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Abstract 
 

The purpose of this research project was to understand the steps of the retrotransposon BARE 

(BArley REtrotransposon) life cycle, from regulation of transcription to Virus-Like Particle 

(VLP) formation and ultimate integration back into the genome. Our study concentrates 

mainly on BARE1 transcriptional regulation because transcription is the crucial first step in 

the retrotransposon life cycle. The BARE element is a Class I LTR (Long Terminal Repeat) 

retrotransposon belonging to the Copia superfamily and was originally isolated in our 

research  group.  The  LTR retrotransposons  are  transcribed  from promoters  in  the  LTRs and  

encode proteins for packaging of their transcripts, the reverse transcription of the transcripts 

into cDNA, and integration of the cDNA back into the genome. BARE1 is translated as a 

single polyprotein and cleaved into the capsid protein (GAG), integrase (IN), and reverse 

transcriptase-RNaseH (RT-RH) by the integral aspartic proteinase (AP). The BARE 

retrotransposon family comprises more than 104 copies  in  the  barley  (Hordeum vulgare) 

genome. The element is bound by long terminal repeats (LTRs, 1829 bp) containing 

promoters required for replication, signals for RNA processing, and motifs necessary for the 

integration of the cDNA. Members of the BARE1 subfamily are transcribed, translated, and 

form virus-like particles. 

Several basic questions concerning transcription are explored in the thesis: BARE1 

transcription  control,  promoter  choice  in  different  barley  tissues,  start  and  termination  sites  

for BARE transcripts, and BARE1 transcript polyadenylation (I). Polyadenylation is an 

important step during mRNA maturation, and determines its stability and translatability 

among other characteristics. Our work has found a novel way used by BARE1 to make extra 

GAG protein, which is critical for VLP formation. The discovery that BARE1 uses one RNA 

population for protein synthesis and another RNA population for making cDNA has 

established the most important step of the BARE1 life cycle (III). The relationship between 

BARE1 and BARE2 has been investigated. Besides BARE, we have examined the 

retrotransposon Cassandra (II), which uses a very different transcriptional mechanism and a 

fully  parasitic  life  cycle.  In  general,  this  work  is  focused  on  BARE1 promoter activity, 

transcriptional regulation including differential promoter usage and RNA pools, extra GAG 

protein production and VLP formation. The results of this study give new insights into 

transcription regulation of LTR retrotransposons. 
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1. Introduction 
 

Transposable  elements  are  the  most  abundant  components  of  most  eukaryotic  genomes.  In  

the Triticeae, they comprise up to 85% of the genomic DNA. Transposable elements consist 

of retrotransposons (also called Class I transposable elements) and DNA transposons (Class 

II transposable elements). LTR retrotransposons (retrotransposons containing long terminal 

repeat sequences at both ends) are the most abundant transposable element class in grass 

genomes, of which barley is a member. The BARE1 retrotransposon in barley, which was 

discovered by our group in previous work (Manninen and Schulman, 1993), is an especially 

active system and has been demonstrated to be transcriptionally active in somatic tissues and 

translated, processed, and assembled into virus-like particles, known as the VLPs (Suoniemi, 

1996b; Jääskeläinen et al., 1999). Transcription is the major step in many retrotransposons’ 

life cycles, for example, tobacco retrotransposon Tto 1 (Hirochika, 1993) and the rice 

retrotransposon Tos 17 (Hirochika et  al., 1996). BARE1 is a major, dispersed component of 

the Hordeum genome and is highly conserved in its functional domains (Suoniemi et al., 

1996a). Our group has shown that BARE1 is a major factor in genome size dynamics in 

barley and its genus Hordeum, and that intra-element recombination plays a major role in 

controlling genome expansion resulting from BARE1 integration (Vicient and Schulman, 

2005). Very similar retrotransposons are transcribed as RNA and expressed as proteins in 

other cereals and grasses (Vicient et  al.,  2001a).  A  large  proportion  of  the  plant  LTR  

retrotransposons are partly or completely unable to synthesize their own machinery for 

transposition and are therefore non-autonomous elements. However, it is likely that most of 

these inactive or non-autonomous elements are able to retrotranspose as shown by their 

insertional polymorphism (Witte et al., 2001). For example, the non-autonomous element 

BARE2 has  the  possibility  to  be  a  partial  parasite  of  the  BARE1 element  because  the  GAG 

protein synthesized by BARE1 can complement the defective GAG of the BARE2 (Tanskanen 

et al., 2007).  

 

1.1 The discovery of transposable elements 

Barbara McClintock (1902-1992) discovered the concept of transposable elements, called by 

her ‘controlling elements’, in maize by studying chromosome breakage and its genetic 

consequences. By studying patterns of coloration, she identified a mutation system with two 



 
 

3

elements: one element caused the mutation and a second element controlled the activity of the 

first. She named these elements Ds (dissociator) and Ac (activator) respectively (Mcclintock, 

1953). Both elements were noted to have the ability to change their position on chromosome 

9, and evidence was assembled that Ac controlled its own mobility. She called this movement 

‘transposition’. In 1956, she reported another system of transposition in maize, the 

suppressor-mutator system, involving two genes and a series of transposable elements 

(Mcclintock, 1956). Her pioneering work revolutionized our thinking about genome stability 

and genome organization; she was awarded the Nobel Prize in 1983. Transposable elements 

(TEs) are mobile; their movement from one location to another in the genome was 

experimentally verified in bacteria in 1968 (Jordan et al., 1968). The molecular details of 

McClintock’s controlling elements were finally clarified as a transposable element in 1983 

(Shure M et  al., 1983). TEs were found in Drosophila melanogaster and the yeast 

Saccharomyces cerevisiae in late 1970s (Finnegan et al., 1978; Cameron et al., 1979) and in 

Caenorhabditis elegans and human during the 1980s (Rosenzweig et al., 1983; Paulson et al., 

1987). Their existence in filamentous fungi was discovered in the 1990s (Daboussi et al., 

1991). By now, mobile elements have been found in genomes of almost all organisms. They 

constitute more than 75% of the maize genome (Baucom et al., 2009), 15% of the fruit fly 

genome (Hoskins et al., 2002), more than 35% of the mouse genome (Waterston et al., 2002) 

and about 50% of human DNA (Lander et  al., 2001). Many genes have been assembled or 

amplified by the action of the transposable elements. 

 

1.2 The classification of transposable elements 

All functional transposable elements have the ability to move from place to place in the 

genome—hence their designation as transposable elements—and most of them have their 

ability to amplify their copy number within the genome via this transposition, thereby 

providing a selectable function for their selfish or parasitic DNA (Le Rouzic et al., 2007). 

In 1989, Finnegan proposed the first TE classification system, which distinguished two 

classes by their transposition intermediate: RNA (Class I or retrotransposons) or DNA (Class 

II or DNA transposons). The transposition mechanism of Class I is commonly called 'copy-

and-paste', and that of Class II, 'cut-and-paste' (Finnegan, 1989). The discovery of bacterial 

(Duval-Valentin et al., 2004) and eukaryotic (Morgante et al., 2005) TEs that copy and paste 

but without RNA intermediates, and of highly reduced non-autonomous TEs called miniature 
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inverted-repeat transposable elements (MITEs), has challenged the two-class system. A new 

classification system was proposed in the year 2007 (Wicker et al., 2007), and it is the first 

unified hierarchical classification system that maintains two classes while applying 

mechanistic and enzymatic criteria. The highest level (Class) divides TEs by the presence or 

absence of an RNA transposition intermediate as before (Finnegan, 1989). Subclass, 

previously used to separate LTR from non-LTR (long and short interspersed nuclear element, 

LINE and SINE) Class I TEs, is used here to distinguish elements that copy themselves for 

insertion from those that leave the donor site to reintegrate elsewhere (Fig.1). 

 
Figure 1. Proposed classification system for transposable elements (Wicker et al., 2007). 
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1.2.1 Class I (retrotransposons) 

Class I transposons are also known as retrotransposons because these elements use reverse 

transcriptase to move via an RNA intermediate. RNA polymerase II transcribes the original 

DNA into mRNA and this mRNA is then used as a template for reverse transcriptase to create 

a cDNA copy ready for insertion back into the genome (Havecker et al., 2004). This is a 

replicative or ‘copy-and-paste’ method of transposition, and can generate high copy numbers, 

which in turn leads to an increase in genome size. In eukaryotes, LTR retrotransposons are 

the most widespread type of transposable elements. In plants especially, retrotransposons are 

the major constituents of the genome and are generally present in high copy numbers (Kumar 

and Bennetzen, 1999). Retrotransposons can be divided into five orders (Fig.1) on the basis 

of their mechanistic features, organization and reverse transcriptase phylogeny: LTR 

retrotransposons, DIRS-like elements, Penelope-like elements (PLEs), LINEs, and SINEs. 

DIRS-like elements have several unusual structural features that distinguish them from 

typical LTR elements. For instance, they each encode a tyrosine recombinase (YR), but not a 

DDE-type integrase or an aspartic protease (Poulter and Goodwin, 2005). Penelope-like 

elements (PLEs) have been isolated from Drosophila virilis. The single ORF encoded by PLE 

consists of two principal domains, reverse transcriptase (RT) and endonuclease (EN), thereby 

forming a novel class of eukaryotic retroelements (Evgen'ev and Arkhipova, 2005). LINEs 

(Long Interspersed Elements) are widespread, autonomous non-LTR retrotransposons. They 

are 5–8 kb long elements with an internal polymerase II promoter, a poly(A) stretch and 

ORFs encoding the proteins necessary for their retrotransposition. The SINEs (Short 

Interspersed Elements) are short polymerase III transcribed elements, with an internal 

promoter and generally a poly(A) end. They are non-coding elements and thus depend on 

other genes for their mobility (Dewannieux and Heidmann, 2005). 

 

1.2.2 Class II (DNA transposons) 

Class II elements use DNA as the intermediate form in transposition and transpose directly 

mostly through a conservative ‘cut-and-paste’ mechanism (Finnegan, 1989). Class II 

elements have been divided into two subclasses. Subclass I consists of TIR (contains terminal 

inverted repeats in the sequence) and Crypton (contains tyrosine recombinase in the 

sequence), whereas Subclass II contains the helitron and Maverick groups (Fig. 1). A helitron 

is a transposon found in eukaryotes that is thought to replicate by a rolling-circle mechanism, 

whereas Maverick displays long terminal-inverted repeats but does not contain ORFs similar 
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to proteins encoded by other DNA transposons. Thus, not all DNA transposons transpose 

through a cut-and-paste mechanism; Subclass II of Class II uses a mechanism in which the 

transposon replicates itself to a new target site. In replicative transposition, the transposable 

element is duplicated during the reaction so that the transposing entity is a copy of the 

original element. Therefore replicative transposition is characteristic, not only for 

retrotransposons, but also in some Class II transposons (Duval-Valentin et al., 2004).  

 

1.3 Autonomous and non-autonomous TEs 

Both classes of transposable elements may lose their ability to synthesize reverse 

transcriptase or transposase through spontaneous mutation, yet continue to move from one 

place to another in the genome because other elements are still producing the necessary 

enzymes. Moreover, transposable elements can be classified as either "autonomous" or "non-

autonomous". An element is defined as autonomous simply if it appears to encode all the 

domains that are typically necessary for its transposition, without implying that the element is 

either functional or active. Non-autonomous TEs are defined as any group of elements that 

lacks some (or all) of the coding sequences found in autonomous elements (Tanskanen et al., 

2007). Usually, non-autonomous elements have a highly degenerate coding region, or even 

completely lack coding capacity. Occasionally, non-autonomous TEs lack some genes but 

still contain others; for example, members of the Caspar family (superfamily CACTA) often 

lack the transposase gene but still contain the second ORF (Wicker et al., 2003), whereas the 

BARE2 elements in the Triticeae have a conserved deletion that inactivates gag (Tanskanen et 

al., 2007). Nevertheless, non-autonomous and autonomous elements usually still share strong 

sequence conservation and specific characteristics within their termini and in the 5' UTR 

(LTR retrotransposons), because these are required for packaging and transposition. Some 

non-autonomous elements might be cross-activated by autonomous partners from different 

families; for example, the Alu element in human mobilization depends on L1 protein of 

LINE-1 (Dewannieux et al., 2003). 
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1.4 LTR retrotransposons and retroviruses 

The LTR retrotransposons share similarities with retroviruses both in their genomic 

arrangement and in the mechanism of transposition (Fig. 2). The encoded proteins are 

organized 5 -LTR-gag-ap-rt-rh-in-LTR-3  in superfamily Gypsy retrotransposons and in 

retroviruses. Retroviruses are more similar to gypsy of Drosophila melanogaster than they 

are to copia elements (Kumar and Bennetzen, 1999); retroviruses also have an env gene 

between in and the 3  LTR. The strong internal sequence similarities within the Copia and 

Gypsy superfamilies suggest that they are lineages that have been separated since early in 

eukaryote evolution (Xiong and Eickbush, 1990). The IN structure of BARE1 is extremely 

well conserved with HIV-1 and ASV over the enzymatic core domain defined by comparison 

to retroviral INs (Suoniemi et al., 1998). Like retroviruses, LTR retrotransposons replicate 

through reverse transcription of their genomic RNA and they encode proteins with homology 

to  the  GAG  and  POL  proteins  of  retroviruses.  The  main  difference  is  that  most  LTR  

retrotransposons do not encode an envelope gene (env) and are not infectious, i.e. they carry 

on their replication cycle within a single cell (Wilhelm and Wilhelm, 2001). For retroviruses, 

three possible models can be invoked to explain the relationship between translation and 

encapsidation. In Model 1, any RNA can be translated or encapsidated. In Model 2, RNA is 

sorted into two non-equilibrating pools, one for translation and one for encapsidation. In 

Model 3, RNA can only be capsidated after it has been translated (Kaye and Lever, 1999). 

Among the retroviruses, Murine Leukemia Virus (MLV) uses distinct RNA pools for 

translation and reverse transcription (Messer, 1981), whereas for Human Endogenous 

Retrovirus 1 and 2 (HIV-1, -2), there is no such separation (Dorman and Lever, 2000). The 

question of RNA partitioning into pools for translation and reverse transcription does not 

seem to have been investigated for retrotransposons before. We attempted to show that 

BARE1 forms two different RNA populations, one for translation and another for 

encapsidation. 
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Figure 2. Organization of LTR REs 

 

1.5 Structure, replication, life cycle, and autonomy of the LTR 
retrotransposons  
 

1.5.1 Structure 

All LTR retrotransposons are bounded by direct LTRs which in turn are flanked by short 

inverted repeats, usually containing 5’-TG…CA-3’. In autonomous elements, the 5’ LTR 

provides the promoter function and the 3’ LTR provides terminator and polyadenylation 

activities (Casacuberta and Santiago, 2003). The LTR sequence can range from a couple of 

hundred base pairs (Bs1 of maize and Tos17 of rice) to several thousand base pairs (RIRE3 of 

rice) (Kumar and Bennetzen, 1999; Witte et al., 2001). Between the LTRs is the internal 

coding region. In autonomous elements, this consists of the gag gene, which encodes proteins 

needed in the packaging of the retrotransposon RNA into the VLP inside which reverse 

transcription takes place, and the pol gene, which encodes protease, reverse transcriptase and 

RNaseH, and integrase. The protease cleaves the POL polyprotein, the reverse transcriptase 

and RNaseH are required for replication of the RNA strand back into DNA, and the integrase 

integrates the new cDNA copy of the retrotransposon into a new location in the genome 

(Havecker et al., 2004). Superfamily Gypsy and Copia elements are autonomous and are 

defined according to their integrase (in) gene placement as well as their sequence similarities. 

Gypsy retrotransposons resemble retroviruses in gene order (LTR-gag-ap-rt-rh-in-LTR). 

Copia retrotransposons have a different gene order, where the integrase gene is placed 
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between the aspartic proteinase (ap) and reverse transcriptase (rt) genes (LTR-gag-ap-in-rt-

rh-LTR) (Fig. 3). Morgane contains a partial Pol-like sequence in contrast to TRIM 

(terminal-repeat in miniature) and LARD (large retrotransposon derivatives) elements, which 

contain only non-coding sequences. All three groups are non-autonomous. 

 

Figure 3. LTR retrotransposon structure and retrotransposon groups. The groups are separated according to the 
presence or absence of the gag and pol ORFs. 

 

1.5.2 Replication 

The LTR retrotransposon replicative cycle can be divided into several stages (Fig. 4), which 

are outlined below. 

1. Retrotransposon mRNA molecules are synthesized by RNA polymerase II as are most 

cellular genes. The polyprotein mRNA molecule has the structure: 5’-R-U5-PBS-

coding region-PPT-U3-R-3’ (R= repeated RNA, U5= unique 5’ RNA, PBS= primer 

binding site, PPT= polypurine tract, U3= unique 3’ RNA). Transcription initiates at 

the 5’ end of R in the 5’ LTR and terminates at the 3’ end of R in the 3’ LTR. 

2. The mRNA acts as a template for reverse transcriptase (RT) to synthesize a new DNA 

strand complementary to the element’s internal sequences. The PBS on the mRNA 

molecule  is  complementary  to  a  cellular  RNA,  usually  the  3’  end  of  a  host  tRNA.  

Thus, the tRNA can hybridize with retrotransposon RNA, and a free 3’ hydroxyl 

group is provided from the tRNA which allows reverse transcriptase to synthesize a 

cDNA complement to the R and U5 regions of the 5’LTR. The reverse transcriptase 

then comes to the end of the template, the 5’ end of the retrotransposon mRNA, and 
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cannot synthesize any more DNA. However, the RNaseH molecule encoded by the 

retrotransposon specifically digests the RNA in a DNA: RNA hybrid, thus freeing up 

a single-stranded DNA with homology to the R sequence that is also found at the 3’ 

end of retrotransposon mRNA. Thus, the first template switch occurs. Hybridization 

between these sequences leads to a circular structure that allows a continuation of the 

reverse  transcription  until  a  single-stranded  DNA  complementary  to  all  of  the  

element-internal sequences is synthesized to generate a single-stranded DNA circle.  

3. Second strand DNA synthesis is completed by the action of reverse transcriptase and 

RNaseH, primed from a PPT that lies just 5’ to the 3’ LTR, and involves a second 

template switch and breakage of base pairs in the U3-R region. 

4. A double stranded linear DNA molecule is integrated back into the genome by 

integrase, which cuts both the donor and target molecules and leaves nicks staggered 

by 3-5bp. This causes the creation of the flanking direct repeats.  

 
Figure 4. The replication of LTR retrotransposon (Source:‘Genome III’) 
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1.5.3 Life Cycle 

Much of what we know about the mechanisms of LTR retrotransposition (Fig. 5) comes from 

work on yeast retrotransposons (Voytas and Boeke, 2002), but it is generally assumed that the 

mechanism  is  very  similar  among  LTR  retrotransposons  from  divergent  hosts.  First,  a  

retrotransposon's RNA is transcribed by the general cellular RNA polymerase II from a 

promoter located within the 5' LTR. As in most of the cellular genes, the transcription starts 

after a TATA box. The RNA is then translated in the cytoplasm to synthesize the proteins 

that  form  the  VLP,  and  carry  out  the  reverse  transcription  and  integration  steps.  Many  

retrotransposon RNAs contain a dimerization signal as do those of retroviruses. Typically, 

two RNA molecules are packaged into one VLP, and the RNA is subsequently made into a 

full-length cDNA copy through a reverse transcription reaction. The double-stranded cDNA 

molecule is formed by the two steps of strand transfer (Fig. 4). Another copy of the 

retrotransposon is added to the genome by integration back to the host DNA (Havecker et al., 

2004). Integration of DNA copies in a host genome is a necessary stage for the completion of 

the life cycle of retroviruses and LTR retrotransposons. All the LTR retrotransposons of the 

Gypsy superfamily demonstrate strict specificity in target DNA selection. Other LTR-

retrotransposons do not show specificity of integration. The integration process can be 

divided into the following stages: (1) binding and processing of LTR ends; (2) recognition 

and cleavage of a target DNA in a host genome; and (3) joining of LTRs to the target DNA. 

The first stage occurs in the cytoplasm and the others in the nucleus. A target site duplication 

(TSD) is produced by repairing proteins at the last stage. 
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Figure 5. Theoretical life cycle of LTR retrotransposons. (a) Transcription of the mRNA, starting from the 5’ R 
region to  the  3’  R region.  (b)  Translation  and protein  synthesis  of  active  elements  in  GAG and POL,  POL is  
further internally cleaved by AP into AP, RT-RNAseH and INT. (c) Dimerization of RNA before or during 
packaging. (d) Packaging of RNA and start of reverse transcription. (e) Degradation of the RNA matrix and 
initiation of synthesis of the second strand of the cDNA. (f) Completion of double-stranded cDNA synthesis. (g) 
Double-stranded break and integration of the newly synthesized copy in a new genomic location. 

 

1.5.4 Autonomy 

Families of retrotransposons containing individuals with an internal domain that is able to 

code for the requisite proteins are autonomous retrotransposon families. Individual copies 

may be, to varying degrees, transcriptionally or translationally competent (translation leading 

to a functional protein) or active. Transcriptionally and translationally active elements may 

complement the life cycle blocks of inactive or incompetent members of the same family in 

cis and that of other families or groups in trans to the extent that the complementation 

reduces the ability of the active element to propagate (Tanskanen et al., 2007). Recent 

findings have identified large, structurally uniform retrotransposon groups in which no 

member contains the gag, pol or env internal domains. These groups are non-autonomous, yet 

individual elements may be active or inactive transcriptionally. Examples of non-autonomous 

groups are LARD, TRIM and Morgane (Fig. 6). Recent findings in soybean research have 

demonstrated that autonomous and non-autonomous retrotransposons appear to be both 

abundant and active in Glycine and Phaseolus. The impact of non-autonomous 
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retrotransposon replication on genome size appears to be much greater than previously 

appreciated (Wawrzynski et  al., 2008) and region-specific swapping of non-autonomous 

elements with autonomous elements generate various non-autonomous recombinants with 

LTR sequences from autonomous elements of different evolutionary lineages (Du et al., 

2010).  

 

 

Figure 6. Autonomy and non-autonomy. Non-autonomous groups lack coding capacity for GAG and POL. 
Autonomous groups encode GAG and POL, which may be nevertheless inactive owing to mutations. The 
parasitic families (italics) are proposed to use the machinery of host elements (bold) in a cis- (dashed green 
arrows) or a trans- (dashed red arrows) mode (Sabot and Schulman, 2006). 

 

1.6 Retrotransposon BARE1  

The BARE1 retrotransposon is a major, active component of the genome of barley (Hordeum 

vulgare L.) and other Hordeum species. Copia-like in its organization, it consists of 1.8 kb 

LTRs bounding an internal domain of 5275 bp that encodes a predicted polyprotein of 1301 

residues. The polyprotein contains the key residues, structural motifs, and conserved regions 

associated with retroviral and retrotransposon GAG, AP, IN, RT, and RNaseH polypeptides. 

BARE1 is actively transcribed and translated (Jääskeläinen et al., 1999). Full-length members 

of the BARE1 family constitute 2.8% of the barley genome. The in situ hybridization 

experiments for BARE1 showed  a  uniform  hybridization  pattern  over  the  whole  of  all  

chromosomes, excepting the centromeric, telomeric, and nucleolus organizer regions 
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(Suoniemi et al., 1996a). Locally, BARE1 occurs more commonly in repetitive DNA than in 

coding regions, forming clusters of nested insertions. Both barley and other Hordeum 

genomes contain a high proportion of BARE1 solo LTRs (Vicient et al., 1999a). 

 

1.6.1 Structural features of BARE1 
 

 

Figure 7. Retrotransposon BARE1 organization. The regions of BARE1 are abbreviated as follows: LTR, long 
terminal repeat (represented by grey boxes); 5’ UTL, 5’ untranslated leader; GAG, the capsid protein; AP, 
aspartic proteinase, IN, integrase; RT, reverse transcriptase; RH, RNaseH (each expressed protein represented 
by green boxes); 3’ UTL, 3’ untranslated leader. The red triangles represent inverted repeat and black errors 
represent host direct repeat. The TATA boxes contained in 5’ LTR and start codon ATG contained in GAG are 
shown. The 5’ UTL start from both TATA boxes of 5’ LTR and the 3’ UTL end in the 3’ LTR are not shown in 
this figure. 

 

LTR of BARE1 

The BARE1 LTRs are especially long, about 1.8 kb, and are conserved in BARE1 populations 

(Suoniemi et al., 1996a; Vicient et al., 1999b). The organization of BARE1 is represented in 

Fig. 7. Sequence examination revealed that BARE1 LTRs contain two canonical TATA boxes 

(Manninen and Schulman, 1993), both of them being able to direct RNA transcription but 

under different conditions (Suoniemi, 1996b). Cellular RNA polymerase II is responsible for 

transcription of BARE1. The LTRs contain both the promoter necessary for transcription and 

the terminator and polyadenylation signals needed for RNA processing (Suoniemi, 1996b; I). 

The termini of the cDNA integration intermediate of BARE1 LTRs  are  symmetrical  and  

identical to that of HIV-1, but different from other plant retrotransposons (Suoniemi et al., 

1997). In addition, LTRs also contain the R region, lying between the transcription start and 

termination. Because the promoter functions in the 5  LTR and the terminator in the 3  LTR, 

the R region is found at both ends of the transcript. Deletion analysis of the promoter allows 

identification of regions important for expression in protoplasts (Suoniemi, 1996b). A region 

of  165  bp  from the  3  end  of  the  LTR is  composed  of  an  array  of  tandemly  repeated  short  

sequences. Upstream from the tandem array, the region containing the two BARE promoters 

is the most variable region of the LTR. For the LTRs examined, more sequence divergence 

was found in the region surrounding the second TATA box than that surrounding the first 
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(Vicient and Schulman, 2005). The BARE1 LTRs contain 6 bp imperfect inverted repeats at 

their ends with the canonical 5’ TG…CA 3’ terminal sequences present in most retroviruses 

and retrotransposons. The genome TSD is established to be 5 bp (Suoniemi et al., 1997). 

Internal domain of BARE1 

The region between the LTRs in retrotransposons forms the internal domain. The PBS, a 

tRNA-complementary sequence at the end of 5’ LTR, is used by reverse transcriptase to 

initiate the cDNA minus-strand synthesis (Marquet et al., 1995). Priming of the cDNA plus-

strand is initiated at the PPT located just 5’ of the 3’ LTR (Heyman et al., 1995). The PBS of 

BARE1, as well as of several other plant retrotransposons is complementary to the tRNAi met 

(Suoniemi et al., 1997). The PPT is also highly conserved in the BARE1 family. Two 

important domains that exist in this part of the sequence before the translation start codon are 

the  Packaging  SIgnal  (PSI)  and  the  DImerization  Signal  (DIS)  domains.  The  PSI  is  

responsible for packaging of the retroviral mRNA into its specific viral particle (Clever et al., 

2002), whereas DIS directs kissing-loop interaction and is involved in the dimerization of the 

retroviral RNA during or just before mRNA packaging (Proudfoot, 2004). The untranslated 

leader (UTL) between the start of transcription and the start of translation is about 2 kb in 

BARE1 and is conserved in length among the various copies of the element. Two other 

retrotransposon families, stonor of maize (Marillonneta and Wesslera, 1998) and RIRE1 of 

rice (Noma et al., 1997) also possess a 2 kb UTL sequence. The BARE1 UTL region contains 

at least 51 putative ATG codons, similar to picornavirus. The RNA of picornavirus initiates 

translation internally, via an internal ribosome entry site (IRES) element present in their 5' 

untranslated region (Jackson and Kaminski, 1995). However, we do not have knowledge on 

the translation initiation of BARE1. The BARE1 internal domain encodes a predicted 

polypeptide, the key residues of the peptides which, when aligned with their counterparts 

from retrovirus and other copia-like retrotransposons, are well conserved (Suoniemi et al., 

1998). 

 

 gag gene product 

Gag encodes  proteins  that  form  VLPs,  which  package  retroelement  mRNAs  (Irwin  and  

Voytas, 2001). BARE1 gag is 843 nt in length; the predicted protein contains a typical zinc 

finger domain (CCHC) sequence at the C terminal and nuclear localization signal at the N 

terminal. The zinc finger domain is also present in plant retrotransposons del1-46 of lily 

(Smyth et al., 1989), Tnt1 of tobacco (Grandbastien et al., 1989) and Zeon-1 from maize (Hu 
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et al., 1995). The retroviral GAG precursor is formed from three essential domains, namely 

the matrix (MA), the capsid (CA) and the nucleocapsid (NC). The nucleocapsid protein 

consists of two CCHC zinc fingers flanked by highly basic regions (Morellet et  al., 1992). 

BARE1 has been translated and the capsid protein and integrase components of the predicted 

polyprotein are processed into polypeptides of expected size (Jääskeläinen et al., 1999). 

 

 pol gene product 

Products of the pol gene include the aspartic proteinase (PR) that processes the retroelement 

polyproteins, an integrase (IN) that inserts the cDNA into a new site in the host chromosome 

and a reverse transcriptase (RT) and its associated RNase H (RH), which synthesize a cDNA 

copy of the retroelement from the template mRNA (Irwin and Voytas, 2001). 

 Proteinase 

PR is encoded by pol, located at its N-terminus. It is required to release the other enzymes 

from the Pol precursor and is involved in processing of GAG (Gulnik et al., 2000). The 

BARE1 protease is 451 nucleotides long and its active catalytic site, which is located at its N 

terminus, contains a conserved motif DTG. Additionally, a tryptophan located three residues 

upstream of the catalytic aspartate is also conserved among copia elements (Peterson-Burch 

and Voytas, 2002). 

 Integrase 

The IN binds and inserts the retroelement cDNA into host chromosomal DNA. The IN 

features three domains: the N-terminal domain containing a ‘zinc finger’ – like motif (HHCC 

domain), the catalytic domain included in a central region of approximately 150 amino acids 

characterized by the DD(35)E motif, and the C-terminal domain, which is not highly 

conserved but contains the GKGY motif, unique to the Copia superfamily (Peterson-Burch 

and Voytas, 2002). The DD(35)E motif is a constellation of three invariant acidic amino 

acids,  the  last  two  separated  by  35  amino  acids.  These  acidic  residues  are  required  for  all  

catalytic functions of IN and have been proposed to bind the essential metal cofactor(s), Mn2+ 

or Mg2+ (Andrake and Skalka, 1996). The integrase sequence of BARE1 covers 1215 nt; its 

predicted translation and the secondary and tertiary structures are extremely well conserved 

when compared to HIV and ASV INs, although the sequence region used for modeling are 

only about 245 nt identical (Suoniemi et al., 1998). 
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 Reverse transcriptase-RNaseH 

The reverse transcriptase-RNaseH region is needed both for the synthesis of the polypurine, 

plus-strand primer and for the reverse transcription of the RNA transcript into a cDNA copy. 

The reverse transcriptase enzyme converts the RNA (5’ R-U5---ORF---U3-R 3’) molecule 

into a double-stranded DNA (5’ U3-R-U5---ORF---U3-R-U5 3’). The BARE1 rt is 603 nt and 

rnaseH is 784 nt. Reverse transcriptase activity has been detected in VLPs showing that 

cDNA synthesis can happen inside them (Jääskeläinen et al., 1999). The RT region between 

Tyr864 and Ala889 is fairly conserved among BARE1 and other copia retrotransposons 

(Manninen and Schulman, 1993; Xiong and Eickbush, 1990). 

 

 1.6.2 BARE1 insertion site preferences and evolutionary conservation of RNA and 

cDNA processing sites 

 In previous work carried out in our research group, inverse  PCR was  used  to  examine  the  

sequences flanking the BARE1 insertion sites. It was established the TSD as 5 bp, indicating 

that the BARE1 IN generates a 5 bp staggered cut during the integration reaction. Of the 

thirteen identified integration sites, nine were other BARE1 elements and three were other 

retrotransposons, one of them was a Grande-like element previously reported only for maize 

and its near relatives (Suoniemi et al., 1997). The termini of the cDNA integration 

intermediate  were  found to  be  symmetrical  and  identical  to  that  of  HIV,  but  different  from 

other plant retrotransposons. The dinucleotides at the end of cDNA were identified to be 

symmetrical 5’ AC (coding strand) 3’ CA (non-coding strand). The dinucleotides of tobacco 

Tnt1 element examined were in most cases AT at the 5’ end of the linear cDNA (coding 

strand) and 3’ TC at the 3’end (non-coding strand) ( Feuerbach et al., 1997). 

 

1.6.3 The role of BARE1 in Hordeum genome evolution 

The BARE1 family is a major, dispersed component of the barley genome (Suoniemi et al., 

1996a). Among the species in the Hordeum genus, BARE1 is present on an average in 14,000 

copies, with 16,000 copies in barley (Vicient et al., 1999a); the number varies across the 

genus. Based on these copy numbers and on the genome sizes, full-length BARE1 comprises 

0.8% to 5.7% of the genome in genus, and this measure also varies across the genus 

(Kankanpää et  al., 1996). The BARE1 copy number and genome size are positively 

correlated, indicating that BARE1 is an important although not the sole contributor to the 
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differences in genome size among the species of genus Hordeum. Sequencing of BARE1 

flanking regions demonstrates that 69% of the flanking sequences are retrotransposons with 

62% of these being BARE1 elements and that BARE1 elements are generally clustered near 

each other in the genome (Suoniemi et al., 1997). Hordeum genomes contain a large excess 

of BARE1 LTR sequences relative to the internal domain, and the excess LTRs appear to 

have their origin in homologous recombination between the LTRs of a single element, which 

removes the internal regions and leaves behind a single recombinant LTR. Recombination 

between LTRs would be expected to reduce the complement of functional retrotransposon in 

the genome, limiting but not eliminating the contribution of BARE1 to the genome size. 

Consistent with these observations, the LTR excess is inversely correlated with the 

proportion of genome occupied by BARE1 (Vicient et al., 1999a; Kalendar et al., 2000). The 

tandem copies of BARE1 generated by recombination between the right LTR of one element 

and the left  LTR of another element downstream from the first  could eliminate non-BARE1 

DNA located between LTRs. BARE1 displays nearly a three-fold intra-specific copy number 

variation in natural populations of the wild barley Hordeum spontaneum (Kalendar et al., 

2000). Correlations between BARE1 copy number, genome size, and local environmental 

conditions suggest, for the first time, a testable molecular mechanism linking habitat with 

retrotransposon induction in natural populations (Wendel and Wessler, 2000). 

 

1.7 BARE2 is a chimeric and defective retrotransposon 

 

Figure 8. The structure of retrotransposon BARE2. The regions of BARE2 are abbreviated as follows: LTR (5’), 
5’ UTL, GAG (the GAG of BARE2 is not expressed, and therefore represented by a red box), AP, IN, RT, RH, 
RNaseH, 3’ UTL and LTR (3’). The red triangles represent inverted repeats and black arrows represent host 
direct repeats. The TATA boxes contain in 5’ LTR and start codon ATG contain at the end of GAG are shown. 
The 5’ UTL start from both TATA boxes of 5’ LTR and 3’ UTR end in 3’ LTR are not shown in this figure. 

 

BARE2 LTRs are at least 96% similar to BARE1 LTRs, but their internal sequences are very 

different. The BARE2 group contains more genome copies than BARE1 (Tanskanen et al., 

2007).  It  also  creates  a  5  bp  target  site  during  an  insertion  event  as  BARE1 does.  The  full-

length BARE2 retrotransposon displays abrupt switches in sequence similarity between two 
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related families of elements, BARE1 and Wis-2. Hence, it appears that the BARE2 is a mosaic 

or  chimeric  element  that  was  generated  by  stand  switching  during  replication  (Vicient  and  

Schulman, 2005). These two elements are present in the Triticeae and related species, and are 

together polymorphic among closely related accessions. BARE2 elements are unable to 

synthesize  their  own  GAG  protein  because  when  the  first  ATG  is  lost  from  gag ORF,  the  

succeeding ATG is downstream of gag. However, BARE2 sequences are conserved with 

BARE1 in several domains which are critical for its life cycle. The structure of 

retrotransposon BARE2 is presented in Fig.8. 

 

1.8 Cassandra elements 

 Cassandra elements belong to the TRIM group of retrotransposons (Fig.3). TRIM elements 

have the following features: terminal direct repeat sequences between 100 and 250 bp in 

length; an internal domain of 100–300 bp. The internal domain contains a PBS and PPT but 

lacks the coding domains required for mobility. Thus, TRIM elements are not capable of 

autonomous transposition and probably require the help of mobility-related proteins encoded 

by other retrotransposons (Witte et  al., 2001). Cassandra elements universally carry 

conserved 5S RNA sequences and associated RNA polymerase III promoters and terminators 

in their LTRs (II). They are found in all vascular plants that have been investigated. Uniquely 

for LTR retrotransposons, the full length Cassandra element is 565-860 bp in length in which 

the length of LTR is 240-350 bp and the core domain is 65-260 bp long. The core domain 

contains 5S RNA sequences with conserved A, IE and C domains. The Cassandra 

polymerase III promoter contains a termination signal although it is different from the 

canonical termination signal for cellular 5S. Polyadenylation of pol III transcripts is rare. 

However, many Cassandra 5S, but not cellular 5S genes, possess a putative polyadenylation 

signal, CAA(T/C)AA, located 17 nt before the pol III terminator at the beginning of the 5S 

domain;  its  distance  from  the  terminator  is  quite  typical.  Although  most  of  polymerase  III  

transcripts are non-polyadenylated, polyadenylated cellular 5S RNA has been found 

(Fulnecek and Kovarik, 2007). The Structure of a Cassandra element is represented in Fig.9. 

 

Cassandra elements otherwise possess the organization typical for a Class I retrotransposon, 

in  which  polymerase  II  is  used  for  RNA synthesis.  The  polymerase  III  promoter  located  in  

the LTR therefore raises the question of which polymerase is used for Cassandra 

transcription. To answer this question, we set up experiments to find out the capping status of 
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the transcripts, because polymerase III transcripts are uncapped. We have also investigated 

the organization of the Cassandra element in the plant kingdom including the transcription 

motifs, organizations and insertional polymorphisms. 

 

 

Figure 9. Structure of a Cassandra element. Flanking genomic DNA is indicated as a wavy line with the TSDs 
as arrowheads. The element components, including the PBS and PPT sites, are shown as boxes. The terminal 
inverted repeats (TIRs) of the LTRs are shown as black triangles, and the 5S domain is hatched. The internal 
sequence contains PBS and PPT sites and a non-coding sequence. 

 

1.9 The transcription regulation of retrotransposon, capping, splicing and 
polyadenylation 
 

1.9.1 Capped & Uncapped RNA 

Nuclear capping occurs co-transcriptionally on all RNA polymerase II-synthesized RNAs in 

three steps (Lewis and Izaurralde, 1997; Furuichi and Shatkin, 2000; Gu and Lima, 2005). 

The N-terminal triphosphatase domain of capping enzyme hydrolyzes the 5  triphosphate of 

nascent pre-mRNA to a diphosphate. Guanosine monophosphate (GMP) is subsequently 

transferred onto this diphosphate to create a G(5 )ppp(5 )N terminus, where N denotes the 

first transcribed nucleotide. This terminus is then methylated by RNA (guanine-7)-

methyltransferase to generate the m7G(5 )ppp(5 )N cap. The cap participates in many aspects 

of pre-mRNA and mRNA metabolism, including splicing, polyadenylation, 

nucleocytoplasmic transport, translation, quality control and stability (Maquat, 2004; Isken, 

2007). Routine translation of the majority of mRNAs in eukaryotic cells is initiated by a cap-

dependent mechanism. This involves recognition and binding of the cap structure (m7GpppN) 

on the 5  ends of mRNAs by the eukaryotic translation initiation factor, eIF4F. Upon binding 

an mRNA, eIF4F recruits the small ribosomal subunit via eIF3 interaction and additional 

initiation factors, and then this 43S complex scans 5 –3  until the first AUG initiation codon is 

encountered. The 60S subunit is then recruited and elongation begins (Kozak, 1989). 

There has been little evidence for uncapped mRNAs in eukaryotic cells. Compelling evidence 

for uncapped mRNAs appeared only recently through experiments in Arabidopsis thaliana. 
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The populations were identified by their 5 -monophosphate ends, which enable primer 

ligation (Gregory et  al., 2008). Another group also used the same method to tag uncapped 

mRNAs but they started with poly(A) RNA and the uncapped mRNA was identified by a 

microarray technique. The finding that the levels of specific uncapped transcripts varied 

depending on the stage of floral development independently of full-length mRNA abundance 

provided the evidence that decapping was regulated and physiologically significant (Jiao et 

al., 2008). Sequence-related transcripts usually shared similar levels of uncapping, offering 

additional evidence that decapping is to some extent an active, rather than a passive, process 

(Schoenberg and Maquat, 2009). Many viruses have uncapped RNAs as their genomic RNA, 

for example, poliovirus, mengovirus and satellite tobacco necrosis virus (STNV) RNA. 

Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and 

highly structured 5' non-coding regions, and such IRES sequences are required for viral 

protein synthesis (Haller et  al., 1993). The IRES of hepatitis C virus (HCV) RNA contains 

>300 bases of a highly conserved 5 -terminal sequence, most of it located in the uncapped 5 -

untranslated region (5 -UTR) upstream from the single AUG initiator triplet at which the 

translation of the HCV polyprotein begins (Lyons, 2001). 

 

1.9.2 Splicing 

In most eukaryotic genes, the coding information (exons) is interrupted by introns that are 

removed from pre-mRNA to produce mature mRNA. This process of intron removal (and 

subsequent exon ligation), termed splicing, is carried out by the host spliceosome, which is 

composed of over 200 different proteins and five small nuclear RNAs (U1, U2, U4, U5 and 

U6) (Jurica and Moore, 2003). The 5  and 3  termini of introns contain the highly conserved 

dinucleotides GU and AG respectively (Mount, 1982; Burset et al., 2000). Other sequences 

around  the  5  and  3  splice  sites  (the  splice  donor  and  acceptor  sites,  respectively)  are,  

however, poorly conserved, suggesting that the exact recognition of a genuine splice site 

among many cryptic splice sites requires additional cis elements. Most of these cis elements 

are considered to be recognized by trans-acting splicing factors and generally are referred to 

as exonic or intronic splicing enhancers and exonic or intronic splicing silencers. Splicing, 

especially alternative splicing (in which the order of exon ligation varies), is a major 

contributor to protein diversity in metazoans (Black, 2003). 
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Although the splicing has been well documented for some groups of retroelements (REs) like 

retroviruses and LINEs (Rabson and Graves, 1997; Belancio et al., 2006; Tamura et  al., 

2007), it has so far been reported only for a few LTR retrotransposons. It occurs in the 

transcripts of the envelope-class retrotransposon Bagy-2, where it generates a subgenomic 

RNA lacking almost the entire gag-pol sequence, thereby enabling expression of the 

downstream env gene (Vicient et  al., 2001b). It has been demonstrated that alternative 

splicing of RNA from Drosophila retrotransposon copia is involved in the regulation of the 

ratio between GAG and the pol proteins, as the full-length copia RNA containing both gag 

and pol regions  is  translated  to  protein  at  a  far  lower  level  than  spliced  subgenomic  RNA  

encoding GAG only (Brierley and Flavell, 1990). Differential expression is also observed in 

retroviruses and Ty, but for these the mechanism is a frameshift (Voytas and Boeke, 1993). In 

the case of VLPs of Tf1 retrotransposon from Schizosaccharomyces pombe,  an  excess  of  

GAG protein is produced relative to integrase, because of a regulated degradation process 

(Atwood et al., 1996). 

 

Experimental evidence for the splicing of intron-containing transcripts of plant LTR 

retrotransposon Ogre has been provided recently (Steinbauerová et al., 2008). This article 

describes a unique arrangement of the gag-pol region for Ogre elements where the gag-pro 

domains (ORF2) are separated from rt/rh-int (ORF3) by a region of about 150–350 bp, which 

includes several stop codons and is surrounded by GT/AG dinucleotides typical of the 5  and 

 termini of most introns (Breathnach et al., 1978; Mount, 1982; Burset et al., 2000). It has 

been proposed that this region represents an intron that is removed by splicing to reconstitute 

the full-length gag-pol coding region (Neumann et al., 2003).  

 

1.9.3 Polyadenylated & Non-polyadenylated RNA 

Almost all eukaryotic mRNA precursors undergo a co-transcriptional cleavage followed by 

polyadenylation at the 3' end. The life of an mRNA is directed by the protein components of 

ribonucleoprotein particles (RNPs) whose roles include polyadenylation, transport, 

translation and degradation. Polyadenylation plays a key role in the life of an mRNA, 

regulating its transport, translation and turnover. A typical poly(A) signal required for 

transcriptional termination by RNA Pol II consists of three sequence elements that determine 

the exact site of the cleavage and polyadenylation. These elements are: hexanucleotide 

AAUAAA, cleavage/polyadenylation site and a GU- or U-rich region. The actual 
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cleavage/polyadenylation site is typically located 11–23 nt downstream of the hexamer and 

10–30 nt upstream of the GU- or U-rich region (Proudfoot, 1991). For several retroviruses 

(e.g., HTLV-1, HTLV-2, bovine leukemia virus, RSV, murine leukemia virus), the choice of 

polyadenylation site is straightforward since the major signal for the reaction (AAUAAA) 

occurs only once in the transcript. For other retroviruses (e.g., HIV-1, equine infectious 

anemia, moloney murine leukemia virus), the situation is rendered more complex by the 

duplication of the polyadenylation signals (AAUAAA and the 3' G/U-rich sequence) at the 5' 

and 3' ends of the transcript (Cochrane et al., 2006). Thus, controlling where polyadenylation 

occurs in the retroviral genome is critical for replication. 

A  number  of  functional  transcripts  are  known  to  lack  poly(A)  tails.  These  non-

polyadenylated transcripts include ribosomal RNAs generated by RNA polymerase I and III, 

other small RNAs generated by RNA polymerase III, replication-dependent histone mRNAs 

(Mullen and Marzluff, 2008) and a few recently described long non-coding RNAs (lncRNAs) 

(Wilusz et al., 2008; Sunwoo et  al., 2009) synthesized by RNA polymerase II. Earlier 

evidence suggested the existence of non-histone polysomal-associated non-polyadenylated 

RNAs (Milcarek et  al., 1974; Salditt-Georgieff, 1981), but these were not characterized in 

detail. A group of scientists who work on the eukaryotic transcriptome have identified many 

uncharacterized transcripts and a group of mRNAs lacking a poly(A) tail in H9 and Hela cells 

(Yang et al., 2011). 

Processing of eukaryotic mRNA starts during transcription and is influenced by the RNA 

polymerase II elongation complex (Zorio and Bentley, 2004; Proudfoot, 2004). Capping, 

polyadenylation, and splicing have been seen to occur on nascent transcripts in vitro, and a 

variety of in vivo and in vitro approaches have strongly implicated the carboxyl-terminal 

domain (CTD) of  the  large  subunit  of  RNA  polymerase  II  in  connecting  transcription  with  

these events (Proudfoot et  al., 2002; Cramer, 2001; Hirose and Manley, 2000; Shatkin and 

Manley, 2000). Like retroviruses, BARE1 LTRs contain typical polymerase II promoters, 

which include a TATA box and regulatory elements; their gene expression requires 

transcription by the host RNA polymerase II. For retroviruses, the integrated viral DNA (the 

provirus) is transcribed by the host RNA polymerase II (pol II) to generate genome-length 

viral RNA that has a 5  cap and a 3  poly(A) tail (McNally, 2008).  
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1.10 The impact of REs on genome structure, function and evolution 
 

Many experiments have demonstrated that REs may be an important creative force in genome 

evolution  and  in  the  adaptation  of  an  organism  to  altered  environments  (Gogvadze  and  

Buzdin, 2009). Table I summarizes the current state of knowledge concerning the ways in 

which retrotransposon may affect the structural and functional evolution of genes and 

genomes. 
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Table 1. The impact of REs on genome structure, function and evolution (modified from (Gogvadze and Buzdin, 

2009)) 

RE function Examples 
Formation of new 
retrotransposons 
 
Recombination events 
 
 
Transduction of 3’-flanking 
sequences 
 
Formation of processed 
pseudogenes 
 
Template switch during 
reverse transcription 
 
 As promoters 
 
 
 
As transcriptional enhancers 
 
 
 
 
Providers of novel splice 
sites 
 
 
Sources of new 
polyadenylation signals 
 
 
Regulate mRNA production 
 
 
 
Transcriptional silencers 
 
 
 
Antisense regulators of host 
gene transcription 
 
 
 
Insulator elements 
 
 
 
 
Regulators of translation  
 
 
Play a role in cancer 
predisposition, development 
and progression 

Formation of SVA (Shen et al., 1994) LTR-containing retrotransposons (Malik and Eickbush, 
2001), and tRNA-derived SINEs (Ohshima et al., 1996) 
 
Recombination between REs may cause various diseases  (Burwinkel and Kilimann, 1998; 
Kamp et al., 2000; Goodier and Kazazian Jr, 2008) 
 
SVA-mediated transduction duplicated the entire AMAC gene three times in the human 
genome (Xing et al., 2006) 
 
Mouse PMSE2b (Zaiss and Kloetzel, 1999) and PHGP pseudogenes (Boschan et  al., 2002), 
TRIMCyp gene of owl monkey (Babushok et al., 2007) 
 
Formation of bipartite and tripartite chimeric elements in eukaryotic genomes (Fudal et  al., 
2005; Buzdin et al., 2007; Gogvadze et al., 2007) 
 
LTRs cause placental-specific expression of CYP19 (van de Lagemaat et  al., 2003) and 
regulate transcription of the NAIP gene (Romanish et al., 2007); LTRs represent the only 
known promoter for the liver-specific BAAT gene (Carlton et al., 2003) 
 
Expression of salivary amylase in humans is a result of HERV-E integration (Meisler and Ting, 
1993); ERV9 LTR are enhancer elements in the beta-globin locus control region (Long et al., 
1998); Alu sequence is part of enhancer element of human CD8 alpha gene (Hambor et al., 
1993) 
 
Muscle-specific inclusion of an Alu-derived exon in SEPN1 mRNA in humans (Lev-Maor et 
al., 2008); generation of alternative VEGFR-3 transcript due to the use of a non-canonical 
acceptor splice site within LTR sequence (Hughes, 2001) 
 
HERV-F LTR may function as an alternative polyadenylation site for gene ZNF195 (Kjellman 
et al., 1999) HERV-H LTRs are major polyadenylation signals for human HHLA2 and 
HHLA3 genes (Mager et al., 1999) 
 
RNAs transcribed from mouse B2 and human Alu SINEs have been found to control  mRNA 
production at multiple levels (Ponicsan et al.2010 ) 
 
A part of Alu element is a transcriptional silencer of the human BRCA gene (Sharan et  al., 
1999); endogenous retroviral sequence RTVL-la may serve as silencer of the human Hpr gene 
(Maeda and Kim, 1990) 
 
 
Human-specific HERV-K LTRs generate antisense transcripts to SLC4A8 and IFT172 mRNAs 
(Gogvadze et al., 2009) 
 
 
B2 SINE element located in the murine growth hormone locus serves as a boundary to block 
the influence of repressive chromatin modification (Lunyak et al., 2007) drosophila LTR 
retrotranspson gypsy in the 5’ region of the gene yellow blocks the action of the upstream 
located enhancers and is responsible for the pigmentation of cuticula (Dorsett, 1993) 
 
Alu and L1 segments in the 5’UTR of human ZNF177 gene modify gene expression on the 
protein level by decreasing translation efficiency (Landry et al., 2001) 
 
 
All three currently actively mobilizing non-LTR retrotransposon families-L1, SVA and Alu-
have been identified as the causative agent of several genetic disorders (Konkel and Batzer, 
2010) 
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1.11 Retrotransposons as molecular markers 

 Retrotransposons are ubiquitous, active, and abundant in plant genomes. Many 

retrotransposons’ features make them appealing as the basis of molecular marker systems. 

They are usually dispersed throughout the genome and produce large genetic changes at the 

point of insertion that can be detected by PCR with specific primers (Schulman, 2007). 

Several molecular marker systems based on retrotransposons have been developed. SSAP 

(sequence-specific amplified polymorphism) relies on amplification of DNA between a 

retrotransposon integration site and a restriction site with a ligated adapter (Waugh and 

Thomas, 1997). IRAP (inter-retrotransposon amplified polymorphism) relies on amplification 

of DNA between two nearby retrotransposons or LTRs (Kalendar and Schulman, 2006). 

REMAP (retrotransposon-microsatellite amplified polymorphism) involves amplification of 

fragments which lie between a retrotransposon insertion site and a microsatellite site and 

RBIP (retrotransposon-based amplified polymorphism) detects loci either occupied by or 

empty of a retrotransposon (Agarwal et al., 2008). All methods rely on amplification using a 

primer corresponding to the retrotransposon and a primer matching a section of the 

neighboring genome. 

 

Molecular markers play an essential role today in all aspects of plant breeding, ranging from 

the identification of genes responsible for desired traits to the management of backcrossing 

programs. They are useful to determine pedigrees and phylogenies and serve as biodiversity 

indicators (Schulman, 2007). Furthermore, they are used to analyze genome structure and 

elucidate gene function. For example, BARE retrotransposon markers have been used to map 

a major gene in barley that conditions resistance to the important phytopathogen 

Pyrenophora teres (net blotch; Manninen, 2000). This class of retrotransposon markers has 

also  been  used  to  add  knowledge  on  evolution  of  Hordeum spontaneum in response to 

climate (Kalendar et al., 2000). 
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2. Aims of the study 
 

The  main  objective  of  the  present  study  was  to  investigate  transcription  of  LTR  
retrotransposons. For the LTR retrotransposon family BARE, which includes BARE1 and its 
parasitic non-autonomous partner BARE2, I studied transcript processing and transcriptional 
regulation. For the non-autonomous Cassandra retrotransposon, I investigated the transcript 
structure and transcriptional features. The specific goals were as follows:  

1. To elucidate the promoter activity of the BARE1 LTR in different barley tissues. 

2. To investigate the capping and polyadenylation of BARE1 transcripts. 

3. To study the RNA pools of BARE1 for translation and /or encapsidation. 

4. To study the potential for extra GAG protein formation for BARE1. 

5. To study the parasitism of the non-autonomous BARE2 element on BARE1. 

6. To characterize the features of the transcripts of Cassandra elements 
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3. Materials and methods 
 

3.1 Materials 

Hordeum vulgare cv. Himalaya was used for bombardment. 

Hordeum vulgare cv. Kymppi line K19 (gift of VTT Biotechnology and Food Research, 

Espoo, Finland) was used for making callus cell culture. 

Hordeum vulgare cv. Bomi was used for DNA and RNA isolation for all other experiments. 

 

3.2 Methods 

Table 2. Methods used in this dissertation 

METHOD I II III 

Plant DNA isolation x x x 

Plant RNA isolation x x x 

In-vitro transcription x   

Nuclease protection assay x   

RACE–PCR x   

5’RLM–PCR  x x 

3’ RLM–PCR x  x 

Particle bombardment x   

Virus-like particle isolation   x 

Polyribosome isolation   x 

RT-PCR x x x 

LUC & GUS assay x   

Sequencing & analysis x x x 
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3.2.1 DNA extraction 

DNA  was  extracted  according  to  the  CTAB  method  for  DNA  isolation  from  barley  tissue.  

The detailed protocol is at http://primerdigital.com/dna.html 

 

3.2.2 RNA extraction 

For small amounts of RNA (several micrograms), the Qiagen Plant RNeasy kit was used. For 

large amounts of RNA, we used phenol and chloroform. For the RNA isolation from sucrose 

gradients, we have used the phenol and chloroform method. 

 

3.2.3 Primer Design 

All the primers were designed with the FastPCR program:  

http://www.biocenter.helsinki.fi/bi/Programs/download.htm 

 

3.2.4 Particle bombardment 

Seeds from cv. Himalaya were germinated aseptically at room temperature; embryos were 

excised from grains as materials for bombardment. Seeds were sown in 15 cm pots filled with 

vermiculite and grown in a controlled environment room for collection of roots and shoots. 

Callus lines were harvested 10-14 days after subculture. Transient transformation was carried 

out  by  bombardment.  The  various  LTR-luc constructs  were  mixed  with  a  GUS  control  

plasmid  (pBI221)  at  a  ratio  of  1:1,  and  precipitated  on  to  gold  particles  (~1  m  diameter)  

prior to bombardment. After bombardment, the tissues were incubated on the sealed agar 

plate for 24 h at room temperature in darkness. 

 

3.2.5 LUC and GUS assays 

Expressed LUC and GUS proteins were extracted for enzymatic measurement with Promega 

LUC kit and Tropix GUS-light kit respectively according to the manufacturer’s instructions. 

The final results were calculated as: EXO-LUC/LTR-GUS : LTR-LUC/LTR-GUS, where 

EXO-LUC is the LTR deletion fused to luc, LTR-LUC , the full-length LTR fused to luc, and 

LTR-GUS , the full-length LTR fused to uidA. The LTR-GUS construct was co-transformed 

with  each  LUC  construct  and  worked  as  transformation  control.  Visualization  of  GUS  
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activity was performed by submerging bombarded tissues in a stain buffer from the kit. The 

blue stain was then visualized by light microscopy and the photos were taken. 

 

3.2.6 In vitro transcription 

Probes for ribonuclease protection assays for identifying BARE1 transcripts were synthesized 

by in vitro transcription  using  T7  RNA  polymerase  on  templates  of  synthetic  DNA  

containing the T7 promoter. Several partially single-stranded templates were prepared. The in 

vitro transcription reaction was carried out with the T7 MEGAshortscriptTM kit (Ambion) 

according to the manufacturer’s protocol. Fluorescent probes were made by incorporating 

labeled Fluorescein-12-UTP and unlabeled UTP in 1:1 ratio into the transcription reaction. 

The internal control RNA probe P18S was generated by in-vitro transcription with T3 

polymerase from the pTRI RNA 18S (Ambion). The probes produced were gel purified and 

quantified. 

 

3.2.7 RACE-PCR 

The reverse transcription reaction for production of cDNA was carried out using the SMART 

RACE  cDNA  Amplification  Kit  according  to  the  manufacturer’s  instructions.  The  PCR  

product was first purified with the Qiagen PCR purification kit and cloned into the pGEM-T 

vector (Promega). Colonies containing inserts were screened by PCR, using the gene-specific 

primer which binds to both TATA1 and TATA2 transcripts together with the universal 

primer mix from the kit (smart™ RACE cDNA amplification kit). Positive colonies were 

sequenced by an in-house service (Fig. 10). 
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Figure 10. The mechanism of 5’ RACE PCR (modified from smart™ RACE cDNA amplification kit protocol). 
GSP represents gene specific primer. 

 

3.2.8 Nuclease protection assay 

Ribonuclease protection assays (RPAs) were made with the RPA III kit (Ambion) according 

to the manufacturer’s instructions. The precipitated, protected fragment generated by the 

assay was dissolved in 10 µl of loading buffer before loading onto a 5% acrylamide 

sequencing gel in a Pharmacia LKB ALF DNA sequencer. 

 

3.2.9 Virus-like particle isolation 

Barley cv. Kymppi callus (frozen by liquid nitrogen) was homogenized into powder, and 4.8 

g powder was added into VLP extraction buffer (150mM KCl, 10mM HEPES-KOH pH 7.2, 

10mM EDTA, 5mM, MgCl2 3mM DTT, 0.5% Triton X-100, 1% protease inhibitor cocktail 

(Promega). The extracts were transferred into 1.5 ml Eppendorf tubes and centrifuged at 

1000xg for 10 min at 4°C in a tabletop centrifuge, followed by 12,000xg and 18,000xg 

centrifugation under the same conditions. The supernatant from the extraction was filtered 

through a 0.2 µm membrane, the filtered supernatant was placed into ultracentrifuge tubes 

that  contained  20%  sucrose  and  then  the  VLPs  were  purified  from  the  supernatant  by  

ultracentrifugation at 35,000 rpm (Sorvall TH 641 rotor) for three hours at 4°C. Nine 

fractions were taken and pellet was saved. Protein from each fraction was precipitated by 

TCA followed by Western blotting. The fraction which contained VLP was identified by the 

existence of mature GAG protein (32 kDa). 



 
 

32

3.2.10 Polyribosome isolation 

Barley cv. Kymppi callus was cultured in Medium 108 as described by Salmenkallio-Marttila 

et al. (1995). The cells were collected, frozen under liquid N2, and then pulverized. 

Approximately 3.2 g powder was thawed in polysome extraction buffer (0.2 M sucrose, 0.2 

M Tris-HCl pH 8.5, 0.4 M KCl, 35 mM MgCl2,  25  mM  EGTA,  10  mM  DTT)  and  the  

mixture was gently homogenized. The mixture was centrifuged at 2,000 g for 5 min at 4 °C. 

The supernatant was adjusted to 1 % (v/v) for Triton X-100 and centrifuged at 20,000 g for 

20 min at 4 °C. The supernatant was collected and supplemented with 400 mM KCl, then 

incubated for 10 min at room temperature, after that, the supernatant was layered onto 10%-

50% sucrose gradients prepared in polysome buffer and centrifuged at 4°C for 4 h at 36,000 

rpm in a Sorvall TH-641 rotor. Then 1ml fractions were collected and the absorbance of the 

gradient at 260 nm was monitored. The total RNA was isolated from each fraction and an 

RNA gel was run to identify those fractions which contained polyribosome. 

3.2.11 5’ RLM-RACE 

5’ RLM-RACE was used to investigate the capping state of BARE1 transcripts. The total  

RNA or polyadenylated RNA was directly ligated to an RNA linker to detect the uncapped 

RNA population. The ligation of Calf Intestine Alkaline Phosphatase (CIP) and Tobacco 

Acid Pyrophosphatase (TAP) -treated RNA enables detection of the capped population by 

nested PCR. The idea of 5’ RLM-RACE is presented in Fig.11. 

 
Figure 11. The mechanism of 5’ RLM-RACE (RLM-RACE Procedure from Ambion) 
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3.2.12 3’ RLM-RACE 

3’ RLM RACE was used to investigate the 3’ end of BARE1 transcripts and also to examine 

the  3’  ends  of  Cassandra elements. The method is summarized in Fig. 12. The RNA was 

ligated with a phosphorylated oligo first, then the cDNA was synthesized with a primer 

which  binds  to  the  oligo.  Nested  PCR  was  then  carried  out  with  a  gene-specific  primer  

together with the cDNA primer, and the PCR product cloned and sequenced. 

 
 

Figure 12. The mechanism of 3’ RLM-RACE. GSP represents a gene specific primer. 
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4. Results and discussion 
 

We have carried out a study of the transcription of BARE element within different barley 

tissues and analyzed the promoter activity of the BARE LTR. The two promoters of the LTR 

vary independently in activity by tissue. Regarding translation of a reporter gene, promoter 

element TATA1 is almost inactive in embryos, whereas transcription in callus appears to be 

less tightly regulated than in other tissues. Deletion analyses of the LTR identified strong 

positive and negative regulatory elements. The promoters produce multiple groups of 

transcripts, and these transcripts are distinct by their start and stop points, by their sequences, 

and by whether a poly(A) tail is added to the end of transcript. Some of these groups do not 

share the common end structures needed for template switching, which is critical for their 

replication and life cycle. Only about 15% of BARE transcripts are polyadenylated. 

Many viruses have uncapped genomic RNA, for example, tobacco necrosis virus RNA (Shen 

and Miller, 2004) and barley yellow dwarf virus (Allen et al., 1999). The close relationship 

between retrotransposons and retroviruses attracted our interest to investigate the capping 

situation of BARE1 transcripts. Surprisingly, we found that only TATA2 transcripts are 

capped, and transcripts starting from TATA1 are uncapped. Furthermore, the experimental 

results showed that capped transcripts are polyadenylated, and also that capping and 

polyadenylation are important steps for mRNA maturation and translation. The bombardment 

experiment with LTR constructs gave strong evidence that this population of transcripts is 

used for making polyprotein, and that, in contrast, constructs containing TATA1 do not give 

any LUC activity, which means that this population is not available for translation. The 

evidence that capped and polyadenylated mRNA cannot provide an R domain, which is a 

critically needed in cDNA synthesis, and that the non-polyadenylated transcripts can provide 

different lengths of R regions demonstrate that BARE transcripts can be sorted into two pools, 

capped ones for translation and uncapped transcripts for encapsidation. The existence of two 

nonequilibrating pools has been demonstrated for moloney murine leukemia virus before 

(Levin et al., 1974; Levin and Rosenak, 1976). 

 BARE1 has only one open reading frame like many other superfamily Copia elements. 

Unlike superfamily Gypsy elements and retroviruses which create extra GAG by 

frameshifting, we found BARE1 has a novel way to produce extra GAG: by splicing. Partial 

transcripts of BARE1 are  spliced  to  produce  a  subgenomic  RNA  encoding  only  GAG,  the  
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capsid protein that forms the VLPs. The BARE2 retrotransposon, which lacks the capacity to 

produce its own GAG, is not spliced. BARE2 is packaged into the VLPs formed by the GAG 

protein of BARE1. Furthermore we found capping, splicing, and polyadenylation are 

connected, and that capped, spliced, polyadenylated mRNA is polyribosome related. Taken 

together, we believe that we have uncovered an important feature of BARE transcription, and 

we will investigate RNA and cDNA intermediates in virus-like particles to uncover the 

details of BARE replication. 

 

4.1 The BARE1 LTR functions  as  a  promoter  and some BARE1 elements 
are transcriptionally active 
 

The  LTRs  of  retrotransposon  BARE1 have promoter activity. This has been established by 

histochemical  assays  of  GUS,  which  is  translated  using  an  LTR-gus construct in various 

tissues (I), and protoplast transformation (Suoniemi et al., 1997). Most retrotransposons are 

thought to be transcriptionally inactive (Kumar and Bennetzen, 1999) or transcriptionally 

silent  in  somatic  tissues,  but  active  during  certain  stages  of  plant  development  or  stress  

conditions (Grandbastien, 1998). BARE1 was shown to be transcriptionally active in leaves 

(Suoniemi et al., 1997). In our work, we wanted to find out if BARE1 is active in other barley 

tissues as well, and about promoter choice in various tissues. 

4.1.1 BARE1 is active in all tested barley tissues 

The BARE retrotransposon is unusual in containing two promoters, TATA1 and TATA2. The 

question of how both promoters may be under selection for maintenance prompted us to 

investigate the relative activity of TATA1 and TATA2 in leaves, roots, shoots, embryos, and 

callus by the RNase protection assay (Melton, 1984) to evaluate expression level. Our results 

showed BARE1 is  active  in  all  tested  tissues,  and  that  the  transcription  level  is  almost  the  

same for  the  transcripts  that  start  from TATA1.  For  TATA2 transcripts,  however,  embryos  

give the strongest signal, and leaves give a weaker signal (I). 

4.1.2 Determination of the start site for BARE transcripts 

Whole-genome transcriptional analyses indicate that putative alternative transcriptional start 

sites are not uncommon in Arabidopsis (Alexandrov et al., 2006). Many retrotransposons also 

have this feature, for example, yeast retrotransposon Ty4 (Hug and Feldmann, 1996), the D. 
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melanogaster TART family of telomeric retrotransposons (Maxwell et al., 2006), and the D. 

melanogaster mdg1 element, which displays multiple start sites for the antisense direction 

(Arkhipova and Ilyin, 1991). We have examined the 5  ends of BARE transcripts from callus 

and  shoots  in  more  detail  by  5  rapid  amplification  of  cDNA ends  (RACE).  For  transcripts  

starting after TATA1, we were also able to separate the results for BARE1 and BARE2. 

Shoots yielded clones for transcripts from both BARE subfamilies and TATA boxes. Callus 

cells contained both TATA1-driven BARE2 transcripts and TATA2-driven BARE transcripts. 

Multiple,  closely  spaced  5  ends  were  obtained,  with  four  different  5  ends  for  TATA1  

products in 13 sequenced RACE clones and five different 5  ends for TATA2 products among 

24 RACE clones. Our earlier results (Suoniemi, 1996b) indicated a start for TATA1 at nt 

1323 and for TATA2 at nt 1670, both for callus. Our current results (I) differ from these by 

25–60 nt for TATA1 and from 5 to 19 nt for TATA2, which is not surprising: The earlier 

positions were estimated from the relative mobility of RNA fragments in sequencing ladders, 

whereas the current positions have been determined directly by sequencing. 

4.1.3 Control of BARE transcription in barley tissues  

In order to identify functional regulatory regions of BARE1 LTR in plant cells, transient gene 

expression experiments were undertaken in leaf, embryo, and callus by particle bombardment 

(I). We concentrated on leaves as they are better bombardment targets for this purpose. Full-

length and deleted LTR constructs, which contain a putative promoter, luc gene and nos 

terminator, were bombarded together with the construct LTR-gus-nos as a transformation 

control. Some constructs contain both TATA1 and TATA2, whereas some others contain 

only one of them. The expression of the luc gene driven by these constructs, and of the gus 

gene driven by the LTR was analyzed by histochemical and fluorimetric methods. Construct 

H and T0, which contain neither TATA1 nor TATA2, did not give any LUC activity, which 

shows that there is no other promoter. Previous assays of the promoter activity of the BARE1 

LTR were carried out only in leaf protoplasts (Suoniemi, 1996b), which may not accurately 

reflect expression in organized tissues. When we compared the LUC activity driven by 

deleted LTR constructs and by the full length LTR, we identified both positive and negative 

regulatory elements, inferred to be so because of their corresponding effect on reporter gene 

expression. (Fig. 13). The positive elements locate in 308-963 nt, the negative regulatory 

elements locate at 963-1444 nt and strong positive regulatory elements locate at 1444-1611 nt 

respectively. Callus tissue is a useful experimental system for studying the BARE1 life cycle 
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due to the abundance of BARE1 translation  products  in  it  (as  well  as  in  embryos)  in  

comparison with their dearth in leaves (Jääskeläinen et al., 1999; Vicient et al., 2001b). For 

transcriptional comparisons between embryos and callus, we chose constructs to test the 

relative strengths of TATA1 and TATA2 and the result showed that both TATA1 and 

TATA2 were active in callus. TATA2 showed more activity in embryos than in callus. 

Furthermore, we found an interesting phenomenon: the construct that contained only TATA2 

gave relatively strong luc expression, especially in callus tissue, which is comparable to full 

length LTR activity. On the other hand, constructs that contain only TATA1 did not give 

LUC activity. As we now know, TATA1 functions in transcription, but the transcripts that 

start from TATA1 may not be used as templates for translation. 

 

Figure 13. The location of regulatory element in BARE1 5’ LTR.  

4.2 BARE1 transcript termination 

BARE1 mRNA falls into two populations, one containing polyadenylated tails, the other 

lacking them, and the RNA also shows sequence heterogeneity within each group. Based on 

our experimental results (I), we observed that if polyadenylated RNA starts after TATA2, no 

R domain could be identified. If it starts after TATA1, a few different sizes for the R region 

can be identified. The R region is very important for the start of BARE1 transcription. The 

experiment to map the 5’ mRNA ends of polyadenylated BARE1 transcripts by the direct 

ligation method did not give PCR products, which means that polyadenylated BARE1 RNA 

has no free 5’ phosphate. Hence, it appeared unlikely (I) that an R region is created from this 

population.  
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4.2.1 Polyadenylated transcripts 

Polyadenylation is an important step during messenger RNA maturation that determines the 

RNA stability and translatability, among other characteristics. It consists of the addition of a 

poly(A) tract to the 3’ end of the cleaved pre-mRNA and requires a number of cis-elements 

that are recognized by the cleavage and polyadenylation machinery. Suboptimal cis-elements 

have been shown to explain the inefficient polyadenylation and frequent transcriptional read- 

through of the Rous sarcoma virus, which is a retrovirus structurally related to LTR 

retrotransposons (Maciolek and McNally, 2008). We analyzed the mRNA 3' ends of BARE1 

by RT-PCR, using a modified oligo(dT) as the cDNA primer and carrying out PCR using two 

nested BARE-specific primers, positioned upstream of TATA1, paired with a cDNA primer 

lacking the dT segment. The BARE- specific primer guarantees that the amplification is from 

the  U3  region  of  3’  LTR.  We  detected  cDNA  products,  which  comprised  at  least  two  

populations (I): the major population stops 23nt after the TATA1 in the 3’ LTR and has the 

contiguous structure (TATATA)(TATAA)(18nt)Poly(A), with the first motif being TATA1 

and the second the likely polyadenylation signal; the other is a minor population, which stops 

at a few nucleotides downstream of a predicted polyadenylation signal in BARE1a (Z17327), 

with the sequence ATAA located at 1484 of Z17327 being proposed as the polyadenylation 

signal. Neither of these two populations will define an R domain from transcripts starting 

from TATA2, and this puzzle led us to investigate the existence of non-polyadenylated 

transcripts. The D. melanogaster TART family also has multiple polyadenylation ends 

(Maxwell et al., 2006; Hernández-Pinzón et al., 2009). 

4.2.2 Non-polyadenylated transcripts 

We performed 3’ RLM-RACE PCR by first adding a linker to the end of the total transcript 

preparation and then, after purification, synthesizing cDNA by reverse transcription. The 

BARE1 transcripts were screened by nested PCR using nested BARE1-specific forward 

primers and a primer which binds to the ligated linker. The PCR product showed several 

bands on gels, which represent transcripts ending after each TATA box when mapped on the 

BARE1a (Z17327). We also purified these PCR products and cloned them, then checked the 

clones using BARE-specific primer together with a primer specific for products with a 

poly(A) end. This approach showed that 15% of the BARE transcripts are polyadenylated. 

This result suggests that BARE1 presents a weak transcriptional terminator that give rise to a 

population of transcripts polyadenylated at different positions, with a majority of transcripts 
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being non-polyadenylated. In the case of retroviruses, a weak polyadenylation signal allows 

some transcripts to escape premature polyadenylation at the 5’ LTR (Furger et al., 2001). 

Nevertheless, the presence of a weak polyadenylation site could help retrotransposons to 

minimize their deleterious effect in genomes and contribute to their maintenance in evolution 

(Hernández-Pinzón et al., 2009).  

4.3 Capping of BARE transcripts 

Many viruses contain uncapped genomic RNA and use an internal ribosomal entry 

mechanism that promotes translation; for example, both hepatitis A virus (Brown et al., 1991) 

and yeast retrotransposon Ty1 produce both capped and uncapped RNAs encapsidated into 

particles (Cheng and Menees, 2004). We set up an experiment to investigate the capping 

situation of BARE1 transcripts to uncover the mechanism of translation and VLP formation. 

We made two parallel experiments: in one experiment, the DNase-treated total RNA was 

dephosphorylated, followed by decapping. The dephosphorylation treatment eliminated the 

phosphate on possible contaminating trace amounts of genomic DNA and on the uncapped 

RNA population. The decapping treatment exposed the free phosphate behind the G cap for 

ligation, allowing an RNA linker to be ligated to the 5’ end. Nested PCR was then carried out 

with nested BARE1-specific primer pairs, each pair having a primer which binds to the 

ligated linker. Both TATA boxes were known to be in use, as demonstrated by the RACE –

PCR  experiment.  Surprisingly,  only  transcripts  that  started  after  TATA2  gave  bands  in  the  

various tissues. From the RACE experiment, we know both TATA boxes are used, so it was 

likely that transcripts starting after TATA1 were uncapped; in order to check this, another 

experiment was done in parallel in which the same amount of total RNA was directly ligated 

with the RNA linker, so the uncapped BARE transcripts should have a linker sequence at the 

5’ end, suitable for the same nested RT-PCR. The RT-PCR result from the RNA directly 

ligated to a linker identified transcripts starting after TATA1. No transcripts starting from 

TATA2 were identified; this corresponds to the result from decapped RNA. Hence, TATA2 

transcripts are capped. We did the same decapping experiment for polyadenylated RNA, and 

found that polyadenylated BARE1 transcripts are also capped and start after TATA2 (III). 
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4.4 BARE1 transcripts are partially spliced  

Alternative splicing (AS) creates multiple mRNA transcripts from a single gene and AS is 

known to contribute to gene regulation and proteome diversity in animals. AS in plants is not 

rare, as evidence suggests that AS participates in important plant functions, including stress 

response, and may impact domestication and trait selection (Barbazuk et  al., 2008). 

Retroelements (including retrotransposons and retroviruses) employ a variety of translational 

recoding mechanisms to express GAG and POL. In contrast to retroviruses, nearly half of the 

retrotransposons identified encode GAG and POL in a single ORF. BARE1, like many other 

copia elements,  contains  only  one  reading  frame.  For  these  elements,  the  required  ratio  of  

GAG to POL may be achieved post-translationally through preferential POL degradation, as 

has been observed for the Tf1 and Ty5 yeast retrotransposons (Levin, 1993; Atwood et al., 

1996; Irwin and Voytas, 2001). It is also possible that a post-transcriptional mechanism, such 

as alternative splicing, is utilized to express an excess of GAG, which is a strategy employed 

by the Drosophila copia element (Brierley and Flavell, 1990). In view of this, we carried out 

RT-PCR using a forward primer located before gag and  a  reverse  primer  located  in  the  

middle of ap. We found a faint band besides the major amplification band; the faint band 

was not amplified in genomic DNA controls. We cloned and sequenced both bands, and 

found that the faint short band represents sequences that have 104 nt deletions after the gag 

coding sequence. We searched the sequences that came from the cloned major band for 

splicing sites using the splicing site prediction database 

(http://www.cbs.dtu.dk/services/NetGene2/) and found both a splicing donor and an acceptor 

around the splicing border sequence. Thus, we found that BARE1 transcripts are partially 

spliced  and  the  spliced  sequence  contains  typical  GT/AG  at  both  ends  (III).  The  T  

nucleotides occupy 37.5% of this region. A high T proportion in intron sequences has been 

reported particularly for plants. In plants, moreover, branch site selection is relaxed and a 

polypyrimidine tract is not necessary (Goodall and Filipowicz, 1989). After splicing, the 

reading frame of the BARE pol gene is changed, and many stop codons are created after the 

3’ splicing junction resulting from the 104 nt sequence being spliced out. The 5’ splicing 

junction is located just before the last two nucleotides of the predicted full-length gag 

sequence. Hence splicing may be a way for BARE1 to produce more GAG protein for VLP 

formation given that BARE1 is a retrotransposon that has only single reading frame. The 

position  of  the  first  stop  codon  after  splicing  is  just  a  few  amino  acids  away  from  the  

predicted GAG carboxyl terminus. If splicing is to make more GAG, then spliced transcripts 
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should be polyribosome-associated. The RT-PCR using total RNA isolated from 

polyribosomal fractions, gave the same spliced transcript band. 

 

4.5 The features of non-autonomous element BARE2 

BARE2 sequences are conserved with BARE1 in the PBS, Psi and DIS domains. The Psi and 

DIS have been shown to be the motifs that are important for RNA dimerization and 

packaging in HIV-1 and HIV-2 (Ooms et  al., 2004; L'Hernault et al., 2007). Our group’s 

previous work has concluded that BARE2 is probably a partial parasite of the BARE1 

element, because the machinery of the latter can complement the defective gag of the former 

(Tanskanen et al., 2007). Our results showed that BARE2 is indeed packaged into VLPs 

formed by GAG that is a product of BARE1 translation. In addition, we found that BARE2 is 

also capped though this is not a surprise, because in the conserved sequence between the 

BARE1 and BARE2 LTRs, the same protein complexes and the same capping mechanism 

could be used. BARE2 transcripts are also polyribosome- associated, which means that ap, in, 

and rt-rh contained in the pol gene of BARE2 are also expressed. This is consistent with the 

computer prediction: an ATG codon upstream of the AP domain may be used as the start 

codon for BARE2 protein synthesis. BARE2 and BARE1 were expressed equally in callus 

tissue although BARE2 has a higher genome copy number compared to BARE1; no spliced 

sequences of BARE2 have been found (III). When BARE2 RNA sequences were aligned with 

BARE1 RNA sequences over the splicing region of BARE1, nucleotides around the splicing 

donor and acceptor of BARE1 are very much different. No splicing signals were found when 

searching for a splicing signal in BARE2 using the same splicing site prediction database as 

for BARE1. This is logical because the proposed purpose of splicing is to make more GAG 

protein for VLP formation. BARE2 does not express GAG, and our experiment gave evidence 

that BARE2 is packaged into VLPs. Hence, BARE1 and BARE2 are life cycle partners. 

 

4.6 BARE1 transcripts are sorted: one pool for translation and another 
pool for encapsidation 
 

LTR retrotransposons and vertebrate retroviruses all share a transposition mechanism, which 

involves transcription of the integrated genomic DNA copies into RNA that contains all of 

the genetic information. Two functions have been attributed to this RNA. One is to be copied 
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by reverse transcription into extrachromosomal DNA, which becomes inserted into new 

chromosomal locations. The second is to be the template for the protein components encoded 

by both the gag gene and the pol gene. Thus, the full-length RNA serves as both mRNA and 

genomic RNA (Meignin et al., 2003). For BARE1,  we  set  the  goal  to  find  out  if  there  is  a  

single pool of full-length RNA within the cell that is translated and then encapsidated, or 

alternatively if there are two independent pools of these RNAs, with one of them being the 

template for translation and the second being the template for encapsidation. Our results show 

that BARE1 transcripts are fall in two populations: one for translation and another pool for 

encapsidation (III). Here is the evidence which supports this view: i) only TATA1 transcripts 

contain the R domain, which is necessary for reverse transcription (I); ii) the promoter 

analyses of the BARE LTR, using a reporter gene linked to LTR deletion constructs, 

demonstrated that TATA2 is sufficient to give full promoter activity and that TATA1 alone 

gave no reporter expression in callus or protoplasts, with only negligible expression in 

embryos (I; Suoniemi, 1996b); iii) although the existence of internal ribosomal entry sites in 

some genes has been observed, the majority of eukaryotic cells ‘scan’ the capped transcripts 

for the start of translation; our results show that polyadenylated transcripts are also capped, 

spliced, and polyribosome associated. The polyadenylation is important for RNA stability 

and translation. Both capped and uncapped RNA were found in yeast retrotransposon Ty1 

(Cheng and Menees, 2004); P-body components are required for Ty1 retrotransposition 

during assembly of VLP (Checkley et al., 2010). Although the TATA1 transcripts were not 

detected with caps, they could be initially capped and then very efficiently decapped as is 

Ty1 (Dutko et al.2010). The TATA2 products, in contrast, are never seen decapped. Thus, 

TATA1 and TATA2 RNAs appear to follow very different pathways regarding RNA 

processing. 

 

4.7 The 3’ ends of Cassandra transcripts are polyadenylated 

Uncapped, polyadenylated Cassandra transcripts starting from the polymerase III promoter 

have been detected, which means Cassandra 5S domains are transcriptionally functional. 

Cassandra specifically produces the LTR-to-LTR transcripts typical of REs at least in barley. 

Transcripts initiating from the internal RNA polymerase III promoter begin in the 5S domain 

of the 5’ LTR and terminate in the 3’ LTR at a canonical pol III terminator that is present in 

Cassandra but absent from within cellular 5S genes. An 18 nt R region, which is needed for 
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reverse transcription, is formed from the 5’ end of the 5S region. Cassandra transcripts 

terminate at the beginning of the 5S RNA sequence of 3’ end LTR, where the termination 

signal (TTTT) is located, with poly(A) tail; they are polymerase III transcripts (II). The full 

length of the transcripts is about 480bp. Capped, read-through transcripts containing 

Cassandra sequences can also be found in RNA and in EST databases. The predicted 

Cassandra RNA 5S secondary structures resemble those for cellular 5S rRNA, with a high 

information content especially in the pol III promoter region. Cassandra retrotransposons are 

also abundant and insertionally polymorphic (II). 
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5. General conclusions and future prospects 

Retrotransposons represent a large fraction of the repetitive DNA of most eukaryotes. The 

LTR retrotransposons encode the protein components required for their movement in the 

genome. In the Triticeae, BARE elements or their relatives currently appear to be highly 

active, composing up to 10% of the genome of barley, in which transcription and line-specific 

insertion  site  polymorphisms  are  readily  detected.  The  autonomous  elements  have  

mechanisms to copy or move themselves and thus alter the genome. The mechanisms may be 

under tight control by host factors, environmental factors or the element itself. Many 

retroelement copies appear to be transcriptionally silent, partially deleted, or contain stop-

codons  or  frameshifts.  Many of  these  elements  can  still  be  active  in  the  genome following  

homologous recombination or be transposed using essential proteins supplied by other 

elements. Hence, the concept of autonomy, non-autonomy, and parasitism are the key to 

understand retrotransposon dynamics in the plants. Intra-element recombination plays a 

major role in controlling genome expansion resulting from BARE1 integration through 

removal of all but a single LTR (Vicient et al., 1999b; Shirasu et al., 2000).  

As evolutionary opportunists, retrotransposons’ success depends on their interface with basic 

cellular processes including stress response and signal transduction, as well as the cell cycle. 

Hence, our basic goal is to understand the steps of retrotransposon replication, their 

regulation by the element itself and by the cell, and the impact of retrotransposons on the 

genome. To realize this goal, the particle bombardment method has been used to investigate 

LTR activity, and furthermore to define the enhancer region. Transcription start sites were 

first investigated by RACE–PCR and further established by RLM–RACE PCR. The 

sequencing result shows that only the TATA2 transcripts are capped. Surprisingly, only 15% 

of total transcripts are polyadenylated. It is likely that there are two BARE transcript pools, 

one that is uncapped and serves as the template for cDNA synthesis and another that is 

capped and polyadenylated, which is used for translation. BARE1 transcripts are partially 

spliced, and spliced form may be the source of extra GAG production because they are 

translated (polyribosome associated). 

 The BARE1 has very high number of genome copies but fairly low expression. One reason 

for the low expression is that  many LTRs of BARE1 are methylated. Retrotransposon LTRs 

generally are prime targets for DRD1/pol IVb-mediated cytosine methylation (Matzke et al., 

2006). Furthermore, retrotransposon transcripts may be subject to post-transcriptional 
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silencing. In our group’s previous work, the expression of BARE1 from the methylated LTR 

constructs was much lower than that from unmethylated LTR constructs (Suoniemi, 1997). 

For methylation research, we plan to demethylate the target genome first by using chemical 

5-dAZAC  and  then  use  RT-PCR  to  compare  if  the  transcription  level  was  raised  after  

treatment. Another way to investigate the relationship between the methylation pattern 

change and expression level is to use restriction enzymes, which specifically cut methylated 

cytosine followed by bisulfite sequencing. 

Recently, many TE-related micro RNAs has been reported (Yuan et al., 2011). The siRNAs 

derived from transgenes and endogenous REs in plants have also been found (Hamilton et al., 

2002). RNA interference has an important role in defending cells against parasitic genes, 

such as retrotransposons. It would be interesting to find endogenous microRNAs from 

BARE1 and furthermore to investigate if RNAi is one of the regulatory pathways in the 

transcription of the BARE1 element. BARE1 transcription may be regulated by RNAi because 

BARE1 exists in the genome in both orientations; double stranded RNA which is a target of 

enzyme Dicer will be created if transcripts are produced from both orientations. On the 

another hand, because synthetic dsRNA introduced into cells can induce post-transcriptional 

gene silencing, we can make double–stranded RNA in vitro and then inject it into barley 

tissue by particle bombardment to investigate if double–stranded RNA induce the RNA 

interference pathway. The transformed barley (barley transformed with LTR-GFP or LTR 

deletion-GFP constructs by using Agrobacterium), which has been produced by us in another 

project, can be used as target system.  

 The BARE1 elements  and  near  relatives  are  not  restricted  to  barley  and  other  members  of  

genus Hordeum, but appear to be seen in several other species of the tribe Triticeae and in 

oats  (Avena sativa)  and  rice  (Oryza sativa) as well (Vicient et  al., 2001a). It remains to be 

established at which point in the evolution of the Gramineae this element emerged as an 

active class. And another issue is where BARE elements play a role in meiotic chromosomal 

pairing and in speciation. 

Cassandra elements contain a polymerase III promoter, and the usage of polymerase III has 

been established (II), but there appears to be the possibility that polymerase II is also used. 

The C Box motif is responsible for the transcription starts of pol III. We are going to make C 

box deletion by site-specific mutagenesis for the investigation of promoter usage by the 

Cassandra element, then transfect the mutated LTR-luc construct  to  mammalian  cells  to  
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verify the usage of polymerase III by comparing the signal to the signal produced from the 

non-mutated LTR-luc construct. And in the same time, we will investigate if the Cassandra 

5S RNA is a component of large ribosomal unit as cellular 5S RNAs are. There remain many 

unanswered questions critical for understanding the role of retrotransposons in genome 

dynamics and cellular gene expression. 
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