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The temperature dependence of biological processes has been
studied at the levels of individual biochemical reactions and
organism physiology (e.g. basal metabolic rates) but has not been
examined at the metabolic network level. Here, we used a sys-
tems biology approach to characterize the temperature depen-
dence of the human red blood cell (RBC) metabolic network
between 4 and 37 °C through absolutely quantified exo- and
endometabolomics data. We used an Arrhenius-type model
(Q10) to describe how the rate of a biochemical process changes
with every 10 °C change in temperature. Multivariate statistical
analysis of the metabolomics data revealed that the same meta-
bolic network-level trends previously reported for RBCs at 4 °C
were conserved but accelerated with increasing temperature.
We calculated a median Q10 coefficient of 2.89 � 1.03, within
the expected range of 2–3 for biological processes, for 48 indi-
vidual metabolite concentrations. We then integrated these
metabolomics measurements into a cell-scale metabolic model
to study pathway usage, calculating a median Q10 coefficient of
2.73 � 0.75 for 35 reaction fluxes. The relative fluxes through
glycolysis and nucleotide metabolism pathways were consistent
across the studied temperature range despite the non-uniform
distributions of Q10 coefficients of individual metabolites and
reaction fluxes. Together, these results indicate that the rate of
change of network-level responses to temperature differences
in RBC metabolism is consistent between 4 and 37 °C. More
broadly, we provide a baseline characterization of a biochemical
network given no transcriptional or translational regulation
that can be used to explore the temperature dependence of
metabolism.

The rate of biological processes increases with increasing
temperature. The dependence of biochemical rates on temper-
ature has been studied since the late 19th century using an
Arrhenius-type approach (1– 6). The metric used for evaluating
such temperature dependence is the temperature coefficient
(Q10 coefficient).2 If Q10 � 2 for a given process, then the rate of
that process increases by a factor of 2 for every 10 °C increase in
temperature. The Q10 can be calculated from the slope of a rate
versus temperature plot, which is approximately linear over the
biologically relevant temperature range of 0 – 40 °C (7). Individ-
ual enzymes have different Q10 coefficients that are generally
expected to be in the 2–3 range (3, 4, 6).

Temperature dependence at the physiological level is deter-
mined using phenomenological measurements (such as growth
rate) to study overall physiological changes (5, 7–10). Changes
at the physiological level depend on more than changes in the
underlying individual biochemical reaction rates (11, 12). For
instance, various regulatory mechanisms (e.g. transcrip-
tional, post-translational, and allosteric) determine how
cells respond to temperature shock (13). The existence of
extra layers of regulation complicates the effects of temper-
ature change on the biochemical network. Biology is inher-
ently multiscale, and the gap between observing the temper-
ature dependence at the scale of an individual reaction and at
the physiological level can be addressed through methods of
systems biology (14).

Red blood cells (RBCs) represent an ideal cell type to study
the temperature dependence of network-level metabolic bio-
chemistry because of the absence of a nucleus and genetic
material. This absence results in a lack of complicated tran-
scriptional or translational regulation on metabolic enzyme
activity. Allosteric and other regulation of enzymatic reaction
rates is still present in RBCs, representing enzyme kinetic
mechanisms and thus direct biochemical functions.

In this study, we investigated the temperature dependence of
metabolism in the RBC at the network level by examining the
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rate of change of metabolite concentrations and metabolic
reactions rates. We measured exo- and endometabolomics pro-
files in human RBCs stored at four different temperatures that
span the range between the ex vivo (storage) and in vivo (body)
temperatures: 4, 13, 22, and 37 °C. We regressed the concen-
tration profile of each metabolite across the measured tem-
perature range to calculate its Q10 value. We integrated these
measurements with a cell-scale network reconstruction of
RBC metabolism (15) that contains 216 metabolites (43% of
which are measurable by quantitative metabolomic profil-
ing) to calculate Q10 coefficients for reaction fluxes and to
observe pathway usage. By examining metabolite profiles in
the context of a cell-scale metabolic model, we were able to
assess temperature dependence on a network level, thus
bridging the gap between studies at the reaction and physi-
ological levels.

Results

Measurement of the temperature dependence of RBC
metabolism ex vivo

RBCs were collected using standard collection procedures
and stored in SAGM medium (16) at 4, 13, 22, and 37 °C. Start-

ing 1 day after RBC collection (taken as time 0 in figures),
metabolomic measurements were made in biological triplicate
over time at each temperature (Fig. 1A). The data set was com-
posed of 97 metabolites. In addition, standard blood bank
quality control and assurance measurements (e.g. hemolysis
and pH) were made at multiple time points over 21 (4, 13,
and 22 °C) and 7 days (37 °C); all measured profiles are pre-
sented in supplemental Figs. S6 –S16 and Data S1.

As part of the baseline characterization, we observed the
same metabolic changes that have previously been reported in
the literature for RBC storage at 4 °C. We observed the same
previously documented accumulation of lactate, 5-oxopro-
line, and hypoxanthine (17–19) and the depletion of AMP
and the phosphoglycerate pool (17, 19). We measured the
same high levels of intracellular malate previously reported
in SAGM at 4 °C (19). A complete discussion of the raw
metabolomics data is presented in the supplemental infor-
mation and Figs. S2 and S3.

To determine temperature dependence, we first needed to
determine how relative storage time scaled across temperature
(Food and Drug Administration regulations set the maximum
storage time for RBCs at 42 days). To determine a network-level

Figure 1. Data generation and analysis workflow. A, human red blood cells were collected; stored in SAGM medium at 4, 13, 22, and 37 °C; and
metabolically profiled across multiple time points. B, PCA of the eight extracellular biomarkers (same loading coefficients applied to data at each
temperature). Overlaying these plots on the same axes shows that the shape of the three-phase metabolic decay is conserved but accelerated with
increasing temperature as evidenced by the location of the day 7 time point. See supplemental Fig. S1 for a more detailed PCA plot at each temperature.
The numbers in parentheses represent the amount of variance explained by each component. Black arrows and roman numerals label the three metabolic
shifts that occur over the storage period. C, the first principal component was plotted against the time vector at each temperature to determine the
relative storage time at each temperature. Linear regression was used to estimate the rate of change, showing strong correlation between PC1 and time
at each temperature. D, these rates of change were then used to estimate the change in metabolic rate for every 10 °C (Q10) from an Arrhenius-type
log2(rate) versus temperature plot.
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Q10, we used multivariate statistical analysis on the metabolo-
mics data to assess the impact of temperature changes on sys-
temic metabolism. The network-level Q10 was used to deter-
mine the time points that represented the same metabolic
phase at each temperature. Once these time periods were
defined, we calculated Q10 coefficients for each measured
metabolite using linear regression. The metabolomics data
were then integrated into a mechanistic cell-scale model to cal-
culate the rate of each reaction (i.e. the flux) in the network at
each temperature; these calculated reaction rates were used to
determine Q10 coefficients for reactions and to assess pathway
usage across temperature.

Network-level temperature dependence

Following published reports for RBC storage at 4 °C (17, 19,
20), principal component analysis (PCA) was performed to
obtain a global characterization of the data set. PCA is a multi-
variate statistical method that reduces the dimensionality of a
complex data set by calculating the relative contribution of each
measurement to the overall variability observed in the data. For
each temperature, we performed PCA (Fig. 1B) on the time-
series concentration profiles of eight recently identified extra-
cellular metabolites (adenine, glucose, hypoxanthine, lactate,
malate, nicotinamide, 5-oxoproline, and xanthine) that ro-
bustly represent the RBC metabolome under storage condi-
tions (20). These metabolites serve as qualitative biomarkers for
the age of stored RBCs and have been shown to also be good
quantitative predictors for other systemic metabolite concen-
trations (21, 22). To make an accurate comparison across tem-
peratures, the same loading coefficients were applied to the
data at each temperature (see “Experimental procedures” for
full details).

PCA revealed the same metabolic “shifts” that have been pre-
viously observed at 4 °C (17, 19). These shifts separate three
distinct metabolic states that can be reliably determined from
the profiles of the biomarkers (20). During storage at 4 °C, the
two shifts in the PCA plot occur approximately at days 10 and
17. Here, these same metabolic states were observed to be con-
served but notably accelerated with temperature as evidenced
by the location of the day 7 time point at each temperature (Fig.
1B and supplemental Fig. S1). We identified the duration of the
first metabolic state at each temperature. We then used these
time points to determine the starting and ending points for the
linear regression that would be used to calculate individual
metabolite and reaction Q10 coefficients.

The first principal component at each temperature was
highly correlated with time (Fig. 1C), yielding a “network-level”
Q10 of 1.46 (R2 � 0.97) that describes how the system proceeds
in storage time. The third metabolic state at 4 °C is primarily
characterized by a general loss of function as the RBC under-
goes severe morphological changes (23, 24), often leading to
complications for transfusion patients (25, 26). Thus, we only
used measurements from the first two metabolic states to cal-
culate the network-level Q10. These results show an overall
three-state metabolic decay that is observed to accelerate with
increased temperature.

Metabolite-level temperature dependence

To determine the temperature dependence of individual
metabolites, we used the data from the first metabolic state at
each temperature (identified from the PCA results in Fig. 1B).
We made this choice because the data are believed to be the
most accurate as the cells are still intact and metabolism is
functioning the closest to its normal physiological state. We
linearly regressed the concentration profile of each metabolite
at each temperature and used these rates to calculate a Q10
value (Fig. 1, C and D). Not all metabolite profiles could be
accurately fit with a linear curve during the first state; to
account for this, we did not include metabolites with an R2 �
0.50. Q10 coefficients for the 48 metabolites whose profiles
could be estimated well with a linear fit are reported in Table 1.
The calculated Q10 coefficients span 1.28 (extracellular 5-ox-
oproline) to 5.89 (intracellular hypoxanthine).

The calculated metabolite Q10 coefficients generally fall in
the expected range of 2–3 for biochemical reactions (3, 4, 6)
with a median of 2.89 (Fig. 2). The standard deviation of the

Table 1
Q10 coefficients for extracellular (exo) and intracellular (endo) metab-
olites

Metabolite Q10 R2

5-Oxoprolinea (exo) 1.28 0.69
L-Glycerate (endo) 1.84 0.52
S-Adenosylmethioninamine (endo) 1.94 0.83
L-Glutamate (endo) 2.01 0.94
cis-Aconitate (endo) 2.06 0.91
L-Glutamate (exo) 2.15 0.99
L-Aspartate (endo) 2.18 0.73
Nicotinamidea (exo) 2.19 0.91
Mannitol (exo) 2.22 0.86
Uridine (exo) 2.27 0.94
Citrate (exo) 2.32 0.99
L-Glutamine (endo) 2.34 0.90
Reduced Glutathione (exo) 2.39 0.99
Choline (endo) 2.41 0.85
GMP (endo) 2.42 0.97
5-Oxoproline (endo) 2.56 0.98
Lactate (endo) 2.61 0.98
L-Acetylcarnitine (endo) 2.62 0.72
Xanthine (endo) 2.65 0.84
cis-Aconitate (exo) 2.75 0.91
Phosphorylcholine (endo) 2.75 0.89
Lactatea (exo) 2.78 0.99
Uridine (endo) 2.79 0.96
Glucosea (exo) 2.81 0.98
AMP (endo) 2.96 0.79
Adeninea (exo) 2.98 0.93
L-Serine (exo) 2.99 0.99
S-Adenosylhomocysteine (endo) 3.01 0.83
Malate (endo) 3.02 0.97
Oxidized glutathione (endo) 3.03 0.95
L-Carnitine (exo) 3.04 0.97
5-Methylthioadenosine (endo) 3.07 0.73
Adenine (endo) 3.17 0.95
Glucose 6-phosphate (endo) 3.19 0.97
L-Glutamine (exo) 3.23 0.99
L-Phenylalanine (exo) 3.33 0.75
IMP (endo) 3.45 1.00
L-Lysine (exo) 3.46 0.96
Chloride ion (exo) 3.94 0.99
ATP (endo) 3.95 0.92
L-Histidine (exo) 4.07 0.89
ADP (endo) 4.48 0.84
6-Phosphogluconate (endo) 4.84 0.79
Oxidized glutathione (exo) 4.99 0.95
Malatea (exo) 5.05 0.99
L-Lysine (endo) 5.18 0.97
Reduced glutathione (endo) 5.61 0.96
Hypoxanthine (endo) 5.89 0.95

a Previously reported biomarker (20).
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metabolite Q10 coefficients was 1.03, indicating that although
the distribution was centered in the expected range for biolog-
ical measurements the temperature scaling was not uniform
across the network. Interestingly, the biomarker pools that have
been shown to robustly define the metabolic decay process (20)
represented almost the full range of calculated Q10 coefficients
from 1.28 (5-Oxoproline) to 5.05 (malate); extracellular xan-
thine and hypoxanthine did not have calculated Q10 coefficients
due to the R2 cutoff. Several metabolite Q10 coefficients fell
below 2.00 or above 3.00, including extracellular 5-oxoporline
(1.28), ATP (3.95), ADP (4.48), and extracellular malate (5.05).

Reaction-level temperature dependence

Next, we investigated the temperature dependence of bio-
chemical reactions in the metabolic network. Previous studies
have investigated the temperature dependence of individual
reactions (1– 6), but our goal was to use systems biology
approaches to determine the temperature dependence of all
reactions in the network together. To this end, we used a mech-
anistic cell-scale model of the RBC (15) to calculate the flux
state of the network (i.e. the flux through each reaction in the
system). The flux through a reaction (a rate with units of
mmol/h) was calculated at each temperature; these values were
then used to calculate a Q10 for each reaction using the same
procedure shown in Fig. 1D. We tailored the model to the phys-
iology at each temperature by integrating the metabolomics
measurements for the first metabolic state into the model
according to Bordbar et al. (27). See “Experimental procedures”
for full details on flux modeling and metabolomics integration.

Model simulations yielded flux states for each temperature.
We excluded transporters and reactions that carried flux at
fewer than three temperatures to ensure the accuracy of the Q10
calculations. The calculated Q10 coefficients for 35 reactions
are shown in Table 2 (only fits with R2 � 0.50 were included in
analysis). The distribution of reaction Q10 coefficients (Fig. 2)
was tighter than that of the metabolite Q10 coefficients (stan-
dard deviation of 0.75 for reactions versus 1.03 for metabolites)
but was still centered in the expected 2–3 range (median of
2.73). Several reactions in nucleotide metabolism and glutathi-
one metabolism had Q10 coefficients above 3.5.

Pathway usage across temperature

We then examined pathway usage across the 33 °C tempera-
ture range studied. Each reaction in RBC reconstruction has

previously been assigned to one of 18 different metabolic sub-
systems (15). We first investigated whether the reactions in any
of these pathways shared a similar dependence on temperature
(i.e. pathways in which reactions had similar Q10 coefficients).
We performed a pairwise comparison of the Euclidean distance
between Q10 coefficients of reactions from a given subsystem (n
reactions) versus 100,000 random permutations of n reactions
from all calculated Q10 coefficients. The reactions in glycolysis
(n � 12) and nucleotide metabolism (n � 7) both showed
statistically significantly smaller distances between Q10 coeffi-
cients than would be expected due to random chance (p �
7e�5 and p � 0.047, respectively). Notably, these two meta-
bolic subsystems contain reactions that interact with several of
the storage age biomarkers (glucose, lactate, hypoxanthine, and
xanthine). In particular, the temperature dependence of the
glycolytic reactions is dictated by glucose, the major input to
that linear pathway (Fig. 3).

Although the enrichment of a given pathway for similar Q10
coefficients depends on the reaction fluxes, this analysis does
not directly measure whether the flux states between two tem-
peratures were similar. To investigate the conservation of path-
way usage across temperature, we normalized the data at each
temperature to glucose uptake and calculated the percent dis-
tance between the flux states (i.e. the flux through each re-
action) at 13, 22, and 37 °C and the flux state at 4 °C. Reactions
that were unused at every temperature were excluded (n � 61).
Of the remaining 166 reactions, 33 (19.9%) had less than 50%
difference at each of the three higher temperatures. All of the
glycolytic reactions for which Q10 coefficients were calculated
(Fig. 3) were present in this subset of reactions.

Organizational structure of the network

To this point, we have investigated how the metabolomics
measurements could be used to determine the temperature
dependence of individual metabolites and reactions and of the
network. When we integrated the metabolomics measure-
ments into the cell-scale model, the network structure at each
temperature changed due to the accumulation and/or deple-
tion of metabolites. These results, however, do not provide any
explanation as to why we observe certain Q10 coefficients for
certain reactions. To answer this question, we studied the orga-
nizational structure of the network in terms of the coupling of
certain reaction fluxes. Two reaction fluxes are said to be “flux-
coupled” if the ratio of one to the other is constant (28); the flux

Figure 2. Distribution of Q10 coefficients for metabolites and reactions. Q10 coefficients for metabolites were calculated based on the observed change in
metabolite concentration across temperature. The vertical dashed lines at Q10 � 2 and Q10 � 3 represent the typical estimated range of Q10 coefficients for
biological processes. STD, standard deviation.
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coupling of a network is a property inherent to its topology. A
set of coupled reactions is simply the linking of coupled reac-
tions into a single pathway.

To determine whether the coupling of the network changed
with temperature, we defined the coupling characteristic of a
network to be the mean of the coupled reaction sets. We com-
pared the base network structure of the RBC metabolic network
with that of each temperature, revealing that the coupling char-
acteristic of the network decreased �5–10% at each tempera-
ture. This result prompted us to ask whether this decoupling
was more or less than would be expected due to random
chance. We ran a permutation test, determining that the decou-

pling of the networks observed with a change in temperature
was significantly less than would be expected due to random
chance (p � 6e�3; see “Experimental procedures” for details on
the generation of random networks and the permutation test).
Thus, the RBC metabolic network is robust against changes in
temperature over the measured 33 °C range.

Discussion

The temperature dependence of biological processes is of
fundamental interest. Q10 coefficients have been used to char-
acterize the temperature dependence of individual biochemical
reactions and of organism-level behavior. Although these stud-
ies have yielded valuable insights, there is a gap between study-
ing temperature dependence at the biochemical and physiolog-
ical levels (1–10). Systems biology principles can be used to
move past the individual reaction level and assess temperature
dependence on the network level, effectively bridging the gap
between the previous work on temperature dependence at the
reaction and physiological levels. In this study, we used deep-
coverage metabolomics of human red blood cells in storage to
investigate the temperature dependence of network-level bio-
chemistry. We chose a range of temperatures that ranges from
the storage temperature of RBCs (4 °C) to body temperature
(37 °C). By studying temperatures in this range, we provide
baseline data with no transcriptional or translational regulation
that can be used to begin to understand the temperature depen-
dence of metabolism in broader contexts. Specifically, these
data address the “passive” control that temperature has over
network fluxes and metabolites in a system that has most of
central carbon metabolism but is not growing. The results
obtained here have several primary implications.

First, we determined that although the rate of change for
each metabolite and reaction increased with increasing tem-
perature the network-level response was dampened (i.e. lower
Q10). This behavior is to be expected because of the difference
in response times between individual reactions and a pathway.
Notably, the scaling of metabolite and reaction temperature
dependence was not observed to be uniform across the network
(with high variability in Q10 coefficients). The fact that these
network-level behaviors are conserved is a surprising result
because certain enzyme inactivations might be expected to be
qualitatively disruptive of network behavior at various temper-
atures. The observed behavior indicates that individual metab-
olite and reaction Q10 coefficients vary dramatically to preserve
global network characteristics. This variability was particularly
notable for the storage age biomarkers (20), an interesting
result because of their ability to define the qualitative trend of
the entire network. Overall, such variability can be expected
due to the thermodynamics and kinetics associated with bio-
chemical and enzymatic reactions. Approximately half of the
calculated temperature coefficients fell in the 2–3 range (Fig. 2),
which is generally accepted as the typical estimate for biological
systems (3, 4, 6). Several of the metabolites (e.g. malate, hypox-
anthine, and glutathione) and reactions (several glutathione
synthesis and nucleotide metabolism reactions) that we calcu-
lated to have high Q10 coefficients are relatively disconnected
from the rest of the network and thus may not be as affected.

Table 2
Q10 coefficients for reaction fluxes
Reaction and metabolite abbreviations are BiGG database identifiers. GGCT, glu-
tamyl cyclotransferase; GLUCYS, �-glutamylcysteine synthetase; GTHS, glutathi-
one synthase; GLNS, glutamine synthetase; ADK1 , adenylase kinase; PPA,
inorganic diphosphatase; PGK, phosphoglycerate kinase; ENO , enolase; PGM,
phosphoglycerate mutase; ADA, adenosine deaminase; PYK, pyruvate kinase; HEX1,
hexokinase; AMPDA, adenosine monophosphate deaminase; GAPD, glyceralde-
hyde-3-phosphate dehydrogenase; PFK , phosphofructokinase; FBA, fructose-bis-
phosphate aldolase; TPI, triose-phosphate isomerase; PGI, glucose-6-phosphate
isomerase; PEPCK, phosphoenolpyruvate carboxylase; NDPK1, nucleoside-diphos-
phate kinase (ATP:GDP); NTD11, 5�-nucleotidase (IMP); NTD7, 5�-nucleotidase
(AMP); PRPPS, phosphoribosylpyrophosphate synthetase; PDE1, 3�,5�-cyclic-nu-
cleotide phosphodiesterase; ADNCYC, adenylate cyclase; DPGase, diphosphoglyc-
erate phosphatase; GLUN, glutaminase; GUAPRT, guanine phosphoribosyltrans-
ferase; NTD9, 5�-nucleotidase (GMP); PUNP3, purine-nucleoside phosphorylase
(guanosine); PPM, phosphopentomutase; PUNP5, purine-nucleoside phosphoryl-
ase (inosine); OPAHir, 5-oxoproline amidohydrolase (ATP-hydrolyzing); P C, pyru-
vate carboxylase ; HXPRT, hypoxanthine phosphoribosyltransferase; g lucys , �-
L-glutamyl-L-cysteine; 5 oxpro , 5-oxoproline; gthrd, reduced glutathione; 3pg,
3-phospho-D-glycerate; 13dpg, 3-phospho-D-glyceroyl phosphate; 2pg, 2-phospho-
D-glycerate; pep, phosphoenolpyruvate; adn, adenosine; ins, inosine; pyr, pyruvate;
g6p, D-glucose 6-phosphate; imp, inositate; g3p, glyceraldehyde 3-phosphate; f6p,
D-fructose 6-phosphate; fdp, D-fructose 1,6-bisphosphate; dhap, dihydroxyacetone
phosphate; oaa, oxaloacetate; r5p, �-D-ribose 5-phosphate; prpp, 5-phospho-�-
D-ribose 1-diphosphate; 23dpg, 2,3-disphospho-D-glycerate; gua, guanine; gsn,
guanosine; r1p, �-D-ribose 1-phosphate; hxan, hypoxanthine.

Reaction Q10 R2 Formula

GGCT 1.98 0.93 glucys3 5oxpro � cys-L
GLUCYS 2.06 0.93 atp � cys-L � glu-L3 adp � glucys � h � pi
GTHS 2.21 0.93 atp � glucys � gly3 adp � gthrd � h � pi
GLNS 2.23 0.91 atp � glu-L � nh43 adp � gln-L � h � pi
ADK1 2.29 0.91 amp � atp% 2 adp
PPA 2.40 0.94 h2o � ppi3 h � 2 pi
PGK 2.53 0.95 3pg � atp% 13dpg � adp
ENO 2.57 0.95 2pg% h2o � pep
PGM 2.57 0.95 2pg% 3pg
ADA 2.58 0.99 adn � h2o � h3 ins � nh4
PYK 2.59 0.95 adp � h � pep3 atp � pyr
HEX1 2.60 0.95 atp � glc-D3 adp � g6p � h
AMPDA 2.62 0.99 amp � h2o � h3 imp � nh4
GAPD 2.63 0.95 g3p � nad � pi% 13dpg � h � nadh
PFK 2.65 0.96 atp � f6p3 adp � fdp � h
FBA 2.65 0.96 fdp% dhap � g3p
TPI 2.65 0.96 dhap% g3p
PGI 2.72 0.96 g6p% f6p
PEPCK 3.04 0.93 gtp � oaa3 co2 � gdp � pep
NDPK1 3.04 0.93 atp � gdp% adp � gtp
NTD11 3.60 0.91 h2o � imp3 ins � pi
NTD7 3.70 0.91 amp � h2o3 adn � pi
PRPPS 3.78 0.93 atp � r5p% amp � h � prpp
PDE1 3.79 0.91 camp � h2o3 amp � h
ADNCYC 3.79 0.91 atp3 camp � ppi
DPGase 3.79 0.91 23dpg � h2o3 3pg � pi
GLUN 3.79 0.91 gln-L � h2o3 glu-L � nh4
GUAPRT 3.81 0.91 gua � prpp3 gmp � ppi
NTD9 3.81 0.91 gmp � h2o3 gsn � pi
PUNP3 3.81 0.91 gsn � pi% gua � r1p
PPM 4.04 0.95 r1p% r5p
PUNP5 4.16 0.96 ins � pi% hxan � r1p
OPAHir 4.26 0.92 5oxpro � atp � 2 h2o3 adp � glu-L � h � pi
PC 4.34 0.94 atp � hco3 � pyr3 adp � h � oaa � pi
HXPRT 4.54 0.96 hxan � prpp3 imp � ppi
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Second, the pathway analyses indicate that even without
transcriptional or translational regulation RBCs maintain con-
sistent flux through glycolysis and nucleotide metabolism
across temperature. The storage age biomarkers in glycolysis
(glucose and lactate) represent the primary exchanges for the
RBC metabolic network. The preservation of these exchanges
indicates that sustaining these reactions is inherent to the network
topology and necessary to maintain physiological functions. The
change in pathway usage across the rest of the network is depen-
dent upon kinetics and thermodynamics, properties that are sub-
ject to change over a 33 °C temperature range.

Third, it is important to be aware that the temperature depen-
dences calculated here are based on ex vivo measurements, not
single-enzyme in vitro assays. Such an assay would inherently
be absent from any regulatory or network influences. Our
results, although also generated in the absence of transcrip-
tional or translational regulatory effects, suggest that the orga-
nizational structure of the network influences the temperature
dependence of individual enzymes. Thus, we would not expect

the systemic Q10 coefficients calculated here to correlate with
previously reported in vitro values. For example, previous stud-
ies have reported Q10 coefficients for pyruvate kinase (PYK) in
the range of 3.3– 4.2 for fish (5), 1.4 –1.9 for bats (29), and 1.66 –
1.69 for turtles (30); we calculated a systemic Q10 coefficient of
2.59 for PYK. The use of a cell-scale model to calculate the flux
coupling of various reactions in the metabolic network provides
an unambiguous explanation for why sets of reactions in the
network have similar Q10 coefficients despite variation of indi-
vidual Q10 coefficients. Additionally, the flux coupling results
suggest that the ex vivo Q10 coefficients calculated here would
be different from in vitro Q10 coefficients and from each other
because the network structure intrinsically constrains the tem-
perature dependence of certain reactions. The networks at the
measured temperatures displayed no significant loss of flux
coupling compared with the base model, suggesting that the
structural characteristics of the RBC network are robust
despite the accumulation or depletion of intermediate
metabolites.

Figure 3. Metabolic map of glycolysis. Day 0 here is taken to be 1 day after the beginning of the storage period. Q10 coefficients are provided for those
metabolites and reactions that could be calculated. Error bars represent the range of measured data for each time point (line indicates mean). All abbreviations
are from the BiGG database. G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; FDP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; G3P,
glyceraldehyde 3-phosphate; 1,3-DPG, 3-phospho-D-glyceroyl phosphate; 3PG, 3-phospho-D-glycerate; 2PG, 2-phospho-D-glycerate; PEP, phosphoenolpyru-
vate; PYR, pyruvate; LAC, L-lactate; HEX1, hexokinase; PGI, glucose-6-phosphate isomerase; PFK, phosphofructokinase; FBA, fructose-bisphosphate aldolase;
GAPD, glyceraldehyde-3-phosphate dehydrogenase; DPGM, diphosphoglyceromutase; PGK, pyruvate kinase; DPGase, diphosphoglycerate phosphatase; PGM,
phosphoglycerate mutase; ENO, enolase; LDH, lactate dehydrogenase.
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We have described the temperature dependence of a human
metabolic network over a temperature range of 33 °C, from 4 °C
(the Food and Drug Administration-defined RBC storage tem-
perature for transfusion) to 37 °C (the in vivo temperature).
Although the RBC represents a simple cellular system, the lack
of complex regulatory motifs allows for a direct interrogation of
the systems biochemistry underlying metabolism. The use of
systems biology methods empowered us to assess the temper-
ature dependence of an ex vivo metabolic system at the network
level, helping to understand the relationship between the struc-
ture and function of the RBC metabolic network.

Experimental procedures

Experimental methods

RBC unit preparation, data measurements, and metabolo-
mics analyses were performed as previously reported (19, 31).
Metabolomics measurements were made over 21 (4, 13, and
22 °C) and 7 days (37 °C).

In brief, the metabolomics analysis was performed using
ultraperformance liquid chromatography (UPLC) (ACQUITY,
Waters) coupled with a quadrupole/time-of-flight mass spec-
trometer (SYNAPT G2, Waters). Chromatographic separation
was achieved by working in hydrophilic interaction liquid chro-
matography mode using an ACQUITY amide column (1.7 �m,
2.1 � 150 mm) (Waters).

All RBC samples were analyzed three times: once in positive
ionization mode using acidic chromatographic condition and
twice in negative ionization mode using both acidic and basic
chromatographic conditions. During acidic conditions, mobile
phase A was 100% ACN, and mobile phase B was 100% H2O,
both containing 0.1% formic acid. The following elution gradi-
ent was used during acidic condition: 0 min 99% A, 7 min 30%
A, 7.1 min 99% A, 10 min 99% A. Basic conditions used ACN, 10
mM sodium bicarbonate (95:5) as mobile phase A and ACN, 10
mM sodium bicarbonate (5:95) as mobile phase B. During basic
conditions, the following elution gradient was used: 0 min 99%
A, 6 min 30% A, 6.5 min 99% A, 10 min 99% A.

In all conditions, the flow rate was set at 0.4 ml/min, column
temperature was set at 45 °C, and injection volume was 3.5 �l.
The mass spectrometer was operated using a 1.5-kV capillary
voltage, 30-V sampling cone, and 5-V extraction cone. The
cone and the desolvation gas flow were 50 and 800 liters/h,
respectively. The source and desolvation gas temperatures were
120 and 500 °C, respectively. MS spectra were acquired in cen-
troid mode from m/z 50 to 1,000 using a scan time of 0.3 s.
Leucine enkephalin (2 ng/�l) was used as lock mass (m/z
556.2771 and 554.2615 in positive and negative experiments,
respectively).

Identification of unexpected metabolites was achieved by
integration, alignment, and conversion of MS data points into
exact mass retention time pairs (MarkerLynx, v4.1, Waters).
The identity of the unexpected metabolites was established by
verifying peak retention time, accurate mass measurements,
and tandem mass spectrometry against our in-house database
and online databases, including HMDB (32) and METLIN (33).
TargetLynx (v4.1, Waters) was used to integrate chromato-
grams of targeted metabolites. Extracted ion chromatograms

were extracted using a 0.02-mDa window centered on the
expected m/z for each targeted compound. Quantitation was
performed by external calibration with reference standards.
Details regarding the quantitative analysis (including the linear
range and limit of detection) are reported in supplemental
Tables S1 and S2. See the supplemental information for addi-
tional details

Multivariate statistical analysis

PCA has previously shown three distinct metabolic shifts
occurring over the 42-day storage period for RBCs at 4 °C: days
1–10, days 10 –17, and days 17– 42 (17, 19, 20). In the data
presented in this study, RBCs were stored at 4 °C for 21 days; to
ensure that all three shifts were captured in full, we used the
metabolomics data from Bordbar et al. (19) to calculate the
weightings for the principal components. PCA was performed
on the Z-scores of the eight extracellular biomarkers (20): ade-
nine, glucose, hypoxanthine, lactate, malate, nicotinamide,
5-oxoproline, and xanthine. These weights were then used to
transform the data presented here so that a more representative
comparison could be made across all temperatures. The com-
ponents were rotated in the transformed space such that the
day 0 measurement appears in the lower left corner of the plot.

Calculation of temperature coefficients

Each measurement was plotted against time to find the rate
of change. The rate of change was calculated through simple
linear regression according to Equation 1,

ŷ � �0 � �1x � 	 (Eq. 1)

where ŷ is the calculated response, �0 is the y-intercept, �1 is the
regression coefficient (i.e. the slope), and 	 is the error (Fig. 1C).
To determine the goodness of fit, the coefficient of determina-
tion (R2) was calculated using Equation 2,

R2 � 1 

�i�1

n 	 yi 
 ŷi

2

�i�1
n 	 yi 
 y� i


2 (Eq. 2)

where ŷ is the calculated value of y and y� is the mean of y. Once
a rate was obtained for each measurement, Q10 was calculated
from the slope of the log2(rate) versus temperature plot (Fig.
1D). This procedure is outlined in the following text.

The definition of Q10 is on the Arrhenius equation (34),
which states that the rate of a process (k) is exponentially
related to the temperature of that process,

k � Ae 
 E�/RT (Eq. 3)

where k represents the rate of the process, A is a constant factor
that represents the frequency of molecular collision, Ea is the
activation energy, R is the gas constant, and T is the tempera-
ture of the process (35). The temperature coefficient is empir-
ically defined as the ratio of the rates of two processes (6, 11, 34,
36 –38),

Q10 � �k2

k1
� 10�	T2 
 T1


(Eq. 4)
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where k1 and k2 represent the rates of two processes and T1 and
T2 represent the temperature at which these processes occur.
This relationship is the slope of a plot of log2(rate) versus tem-
perature (Fig. 1D). Using linear regression, the slope of the
log2(rate) versus temperature plots was calculated for each mea-
surement and used to calculate the Q10 value from Equation 5,

Q10 � 210 � m (Eq. 5)

where m is defined as follows.

m �
log2k2 
 log2k1

T2 
 T1
(Eq. 6)

Metabolites whose R2 values were less than 0.50 were
excluded in the analysis. This cutoff was determined based on
the distribution of R2 values (supplemental Fig. S5); our goal
was to maximize the amount of data captured while simultane-
ously minimizing the inclusion of noisy or poorly fit data. We
used the same procedure for calculating the reaction Q10 coef-
ficients. We only included reactions that carried flux in at least
three of the temperatures; transport reactions and reactions
whose R2 was less than 0.50 were excluded in the analysis. This
cutoff was determined based on the distribution of R2 values
(supplemental Fig. S5); our goal was to maximize the amount of
data captured while simultaneously minimizing the inclusion of
noisy or poorly fit data. For reactions, we extended this cutoff to
be based on the p value of the F statistic for the linear regression
fit of the log2(rate) versus temperature plot; only those reactions
whose p value was less than 0.05 were included. The R2 for the
reactions whose p values were less than 0.05 was greater than
0.80 for all reactions (i.e. no reactions were excluded based on
the R2 value from its linearly regressed fit).

Flux modeling

We used a modified version of the erythrocyte metabolic
reconstruction iAB-RBC-283 (15), which was previously used
for building personalized kinetic models (39). We integrated
the metabolite concentrations into this model to predict the
flux state of the network at each temperature using non-steady-
state flux balance analysis (27). 2,3-DPG has previously been
determined to be one of the more important metabolites in
RBC physiology but was not measured here. To obtain the most
accurate model of the entire network, we used existing metabo-
lomics data (19) to predict the concentration profile of 2,3-DPG
using the profiles of the eight biomarkers as input according to
the workflow described in Yurkovich et al. (21).

Flux coupling

We used F2C2 (40) to calculate the flux coupling of the met-
abolic networks. When the metabolomics data are integrated
into the metabolic model, the structure of the network is altered
through the addition of source and sink reactions (27). To con-
struct random networks, we needed to ensure that the models
were feasible and mimicked the models created using the mea-
sured data. Therefore, we randomly chose nodes in the base
RBC model that were “measured” as either accumulation
(source) or depletion (sink); we used the measured data to
determine 1) the number of randomly “measured” nodes, 2) the

distribution of intracellular versus extracellular nodes, 3) the
distribution of sources versus sinks, and 4) the bounds for
the added sources and sinks.

The permutation test compared the difference in the flux
coupling characteristic between the base network and the net-
works at the measured temperatures with the flux coupling
characteristic between the base model and 1,000 randomly gen-
erated networks (supplemental Fig. S4). The p value was deter-
mined to be the fraction of random networks whose difference
in the flux coupling characteristic was less than or equal to that
of the measured temperature networks.
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