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Background

Dyadic techniques in Harmonic Analysis in their most elementary forms make use
of the family D consisting of dyadic intervals 2−k([0, 1) +m) with k and m ranging
through the integers Z. The founding observation is that the family of Haar func-
tions hI = |I|−1/2(1I− − 1I+), where I− and I+ are the left and right halves of a
dyadic interval I, constitute an orthonormal basis for L2(R).

While these techniques appear at first quite specific to the Euclidean setting,
it should be mentioned that versions of dyadic cubes can be constructed even in
abstract metric spaces, see for instance Christ [11] and Hytönen and Kairema [26].
Moreover, operators known as dyadic shifts have been of central importance in
the study of sharp weighted norm inequalities for singular integral operators (see
Petermichl [43] and Hytönen et al. [29]). These lines, however, will not be pursued
here.

The T1 theorem of G. David and J.-L. Journé [16] concerning the L2-boundedness
of singular integral operators is proved by T. Figiel in [20] using dyadic techniques.
The proof introduces a dyadic paraproduct operator Πb associated to a given function
b in (dyadic) BMO(R) according to the formula

Πbf =
∑
I∈D

〈f〉I〈b, hI〉hI , f ∈ L2(R), (1)

where 〈f〉I denotes the average of f over a dyadic interval I and 〈b, hI〉 stands for
the pairing

∫
bhI . To see that (1) defines a bounded operator on L2(R) one resorts

to the inequality (Carleson’s embedding theorem)(∫
R

∑
I∈D

|〈f〉IθI(x)|2 dx
)1/2

≤ ‖(θI)‖Car2‖Mf‖L2

with θI = 〈b, hI〉hI , so that

‖(θI)‖Car2 = sup
J∈D

( 1

|J |

∫
J

∑
I⊂J

|θI(x)|2 dx
)1/2

h ‖b‖BMO,
1

and applies the L2-boundedness of the dyadic maximal operator M . Possible ways
to address the boundedness of Πb on Lp(R) with 1 < p < ∞ include interpolation
from a weak (1, 1) estimate or from H1-L1 -boundedness, and extrapolation from
weighted inequalities (see Pereyra [42]).

Figiel’s proof was designed to allow an extension of the T1 theorem to functions
taking values in a Banach space X and hence we now ask if Πb acts boundedly on
the Lebesgue-Bochner space Lp(R;X) for p ∈ (1,∞). The first obstruction is the
lack of an orthogonality argument. If, however, X is a UMD-space,2 we obtain for
functions f in Lp(R;X) that

‖Πbf‖Lp(X) h
(∫

R

E

∥∥∥∑
I∈D

εI〈f〉I〈b, hI〉hI(x)
∥∥∥p dx)1/p

, (2)

1By α . β we mean that there exists a constant C such that α ≤ Cβ. Quantities α and β are
comparable, α h β, if α . β and β . α.

2UMD stands for unconditional martingale d ifferences.
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where E denotes the expectation for the independent Rademacher variables εI at-
taining values 1 and −1 with an equal probability of 1/2, so that a randomized
sum replaces the square sum of the scalar case. We may now apply a vector-valued
version of Carleson’s embedding theorem which states that(∫

R

E

∥∥∥∑
I∈D

εI〈f〉IθI(x)
∥∥∥p dx)1/p

. ‖(θI)‖Carq‖MRf‖Lp ,

where 1 < p < q <∞ (see Section 4 for ‖(θI)‖Carq) and

MRf(x) = sup
{(
E

∥∥∥∑
I3x

εI〈f〉IλI
∥∥∥2)1/2

:
∑
I3x

|λI |2 ≤ 1
}

(3)

is the Rademacher maximal function of f . The right-hand side of equation (3) defines
the R-bound R(〈f〉I : I 3 x) of the set of dyadic averages of f at x. The concept of
R-boundedness, which originates from Berkson and Gillespie [2], is here applied to
vectors by viewing them as operators from the scalars to X (see [A, Section 2] for
definitions). Replacing square sums by randomized sums and suprema by R-bounds
is a standard procedure in vector-valued Harmonic Analysis (see Bourgain [3] and
McConnell [35] for discrete square functions and Weis [47] for R-boundedness). The
question arises whether MR is bounded from Lp(R;X) to Lp(R) for 1 < p < ∞.
This maximal operator was first defined by T. Hytönen, A. McIntosh and P. Portal
in [27], where also a vector-valued version of Carleson’s embedding theorem was
proven. Moreover, they discovered that the boundedness ofMR defines a non-trivial
Banach space property – the RMF-property3 – in the sense that not every Banach
space, for instance `1, has it. It should be mentioned that in [20] Figiel announces
a proof (later presented in Figiel and Wojtaszczyk [21, Section 6]) of the Lp(X)-
boundedness of Πb for UMD-spaces X and attributes an intermediate estimate to
J. Bourgain.

Two Banach space properties: UMD and RMF

This section summarizes article [A]. In this article, the operator MR is defined in a
somewhat more general context with respect to filtrations on σ-finite measure spaces
(see the next section). Its boundedness, however, does not depend on the underlying
space in the sense that it suffices to study the most tractable case of unit interval,
as is stated in [A, Theorem 5.1] (much in the spirit of the reduction argument in
Maurey [33]). For this introductory discussion we restrict ourselves to probability
spaces.

p-independence of the RMF-property

The above mentioned UMD-property of a Banach space X is often described as the
requirement that every martingale difference sequence (δk) in X, i.e. a (discrete)

3RMF is shorthand of Rademacher maximal f unction.
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stochastic process with E(δk+1|δ1, . . . , δk) = 0,4 satisfies

E

∥∥∥∑
k

εkδk

∥∥∥p . E∥∥∥∑
k

δk

∥∥∥p (UMDp)

for any choice of (nonrandom) signs εk ∈ {1,−1} and any p ∈ (1,∞). This is
connected to previous considerations as

δk(ω) =
∑
I⊂[0,1)

|I|=2−k+1

〈f, hI〉hI(ω), ω ∈ [0, 1),

is readily seen to define a martingale difference sequence in X given any f ∈
Lp(0, 1;X). Randomizing the signs εk allows one to deduce estimates like (2) from
(UMDp).

The Rademacher maximal operator MR can be studied using martingales, i.e.
(discrete) stochastic processes (ξk) for which E(ξk+1|ξ1, . . . , ξk) = ξk. Indeed,

ξk(ω) =
∑
I⊂[0,1)

|I|=2−k

〈f〉I1I(ω), ω ∈ [0, 1),

defines a martingale inX for any given f ∈ Lp(0, 1;X). The Lp-norm of the maximal
function will then take the form

‖MRf‖pLp(0,1) = ER(ξk : k ≥ 0)p.

Note also that E‖ξk‖p ≤ E‖ξk+1‖p ≤ ‖f‖pLp(0,1;X) for each k. The question of
boundedness of MR from Lp(X) to Lp for some p ∈ (1,∞) now asks whether

ER(ξk : k)p . max
k
E‖ξk‖p (RMFp)

holds for all martingales (ξk). The precise class of martingales under consideration
is not relevant for this discussion and one can safely assume all martingales to be
finite and simple, for instance. Assuming that (RMFp) holds for some p ∈ (1,∞)
one can derive the weak type inequality

P

(
R(ξk : k) > λ

)
.

1

λ
max
k
E‖ξk‖ (w-RMF)

for all martingales (ξk) and all λ > 0.
In [A] the relation between (RMFp) and (w-RMF) is studied. To see that the

validity of (RMFp) does not depend on p, it is shown that (w-RMF) is also sufficient
for (RMFp). The argument in [A] follows a similar one for UMD by D. L. Burkholder
(see [4, Section 1]) and proceeds via a distributional inequality

P

(
R(ξk : k) > 3λ, max

k
‖ξk‖ ≤ γλ

)
≤ α(γ)P

(
R(ξk : k) > λ

)
,

where α(γ)→ 0 as γ ↘ 0. From this we arrive at
4
E(ξ|η1, . . . , ηk) denotes the conditional expectation of a random variable ξ with respect to the

σ-algebra generated by the random variables η1, . . . , ηk.
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Theorem. The following are equivalent for a Banach space X:

1. for all p ∈ (1,∞), (RMFp) holds for all martingales (ξk) in X,

2. for some p ∈ (1,∞), (RMFp) holds for all martingales (ξk) in X,

3. (w-RMF) holds for all martingales (ξk) in X and all λ > 0.

The p-independence of the RMF-property was proven in the dyadic case already
in [27, Proposition 7.1] by an interpolation argument.

Concave functions

Concave functions provide another way to study both UMD and RMF properties.
The former was considered by Burkholder in [4] and [5], where the UMD-property of
a Banach spaceX was characterized by the existence of a suitable biconcave function
u : X × X → R and by a related notion of ζ-convexity. The method was tailored
to provide sharp constants and as such allows one to determine the unconditional
constant for the Haar basis on Lp(0, 1) with 1 < p <∞. See also Burkholder [6, 7].

In [A] these techniques are applied to the case of RMF. Namely, for a fixed
p ∈ (1,∞), the validity of

ER(ξk : k)p ≤ CE‖ξ∞‖p

for (finite) martingales (ξk), whose final member we denote by ξ∞, is equivalent to

Ef({ξk}, ξ∞) ≤ 0,

where the function f(S, x) = R(S)p−C‖x‖p is defined on finite subsets S of X and
vectors x ∈ X. Here also the constant C remains fixed. The RMF-property of X is
then characterized by the existence of a majorant u of f :

Theorem. The following are equivalent for a Banach space X:

1. Ef({ξk}, ξ∞) ≤ 0 holds for all martingales (ξk) in X,

2. there exists a real-valued function u such that

• u(S, x) ≥ f(S, x),
• u(∅, x) ≤ 0,
• u(S ∪ {x}, x) = u(S, x),
• u(S, ·) is concave,

for all finite subsets S of X and all vectors x ∈ X.

The concave function argument has the technical advantage that the transition
from certain dyadic martingales to more general martingales can be handled by
the elementary fact that locally bounded midpoint concave functions are actually
concave.

Similar methods have recently been used by F. Nazarov, S. Treil and A. Volberg
under the name of Bellman functions to prove results, old and new: The dyadic
version of Carleson’s embedding theorem and the dyadic maximal function are the
first two introductory examples in [38], the two-weight problem for Haar multipliers
is considered in [39] and the dyadic shifts of [29] are studied in [46].
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Relation with Banach space geometry

Both UMD- and RMF-properties have implications for the geometry of the under-
lying Banach space X. A Banach space is said to have type p ∈ [1, 2] if(

E

∥∥∥∑
k

εkxk

∥∥∥2)1/2

.
(∑

k

‖xk‖p
)1/p

for any choice of vectors xk ∈ X. The larger the p, the stronger the requirement
for type p. It has been shown by B. Maurey and G. Pisier (see [34] or Albiac
and Kalton [1, Chapter 11]) that a Banach space X has no greater type than the
trivial type p = 1 if and only if `1 is finitely representable in X, which in turn is
a requirement for uniform containment of finite dimensional subspaces of `1 in X.
Once it has been shown that `1 has neither UMD nor RMF it is not difficult to see
that both these properties imply that the underlying Banach space has type greater
than 1. This observation motivates the more general framework for RMF in which
the Banach space X is assumed to lie inside a space L(E,F ) of operators so that
a different, more intrinsic notion of R-boundedness is available. Indeed, for infinite
dimensional Banach spaces E and F the space L(E,F ) has only trivial type (see
Diestel, Jarchow and Tonge [17, Proposition 19.17] for a proof of an even stronger
result that the subspace of compact operators has only infinite cotype) and could
not have RMF in the original framework.

Every Banach space X with type 2 has RMF, since in this case R-boundedness
coincides with uniform boundedness and the standard dyadic maximal operator is
always bounded from Lp(R;X) to Lp(R) whenever 1 < p ≤ ∞. The RMF-property
of X is also inherited to Lp(R;X) for all p ∈ (1,∞) (see [A, Proposition 4.3]).
For more examples of RMF-spaces, see [27, Section 7] and [A] for the more general
framework.

An example of a non-reflexive Banach space with type 2 by R. C. James in [31]
shows that RMF does not imply UMD.5 The converse is not known:

Problem. Does UMD imply RMF?

Going back to the previous discussion about the vector-valued dyadic paraprod-
uct we see that an affirmative answer to the problem above would remove the need
for an additional assumption on the RMF-property in our argument. Also the so-
lution of Kato’s square root problem in Lp(Rn;X) still relies on both UMD- and
RMF-properties of the Banach space X (see Hytönen, McIntosh and Portal [27]).

Carleson’s embedding theorem and discrete tent spaces

Carleson’s inequality originates from the work of L. Carleson on analytic functions
(see [9, Theorem 1] and [8, Theorem 2]). It has found its way to the real-variable
theory in Fefferman and Stein [19, Theorem 2] with a formulation similar to the
one we present in the next section. The inequality (or embedding) discussed in this
section is a modification of the earlier dyadic version to a more general discrete
setting. After gathering the results from article [B] we present a toy model of tent
spaces which are the topic of the next section.

5It is known that all UMD spaces are reflexive.
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Carleson’s embedding theorem and article [B]

The vector-valued Carleson’s embedding theorem [27, Theorem 8.2] was the original
reason for defining the new maximal operator. In [B] this embedding is formulated
in a more general setting and related to Banach space geometry through the concept
of type.

Suppose that (Ω,F , µ) is a σ-finite measure space equipped with a filtration
(Fk)k∈Z of σ-finite sub-σ-algebras of F such that Fk ⊂ Fk+1. We denote by Ek
the conditional expectation operator with respect to Fk. The Rademacher maximal
function of an f : Ω→ X is defined in this context by

MRf(x) = R(Ekf(x) : k ∈ Z), x ∈ Ω.

The prime example of such a setting is of course the dyadic filtration (Fk)k∈Z on Rn,
where Fk is the σ-algebra generated by the collection Dk of dyadic cubes 2−k([0, 1)n+
m), m ∈ Zn. In this case the conditional expectations are given by

Ekf(x) =
∑
Q∈Dk

〈f〉Q1Q(x), x ∈ Rn.

Let 1 < p, q <∞ and consider, for a family θ = (θk)k∈Z of real-valued functions
on Ω and an f ∈ Lp(Ω;X), the inequality(∫

Ω

E

∥∥∥∑
k∈Z

εkEkf(x)θk(x)
∥∥∥p dµ(x)

)1/p

. ‖θ‖Carq‖f‖Lp(X), (CARq,p)

where
‖θ‖Carq = sup

m∈Z
sup
A∈Fm

( 1

µ(A)

∫
A

(∑
k≥m

|θk(x)|2
)q/2

dµ(x)
)1/q

.

Observe that ‖θ‖Carp ≤ ‖θ‖Carq whenever p ≤ q, so that the collections of θ for
which these quantities are finite satisfy Carq(Ω) ⊂ Carp(Ω) for p ≤ q. Note also,
that (CARq,p) cannot hold for all f ∈ Lp(Ω;X) unless θ ∈ Carp(Ω), as can be seen
by choosing f = 1A ⊗ ξ with A ∈ Fm and ‖ξ‖ = 1.

The main result of [B] is the following:

Theorem. Let 1 < p < ∞ and suppose that X is a Banach space. The inequality
(CARq,p) holds for all f ∈ Lp(Ω;X) and θ ∈ Carq(Ω)

• with q > p if and only if X has RMF,

• with q = p if and only if X has RMF and type p.

As no Banach space can have type greater than 2, the validity of (CARq,p) for
equal indices is restricted even in the scalar case to q = p ≤ 2. The article [B] is
written in the setting of operator-valued f and vector-valued θk.

In this introduction, Carleson’s embedding theorem has so far been motivated
by its application to the classical paraproduct operator, where Lp-estimates are
obtained directly without interpolation or extrapolation. It is worth noting that
this, however, is not the only reason to study these inequalities. Indeed, the dyadic
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version of the vector-valued Carleson’s embedding theorem (and hence RMF) played
an important rôle in the analysis of the principal part of the operator sequence
appearing in the “quadratic T1 theorem” [27, Theorem 6.1], which in turn was a step
towards the solution of the Kato’s square root problem in Lp(Rn;X). The RMF
assumption was also present in an earlier version of T. Hytönen’s paper concerning
the vector-valued Tb theorem in the non-homogeneous setting (see [24, Theorem
3.5]). To the best of my knowledge, RMF is still present in an ongoing work regarding
a local version of the Tb theorem.

Discrete tent spaces

The setting of a σ-finite measure space with a filtration allows us to define discrete
versions of tent spaces. This discussion aims to give an idea of how the UMD- and
RMF-properties appear in standard operations on these spaces.

For 1 ≤ p < ∞, the space dT p∞(X) consists of functions F : Ω × Z → X such
that F (·, k) is Fk-measurable and

‖F‖dT p
∞(X) =

(∫
Ω

R(F (x, k) : k ∈ Z)p dµ(x)
)1/p

<∞.

For RMF-spaces X it follows that every function f in Lp(Ω;X) with 1 < p < ∞
lifts to dT p∞(X) by the formula

F (x, k) = Ekf(x), (x, k) ∈ Ω× Z.

For p = 1 we see that H1(Ω;X)-functions (when defined using atoms or maximal
functions as in the Euclidean case, see Garsia [22]) extend to dT 1

∞(X)-functions.
Moreover, a function F : Ω × Z → X belongs to dT p(X) with 1 ≤ p < ∞ if

F (·, k) is Fk-measurable and

‖F‖dT p(X) =
(∫

Ω

E

∥∥∥∑
k∈Z

εkF (x, k)
∥∥∥p dµ(x)

)1/p

<∞.

If X is UMD, then every f in Lp(Ω;X) with 1 < p < ∞ lifts to dT p(X) by the
formula

F (x, k) = Ekf(x)− Ek−1f(x), (x, k) ∈ Ω× Z.
As before, for p = 1 we see that H1(Ω;X)-functions extend to dT 1(X)-functions.

Let us denote by Rad(X) the Banach space of sequences (ξk)k∈Z in X for which
the series

∑
k∈Z εkξk converges almost surely so that the norm

‖(ξk)k∈Z‖Rad(X) =
(
E

∥∥∥∑
k∈Z

εkξk

∥∥∥2)1/2

is finite. For more details on these almost unconditionally summable sequences, see
[17, Chapter 12]. For 1 < p < ∞, the space dT p(X) can be studied as a comple-
mented subspace of Lp(Ω;Rad(X)). Indeed, the vector-valued Stein’s inequality6

6The scalar case can be found in Stein [45, Theorem 8]; the vector-valued version is stated
without proof already in Bourgain [3, Lemma 8].
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(see Clément et al. [12, Proposition 3.8] for a proof) states that any increasing
sequence of conditional expectation operators is R-bounded on Lp(Ω;X) when X is
UMD so that for all F = (Fk)k∈Z ∈ Lp(Ω;Rad(X)) we have∫

Ω

E

∥∥∥∑
k∈Z

εkEkFk(x)
∥∥∥p dµ(x) .

∫
Ω

E

∥∥∥∑
k∈Z

εkFk(x)
∥∥∥p dµ(x).

From this we infer that NF (x, k) = EkFk(x) defines a bounded projection N on
Lp(Ω;Rad(X)) whose range is dT p(X).

Carleson’s embedding theorem also generalizes to(∫
Ω

E

∥∥∥∑
k∈Z

εkF (x, k)θ(x, k)
∥∥∥p dµ(x)

)1/p

. ‖θ‖Carq‖F‖dT p
∞(X),

which says that the function (x, k) 7→ F (x, k)θ(x, k) is in dT p(X) whenever F is in
dT p∞(X) and θ is in Carq(Ω) with q > p .

An atomic decomposition for a dyadic version of scalar dT 1 can be found in
Meyer [37, Chapter 5, Section 3].

Tent spaces and article [C]

Tent spaces were introduced by R. R. Coifman, Y. Meyer and E. M. Stein in [15] for
the purpose of serving as a unified framework for non-tangential maximal functions
and conical square functions arising in Harmonic Analysis.

Paraproduct operator

We will find tent spaces useful when studying a continuous time paraproduct operator
Πb, which as its dyadic analogue is associated to a function b ∈ BMO(Rn) and
defined (formally) by

Πbf =

∫ ∞
0

Ψt ∗ ((Φt ∗ f)(Ψt ∗ b))
dt
t
, f ∈ L2(Rn),

where Ψ and Φ are, say, smooth radial real-valued functions supported in the unit
ball with

∫
Ψ = 0 and

∫
Φ = 1. Here, as is usual, Φt(x) = t−nΦ(x/t) and likewise

for Ψ. The above expression is handled by pairing Πbf with a g ∈ L2(Rn) in which
case

〈Πbf, g〉 =

∫
Rn

∫ ∞
0

Φt ∗ f(x)Ψt ∗ b(x)Ψt ∗ g(x)
dt
t
dx. (4)

The L2-boundedness of Πb follows then from a Carleson’s embedding theorem, which
in this setting states, for suitable Φ, that a measure ν on the upper half-space
R
n+1
+ = R

n × (0,∞) satisfies∫
R

n+1
+

|Φt ∗ f(x)|2 dν(x, t) .
∫
Rn

|f(x)|2 dx

for all f ∈ L2(Rn) if and only if it satisfies for every ball B ⊂ R
n the Carleson

condition
ν(B̂) . |B|,

8



where B̂ = {(y, t) ∈ Rn+1
+ : B(y, t) ⊂ B} is the tent over B. One can show that the

measure
dν = |b ∗Ψt(x)|2 dx dt

t
satisfies the Carleson condition when b is in BMO(Rn) (see Duoandikoetxea [18,
Theorem 9.6]).

This version of the paraproduct operator was introduced by Coifman and Meyer
in the book [14] and was later used in the original proof of the T1 theorem by David
and Journé in [16].

Scalar-valued tent spaces

To obtain Lp-boundedness for Πb we appeal to the tent space formalism. For 1 ≤
p <∞, the space T p∞ consists of functions F on Rn+1

+ for which the non-tangential
maximal function is in Lp meaning that

‖F‖T p
∞ =

(∫
Rn

sup
(y,t)∈Γ(x)

|F (y, t)|p dx
)1/p

<∞,

where Γ(x) = {(y, t) ∈ Rn+1
+ : |x − y| < t} denotes the cone at x ∈ Rn. The space

T p, on the other hand, is defined by requiring that the conical square function is
Lp-integrable, that is,

‖F‖T p =
(∫

Rn

(∫
Γ(x)

|F (y, t)|2dy dt
tn+1

)p/2
dx
)1/p

<∞.

Finally, a function H on Rn+1
+ belongs to T∞ if

‖H‖T∞ = sup
B

( 1

|B|

∫
B̂

|H(y, t)|2 dy dt
t

)1/2

<∞,

where the supremum is taken over all balls B ⊂ Rn.
The idea is that for f in Lp(Rn) with 1 < p < ∞, the extensions F (y, t) =

Φt ∗ f(y) and F (y, t) = Ψt ∗ f(y) reside in T p∞ and T p, respectively. This holds also
in the case p = 1 if f is in H1(Rn). Moreover, functions b in BMO(Rn) extend to
T∞ via H(y, t) = Ψt ∗ b(y). When 1 < p <∞ and 1/p+ 1/p′ = 1, we can use (4) to
write

|〈Πbf, g〉| ≤
(∫

Rn

(∫
Γ(x)

|Φt ∗ f(y)Ψt ∗ b(y)|2dy dt
tn+1

)p/2
dx
)1/p

×
(∫

Rn

(∫
Γ(x)

|Ψt ∗ g(y)|2dy dt
tn+1

)p′/2
dx
)1/p′

≤ ‖f‖Lp‖b‖BMO‖g‖Lp′ ,

where the first inequality can be interpreted as a consequence of the tent space
duality (T p)∗ ' T p

′ given by the pairing

〈F,G〉 = c

∫
R

n+1
+

F (y, t)G(y, t)
dy dt
t

, 7

7Here c denotes a dimensional constant.
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and the second inequality rests on the estimate ‖FH‖T p . ‖F‖T p
∞‖H‖T∞ (see Cohn

and Verbitsky [13, Lemma 2.1]) arising from Carleson’s embedding theorem. Both
the tent space duality and the previous estimate remain true for p = 1, which allows
us to use the strategy above in order to prove the boundedness of Πb on H1(Rn).

It should be noted here that the paraproduct operator can also be studied as
a Calderón–Zygmund operator, providing another way to deduce for instance its
boundedness on Lp(Rn) for p ∈ (1,∞) (see Christ [10, Chapter III, Section 3]).

Vector-valued tent spaces and article [C]

The article [C] studies tent spaces of functions taking values in a (real) Banach space
X. The main adjustment to the scalar-valued case is the replacement of the square
integrals ∫

Γ(x)

|F (y, t)|2dy dt
tn+1

by stochastic integrals much in analogue with the discrete case where square sums
are replaced by randomized sums. This is done by associating a Gaussian ran-
dom measure W to the measure dy dt/tn+1 on the upper half-space and extending
the stochastic integral (arising from this random measure) to the algebraic tensor
product L2(Rn+1

+ )⊗X. The completion of this space with respect to the norm

‖F‖γ(X) =
(
E

∥∥∥∫
R

n+1
+

F (y, t) dW (y, t)
∥∥∥2)1/2

is denoted by γ(X). One of the technical problems with stochastic integrals is
that, unlike Rad(X), the natural class of stochastically integrable functions is not
generally complete in the norm above, except in the case of X being isomorphic to
a Hilbert space. The vector-valued case of square functions have been studied for
instance in Kalton and Weis [32] and Hytönen [25]. A detailed account of the theory
of stochastic integration can be found in van Neerven and Weis [41]. Closely related
to this is the theory of γ-radonifying operators, which was surveyed by J. M. A. M.
van Neerven in [40].

For 1 ≤ p < ∞, the tent space T p(X) of functions F : Rn+1
+ → X is now

equipped with the norm

‖F‖T p(X) =
(∫

Rn

E

∥∥∥ ∫
Γ(x)

F (y, t) dW (y, t)
∥∥∥p dx)1/p

.

The space T∞(X), on the other hand, is taken to consist of functions H : Rn+1
+ → X

for which

‖H‖T∞(X) = sup
B

( 1

|B|

∫
B

E

∥∥∥ ∫
Γ(x;rB)

H(y, t) dW (y, t)
∥∥∥2

dx
)1/2

<∞,

where the supremum is taken over all balls B ⊂ Rn each of whose radius rB defines
the truncated cone Γ(x; rB) = {(y, t) ∈ Γ(x) : t < rB} at x ∈ Rn. This quantity was
shown by T. Hytönen and L. Weis (see [30]) to be comparable with scalar version
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of T∞ norm for X = R. We have glossed over the technical difficulties of stochastic
integrability and completeness in the definitions above.

E. Harboure, J. L. Torrea and B. E. Viviani studied in [23] the scalar-valued tent
spaces T p by embedding them into Lp(Rn;L2(Rn+1

+ )) for 1 < p < ∞ and extended
this to the endpoint cases p = 1 and p =∞ by embedding T 1 and T∞, respectively,
into H1(Rn;L2(Rn+1

+ )) and BMO(Rn;L2(Rn+1
+ )). This approach was carried out in

the vector-valued case for 1 < p <∞ by T. Hytönen, J. M. A. M. van Neerven and
P. Portal (see [28, Section 4]) who embedded T p(X) into Lp(Rn; γ(X)) assuming
that X is UMD. The endpoint cases T 1(X) and T∞(X) are considered in [C].

The main result of [C] decomposes a T 1(X) function into atoms A : Rn+1
+ → X

each of which possesses a ball B ⊂ Rn so that suppA ⊂ B̂ and∫
B

E

∥∥∥ ∫
Γ(x)

A(y, t) dW (y, t)
∥∥∥2

dx ≤ 1

|B|
.

Theorem. For every function F in T 1(X) there exist countably many atoms Ak
and real numbers λk such that

F =
∑
k

λkAk and
∑
k

|λk| . ‖F‖T 1(X).

Such a decomposition was provided in the scalar case already in [15], but with
a proof that does not seem to be applicable in the case of X-valued functions. The
atomic decomposition is a crucial tool when embedding T 1(X) into H1(Rn; γ(X)).
In analogue to [23], T∞(X) is embedded in BMO(Rn; γ(X)). As for the duality
results in the vector-valued case, it was shown in [28] that T p(X)∗ ' T p

′
(X∗) when

1 < p < ∞ and 1/p + 1/p′ = 1, whereas in [C] the author has settled for a partial
duality result stating that T∞(X∗) is isomorphic to a norming subspace of T 1(X)∗.
Both in the embeddings and in the duality results, it has been assumed that X is
UMD.

Vector-valued tent spaces were called upon in [28] to provide a framework for
Hardy spaces associated with bisectorial operators and to examine their H∞-func-
tional calculus – a technique introduced in McIntosh [36]. This was studied mostly
in the case 1 < p <∞ and it is expected that the results for T 1(X) and T∞(X) in
[C] find applications in these topics.

Vector-valued paraproduct

In order to address the boundedness of the paraproduct operator for vector-valued
functions, we introduce one more tent space, namely T p∞(X) consisting of functions
F : Rn+1

+ → X for which

‖F‖T p
∞(X) =

(∫
Rn

R(F (y, t) : (y, t) ∈ Γ(x))p dx
)1/p

<∞.
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Now, for f ∈ Lp(Rn;X) and g ∈ Lp′(Rn;X∗) with 1 < p <∞ we obtain

|〈Πbf, g〉| ≤
(∫

Rn

E

∥∥∥∫
Γ(x)

Φt ∗ f(y)Ψt ∗ b(y) dW (y, t)
∥∥∥p dx)1/p

×
(∫

Rn

E

∥∥∥∫
Γ(x)

Ψt ∗ g(y) dW (y, t)
∥∥∥p′ dx)1/p′

≤ ‖NRf‖Lp‖b‖BMO‖g‖Lp′ (X∗),

where the first inequality comes from the tent space duality, the second rests on an es-
timate by T. Hytönen and L. Weis (see [30, Corollary 6.3]) stating that ‖FH‖T p(X) .
‖F‖T p

∞(X)‖H‖T∞ and

NRf(x) = R(Φt ∗ f(y) : (y, t) ∈ Γ(x))

is the non-tangential Rademacher maximal function of f . The question arises
whether NRf is controlled by MRf so that X being RMF would guarantee that
Lp(Rn;X) functions extend to T p∞(X) as in the scalar-valued case. Choosing Φ = P ,
the Poisson kernel, a representation theorem of G.-C. Rota (see [44] or Stein [45,
Chapter IV, Section 4]) allows one to express the Poisson semigroup (Pt ∗ · )t>0 in
terms of conditional expectations which in turn implies that for every t > 0,

R(P2kt ∗ f(x) : k ∈ Z+) .MRf(x).8

It remains unknown if in this vector-valued case the vertical maximal operator con-
trols the non-tangential:

Problem. Suppose that a Banach space X has RMF and let 1 < p < ∞. Does
F (y, t) = Φt ∗ f(y) define a function in T p∞(X) when f ∈ Lp(Rn;X) and

∫
Φ = 1?

In particular, does∫
Rn

R(Pt ∗ f(y) : (y, t) ∈ Γ(x))p dx .
∫
Rn

R(Pt ∗ f(x) : t > 0)p dx

hold for all f in Lp(Rn;X)?

Whether the paraproduct operator is bounded on H1(Rn;X) is also an interest-
ing question. In this case it is not known if ‖FH‖T 1(X) . ‖F‖T 1

∞(X)‖H‖T∞ when X
is UMD nor if ‖NRf‖L1 . ‖f‖H1(X) when X is RMF.
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