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In this note we describe two transformations of boolean functions based on the bi-
nary representation of the nonnegative integers. We present corresponding algorithms
which are very important in cryptology.

1. Introduction. Boolean functions are basic objects in discrete mathematics. In
this note we consider these objects and some of their properties related to cryptography.
A boolean function f of n variables is a mapping from F} into Fy, where Fy = {0,1} is
a field with 2 elements. A boolean function can be represented in different ways. Two
natural representations of a boolean function of n variables are its Truth Table (TT(f))
and its Algebraic Normal Form (ANF(f)). Truth Table is 2"-dimensional vector which
have as coordinates the function values of f for all vectors from ;. We can consider the
vectors in F} as binary presentations of the integers in the interval [0,...,2" — 1]. This
consideration is very useful when we try to describe and explain some transformations
of boolean functions and related algorithms. Here we give an approach how binary
representations of the nonnegative integers can help us for the calculations related to
boolean functions.

Let S = {0,1,2,...,2" — 1}. For any integer u € S, u = u12" "1 + u2" 2 + ... +

Un—12 + u,, we correspond the binary vector U = (u1,ua, ..., Un_1,Uy). Let Sse; be the
set Sser = {0,1,2,...,2" — 1}, and let S,(,Zzt be the matrix S,(,Zzt =0T1---27n— 1)t.

(n)
The matrices S’Szt can be defined recursively in the following way: S,(;;; D= (1) ?(%t> .

mat

Any boolean function f of m variables is uniquely determined by its Truth Table
TT(f), whose coordinates are the function values of f after the lexicographic ordering
of the inputs from Ss.:. We mean by the weight wt(f) of a function f the weight of
the corresponding vector TT(f). Analogously, the distance between two functions is
computed by considering the distance between the corresponding Truth Tables.

Another way of uniquely representing a Boolean function f is as a binary polynomial
of n variables, whose monomials consist of variables of degree 0 or 1. This polynomial is
called the algebraic normal form (ANF) of the function [1]. All boolean functions whose
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ANF are polynomials of degree 1 together with the constant 0 define the family of the
linear boolean function.

One of the aims of this paper is to describe and motivate a fast algorithm for the
transformation from ANF to T'T and vice versa. Very important cryptografic property
of a boolean function f is its nonlinearity which is related to the distances from f to the
linear functions. The other aim is to present an efficient algorithm for the calculation
of the Walsh spectrum (see [1]). Practically, the considered algorithms can be presented
as a matrix vector multiplication. In our case the considered matrices have not only
recursive structure (coming from the recursive structure of the matrix S,(,Zzt) but this
structure is quite specific and enables a very effective (butterfly) multiplication. Our
algorithms are in the same efficiency class as the previously known but they are much
more compact, legible, clear and use smaller number of variables.

2. Algebraic normal form and Truth Table. Let the boolean function f be
given by its ANF. Then f is a sum of monomials in the following form z;, z;, - - -z, ,
1<ii<ig < - <ip <n, 0<k<n. We can define all monomials of this type using
the set Sser. Let (%) be the monomial M*(x) = 2% x4? ... 24 where u € Sse;. The
value of M"(z) for z = v, v € Sset, is M¥(v) = v} vy? ...v;-” ...v% . The Truth Table
of M*(z) is

*U

M (0) 0
M*(T) i wu
, = . | =
M (27 =1) -1

_ Let f(z) = for 0B Lz 1B @ fon_12*2 L, where fo, fi,. .., fan_1 € Fo. The vector
f=(fo, f1,-.., fon_1) determines uniquely the algebraic normal form of the function f.
For the Truth Table we have the following:

£(0) 0" R fo fo
ORI T T T N
f@7=T) 10 o1 L o ) e fon 1

5 1 T 0g-b 0 gn=D\ "
_ * * ot — _ ma ma
A= (s s s ) = g |

The first coordinate of the vectors 7 for i < 2"~ ! is 0. Hence
((0 S0 (g gln=Dy=2n=i=1y (1 gn=D)=0 (g gn—by=an=izty 4

mat mat mat mat
The first coordinate of the vectors i for i > 271 is 1. In the case 21 = 1 the value of
monomials doesn’t depend on this coordinate. If 2y = 0 then the value of the monomial
is zero. It follows that
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(S )™ Sy ) = A,

mat mat

(0 S5y 7 (0 85, ) ) =0,
1000
N A1 0 10 1100
These equalities show that A”(An_l An—1>’A1<1 1>,A2 1010l
1111
10000000 000000 0000 0@ 0
11000000 fo®fi® 0000 0 00 0@ 0
10100000 fo® 08 000000 08 0
e 11110000 A?t: foRfiofr®fzd 00 0 00 0
3 10001000 “3 fo® 00 00 08 f2® 00 0@ 0
11001100 foefie 0p 0 fuddfs 0 0
10101010 fo®0® fod 0 fud 08 fc 0
11111111 foehofh@fs@fidfsDfe®fr

The matrix A, is a 2" X 2" binary matrix with determinant 1 so A, € SL(2",F3).
It is easy to see that A2 = Iyn therefore A,! = A,,. We can conclude the following:
We can calculate the Truth Table TT'(f) of any boolean function f by multiplication of

the matrix A, by the vector f (determined by its ANF) and opposite. In other words,

TT(f) = A,jt and f = A, - TT(f)!. The transform y, which maps ANF to the Truth
Table and vice versa is known as Mobius transform. The binary Mobius transform can
be considered also as a permutation of the vectors in F3" given by the matrix A,,.

Let us consider the sums in Aj -?t more carefully. We notice that the sum of the
first two coordinates in the second row is repeated in any even row, and the sum of
coordinates 1 and 2 of row 1 is repeated in any odd row. We see similar repetitions for
the nonzero summands 3 and 4 and so on. We can avoid repetitions of sums and in this
way to multiply a matrix by a vector in n steps instead of 2™ using the following butterfly
diagram (Diagram 1).

Diagram 1

(z1,22,23) | ANF Step 1 Step 2 Step 3
000 fo — fo — fo — Jo
001 f N O fodfi — fo® f — fo® f1
010 2 — J2 N\ Jo® f2 — fo® fo
011 f3 N fo®fs N fodfriefedfs — fofiDfoDfs
100 fa.  — — fa N\ Jo® fa
101 f5 N i fs — fa® fs N foRHLDf1DSs5
110 fe — fe AV fa® fe N fo® fo®D fa® fs
111 fr N O fe®fr N\ fudfsDfeBfr N fofrB--Dfr

The proof why this diagram goes in the general case can be seen in [1]. The diagram
1 can be realized with the following algorithm:
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Algorithm 1: Fast Mobius Transform

Input: The Truth Table TT of the Boolean function f, with 2™ entries
Output: The Algebraic Normal Form AN F' of the Boolean function f, with 2™ entries
j 1; ANF « TT,
while (j < 2") do

fori =0to 2" —1do

i (7o 1=1) then o if((&g) == ) */
ANFYi| + (ANF[i|® ANF[i — j])

end for

j—2x%x7;
end while.

3. Linear boolean functions and Walsh spectrum. Let f(z) = w121 ® ugx2 ®
<o @ upxy, be a linear boolean function of n variables. We use the notation ui;x, @
UsTa B -+ DUupxy = 2@, The binary n-dimensional vector u uniquely defines f(x) and
therefore we denote it by f(®%)(x). The Truth Table of f(®%)(x) has the form

f@w (1) T(@”) ) (@)
: = =y
f(®u)(2n —1) m(@u)
The values of the linear functions for 0,1,...,2" — 1 form the following matrix:
0’ o .
g | 1T ™ . T
n
p s S T L LN s S

Hence _ _
H+::Q5m”®00¢m)®1'.(Smn@”*ﬁ

mat

) @2n—1-1 @2n—1 @27 —1
_ 0S5\ (0 Shar” 054 (0 Sha" )
LS mat” LS LS LS

For the matrix H," we have

(0 S5 )20 (0 S, ) E2 1) = (1 S0 st e L) — Bt

mat mat mat n—1°

(1 S(”—l))@Q"—*l .. S("—l))éem) gt

mat mat n—1»

where the matrix H;f_l is obtained from H:_l after replacing 0 by -1 and 1 by 0. It
follows that

. . 0000
H+::'Hm;n HT,D 'HTCHU ay— 0101
HY . Hi_, 01 0011

0110

It is easy to see that H, is a symmetric matrix. Its rows (and columns) form n
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dimensional linear space. In coding theory this space (without zero coordinate) is known
as a simplex code. This space together with its coset with representative (11...1), form
the first order Reed-Muller code.

Let a = (a1,as,...,a,) be a binary vector. The polarity representation a® of q
is obtained from a after replacing O by 1 and 1 by —1. Consider the scalar product
s = a® . b® over Z. Let s~ (respectively sT) be the number of the coordinates, for
which agp)b§p) = —1 (respectively ag»p)bg»p) = +1). Then s~ = d(a,b) is the number of
coordinates with different value for @ and b. And s* is the number of the coordinates
with equal values for a and b or number of the coordinates with different value for a and
11...1®b. We have that s = st —s~ andm = sT+s~ or s~ = (m—s)/2, st = (m+s)/2.

Let us denote by PTT(f) and H the polarity representations of T7T(f) and the
matrix H. The vector Wy = H - (PTT(f))' = (f“(0), f*(1),..., fu(@2" - 1)), Wy =
(Wo,...,Wan_1), is called Walsh spectrum, and the function f*(a) defines the Walsh
transform. The value W, determines the distance between the Truth Table of f and
the Truth Table of the linear function x®%, which equals to (2" — W;)/2, and also the
distance between TT(f) and the Truth Table of the affine function 1 + 2®* which equals
to (2" + W;)/2.

Similarly to the previous section, the matrix vector multiplication H - PTT(f)! can
be given by a butterfly diagram and a corresponding algorithm, namely Diagram 2 and
Algorithm 2.

This algorithm (similarly to the previous one) passes all elements of the matrix Sggt
in n steps column by column starting from the last one. Depending on the value in the
i-th row and (n — j + 1)-th column of the matrix S,(,th the algorithm calculates a new
values for Wy[i] and Wy[i + 27]. This algorithm (as the first one) entirely depends on
the binary representation of the nonnegative integers smaller than 2". It is in the same
efficiency class as the previously known algorithms but it is much more compact, legible,
clear and uses smaller number of variables.

Let us compare Algorithm 2 with Algorithm 9.3 from the classical book Algorithmic
Cryptanalysis, p. 275 [2]. Algorithm 2 uses 3 integer variables, respectively this number
is 6 in Algorithm 9.3 [2]. Our algorithm has 3 assignments respectively the algorithm in
[2] has 5 for the inner loop. Instead of 3 nested loops in [2] Algorithm 2 has 2 nested
loops and ”if else” construction. In a similar way we can compare Algorithm 1 with
previously known algorithms.

Diagram 2

(z1, 2, 23) | PTT(f) Step 1 Step 2 Step 3
000 to N toF+tr N\ toF+tit+tet+ts N\ to+ti +ta+ts+ta+ts+te+tr
001 t1 Sto—t1 N\ to—titta—t3 N\ to—t1+ta—tztts—ts+te —tr
010 t2 N tatts S tod+ti—ta—ts N\ tot+ti —ta—tztts+ts —te —tr
011 ts S ta—ts S to—t1 —tat+ts \( to—t1 —ta+ts+ts—ts —te+tr
100 ty N tatts N\ tatts+te+tr S to+ti Fla -tz —ts—ts —te —tr
101 ts Sota—ts \( ta—ts+te—tr S to—t1+te—ts—ta+its —te+tr
110 te N tet+ty S tatts—te—tr S to+ti —ta—ts—ta—1ts+te+tr
111 t7 S te—ty S ta—ts—te+tr S to—t1 —tatts —ta+tts+te—tr
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Algorithm 2: Fast Walsh Transform
Input: The Polarity Truth Table PTT of the Boolean function f, with 2™ entries
Output: The Walsh spectrum W of the Boolean function f, with 2" entries
Jj <1, Wy <= PTT;
while (5 < 2™) do
fori=0to 2" —1do
if 4, j41] = O then /*  if((i&j)==0) x/

temp <+ Wi[il;

Wili] <= Wyli] + Wyli + j;

Wili+ j] < temp — Wyli + jl;

end then

end for
] 2x%x7;
end while.
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JABOUNYHOTO ITPEJCTABSAHE HA ITEJIUTE YNCJIA C
ITPUJIO2KEHUWE B AJITOPUTMMU 3A BYJIEBU ®YHKIINN

Nnua Byrokaues, dyman Bukos

B roBa cbobienne ce 06cbxKaaT HIKON TpaHchopManuy Ha OysieBn QyHKIUH, TH-
€TO OIMCAHHUE Ce IPaBU MHOI'O €CTECTBEHO 9YpE3 JIBOMYHOTO IIPEJICTaBsiHE Ha IIeJIUTE
HEOTPHIATEIHA YHCIa. [Ipe/icTaBeHn ca W HSKOU aJI'OPUTMHU C IPHJIOKEHUE B KPHII-
Torpadusra.
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