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FUNCTIONS*

Iliya Bouyukliev, Dusan Bikov

In this note we describe two transformations of boolean functions based on the bi-
nary representation of the nonnegative integers. We present corresponding algorithms
which are very important in cryptology.

1. Introduction. Boolean functions are basic objects in discrete mathematics. In
this note we consider these objects and some of their properties related to cryptography.
A boolean function f of n variables is a mapping from F

n
2 into F2, where F2 = {0, 1} is

a field with 2 elements. A boolean function can be represented in different ways. Two
natural representations of a boolean function of n variables are its Truth Table (TT(f))
and its Algebraic Normal Form (ANF(f)). Truth Table is 2n-dimensional vector which
have as coordinates the function values of f for all vectors from F

n
2 . We can consider the

vectors in F
n
2 as binary presentations of the integers in the interval [0, . . . , 2n − 1]. This

consideration is very useful when we try to describe and explain some transformations
of boolean functions and related algorithms. Here we give an approach how binary
representations of the nonnegative integers can help us for the calculations related to
boolean functions.

Let S = {0, 1, 2, . . . , 2n − 1}. For any integer u ∈ S, u = u12
n−1 + u22

n−2 + · · · +
un−12

1 + un we correspond the binary vector u = (u1, u2, . . . , un−1, un). Let Sset be the

set Sset = {0, 1, 2, . . . , 2n − 1}, and let S
(n)
mat be the matrix S

(n)
mat =

(

0 1 · · · 2n − 1
)t
.

The matrices S
(n)
mat can be defined recursively in the following way: S

(n+1)
mat =

(

0 S
(n)
mat

1 S
(n)
mat

)

.

Any boolean function f of n variables is uniquely determined by its Truth Table
TT (f), whose coordinates are the function values of f after the lexicographic ordering
of the inputs from Sset. We mean by the weight wt(f) of a function f the weight of
the corresponding vector TT (f). Analogously, the distance between two functions is
computed by considering the distance between the corresponding Truth Tables.

Another way of uniquely representing a Boolean function f is as a binary polynomial
of n variables, whose monomials consist of variables of degree 0 or 1. This polynomial is
called the algebraic normal form (ANF) of the function [1]. All boolean functions whose
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ANF are polynomials of degree 1 together with the constant 0 define the family of the
linear boolean function.

One of the aims of this paper is to describe and motivate a fast algorithm for the
transformation from ANF to TT and vice versa. Very important cryptografic property
of a boolean function f is its nonlinearity which is related to the distances from f to the
linear functions. The other aim is to present an efficient algorithm for the calculation
of the Walsh spectrum (see [1]). Practically, the considered algorithms can be presented
as a matrix vector multiplication. In our case the considered matrices have not only

recursive structure (coming from the recursive structure of the matrix S
(n)
mat) but this

structure is quite specific and enables a very effective (butterfly) multiplication. Our
algorithms are in the same efficiency class as the previously known but they are much
more compact, legible, clear and use smaller number of variables.

2. Algebraic normal form and Truth Table. Let the boolean function f be
given by its ANF. Then f is a sum of monomials in the following form xi1xi2 · · ·xik ,
1 ≤ i1 < i2 < · · · < ik ≤ n, 0 ≤ k ≤ n. We can define all monomials of this type using
the set Sset. Let x(∗u) be the monomial Mu(x) = xu1

1 xu2

2 . . . xun
n where u ∈ Sset. The

value of Mu(x) for x = v, v ∈ Sset, is Mu(v) = vu1

1 vu2

2 . . . v
uj

j . . . vun
n . The Truth Table

of Mu(x) is










Mu(0)
Mu(1)

...
Mu(2n − 1)











=











0
∗u

1
∗u

...

2n − 1
∗u











= (S
(n)
mat)

∗u

.

Let f(x) = f0x
∗0⊕f1x

∗1⊕· · ·⊕f2n−1x
∗2n−1, where f0, f1, . . . , f2n−1 ∈ F2. The vector

f = (f0, f1, . . . , f2n−1) determines uniquely the algebraic normal form of the function f .
For the Truth Table we have the following:











f(0)
f(1)
...

f(2n − 1)











=













0
∗0

0
∗1

. . . 0
∗2n−1

1
∗0

1
∗1

. . . 1
∗2n−1

. . .

2n − 1
∗0

2n − 1
∗1

. . . 2n − 1
∗2n−1





















f0
f1
. . .

f2n−1









= An











f0
f1
...

f2n−1











,

An =
(

(S
(n)
mat)

∗0
(S

(n)
mat)

∗1
· · · (S

(n)
mat)

∗2n−1
)

=





(

0 S
(n−1)
mat

1 S
(n−1)
mat

)∗0

· · ·

(

0 S
(n−1)
mat

1 S
(n−1)
mat

)∗2n−1


 .

The first coordinate of the vectors i for i < 2n−1 is 0. Hence

((0 S
(n−1)
mat )∗0 . . . (0 S

(n−1)
mat )∗2

n−1−1) = ((1 S
(n−1)
mat )∗0 . . . (1 S

(n−1)
mat )∗2

n−1−1) = An−1.

The first coordinate of the vectors i for i ≥ 2n−1 is 1. In the case x1 = 1 the value of
monomials doesn’t depend on this coordinate. If x1 = 0 then the value of the monomial
is zero. It follows that
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((1 S
(n−1)
mat )∗2

n−1

· · · (1 S
(n−1)
mat )∗2

n−1) = An−1,

((0 S
(n−1)
mat )∗2

n−1

· · · (0 S
(n−1)
mat )∗2

n−1) = 0.

These equalities show that An =

(

An−1 0

An−1 An−1

)

, A1 =

(

1 0

1 1

)

, A2 =











1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1











,

A3 =





























1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1





























, A3f
t
=





























f1 ⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

f0 ⊕ f1 ⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

f0 ⊕ 0⊕ f2 ⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0

f0 ⊕ f1 ⊕ f2 ⊕ f3 ⊕ 0⊕ 0⊕ 0⊕ 0

f0 ⊕ 0⊕ 0⊕ 0⊕ f4 ⊕ 0⊕ 0⊕ 0

f0 ⊕ f1 ⊕ 0⊕ 0⊕ f4 ⊕ f5 ⊕ 0⊕ 0

f0 ⊕ 0⊕ f2 ⊕ 0⊕ f4 ⊕ 0⊕ f6 ⊕ 0

f0 ⊕ f1 ⊕ f2 ⊕ f3 ⊕ f4 ⊕ f5 ⊕ f6 ⊕ f7





























.

The matrix An is a 2n × 2n binary matrix with determinant 1 so An ∈ SL(2n,F2).
It is easy to see that A2

n = I2n therefore A−1
n = An. We can conclude the following:

We can calculate the Truth Table TT (f) of any boolean function f by multiplication of
the matrix An by the vector f (determined by its ANF) and opposite. In other words,

TT (f) = Anf
t
and f = An · TT (f)

t. The transform µ, which maps ANF to the Truth
Table and vice versa is known as Möbius transform. The binary Möbius transform can
be considered also as a permutation of the vectors in F

2n

2 given by the matrix An.

Let us consider the sums in A3 · f
t
more carefully. We notice that the sum of the

first two coordinates in the second row is repeated in any even row, and the sum of
coordinates 1 and 2 of row 1 is repeated in any odd row. We see similar repetitions for
the nonzero summands 3 and 4 and so on. We can avoid repetitions of sums and in this
way to multiply a matrix by a vector in n steps instead of 2n using the following butterfly
diagram (Diagram 1).

Diagram 1

(x1, x2, x3) ANF Step 1 Step 2 Step 3

000 f0 −→ f0 −→ f0 −→ f0

001 f1 ց f0 ⊕ f1 −→ f0 ⊕ f1 −→ f0 ⊕ f1

010 f2 −→ f2 ց f0 ⊕ f2 −→ f0 ⊕ f2

011 f3 ց f2 ⊕ f3 ց f0 ⊕ f1 ⊕ f2 ⊕ f3 −→ f0 ⊕ f1 ⊕ f2 ⊕ f3

100 f4 −→ f4 −→ f4 ց f0 ⊕ f4

101 f5 ց f4 ⊕ f5 −→ f4 ⊕ f5 ց f0 ⊕ f1 ⊕ f4 ⊕ f5

110 f6 −→ f6 ց f4 ⊕ f6 ց f0 ⊕ f2 ⊕ f4 ⊕ f6

111 f7 ց f6 ⊕ f7 ց f4 ⊕ f5 ⊕ f6 ⊕ f7 ց f0 ⊕ f1 ⊕ · · · ⊕ f7

The proof why this diagram goes in the general case can be seen in [1]. The diagram
1 can be realized with the following algorithm:
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Algorithm 1: Fast Möbius Transform
Input: The Truth Table TT of the Boolean function f , with 2n entries
Output: The Algebraic Normal Form ANF of the Boolean function f , with 2n entries
j ← 1; ANF ← TT ;
while (j < 2n) do

for i = 0 to 2n − 1 do
if (i[n−j+1]=1) then / ∗ if((i&j) == j) * /

ANF [i]← (ANF [i]⊕ANF [i− j])
end for
j ← 2 ∗ j;

end while.

3. Linear boolean functions and Walsh spectrum. Let f(x) = u1x1 ⊕ u2x2 ⊕
· · · ⊕ unxn be a linear boolean function of n variables. We use the notation u1x1 ⊕
u2x2⊕· · ·⊕unxn = x(⊕u). The binary n-dimensional vector u uniquely defines f(x) and
therefore we denote it by f (⊕u)(x). The Truth Table of f (⊕u)(x) has the form











f (⊕u)(0)

f (⊕u)(1)
...

f (⊕u)(2n − 1)











=













0
(⊕u)

1
(⊕u)

...

2n − 1
(⊕u)













= (S
(n)
mat)

(⊕u)
.

The values of the linear functions for 0, 1, . . . , 2n − 1 form the following matrix:

H+
n =













0
⊕0

0
⊕1

. . . 0
⊕2n−1

1
⊕0

1
⊕1

. . . 1
⊕2n−1

. . .

2n − 1
⊕0

2n − 1
⊕1

. . . 2n − 1
⊕2n−1













Hence

H+
n =

(

(S
(n)
mat)

⊕0
, (S

(n)
mat)

⊕1
, . . . , (S

(n)
mat)

⊕2n−1
)

= (

(

0S
(n−1)
mat

1S
(n−1)
mat

)⊕0

. . .

(

0 S
(n−1)
mat

1 S
(n−1)
mat

)⊕2n−1−1(

0 S
(n−1)
mat

1 S
(n−1)
mat

)⊕2n−1

. . .

(

0 S
(n−1)
mat

1 S
(n−1)
mat

)⊕2n−1

).

For the matrix H+
n we have

((0 S
(n−1)
mat )⊕0 . . . (0 S

(n−1)
mat )⊕2n−1−1) = ((1 S

(n−1)
mat )⊕0 . . . (1 S

(n−1)
mat )⊕2n−1−1) = H+

n−1,

((1 S
(n−1)
mat )⊕2n−1

. . . (1 S
(n−1)
mat )⊕2n−1) = H+

n−1,

where the matrix H+
n−1 is obtained from H+

n−1 after replacing 0 by -1 and 1 by 0. It
follows that

H+
n =

(

H+
(n−1) H+

(n−1)

H+
(n−1) H+

(n−1)

)

, H+
1 =

(

0 0
0 1

)

, H+
2 =









0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0









.

It is easy to see that Hn is a symmetric matrix. Its rows (and columns) form n
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dimensional linear space. In coding theory this space (without zero coordinate) is known
as a simplex code. This space together with its coset with representative (11 . . . 1), form
the first order Reed-Muller code.

Let a = (a1, a2, . . . , am) be a binary vector. The polarity representation a(p) of a
is obtained from a after replacing 0 by 1 and 1 by −1. Consider the scalar product
s = a(p) · b(p) over Z. Let s− (respectively s+) be the number of the coordinates, for

which a
(p)
j b

(p)
j = −1 (respectively a

(p)
j b

(p)
j = +1). Then s− = d(a, b) is the number of

coordinates with different value for a and b. And s+ is the number of the coordinates
with equal values for a and b or number of the coordinates with different value for a and
11 . . . 1⊕b. We have that s = s+−s− andm = s++s− or s− = (m−s)/2, s+ = (m+s)/2.

Let us denote by PTT (f) and H the polarity representations of TT (f) and the
matrix H+. The vector Wf = H · (PTT (f))t = (fw(0), fw(1), . . . , fw(2n − 1)), Wf =
(W0, . . . ,W2n−1), is called Walsh spectrum, and the function fw(a) defines the Walsh
transform. The value Wi determines the distance between the Truth Table of f and
the Truth Table of the linear function x⊕i, which equals to (2n −Wi)/2, and also the
distance between TT (f) and the Truth Table of the affine function 1+ x⊕i which equals
to (2n +Wi)/2.

Similarly to the previous section, the matrix vector multiplication H · PTT (f)t can
be given by a butterfly diagram and a corresponding algorithm, namely Diagram 2 and

Algorithm 2.

This algorithm (similarly to the previous one) passes all elements of the matrix S
(n)
mat

in n steps column by column starting from the last one. Depending on the value in the

i-th row and (n − j + 1)-th column of the matrix S
(n)
mat the algorithm calculates a new

values for Wf [i] and Wf [i + 2j ]. This algorithm (as the first one) entirely depends on
the binary representation of the nonnegative integers smaller than 2n. It is in the same
efficiency class as the previously known algorithms but it is much more compact, legible,
clear and uses smaller number of variables.

Let us compare Algorithm 2 with Algorithm 9.3 from the classical book Algorithmic

Cryptanalysis, p. 275 [2]. Algorithm 2 uses 3 integer variables, respectively this number
is 6 in Algorithm 9.3 [2]. Our algorithm has 3 assignments respectively the algorithm in
[2] has 5 for the inner loop. Instead of 3 nested loops in [2] Algorithm 2 has 2 nested
loops and ”if else” construction. In a similar way we can compare Algorithm 1 with
previously known algorithms.

Diagram 2

(x1, x2, x3) PTT (f) Step 1 Step 2 Step 3

000 t0 ց t0 + t1 ց t0 + t1 + t2 + t3 ց t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7
001 t1 ր t0 − t1 ց t0 − t1 + t2 − t3 ց t0 − t1 + t2 − t3 + t4 − t5 + t6 − t7
010 t2 ց t2 + t3 ր t0 + t1 − t2 − t3 ց t0 + t1 − t2 − t3 + t4 + t5 − t6 − t7
011 t3 ր t2 − t3 ր t0 − t1 − t2 + t3 ց t0 − t1 − t2 + t3 + t4 − t5 − t6 + t7
100 t4 ց t4 + t5 ց t4 + t5 + t6 + t7 ր t0 + t1 + t2 + t3 − t4 − t5 − t6 − t7
101 t5 ր t4 − t5 ց t4 − t5 + t6 − t7 ր t0 − t1 + t2 − t3 − t4 + t5 − t6 + t7
110 t6 ց t6 + t7 ր t4 + t5 − t6 − t7 ր t0 + t1 − t2 − t3 − t4 − t5 + t6 + t7
111 t7 ր t6 − t7 ր t4 − t5 − t6 + t7 ր t0 − t1 − t2 + t3 − t4 + t5 + t6 − t7
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Algorithm 2: Fast Walsh Transform
Input: The Polarity Truth Table PTT of the Boolean function f , with 2n entries
Output: The Walsh spectrum Wf of the Boolean function f , with 2n entries
j ← 1; Wf ← PTT ;
while (j < 2n) do

for i = 0 to 2n − 1 do
if i[n−j+1] = 0 then / ∗ if((i&j) == 0) ∗ /

temp←Wf [i];
Wf [i]←Wf [i] +Wf [i+ j];
Wf [i+ j]← temp−Wf [i+ j];

end then
end for
j ← 2 ∗ j;

end while.
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ДВОИЧНОТО ПРЕДСТАВЯНЕ НА ЦЕЛИТЕ ЧИСЛА С

ПРИЛОЖЕНИЕ В АЛГОРИТМИ ЗА БУЛЕВИ ФУНКЦИИ

Илия Буюклиев, Душан Биков

В това съобщение се обсъждат някои трансформации на булеви функции, чи-

ето описание се прави много естествено чрез двоичното представяне на целите

неотрицателни числа. Представени са и някои алгоритми с приложение в крип-

тографията.
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