Frequent set-up changes Frequent product changes (software
releases)

Short manufacturing throughput time Short development time

Reduced work-in-process inventory be-
tween manufacturing steps

Reduced information inventory between
development steps

Frequent transfer of small batches of
parts between manufacturing steps

Frequent transfer of preliminary informa-
tion between development steps

Reduced inventory requires slack re-
sources and more information flow be-
tween steps

Reduced development time requires slack
resources and information flow between
stages

Adaptability to changes in volume, prod-
uct mix, and product design

Adaptability to changes in product de-
sign, schedule, and cost targets

Broad assignments for production work-
ers gives higher productivity

Broad task assignments for engineers (de-
velopers) gives higher productivity

Focus on quick problem solving and con-
tinuous process improvement

Focus on frequent incremental innova-
tion and continuous product and process
improvement

Simultaneous improvement in quality, de-
livery time, and manufacturing produc-
tivity

Simultaneous improvement in quality, de-
velopment time, and development pro-
ductivity

Table 2.2: Similarities between Lean manufacturing and effective product
development (Poppendieck and Poppendieck, 2007, 14).

2.3 Implementation Practices 29

valuable potential of Lean thinking in the sense of improving the perfor-
mance of software development projects. Regardless of this potential, Lean
thinking has not been widely applied to software development.

In a case study of Middleton et al. (2005), a majority of that com-
pany that was studied, agreed that the Lean approach is applicable to
software engineering. Further, the statistics showed a 25% gain in produc-
tivity. Schedule slippages of months or years were reduced to four weeks.
Meanwhile, the time to fix defects was reduced by 65% to 80%. Finally,
the product release using the Lean approach exceeded the expectations of
the customer. In that case project, the team members applied 11 Lean
principles or techniques to their software development. These were: (1)
continuous-flow processing, (2) customer-defined value, (3) design structure
matrix and flow, (4) common tempo or “takt” time, (5) linked processes,
(6) standardized procedures, (7) eliminate rework, (8) balancing workloads,
(9) posting results, (10) data-driven decisions, and (11) minimize inventory.

Moreover, the use of the Lean approach has been reported to bene-
fit capstone software projects. In an experiment of Perera and Fernando
(2007), for example, a hybrid process of agile and Lean produced more
lines of code than agile. At the beginning, the group that used the hybrid
process also found more defects than the group that used the agile process.
The reasons were autonomous and value perfection norms, and paying more
attention to the perfection than the agile group. At the later stages the
situation reversed, i.e., the hybrid group started to get a stable minimal
defect rate while the agile group experienced high and varying defect rates.
This was a consequence from the difference of the amount of hidden un-
fixed defects in early developments. Therefore, fewer defects in later stages
helped to stabilize the project schedule and to reduce costs caused by defect
fixing.

Further improvements may be achieved in disciplines such as prod-
uct planning and people management. Extending the viewpoint from car
manufacturing to these disciplines attempts to make Lean thinking even
more relevant for software engineering than the manufacturing: improv-
ing software development needs focusing on the overall development cycle
(Petersen, 2010, 40). Outside software development, this focus is already
being utilized to make the process more successful. The Toyota Product
Development system, for example, extends the Lean manufacturing to the
Lean product development wherein the design, manufacturing, and hu-
man resource management are focused and integrated together (Morgan
and Liker, 2006). To improve the performance of software development
projects, particularly the human aspect is a key as will be addressed in

30 2 Lean Thinking

Chapter 3.1. This, in its turn, gives us reason to think that Lean thinking
is worth applying to software development.

2.4 Relation to Agile Software Development

This chapter compares the Lean approach with agile practices in software
development. Agile methods (Abrahamsson et al., 2002) (1) are widely
used and (2) have been considered to provide a solution for many problems
derived from the plan-driven, conventional software development method
(Larman and Basili, 2003; Ramasubbu and Balan, 2009; Takeuchi and Non-
aka, 1986). Thereby, the motivation for the comparison is to find out what
additional value the Lean approach brings to software development.

The agile software development methods have improved the output of
the plan-driven methods in software developing projects in the 1990s and
2000s (Dı́az et al., 2009; Sutherland et al., 2009). In contrast to the plan-
driven methods, the agile approach consists of the four following values
cited from the Agile Manifesto (Beck et al., 2001):

(1) Individuals and interactions over processes and tools.

(2) Working software over comprehensive documentation.

(3) Customer collaboration over contract negation.

(4) Responding to change over following the plan.

These values are based on the 12 principles of the agile approach which
concisely are as follows (Beck et al., 2001):

(i) Satisfy the customer through early and continuous delivery of valuable
software.

(ii) Welcome changing requirements.

(iii) Deliver working software frequently.

(iv) Business people and developers must work together daily throughout
the project.

(v) Build projects around motivated individuals.

(vi) The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

(vii) Working software is the primary measure of progress.

2.4 Relation to Agile Software Development 31

(viii) Agile processes promote sustainable development.

(ix) Continuous attention to technical excellence and good design enhances
agility.

(x) Simplicity – the art of maximizing the amount of work not done – is
essential.

(xi) The best architectures, requirements, and designs emerge from self-
organizing teams.

(xii) At regular intervals, the team reflects on how to become more effective
and then tunes and adjusts its behavior accordingly.

The agile approach implements the Lean basic concepts in software devel-
opment and emphasizes the customer satisfaction and the continuous im-
provement of the development process (Sillitti and Succi, 2006, 2008). The
agile approach attempts to deliver working software continuously, which
enables checking by demonstrations whether the customer needs are ful-
filled (Petersen, 2010, 41–42, 183). The overall goal of Lean development,
instead, is to reach a smooth, continuous flow of production with a min-
imum waste and maximum flexibility in the process (Oppenheim, 2004).
Petersen (2010, 53–70) compares practices of the agile methods with Lean.
He recognizes totally 26 principles and groups them into the following seven
categories: requirements engineering, design and implementation, quality
assurance, software releases, project planning, team management, and end-
to-end flow. Table 2.3 summarizes the comparison.

According to Table 2.3, both the advantages and disadvantages of both
approaches are evident. Permission to ignore the on-site customer (P01) in
Lean software engineering, for instance, allows freedom and it may lower
the pressure of the team when the customer is not located at the devel-
opment site. The lack of demand of Coding standards (P04) and Team
code-ownership (P05) in the Lean approach, again, allows freedom but may
lead to various ways of writing and structuring code inside the team. Low
dependency architecture (P06), instead, is connected to the Lean approach
only, which allows developing the components independently (i.e., the de-
liveries of the components are not dependent on each other). The planning
game (P17) is unique to the agile approach, which makes it more mechan-
ical and formal than the Lean approach. More freedom can be attained
in the Lean approach by ignoring the 40-hour week (P20) and Stand-up
meeting (P21).

In contrast, Value-stream mapping (P23) emphasizes the idea of Lean
software engineering since the purpose of processes is to create value for

32 2 Lean Thinking

Group Used in
Agile SE

Used in
Lean SE

Requirements Practices
P01 On-site customer x
P02 Metaphors/Stories x x

Design and Implementation Practices
P03 Refactoring x x
P04 Coding standards x
P05 Team code-ownership x
P06 Low dependency architecture x

Quality Assurance Practices
P07 Test-driven development and test automation x x
P08 Pair-programming x x
P09 Continuous integration x x
P10 Reviews and inspections x x
P11 Configuration management x x

Software Release Practices
P12 Incremental deliveries to the customer x x
P13 Separation between internal and external releases x x

Planning Practices
P14 Short iterations x x
P15 Adaptive planning with highest priority user sto-

ries/requirements
x x

P16 Time-boxing x x
P17 The planning game x

Team Management Practices
P18 Co-located development x x
P19 Cross-functional teams x x
P20 40-hour week x
P21 Stand-up meeting x
P22 Team chooses own tasks x x

End-to-end Flow Practices
P23 Value-stream mapping x
P24 Inventory management with queuing theory and

theory of constraints
x

P25 Chief Engineer x
P26 Kanban pull-system x

Table 2.3: Summary of comparison of Petersen (2010, 41–70) between agile
and Lean software engineering (SE) practices.

2.4 Relation to Agile Software Development 33

customers. Inventory management with queuing theory and theory of con-
straints (P24), on its part, executes the Lean principle of eliminating waste.
Inventory, among others, is considered waste (Chapter 2.2.2). Chief Engi-
neer (P25) relates to optimizing value creation and the pull system (P26),
as stated in Chapter 2.2, is unique for Kanban that is described in Chap-
ter 2.5.

Overall, the practices of quality assurance and software release are in-
cluded in both approaches. Fifteen of the practices mentioned in Table 2.3
are shared between agile and Lean. The following six practices are consid-
ered to be unique to agile methods: on-site customer, coding standards,
team-code ownership, planning game, 40-hour week, and stand-up meet-
ings. Even though Lean is not agile in this sense, all agile practices iden-
tified support Lean principles. The seventh Lean principle (i.e., “optimize
the whole”) distinguishes the Lean approach from the agile one. From the
process viewpoint, the Lean approach does not propose, in contrast to ag-
ile, a workflow or the production of specific artifacts. Instead, it states
principles and provides analysis tools for processes. This focus guides to
improve processes to achieve a good flow of value. Such process freedom
makes Lean more generally applicable than agile methods (Petersen, 2010,
41–70).

The comparison of Petersen (2010) shows similarities and differences
from the seven following aspects: people management and leadership, qual-
ity of the product, release of the product, flexibility, priority of the customer
needs and values, learning, and end-to-end flow (Table 2.3). Based on these
aspects, Petersen (2010) concludes that the Lean approach includes all the
principles of agile methods but not vice versa: the agile principles do not
emphasize the end-to-end focus on flow. According to this observation,
Lean appears to complement agile methods by the flow aspect and by con-
cretizing in the form of seven kinds of waste what does not provide the
value for the customer. In addition, Middleton and Joyce (2011) remind
us that agile-based Scrum, for example, is, in essence, a batch model of
“push” while Lean has the pull mechanism.

As a conclusion, utilizing the Lean approach successfully seems to re-
quire experience from its users. The Agile Manifesto contains more princi-
ples than has been presented in Lean software development, which appears
to make the approach more mechanical than Lean. The agile principles
seem to be more descriptive than Lean ones. Thereby, it may be easier for
teams to adapt them into practice than Lean principles. Sillitti and Succi
(2008), however, conclude that the agile approach does not pretend to be
useful for any kind of software project or organization. The Lean approach,

34 2 Lean Thinking

by stating principles and providing analysis tools for processes, guides its
users to improve processes to achieve a good flow of value, which has been
claimed to make Lean more generally applicable than agile methods (Pe-
tersen, 2010, 41–70). Petersen (2010, 217) concludes that the end-to-end
perspective of the whole value flow through development distinguishes Lean
from agile. Shalloway et al. (2009, 6–23), on their part, summarize that
Lean extends agile by providing guidance for agile practices in new sit-
uations, telling us to focus on time of development instead of resources
utilized, and reminding us to optimize the whole instead of trying to get
each step done in the most efficient way.

2.5 Kanban in Practice

The literature addressed in Chapter 2.4 gave the motivation for why one
should utilize the Lean approach in software development. In order to
perform software development by following Lean principles, a need for an
appropriate software process model arises. Hence, this chapter introduces
Kanban.

The Kanban process model (Gross and McInnis, 2003) executes Lean
thinking, including “pull”, in practice (Becker and Szczerbicka, 1998; Chai,
2008). Moreover, it is one of the key operation management tools in Lean
manufacturing (Liker, 2004, 176) and provides a way to prevent Muda,
Mura, and Muri (Ohno, 1988). In addition to value stream mapping (Mu-
jtaba et al., 2010), inventory management (Anders, 2004) containing the
queuing theory (Poppendieck and Poppendieck, 2007, 100–114), and the
theory of constraints (Goldratt, 1984), the end-to-end focus is supported
by pull systems (Gross and McInnis, 2003). Value stream mapping shows
processing and waiting times by visualizing the development life-cycle (Mu-
jtaba et al., 2010). Inventory management, instead, suggests limiting the
simultaneous work in progress: the goal is to minimize partially done work
and task switching that are considered waste (Chapter 2.4). Pull sys-
tems, on their parts, aim at preventing overload of the development process
(Chapter 2.2.1).

In manufacturing operations, the different kinds of waste are basically
straightforward to detect by observing the physical material flows and ma-
chine or worker activities (Goodson, 2002); (Lui and Chan, 2008, 3–11). In-
visibility of waste in software development, however, restrains the progress
(Poppendieck and Poppendieck, 2003). Partially done work, for example,
involves such emerging issues as requirement and error inventories. In order
to manage these inventories, extra processes (i.e., waste) may be born.

2.5 Kanban in Practice 35

Benefits of Kanban scheduling are reduced inventory, improved flow,
prevented overproduction, operations-level control, visualized schedule and
management of the process, improved responsiveness to changes in demand,
minimized risks of inventory obsolescence, and increased ability to manage
the supply change (Gross and McInnis, 2003).

In contrast to Scrum, for example, Kanban does not require breaking
down features into stories in order to make these stories fit into an arti-
ficial deadline caused by a time-boxed iteration scheme. Instead, Kanban
requires that a workflow the team creates has to contain explicitly defined
rules and limits. This helps teams move their focus from blaming individ-
uals to the process (Shalloway et al., 2009, 100).

From the human aspect, Kotter (1996, 3–16) and Watson (2002, 437–
448) argue that without directive behavior (i.e., management) and support-
ive behavior (i.e., leadership), a staff head cannot reach goals well enough.
Moreover, Howell et al. (2004) argue that the theoretical foundation that
connects leadership and people aspects holistically is still missing. Kan-
ban, as a method, empowers people with a minimum set of required rules
to follow, and, is often presumed to attain the flow (Shinkle, 2009; Ladas,
2009).

While Kanban enables clarifying the workers’ awareness of the current
production issues and forthcoming tasks, it does not recommend any par-
ticular project phases, milestones, or partitioning tasks. Due to this liberty,
it is up to a project team to build and customize the appropriate practices
for its project. When successful, the impact on the project is supposed to
be positive. Furthermore, despite the demand to visualize the workflow,
there are no particular rules concerning how to implement the content of
the Kanban board. In their basic form in production environments, Kanban
controls are typically implemented with physical index cards (usually called
tickets) moving along with the material. The cards then act as the flow-
control tickets between the different work stations or processes (Kniberg,
2009).

Figure 2.1 illustrates one realization of Kanban as a table (such as a
wall-paper with sticky notes). Each project task (card) flows from one state
to another (from left to right) as it progresses. Hence, the overall project
situation can be seen at a glance while the dynamic moving of the task
cards indicates the project progress (or blocking) over time. The numbers
6, 2, and 2 represent the WIP limits for their columns meaning that no
more than the announced number of tickets is allowed to be located in that
column simultaneously.

Some practices, regardless, have been suggested in the literature. Ladas

36
2
L
e
a
n
T
h
in
k
in
g

Figure 2.1: An example of one implementation of the Kanban board used in one of our case projects.

2.5 Kanban in Practice 37

(2009), for example, suggests that the amount of tasks in progress simul-
taneously (i.e., WIP) should be adjusted to the reasonable capacity in use.
Middleton (2001) claims that this amount should be minimized in order
to keep a high quality. Shinkle (2009), instead, argues that minimizing
this amount is not the best solution. Project flow stages wherein the tasks
progress from stage to stage has also been suggested. If each stage, such as
To Do, Planning, Design, and Coding, gets its own Ready stage, the block-
ages in the workflow become more visible (Ladas, 2009). Alwardt et al.
(2009) state that tasks should be prioritized. Moreover, laborious tasks
should be partitioned before setting them as assigned (Shinkle, 2009). In
more general, Gross and McInnis (2003, 8–13) suggest the following seven
steps to implementing Kanban: (1) Conduct data collection in order to
characterize the production or development process, (2) calculate the Kan-
ban size, which will utilize the production requirements among others, (3)
design Kanban so it answers the question of how Kanban will be imple-
mented, (4) train everyone, (5) start Kanban, (6) audit and maintain Kan-
ban, and (7) improve Kanban.

The properties and effects of the original Kanban concept in the TPS
are as follows (Hiranabe, 2008).

• Physical: Physical cards are located on, for example, a plain white-
board. In Figure 2.1, for instance, the tickets on the table represent
tasks or features. Those tasks being carried out have been marked
with the names of the corresponding developers. This way allows
people to see the status of the progress at a glance.

• Limiting WIP: Kanban limits WIP in order to prevent Muri. For
example, in the “Code Review” column in Figure 2.1, the WIP num-
ber has been set at two. This WIP limit means that no more than
two tickets are allowed to be in the column simultaneously. If a task
being code reviewed was problematic, carrying it out without the as-
sistance of others would restrain the flow. Other people, once they
have finished their tasks, cannot “pull” another ticket into the col-
umn because it is already full (due to the WIP limit). They rather
have to help with the problematic ticket in order to free some space
in the column for new tickets. In this way, the flow is supposed to be
smooth and bottlenecks avoidable. Overall, defining WIP limits for
each activity, the average cycle time can be minimized.

• Continuous flow: Kanban notifies about the needs of production be-
fore the store runs out of stock. In addition to avoiding bottlenecks
(see the previous bullet), a smooth flow also means that a customer

38 2 Lean Thinking

or the next unit in the chain (a team, or a member of a team, for
example) does not have to wait for the outputs of the process of the
previous unit.

• Pull: The downstream process “pulls” items from the upstream pro-
cess. As explained in Chapter 2.2.1, pull-driven actions closely relate
to JIT and to keeping things flowing.

• Self-directing: Kanban has all information on what to do and makes
production autonomous in a non-centralized manner and without
micro-management. As stated, people can see the status of the progress
at a glance (as an example, see Figure 2.1) and determine whether
bottlenecks or starvation exist.

• Visual: Kanban is stacked or posted to show the current status and
progress visually (Figure 2.1).

• Signal: The visual status of Kanban signals the next withdrawal or
production actions.

• Kaizen: The visual process flow informs and stimulates Kaizen.

Moreover, (Shalloway et al., 2009, 100–101) argue that Kanban (1) di-
minishes the fear of committing to estimations of per-stories, (2) highlights
the team’s performance over individuals’, which makes it rather a team
process than one for individuals, (3) focuses on improving the workflow
process, (4) allows reflection about concrete measures, and (5) as a trans-
parent process, allows involving management in Kaizen.

In spite of the potential in manufacturing, there are only a few studies
regarding how Kanban fits in software development projects. In contrast
to the pipeline (manufacturing), a project is, according to PMI (2008, 1)
“a temporary endeavor undertaken to create a unique product, service, or
result”. Translation is needed as it was needed when applying principles of
Lean thinking to software development (Chapter 2.3).

Kanban in software engineering is based on the following beliefs: (1)
software development is about managing and creating knowledge, (2) soft-
ware development processes can be managed and described in terms of
queues and control loops accordingly, and (3) some representation of infor-
mation that flows through the system is required (Shalloway et al., 2009,
96).

Basic principles of Kanban-based management can be applied to soft-
ware production functions by reinterpreting the concept of physical mate-
rial. In software development, the material flows are replaced by informa-

2.6 Summary 39

tion flows. In general, the WIP items then represent the various work tasks
in the software development projects (Hiranabe, 2008).

After all, the use of Kanban is not a method per se. The concept of
Kanban is used to justify the triggering of activities. In other words, it puts
the idea of “pull” into practice. In the context of software development,
Kanban is used as an instrument to organize the activities within a team
(Janes and Succi, 2009).

2.6 Summary

Chapter 2 introduced fundamental concepts of Lean thinking and reviewed
its origin and its practical application. While the concept of Lean think-
ing is not new, software development has not applied it until recently. As
a conclusion, the literature suggests that Lean thinking has potential for
software engineering. Kanban as a part of Lean thinking is expected to
benefit software development. The basic idea in this applying is similar to
the original use of Lean thinking: an attempt is made in order to produce
only the right amount or number of the product, and only then when some-
one needs the product, which should eliminate Muda, Mura, and Muri. As
a result, less waste should lead to more value.

The literature above prososed that original Lean practices cannot be
adapted straightforwardly into software development. Meanwhile, the lit-
erature suggests that the Lean principles can be used to derive such prac-
tices that take into account the needs of the particular nature of software
development (regarding waste elimination and JIT, for instance).

Several authors are suggesting that Lean provides more possibilities to
optimize software development projects appropriately but contains a risk
to “eliminate” too much waste, in contrast to the agile approach. Neverthe-
less, Kanban’s demands to visualize the progress, limit WIP, and measure
the cycle-time are, according to the literature addressed above, supposed
to be an answer – at least to some extent – to issues of the agile software
development (presented in chapters 1 and 2.4). The small number of em-
pirical evidence, however, needs more research in order to validate what
the real impacts of Kanban are for software development.

40 2 Lean Thinking

Chapter 3

Determining Software Project

Success in Lean Thinking

In order to link Lean thinking with factors affecting project outcomes,
Chapter 3.1 defines the concept of project success while Chapter 3.2 intro-
duces a general framework for project success and maps the relationship
between the framework and Lean software development.

3.1 Project Success

Regarding project success in software engineering, the literature still re-
ports serious failures – despite the half-century history of software proj-
ects. World-widely, less than half of the projects are considered successful,
argued anecdotally by Ernest-Jones (2007); Hartmann (2004). Neverthe-
less, criticism against the validity of these arguments has been presented
by Glass (2006), for instance.

The term “success” means different things to different people (Freeman
and Beale, 1992). Correspondingly, “project success” is typically under-
stood differently between the internal and external organizations of proj-
ects (developers compared with customers, for example). Understandings
collide even inside organizations (Agarwal and Rathod, 2006). Awareness
of this ambiguous situation offers a new viewpoint to consider the valid-
ity of the reports regarding the success of software projects: such reports
only expose that there is something wrong with the projects from a certain
point of view. Whether this “wrong” is relevant depends on the project
context and the viewpoint. For example, one organization may consider its
project to be successful even if the schedule has been exceeded seriously.
Meanwhile, another organization may think such a delayed project is an

41

42 3 Determining Software Project Success in Lean Thinking

economical disaster despite the satisfaction of the customer.

The definition of PMI (2008) for project success consists of product
and project quality, timeliness, compliance with the budget, and customer
satisfaction. Meanwhile, Shenhar et al. (2001) divide project success into
four dimensions based on empirical evidence: (1) project efficiency (meeting
time and budget goals), (2) impact on the customer (such as customer
satisfaction, meeting operational and technical specifications, and solving a
major operational problem), (3) business success (commercial success and
a market share), and (4) preparing for the future (opened a new market
or line of products and developed a new technology). This division looks
similar to the definition of the PMI.

As one key for a better performance level of the software engineering,
software tools have been considered. As early as the 1980s, programming
productivity and quality were found to be improved by using these tools
(Boehm, 1981; Thadani, 1984; Jones, 1986). Even though the right kind of
automation is desired and thereby expected (Ravichandran and Rai, 1994),
understanding the knowledge, tools, and techniques is insufficient for ef-
fective project management (PMI, 2008, 13). Automatition, indeed, in
software development support has been over-emphasized since the middle
of the 1980s (Conradi and Fuggetta, 2002). Because software development
is a largely dynamic and cooperative set of activities, methods, and trans-
formations used by people, the impact of software development technology
with its modeling languages, editors and interpreters has only been small
(Conradi and Fuggetta, 2002). In those days, crucial processes, such as
learning, technical communication, requirements negotiation, and customer
interaction, were poorly described in software process models (Curtis et al.,
1988).

Being aware of the existence of problems in software development that
may lead to project failure is insufficient for being aware of the reasons for
such problems. Thereby, the following sections take a deeper look at the
problems and focus on their reasons.

3.1.1 Individual and Team Levels

In order to improve software development, the overall development should
be focused on (Petersen, 2010, 40). By doing so the success of a project
may not, however, be guaranteed. Without understanding human relations,
project managers may have difficulties in controlling their customers or
even their own software teams. The first problems may occur right at the
beginning of projects. According to Hutchings et al. (1993), people after
their group begins to meet typically focus on belonging in the group and

3.1 Project Success 43

on orienting themselves: they sit back waiting and collecting more data
before really joining the group. Team-based learning, group behavior, and
ways in which people create purposes and communicate are key elements
of the group wherein they form (Hutchings et al., 1993). The five-stage
theory of Tuckman and Jensen (1977) about growth and development of
the groups emphasizes the meaning of people. It states that groups need
changes to grow. According to the theory, the team development starts
by “forming” the group and ends in the “adjourning” via the “storming”,
“norming”, and “performing” stages. Maturing requires time and after
groups grow, they become more efficient (Tuckman and Jensen, 1977). One
reason why exceptional results and the highest levels of performance remain
unreachable in some groups, is that they never complete the storming stage
(Pugh, 1991; Schein, 1988).

Boddy and Macbeth (2000) discover four practices explaining success-
ful implementation of projects: goals, resources, structures and controls.
These practices create the need for managers to focus on the following five
areas: (1) ensuring agreement with goals, (2) obtaining resources, (3) moni-
toring and learning, (4) exercising influence (using individual initiative and
creating appropriate structures), and (5) ensuring effective communication
(Boddy, 2002). In this sense, many modern projects have no tangible out-
puts (Maylor, 2001). The result of a software engineering project is no more
than a shared database with an integrated system if the time constraints,
tasks, milestones, and cost are the only concerns for the project manager,
actors and stakeholders (Gunson et al., 2003). The ability to allocate both
technical and human resources has been identified as one of the key fac-
tors in commercial software development over three decades ago (see Zmud
(1980)).

Regarding the human aspect, the PERFORM model states character-
istics for a high-performing team. The acronym is based on the following
(Blanchard et al., 2004, 12–13):

• (P)urposes and values remind of the team’s clear commitment to
a common purpose. Common values improve integrity, quality and
collaboration.

• (E)mpowerment means availability of relevant organization and busi-
ness information, as well as initiative, involvement and creativity en-
couraged by values, norms and policies.

• (R)elationships and communication stress the meaning of respect to-
ward differences in the sense of ideas, opinions, feelings, perspectives,

44 3 Determining Software Project Success in Lean Thinking

and cultures. Attentiveness includes honest and caring feedback and
understanding.

• (F)lexibility consists of shared responsibility, using unique talents and
strengths, and openness to explore different ways of working. Calcu-
lated risks are also supported.

• (O)ptimal performance constantly builds up production of significant
results. The team commitment is required for high standards and
measures for productivity and quality. The team learns from mistakes
and improves continuously.

• (R)ecognition and appreciation happens, when team contributions
are recognized and valued by the larger organization. A feeling of
high regard within the team is common and accomplishments are
acknowledged.

• (M)orale is based on confidence and enthusiasm about the team’s
efforts. The sense of pride and satisfaction is strong and the members
help each other.

Meanwhile, singular issues considered as critical success factors have
been reported in the literature. Over two decades ago, Bullen and Rockart
(1986) concluded things that must go right for a successful project. These
things include clearly defined objectives, adequate budget, realistic sched-
ule, customer or user participation, project leadership, change control and
management, communications, and problem solving. Curtis et al. (1988)
and Jurison (1999) agree: the most salient problems reported in projects
concerning additional efforts or mistakes include communication and coor-
dination breakdowns.

Lack of shared understanding in and between organizations shows as
hiding of the decision-making process and as decision-making without au-
thority approval (Jensen and Scacchi, 2005). Teasley et al. (2000) even
show that the productivity in teams can be doubled by easing their access
to each other and by making work artifacts visible to all. Customer percep-
tions of quality have a direct influence on information system providers and
their products (Licker, 1992), which emphasizes the meaning of cooperation
between producer and customer: producing even the best quality from the
viewpoint of a producer may not satisfy a customer if the conceptions of
the producer and customer regarding quality differ from each other.

Team members have to develop certain concepts as a common approach
to getting things solved and done. Successful teams do not accept the

3.1 Project Success 45

obvious causes but think their way around the problem thoroughly (Robson,
1993; Poppendieck and Poppendieck, 2003).

3.1.2 Organization Level

Executives in every domain of business know that their ability to compete
directly depends on how they can organize people and motivate, develop,
attract, and retain talented people (Curtis et al., 2001). In addition to
individuals, success has been shown to depend on organizational factors
and experience, as well: Capability Maturity Model Integration (CMMI)
focuses on the following issues: (1) characterizing the maturity of workforce
practices, (2) establishing a continuous program to develop the workforce,
(3) setting priorities to form improvement actions, (4) combining work-
force development and process improvement, and (5) establishing a culture
of excellence (CMMI Product Team, 2007). However, Middleton and Joyce
(2011) criticize this based on their literature review: “After 20 years in
existence, the independent evidence that CMMI leads to improvements in
product cost, quality, and timeliness is slowly accumulating.” Besides, more
practices than those in CMMI are needed to motivate, develop, attract,
and retain top software talent (Curtis, 1994). As a solution, the People
Capability Maturity Model (People CMM) (Curtis et al., 2001) is based on
human-related issues in software projects and is supposed to guide manage-
ment and development of the workforce, and to help address critical people
issues. It establishes successive foundations for (1) continuously improving
individual competence, (2) developing effective teams, (3) motivating im-
proved performance, and (4) shaping the workforce that an organization
needs to accomplish future business plans (Curtis et al., 2001).

Many project managers use involvement as a risk control method for
management, users, and the steering committee (Addison and Vallabh,
2002). Management involvement especially decreases the risks of unclear or
misunderstood scopes or objectives, unrealistic budgets or schedules, and
continuous requirement changes (Addison and Vallabh, 2002). Even 11
years before this identification, Boehm (1991) ranked the two latter factors
among the top six of the software risk factors. Moreover, other risks occur-
ring in software projects regularly are lack of senior management commit-
ment to the project, failure to gain user involvement (i.e., developers may
have to make assumptions about functionality details and objectives when
users are not involved), inadequate knowledge or skills (e.g., knowledge
of the personnel in technology, business, or project handling), developing
the wrong software functions (from the user or technical viewpoint), sub-
contracting (e.g., shortfalls in externally developed components), resource

46 3 Determining Software Project Success in Lean Thinking

usage and performance, introduction of new technology (not successfully in
use in other organizations thereby being risky), and failures in managing
end user expectations (Addison and Vallabh, 2002). Most of these risks are
recognized as culture-independent (Keil et al., 1998).

According to Weiss et al. (2002), in as early a process as a software as-
sessment, the first step should be to obtain commitment from the managers
of the organization: when senior managers believe that the process will ben-
efit them, the level of commitment of participants begins to increase. On
the other hand, Abrahamsson (2000) stresses a necessity for management
commitment and concludes that this commitment is useful only in order to
enable the process improvement culture to grow.

3.2 Framework for Project Success

Chapter 3.1 briefly described the fragmented status of the area of project
success in software development. Due to this fragmentation, Chapter 3.2
focuses on targets of improvements for practitioners’ software work. This
is done with the aid of the Lean approach because, based on the literature
addressed in Chapter 2.3.3, (1) Lean thinking appears to be possible to
transform to software development and (2) the potential of Lean thinking
to software development was found to be promising. Therefore, we present
our framework, part of our study contribution (Paper II), for project success
(Figure 3.1). This general framework presents themes and constructs that
have been recognized to have influence on software development projects.
In the figure, they have been divided into levels: individual and team,
project, and organization. Later, Figure 5.1 will illustrate the role of the
themes and constructs regarding the research in this thesis.

The themes and constructs (i.e., the white boxes in Figure 3.1) are a
contribution of our studies (Paper I and II) and have been derived from
the literature-based theories, models, methods, tactics, and best practices.
Based on the empirical evaluation, driving or restraining factors of proj-
ects can be traced to these themes and constructs. The division into three
forces (i.e., organizational (decision power), internal (stress), and exter-
nal (dynamics)) has been adopted from the work of Bertelsen and Koskela
(2003). By following that division, the themes and constructs have been
placed in the forces according to their primary function to best fit the de-
scription by Bertelsen and Koskela (2003) regarding the contexts of the
forces. The model of Bertelsen and Koskela (2003) has been designed for
handling chaos1 in construction projects with the aid of the three forces.

1Bertelsen and Koskela (2003) explain factors affecting project success with chaos:

3.2 Framework for Project Success 47

Figure 3.1: A general framework of software engineering project success
with the three forces and their themes and constructs (Paper II).

Nevertheless, the model is assumed to be suitable for software develop-
ment projects, as well, due to similar theories of project and management
(Koskela and Howell, 2002). Thereby, the model is used as the foundation
for our framework.

In general, Law et al. (1998) divide relationships between the dimen-
sion (here a force) and the construct (here a theme or a construct) into
three: latent model, aggregate model, and profile model. According to this
taxonomy, our framework is determined as the profile model. This means
that the forces of the framework are not supposed to combine because of
their theoretical nature. Rather, the profile model collates the themes and
constructs as various combinations of their forces’ characteristics. There
are no weights between the themes and constructs (in contrast to the ag-

chaos may be channeled into increased cost and duration and into reduced value and
functionality of a project.

48 3 Determining Software Project Success in Lean Thinking

gregate model). Neither can any formula determine the level of success in
our framework because the framework has not been formed as an algebraic
composite of its forces. Likewise, the framework is not appropriate to in-
terpret as the latent model due to its hierarchy: the first-order factors do
not equally manifest success. For these reasons, the framework follows the
characteristics of the profile model.

The following three sections focus on the content of each force of the
framework from the viewpoint of Kanban and Lean thinking.

3.2.1 Decision power

The organizational force (Figure 3.1) related to the individual and team
level appears to contain fundamental parts of Lean thinking. This is showed
by walking through the themes and constructs as follows.

Shared leadership and communication have been highlighted in Lean
thinking where it is not considered reasonable to keep all the decision power
in the hand of project managers (Chapter 2). The principle of empower-
ing the team (Chapter 2.3.2) allows projects to reach an efficient decision-
making policy: where the knowledge is, there the decision power is. In a
team of high performance, this means that everyone can take responsi-
bility, which, on its part, requires communication ability (Poppendieck and
Poppendieck, 2003). This ability is one key for successful use of Kanban as
mentioned above and as will be argued in Chapter 5.

In addition to communication, experience and competence are needed
in projects. Decisions and solutions will be fact-based rather than ran-
dom guesses if relevant experience and competence are present during the
decision-making. This is true also regarding re-tailoring and optimizing
Kanban for different project contexts: once the needs and limits in a
certain environment are known, re-tailoring can be made based on facts,
not guesses. According to the principle of deferring commitment (Chap-
ter 2.3.2), a lack of needed information results in either stopping the work
to find the answer or guessing without stopping (Chapter 2.3.2).

“Amplify learning” (Chapter 2.3.2) is one of the suggested principles
for Lean software development. The progress of a flowing project should be
measured in order to detect problems (Reinertsen, 2009). This is expected
to lead to Kaizen. Short feedback loops accelerate learning since mistakes
are revealed faster and doing mistakes can be stopped earlier (Takeuchi
and Nonaka, 1986; Mandić et al., 2010). Kanban enables this learning by
allowing changes and feedback and by limiting overprocessing (by setting
the WIP limits) (Chapter 2.5). This executes Heijunka, Hoshin-kanri, and
Jidoka.

3.2 Framework for Project Success 49

Teaming is part of a self-organized, high-performing team (Cohen and
Bailey, 1997; Guzzo and Dickson, 1996; Moe et al., 2009a). Software de-
velopment work is carried out mostly by teams, not by individuals (Som-
merville, 2007). A positive atmosphere of trust, morale, and motivation
disappears if a group puts its energy into fighting each other instead of into
working (Blanchard, 2001). Group autonomy, as already stated, is part
of a self-organized Lean team.

Design behavior includes brainstorming, clearing up encountered prob-
lems, looking for more than one basis and solution (Yokoten), finding nec-
essary information to solve a problem, and modeling possible solutions and
implementing experimental solutions before making a decision. Lean prin-
ciples (Chapter 2.3.2) support this kind of design behavior: “respecting
people” values people’s skills and knowledge and encourages projects to
utilize them. Necessary knowledge is created (“create knowledge”) for the
right decision, and the commitment is allowed to be deferred (“defer com-
mitment”) in order to find this right decision. Making the right decisions,
on its part, helps to “build quality in” and “eliminate waste”. A diminished
number of obstacles and restraining elements helps the team to follow the
Lean principle of “deliver fast,” as well.

Conventional software development approaches the change manage-
ment in a different way than Lean practices. Lean practices take into
account the fact that the content of complex, abstract-term software devel-
opment projects cannot be known at the beginning (Chapter 2). Therefore,
when a change occurs, teams using Lean practices can adapt to the new
situation in a more flexible way than using the conventional practices (Pop-
pendieck and Poppendieck, 2003). Kanban notices this dynamic situation
of modern projects (Gross and McInnis, 2003). As a flexible method it
allows overriding the planned implementation order of the tickets: a new,
important ticket can be started to carry out as soon as someone gets the
previous ticket carried out and is thereby free to engage in this new one
(Kniberg, 2009).

Committing the customer to the project requires interaction. The co-
operation between the producer and customer should be fluent despite po-
tential unwanted characteristics of the customer. Even though agile
practices emphasize customer interaction more than Lean practices (Chap-
ter 2.4), adding customer-value is possible when the team is aware of the
customer’s needs (Chapter 2.3). Implementing successfully the Lean prin-
ciples of “creating knowledge” and “optimizing the whole” require cooper-
ation. The pull mechanism used in Kanban strongly supports this coopera-
tion since the customer can “pull” the most relevant, the most value-adding

50 3 Determining Software Project Success in Lean Thinking

features first by prioritizing them appropriately (Chapter 2.5).

Critical events can be seen from both the general and project-specific
viewpoint. Many problems related to the plan-driven approach, such as
lack of feedback, can be an issue in the Lean context, as well. Lean prin-
ciples, however, encourage people to give feedback, which executes Kaizen
(Chapter 2.3.3).

Ability to utilize members’ competence should increase the team’s
competence. While redundancy is useful, there may not be time enough to
educate everyone in the team into specialists in each relevant area. Rather,
different skill areas of the members should be utilized. The question is
about “respecting people” and “creating the knowledge” (Chapter 2.3.2).

The Lean principle of “eliminate waste” concretely orders us to elim-
inate waste from the projects (Chapter 2.3.2). This includes keeping the
meetings effective. Although meetings are mandatory in projects, dis-
cussing irrelevant issues in the meetings, for example, does not add any cus-
tomer value. Kanban provides visual information about the progress and
helps people to “optimize the whole” (formerly “see the whole”), which also
helps members to make fact-based decisions in the meetings (Chapter 2).

The principle of “optimize (or see) the whole” (Chapter 2.3.2) provides
for communication also beyond project boundaries (i.e., organizational
communication). In other words, communication is not a requirement
for project teams only. Patterns of organizational behavior support
this principle: business processes, technology, resources, structure, peo-
ple, culture, and the policy of decision power of the organization should
be aligned with the project. In this way, the project gets support from
the organization. This support also includes the commitment of senior
management. The Kanban board provides important information to the
management level, too (Chapter 2.5).

Table 3.1 summarizes the mapping presented above.

3.2.2 Stress

Internal force (Figure 3.1) deals with issues occurring inside projects. When
a project has clear goals and its members have a shared direction, attempts
can be made to attain this direction and the whole can be seen (“optimize
(or see) the whole”). Mandić et al. (2010) connects uncertainty to waste and
thereby suggest to minimize it. Regarding goal clarification, Lean think-
ing concretely emphasizes adding value to the customer (Chapter 2.2.2).
Kanban’s visuality is expected to prevent misunderstandings and keeping
the cycle-times short allows fast feedback (Chapter 2.5).

3.2 Framework for Project Success 51

Themes/constructs Mapping References

Leadership Empower the team Chapter 2

Communication Empower the team; re-
spect people

Chapter 2

Performance Empower the team Poppendieck and Poppendieck
(2003)

Experience and com-
petence

Defer commitment Chapter 2.3.2

Measurement
and learning

Amplify learning; Kaizen;
feedback

Chapter 2.3.2 and 2.5, Rein-
ertsen (2009); Takeuchi and
Nonaka (1986); Mandić et al.
(2010)

Teaming Self-organization Cohen and Bailey (1997);
Guzzo and Dickson (1996);
Moe et al. (2009a)

Group autonomy
/interdependence
/power

Self-organization Cohen and Bailey (1997);
Guzzo and Dickson (1996);
Moe et al. (2009a)

Design behavior Yokoten; respect people;
create knowledge; build
quality in; eliminate
waste; deliver fast

Chapter 2.3.2

Change management Adapting to the changed
situation

Chapter 2, Poppendieck and
Poppendieck (2003); Gross
and McInnis (2003); Kniberg
(2009)

Customer characteris-
tics

Interaction with the cus-
tomer

Chapter 2.3, 2.4, and 2.5

Critical events/ out-
comes/conflicts

Kaizen; feedback Chapter 2.3.3

Utilization of mem-
bers’ competence

Respect people; create
knowledge

Chapter 2.3.2

Meetings efficiency Eliminate waste; optimize
the whole

Chapter 2

Organizational com-
munication

Optimize the whole Chapter 2.3.2

Established patterns
of organization be-
havior

Optimize the whole; re-
spect people

Chapter 2.3.2 and 2.5

Senior management
commitment

Optimize the whole; re-
spect people

Chapter 2.3.2

Table 3.1: Mapping the organizational force with Lean thinking.

52 3 Determining Software Project Success in Lean Thinking

Themes/constructs Mapping References

Goal clarification Value-adding activity Chapter 2.2.2 and 2.5,
Mandić et al. (2010)

Group dynamics Respect people Chapter 2.3.2

Commitment Hansei Chapter 2.2.1

Schedule management Flexibility; changing the plans Chapter 2.5, Pop-
pendieck and Pop-
pendieck (2003)

Management complexity Flexibility; changing the plans Chapter 2.5, Pop-
pendieck and Pop-
pendieck (2003)

Table 3.2: Mapping the internal force with Lean thinking.

Group dynamics is also a part of Lean thinking. The principle of
“respect people” (Chapter 2.3.2) concerns, among other things, trust and
an open atmosphere within the project. Such an atmosphere encourages
members to ask for advice when needed, even though it reveals the asker’s
incapability in that issue. The commitment of the team is a part of
a successful software development project in both conventional and Lean
context (Hansei). Successful use of Kanban provides for this commitment,
too (Chapter 2.2.1).

While scheduling management and management complexity are
approached mechanically in conventional software development, Lean prac-
tices of software development do not believe in foreseeing schedules accu-
rately or taking into account all problems beforehand (Poppendieck and
Poppendieck, 2003). Instead, Kanban allows flexible circumstances for
reprioritizing and changing the plans (Chapter 2.5).

Table 3.2 summarizes the mapping presented above.

3.2.3 Dynamics

While decision power and stress may be controlled inside a project, some
issues coming from outside may not. Projects interact with the exter-
nal force (Figure 3.1) without power to control it (Bertelsen and Koskela,
2003). Customer satisfaction belongs to this force and is a part of
Lean thinking, namely, value should be added to the customer as addressed
(Chapter 2.2.2). Kanban helps the customer to realize that he cannot have
everything at the same time, which makes him really think about the most
important thing that the project should carry out first (Chapter 2.5).

3.3 Summary 53

Themes/constructs Mapping References

Customer satisfaction Value-adding activity;
task prioritizing

Chapter 2.2.2 and 2.5

Task switching Muda Chapter 2.2.2 and 2.5

Resourcing Optimize the whole Chapter 2.3.2

Customer’s organiza-
tional behavior

Create knowledge; see
the whole

Chapter 2.3.2

Table 3.3: Mapping the external force with Lean thinking.

Due to considering task switching to be waste (Muda) in Lean think-
ing (Chapter 2.2.2), organizations or projects should not overload people
by assigning them to several tasks at a time. Individuals, in their turn,
should take care that switching between their tasks is minimized or elimi-
nated whenever possible. Kanban attempts to prevent over-processing and
task switching by requiring WIP limits (Chapter 2.5).

Regarding the resources mentioned above, resourcing is part of the
Lean principle of “optimizing the whole” (Chapter 2.3.2). After the organ-
ization has provided adequate and appropriate resources for the project, it
is up to the project to utilize them in the best way.

Finally, even though a project is not able to manage the customer’s
organizational behavior, the cooperation with the customer provides
opportunities to reveal misunderstandings and to recheck the meaningful-
ness of the customer’s needs (“create knowledge” and “see the whole”): in
this way, true value may be easier to produce by following Lean thinking.

Table 3.3 summarizes the mapping presented above.

3.3 Summary

Chapter 3 showed the multiple nature of project success and software proj-
ect management. Moreover, it suggested a framework for project success
that was then analyzed from the viewpoint of Chapter 2. As a result, the
project success framework introduced critical areas that the literature has
shown to have a connection with project failures or performance. Pop-
pendieck and Poppendieck (2003) state that Lean practices appear to have
the ability to answer challenges in these kinds of areas. Chapter 3.2 con-
ducted one scenario of how to map these challenges with the aid of Lean
thinking.

Like the multiple nature of the projects, also the reasons for failures were

54 3 Determining Software Project Success in Lean Thinking

recognized to have a multiple nature. The software products are unique to
other products: they are invisible, which is one main reason for the diffi-
culty of software development; they are complex, actually the most complex
constructs man has ever created; and they are changed throughout their
entire lifetime because changing them to better fit changed environments
is easier than vice versa (Brooks, 1987). Thereby, the findings related to
various areas of problems are not surprising. The value here comes from the
strategy of tackling conventional challenges of software development with
the aid of the Lean approach. Having addressed targets of improvements
in the area of software developing and introduced how Lean thinking could
be applied to it, a need to conduct studies regarding the area arises.

Chapter 4

Empirical Research Design

This chapter describes the research approach and methods adopted for
the research papers of this thesis. Chapter 4.1 briefly introduces com-
mon research strategies and methods for software engineering. Chapter 4.2
presents the research approach and Chapter 4.3 research methods applied
in the research of the thesis. The latter chapter focuses on the chosen
research methods from the viewpoint of the study in the thesis. Finally,
Chapter 4.4 describes the collection of the empirical evidence while Chap-
ter 4.5 introduces the research context of the case projects.

4.1 Studying Software Engineering

At a high-level taxonomy of research approaches, two main types of empiri-
cal studies can be categorized into qualitative and quantitative. Qualitative
research methods have been developed mostly in social disciplines for fo-
cusing on humans and their actions and relations. The qualitative research
type refers to studies wherein data is gathered from humans directly or
through their actions. The techniques include interviews, surveys, and ob-
servations. As a result, data gathered in such a way is to some extent
subjective and biased because beliefs and personal standards may affect
the viewpoints of the subject or observer. Qualitative data cannot usually
be analyzed mechanistically. It needs, instead, to be interpreted in some
way, which risks a bias (Seaman, 1999; Wohlin et al., 2000).

The quantitative research type, in contrast, originates from the natu-
ral sciences wherein data is available through measurement. This can be
done by using instruments and calculations or by direct empirical observa-
tions. The type quantifies properties of the phenomenon being studied and
it produces data as numbers. Doing sample-based statistical calculations

55

56 4 Empirical Research Design

requires plenty of data (Wohlin et al., 2000).

Regarding empirical strategies, Wohlin et al. (2000) categorize them
into three high-level types as follows.

• Survey: A retrospective type of study. Data can be quantitative,
qualitative, or both. Data are collected after an event, typically by
questionnaires or interviews. Interpreting data produces either ex-
planatory or descriptive conclusions.

• Case study: An observational type of study focusing on a phenomenon
over time. Both qualitative and quantitative data can be gathered
alone or in combination. This combination, i.e., triangulation, has
the benefit that one type of data may complement or support another
type.

• Experimentation: In contrast to a survey, a high-level-of-control type
of study wherein controlling the variables of the subject being studied
is possible. Here, control means being aware of the values of the
variables through some kind of manipulation. Moreover, the values
can be measured with a certain known level of accuracy. Three types
of variables are as follows.

– Dependent variables, i.e., response variables, represent the out-
put or effect in the experiment, such as productivity or quality
of a development project.

– Independent variables are controlled in the experiment setting,
such as different leadership style between different experiment
groups. As a result, the experiment figures out how the de-
pendent variables are influenced by the independent variables or
how the changes in variables correlate.

– Moreover, context variables affect the dependent variables, which
emphasize being aware of them in order to evaluate the relation-
ship between the dependent and independent variables.

Variations and other types exist since the field of software engineering still
lacks a commonly accepted taxonomy of empirical strategies (Wohlin et al.,
2000). Järvinen and Järvinen (1996), for example, divide the research
process into the following five categories.

• Theory-testing research. The idea is that the hypotheses have been
derived from a theory and we like to test their reliability. This re-
search category includes controlled experiments, field methods (such

4.2 Research Approach 57

as field study, field experiment, and survey), theory-testing case stud-
ies (including intensive, comparison-focused, and action research),
and theory-testing longitudinal study.

• Descriptive, interpretive, and theory-creating research includes grounded
theory (i.e., the method suitable for creating a theory that is based
on research data), case study, phenomenography (that illustrates how
people conceptually parse the world), contextualism (suitable for change
processes and in more general for longitudinal studies), and ethno-
graphic method (wherein a researcher visits the study object (e.g.,
an organization) for a longer time and is carefully orientated into the
functions of the object).

• Constructive research is beyond basic research and answers the ques-
tion, what kind of a world it is. Typically, this research category
attempts to create a new reality that is based on existing (research)
data or information.

• Mathematical research focuses on adequate laws of the variety and hi-
erarchy, classification of causal systems, and a-posterioric knowledge
formation.

4.2 Research Approach

The research approach in the study of this thesis was systematically orga-
nized into two parts. The first part analyzed software development project
success. Moreover, this part explored self-organization in order to set sam-
ple criteria in the second part. After having showed why projects fail, the
second part explored Lean software development. Based on the literature
addressed in Chapter 2 and 3, an assumption was made that Lean thinking
is able to benefit software development. For this reason, the second part
conducted a series of case studies in order to explore impacts of Kanban on
software development projects. In addition, a quasi-controlled experiment
strategy was used to aid in understanding the whole better than could have
been understood with only a single research strategy. The qualitative re-
search type was selected for the study due to the explorative nature of the
phenomenon being studied. Table 4.1 presents which research question is
considered in which research paper, and the empirical research strategies
used.

58
4
E
m
p
ir
ic
a
l
R
e
s
e
a
r
c
h
D
e
s
ig
n

Research
Question

Paper Research
Strategy

Number of Case
Projects

Focus

RQ1.1 I Case Study 8 Conceptualizing project success of software
RQ1.1 II Case Study 1 development projects.

RQ1.2 III Case Study 2 Self-organizing teams in Lean-based Kanban-driven soft-
ware development.

RQ1.3 IV Case Study 1 Exploring whether the Kanban process model can reveal
waste in software development projects.

RQ1.3 V Case Study 1 Impacts of Kanban on software development project work.

RQ1.3 VI Quasi-
controlled
Experiment

2 The role of management in Lean-based Kanban-driven
projects of self-organizing teams.

Total 6 15

Table 4.1: The research questions, papers and methods used in this thesis.

4.3 Research Methods 59

The first research question focused intentionally on the conventional
software development process. This was because the conventional approach
has been studied widely and because of its historically strong and long-term
impact on software development projects. Since such corresponding re-
search would yet have been inappropriate in the quite novel and unexplored
context of Lean software development, the first two research papers (Paper
I and II) together formulated a foundation for exploring the Lean context:
these papers showed why plan-driven software development projects may
fail even with professional, experienced teams. While achievements of Lean
manufacturing have been widely reported in the literature (Chapter 2), the
question arises, what the impacts of Lean-based Kanban are on software
development.

Each study was qualitative, although the quantitative manner and tri-
angulation (Chapter 4.1) were also applied to them. The data collection
consists of multiple evidences including documentation, interviews, direct
and video observation, and participant observation, as suggested by Yin
(1991, 85–94). The executed interviews followed the variation of the semi-
structured theme interview (Patton, 1990). This approach of the multiple
evidence enables a more objective view for the analysis than a single-type
evidence (e.g., interview) only (Parnas and Curtis, 2009).

According to the dialogical reasoning principle in interpretive research,
an improved understanding of the previous research stage should become
the prejudice for the next research phase (Klein and Myers, 1999). Each
paper follows this principle by containing more than a single research phase
only.

4.3 Research Methods

This chapter describes the reasons for selecting the research methods used
in this thesis. Moreover, it explains how the data collection and analysis
were applied in the study.

The intention behind the study was investigating contemporary phe-
nomena of a real-life context: what influences does Kanban have on Lean
software development projects. Case study was chosen as the main research
method for the study. This was because it enables collecting data through
observation in an unmodified setting and allows capturing of details and
the analysis of many variables (Yin, 1991, 13–14). The four steps of a case
study method are (1) preparing data collection, (2) collecting evidence, (3)
analyzing the evidence, and (4) reporting the studies (Yin, 1991).

The case study method, however, has been criticized for a lack of gener-

60 4 Empirical Research Design

alizability (Yin, 1991, 21). Typically, the context of each case study differs
from each other (Kitchenham et al., 2002). Walsham (1995) reminds us that
case study is suited, instead of generalization, for looking for plausibility
and logical reasoning through developing concepts, drawing specific impli-
cations, and contributing rich insight into the phenomenon under study.
Regardless, this was not considered problematic between the studies con-
ducted in the thesis because the goal was to explore influences of Kanban
rather holistically than from a single point of view. Moreover, the thesis
rather focuses on individual than general phenomena in real life since, as
stated in Chapter 2: Lean software development seems to be too immature
a field of research to generalize yet as in its entirety.

In addition to the case study research method, the quasi-controlled ex-
periment method (Wohlin et al., 2000) was also used since Software Factory
(Chapter 4.5.2) made its use possible. This research method was inevitable
when two projects were compared with each other (Paper VI). The method
is a variation of the experimentation introduced in Chapter 4.1. The main
difference is the number of context variables.

Research in this thesis focused on individual and team levels. The third
level of the division of three by Hovorka and Larsen (2006) is organization.
A team cannot exist without individuals. The same is valid with organ-
ization, hence limiting studies purely to one level only would have been
inappropriate. In software development projects, the work is usually done
in groups. Customers, representing the organization level here, were used
as evaluators of the case projects under the study of the thesis to deter-
mine project successes and to give viewpoints that differ from those of the
producer’s project team members. The level of the individual was chosen
as the main focus for the thesis because it is a base for understanding the
team level. The project success framework (Figure 3.1) supports this line
of thinking.

4.4 Collection of Empirical Evidence

The personal face-to-face interview is considered as an efficient data-gathering
technique particularly for interpretive studies (Yin, 1991, 19–20) wherein
our research is also categorized. In addition, information gathered is likely
to be more accurate than information collected by other methods (Oppen-
heim, 1992). An interviewer can, for example, explain the questions in
an understandable way in order to avoid incomplete answers or misunder-
standings. In laboratory conditions, video observation does not disturb the
subjects being studied. Direct observation (i.e., an interviewer observes

4.5 Research Context 61

Study (Paper) 1 2 3 4 5 6 Total

Individual interviews 40 7 5 4 10 6 72
Direct observation yes yes yes yes yes
Participant-observation yes yes
Video observation yes yes yes yes
Questionnaires 120 28 24 24 18 214

Table 4.2: Data collection of the studies in the thesis.

in the project space) enables sensing the mood and feelings of the group
or individuals under observation. By investigating documentation, such as
the project manager’s diary or production system, helps to perceive things
that are not present on video. Participant observation was possible only in
one case.

The data collection was gathered during the period from 2007 to 2010
covering totally 15 projects and 72 individual interviews as presented in
tables 4.1 and 4.2. In addition, feedback was gathered from the customers
regarding the projects in order to evaluate the projects’ success. All the
interviews were recorded in audio and transcribed using a systematic codi-
fication system. The duration of the interviews in study 1 were 40 minutes
on average while in study 2 they were 45 minutes on average. For the rest
of the studies, the interviews (the Kanban cases) varied between 60 and 120
minutes. In the pilot study (study 1) each participant in the project groups
including the project managers were interviewed. In the other studies, the
population samples were selected to represent members comprehensively
in each group and both seniors and juniors. This is called a role-based
sampling. The project managers were interviewed in each project of every
study.

4.5 Research Context

The case projects performed in three different contexts that are described
in the following.

4.5.1 Capstone Software Engineering Project Environment

This setting was used in Paper I as a pilot case study (Yin, 1991, 80–82)
for the study in Paper II.

The Software Engineering Project is a mandatory course at the De-
partment of Computer Science, University of Helsinki. Students take the
course after they have passed most of the Bachelor-level courses, typically,
in their third year. Before the course, the students have learnt software

62 4 Empirical Research Design

requirements, design, construction, and evolution: these constitute Core
Area Components, one part of Guidelines for Software Education (Hilburn
et al., 1998). In addition, the students know some details of architecture,
are capable of adhering to standards and practices, and have experience
of working in small groups from earlier courses. These issues have been
proposed as a set of requirements for educational processes in software de-
velopment (Filho, 2001). The project imitates a real-world software project
although the students cannot influence the group composition, the dura-
tion of the project, or the resources allocated to the project. The grading
of the course takes into account both individual and team performance to
increase motivation, as proposed by Hazzan (2003). The supervisor of all
the capstone projects in the course furnishes outside customers and ensures
that the grades between the project groups are aligned for every group and
group member. Grades for the groups are based on suggestions from the
instructors and customers. Instructors typically are involved with at most
two project groups, and customers with just one. The course lasts for 14
weeks. Students are (based on the interests they have expressed, but in
practice, fairly randomly) grouped into groups. The group size is typically
5 to 6 students, no less than 4. Each group has to develop a software
product that their customer orders at the beginning of the project. The
customer may be from the Department as well as an outside partner or
a commercial company. Every group is assigned an instructor (Faculty
member of the Department) who monitors the group throughout the proj-
ect but helps the group only on a general level. For example, all support
in planning or implementation is excluded. However, the instructor may
give practical advice, for example, on project management or role or task
coordination.

The groups choose the project manager among the group members,
as well as other roles, such as the implementation or document manager.
Project managers are usually inexperienced in the sense that they have not
been managers in any real-world projects, even though some of the students
do have genuine work experience in paid programming projects.

4.5.2 Experimental R&D Laboratory ’Software Factory’

This setting was used in Paper III, IV, V, and VI.

Software Factory1 is a new software engineering research and educa-

1Not to be confused with the early “software factories” in Japan or in the USA of the
1960s to 1980s. The first software factories focused on making software production in
manufacturing-like systematic ways with CASE tools and component reuse (Cusumano,
1991). Some modern software engineering application frameworks have also coined the

4.5 Research Context 63

tion setting at the University of Helsinki (Abrahamsson, 2010). It is ba-
sically an industry-oriented R&D laboratory environment for conducting
software business projects. This executes an Experimental and Explorative
Research (EER) strategy that stems from the needs of explorative research
and empirical research (Oivo et al., 2004). Even though EER is industry-
oriented, Software Factory utilizes the idea. The concept of Software Fac-
tory comprises a physical laboratory environment coupled with a novel
operational model. The laboratory room is equipped with sophisticated
computer and monitoring equipment and equipment for software develop-
ment (e.g., Smartboards). Such high-end facilities make it possible not only
to conduct actual software engineering work in a modern fashion, but also
to collect online research data automatically (e.g., logs). Moreover, the
facility enables capturing rich insights into the human-related aspects of
software development (Fagerholm, 2010). The entrepreneurial aim of Soft-
ware Factory is to conduct business-driven software development projects
for creating new product prototypes and commercializing them (possibly
with spin-offs). All this can be utilized as a research platform and case
study environment. The Department of Computer Science hosts an initial
reference implementation, with more locations coming up globally.

The software development teams are required to be self-organized and
they are responsible straight to their customer. The teams consist of experi-
enced Master-level students who have been selected based on qualification.
There is no external instructor or coordinator for the projects. A techni-
cal consultant and a coach, however, are available for the teams without
charge.

4.5.3 Real-life Business

This setting was used in Paper II.
The case study covered a software developing project in a global, multi-

national software development organization. The case project evaluated
was part of a bigger program which followed the waterfall process model
(Royce, 1970) trends but in an iterative way. A preliminary requirement
analysis project preceded the case project. Once this analysis project fin-
ished, the customer needs had already changed. The actual case project
contained iterations.

The case organization attempts to resource projects so that the par-
ticipants are assigned to one project at a time. Nevertheless, some of the
members of the study object also had other duties. The organization is

term “factory” (Greenfield et al., 2004). However, such facets can be hosted in the
Software Factory environment, as well.

64 4 Empirical Research Design

experienced in producing software systems for its customers. People are re-
spected by the organization and their well-being is considered high in both
employees’ and their managers’ point of view. Motivation of the work-
ers has been reported to be higher than average on the field. People are
assigned to projects based not only on their skills but also on their inter-
ests. The multinational synergy advantages are utilized and information
and knowledge are shared, not hided, between projects.

Chapter 5

Research Contribution

As stated in Chapter 4, the research papers of this thesis focused on two
parts. In the first part, Paper I served as a pilot study for the study
conducted in Paper II. While the latter paper provided a success framework
for software development projects, it became necessary to set boundaries
for the sample groups studied (Paper III). The second part then utilized
the research results from the first one in order to study how Kanban (Paper
IV, V, and VI) affects project success. The following sections summarize
the research contribution of each paper while Figure 5.1 presents which
research paper relates to which area.

5.1 Paper I – Discovering High-Impact Success

Factors in Capstone Software Projects

Several isolated relationships can be deduced from the literature between
a “project success” and, for example, “actions” of software development
teams. These relationships come from several sources with a wide difference
in the context where they were identified.

The findings of Paper I show that certain disciplines and theories can be
used to determine project success. However, the field of software develop-
ment still lacks a holistic model for project success in software development
(Ikonen and Abrahamsson, 2010). Overall, the findings of the pilot study
imply that by knowing what to look for, at least some success signs are
evident from the beginning of the projects. Due to the fragmented field of
software development success, this finding led the author to operationalize
the concept of success in software engineering projects (Chapter 5.2).

65

66 5 Research Contribution

Figure 5.1: The relationships of the research papers to our framework pre-
sented in Paper II.

5.2 Paper II – Operationalizing the Concept of Success in Software
Engineering Projects 67

5.2 Paper II – Operationalizing the Concept of

Success in Software Engineering Projects

Improving software development projects requires understanding the com-
ponents of project success holistically. The literature of software engineer-
ing projects has focused on identifying isolated success factors even though
the issues behind the success lie on multidimensional constructions with
multidisciplinary factors. Moreover, research on project success regarding
software engineering is still fragmented. While the term of project suc-
cess is understood in a variety of ways (Agarwal and Rathod, 2006), some
definitions taking the customer into account can be agreed to have an es-
tablished position. Examples of such definitions are the four dimensions of
project success of Shenhar et al. (2001) and a definition for project success
by PMI (2008).

The organizations of software development have not had a standard
framework to follow systematically. While the concept of success is often
overlooked, the concept of project management is equally little addressed
theoretically. Due to the reasons addressed here and in Chapter 3.1, Paper
II conceptualizes the project success of software engineering by suggesting
a success framework which organizes the fragmented area of the literature.
The framework proposed and empirically evaluated in the paper can explain
project success and help practitioners to find targets for improvement in
projects. Thereby, the framework indicates how to provide a valuable tool
for the organizations to improve their own projects and to consult their
customers, as well.

Paper II shows several potential reasons for project failures. The trails
of these reasons led to an inappropriate process model that represents a
conventional, plan-driven approach to software development. The reasons
showed include the lack of shared leadership. This leadership is part of
high-performing teams (Blanchard et al., 2004, 12–13) and group dynam-
ics. In other words, the findings encourage focusing on self-organization.
Thereby, Paper III (Chapter 5.3) focuses on self-organizing teams in soft-
ware development.

5.3 Paper III – Building Blocks for Self-organizing

Software Development Teams

Self-organizing teams are considered to bring many advantages to organi-
zations (Behnke et al., 1993; Cohen and Bailey, 1997; Janz, 1998). One
of the key benefits is performance effectiveness (Cohen and Bailey, 1997)

68 5 Research Contribution

but also customer satisfaction (Behnke et al., 1993; Jian’an, 2008; Winter,
1994). The main reason for the effectiveness is that self-organizing teams
can react to problems quickly since the decision making is close to the prob-
lem (Moe et al., 2009a; Tata and Prasad, 2004). Instead of waiting for a
manager’s approval, the team has the authority to take necessary actions
by itself (Moe et al., 2009a). This “empower the team” principle is part of
Lean thinking as mentioned in Chapter 2.3.2.

Other advantages are positive changes in team member attitudes, in-
cluding increased job satisfaction, stronger commitment to the organiza-
tion, and trust toward management (Cohen and Bailey, 1997). These
are suggested in many studies (see e.g., Guzzo and Dickson (1996); Janz
(1998); Moe et al. (2009a)). One reason for the attitude changes is that
self-organizing teams stimulate participation and commitment, which make
the employees care more for their work (Fenton-O’Creevy, 1998; Moe et al.,
2008). Moreover, self-organization causes positive behavioral outcomes in-
cluding the level of absenteeism, turnover, and safety (Cohen and Bailey,
1997), which is reported in many studies, as well (Guzzo and Dickson,
1996).

Some research results are, however, contradictory (Guzzo and Dickson,
1996; Tata and Prasad, 2004). For example, some results indicate no con-
nection between empowerment and success or that project performance is
not increased (Reilly and Lynn, 2003). This contradiction means that self-
organization is not a panacea, and just calling a group self-organizing does
not automatically translate into better performance. The organizational
context like the reward system, leadership, training, available resources,
and the structure of the organization influence how teams can self-organize
and perform (Cohen and Bailey, 1997; Tata and Prasad, 2004). The contra-
dictory research results indicate a need to better understand what makes
a self-organizing team successful (Fenton-O’Creevy, 1998).

Paper III contributes to the growing body of empirical understanding
in the area of how to build a self-organizing software development team. A
novel model for building self-organizing teams was constructed and empir-
ically evaluated. Based on the empirical evidence, the research model in
Paper III provides a framework to understand how self-organizing software
development teams can be built. The results show that autonomy together
with communication and collaboration are the major components for build-
ing a self-organizing software development team. The other building blocks
are shared leadership, learning, redundancy, and team-orientation.

The findings provide an increased understanding of the benefits of self-
organizing teams in software development. This understanding enables

5.4 Paper IV – Exploring the Sources of Waste in Kanban Software
Development Projects 69

studying the context wherein these kinds of teams are working. The pro-
cess needs to function under a process model, which creates a need for
further knowledge of how a process model impacts on the work. Kanban
has been chosen based on the reasons presented in Chapter 2 and on the
practical example given in Chapter 3. Moreover, due to the problems of the
conventional, plan-driven software development found in Paper I and II, the
rest of the research papers (Paper IV, V, and VI) examine impacts of Kan-
ban on software development by conducting empirical studies in projects
that consist of self-organizing teams.

5.4 Paper IV – Exploring the Sources of Waste in

Kanban Software Development Projects

In order to function efficiently, self-organizing teams need a method to sup-
port a project’s operational efficiency. Kanban (Chapter 2.5) is considered
to be such a method that supports Lean thinking (Chapter 2). As stated in
Chapter 2.2.2, eliminating all kinds of waste is a key trait of Lean thinking.
One of the Lean production tools is the Kanban way of managing produc-
tion operations that has been applied to software production as a project
management process model (Hiranabe, 2008). Following this line of Lean
thinking led us to conduct a study to find out whether Kanban is able to
reveal waste in software development. This question is based on a thinking
tool of “seeing waste” suggested by Poppendieck and Poppendieck (2003).
Therefore, Paper IV explores different sources of waste in a case study of
a Kanban-driven software development project.

As a result, all potential sources of waste proposed in the research model
of the paper were found in practice at varying levels. Finding waste, how-
ever, did not significantly contribute to explaining project success. The
good success of the study object is a probable reason explaining why only a
small amount of waste was found. Whether this finding is the direct result
of the application of Kanban, experience of the team leader and developers
or customer pressure, remains harder to pinpoint. Yet, it is argued that
waste represents elements that restrain the progress of projects, which en-
dangers their chances for success. Paper IV demonstrates that zero waste
is not a requirement for a successful project.

Thus, when using the seven possible elements of waste (Chapter 2.2.2)
as the lenses for an analysis, it is likely that most of them are apparent in
any software development project. What makes a difference is the attempt
to minimize their impact or existence. This is where Kanban is useful.
Even if Kanban strives for minimizing the non-value-adding work, waste

70 5 Research Contribution

may still creep in as Paper IV shows. Therefore, by applying Kanban as a
means to organize the development, attention must be paid to eliminating
sources of waste.

Overall, eliminating waste is only a part of a project’s operational ef-
ficiency supported by Kanban. While Paper IV tracks sources of waste in
a Kanban-driven context, Paper V (Chapter 5.5) focuses on the impact of
Kanban on software project work.

5.5 Paper V – On the Impact of Kanban on Soft-

ware Project Work

Benefits of Kanban-way scheduling are reduced inventory (simultaneous
WIP), improved flow, prevented overproduction, operations-level control,
visualized schedule and management of the process, improved responsive-
ness to changes in demand, minimized risks of inventory obsolescence, and
increased ability to manage the supply change (Gross and McInnis, 2003, 4).
As a result, the Kanban method (Chapter 2.5) attempts to lower produc-
tion costs, increase quality, and accelerate lead time (Liker, 2004). Mean-
while, inventories and problems caused by sudden changes will become
more apparent. Nevertheless, while Kanban attempts to clarify the work-
ers’ awareness of current production issues and forthcoming tasks, it does
not recommend any particular project phases, milestones, or partitioning
tasks. Due to this liberty, it is up to each project team to build and cus-
tomize the appropriate practices for its project.

Paper V investigates how Kanban influences software development and,
consequently, project work. More specifically, this management-related re-
search question in the paper was set as follows: What are the perceived
impacts of Kanban on software project work? This is particularly impor-
tant as projects “are conceived and completed by people” (Howell et al.,
2004). Howell et al. (2004) argue that projects still lack the theoretical
foundation that connects leadership and people aspects holistically. Kan-
ban, as a method, empowers people with a minimum set of required rules to
follow. In order to analyze the effects of Kanban upon software project man-
agement, Paper V comprises nine literature-based aspects of project work
and the expected influences of Kanban on them. These nine aspects are
documentation, problem solving, visualization, understanding the whole,
communication, embracing the method, feedback, approval process, and
selecting work assignments. Kanban was found to support all but under-
standing the whole and feedback.

Kanban affects the work aspect of the amount of documentation. In

5.5 Paper V – On the Impact of Kanban on Software Project Work 71

Kanban, the customer “pulls” results from the software developers rather
than the developers “pushing” results to the customer. Therefore, doc-
uments are not produced in Kanban without the need expressed by the
customer.

Regarding problem solving, the Lean approach requires that problems
are solved immediately and completely in order to prevent the same kinds
of problems in the future (Liker, 2004). Using the Kanban method can
reveal problems almost immediately after their occurrence (Ladas, 2009).
Visualizing the development process helps the developers to see the state
of that process: how much work has already been done and how much is yet
to be done. The Kanban method is visual because all the work is visualized
on the Kanban board. By looking at this board, everyone can see how a
single task as well as the whole project is progressing. On the other hand,
the Lean principle of “seeing the whole” partially exists in Kanban, since
the Kanban board shows the work in progress, what needs to be done, and
what has been done already. However, the board does not tell us how much
work there is altogether. Communication in Kanban is important and
it should be free and open, which follows the Lean approach (Kajaste and
Liukko, 1994).

Related to embracing the method, the Kanban method is intuitive
to understand and gives rather free hands to the developers to do their
work: the only rule regarding this is that the workflow must be visualized.
Lean principles emphasize that the best expertise is at each workstation
and no massive approval processes need to be performed. There is nei-
ther need nor time to carry commands and instructions back and forth in
the organization. Finally, the Lean approach prioritizes the satisfaction of
the customer through a valuable product. Thereby, selecting working
assignments can be made by developers themselves according to the Lean
approach. There, the work is self-organizing.

Based on the empirical evaluation, the most significant influences stem
from the inherent visualization of Kanban. Besides, in order to function
well, Kanban requires visualizing the progress. This visualization helps in
controlling the project activities in flexible yet coherent ways by relying on
the intuition of the team members and emergence. Visualization was even
found to motivate the team members. Another supporting trait is that the
non-prescribed structure of the Kanban board was found to encourage the
team members proactively to think about what the workflow should be like.
The simplicity of the Kanban model allows situational adaptation, which is
crucial nowadays in the dynamic environment of continuously and rapidly
changing software development.

72 5 Research Contribution

In contrast, the evidence implies that Kanban is not all-encompassing,
and it is not sufficient for managing all the dimensions of software projects.
For instance, while the Kanban board helps in detecting potential problems
and bottlenecks early, it requires additional practices to actually solve them.
Moreover, “seeing the whole” may still be difficult in particular with large,
complex system projects with a simple Kanban board alone. That is, the
Kanban needs supportive practices and contextual linking, for example, to
incorporate customer feedback.

The empirical evidence hinted that the adoption of Kanban in use is
quite straightforward even though continuous modifications and adjust-
ments to the actual use of the board are done. While Kanban offers means
for coordination purposes, the inherent simplicity of the approach supports
the perception of creative freedom necessary in software development. The
need for such freedom seems often to be undermined or overlooked by proj-
ect management tool providers.

As shown in Paper III, shared leadership is a fundamental part of self-
organizing teams. A fundamental part of Lean thinking, in its turn, is
eliminating waste (Chapter 2.2.2). While Paper V focuses on Kanban from
the viewpoint of management and shows benefits for software project man-
agement, a fundamental question remains: among all self-organization and
Lean thinking, is leadership and management still necessary or have they
become waste? Paper VI (Chapter 5.6) examines this question.

5.6 Paper VI – Leadership in Kanban Software

Development Projects

Useless actions and work in software development projects do not increase
the value for the customer, as the literature addressed in Chapter 2. While
getting rid of such waste may sound simple, even recognizing the waste is
considered a challenging issue. Once recognized with its causes, projects are
more aware of the signs of waste: the pitfalls are avoidable by knowing their
reasons. On the other hand, self-organization and empowering the teams
emerge in a modern Kanban-driven software development project (Paper
III, IV, and V). This makes it relevant to ask whether sacrificing project
resources for leadership1 adds any value even though Kanban, according

1In Paper VI, the term leadership refers to the definition of a leader’s directive behavior
by Blanchard (2001). He defines leadership in general as the pattern of behavior leaders
use to influence others and perceived by those being influenced. Directive behavior of a
leader in the terms of Kotter (1996, 25–26) is called management. We use Blanchard’s
term “leadership” in Paper VI to emphasize that management (in Kotter’s terms) is

5.7 Summary 73

to previous studies, benefits management. Hence, Paper VI conducts a
quasi-controlled experiment with two directive leadership settings in order
to find out differences between the waste produced, its causes and effects.

The results supported the existence of one of the dual characteristics of
Kanban: it allows working without a formal project manager in order to
avoid waste but insufficient directive leadership creates waste. While some
waste was not avoidable with either leadership style used in the experiment,
causes and damages of the waste differed with different leadership. As a
conclusion, the amount and significance of waste can be reduced with the
right leadership in self-organized teams of Kanban software development
projects.

5.7 Summary

This chapter summarizes the findings of the research conducted in the re-
search papers. These empirical findings must be regarded somewhat ten-
tatively due to the limited sample. The ensemble they formulate, however,
provides knowledge for theory as well as for practice (Chapter 6).

By knowing what to look for, some success signs are evident from the
beginning of projects (Paper I). This awareness creates a motivation being
able to recognize signals from problems in the early stages of projects in
order to prevent failures. In the empirical evaluation of Paper II, the project
success framework (Figure 3.1) revealed a variety of critical issues that
should be focused on from the outset of projects. Due to drawbacks of plan-
driven development, Paper III searched for a solution for more efficient work
from self-organizing. This self-organization combined with Kanban (Paper
IV, V, and VI) was found to have a positive effect on software development
projects.

insufficient for a skillful leader.

74 5 Research Contribution

Chapter 6

Discussion

The discussion will be built on the two key implication areas of the re-
search at hand. These are the theoretical implications for research and
practical implications for practitioners including developers and managers
of software development projects.The research presented in this study sup-
ports increased attention to be given to the Lean thinking that is adapted
to software development processes. Aggregating the different perspectives
and examining the results through the research papers leads to stronger
results in terms of research validity than looking at each paper from an
isolated viewpoint. Chapter 6.1 discusses the findings of the thesis and
implications of the papers for research while Chapter 6.2 takes a look at
the practical side.

6.1 Implications for Research

From the empirical viewpoint, this thesis has implications for research.
These implications are addressed in the following.

Paper I and II empirically found certain success factors regarding plan-
driven software development projects. They demonstrated drawbacks of
the conventional development approach which already have been reported
in the literature. This was expected due to the literature-based research
model built in the study. Supportive evidence has been presented, for ex-
ample, by Hutchings et al. (1993) and Bullen and Rockart (1986) regarding
group dynamics, and by Curtis et al. (1988), Jensen and Scacchi (2005),
and Teasley et al. (2000) regarding critical success factors of the software
development projects.

The thesis contributes to the area of project success in software develop-
ment. Chapter 3.2 combined with Paper II demonstrated how plan-driven

75

76 6 Discussion

projects can be analyzed with the aid of Lean thinking. The research of the
thesis showed that the general framework of software development project
success (Figure 3.1) can be used as a basis for such analysis. This can be
seen to be important for the plan-driven approach. Based on the increased
awareness of what to look for, the Lean software development principles
(Chapter 2.3.2) and waste categories (Table 2.1) help us to find the targets
of improvements. For instance, the plan-driven approach does not explicitly
encourage eliminating task switching in contrast to Lean software develop-
ment (Poppendieck and Poppendieck, 2003). This was pointed out by the
literature addressed in Chapter 2.2.

On the other hand, one project-related problem based on the interview
data of Paper I and II that we found in the plan-driven projects but not
in the Kanban-driven projects is the meaning of unawareness at the be-
ginning of a project: In the plan-driven projects, this unawareness mostly
led to accumulated problems in the phase after the planning (requirement
analysis) phase, i.e., in the designing phase. In that phase, it typically
turned out that requirements were too tricky or inappropriate when it came
to the schedule that had already been approved and committed. This is
aligned with the literature (Abrahamsson et al., 2010; Poppendieck and
Poppendieck, 2007; Takeuchi and Nonaka, 1986). Our contribution to the
matter stems from the finding that the Lean thinking, including Kanban,
can be a valuable tool when software development projects are being an-
alyzed with the aid of the general success framework (Paper II) presented
in Figure 3.1.

Paper II operationalized the concept of success in software engineering
projects and revealed problems that occur in the projects. Comparing these
problems with the problems that occurred in Kanban-driven projects (Pa-
per IV, V, and VI) creates a theoretical need to establish whether problems
occurring in Kanban-driven projects are similar to the plan-driven ones.
Particularly, it can be studied whether the set of problems in Kanban-
driven projects is only a subset of the set in plan-driven projects. If so,
this could mean that Kanban prevents problems in projects of the conven-
tional approach. On the other hand, it should be evaluated, whether the
Kanban-special problems could be avoided with the plan-driven approach.
One difference between the conventional and Lean approach is the duration
of the feedback loop, which is aligned with the literature (see, e.g., Pop-
pendieck and Poppendieck (2007); Reinertsen (2009); Sommerville (2007)).
Finding mistakes and misunderstandings rapidly prevents them from ac-
cumulating more serious issues, as the literature has addressed regarding
the agile approach (Chapter 2.4). The empirical evidence of our research

6.2 Implications for Practice 77

showed the importance of the short duration of the feedback loop. The
contribution was that Kanban was found to enable short feedback loops
but it was up to the teams whether to utilize this possibility.

Yet another contribution for research that originated from our obser-
vation is that visualization motivates team members (Paper V). This ob-
servation – that a process model can serve as a motivator for the work –
appears not to have been paid much attention in the literature. Empirical
evaluation is needed to determine how motivating different process models
can be and why.

Overall, the thesis has increased our understanding about adaptability
of Lean-based Kanban in the context of software development. While the
research focused particularly on Kanban-driven self-organizing teams, it
is important to understand that self-organization alone is not the solution.
Certain Lean or agile practices are needed when the idea of self-organization
is applied to Kanban projects (Paper III, IV, V, and VI).

6.2 Implications for Practice

From the empirical viewpoint, this thesis has several implications for prac-
tice on two approaches of the software development process. First, it con-
tributes in the area of Lean software development by supporting the argu-
ment that Kanban can be applied to the software development. Second,
it supports analyzing plan-driven projects and, thereby, provides hints for
practitioners on what to look for to avoid certain problems in the projects.
These implications are addressed in the following.

6.2.1 Implications for the Kanban-driven Approach

Kanban’s adaptability for manufacturing and production has been studied
in the literature as addressed in Chapter 2. Kanban executes the Lean
thinking in practice (Becker and Szczerbicka, 1998; Chai, 2008). Also, it is
one of the key operation management tools in Lean manufacturing (Liker,
2004, 176). There is a strong practitioner-driven movement supporting the
idea of the use of Kanban in software engineering (Hiranabe, 2008; Shinkle,
2009; Shalloway et al., 2009). The outcomes of this applying of Kanban
are expected to be high in software development, as they have been in
manufacturing.

The research in this thesis contributes to that expectation by supporting
the argument that Kanban is applicable for software development (Paper
IV, V, and VI). Demonstrated by Paper IV and VI, Kanban’s aim at visu-
alizing the progress, limiting the amount of simultaneous work-in-progress,

78 6 Discussion

and measuring the lead-time, there is evidence that Kanban prevents waste.
Based on the empirical evidence, Kanban benefits software development
due to its visuality, intuitiveness, and simplicity that not only reveal waste
(Paper IV and VI) but remove impractical operations, such as unnecessary
documentation (Paper V) of the conventional software development, and
help a project to adapt to continuously changing situations (Paper IV, V,
and VI). Similarities to the limited literature of the area can be found. Mid-
dleton and Joyce (2011), for instance, show that the Kanban-driven Lean
approach improves the software development process. Furthermore, the re-
search in this thesis brought out the importance of limiting WIP since too
large WIP limit numbers caused task switching and partially done work,
in other words, waste (Paper VI).

After all, when people do not know what they are looking for, find-
ing the answer is unlikely. Particularly Paper IV found waste in each of
the seven waste categories (Chapter 2.2.2), suggested by Poppendieck and
Poppendieck (2003). Hence, practitioners by being aware of these seven
kinds of waste get an idea of what they should look for in their projects
in order to eliminate waste. By revealing waste, significant opportunities
in terms of saving resources and accelerating cycle time may be reached
for practical use. Therefore, it can be concluded that Kanban executes
the most important principle of Lean software development, eliminating
waste. This ranking of the principle has been suggested by Poppendieck
and Poppendieck (2003) and addressed in Chapter 2.3.2. The fundamental
idea behind this ranking is to highlight the producing value (Chapter 2).
Based on this highlighting, Kanban supports the production of value. Out-
side software development, evidence of this value-thinking already exists
(Becker and Szczerbicka, 1998; Chai, 2008; Ohno, 1988). This thesis, in
contrast, has focused on this argument from the aspect of software devel-
opment.

Paper V demonstrated that the most significant influences stem from
the inherent visualization of Kanban. This visualization helps in controlling
the project activities in flexible yet coherent ways by relying on the intu-
ition of the team members and emergence. Visualization was even found to
motivate the team members as discussed regarding implications for research
(Chapter 6.1). Practitioners can use Kanban to motivate team members.
In addition to the visualization, the non-prescribed structure of the Kan-
ban board can encourage team members proactively to think of what the
workflow should be like. The simplicity of Kanban allows situational adap-
tation. Blanchard et al. (1996) consider this adaptation to be crucial in
a present-day dynamic environment of continuously and rapidly changing

6.2 Implications for Practice 79

situations.

The comparison with the waterfall model made in Paper V suggested
that Kanban requires experience to some extent to adjust and customize the
setting. On the contrary, the threshold for deploying the waterfall model
is considered to be low. When facing problems then, Kanban allows the
team to make readjustments flexibly while the waterfall model may require
a heavy re-planning or re-designs. For a customer, the waterfall model is
also simple to get familiar with. Problems, however, are typically invisible
for the customer until the end of the project. Kanban, instead, requires
contribution from the customer in order to add value for him. Therefore,
in addition to communication within projects or organizations, also good
customer communication in software development projects is important
(Beck, 1999). This was recognized in each paper. Moreover, we managed
to track sources of waste and its causes and effects in Paper VI.

In contrast to the advantages of Kanban, the empirical evidence of Pa-
per V and VI implies that Kanban is not all-encompassing, and it is not
sufficient for managing all the dimensions of software projects. In other
words, it requires additional practices to keep the projects performing ap-
propriately. For instance, “seeing the whole” may be difficult in particular
with large, complex system projects with a simple Kanban board alone.
Middleton and Joyce (2011) report supportive information radiators1, such
as ideation pipeline and team performance indicators.

The inherent simplicity of Kanban supports the perception of creative
freedom (Paper V), which can be risky: Paper VI showed that a Kanban-
driven project without appropriate coordination and management increases
the amount of waste. Thereby, practitioners should avoid optimizing the
software development process too much in the sense of coordination.

For practitioners, Kanban’s adaptability to software development means
that its advantages compared to the conventional approach of software
development can be utilized in a journey toward more successful outcomes
of the projects. Meanwhile, it is important to understand that Kanban
alone is not the answer to more successful projects. Furthermore, finding
waste is not synonymous with successful projects (Paper IV). On the other
hand, zero waste is not a requirement for a successful software development
project (Paper IV and VI).

The implications discussed above are based on the study objects that

1In the team context, Cockburn (2002, 84) introduces the term information radiator
as a large display of critical team information that is continuously updated and located
in a spot where the team can see it constantly. Such a radiator shows readers information
they care about without having to ask anyone a question. According to Cockburn (2002),
this results in more communication with fewer interruptions.

80 6 Discussion

have been conducted as self-organizing teams. Paper III suggested the
building elements of autonomy, communication and collaboration, shared
leadership, learning, team orientation, and redundancy. This has two prac-
tical implications. First, teams should have an understanding of practices
required for the self-organization. Second, while process models regularly
do not explain how self-organizing teams can be built, the combination of
the six elements makes an attempt to do so. Since the study objects were
self-organizing according to the definition, the applicability of the implica-
tions is scoped to concern self-organizing teams. Self-organization relates
to Kanban and is part of Lean thinking as addressed in Chapter 1.1.

6.2.2 Implications for the Plan-driven Approach

The research in Paper I and II offers a model for practitioners to find targets
for improvement in their plan-driven projects. In other words, the contribu-
tion of this part of the thesis is not just conducting theoretical models but
suggesting that practitioners utilize them as self-test instruments. Thus,
the idea is to create better awareness among the practitioners about the
key elements that contribute to success or failure of the projects. Project
success, in terms of project efficiency and impact on the customer, can be
seen after the project ends. However, economical tension requires a busi-
ness decision to abort projects with little or no chance to succeed as early
as possible. Without search or anticipation (Paper I), these decisions are
difficult to make until the end of a project. This is where the project success
framework (Paper II) benefits practitioners.

Monitoring ongoing projects enables detecting potential issues that will
restrain the projects from going forward. The set of questions, introduced
in Paper I, guide practitioners to increase their awareness of the project
situation during the progress. This way, by tracking reasons for the project
issues, we can reveal problems that can be eliminated before they accumu-
late to more serious problems. Ikonen and Abrahamsson (2010) support
this claim. The critical success factors found in Paper I are quite similar to
the literature (Addison and Vallabh, 2002; Curtis et al., 1988; Keil et al.,
1998). Here, the contribution of the thesis is the way they are used to
detect signals of threads in the projects beforehand.

Together, Paper I and II demonstrated that the area of project suc-
cess in software development is fragmented. Paper II suggested a research
model that organizes the area. As a result, the framework (Figure 3.1)
illustrates the complex nature of the area. The three forces of the proj-
ect success framework (i.e., internal, organizational, and external) affected
projects help us to think of the phenomena of projects from the viewpoint

6.2 Implications for Practice 81

of each force. By connecting this viewpoint to each level (i.e., individual,
team, project, and organization) the framework helps to increase practition-
ers’ awareness about the holistic picture of software development projects.
From that point of view, reasons for project failures may be better un-
derstood. By determining the framework as a profile-type (Chapter 3.2)
helps practitioners to understand further reasons why software development
projects cannot fully be under control.

82 6 Discussion

Chapter 7

Conclusions

This thesis, after having proposed a framework for project success in soft-
ware development, explored impacts of Kanban to software development
projects. This exploration increased our understanding about adaptability
of Lean-based Kanban in the context of software development. According
to the research in this thesis, it can be stated that Kanban has potential
for software development and can be applied in this context. The research
papers of the thesis, refereed, international journal and conference publica-
tions, provided information for both research and practitioners as discussed
in Chapter 6.

Since Lean principles encourage project teams toward self-organization,
the thesis focused on self-organized teams in Kanban-driven projects. Thereby,
this thesis also examined the building of self-organized teams for the pur-
pose of exploring Kanban. In contrast to conventional software develop-
ment, Lean practices were shown to take into account many such issues
that are ignored by the conventional approach. These advantages were
shown to benefit projects by increasing the fluency of the projects. In
contrast to agile software development, Lean practices were found to con-
cretely emphasize eliminating waste and seeing the whole. Moreover, Lean
software development was found to focus on adding value to customers in
a practical way. The literature has shown many advantages of the agile
approach when compared with the conventional approach. The compari-
son of the Lean approach with the agile approach including the literature
addressed in this thesis, however, suggested that the Lean approach when
applied to software development could be even more useful than the agile
one.

Regardless, applying the Lean thinking to software development is not
a guarantee of similar success as in the field of Lean manufacturing. This
is because laws and principles of Lean manufacturing differ from the Lean

83

84 7 Conclusions

software development (Chapter 2): problems in pipeline processing related
to physical material flows and machine or worker activities are easier to see
than in software development wherein waste is rather abstract than visible.

Chapter 7.1 answers the research questions presented in Chapter 1.1
while Chapter 7.3 opens up new avenues for future work by suggesting
some further research.

7.1 Answering the Research Questions

Chapter 1.1 presented the research question and divided it into three re-
search sub questions. In the following, we answer them with a summary of
the results.

RQ1 How does Kanban impact on software development proj-

ects?

Answering this research question requires understanding of

(1) what prevents or promotes projects going forward

(2) the concept of self-organization due to the literature aspect that rec-
ommends self-organization for the Lean project context to be explored
for comparability of the results between the case projects

(3) influences of Kanban on the progress of projects from the viewpoints
of waste, project work, and management.

Based on this understanding, we claim that Kanban has a positive impact
on software development when used appropriately. Kanban was found to
help in revealing waste, which can save the resources and time of software
development projects. Visualizing the progress was found to aid in control-
ling project activities in flexible yet coherent ways and even to motivate
software development teams. In addition, Kanban was also found to enable
the project teams rapidly to adapt to continuously changing situations.
More detailed answers for the three research sub questions, RQ1.1, RQ1.2,
and RQ1.3 are given as follows.

RQ1.1 Which constructs of software development projects affect
the outputs?

Since Paper I showed the existence of evidence of some success signs from
the beginning of software development projects, a need for more specific

7.1 Answering the Research Questions 85

study arosed. Paper II operationalized the concept of success in software
engineering projects. As a result, it suggested a general framework for soft-
ware project success, which was then linked to the context of Lean software
development. The purpose of the framework is to help in understanding,
in addition to project-related problems, also reasons and effects of these
problems. The framework organizes the fragmented area of project success
in software engineering

The empirical evaluation of the framework (Paper II) revealed the fail-
ure potential of the software development projects. The implicit use of
the framework in Paper IV, V, and VI strengthened its validity since fac-
tors for partial failure of the case projects were taken into account in the
framework. Based on this evidence, the research results suggest that de-
termining success of a software development project in the midst of failure
can be done with the aid of the framework.

RQ1.2 What are the key elements of self-organizing teams?

Paper III recognized six general elements of self-organization in Lean or ag-
ile practices. The two foundational elements were autonomy (i.e., empower
the team and have a champion for it) and communication and collaboration
(i.e., intimate and open customer relationship, working together in open
workspace, daily information sharing, and progress visualization). Self-
organization without autonomy is only symbolic meaning that if a team has
no autonomy, it really cannot act like a self-organizing work unit. Commu-
nication and collaboration, in its turn, is important for the other elements of
self-organizing teams. The additional four elements were shared leadership
(i.e., managing by lead-and-collaborate and having cross-functional teams),
learning (having short iterations, continuous feedback, and progress mea-
surement, for example), team orientation (i.e., clear prioritizing and having
the team participate in work planning and goal setting), and redundancy
(i.e., sharing responsibility of work and agreeing on uniformity).

The literature reports that transformation of a work group into a self-
organizing work team takes years. Our empirical data, however, indicated
that building a self-organizing software development team is possible, at
least to some extent, in as little as seven weeks. In this sense, self-organized
teams can be built by following the six general elements mentioned above.

86 7 Conclusions

RQ1.3 What are the salient characteristics of Kanban that affect
the progress of software development projects?

Kanban, when applied to software development as a process management
model, is supposed to have positive impacts when compared with agile or
conventional process models. Paper IV, V, and VI explored influences of
Kanban on software development projects.

Regarding the viewpoint of waste in Paper IV and VI, the Kanban
method helped to prevent waste, such as partially done work and task
switching. This helps in revealing problems quickly, which, on its part,
allows project teams to focus on the actual progress instead of fixing con-
sequences caused by unrevealed problems. The Kanban-supported pull
method forced both customer and team members to think about what
would be the most important tasks that should be carried out next. This
prioritizing reduced the amount of unnecessary features of the products
being developed.

The research found waste in each of the waste categories suggested by
Poppendieck and Poppendieck (2003), which indicates two things. First,
discovering waste in Kanban-driven software development projects is pos-
sible. This is important since waste in software development, in contrast to
manufacturing, is considered abstract and invisible. Second, being aware of
the concrete waste categories of Lean thinking adapted into software devel-
opment helps in understanding what we are looking for. Then the target of
search and improvements becomes possible. On the other hand, some waste
was not related to Kanban. For example, the waiting the research found
was also caused by external reasons, such as waiting for the customer.

The empirical results of Paper V supported the fact that Kanban, in
order to function well, requires visualizing the progress. This visualization
helped in controlling the project activities in flexible yet coherent ways.
Visualization was even found to motivate the team members. The non-
prescribed structure of the Kanban board, in its turn, encouraged the team
members proactively to think of how the workflow is going.

The simplicity of Kanban allows situational adaptations, which is cru-
cial in today’s dynamic environment of continuously and rapidly changing
software development. Regardless, Kanban was found to be insufficient for
managing some dimensions of software projects. While this fact does not
dim Kanban’s power as an applied process management model for software
engineering, this shortcoming is important to be aware of in practice.

Finally, the empirical data of Paper VI demonstrated that manage-
ment (i.e., the leader’s directive behavior) is fundamental in order to make
Kanban-driven software development projects successful. In other words,

7.2 Limitations of the Thesis 87

investigating resources for good management is not waste even in the Lean
context.

7.2 Limitations of the Thesis

The validity of the results presented in this thesis is limited by the fact that
the evaluation of the project success framework has been done with the
plan-driven setting. This, however, is also an advantage. The conventional
software development is considered mature, which enabled us to examine
whether the framework can reveal problems in the projects. Besides, a
corresponding setting in the context of Lean software development would
have been inappropriate due to its immature status. Thereby, examining
the plan-driven setting provided a good starting point for the research in the
thesis. The themes and constructs of the framework were used to analyze
Lean-based Kanban projects, which showed the expressive power of the
framework in the Lean context, as well. In addition, the questionnaires
designed for the framework mostly concerned common matters for both
software development approaches. In this sense, the framework functioned
in both conventional and Lean context as shown: the relevant areas of
success are fundamental also regarding Lean software development.

The empirical data contained student but also industrial study objects.
It is quite well established that when one seeks to set a trend, the use of
students is quite acceptable (Tichy, 2000). Tichy (2000) uses a method
comparison as a specific target of study where the use of students is a valid
approach. Others have made similar suggestions. Höst et al. (2000), for
example, conclude that students are indeed relevant when considering ex-
perimentation in software engineering. Kitchenham et al. (2002) remind
us not to look down on studies focusing on gathering empirical data from
student experimentation or projects. Madeyski (2010) also gives strong ar-
gumentation for the benefit of using students as study objects. His specific
study focused on test-driven development and pair programming. We do
not maintain that our findings regarding the studies conducted in Software
Factory are one-to-one with the industry but rather that given the specific
circumstances, we indicate that there is a trend revealing impacts of Kan-
ban on the projects when searching for a particular set of indicators. In
addition, Arisholm and Sjøberg (2004) argue that the programming skills
of Master level students and senior programmers in the industry can be
considered equal. The small number of case studies can be considered to
be another limitation. Tichy (2000), however, reminds us that the novel
approach to the research question justifies this number.

88 7 Conclusions

7.3 Future Research

This thesis has intentionally focused on the individual and team level since
there lies much potential to improve the software development process.
Further research is needed to examine project and organizational levels
and how these levels interact with the individual and team levels. More
concrete understanding of the flow related to Lean software development is
needed, as well. Yet, due to the small amount of empirical evidence in the
research area, it cannot be determined whether an iterative or non-iterative
approach is more effective and in what sense.

According to the preliminary research results (Chapter 5.1), project suc-
cess can be anticipated by revealing mistakes, conflicts, and other restrain-
ing elements in projects. Hypothetically, the less restraining elements there
are, the more successful the project will be. Nevertheless, this requires fur-
ther experimentation in real-life settings. Besides, the thesis confirms that
zero waste is not a requirement for a successful project. Moreover, inspired
by the general framework of the project success, it could be studied whether
Lean thinking has more expressive power in analyzing projects and their
problems than does the plan-driven approach.

Due to insufficiencies of Kanban reported in this thesis, further research
should examine what supportive practices extend holistically without lim-
itations, such as hierarchy-related, in organizations. While it is required
more research in the path toward more successful, Kanban-driven Lean
software development, this doctoral thesis contributes by offering building
blocks for that path.

References

Abrahamsson, P. (2000). Is management commitment a necessity after all in
software process improvement? In Proceedings of the 26th EUROMICRO
Conference, pages 2246–2253, Los Alamitos, CA, USA. IEEE.

Abrahamsson, P. (2010). Unique infrastructure investment: Introducing
the Software Factory concept. Software Factory Magazine, 1(1):2–3.

Abrahamsson, P., Oza, N., and Siponen, M. (2010). Agile software devel-
opment methods: A comparative review. In Dingsøyr, T., Dyb̊a, T., and
Moe, N. B., editors, Agile Software Development, pages 31–59. Springer
Berlin Heidelberg.

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile
Software Development Methods: Review and Analysis. Number 478 in
VTT Publications. VTT Technical Research Centre of Finland, Espoo,
Finland.

Addison, T. and Vallabh, S. (2002). Controlling software project risks:
An empirical study of methods used by experienced project managers.
In SAICSIT ’02: Proceedings of the 2002 annual research conference
of the South African institute of computer scientists and information
technologists on Enablement through technology, pages 128–140. South
African Institute for Computer Scientists and Information Technologists.

Agarwal, N. and Rathod, U. (2006). Defining ’success’ for software projects:
An exploratory revelation. International Journal of Project Management,
24(4):358–370.

Alwardt, A., Mikeska, N., Pandorf, R., and Tarpley, P. (2009). A lean
approach to designing for software testability. In Proceedings of the IEEE
AUTOTESTCON ’09 Systems Readiness Technology Conference, pages
178–183. IEEE.

89

90 References

Anders, D. (2004). Agile management for software engineering: Applying
the theory of constraints for business results. Prentice Hall, Upper Saddle
River, New Jersey, USA.

Anderson, D. J. (2010). Business drivers for Kanban adoption. In Lean Soft-
ware & Systems Conference 2010, pages 7–14, Atlanta, Georgia, USA.
Lean Software & Systems Consortium.

Arisholm, E. and Sjøberg, D. (2004). Evaluating the effect of a delegated
versus centralized control style on the maintainability of object-oriented
software. IEEE Transactions on Software Engineering, 30(8):521–534.

Basili, V. and Turner, A. (1975). Iterative enhancement: A practical tech-
nique for software development. IEEE Transactions on Software Engi-
neering, 1(4):390–396.

Beck, K. (1999). Extreme Programming Explained: Embrace Change.
Addison-Wesley, Boston, Massachusetts, USA.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,
Flower, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern,
J., Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland,
J., and Thomas, D. (2001). Manifesto for agile software development.
http://agilemanifesto.org/ [4-Feb-2011].

Becker, M. and Szczerbicka, H. (1998). Modeling and optimization of Kan-
ban controlled manufacturing systems with GSPN including QN. In In-
ternational Conference on Systems, Man, and Cybernetics ’98, volume 1,
pages 570–575 vol.1. IEEE.

Behnke, L., Hamlin, R., and Smoak, B. (1993). The evolution of employee
empowerment. IEEE Transactions on Semiconductor Manufacturing,
6(2):143–155.

Bertelsen, S. and Koskela, L. (2003). Avoiding and managing chaos in proj-
ects. In Proceedings of the 11th Annual Conference of the International
Group for Lean Construction (IGLC-11).

Bertelsen, S., Koskela, L., Henrich, G., and Rooke, J. (2006). Critical flow:
Towards a construction flow theory. In Proceedings of the 14th Annual
Conference of the International Group for Lean Construction (IGLC-14).

Blanchard (2001). Situational Leadership R© II – The Article. The Ken
Blanchard Companies.

References 91

Blanchard, K., Carew, D., and Parisi-Carew, E. (1996). How to get
your group to perform like a team. Training and Development,
50(September):34–37.

Blanchard, K., Carew, D., and Parisi-Carew, E. (2004). The One Minute
Manager Builds High Performing Teams. HarperCollinsPublishers, Lon-
don, UK.

Boddy, D. (2002). Managing Projects: Building and Leading the Team.
Prentice Hall International UK Limited / Pearson Education.

Boddy, D. and Macbeth, D. (2000). Prescriptions for managing change:
A survey of their effects in projects to implement collaborative working
between organizations. International Journal of Project Management,
18(5):297–306.

Boehm, B. (1981). Software engineering economics. Prentice-Hall, New
Jersey, USA.

Boehm, B. (1991). Software risk management: Principles and practices.
IEEE Software, 8(1):32–41.

Bonaccorsi, A. and Rossi, C. (2004). Contributing to OS projects: A com-
parison between individual and firms. In Proceedings of the 4th Workshop
on Open Source Software Engineering, pages 18–22. IEEE Computer So-
ciety.

Brooks, F. (1987). No silver bullet: Essence and accidents of software
engineering. IEEE Computer, 20(4):10–19.

Bullen, V. and Rockart, J. (1986). A Primer on Critical Success Factors.
Dow Jones-Irwin, Homewood, Illinois, USA.

Chai, L. (2008). E-based inter-enterprise supply chain Kanban for de-
mand and order fulfilment management. In International Conference on
Emerging Technologies and Factory Automation EFTA ’08, pages 33–35.
IEEE.

Clegg, S., Waterson, P., and Axtell, C. (1996). Software development
knowledge intensive work organizations. Behaviour and Information
Technology, 15(4):237–249.

CMMI Product Team (2007). CMMI for Acquisition, Version 1.2: Im-
proving Processes for Acquiring Better Products and Services. Number

92 References

CMU/SEI-2007-TR-017 in Series of Technical Reports. Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA.

Cockburn, A. (2002). Agile software development. Addison-Wesley, Boston,
Massachusetts, USA.

Cohen, S. and Bailey, D. (1997). What makes teams work: Group effec-
tiveness research from the shop floor to the executive suite. Journal of
Management, 23(3):239–290.

Conradi, R. and Fuggetta, A. (2002). Improving software process improve-
ment. IEEE Software, 19(4):92–99.

Cumbo, D., Kline, D. E., and Bumgardner, M. S. (2006). Benchmarking
performance measurement and lean manufacturing in the rough mill.
Forest Products Journal, 56(6):25–30.

Curtis, B. (1994). A mature view of the CMM. American Programmer,
7(9):19–28.

Curtis, B., Hefley, B., and Miller, S. (2001). People Capability Maturity
Model R© (P-CMM R©) – Version 2.0. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the soft-
ware design process for large systems. Communications of the ACM,
31(11):1268–1287.

Cusumano, M. (1991). The Software Factory: An Entry for the Encyclope-
dia of Software Engineering. Sloan School of Management, Massachusetts
Institute of Technology.

De Meyer, A., Loch, C., and Pich, M. (2002). Managing project uncertainty:
From variation to chaos. MIT Sloan Management Review, 43(2):60–67.

DeMarco, T. and Lister, T. (1987). Peopleware. Dorset, New York, USA.

Dı́az, J., Garbajosa, J., and Calvo-Manzano, J. A. (2009). Mapping CMMI
level 2 to Scrum practices: An experience report. In Proceedings of
16th European Systems & Software Process Improvement and Innovation
(EuroSPI 2009), pages 93–104. Springer.

Emiliani, B., Stec, D., Grasso, L., and Stodder, J. (2003). Better thinking,
better results: Using the power of lean as a total business solution. Center
for Lean Business Management, Kensington, Connecticut, USA.

References 93

Emiliani, M., Stec, D., and Grasso, L. (2005). Unintended responses to a
traditional purchasing performance metric. Supply Chain Management:
An International Journal, 10(3):150–156.

Ernest-Jones, T. (2007). I.T. at the speed of business: A survey and
whitepaper. Hewlett-Packard Development Company and the Economist
Intelligence Unit.

Espinoza, A. and Garbajosa, J. (2011). A study to support agile meth-
ods more effectively through traceability. Innovations in Systems and
Software Engineering, 7(1):53–69.

Fagerholm, F. (2010). Psychometric measurements in software develop-
ment. Software Factory Magazine, 1(1):12–13.

Fenton-O’Creevy, M. (1998). Employee involvement and the middle man-
ager: Evidence from a survey of organizations. Journal of Organizational
Behavior, 19(1):67–84.

Filho, W. P. P. (2001). Requirements for an educational software develop-
ment process. In ITiCSE ’01: Proceedings of the 6th annual conference
on Innovation and technology in computer science education, pages 65–
68, New York, NY, USA. ACM.

Freeman, M. and Beale, P. (1992). Measuring project success. Project
Management Journal, 23(1):8–17.

Fuggetta, A. (2000). Software process: A roadmap. In ICSE ’00: Pro-
ceedings of the Conference on The Future of Software Engineering, pages
25–34, New York, NY, USA. ACM.

Glass, R. L. (2006). The Standish report: Does it really describe a software
crisis? Communications of the ACM, 49(8):15–16.

Goldratt, E. M. (1984). The Goal: A process of ongoing improvement.
North River Press, Great Barrington, Massachusetts, USA.

Goodson, R. (2002). Read a plant – fast. Harvard Business Review,
80(5):105–113.

Greenfield, J., Short, K., Cook, S., and Kent, S. (2004). Software Factories:
Assembling Applications with Patterns, Frameworks, Models & Tools.
Wiley.

94 References

Gross, J. M. and McInnis, K. R. (2003). Kanban made simple: Demystifying
and applying Toyota’s legendary manufacturing process. AMACOM, New
York, NY, USA.

Gunson, J., de Blasis, J.-P., and Neary, M. (2003). Leadership in real
time: A model of five levels of attributes needed by a project manager
in ERP implementations. Number 03-15 in UG-HEC-CR. HEC Geneva,
University of Geneva, Geneva, Switzerland.

Guzzo, R. and Dickson, M. (1996). Teams in organizations: Recent re-
search on performance and effectiveness. Annual Review of Psychology,
47(1):307–338.

Hartmann, D. (2004). Interview: Jim Johnson of the Standish Group.
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS [5-
May-2011].

Hazzan, O. (2003). Computer science students’ conception of the rela-
tionship between reward (grade) and cooperation. In ITiCSE ’03: Pro-
ceedings of the 8th annual conference on Innovation and technology in
computer science education, pages 178–182, New York, NY, USA. ACM.

Hilburn, T. B., Mengel, S., Bagert, D. J., and Oexmann, D. (1998). Soft-
ware engineering across computing curricula. In ITiCSE ’98: Proceedings
of the 6th annual conference on the teaching of computing and the 3rd
annual conference on Integrating technology into computer science edu-
cation, pages 117–121, New York, NY, USA. ACM.

Hiranabe, K. (2008). Kanban applied to software development: From agile
to lean. http://www.infoq.com/articles/hiranabe-lean-agile-kanban [4-
May-2011].

Höst, M., Regnell, B., and Wohlin, C. (2000). Using students as subjects:
A comparative study of students and professionals in lead-time impact
assessments. Journal of Empirical Software Engineering, 5(3):201–214.

Hovorka, D. S. and Larsen, K. R. (2006). Enabling agile adoption prac-
tices through network organizations. European Journal of Information
Systems, 15(2):159–168.

Howell, G. A., Macomber, H., Koskela, L., and Draper, J. (2004). Leader-
ship and project management: Time for a shift from fayol to flores. In
Proceedings of the 12th Annual Conference of the International Group
for Lean Construction (IGLC-12), pages 22–29.

References 95

Humphrey, W. S. (1995). A Discipline for Software Engineering. Addison-
Wesley Longman Publishing Co., Inc., Boston, Massachusetts, USA.

Hutchings, T., Hyde, M. G., Marca, D., and Cohen, L. (1993). Process
improvement that lasts: An integrated training and consulting method.
Communications of the ACM, 36(10):105–113.

Ikonen, M. and Abrahamsson, P. (2010). Anticipating success of a business-
critical software project: A comparative case study of waterfall and agile
approaches. In Tyrväinen, P., Jansen, S., and Cusumano, M. A., editors,
Proceedings of the 1st International Conference on Software Business
(ICSOB 2010), pages 187–192, Berlin Heidelberg. Springer-Verlag.

Jacobson, I. (2009). What they don’t teach you about software at school:
Be smart! In Proceedings of the 10th International Conference on Agile
Processes in Software Engineering and Extreme Programming XP 2009,
pages 1–4. Springer.

Janes, A. and Succi, G. (2009). To pull or not to pull. In Proceeding
of the 24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications, OOPSLA ’09, pages
889–894, New York, NY, USA. ACM.

Janz, B. D. (1998). The best and worst of teams: Self-directed work teams
as an information systems development workforce strategy. In SIGCPR
’98: Proceedings of the 1998 ACM SIGCPR conference on Computer
personnel research, pages 59–67, New York, NY, USA. ACM.

Järvinen, P. and Järvinen, A. (1996). Tutkimustyön metodeista. Opinpaja,
Tampere, Finland.

Jensen, C. and Scacchi, W. (2005). Collaboration, leadership, control,
and conflict negotiation and the netbeans.org open source software de-
velopment community. In HICSS ’05: Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, Washington DC,
USA. IEEE Computer Society.

Jian’an, C. (2008). Research on strategies and empowerment process to
achieve self-management team. In Proceedings of the 4th International
Conference on Wireless Communications, Networking and Mobile Com-
puting (WiCOM ’08), pages 1–5. IEEE.

Jones, T. (1986). Programming productivity. McGrawHill, New York, USA.

96 References

Jurison, J. (1999). Software project management: The manager’s view.
Communications of the AIS, 2(September).

Kajaste, V. and Liukko, T. (1994). Lean-toiminta. Metalliteollisuuden
Kustannus Oy, Tampere, Finland.

Karlsson, C. and Åhlström, P. (1996). The difficult path to lean product
development. Journal of Product Innovation Management, 13(4):283–
295.

Keil, M., Cule, P. E., Lyytinen, K., and Schmidt, R. C. (1998). A frame-
work for identifying software project risks. Communications of the ACM,
41(11):76–83.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., Emam, K.,
and Rosenberg, J. (2002). Preliminary guidelines for empirical research
for empirical research in software engineering. IEEE Transactions on
Software Engineering, 28(8):721–734.

Klein, H. and Myers, M. (1999). A set of principles for conducting and eval-
uating interpretive field studies in information systems. MIS Quartely,
23(1):67–94.

Kniberg, H. (2009). Kanban vs. Scrum: How to make the most of
both. http://www.crisp.se/henrik.kniberg/Kanban-vs-Scrum.pdf [18-
Jan-2010].

Koskela, L. (2000). An exploration towards a production theory and its
application to construction. Number 408 in Series of Doctoral Theses.
VTT Technical Research Centre of Finland, Espoo, Finland.

Koskela, L. and Howell, G. (2002). The theory of project management:
Explanation to novel methods. In Proceedings of the 12th Annual Con-
ference of the International Group for Lean Construction (IGLC-10).

Kotter, J. P. (1996). Leading change. Harvard Business School Press,
Boston, Massachusetts, USA.

Ladas, C. (2009). Scrumban: Essays on Kanban Systems for Lean software
development. Modus Cooperandi Press, Seattle, WA, USA.

Larman, C. and Basili, V. (2003). Iterative and incremental developments:
A brief history. IEEE Computer, 36(6):47–56.

References 97

Law, K. S., Wong, C.-S., and Mobley, W. H. (1998). Toward a taxonomy
of multidimensional constructs. The Academy of Management Review,
23(4):741–755.

Licker, P. S. (1992). Setting quality sights on HR management in IS.
In SIGCPR ’92: Proceedings of the 1992 ACM SIGCPR conference
on Computer personnel research, pages 109–116, New York, NY, USA.
ACM.

Liker, J. (2004). The Toyota Way. McGraw-Hill, New York, NY, USA.

Liker, J. K. and Hoseus, M. (2008). Toyota Culture: The heart and soul of
the Toyota Way. McGraw-Hill, New York, NY, USA.

Lui, K. and Chan, K. (2008). Software Development Rhythms. John Wiley
& Sons, New Jersey, USA.

Madeyski, L. (2010). Test-driven development: An empirical evaluation of
agile practice. Springer–Verlag, Berlin Heidelberg.

Mandić, V., Oivo, M., Rodŕıguez, P., Kuvaja, P., Kaikkonen, H., and
Turhan, B. (2010). What is flowing in lean software development. In
Abrahamsson, P. and Oza, N., editors, Proceedings of the 1st Inter-
national Conference on Lean Enterprise Software and Systems (LESS
2010), volume 65, Part 2 of Lecture Notes in Business Information Pro-
cessing, pages 72–84, Berlin Heidelberg. Springer-Verlag.

Maylor, H. (2001). Beyond the GANTT chart: Project management mov-
ing on. European Management Journal, 19(1):92–100.

Middleton, P. (2001). Lean software development: Two case studies. Soft-
ware Quality Journal, 9(4):241–252.

Middleton, P., Flaxel, A., and Cookson, A. (2005). Lean software man-
agement case study: Timberline inc. In Baumeister, H., Marchesi, M.,
and Holcombe, M., editors, Extreme Programming and Agile Processes
in Software Engineering, volume 3556 of Lecture Notes in Computer Sci-
ence, pages 1–9, Berlin Heidelberg. Springer.

Middleton, P. and Joyce, D. (2011). Lean software management: BBC
Worldwide case study. IEEE Transactions on Engineering Management,
PP(99):1–13.

98 References

Moe, N., Dingsøyr, T., and Dyb̊a, T. (2008). Understanding self-organizing
teams in agile software development. In Proceedings or the 19th Aus-
tralian Conference on Software Engineering (ASWEC 2008), pages 76–
85. IEEE Computer Society.

Moe, N., Dingsøyr, T., and Dyb̊a, T. (2009a). Overcoming barriers to
self-management in software teams. IEEE Software, 26(6):20–26.

Moe, N. B., Dingsøyr, T., and Røyrvik, E. (2009b). Putting agile team-
work to the test: An preliminary instrument for empirically assessing
and improving agile software development. In Proceedings of the 10th
International Conference on Agile Processes in Software Engineering and
Extreme Programming XP 2009, pages 114–123. Springer.

Morgan, J. M. and Liker, J. K. (2006). The Toyota Product Development
System: Integrating people, process, and technology. Productivity Press,
New York, NY, USA.

Morgan, T. (1998). Lean manufacturing techniques applied to software
development. Series of Master Theses. Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, USA.

Mujtaba, S., Feldt, R., and Petersen, K. (2010). Waste and lead time reduc-
tion in a software product customization process with value stream maps.
In Proceedings of the 21st Australian Software Engineering Conference
(ASWEC 2010), pages 139–148. IEEE Computer Society.

Nightingale, D. (2009). Principles of enterprise systems. In Second Interna-
tional Symposium on Engineering Systems, Cambridge, Massachusetts,
USA. MIT.

Ohno, T. (1988). Toyota Production System: Beyond Large-Scale Produc-
tion. Productivity Press, New York, NY, USA.

Oivo, M., Kuvaja, P., Pulli, P., and Similä, J. (2004). Software engineer-
ing research strategy: Combining experimental and explorative research
(EER). In Bomarius, F. and Iida, H., editors, Product Focused Soft-
ware Process Improvement (PROFES), volume 3009 of Lecture Notes in
Computer Science, pages 302–317. Springer Berlin / Heidelberg.

Oppenheim, A. (1992). Questionnaire design, interviewing and attitude
measurement. Pinter Publishers, London, UK.

Oppenheim, B. W. (2004). Lean product development flow. Systems En-
gineering, 7(4):352–376.

References 99

Oppenheim, B. W., Murman, E. M., and Secor, D. A. (2010). Lean enablers
for systems engineering. Systems Engineering, 14(1):29–55.

Parnas, D. and Curtis, B. (2009). Point/counterpoint. IEEE Software,
26(6):56–59.

Parnell-Klabo, E. (2006). Introducing lean principles with agile practices
at a Fortune 500 company. In Agile Conference (AGILE) 2006. IEEE
Computer Society.

Patton, M. Q. (1990). Qualitative evaluation and research methods. Sage
Publications, Thousand Oaks, CA, USA.

Pedrycz, W. and Succi, G. (2007). Fuzzy Logic Classifiers and Models in
Quantitative Software Engineering, pages 3142–3159. Idea Group, Inc.,
Hershey, Pennsylvania, USA.

Perera, G. and Fernando, M. (2007). Enhanced agile software development:
Hybrid paradigm with LEAN practice. In International Conference on
Industrial and Information Systems (ICIIS) 2007, pages 239–244. IEEE.

Petersen, K. (2010). Implementing Lean and Agile software development in
industry. Number 2010:04 in Series of Doctoral Theses. Blekinge Institute
of Technology, School of Computing, Sweden.

Pfadt, A. and Wheeler, D. J. (1995). Using statistical process control to
make data-based clinical decisions. Journal of Applied Behavior Analysis,
28(3):349–370.

PMI (2008). A Guide to the Project Management Body of Knowledge.
Project Management Institute, Inc., Pennsylvania, USA, 4th edition.

Poppendieck, M. and Poppendieck, T. (2003). Lean software development:
An agile toolkit. Addison Wesley, Boston, Massachusetts, USA.

Poppendieck, M. and Poppendieck, T. (2007). Implementing Lean Soft-
ware Development: From Concept to Cash. Addison-Wesley, Boston,
Massachusetts, USA.

Pressman, R. (1997). Software Engineering: A Practitioner’s Approach.
McGraw-Hill, Cambrigde, UK, European adaptation edition.

Pugh, S. (1991). Integrated Methods for Successful Product Engineering.
Addison-Wesley, Reading, Massachusetts, USA.

100 References

Ramasubbu, N. and Balan, R. K. (2009). The impact of process choice in
high maturity environments: An empirical analysis. In Proceedings of the
31st International Conference on Software Engineering, pages 529–539,
Washington, DC, USA. IEEE Computer Society.

Ravichandran, T. and Rai, A. (1994). The dimensions and correlates of
systems development quality. In SIGCPR ’94: Proceedings of the 1994
computer personnel research conference on Reinventing IS: Managing
information technology in changing organizations, pages 272–282, New
York, NY, USA. ACM.

Reilly, R. and Lynn, G. (2003). Power and empowerment: The role of
top management support and team empowerment in new product devel-
opment. In PICMET ’03: Portland International Conference on Man-
agement of Engineering and Technology Technology Management for Re-
shaping the World 2003, pages 282–289, Portland, OR, USA. Portland
State University.

Reinertsen, D. G. (2009). The Principles of Product Development Flow:
Second Generation Lean Product Development. Celeritas Publishing, Re-
dondo Beach, CA, USA.

Robson, M. (1993). Problem Solving in Groups. Gower, Aldershot, Hamp-
shire, UK.

Royce, W. W. (1970). Managing the development of large software systems:
Concepts and techniques. In Proceedings of IEEE WESCON, pages 1–9.
IEEE Press.

Scacchi, W. (1984). Managing software engineering projects: A social anal-
ysis. IEEE Transactions on Software Engineering, SE-10(1):49–59.

Schein, E. (1988). Process Consultation. Addison-Wesley, Reading, Mas-
sachusetts, USA.

Schwaber, K. (1995). Scrum development process. In Business object de-
sign and implementation workshop, OOPSLA ’95, New York, NY, USA.
ACM.

Schwaber, K. and Beedle, M. (2002). Agile Software Development with
Scrum. Prentice-Hall, Upper Saddle River, New Jersey, USA.

Seaman, C. (1999). Qualitative methods in empirical studies of software
engineering. IEEE Transactions of Software Engineering, 25(4):557–572.

References 101

Shalloway, A., Beaver, G., and Trott, J. R. (2009). Lean-agile software
development: Achieving enterprise agility. Pearson Education, Inc. /
Addison-Wesley, Boston, Massachusetts, USA.

Shenhar, A. J., Dvir, D., Levy, O., and Maltz, A. C. (2001). Project
success: A multidimensional strategic concept. Long Range Planning,
34(6):699–725.

Shingo, S. (1989). A study of the Toyota Production System. Productivity
Press, New York, NY, USA.

Shinkle, C. (2009). Applying the Dreyfus model of skill acquisition to the
adoption of Kanban systems at software engineering professionals (SEP).
In Agile Conference (AGILE) 2009, pages 186–191. IEEE Computer So-
ciety.

Sillitti, A. and Succi, G. (2006). Requirements engineering for agile meth-
ods. In Aurum, A. and Wohlin, C., editors, Engineering and Managing
Software Requirements, pages 309–326. Springer.

Sillitti, A. and Succi, G. (2008). Foundations of agile methods. In Lu-
cia, A. D., Ferrucci, F., and Tortora, G., editors, Emerging Methods,
Technologies, and Process Management in Software Engineering, pages
249–270. John Wiley & Sons, Inc.

Sommerville, I. (2007). Software Engineering. Addison-Wesley, Harlow,
UK, 8th edition.

Sutherland, J. (1995). Business object design and implementation work-
shop. In Addendum to the proceedings of the 10th annual conference on
Object-oriented programming systems, languages, and applications (Ad-
dendum), OOPSLA ’95, pages 170–175, New York, NY, USA. ACM.

Sutherland, J., Downey, S., and Granvik, B. (2009). Shock therapy: A
bootstrap for hyper-productive scrum. In Agile Conference (AGILE)
2009, pages 69–73. IEEE Computer Society.

Takeuchi, H. and Nonaka, I. (1986). The new product development game.
Harvard Business Review, 64(1):137–146.

Tata, J. and Prasad, S. (2004). Team self-management, organizational
structure, and judgments of team effectiveness. Journal of Managerial
Issues, 16(2):248–265.

102 References

Teasley, S., Covi, L., Krishnan, M. S., and Olson, J. S. (2000). How does
radical collocation help a team succeed? In CSCW ’00: Proceedings
of the 2000 ACM conference on Computer supported cooperative work,
pages 339–346, New York, NY, USA. ACM.

Thadani, A. (1984). Factors affecting programmer productivity during ap-
plication development. IBM Systems Journal, 23(1):19–35.

Tichy, W. (2000). Hints for reviewing empirical work in software engineer-
ing. Journal of Empirical Software Engineering, 5(4):309–312.

Tolvanen, J.-P. (1998). Incremental Method Engineering with Modeling
Tools: Theoretical Principles and Empirical Evidence. Number 47 in
Series of Doctoral Theses of Jyväskylä Studies in Computer Science,
Economics and Statistics. University of Jyväskylä, Jyväskylä, Finland.

Tuckman, B. W. and Jensen, M. A. C. (1977). Stages of small-group devel-
opment revisited. Group and Organizational Management, 2(4):419–427.

Walsham, G. (1995). Interpretive case studies in IS research: Nature and
method. European Journal of Information Systems, 4(1):74–81.

Watson, T. (2002). Organising and Managing Work: Organisational, man-
agerial and strategic behaviour in theory and practice. Prentice Hall,
Pearson Education, Harlow, UK.

Watson, T. (2006). Organising and Managing Work: Organisational, man-
agerial and strategic behaviour in theory and practice. Prentice Hall,
Pearson Education, London, UK, 2nd edition.

Weinberg, G. (1971). The Psychology of Computer Programming. Van
Nostrand Reinhold, New York, NY, USA.

Weiss, D. M., Bennett, D., Payseur, J. Y., Tendick, P., and Zhang, P.
(2002). Goal-oriented software assessment. In ICSE ’02: Proceedings of
the 24th International Conference on Software Engineering, pages 221–
231, New York, NY, USA. ACM.

Williams, L. and Cockburn, A. (2003). Agile software development: It’s
about feedback and change. IEEE Computer, 36(6):39–43.

Winter, R. (1994). Self-directed work teams. In Proceedings of 1994
IEEE/SEMI Advanced Semiconductor Manufacturing Conference and
Workshop (ASMC), pages 123–125. IEEE.

References 103

Wohlin, C., Runeson, P., and Höst, M. (2000). Experimentation in software
engineering: An introduction. Kluwer, Boston, Massachusetts, USA.

Womack, J. P. and Jones, D. T. (2003). Lean Thinking: Banish Waste and
Create Wealth in Your Corporation. Simon & Schuster, London, UK.

Womack, J. P. and Jones, D. T. (2005). Lean consumption. Harvard
Business Review, 83(3):58–68.

Yasin, M. M., Czuchry, A. J., and Alavi, J. (2002). Project management
practices: Then and now. Thunderbird International Business Review,
44(2):253–262.

Yin, R. (1991). Case study research: Design and methods. Sage Publica-
tions, Thousand Oaks, CA, USA.

Zmud, R. W. (1980). Management of large software development efforts.
MIS Quarterly, 4:45–55.

