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Abstract 
 
Brain size and architecture exhibit great variation among different species, and also 
have the ability to express high ontogenetic and environmentally induced adaptive 
plasticity. Yet, studies on population variation in brain size and architecture, as well 
as brain plasticity induced by ecologically relevant biotic factors have been largely 
overlooked to date. In this thesis I aim to address the following main questions: (i) do 
locally adapted populations differ in brain size and architecture, (ii) can the biotic 
environment (viz. social environment, predation, food availability) induce brain 
plasticity, and (iii) do locally adapted populations differ in levels of brain plasticity 
induced by the biotic environment? 
 
In the first two studies I report large variation in both absolute and relative brain size, 
as well as in the relative sizes of different brain parts, among divergent nine-spined 
stickleback (Pungitius pungitius) populations. Some traits show habitat-dependent 
divergence, implying natural selection being responsible for the observed patterns. 
Namely, marine sticklebacks have relatively larger bulbi olfactorii (chemosensory 
centre) and telencephala (involved in learning) than pond sticklebacks. Further, I 
demonstrate the importance of common garden studies in drawing firm evolutionary 
conclusions that are not hampered by ontogenetic and environmental effects. 
 
In the following three studies I show how the social environment and perceived 
predation risk shapes brain development. In the tadpoles of common frog (Rana 
temporaria), I demonstrate that under the highest per capita predation risk situation 
(predator present – low density), tadpoles develop relatively smaller brains than in 
less risky situations, while high tadpole density results in enlarged tectum opticum 
(visual brain centre). Visual contact with conspecifics induces enlarged tecta optica 
in nine-spined sticklebacks, whereas when only olfactory cues from conspecifics are 
available, bulbus olfactorius becomes enlarged. Further, perceived predatory risk 
results in decreased hypothalamus (complex function including the regulation of 
foraging behaviour) development in sticklebacks. In two cases, I also demonstrate 
how stickleback populations adapted to different environments diverge in brain 
plasticity. Group-living has a negative effect on relative brain size in the aggressive, 
competition-adapted pond sticklebacks, but not in the non-aggressive, predation-
adapted marine sticklebacks. Perceived predation risk induces enlargement of bulbus 
olfactorius in pond sticklebacks, but not in marine sticklebacks who have larger bulbi 
olfactorii than pond fish regardless of predation. 
 
My results show that brain size and architecture, as well as the capacity for brain 
plasticity, can evolve over a relatively short evolutionary time period (< 8000 years). 
These studies also identify putative environmental factors / selective forces likely to 
be responsible for the observed patterns. Further, I show how common ecological 
interactions can shape brain development. In all, these studies demonstrate how 
microevolution can help to explain the enormous variation observed in the brains of 
wild animals – a point-of-view which I high-light in the closing review chapter of my 
thesis. 
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1. Introduction 
 

 

A fundamental goal of evolutionary 
biology is to understand the ultimate 
and proximate causes behind the 
phenotypic variation observed among 
higher taxa, species, populations and 
individuals in the wild. Environmental 
variation resulting in spatially variable 
selective pressures can induce 
phenotypic and genotypic divergence 
within species (Mayr 1963; Endler 
1977). Systematic, environment-
dependent phenotypic variation can be 
a  result  of  two  main  processes:  (i)  
phenotypic plasticity, wherein 
different phenotypes can develop from 
the same genotype (e.g. West-
Eberhard 2003), and (ii) local 
adaptation, wherein selective forces 
acting on heritable phenotypic 
variation result in genetic 
modifications (e.g. Kawecki and Ebert 
2004). The vertebrate brain has been a 
focal trait for biologists from various 
fields, ranging from neurobiology 
through developmental biology to 
evolutionary ecology. However, our 
current knowledge about the fine-
scale, interpopulation variation in 
brain size and brain architecture is still 
very limited. Below, I will review 
what is known about the evolution and 
plasticity of the brain, and point out 
some of the gaps in our knowledge 
which need to be filled to gain a more 
complete picture of how and why brain 
size and architecture varies in the wild. 
 
Brain evolution 
Large variation in brain size, and in the 
size of different brain parts, has been 

reported in several taxa in varying 
anatomical depth (e.g. Harvey et al. 
1980; Kotrschal et al. 1998; Day et al. 
2005). Although it is not 
straightforward to say what exactly 
brain size tells us, it is believed to be a 
good proxy for cognitive ability and 
intelligence in general (Gibson 2002; 
Striedter 2005). Consequently, size is 
widely used in evolutionary studies of 
the brain. Changes in brain size are 
usually the result of changes in neuron 
number rather than in neuron size or 
connectivity (Striedter 2005). 
Energetic constraints stemming from 
the extreme cost of developing and 
maintaining brain tissue (Aiello and 
Wheeler 1995) should impose strong 
selective forces against non adaptive 
increases.  Hence,  the  size  of  a  given  
brain architecture is expected to be a 
good estimate of its importance, and 
might reflect the way a given species 
or population has adapted to its 
environment and prevailing selective 
regime (Winter and Oxnard 2001; 
Gonzalez-Voyer and Kolm 2010). 

Evolutionary studies of the brain 
have applied various methods and 
proxies to estimate brain size (Box 1). 
Most of these studies have been 
conducted at the macroevolutionary 
level, comparing the nervous system of 
different species or even higher taxa. 
These correlative interspecific studies 
have demonstrated positive 
correlations between brain size and life 
history traits (e.g. maternal investment: 
Pagel and Harvey 1988b; Barton and 
Capellini 2011; Isler 2011; Weisbecker 
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Box 1. Brain metrics 
When comparing overall brain size, at least three different metrics can be used: 
absolute and relative brain sizes, as well as encephalization quotient. 
 
Absolute brain size varies across five orders of magnitude in vertebrates (e.g. 
Striedter 2005; Deaner et al. 2007). It has increased (sometimes decreased) 
repeatedly in the course of evolution (Striedter 2005). In general, whenever absolute 
brain size increases, it does so by increasing the number of neurons. Comparing 
absolute brain size among distant taxa can be meaningless because body size is also 
highly variable, and the internal architecture of the brain can be very different 
(Kotrschal et al. 1998). However, the bigger the brain is in absolute terms, the more 
elements it generally contains. Further, since the power of the brain mainly depends 
on the number of its elements (Byrne and Bates 2007), absolute brain size can be a 
good measure of cognitive ability. Thus, when comparing closely related species – 
or individuals of the same species – in the absence of large structural difference in 
the brain and body size, absolute brain size can be a good proxy of intelligence and 
cognitive ability (Gibson 2002; Striedter 2005). 
 
Relative brain size refers to a metric in which body size is taken into account. As 
brain size does not increase linearly with body size, simply dividing brain size with 
body size (proportional brain size) can be misleading. As in many other organs 
(Scmidt-Nielsen 1984), the brain size scales allometrically with body size (e.g. 
Lande 1979). If brain size is plotted against body size on a double logarithmic scale, 
the best fitting slope will be less than one (e.g. Lande 1979; Harvey and Bennett 
1983; Martin and Harvey 1985; Pagel and Harvey 1988a; Striedter 2005). Hence, 
the relationship between brain and body size is usually hypoallometric. Relative 
brain sizes can be compared by using statistical models including body size as a 
covariate. Large variation has been reported in relative brain size (Bauchot et al. 
1977; Kotrschal et al. 1998) and in general, relative brain size tends to increase in 
independent lineages during the course of evolution (Striedter 2005). As relative 
brain size takes both body size and allometry into account, this metric can be used 
for comparing brain size of diverse taxa. In fact, relative brain size is the most 
widely used metric in evolutionary studies of brain size. 
 
Encephalization quotient has also been used to control for body size in comparisons 
of brain size among different taxa (e.g. Jerison 1973; Marino 1997; Lordkipanidze 
et al. 2007; Silox et al. 2009; Vasallo and Echeverria 2009). There are several 
proposed methods for estimating encephalization quotient, but the first one 
described by Jerison (1973) is the most widely used. It is calculated by dividing 
measured brain volume by the brain volume expected based on body size, predicted 
from the allometric relationship of brain and body size from available data over a 
wide range of taxa (involving as many species/taxa as possible). 
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and Goswami 2010a,b; parental care 
type: Gonzalez-Voyer 2009), invasion 
success (birds: Sol et al. 2005; 
mammals: Sol et al. 2008), 
environmental complexity (fish: Pollen 
et al. 2007; Lisney et al. 2008; 
Shumway 2008, 2010; Gonzalez-
Voyer and Kolm 2010; bats: Safi and 
Dechmann 2005) and behaviour (e.g. 
food hoarding: Garamszegi and Eens 
2004a). Conversely, negative 
correlations suggest possible trade-offs 
between brain size and the size of 
other organs (gut size: Aiello and 
Wheeler 1995; testis size: Pitnick et al. 
2006). Further, the strong neural 
demand stemming from living in 
complex social groups (the so called 
“social  brain  hypothesis”)  is  the  most  
accepted theory behind the 
unexpectedly large brains of primates, 
particularly in humans (Dunbar 1998; 
Dunbar and Shultz 2007a,b; Perez-
Barberia et al. 2007). 

While interspecific studies of brain 
size variation undoubtedly form the 
basis of our knowledge regarding the 
possible evolutionary factors shaping 
the brain, intraspecific studies could 
provide an additional understanding of 
fine scale processes. First, as 
populations of the same species are 
likely to have diverged relatively 
recently, they are likely to be found 
within the same/similar environmental 
context as at their time of divergence. 
Hence, the selective forces behind 
observed population differentiation 
may be easier to identify than in the 
case of divergence at higher taxonomic 
levels. Further, in an interpopulation 
framework the heritability of brain size 

or architecture variation, as well as the 
selective forces acting on such 
variation, can be quantified (Lynch 
and Walsh 1998). 

In accordance with interspecific 
studies, recent intraspecific 
comparisons have shown that brain 
size correlates with different 
environmental factors. For example, in 
food caching birds, good memory for 
finding the hidden food (and hence 
those brain parts that play role in 
memory storage) might have a direct 
fitness consequence, especially under 
harsh or changing environmental 
conditions (Krebs et al. 1989). Indeed, 
environmental severity has been found 
to correlate positively with 
hippocampus (plays role in spatial 
memory) size and neuron number in 
the black-capped chickadee (Poecile 
atricapillus; Pravosudov and Clayton 
2002; Roth and Pravosudov 2009), 
even when one of the environmental 
factors of harshness, day length, is 
controlled for (Roth et al. 2011). Brain 
size correlates positively with water 
oxygen level in fish (Chapman et al. 
2008)  while  the  size  of  song  control  
nuclei correlates positively with song 
repertoire size in birds (Canady et al. 
1984; Garamszegi and Eens 2004b). 
Some life history traits like migratory 
behavior have also been shown to 
correlate positively with brain size in 
brown trout (Salmo trutta; Kolm et al. 
2009), or with hippocampus size in a 
comparative study on subspecies of the 
white-crowned sparrow (Zonotrichia 
leucophrys; Pravosudov et al. 2006). 

Although the number of 
intraspecific studies relying on 
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Figure 1. Cumulative number of 
evolutionary studies focussing on variation 
in brain size and architecture by comparing 
species or higher taxa (‘Interspecific’) vs. 
comparing populations of a single species 
(‘Interpopulation’). Data are based on a 
literature search in ISI Web of Science, 
using the search terms: “brain size” and 
“evolution”. Note that studies for 2011 
depict the situation as of July. 

population comparisons has started to 
increase recently, the number of 
interpopulation studies is as yet 
extremely low compared to the 
number of interspecific studies (Fig. 
1). Thus, there is an urgent need to 
establish model systems where the fine 
details of the microevolution of brain 
size and architecture can be studied. 

Brain plasticity 
While phenotypic plasticity in general 
can have unwanted effects, it is often 
adaptive and increases individual 
fitness (e.g. Ghalambor et al. 2007). 
The size and architecture of the brain 
is variable not only on an evolutionary 
scale, but also on an ontogenetic scale. 
Besides ontogenetic changes related 
simply to aging and growth allometry, 
environmentally induced, plastic 
responses in brain development are of 
common occurrence during the 
lifespan of individual organisms 

(Wagner 2003; Lisney et al. 2007). 
Phenotypic plasticity has been reported 
several times in both brain size 
(Diamond et al. 1966; Rosenzweig and 
Bennett 1969), and in the fine 
neuroanatomical measures of the brain 
(Kempermann et al. 1997; Nilsson et 
al. 1999).  For  instance,  size  of  the  
brain and certain brain parts can 
change in response to natural 
environmental variation (e.g. 
seasonally: Tramontin and Brenowitz 
2000), and can be experimentally 
induced in the lab (Table 1; for 
reviews see: van Praag et al. 2000; 
Mohammed et al. 2002). The song 
control nuclei of birds are larger 
during the breeding season 
(Nottebohm 1981), while a shift in 
habitat, diet or behaviour can also alter 
the relative size of the main sensory 
brain areas in fishes (Wagner 2003; 
Lisney et al. 2007). Experimentally 
increased abiotic environmental 
complexity can result in increased 
brain size (Diamond et al. 1966; 
Rosenzweig and Bennett 1969), in 
elevated number of hippocampal 
neurons (Kempermann et al. 1997), or 
in elevated neurogenesis in rodents 
(Kempermann et al. 1997; Nilsson et 
al. 1999; Table 1). Further, captive 
rearing can also result in decreased 
brain size, as has been shown in fishes 
(Kihslinger et al. 2006; Burns and 
Rodd 2008; Burns et al. 2008; Table 
1).  
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Figure 2. Illustration of the brain parts 
measured in nine-spined sticklebacks.  
1. Bulbus olfactorius, 2. Telencephalon, 3. 
Tectum opticum, 4. Cerebellum 5. 
Hypothalamus 

Figure 3. Illustration of the brain parts 
measured in common frog tadpoles.  
1. Telencephalon, 2. Diencephalon, 3. 
Tectum opticum, 4. Medulla oblongata. 

However, a common problem in 
interpretation of spatial variation in 

brain architecture in the wild is that 
local adaptation and phenotypic 
plasticity cannot be disentangled (e.g. 
Møller 2010; Wilson and McLaughlin 
2010). As a consequence, our 
knowledge of adaptive phenotypic 
plasticity in brain size and architecture 
from the wild is sparse at best. Further, 
most of the experimental studies 
inducing brain plasticity have focused 
on abiotic factors such as 
environmental complexity (Table 1), 
and we know almost nothing about the 
effects of many ecologically relevant 
biotic environmental factors, such as 
predation or competition, on brain 
development. Finally, population 

divergence in the degree of brain 
plasticity has been rarely studied (but 
see Chrispo and Chapman 2010). 
 
2. Aims of this work 
 
The unifying theme of this thesis was 
to identify the causes and 
consequences of intraspecific, 
geographic variation in brain size and 
architecture. The main aims of my 
PhD research were roughly threefold: 
(i) to document habitat-dependent, 
intraspecific variation in brain size and 
architecture in the wild; (ii) to 
determine if brain plasticity could be 
induced by ecologically relevant, 
biotic environmental factors; and (iii) 
to explore habitat-dependent 
population divergence in brain 

plasticity. A more practical long-term 
goal was to establish a model system 
wherein microevolution of the brain
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Box 2. A synopsis of the known functions of different brain parts in study taxa 
 
Fishes (see also Fig. 2): The bulbus olfactorius is the foremost brain part, located in front 
of the telencephalon. In the nine-spined stickleback, the two are fused. It transmits 
olfactory cues, allowing fish to detect the presence of conspecifics and competitors of 
other  species,  or  function as  an alarm system, alerting to predators.  Olfactory cues also 
play an important role in different behaviours such us breeding, shoaling and foraging 
(Östlund-Nilsson et al. 2007). The telencephalon is  a  paired  structure  that  receives  
sensory inputs from all sensory organs, as well as from the hypothalamus (Kotrschal et al. 
1998). It plays a crucial role in different types of learning processes, such as avoidance 
learning or spatial learning, and might have a very similar function to the mammalian 
hippocampus in memory and cognitive mapping (Riedel 1998). Similar to the 
telencephalon, the tectum opticum consists of two hemispheres, and is involved in 
processing visual cues coming from the retina (Kotrschal et al. 1998). Hence, it can be 
regarded as the main visual brain centre. The cerebellum is located posterior and superior 
to the tectum opticum, and has diverse functions. It has an impact on motor coordination, 
eye movement and spatial orientation (Kotrschal et al. 1998), but is also involved in 
classical conditioning and spatial cognition (Rodriguez 2005). The hypothalamus is  the  
lowermost part of the stickleback brain, and is intimately linked to the hormonal system 
and behaviour (Kotrschal et al. 1998), including reproductive (Sower et al. 1993) and 
feeding behaviours (Kulczykowska and Sánchez Vázquez 2010). 
 
Tadpoles (see  also  Fig.  3):  The  telencephalon converts sensory inputs to motor outputs 
(Hoff et al. 1999), and might be involved in cutaneous reflex and/or in a defensive 
behaviour such as freezing (Stehouwer 1987). The diencephalon – located posterior to the 
telencephalon – controls homeostasis, and is involved in sensing hunger and thirst (Hoff 
et al. 1999). It is also known to be involved in the process of metamorphosis (Remy 
1962). The tectum opticum is connected to the retina and it is the centre of vision. The 
medulla oblongata plays a role in the respiratory system functioning, as well as in 
auditory and lateral line sensory systems (Torgerson et al. 2001; McCormick 1999; 
Jacoby and Rubunson 1983). 
 

could later be studied with cutting-
edge quantitative genetic and 
functional  genomics  tools.  Finally,  I  
have compiled existing studies on 
intraspecific variation in brain size and 
architecture into a review to provide an 
overview of what is currently known – 
and not known – about this topic, and 
to lay out future avenues of research. 

In Chapter I,  I  used  a  common  
garden experiment to test if nine-
spined sticklebacks (Pungitius 

pungitius Linneaus 1758) from coastal 
marine vs. pond populations exhibit 
genetically-based differences in brain 
size, and in the size of different brain 
parts (Fig. 2; for functions, see Box 2). 
Chapter II is an extension of the first 
chapter, in which I studied if patterns 
revealed in the lab can also be found in 
nature, and directly tested for the 
differences between wild-caught and 
lab-reared sticklebacks from the same 
populations. In Chapter III, I 
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Box 3. The main questions and answers of the thesis 
 

Are there genetically based differences in brain 
size and architecture among different nine-
spined stickleback populations? 
 
If so, do these differences correspond to 
differences in habitats occupied by different 
populations? 

Yes, there is large variation in brain size 
and architecture among different nine-
spined stickleback populations reared in 
common garden. 
In  the  case  of  two  brain  parts,  there  is  a  
habitat specific pattern: marine fish have 
significantly larger bulbus olfactorius and 
telencephalon than pond fish. 

Is there variation in brain size and architecture 
among different nine-spined stickleback 
populations in the wild? 
Does divergence in brain size and architecture 
in the wild match the patterns observed in the 
lab? 
Can environmentally induced plasticity 
obscure genetically based patterns? 

Yes, there is large variation in brain size 
and architecture among different wild 
nine-spined stickleback populations. 
Patterns form the wild and from the lab 
show incongruence. 
 
Yes. Common garden studies are needed 
to draw firm evolutionary conclusions 
about brain size evolution within a 
species. 

Do common ecological factors such as 
predation or competition influence brain 
development in common frog tadpoles? 

Yes. Under the highest per capita 
perceived predation risk, tadpoles 
developed smaller brains, while 
competition affected mainly the sensory 
centres of the brain. 

Do perceived predation risk and food supply 
influence brain development in nine-spined 
sticklebacks? 
If yes, does the plastic response depend on 
population origin? 

Predation risk influenced brain 
development while food supply did not. 
 
Predation induced plasticity in the bulbus 
olfactorius was habitat dependent, only 
seen in pond sticklebacks; in the 
hypothalamus, the effect was population 
independent. 

Does social environment (living in group vs. 
living alone) affect brain development in nine-
spined sticklebacks? 
 
Is there any habitat specificity in brain 
plasticity induced by social environment? 

Yes, fish develop larger bulbus 
olfactorius when reared alone and larger 
tectum opticum when they develop in 
group. 
Pond fish suffer from reduced brain 
development in group rearing, while 
marine fish show the opposite trend. 

investigated the effect of perceived 
predation risk and intraspecific 
competition on brain development 

(Fig.  3;  for  functions,  see  Box  2)  in  
tadpoles  of  common  frog  (Rana 
temporaria Linneaus 1758).
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In Chapter IV, I studied brain 
plasticity induced by perceived 
predation risk and food availability in 
nine-spined sticklebacks from coastal 
marine and pond populations. In 
Chapter V, I investigated the effect of 
sociality on brain development in nine-
spined sticklebacks from coastal 
marine and pond populations. A list of 
the main study questions is shown in 
Box 3. 

Finally, in Chapter VI, I provide a 
review of intraspecific brain variation, 
with a special focus on the most 
promising future avenues of studying 
brain evolution. 
 
3. Materials and methods 
 
Study system 
The primary model species used in this 
thesis was the nine-spined stickleback. 
It is a small teleost fish with a wide 
geographic distribution (e.g. 

rescu and Paepke 2001). This 
species is an excellent model for 
investigating adaptive divergence as it 
occupies diverse habitat types from 
marine environments through large 
lakes to isolated ponds, where it can 
persist as the only fish species. Coastal 
marine sticklebacks belong to a 
diverse fish fauna, including several 
predatory fish species, and live in a 
structurally complex environment, 
while pond sticklebacks may live in 
the absence of piscine predators in a 
very simple, relatively homogenous 
abiotic environment. Work with this 
system has demonstrated habitat-
dependent population divergence 
between marine and pond sticklebacks 

in body size (Herczeg et al. 2009a), 
growth strategy (Herczeg et al. 2011), 
reproductive output (Herczeg et al. 
2010a), behaviour (Herczeg et al. 
2009b; Herczeg and Välimäki 2011), 
body armour and body shape (Herczeg 
et al. 2010b), and cost of group living 
(Herczeg et al. 2009c). 

Taken together, these results 
suggest that marine sticklebacks are 
primarily predation-adapted whereas 

in pond populations, intraspecific 
competition is the dominant biotic 
interaction affecting fitness, with 
predation and interspecific competition 
being largely negligible (Box 4). 
Naturally, marine and pond habitats 
also differ in factors other than 
predation and competition, salinity 
being one obvious difference. 
However, besides the fact that the 

Figure 4. Map of the sampling localities. 
BÖL = Bölesviken, Baltic Sea, Sweden; 
HEL = Helsinki, Baltic Sea, Finland; LEV 
= Levin Navolok Bay, White Sea, Russia; 
POR = Porontima, Finland; BYN = 
Bynästjärnen, Sweden; PYÖ = 
Pyöreälampi, Finland; RYT = Rytilampi, 
Finland; MAS = Mashinnoje, Russia. 
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coastal marine areas (especially in the 
northern Baltic Sea) are characterised 
by very low salinity, nine-spined 
sticklebacks from large lakes are 
closer  to  marine  than  to  pond  
sticklebacks in term of size and 
longevity (Herczeg et al. 2009a), as 
well as morphologically (Herczeg et 
al. 2010b). Hence, salinity appears to 
be of limited importance in explaining 
the divergence between marine and 
pond populations from the 
Fennoscandian region, with within-
habitat population replicates being 
isolated both geographically (Fig. 4) 
and in most cases also genetically 
(Shikano et al. 2010). 

My second model species (used in 
III) was the common frog. This anuran 
can be found throughout the northern 
hemisphere, including Fennoscandia 
(e.g. Gasc et al. 1997). Tadpoles have 
been used extensively as models in 
studies of phenotypic plasticity, and in 
particular in studies focussing on 
predation and intraspecific competition 
induced phenotypic plasticity in 
growth (Relyea and Hoverman 2003), 
time of metamorphosis (Relyea and 
Hoverman 2003), body shape (e.g., 
Skelly and Werner 1990; McCollum 
and Van Buskirk 1996; Van Buskirk 
and Relyea 1998) and behaviour (e.g. 
Relyea 2002). My work represents the 
first study in which predation and 
competition induced brain plasticity 
has been tested. 
 
 
 
 
 

Box 4. Nine-spined stickleback 
‘ecomorphs’ 
 
Predation-adapted 
Nine-spined sticklebacks in coastal marine 
environments (the lower fish in the 
picture) are small (Herczeg et al. 2009a), 
grow quickly (Herczeg et al. 2011), and 
produce small clutches (Herczeg et al. 
2010a). They develop full body armour 
(Herczeg et al. 2010b), and do not face 
growth costs associated with group living 
(Herczeg et al. 2009c). Behaviourally, 
they are inactive feeders, non-aggressive, 
risk averse, and not explorative (Herczeg 
et al. 2009b; Herczeg and Välimäki 2011). 
  
Competition-adapted 
Nine-spined sticklebacks in isolated ponds 
(the upper fish in the picture) can become 
giants (Herczeg et al. 2009a), grow slowly 
(Herczeg et al. 2011), and females may 
produce clutches ca. three times larger 
than marine conspecifics (Herczeg et al. 
2010a). Pond fish have reduced, or absent, 
body armour (Herczeg et al. 2010b) and 
group living inflicts large costs to growth 
(Herczeg et al. 2009c). Finally, they are 
active feeders, take high risks, behave 
aggressively, and are active explorers 
(Herczeg et al. 2009b; Herczeg and 
Välimäki 2011). 
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Figure 5. Population 
differences in brain 
volume (corrected for 
body length and 
weight), and in the 
volumes of different 
brain parts (corrected 
for body length, weight 
and brain volume) in 
common garden nine-
spined sticklebacks 
(Pungitius pungitius). 
Means + 95% 
Confidence Intervals 
are shown. ‘Hel’ 
denotes Baltic Sea at 
Helsinki, ‘Lev’ White 
Sea at Levin Navolok 
Bay, ‘Pyö’ Pyöreälampi 
pond and ‘Byn’ 
Bynästjärnen pond. 

Brain measurements 
All experimental animals (fish and 
tadpoles) were euthanized with an 
overdose of MS 222 (tricaine 
methanesulphonate), and weighted 
immediately post mortem. I used only 
adult fish, and tadpoles at 
developmental stage 25 (Gosner 
1960). Body length was measured 
either directly from the animals (I, II, 
V), or from digital photos (III, IV). 
Brains were dissected from crania and 
digitally photographed from the dorsal, 
lateral and ventral views. In fish, brain 
size and the sizes of five brain parts 
(viz. bulbus olfactorius, telencephalon, 
tectum opticum, cerebellum and 
hypothalamus;  Fig.  2,  Box  2)  were  
calculated from their length, width and 
height (the largest distance enclosed 
by the given brain part) using the 
ellipsoid model (Pollen et al. 2007; 
Gonzalez-Voyer and Kolm 2010).  

In tadpoles, only two dimensions of 
the different brain parts could be 
measured (viz. length and width of 
telencephalon, diencephalon and 
tectum opticum, and depth and width 
of medulla oblongata; Fig. 3, Box 2) 
due to the lack of clear borders 
between the brain parts in some 
dimensions. Here, the size of the brain 
and different brain parts were 
estimated from principal component 
analyses of the measures. 
 
4. Results and discussion  
 
Population variation in brain size and 
size of the main brain parts 
In the first two chapters, I investigated 
variation in brain size and the size of 
different brain parts of sticklebacks 
(Fig. 2, Box 2) from coastal marine vs. 
pond populations (Box 4), both in a 
controlled lab environment (I) and in 
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the  wild  (II). In the common garden 
experiment (I), I found significant 
divergence in relative brain size, and 
relative sizes of bulbus olfactorius, 
telencephalon and cerebellum (Fig. 5) 
between two marine (Baltic and White 
Seas) and two isolated pond 
populations (separated by more than 
500 km, Fig. 4). These findings 
strongly suggest that both brain size 
and architecture are capable of 
evolving over relatively short time 
scales, given that the post-glaciation 
invasion of the species in 
Fennoscandia happened less than 8000 
years ago (Eronen 2001). Further, I 
found systematic, habitat-dependent 
population divergence in the sizes of 
the bulbus olfactorius and 
telencephalon, both being larger in 
marine than in pond fish. This 
genetically based and habitat-
dependent pattern of population 
divergence suggests that natural 
selection is the likely cause behind it 
(e.g. Clarke 1975; Endler 1986; 
Schluter and Nagel 1995; Foster 1999; 
McGuigan et al. 2005). This study was 
the first to provide evidence for 
interpopulation brain divergence likely 
to be caused by natural selection. 
Interestingly, I also found that relative 
brain sizes in the White Sea and 
Pyöreälampi pond fish were larger 
than those from the Baltic Sea and 
Bynästjärnen pond fish (Figs. 4). Since 
the original study, more molecular data 
has become available supporting the 
view that these two clusters of 
populations differing in relative brain 
size belong to different genetic 
lineages/clusters (viz. White Sea 

drainage vs. Baltic Sea drainage; 
Merilä and Shikano unpublished). In 
the light of this new data, I suggest 
that the relative brain size divergence 
in my system might also have had a 
historical component. 

The results in I did not include any 
information about the brain size and 
architecture patterns in the wild. 
Therefore, in II, I compared the brains 
of wild-caught sticklebacks from three 
marine and four pond populations, 
including also one large lake 
population. Because the populations 
used in I were also represented in this 
sample,  I  could  also  directly  compare  
wild and common garden samples 
from the same populations. I found 
significant population differentiation 
in total brain, telencephalon, tectum 
opticum and cerebellum sizes. 
However, only the telencephalon 
divergence observed in I was also 
found in the wild data. Further, I found 
that pond fish had larger brains than 
marine (and the lake) fish, a systematic 
pattern which was absent in the 
common garden material (I). The 
direct comparison of wild-caught and 
lab-reared fish revealed that brain size 
decreased in pond fish reared in a 
common environment, whereas brain 
size in marine fish was unchanged 
(Fig. 6). Furthermore, all studied brain 
parts (Fig. 2, Box 2) developed 
relatively smaller when fish were 
reared in the lab. Taken together, this 
suggests that much of the variation 
observed in the wild can be related to 
environmentally induced plasticity, 
concealing the ‘true’ genetic patterns 
of differentiation. These results further 
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highlight the fact that there is a great 
deal of intraspecific variation in brain 
size and architecture. However, the 
results also emphasize the fact that 
when a plastic trait such as brain size 
is considered – especially in 
intraspecific comparisons, or at lower 
taxonomic levels– controlled, common 
garden experiments are required for 
evolutionary inference. Although this 
has been reiterated in other contexts 
(e.g. Merilä 2010; Alho et al. 2010), 
results in II provide the first 
demonstration of this point in the 
context of brain studies.  

Taken together, results in I and II 
support the notion that large within 
species variation in brain size and 
architecture exists between locally 
adapted populations. In some cases 
this differentiation appears to have a 
genetic basis, and is most likely the 
result of directional natural selection. 
Hence, it provides a solid basis for 
future studies designed to test the 
evolutionary significance of 

differentiation in brain architecture. 
For example, selection experiments 
could be used to investigate directly 
putative selective forces leading to 
between-habitat brain size 
differentiation,  while  use  of  
quantitative genetics methods could 
allow differentiating between different 
microevolutionary processes, such as 
natural selection and genetic drift, as 
causes of observed patterns (e.g. 
Merilä and Crnokrak 2001; 
Ovaskainen et al. 2011). 
 
Brain size plasticity induced by biotic 
environmental factors 
In III,  I  investigated  the  effects  of  
perceived predation risk (presence / 
absence of chemical and visual cues of 
dragonfly larvae preying on tadpoles) 
and competition (high / low tadpole 
densities with similar food resources) 
on brain development in common frog 
tadpoles (see Fig. 3, for functions, see 
Box 2). I found that both of these 
common ecological factors (i.e. 
predation and competition) affected 
tadpoles’ brain development. The most 
salient finding of this study was that 
tadpoles under the highest per capita 
perceived predation risk (i.e. in the low 
density / predator present treatment 
combination) developed relatively 
smaller brains than tadpoles grown in 
the other treatment combinations. This 
pattern can be explained by variation 
in energy availability, and its effect on 
brain development. Brain is the most 
expensive tissue to develop and 
maintain (Aiello and Wheeler 1995). I 
suggest that high perceived predation 
risk suppressed activity (e.g. Laurila 

Figure 6. Habitat-specific differences in 
brain size (corrected for body length and 
weight) between wild-caught and common 
garden nine-spined sticklebacks (Pungitius 
pungitius). Means ± SE are shown. 
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2000; Van Buskirk and Arioli 2005; 
Teplitsky and Laurila 2007), which in 
turn resulted in reduced food intake 
(Werner and Anholt 1993), and 
consequently, in an energy deficit 
having a negative impact on brain 
development. However, energy loss 
due to physiological stress (Stoks et al. 
2005; Steiner 2007; Slos and Stoks 
2008) is also a plausible explanation. I 
also found that tadpoles developed 
larger tecta optica at high densities, 
while  the  size  of  the  medulla 
oblongata was larger in the low 
density treatment. Hence, tadpoles 
might relay on visual cues in large 
densities, and use auditory or lateral 
line  sensory  systems  when  only  few  
conspecifics are present. A simple 
developmental trade-off between the 
two brain parts might have been 
present too: such trade-offs have been 
reported at the evolutionary level 
(Barton et al. 1995; Barton and Harvey 
2000). Interestingly, we found later 
that the larval treatments also had 
carryover effects: the effect of larval 
density on the tectum opticum was still 
present after metamorphosis, showing 
that brain plasticity can last over 
different life stages (Trokovic et al. 
2011). Whether this was adaptive or a 
result of developmental constraints 
remains to be investigated. 

In IV and V, I investigated the 
effects of perceived predation risk 
(chemical cues of Eurasian perch, 
Perca fluviatilis; IV), food supply 
(high vs. low; IV) and social 
environment (rearing in groups or 
alone; V) on the brain development of 
nine-spined sticklebacks. Fish 

developed smaller hypothalami under 
perceived predation risk than in the 
predator-free environment. The 
hypothalamus is known to have a very 
complex regulatory role. For example, 
it regulates reproductive behaviour 
(White and Fernald 1993), and 
controls foraging behaviour 
(Kulczykowska and Sánchez Vázquez 
2010). As predation often restricts 
activity  level,  and  thus  access  to  food  
(Sih 1982; Lima and Dill 1990), the 
decreased activity under high 
perceived predation risk is a possible 
explanation for variation in 
hypothalamus. However, how it was 
translated to size decrease in such a 
functionally complex brain part is hard 
to interpret. Finally, food supply did 
not affect brain development. This is 
surprising given the high energy needs 
for brain development (Aiello and 
Wheeler 1995). The observation that 
relative brain size was not affected by 
food manipulation, despite its strong 
effect on growth in general (Välimäki 
and Herczeg 2011), suggests brain 
development is a high priority. Nine-
spined sticklebacks developed larger 
tecta optica and smaller bulbi olfatorii 
when reared in groups, compared to 
fish reared alone (chemical cues were 
still available in the latter treatment). 
This is easily explainable by the 
difference  of  the  relative  roles  of  
different sensory systems in the 
different  treatments.  However,  a  
developmental trade-off between the 
two sensory centres is also conceivable 
(Barton et al. 1995; Barton and Harvey 
2000). 
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In summary, I found that the most 
common biotic environmental factors 
could induce phenotypic plasticity in 
both brain size and the size of relevant 
brain parts. Considering how costly it 
is to grow and maintain brain tissue 
(Aiello and Wheeler 1995), and that 
the size of a given brain part often 
reflects its importance (Striedter 2005; 
Kihslinger and Nevitt 2006; Kihslinger 
et al. 2006; Lisney et al. 2007), it is 
highly likely that the observed changes 
were adaptive. To date, experimentally 
induced brain plasticity has mainly 
been studied in response to variation in 
abiotic environment (Table 1; 
mammals: Diamond et al. 1966; 
Rosenzweig and Bennett 1969; fish: 
Kihslinger and Nevitt 2006), or as a 
response to complex learning tasks in 
humans (Table 1; Maguire et al. 2000). 
My work has shown that there is an 
equally great potential for biotic 
factors to also induce brain plasticity, 
at least in lower vertebrates. 
 
Population variation in brain 
plasticity 
In IV and V, I specifically addressed 
the question of whether there was 
population variation in phenotypic 
plasticity of brain size, and whether 
this variation was habitat-specific by 
applying predation, food and social 
treatments (as described in the 
previous section) to both predation-
adapted marine and competition-
adapted pond sticklebacks in common 
garden experiments. Among the three 
treatments (note that the results came 
from two separate studies), 
manipulation of perceived predation 

risk and social environment resulted in 
habitat-dependent phenotypic 
plasticity in brain development, while 
manipulating available food did not 
induce any plasticity. In IV, I found 
that while marine sticklebacks had 
generally larger bulbi olfactorii than 
ponds fish (in accordance with results 
from I), only pond fish reacted to 
perceived predation risk by increasing 
their relative bulbus olfactorius size. 

This result suggests that olfactory 
sense may be sufficiently important in 
the marine environment such that a 
large bulbus olfactorius has become 
canalized in this environment (e.g. 
Pfennig et al. 2010). Conversely, 
olfaction may be less important in the 
piscine predator free ponds, hence 
bulbus olfactorius is small in pond 
sticklebacks. However, pond 
populations appear to have evolved the 
capacity for phenotypic plasticity of 
this trait. This is based on the 
interesting – and yet unexplainable – 

Figure 7. Social environmental effect on 
brain size (corrected for body length and 
weight) in nine-spined stickleback 
(Pungitius pungitius). Means ± SE are 
shown. A significant habitat-dependent 
treatment effect was found. 
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fact that predation-adapted nine-spined 
sticklebacks with canalized bulbus 
olfactorius size represent the ancestral 
form. Thus, the descendant pond 
sticklebacks have seemingly 
developed the ability for bulbus 
olfactorius plasticity  parallel  to  
decreasing the overall size of this brain 
part. 

The social environment treatments 
resulted in a strong pattern (V): pond 
sticklebacks developed relatively 
smaller brains in groups than when 
reared alone, while there was no such 
effect in marine fish (or rather an 
opposite trend was found; Fig. 7). 
Interestingly, pond fish in the group 
treatment developed relatively smaller 
brains in addition to considerably 
smaller bodies, compared to 
individually reared pond fish (Herczeg 
et al. 2009c). These patterns suggest 
that intraspecific competition adapted 
pond fish, noted for high aggression 
(Herczeg et al. 2009b; Herczeg and 
Välimäki 2011), face a large cost of 
group living, even in the absence of 
ecological or reproductive constraints 
(all fish were fed ad libitum, and were 
kept out of reproductive condition). It 
is, thus, plausible to suggest that 
marine fish are adapted for shoaling / 
schooling as a means of antipredatory 
behaviour in contrast to the highly 
competitive pond sticklebacks which 
appear to gain no benefit from 
groupings, and as such, most likely 
remain solitary. 

Taken together, IV and V provide 
evidence for habitat-dependent 
expression of brain plasticity. In both 
cases, I found plastic response only in 

the pond habitat, with fish from the 
marine environment being unaffected 
by treatments. As genetically-based, 
habitat-dependent patterns are likely 
the result of natural selection (Clarke 
1975; Endler 1986; McGuigan et al. 
2005), I suggest that the presence / 
absence of the ability to express 
plasticity in neural development may 
be a trait under selection. However, the 
link between phenotypic plasticity and 
local adaptation in brain development 
surely warrants further investigations. 

 
5. Overview and future directions 

 
In VI, I reviewed the available 
literature on intraspecific brain size 
variation, and outlined some directions 
for future research that would advance 
our understanding of brain 
microevolution. Based on my own 
studies (I-V; Trokovic et al. 2011) and 
the compiled literature, I found that (i) 
many studies have demonstrated that 
brain size is highly variable at the 
intersepcific level, while studies at the 
intraspecific level have only recently 
begun to accumulate (Fig. 1). These 
intraspecific evolutionary studies may 
provide new and probably closer 
insights into the factors driving brain 
evolution in animals. I further found 
that (ii) brain plasticity has also been 
shown to occur in nature, and is also 
inducible by experimental 
manipulation in the lab. However, 
while  the  effects  of  the  abiotic  
environment have been studied very 
extensively, only a handful of studies 
have investigated the effects of the 
biotic environment (except my own 
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studies: Fowler et al. 2002; Lipkind et 
al. 2002; Adar et al. 2008). Finally, 
although it is expected that brain 
plasticity itself can differ among 
populations, and studying such 
differences could help us identifying 
important factors contributing to brain 
size and architecture variation, I am 
only aware of  one other study (Crispo 
et al. 2010) – apart from my own (IV, 
V) – that has investigated population 
divergence in brain size plasticity. 
Although within species comparisons 
have recently begun to receive some 
attention (Fig. 1), many opportunities 
for intraspecific studies into brain 
evolution remain as yet underutilized. 
Here, I refer mainly to two main 
directions which would be very 
important and fruitful to pursue: 
quantitative genetics and histological-
cytological approaches. 

First of all, comparisons of brain 
size and architecture differences 
among populations inhabiting different 
selective environments could provide 
an explicit means to differentiate in 
between the causative effects of 
different microevolutionary processes, 
such as natural selection vs. genetic 
drift (e.g. Merilä and Crnokrak 2001). 
By comparing levels of population 
differentiation in quantitative traits 
(QST) with the degree of differentiation 
in neutral genetic markers (FST), one 
can shed light on the causes of 
population differentiation (e.g. 
Leinonen et al. 2008). With properly 
designed common garden experiments 
(see e.g. Falconer and Mackay 1995; 
Lynch and Walsh 1998), the 
quantitative genetic components of 

phenotypic variation (heritability, 
dominance, maternal effects, etc.) in 
brain size and architecture could be 
estimated, and compared among 
spatially and/or temporarily different 
samples, or between treatments. 
Further, the genetic variance-
covariance matrix (G; Lande 1979) 
between the different brain parts could 
be established on the same material, 
providing direct tests of the hypotheses 
of constrained vs. independent brain 
evolution (Finlay and Darlington 1995; 
Barton and Harvey 2000). Moreover, 
this could open the possibility to 
estimate the probable future directions 
of evolution, particularly if coupled 
with additional experiments, designed 
to estimate the strength of selection 
acting on different phenotypes (e.g. 
predation experiments). Finally, by 
applying functional genomics (genome 
scans: Schlötterer 2003; Storz 2005; 
Vasemägi and Primmer 2005; 
quantitative trait loci [QTL] mapping: 
Weller 2001; Erickson et al. 2004; 
Slate 2005), the genomic regions, and 
ultimately the genes coding for brain 
variation could be identified. 

Second, integrating methods of 
neurobiology (e.g. basic histological 
staining methods e.g. Zhang et al. 
2011 or advanced molecular methods, 
such as anti-body labelling, enzyme 
histochemistry or immunofluorescens 
methods; e.g. Sallinen et al. 2009) 
with the tools of evolutionary biology 
(detailed above) could provide a novel 
opportunity for finding direct causative 
links between different selective forces 
and brain functions. One of the most 
difficult and largely unaddressed 
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questions in studies of brain evolution 
(both on intra- and interspecific scales) 
is establishing the link between 
variation in brain morphology and 
brain function. As neurobiologists 
have already described the function of 
several structures (different nuclei, cell 
types) in the brain, establishing the 
causes of evolutionary divergence in 
such well understood brain 
architectures would give us an ultimate 
picture of brain evolution. 
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Abstract. The brain is a trait of central importance for organismal performance and fitness, 
and displays a great deal of evolutionary and ontogenetic variability both within and among 
different taxa. This variability can be ascribed to (i) genetically based differences caused by 
selective (cf. adaptive) or neutral processes (e.g genetic drift), (ii) environmentally induced 
phenotypic plasticity, or (iii) some combination of the two. However, still little is known 
about the ultimate and proximate causes of brain size variability in the wild. To date, 
evolutionary studies of brain size variation have mainly utilized comparative methods applied 
to analyses at the level of species or higher taxa. Even though these studies have uncovered 
several interesting correlations and identified possible drivers of brain size evolution, they 
suffer from the difficulty of separating causality from correlation. In the other extreme, 
studies of brain plasticity have focussed mainly – and understandably - on within population 
patterns. Between these extremes lie interpopulational studies of brain size variation. These 
studies, focussing on brain size variation among populations of the same species that occupy 
different habitats or selective regimes, form a rapidly growing field of investigations which is 
reviewed here. These studies can help us to understand brain evolution by providing a test-
bed  for  ideas  born  out  of  interspecific  studies,  as  well  as  aid  in  uncovering  the  relative  
importance of genetic and environmental factors shaping variation in brain size and 
architecture. Aside from providing the first in depth review of published interpopulational 
studies of brain size variation, we discuss the problem and prospects embedded with 
interpopulational studies of brain size variation. In particular, the following topics were 
identified as deserving further attention: First, studies focusing on disentangling the 
contributions of genes, environment and their interactions on brain variation within and 
among populations will be helpful in differentiating between selective and neutral 
explanations for observed variability in brain size. Second, studies applying quantitative 
genetic tools to evaluate the relative importance of genetic and environmental factors on 
brain features at different ontogenetic stages can be rewarding given the expected links 
between trait heritability and fitness and that between fitness and brain variability. Third, 
apart from utilizing simple gross estimates of brain size, future studies could benefit from use 
of neuroanatomical, neurohistological and/or molecular methods in characterizing variation 
in brain size and architecture. 
 
Keywords: brain size, natural selection, neural architecture, population differentiation 
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Introduction 
 

 

The brain has always been of interest 
to almost every field of biology 
dealing with animals due to its role in 
shaping the outcome of almost any 
contact between an individual 
organism and its environment. One of 
the simplest, yet often used, proxies 
for the brain’s evolutionary state of 
development is its size (Box 1). Even 
though the significance of the overall 
brain  size  –  or  even  the  size  of  the  
main brain parts – and what exactly 
they tell us about the individual or 
species intelligence and cleverness is 
debated (Healy and Rowe 2007), 
overall brain size is in general believed 
to be a good proxy of intelligence and 
cognitive ability (Gibson 2002; 
Striedter 2005). Energetic constraints, 
stemming from the fact that the brain 
tissue is extremely expensive to 
maintain (Aiello and Wheeler 1995), 
should impose strong selective 
pressure against non-adaptive 
variability and changes. Hence, an 
increase in brain size can happen only 
when the benefits of a larger brain 
outweigh the cost of production and 
maintenance. For example, selection 
for increased cognitive ability should 
favour increased brain size, but only 
when enough resources can be secured 
to cover the increased energetic needs 
without loss in other aspects of fitness. 
For the same energetic reason as 
above, the size of a given brain part 
might be a good indicator of its 
importance, and reflect the way the 
given species or population has 
adapted to its environment and 
prevailing selective regime (Winter 

and Oxnard 2001; Gonzalez-Voyer 
and Kolm 2010). 

However, choosing the right 
method and variable for comparisons 
is very important (e.g. Deaner et al. 
2007; Healy and Rowe 2007). For 
brain size comparisons, at least three 
different variables can be used: 
absolute brain size, relative brain size, 
and the encephalization quotient (Box 
1). For quantifying brain size, several 
well established methods are available, 
from simply weighing brains to 
volume calculations based on serial 
sectioning (Box 2). 

Enormous variation in brain size – 
both  in  absolute  and  relative  terms  –  
has been reported in a number of taxa 
(e.g. mammals: Harvey et al. 1980; 
fish: Kotrschal et al. 1998; birds: Day 
et al. 2005). Our current knowledge 
about variation in brain size and 
architecture in the wild is based on two 
main lines of research. First, on 
interspecific comparative studies 
focussing on relationships between 
brain size and environmental 
parameters as well as between brain 
size and behaviour and/or life history 
trait variation (e.g. environmental 
complexity: Pollen et al. 2007; food 
hoarding: Garamszegi and Eens, 
2004a; social complexity: Dunbar and 
Shultz 2007a,b; parental care-type and 
pair-bonding: Gonzalez-Voyer et al. 
2009a). Second, on studies of adaptive 
phenotypic plasticity in brain size 
(reviewed in: van Praag et al. 2000; 
Mohammed et al. 2002). These two 
areas form the fundament of our 
current knowledge of brain size 
variation. In the following, we will  (i)
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Box 1. Defining and measuring brain size 
 
Absolute brain size varies across five orders of magnitude in vertebrates (e.g. 
Striedter 2005; Deaner et al. 2007). It has increased (in some cases decreased) 
several times independently during the course of evolution (Striedter 2005). In 
general, whenever absolute brain size increases, it increases through changes in the 
number rather than size of neurons. Comparison of absolute brain size among 
distant taxa can therefore be meaningless because of brain-body size allometry and 
large variation in body size. Further, the internal structure/organization of the brain 
can be markedly different among distantly relative species (e.g. among fish: 
Kotrschal et al. 1998). However, when comparing closely related species, 
populations, or individuals of the same species, absolute brain size can be a good 
proxy of intelligence and cognitive ability (Gibson 2002; Striedter 2005). Further, 
larger brains (in absolute terms) contain more elements, and since the cognitive 
capacity of the brain mainly depends on the number of its elements (Byrne and 
Bates 2007), this also makes absolute brain size a good measure of cognitive ability. 
 
Relative brain size refers to brain size corrected for variation in body size or its 
correlates. As brain size does not increase linearly with body size, simple division 
of brain size by body size (proportional brain size) can be misleading. Instead, as 
with many other organs (Schmidt-Nielsen 1984), brain size scales allometrically 
with  body  size  (e.g.  Lande  1979).  If  brain  size  is  plotted  against  body  size  on  a  
double logarithmic scale, the best fitting line will have a slope that is less than one 
(e.g. Lande 1979; Harvey and Bennett 1983; Martin and Harvey 1985; Pagel and 
Harvey 1988a; Striedter 2005). Hence, the relationship between brain and body size 
is hypoallometric. Relative brain sizes can be compared by including body size as a 
covariate in the statistical model. Large variation in relative brain size has been 
reported (Bauchot et al. 1977; Kotrschal et al. 1998) and in general, tends to 
increase in independent lineages in the course of evolution (Striedter 2005). As 
relative brain size takes body size into account, and also accounts for the above 
mentioned allometric relationship, this metric can be used for comparing brain size 
of taxa that differ in body size. In fact, relative brain size is the most widely used 
metric in evolutionary studies of brain size. 
 
Encephalization quotient has also been used to control for body size in comparisons 
of brain size among different taxa (e.g. Jerison 1973; Marino 1997; Lordkipanidze 
et al. 2007; Silox et al. 2009; Vasallo and Echeverria 2009). There are several 
proposed methods for estimating encephalization quotient, but the first one 
described by Jerison (1973) is the most widely used. It is calculated by dividing the 
actually measured brain volume with the brain volume expected based on body size, 
estimated from the allometric relationship of the brain and body size from available 
data on a wide range of taxa (involving as many species/taxa as possible). 
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review the current state of knowledge 
about the factors shaping brain 
variation in the wild, (ii) introduce the 
emerging field of intraspecific brain 
evolution focusing on interpopulation 
variation in brain size and size of brain 

parts as well as on the interpopulation 
variation  of  the  plasticity  of  these  
traits. Finally, (iii) we outline further 
avenues for studies aimed to increase 
our understanding of brain evolution 
and factors driving it. 

 
Box 2. Measuring brains – methods 

Volume of the brain and different brain parts. The undoubtedly easiest and in some 
cases the most ethical (cf. no need to sacrifice the animals) way to gather data on 
brain size variation is to use measures of skull (from collections) or head (on live 
specimens) volume. An obvious advantage of this method is that it allows brain size 
estimation when the brain itself is not available (e.g. Köhler and Moya-Sola 2004; 
Ashwell  2008).  It  has  been  shown  that  brain  size  estimates  by  this  method  are  
reliable in birds (Iwaniuk and Nelson 2002; Moller 2010). However, this method 
cannot be used in every taxa. For instance, in some fish the brain fills only a part of 
the neurocranium (Kotrschal et al. 1998). Brain volume can also be simply measured 
by the fluid displacement method (Karlen and Krubitzer 2006), by filling up the 
skulls with lead shot (Marino et al. 2006; Iwaniuk and Nelson 2002) or by use of the 
ellipsoid model (e.g. Pollen et al. 2007; Gonda et al. 2009a,b; 2011a). As to the 
latter, photographs of the brain are taken from three views (viz. dorsal, lateral and 
ventral) and the length, width and height of the brain (or different brain parts) are 
measured from the photographs. The volume is calculated by an equation assuming 
ellipsoid form. One can also estimate brain volume using computed tomography 
(CT) and X-ray, often used in studies of museum material (e.g. Macrini et al. 2007; 
Madden 2001). However, the restricted availability and high costs of these methods 
may  explain  why  they  are  less  common.  Size  estimates  can  also  be  inferred  by  
applying landmark-based geometric morphometrics using photographs (for details, 
see: Park and Bell 2010). Finally, the most precise but also the most time consuming 
method for estimating the volume of the overall brain (or any brain part) is based on 
serial histological sectioning (e.g. Airey and DeVoogd 2000; Wilson and 
McLaughlin 2010). Even though this method yields the most accurate measures of 
the size of the brain and brain regions, the much quicker method based on the 
ellipsoid model may also give very good estimates of brain size (Pollen et al. 2007), 
and allow much higher sample sizes to be obtained. 
 
Brain weight. Another simple but informative brain measurement is the weight of the 
brain. It is a widely used variable in evolutionary studies (e.g. Sol et al. 2002; Safi et 
al. 2005) with the obvious limitation that the weight of different parts cannot be 
usually obtained. 
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First pillar: Macroevolution and 
comparative studies 

An  enormous  amount  of  
macroevolutionary research has been 
conducted on different taxa in attempts 
to understand the major evolutionary 
forces behind brain size evolution (e.g. 
Clutton-Brock and Harvey 1980; 
Kotrschal et al. 1998; Striedter 2005; 
Shumway 2010). Giving a full 
overview on this topic is outside of the 
scope of this treatment (see: Healy and 
Rowe 2007 for a good summary of 
research in this area so far). However, 
we will briefly review the main 
findings and the proposed selective 
forces that shape the evolution of brain 
size and architecture, as they provide 
templates for further interpopulation 
comparisons and form a basis for 
comparing macroevolutionary and 
microevolutionary patterns. 
Correlations have been revealed 
between brain size or size of different 
brain structures and different 
environmental factors (e.g. Pollen et 
al. 2007), life history (e.g. Gonzalez-
Voyer et al. 2009a; Isler 2011; Barton 
and Capellini 2011), behavioural 
(Ratcliffe et al. 2006; Aviles and 
Gramszegi 2007) and morphological 
traits (body size: Gonzalez-Voyer et 
al. 2009b; gut size: Aiello and 
Wheeler 1995; testis size: Pitnick et al. 
2006) on interspecific (or higher) level 
after controlling for phylogenetic non-
independence. However, most of these 
studies are done on primates and birds. 
Specifically,  the  evolution  of  the  
exceptionally large relative brain size 
of primates (and especially humans) 
has mainly been studied in light of 
sociality  (e.g.  Dunbar  and  Shultz  

2007a,b). Social complexity, requiring 
life in large and complex groups or in 
pair bonds is accepted as the main 
driver of primate, especially human, 
brain size evolution (also known as 
“social brain hypothesis” e.g. Dunbar 
1998; Dunbar and Shultz 2007a,b; 
Perez-Barberia et al. 2007). Apart 
from the increase in overall brain size, 
the size of the neocortex and 
hippocampus has received special 
attention. This is because the 
neocortex in primates (and especially 
in humans) has increased 
disproportionally during its evolution, 
and the hippocampus plays an 
important role in memory and 
learning, which have always been of 
human interest (Striedter 2005). In the 
case  of  birds,  most  of  the  focus  has  
been on brain size or size of the 
forebrain, especially the telencephalon 
and the hippocampus for the same 
reason as in primates. The main 
correlates and suggested drivers 
behind the evolution of these neural 
structures are suggested to be selection 
forces stemming from migration and 
foraging innovation (e.g. Lefebvre et 
al. 1997; Sol et al. 2005a,b). 

Even though the above mentioned 
comparative studies form the 
cornerstone of our current knowledge 
about brain size evolution, they are by 
nature correlative and therefore 
causations are hard to prove with the 
approaches used. 
 
Second pillar: Adaptive phenotypic 
plasticity in brain size 
 
Animals can adapt to their 
environment through genetic changes, 
but also ontogenetic phenotypic 
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plasticity allows adaptive adjustment 
or acclimation to prevailing 
environmental conditions (e.g. 
Ghalambor et al. 2007). Studies on 
brain development have demonstrated 
that those parts of the brain that are 
likely to be important in a particular 
context develop more than those of 
less importance in that context 
(Kihslinger and Nevitt 2006; 
Kihslinger et al., 2006; Lisney et al., 
2007). Again, as the brain is the most 
expensive tissue to develop and 
maintain (e.g. Aiello and Wheeler 
1995), energetic constraints should 
impose strong selection against 
nonadaptive modifications of brain. 
Hence, phenotypic plasticity in the 
brain can be expected to have an 
adaptive value. 

Plastic changes in the brain size 
occur in nature. For instance, there is 
strong evidence for seasonal plasticity 
in the size of certain neural structures 
(e.g. in the song control centre of 
songbirds, Nottebohm 1981; 
Tramontin and Brenowitz 2000), in the 
anatomy of the human hypothalamus 
and hippocampus (Hofman and Swaab 
2002), in the volume of hypothalamic 
nuclei in humans (Hofman and Swaab 
1992) and in the hippocampal 
morphology of the white footed mouse 
Peromyscus leucopus (Pyter et al. 
2005). Mental and physical training 
also appear to influence neural 
architecture (e.g. Patel et al. 1997; 
Gould et al. 1999a,b; van Praag et al. 
2000; Brown et al. 2003; Rhode et al. 
2003; Draganski and May 2008). For 
instance, the size of the posterior 
hippocampus of London cab drivers 
increases with time spent as a cab 
driver (Maguire et al. 2000). 

Additionally, hippocampus-dependent 
learning has been shown to increase 
the number of newly generated cells of 
the hippocampus in rats (Gould et al. 
1999a,b), spatial learning induced 
neurogenesis in the hippocampus of 
birds (Patel et al. 1997), and voluntary 
running resulted in enhanced 
neurogenesis in the hippocampus of 
adult mice (van Praag et al. 1999; 
Brown et al. 2003; Rhode et al. 2003). 
Change in social status altered the size 
of song control centres of songbirds 
(Voigt et al. 2007) and the size of 
somatostatin-containing neurons in 
fish (Hofmann and Fernald 2000), 
while social rank has been found to 
correlate with forebrain cell 
proliferation rate in fish (Sorensen et 
al. 2007). Further, the size of brain 
parts that are of importance in certain 
life stages can also change reversibly. 
For example, shifts in habitat, diet or 
behaviour can alter the relative size of 
the main sensory brain areas in fish 
(Wagner 2003; Lisney et al. 2007), 
while changes in the size of different 
brain parts during pregnancy in 
women is likely to reflect the different 
need for the function that given brain 
part is responsible for (Oatridge et al. 
2002). 

Besides naturally occurring plastic 
changes, brain plasticity can be 
induced experimentally as well. Such 
experimental studies have shed light 
on the effects of abiotic and biotic 
environmental complexity on brain 
development (reviewed in: van Praag 
et al. 2000; Mohammed et al. 2002). 
Some of the main studies are compiled 
in Table 1. For example, rodents 
exposed to enriched (stimulus rich) 
abiotic environments resulted in
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increased brain size (Diamond et al. 
1966; Rosenzweig and Bennett 1969), 
more hippocampal neurons 
(Kempermann et al. 1997) and 
elevated level of neurogenesis 
(Kempermann et al. 1997; Nilsson et 
al. 1999) compared to those living in 
stimulus poor environments (Table 1). 

Captive rearing has been shown to 
reduce brain size in guppies (Burns 
and Rodd 2008; Burns et al. 2008), 
size of the olfactory bulb and 
telencephalon in the Chinook salmon 
(Kihslinger et al. 2006) and guppies 
(Burns and Rodd 2008), and the 
relative size of every main brain part 
as well as the size of the whole brain 
in particular habitats in nine-spined 
sticklebacks (Gonda et al. 2011a; 
Table 1). Kihslinger and Nevitt (2006) 
showed that adding only a single rock 
in the rearing tank can increase the 
size of the cerebellum of salmons at 
very early life stages, while changes in 
cell proliferation in the telencephalon 
(although without changes in the size 
of the given brain part) can be induced 
by environmental complexity in 
juvenile  Coho  salmon  (Lema  et al. 
2005). These later studies are of a 
special importance, as they may have 
important implications to fish 
aquaculture and reintroduction 
programs (Box 3). 

Different biotic environmental 
factors have also been shown to 
influence brain development, but the 
number of studies on this effect is still 
far lower than those of the abiotic 
environment – all studies on the effects 
of biotic environment are listed in 
Table 1. Furthermore, many 
commonplace and ecologically 
important biotic interactions such as 

social environment, predation risk or 
competition have rarely been 
investigated (but see e.g.: Gonda et al. 
2009a, 2010, 2011b; Trokovic et al. 
2011). It has been shown that social 
environments can alter brain 
development, especially the sensory 
brain areas, both in the nine-spined 
stickleback (Gonda et al. 2009a) and 
the common frog (Rana temporaria; 
Gonda et al. 2010; Trokovic et al. 
2011). Individually reared fish 
developed  smaller  optic  tectum  and  
larger bulbus olfactorius than group 
reared fish, and in some highly 
aggressive populations group-rearing 
resulted in decreased overall brain size 
(Gonda et al. 2009a). The 
development of the main sensory brain 
areas were also affected by density in 
both tadpoles and metamorphosed 
froglets (Gonda et al. 2010; Trokovic 
et al. 2011). Social isolation decreased 
the number of new neurons in the 
dentate gyrus of prairie voles (Fowler 
et al. 2002) while social complexity 
increased neuronal recruitment in birds 
(Lipkind et al. 2002; Adar et al. 2008). 
The change in density between life 
phases of desert locusts alters the size 
of the brain and the proportion of 
different brain areas; solitarious 
locusts have smaller brains as 
compared to and gregarious locusts 
(Ott and Rogers 2010). Perceived 
predation risk resulted in decreased 
size of the olfactory bulb in some 
populations of nine-spined 
sticklebacks (Gonda et al. 2011b) 
while common frog tadpoles 
developed smaller brains under 
predation risk in low density (= high 
per capita predation risk) than in high 
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Box 3. Effects of hatchery rearing on brain development, behaviour and fitness 
in fish 
 
Domestication and captive breeding have been shown to influence the brain size or 
size of different brain parts in several domesticated taxa (mammals: Kruska 2005; 
Yamaguchi et al. 2009; birds: Guay and Iwaniuk 2008; Rehkämper et al. 2008; 
fish: Kihslinger and Nevitt 2006). One of the best-studied taxa in this respect is 
hatchery reared fishes, because of the potential economical and conservational 
importance that hatchery induced changes can have. Hatchery/captive rearing has 
been shown to result in reduced overall brain size (Kihslinger and Nevitt 2006; 
Burns et al. 2008) as well as reduced size of different brain parts in fish (e.g. 
Kihslinger et al. 2006; Gonda et al. 2011a). Different parts of the brain play a role 
in different stages of predator avoidance; the telencephalon is involved in learning, 
while sensory brain parts are involved in detecting the predators (e.g. bulbus 
olfactorius: chemical cues; optic tectum: visual cues). Hatchery rearing has also 
been shown to induce non-adaptive behavioural modifications such as decreased 
predator avoidance (Balaa and Blouin-Demers 2011) and feeding success (Wintzer 
and Motta 2005). These behavioural changes have been shown to have direct 
fitness consequences: once released into the wild, hatchery reared fish survive far 
worse than their native conspecifics (Thorstad et al. 2011). This might be because 
anti-predator behaviours have both innate and learned parts, and both chemical and 
visual cues are needed for their normal development (Kelley and Magurran 2003).  
Fitness of hatchery reared fish can be increased via increasing their behavioural 
flexibility or foraging skills by environmental enrichment (Strand et al. 2010; 
Moberg et al. 2011), while anti-predator avoidance can be improved by lowering 
the rearing densities (Brockman et al. 2010) or enriching the rearing environment 
by simulated predator attack (Roberts et al. 2011). Likewise, brain size / size of 
different brain parts can be increased by increased environmental complexity 
(Kihslinger and Nevitt 2006). However, no study to date has established a firm link 
between predator avoidance behaviours and brain development – albeit the 
evidence above suggests that such are likely to exist. By first manipulating brain 
size (and behaviour) and then exposing fish to free ranging predators (e.g. Leinonen 
et al. 2011), it would be possible to test whether plastic responses in brain size 
inflicted by captive rearing are causally related to reduced fitness in the wild. 
 

 
density or in the absence of predator 
(Gonda et al. 2010). 
 
Beyond comparative studies and 
phenotypic plasticity 
 
The above detailed interspecific 
correlative studies form the 

cornerstone of our present knowledge 
about how brain size/architecture 
evolved, and studies on phenotypic 
plasticity have highlighted the 
importance of ontogenetic variation in 
brain development. However, these 
pillars together are still far from 
providing a complete picture about the 
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processes resulting in the observed 
brain variation in the wild. The 
proposed factors that might shape the 
brain both on evolutionary and 
ontogenetic scales are well established 
in most cases (e.g. Dunbar 1998; 
Shumway 2010), but several critical 
questions remain unanswered. Are the 
present environmental factors 
imposing selective pressures on the 
brain the same as the ones that 
originally lead to the present forms? 
What is the heritability of brain size 
and  how  is  it  influenced  by  
environmental variability? Likewise 
what is the relative importance of 
phenotypic plasticity vs. local 
adaptation in explaining variation in 
brain size and architecture in the wild? 
In  other  words,  to  what  extent  is  the  
variation  we  see  among  wild  
populations in brain architecture 
caused by differences in the genetic 
constitution of the population, rather 
than environmentally induced 
plasticity? Can brain plasticity itself be 
under selection and expressed 
differently in different populations? 
Within the genetically based patterns, 
what is the relative importance of 
natural selection vs. drift in explaining 
the observed differentiation? Are brain 
size and architecture differences coded 
by a small number of genes with major 
effects, or rather by a large number of 
genes with small effects? Are there 
strong genetic correlations between the 
sizes of different brain parts, i.e. strong 
constraints  on  evolution  of  brain  
architecture? What are the fitness 
consequences of individual variation in 
brain size? 

The list could be continued, and it 
is clear that a number of fundamental 

evolutionary questions about brain 
variation simply cannot be answered 
by interspecific evolutionary or 
intrapopulation plasticity studies. To 
fill  the  gap  between  the  two,  and  to  
answer most of the questions listed 
above, population comparisons within 
a single species – coupled with studies 
of within population variation – are 
needed. In other words, evolutionary 
studies should be scaled down to the 
inter- or even intrapopulation level, 
while plasticity studies need to be 
scaled up to the interpopulation level 
to provide answers to questions posed. 
 
First missing pillar: 
microevolutionary studies based on 
population comparisons 
 
Macroevolutionary brain studies rely 
on the assumption that variation 
between species is much higher than 
variation within species. Even though 
extensive within species brain size 
variation has been reported by several 
studies (e.g. Kolm et al. 2009; Moller 
2010) variation between species is 
indeed likely to be larger than that 
within species in most cases 
(Garamszegi and Eens 2004a; 
Garamszegi et al. 2005). However, the 
intraspecific variation in brain size and 
architecture is still very informative 
and important for our understanding of 
evolutionary processes. Contrary to 
studies on the species level, 
evolutionary studies on brain size at 
intraspecific level have only recently 
started  to  receive  the  attention  of  
evolutionary biologists (Fig. 1; Table 
2; e.g. Roth and Pravosudov 2009; 
Kolm et al. 2009; Gonda et al. 2009b, 
2011a; Crispo and Chapman 2010). As 
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with all new research areas, the first 
studies are explorative and are paving 
the road for more in depth studies to 
come. In the case of evolutionary 
studies of brain size at the intraspecific 
level, early studies have used rather 
rough brain size measurements (e.g. 
Burns and Rodd 2008; Møller 2010). 
Although these proxies of brain size 
are believed to be good estimates of 
intelligence and cognitive ability (see 
above), more refined techniques (see 
‘Future’) can improve the resolution 
and provide more fine-tuned analyses 
of specific hypothesises to be tested. 
Perhaps more importantly, as 
compared to interspecific studies, 
intraspecific studies provide numerous 
conceptual advantages in testing 
hypotheses about the evolution of 
brain size and architecture. 

Figure 1. Cumulative number of 
evolutionary studies focussing on variation 
in brain size and architecture by comparing 
species or higher taxa (‘Interspecific’) vs. 
comparing populations of a single species 
(‘Interpopulation’). Data are based on a 
literature search in ISI Web of Science, 
using the search terms: “brain size” and 
“evolution”. Note that studies for 2011 
depict the situation as of July.  
 

Firstly, comparisons of brain size 
and architecture differences among 
populations of the same species 

inhabiting different selective 
environments could provide explicit 
means to differentiate between various 
microevolutionary processes, such as 
natural selection and genetic drift (e.g. 
Merilä and Crnokrak, 2001), as causes 
of observed differentiation. By 
comparing the levels of population 
differentiation in quantitative 
phenotypic traits (QST) with the degree 
of differentiation in neutral genetic 
markers (FST), one can probe the 
causes of differentiation (e.g. Leinonen 
et al. 2008). If QST >  FST, the 
patterns/differences in the given 
phenotypic trait among population 
inhabiting different habitats are likely 
to reflect local adaptation (i.e. 
evolutionary divergence). If QST = FST, 
this indicates that the observed 
differences do not exceed what would 
be expected due to genetic drift alone. 
On the other hand, if the QST < FST, the 
examined populations have diverged 
less than expected by drift alone, and 
the populations are likely to be under 
similar selective pressures (Merilä and 
Crnokrak 2001). Thus far, this 
approach has not been applied in any 
study of brain evolution, and hence, 
formal tests of adaptive differentiation 
are as yet lacking. 

Apart  from  the  QST-FST 
comparisons, there is another way to 
test for links between the phenotypic 
expression of a trait and selective 
forces shaping the phenotypic 
appearance of that trait: selection 
experiments. Selection experiments 
have been frequently employed to 
study the functional significance of 
phenotypic variation of different traits 
(e.g. Reznick and Ghalambor 2005; 
Leinonen et al. 2011). However, no
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study has as yet used this kind of 
experimental approach to verify the 
actual impact of a particular brain 
phenotype on individual performance 
or fitness. For example, one obvious 
context where such experiments could 
be revealing would be to study the 
possible negative influence of hatchery 
induced changes in brain size on the 
ability of fish to avoid predation by 
free ranging predators (Box 3). There 
is another reason why intraspecific 
comparative studies can be more 
informative  and  provide  us  with  more  
detailed answers about the 
evolutionary forces behind brain size 
evolution than the otherwise 
undeniably important interspecific 
comparative studies. This resides in 
the fact that most populations are 
likely to be found in the selective 
environment that actually shaped their 
brains, while this is less likely to be 
the case in species comparisons: 
adaptive divergence after splitting 
from a common ancestor might have 
broken the link between a given brain 
phenotype and the selection pressure 
under which it evolved. Hence, 
population comparisons can help us to 
identify the most important 
environmental factors selecting for 
size and structural changes in the 
brain, and by studying recently 
established populations / recent 
radiations, natural selection acting on 
the brain can be ‘caught in action’. 

Based on interpopulation 
comparisons, environmental variables 
that might have contributed to the 
reported brain size/architecture 
divergence, as well as to correlated life 
history and/or behavioural traits, have 
been identified (Table 2). For example, 

in food hoarding animals, good 
memory (and hence the associated 
neural basis) is essential for survival, 
especially under harsh environmental 
conditions. Indeed, environmental 
harshness  correlates  with  the  size  and  
neuron number of hippocampus in the 
black-capped chickadee (Poecile 
atricapillus; Pravosudov and Clayton 
2002; Roth and Pravosudov 2009), 
even when one of the environmental 
factors of harshness (the day length) 
was controlled for (Roth et al. 2011). 
In two other studies, a difference in the 
predatory regime was the main 
proposed factor behind brain 
architecture divergence in nine-spined 
sticklebacks (Gonda et al. 2009b, 
2011a). Brain comparisons between 
populations and the main findings of 
those studies are summarized in Table 
2. 

Brain evolutionary studies that were 
based on comparisons of individuals of 
the same population, or several 
populations but neglect population 
origin, might be of less direct 
importance in the context of local 
adaptation. However, such studies (e.g. 
MacDoughall-Shackleton et al. 1998; 
Møller 2010; Wilson and MacLaughin 
2010) have identified interesting 
behavioural and life history traits 
which might be worth investigating on 
the interpopulation level. For example, 
the correlation between size of song 
control centres in the brain and song 
repertoire in songbirds has received 
much attention (e.g. Ward et al. 1998; 
Airey and DeVoogd 2000; Garamszegi 
and Eens 2004b), and sometimes 
yielded conflicting results (for review 
see Garamszegi and Eens 2004b). 
However, Canady et al. (1984), 
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studying marsh wrens (Cistotohorus 
palustris) both in nature and in the lab, 
were  among  the  first  to  show  among  
population variation in song brain 
centres. Also fish with different 
foraging behaviours differ in their 
brain architecture: actively foraging 
brook  chars  (Salvelinus fontinalis) 
have larger telencephalons than their 
less active conspecifics (Wilson and 
McLaughlin 2010). Different proxies 
of brain size (brain mass and head 
size) in the barn swallow (Hirundo 
rustica) were also shown to be in 
positive correlation with several 
factors, including migratory behaviour, 
offspring defence, recapture 
probability (i.e. learning), sex and 
social environment (Møller 2010). 

Some quantitative genetic work has 
already been done to study the 
heritability of brain size and 
architecture mainly in humans and 
primates. Differences in gross brain 
morphology were found to be heritable 
(h2  0.66 – 0.97) on the basis of 
analyses utilizing known pedigrees or 
exploiting the possibilities in human 
twins (e.g. Peper et al. 2007; Hulshoff 
Pol et al. 2006). Likewise, 
heritabilities of brain size, cerebral 
volume and grey matter volume in 
baboons, Papio hamadryas, were 
found to be high (h2  0.67 – 0.86; 
Rogers et al. 2007). Similar results 
have been found in zebra finches 
(Taeniopygia guttata), where brain 
weight and telencephalon volume were 
also highly heritable (h2  0.49 – 0.63), 
and size of some song control nuclei 
had lower but still significant 
heritabilities (h2  0.03 – 0.16) based 
on the application of ‘animal model’ 
analyses on full-sib families (Airey et 

al. 2000). These studies are promising, 
as they indicate high evolvability of 
different brain traits in distant taxa. At 
the same time, they raise interesting 
questions from the evolutionary point 
of view: if the variation in the brain 
size  and  size  of  different  brain  parts  
has important consequences on fitness, 
how are we to explain these high 
heritabilities? Namely, traits with close 
association to fitness are expected to 
have low heritabilites (Mousseau and 
Roff 1987; Merilä and Sheldon 1999). 
Given the functional importance and 
the energetic constraints of 
maintaining brain tissue, it is 
intriguing that the heritabilites of brain 
size traits appear be this high. 

We see many possibilities in 
quantitative genetic studies of brain 
size variation, especially in species 
where large-scale breeding 
experiments are possible. As compared 
to studies of primates and humans, in 
which experimental work is difficult 
and logistically constrained, organisms 
with shorter generation times – such as 
small-sized fish and possibly some 
amphibians – might provide promising 
models for quantitative genetic work. 
However, whichever species one 
chooses to utilize, one of the limiting 
factors in studies of brain variability 
resides in obtaining high resolution 
data on brain size variation. Hence, as 
Houle et al. (2010) recently pointed 
out, high-throughput phenotyping 
methods need to be developed to meet 
the demand of measuring hundreds 
(preferably thousands) of brains. 

Taken together, intraspecific studies 
on brain variation have started to 
accumulate (Fig. 1). These studies 
suggest that there is a great deal of 
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variation in brain phenotypes both 
among and within populations, as well 
as covariation between brain 
phenotypes and environmental (and 
behavioural or life history traits) 
variables within a single species. 
Furthermore, the quantitative genetic 
studies thus far indicate high 
heritability of brain size and the size of 
different brain parts, which together 
with the functional – and therefore also 
evolutionary – significance of brain 
variation suggest ample opportunity 
for local adaptation in brain traits. 
However, the evidence for local 
adaptation in brain size and 
architecture from the wild is still scant. 
While some of the studies have 
utilized common garden approaches, 
most of the studies have relied on 
wild-caught animals and the genetic – 
and hence – adaptive basis of the 
observed differentiation remains 
questionable (e.g. Gonda et al. 2011a). 
 
Second missing pillar: brain 
plasticity from an evolutionary 
perspective 
 
As highlighted above, phenotypic 
plasticity in brain size has been 
demonstrated several times. However, 
it is still debated if phenotypic 
plasticity itself is an evolvable trait or 
just the first step toward adaptation 
(West-Eberhard 2003; DeWitt and 
Scheiner 2004; de Jong 2005; Pigluicci 
et al. 2006; Pfennig et al. 2010). Work 
done on brain plasticity so far is not 
placed to challenge any of these views. 
Contrary to the large amount of brain 
plasticity studies done at the within 
population level, we are aware of only 
three studies investigating the 

evolution of brain plasticity. Nine-
spined sticklebacks showed habitat-
dependent population divergence in 
brain plasticity induced by sociality 
(Gonda et al. 2009a): pond 
sticklebacks (which are the only fish 
species in the ecosystem) developed 
relatively smaller brains in groups than 
in isolation, while marine sticklebacks 
(which are members of a diverse fish 
fauna with numerous predators) 
showed  an  opposite  trend.  It  was  
suggested that under heavy piscine 
predation, marine sticklebacks 
developed some mechanisms that 
eliminate the social stress stemming 
from aggressive encounters. Further, 
another study showed that nine-spined 
sticklebacks from pond environment 
increased the size of their bulbi 
olfactorii in the presence of predation 
pressure while this brain part remained 
the same in marine fish, however 
marine fish in general developed larger 
brain than pond fish (Gonda et al. 
2011b). The results suggest that 
predation pressure increase the size of 
the olfactory brain centre both on 
evolutionary and ontogenetic scale. A 
third study showed that African 
cichlids (Pseudocrenilabrus multicolor 
victoriae) with higher dispersal 
potential have more plastic (and also 
smaller) brains than their conspecifics 
without high dispersal potential 
(Crispo and Chapman 2010). Finally, 
though not directly addressing the 
question of population variation in 
brain plasticity, it has been found that 
the effect of captive-rearing can be 
habitat-specific in nine-spined 
sticklebacks, where pond fish 
developed smaller brains in captivity 
than in the wild, while marine fish 
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developed similar brains both in the 
wild and in the lab (Gonda et al. 
2011a). 

Based on the above studies, we can 
expect that environmentally induced 
phenotypic plasticity in the brain can 
show habitat-dependent population 
variation under common garden 
settings. Patterns emerging from 
common garden experiments are likely 
to  have  a  genetic  basis,  while  the  
habitat-dependence suggests that 
natural selection is the driving force. 
However, more studies addressing 
geographic variation in brain 
plasticity, and possible population 
differences in the degree of plasticity, 
are needed to form a better view of 
evolutionary potential of brain 
plasticity itself. 
 
Future 
 
We have provided an overview of the 
published studies on intraspecific 
variation in brain size and architecture, 
and shown that there is a considerable 
evolutionary potential for brain 
divergence within species. This within 
species variation provides possibilities 
to address evolutionary questions 
about brain size divergence that could 
not be tested with interspecific 
evolutionary comparative studies, or 
with intrapopulational plasticity 
studies. Unfortunately, the relatively 
low number of intraspecific 
evolutionary studies suffers from 
similar problems as the interspecific 
ones: most of them are correlative and 
the results are sometimes conflicting. 
However, considering that studying 
intraspecific brain size variation is an 
emerging field (Fig. 1), one should 

perhaps focus on the future 
possibilities rather than on the 
shortcomings of present and past work. 
By focusing on brain evolution within 
species, it is possible to improve our 
understanding of the mechanisms 
behind brain evolution, as both the key 
ingredients of the evolutionary process 
–  inheritance  and  selection  –  can  be  
quantified and studied in detail. In fact, 
the array of possibilities is 
bewildering, but here we aim to point 
out a two main lines of research that 
could lead to significant immediate 
progress. 

The first major advance would 
come from applications of quantitative 
genetic tools on brain size variation. It 
is now already clear that for drawing 
solid evolutionary inference, data 
should be collected from common 
garden material to avoid the confusion 
between genetically based differences 
and phenotypic plasticity (Gonda et al. 
2011a). Most of the brain evolutionary 
studies, both on inter- and intraspecific 
levels, have been based on wild caught 
animals of perhaps different age and/or 
life stages, with an implicit assumption 
that brain size is constant during the 
life of an individual. However brain 
size and architecture can change 
seasonally, during the life of an 
individual or can be altered by 
changing environmental conditions 
(Pyter et al. 2005; Macrini et al. 2007). 
Environmentally induced phenotypic 
plasticity can often obscure the 
genetically based differences of a trait 
and might lead to false conclusions of 
studies based on purely wild caught 
samples (e.g. Merilä 2010; Alho et al. 
2010) – an effect already demonstrated 
in brain variation (Gonda et al. 2011a). 
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Furthermore, ontogenetic changes (e.g. 
Wagner 2003; Lisney et al. 2007; 
Macrini et al. 2007)  as  well  as  
seasonal plasticity of the brain 
(Nottebohm 1981; Tramontin and 
Brenowitz 2000; Hofman and Swaab 
1992, 2002; Pyter et al. 2005) can also 
be controlled in common garden 
conditions. Common garden studies, 
however, also offer other advantages 
than just ruling plasticity out. With 
adequate breeding designs (see e.g. 
Falconer and Mackay 1995; Lynch and 
Walsh 1998) the different quantitative 
genetic components (additive genetic, 
maternal, environmental effects, 
dominance, etc.) of phenotypic 
variation could be disentangled both 
within and among populations. 
Further, by measuring different brain 
traits on the same individuals, the 
genetic correlations between traits 
could be estimated, and the competing 
constraint vs. independent brain 
evolution hypotheses (Finlay and 
Darlington; 1995; Barton and Harvey 
2000) could be directly tested. 
Construction of the genetic variance-
covariance matrix (G matrix: Lande 
1979) would allow estimation of the 
lines of least resistance (cf. Schluter 
1996) and thus aid in our 
understanding of the constraints of 
brain evolution. Combining estimates 
of heritabilities, genetic correlations 
and the G matrix with estimates of 
natural or sexual selection on different 
brain phenotypes would make a 
detailed reconstruction of the 
evolutionary process possible. Further, 
proper common garden material from 
several  populations  would  allow us  to  
estimate the actual quantitative genetic 
variation within and among 

populations, which, together with 
similar estimates of the neutral genetic 
variation would provide a direct test of 
the roles of natural selection vs. 
genetic drift behind genetically based 
population divergence (Merilä and 
Crnokrak, 2001; Leinonen et al. 2008). 
Finally,  and  ultimately,  with  the  
current genomics tools, approaches 
such as genome scans (Schlötterer 
2003; Storz 2005; Vasemägi and 
Primmer 2005) or quantitative trait 
locus (QTL) mapping (Weller 2001; 
Erickson et al. 2004; Slate 2005), can 
be  used  to  identify  the  genomic  
regions containing the genes coding 
for brain variation. 

The second line of quick advances 
might  result  from  applying  the  well-
established, simple and sophisticated 
methodology from neurobiology to the 
above described evolutionary 
framework.  As  the  brain  is  the  most  
expensive tissue from the energetic 
point-of-view (Aiello and Wheeler 
1995), any increase in its size should 
be more beneficial than the cost of 
developing and maintaining it (e.g. 
Safi and Dechmann 2005). However, 
given the many functions brain serve, 
linking variation in brain size to 
variation in any other (e.g. 
behavioural) traits can be difficult 
(Healey and Rowe 2007). Further, 
even though the different brain parts 
might evolve in concert and not be 
entirely independent (Finlay and 
Darlington 1995), not all changes in all 
brain parts might be detectable by 
measuring overall brain size. Studying 
the size of different brain parts might 
bring us closer to identifying 
functional relationships between the 
given neural structures and the factors 
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that are important in their evolution. 
However, the functions of the main 
brain parts are very diverse (e.g. 
Kotrschal et al. 1998; Striedter 2005). 
Hence,  using  the  volume  of  a  part  of  
the  brain  and  correlating  it  with  some  
e.g. behavioural trait, such as the 
hippocampus with food hoarding, can 
still be just a “proxy for more relevant 
and subtle changes in the structure of 
the brain underlying changes in 
behaviour” (Roth et al. 2010). 
Methods from neurobiology are 
available from basic histological 
methods to cutting-edge molecular 
tools. Basic methods include different 
staining methods (e.g. Nissl staining; 
Nissl 1898) that allow one to calculate 
the  volume  of  more  specific  brain  
regions within brain parts with 
functions defined, or calculate 
neuronal densities. Further a by the 
help of a newly developed method one 
can count neurons and other cell types 
in the brain (Herculano-Houzel and 
Lent 2005) that provide us with a 
powerful tool as the number of 
neurons might reflect the importance 
of a given brain structure more than 
it’s pure size. The more advanced 
methods consist of, for example, 
parallel application of different neuro-
histochemical methods to visualise 
specific cells or components of the 
neurons in the brain such as anti-body 
labelling, enzyme histochemistry or 
immunofluorescence methods 
(Sallinen et al. 2009). These later 
methods/techniques have already 
resulted in valuable application of 
easily available model systems (e.g. 
zebrafish, Danio rerio) to study very 
complex and important problems such 
as neurodegenartive human diseases 

(Panula et al. 2010; Xi et al. 2011). 
Such truly interdisciplinary approaches 
(note that the tools and knowledge are 
readily available for both quantitative 
genetics and neurobiology) would 
bring the understanding of both the 
processes and detailed function of 
brain evolution into reach. 
 
Conclusion 
 
The enormous brain size and 
architecture variation observed in 
nature has attracted a lot of attention in 
different fields of biology, including 
evolutionary biology. Thus far, the two 
main pillars of our understanding on 
brain variation have been 
macroevolutionary comparative 
studies of species or higher taxa and 
plasticity studies within populations. 
Interpopulation comparisons of brain 
size and architecture, as well as brain 
plasticity represent a more recent and 
still developing line of research in 
evolutionary neurobiology. This new 
line of research brings studies on brain 
size and architecture closer to 
mainstream evolutionary biology 
research  where  the  study  of  spatial  or  
geographic variation has been one of 
the fundaments of evolutionary 
investigations. By tapping into the 
approaches and methods from this well 
established field of research, we 
envision that intraspecific studies in 
evolution can soon flourish and help us 
towards better understanding of the 
evolution and functional significance 
of variation in brain size and 
architecture. 
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