
 

Available online at www.sciencedirect.com 

ScienceDirect 

Materials Today: Proceedings 4 (2017) S253–S262 

 

 

www.materialstoday.com/proceedings  

 

221
nd/
Sel

NRW 2016 

Ab

© 
nc
Se

Ke

per

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorium und Bibliografie der Hochschule Reutlingen
Polyol synthesized aluminum doped zinc oxide nanoparticles - 
influence of the hydration ratio on crystal growth, dopant 

incorporation and electrical properties 
Thomas Straubea,b, Jürgen Lindersb, Thomas Mayer-Galla,b, Torsten Textorc, Christian 
Mayerb, Jochen S. Gutmanna,b* 

aDeutsches Textilforschungszentrum Nord-West gGmbH, Krefeld, Germany 
bInstitute of Physical Chemistry and Center for Nano Integration, Duisburg-Essen, Germany 

cReutlingen University, Textile and Design, Reutlingen, Germany

 

stract 
The wet chemical deposition of solution processed transparent conducting oxides (TCO) provides an alternative low cost and 
economical deposition technique to realize large-areas of conducting films. Since the price for the most common TCO Indium 
Tin Oxide rises enormously, Aluminum Zinc Oxide (AZO) as alternative TCO reaches more and more interest. The 
optoelectronical properties of nanoparticle coatings strongly depend beneath the porosity of the coating on the shape and size of 
the used particles. By using bigger or rod-shaped particles it is possible to minimize the amount of grain boundaries resulting in 
an improvement of the electrical properties, whereas particles bigger than 100 nm should not be used if highly transparent 
coatings are necessary as these big particles scatter the visible light and lower the transmittance of the coatings. In this work we 
present a simple method to synthesize AZO particles with different shape and size, but comparable electronical properties. We 
use a simple, well reproducible polyol method for synthesis and influence the shape and size of the particles by adding different 
amounts of water to the precursor solution. We can show that the addition of aluminum as dopant strongly hinders the crystal 
growth but the addition of water counteracts this, so that both, spherical and rod-shaped particles can be obtained.  
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1. Introduction 

Transparent Conducting Oxides (TCO) are used for a wide range of optoelectronic applications, because thin 
films of TCO materials combine the unique properties as high transmittance in the visible region and high electrical 
conductivity. Since the price for the most commonly used TCO Indium Tin Oxide (ITO) rises enormously due to a 
rapidly growing demand and rare earth abundance of Indium, a cost effective alternative with comparable quality is 
needed. Aluminum Zinc Oxide (AZO) as alternative TCO reaches the most interest, because the precursors are 
nontoxic, cheap and earth-abundant [1,2,3]. There are diverse established physical and chemical techniques as 
sputtering, evaporation, pulsed laser deposition, chemical vapour deposition or sol-gel technique to deposit thin TCO 
films directly on substrate [4,5]. Coatings prepared by these techniques are highly transparent and exhibit the best 
electrical properties reported [6,7] but suffer from different drawbacks as high costs for vacuum processing, the 
limitation to flat and mostly heat stable substrates and the difficulty to scale up the processes on large areas. An 
alternative low cost and economical deposition technique is the wet chemical deposition of nanoparticle suspensions. 
The advantage of this approach is to separate the step of TCO synthesis from the step of deposition on the substrate, 
so that a low temperature deposition of conductive particle layer on different substrates can be put into practice  
[8,9]. The disadvantage of this approach is, that the resistances of particle coatings are higher than those of coatings 
prepared by conventional deposition techniques [6]. That can be ascribed to higher porosities (lower density) and a 
big amount of grain boundaries that hinder the electron transfer from particle to particle and therefore through the 
coating [10,11,12,13]. To prepare particle coatings with adequate properties, stable nanoparticle dispersions or inks 
with low-agglomerated, conductive nanoparticles are necessary [14,15]. With the help of crystalline solution 
processed nanoparticles and different additives and stabilizers it is possible to prepare low agglomerated particle 
suspensions to guarantee a good arrangement of the particles on a substrate [16,17]. Beneath the porosity, the shape 
and size of the nanoparticles can have a big impact on the coating’s properties. By using bigger particles it is 
possible to minimize the amount of grain boundaries resulting in an improvement of the electrical properties 
[13,18,19], whereas particles bigger than 100 nm should not be used if highly transparent coatings are necessary as 
these big particles scatter the visible light and lower the transmittance of the coatings [11]. All in all, particle 
coatings with high transparency and good electrical properties can be achieved using particles of sufficiently small 
size and good conductivity which can be dispersed free of agglomerates.  

In this work we concentrate on the synthesis of highly crystalline spherical and rod-shaped Aluminum-doped 
Zinc Oxide nanocrystals using a simple polyol method. To control the shape of the nanoparticles we add different 
amounts of water to the precursor solution as described by Lee et al. [19] who obtained spherical and rod-shaped 
ZnO nanoparticles using this method. We investigate the influence of the hydration ratio and the dopant on the 
crystal-size and shape by X-ray powder diffraction (PXRD) analysis and scanning electron microscopy (SEM) and 
the electrical properties by resistance measurements of the bulk material. With the help of 27Al-MAS-NMR 
experiments and elemental analysis (ICP-OES), we investigate the incorporation of aluminum in zinc oxide. 

2. Materials and Methods 

2.1. Synthesis of AZO nanoparticles 

Syntheses were carried out in a high-pressure reactor (Berghof) with a teflon vessel of 500 ml volume and an 
agitator. Zinc acetate dehydrate (Zn(CH3COO)2, >95%, Roth) and aluminium nitrate nonahydrate (Al(NO3)3 x9H2O, 
≥98%, Roth) were used as precursors and diethylene glycol (DEG, ≥99%, Merck) with an estimated water content of 
0.3 wt.% as solvent. All samples were synthesized with a total precursor amount of 0.255 mol/l, a volume of 200 ml 
DEG and a dopant degree of 2 at.% aluminum, whereas the dopant degree was defined as the molar ratio of the 
metal ions of the precursors [n(AL3+) / n(Al3++Zn2+)]x100%. To investigate the influence of the hydration ratio 
different amounts of deionized water (DI) were added to 200 ml solvent DEG. The hydration ratio “h” is defined as 
the molar ratio of the total water content to the total amount of the precursor ions, h= n(H2Ototal) / n( Zn2++Al3+), with 
n(H2Ototal)=n(H2ODEG)+n(H2OAl-nitrate)+n(H2ODI). We synthesized samples with h=0.9, 2, 3, 6, 12 and for comparison 
undoped ZnO nanoparticles with a hydration ratio of about h=2.7 using 0.25 mol/l zinc acetate dihydrate as 
precursor. For synthesis, precursors, solvent and additional water were filled into the teflon vessel and to guarantee a 
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constant composition of the atmosphere over the reaction solution, the reactor chamber was purged with argon as 
inert gas for several minutes. To avoid deformation of the teflon vessel while synthesis, the reactor chamber was 
filled with an overpressure of 10 bar argon. Before heating up the solution to 200°C for 8 h, the agitator was started 
to stir continuously at 250 rpm. After synthesis, the reactor cooled down to room temperature and the obtained 
particles were centrifuged and washed several times with ethanol before the particles were dried in an oven at 80°C 
over night.  

2.2. Characterization of AZO nanoparticles 

Scanning electron microscopy (SEM) of diluted particles on carbon templates was carried out with an S3400N 
from Hitachi. X-ray powder diffraction (PXRD) was carried out with a powder diffractometer Bruker D8 Advance in 
Bragg-Brentano geometry with Cu-Kα radiation (1.54 Å; 40 kV and 40 mA) in a 2 theta range from 5-90°. 27Al MAS 
NMR experiments were performed on a Bruker ASX 400 spectrometer with a 104.261 MHz resonance frequency for 
aluminum nuclei. For all solid-state spectra, magic angle spinning (MAS) was applied at frequencies of 14500 Hz in 
a 4 mm rotor and the excitation of 27Al nuclei was induced by a single 90° pulse of 5.75 µs duration. Generally, the 
fully decoupled free induction decay was accumulated over 20k scans and fourier-transformed in order to obtain the 
spectrum. To allow for full spin-lattice relaxation a waiting period of 3 s was used between the experiments. All 
experiments were carried out at ambient temperature (298 K). Quantitative elemental analyses were performed by 
inductively coupled plasma optical emission spectrometry (ICP-OES) with a Varian 720-ES-OES. For that a small 
amount of AZO powders were diluted with nitric-acid (69%, Roth) and solved by microwave-digestion. Resistivity 
measurements of powders were performed by a two-point measurement system. For that 0.3 grams of pestled 
powder were filled between two hardened stainless steel cylinders with a diameter of 13 mm as known from 
common KBr-presses. The measurements were performed for 50 seconds with a pressure of 3.7x103 bar at a constant 
current with a Multimeter (Keithley), whereas the pressure was applied by automatically compacting the powders in 
an uniaxial press (Hydraulic Power Press, Specac). The results were calculated from the average resistance measured 
in 50 seconds. The thickness of the pellets and the specific resistance of the powders were calculated based on the 
pressed powder mass, the density for crystalline ZnO (5.6 g•cm-3 ) and the diameter of the used cylinder for pellet 
preparation.  

3. Results and Discussion 

3.1. Influence of the hydration ratio and aluminum doping on the particle morphology and crystal growth 

After the synthesized particles were washed several times with ethanol, a small amount of selected particles were 
diluted with Ethanol and placed on carbon planchets. After drying in air over night, SEM photographs of the 
obtained particles were taken. The following micrographs in figure 1 illustrate undoped ZnO and AZO particles 
synthesized with a hydration ratio “h” of h=0.9, 3 and 12. It is obvious that the shape and size for the different AZO 
particles differ. AZO particles synthesized with the lowest hydration ratio (h=0.9) are strongly agglomerated but 
some small isolated particles can be seen in the background. The particles of undoped ZnO and AZO h=3 and h=12 
are not strongly agglomerated and differ in size and shape. The AZO particles of h=3 are small and spherical, 
whereas AZO particles of h=12 and undoped ZnO particles are bigger and more like rod-shaped particles.  
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undoped ZnO AZO, h=0.9 

 
AZO, h=3 AZO, h=12 

Fig. 1. SEM micrographs of undoped ZnO and AZO particles synthesized at different hydration ratios (h=0.9, 3, 12). 

To investigate the crystallinity of the obtained particles we performed PXRD analysis of powders. Figure 2 (left) 
shows the XRD patterns for the synthesized ZnO and AZO particles. The XRD pattern for ZnO as well as for AZO 
correspond to the crystalline hexagonal-wurtzite-structure of ZnO which was identified by comparison with the 
spectra from JCPDS (Card No. 36-1451). Furthermore for AZO particles no phases of any aluminium oxide species 
were detected. Nevertheless, both the hydration ratio and the doping with aluminum strongly influence the peak 
width and the relative peak intensities.  
 

   

Fig. 2. left: XRD pattern for ZnO und AZO powders synthesized at different hydration ratio (h);  
right: crystal-size calculated for three different Bragg reflexes in dependence of the hydration ratio. 

The peak width of the Bragg reflexes decreases and the relative intensities increase with increasing hydration 
ratio what can be assigned to an improved crystallinity. Using the Scherrer’s equation the crystallite size for the most 
intensive Bragg peaks [100], [002] and [101] were calculated and plotted against the hydration ratio (Figure 2, right). 
With increasing hydration ratio the crystallite-size increases. For h=0.9 the crystal size of the peaks [100], [002] and 
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[101] is about 12, 14 and 13 nm, for h=12 its about 32, 59 and 33 nm. Furthermore it’s quite evident that the relative 
peak intensity ratio of I002/I100 differs. For h=0.9, 2 and 3 these ratios are in a range from 0.8-0.86 and for h=6 and 12 
about 1 and 1.1. The different aspect ratios stand for varying particle morphologies. With increasing hydration ratio 
the particles change their form from spherical to rod-shaped particles. Lee et al. [19] investigated the influence of the 
hydration ratio on the particle growth of polyol synthesized undoped ZnO particles and also observed a rod-shaped 
growth for ZnO particles with increasing hydration ratio. They developed a reaction mechanism for the water 
mediated growth and explain that the hydration ratio mediated particle-growth in ZnO is based on the fact that water 
acts both as reactant and as product of the hydrolysis and condensation reaction for the oxide formation and affects 
the kinetics of the nucleation and growth process, as well as Poul et al. [20] generally describe. Although we 
investigate the influence of the growth of AZO particles in dependence of the hydration ratio, our findings fit well 
with the findings of Lee et al. for undoped ZnO. But if we compare the crystal structure of undoped ZnO particles 
with AZO for nearly the same hydration ratio, it becomes obvious, that beneath the hydration ratio, the introduction 
of aluminum strongly affects the crystallinity and the particle morphology. The crystal-sizes of undoped ZnO 
particles for the peaks [100], [002] and [101] were calculated with 27, 44 and 27 nm and are with an aspect ratio 
I002/I100 of 0.98 rod-shaped. The obtained AZO particles for h=3 are with 16, 20 and 18 nm for the same peaks 
smaller and with an aspect ratio I002/I100 of 0.86 spherical grown. Consequently, doping with aluminum strongly 
hinders the particle growth, especially the growth for the [002] plane. The incorporation of dopant atoms generally 
hinders the particle growth and decrease the crystallinity [21,22] but here we can show that an increase of the water 
content reduces the influence of the dopant on the crystal-growth, so that rod-shaped AZO particles with improved 
crystallinity can be synthesized.  

3.2. Incorporation of aluminum in ZnO and electrical properties of AZO particles  

To investigate the influence of the hydration ratio on the incorporation of aluminum in ZnO we firstly determined 
the chemical composition of the synthesized AZO particles by ICP-OES to get general information about the 
aluminum content in the powders. Independent from the hydration ratio the initially inserted aluminum concentration 
of 2 at.% could be found within the limits of the standard deviation (Table 1).  
 

Table 1: chemical composition of the AZO particles 
measured by ICP-OES 

Sample measured Al content [at.%] 

AZO, h=0.9 1.98 ± 0.09 

AZO, h=2 2.23 ± 0.47 

AZO, h=3 2.10 ± 0.10 

AZO, h=6 2.20 ± 0.09 

AZO, h=12 2.26 ± 0.09 

 
It is known that aluminum ions can occupy different lattice sites in the wurtzite-structure of ZnO what makes the 

dopant mechanism very complex. By 27Al-nuclear magnetic resonance spectroscopy (27Al-NMR) the distribution of 
the aluminum atoms in the host lattice of ZnO can be depicted and characterized [23,24,25,26,27,28]. Related to the 
crystallographic composition of the wurtzite-structured zinc oxide, different lattice sites can be occupied by the 
dopant. Al3+ ions can either substitute Zn2+ ions in a tetrahedral coordination with four oxygen atoms (Al4sub) or 
situate on interstitial lattice sites and can be tetrahedrally (Al4int) or octahedrally (Al6int) coordinated by four or six 
oxygen atoms as e.g. Kelchtermans et al. [26] describe. Beneath these positions, Al3+ ions can be pentahedral 
coordinated [23,27], whereas this coordination generally can not be dedicated as a convenient position in the lattice 
of the ZnO but is known from 27Al-NMR investigations of different aluminium oxide structures and were often 
found at the surface of the solids bound to different organic molecules [29,30,31]. Avadhut et al. [25] performed 
multinuclear (1H, 13C, 27Al) spectroscopic analysis with the aim to localize the different Al species in AZO. They 
found Al6, Al5 and Al4 in a disordered, amorphous environment and localized these species near the surface of 
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AZO particles bound to organic molecules as solvent, salt or adsorbed water and just Al4sub with a small amount of 
about 0.1 at.% in an ordered, crystalline environment. Further they correlated their findings with the electrical 
properties and showed that Al6, Al5 and Al4 behave as insulating particle shell that results in a decrease of the 
conductivity due to electron trapping and that only Al4sub causes an increase of the conductivity by n-doping. We 
performed 27Al-NMR experiments to get a deeper insight on the distribution and solubility of aluminum in the host 
lattice of ZnO in dependence of the hydration ratio. In Figure 3, left, the 27Al-NMR spectra for AZO in dependence 
of the hydration ratio are shown and the dotted lines mark the chemical shift values for the different Al3+ species 
known from literature.  
 

   

Fig. 3. left: 27Al-NMR spectra of AZO synthesized with different hydration ratio and dotted lines that mark the chemical shift values for the 
known peaks; right: calculated amount of amorphous and crystalline coordinated aluminum in dependence of the hydration ratio. 

For all 27Al-NMR spectra Al6 is the dominating species whereas the other Al species can be recognized as well. It 
is obvious that the peaks for Al6, Al5 and Al4int are very broad in contrast to Al4sub what indicates that Al4sub is 
located in a highly ordered, crystalline environment and Al6, Al5 and Al4int in a disordered, amorphous environment 
[20-22]. A change of the peak intensities in dependence of the hydration ratio is noticeable. With increasing 
hydration ratio the intensity for Al6, Al5 and Al4int increase related the peak for Al4sub. To estimate the relative 
change of amorphous (Al6, Al5, Al4int) to crystalline (Al4sub) located aluminum in dependence of the hydration ratio, 
we deconvoluted the signals for the Al species by Lorentz envelopes in origin software and plotted the aluminum 
amounts related to a total doping degree of 2 at.% for all probes against the hydration ratio (Figure 3, right). 
However we have to note, that the integration of solid-state 27Al-NMR spectra signals does not provide reliable 
quantitative data. For all probes we identified amounts smaller 0.2 at.% for Al4sub that is in accordance with the 
findings of Avadhut et al. [25] and other authors who identified just small amounts of in ZnO solubilized aluminum 
by 27Al-NMR [24,28,32]. With increasing hydration ratio the amount of crystalline located aluminum decreases from 
0.15 at.% to 0.05 at.% Al and the amount for amorphous located aluminum increases from 1.85 at.% up to 1.95 at.% 
Al. So here we can show that the addition of water decreases the solubility of aluminum in ZnO. Beneath the peaks 
for the different known Al species we recognized and added two more peaks at around 150 ppm and 200 ppm in 
figure 2 (left) that are known from 27Al-NMR spectra of AZO particles. The peak around 150 ppm arises due to the 
chemical shift anisotropy and quadrupolar interaction of Al nuclei with local electric field gradients and can be 
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identified as “side-spinning-band” (SSB) [33] and thus can be declared as artifact of the performed measurement. 
The broad peak in a range of 200 ppm can be identified as “Knight-Shift” [34] and is related to the magnetic 
interaction between nuclear and electronic spins and can be assigned to present conduction electrons  [35]. We could 
clearly identify a Knight-Shift for all 27Al-NMR spectra at around 200 ppm expect for AZO synthesized with the 
lowest hydration ratio of h=0.9 as we normalized all spectra for Al4sub at 81 ppm and cut the spectra at a value of 2 
for the y-axis (Figure A1 in appendix). The area of the Knight-Shift is about 8-15 % for each spectrum without a 
tendency in dependence of the hydration ratio. The results of the 27Al-NMR analysis show, that the addition of water 
to the precursor solution generally influences the incorporation of the dopant in ZnO. An increase of the hydration 
ratio results in an increase of amorphous coordinated aluminum and the appearance of the Knight-Shift for h>0.9 
could be identified and is evident for an oxidic material with metallic character, and hence hints on an improved 
conductivity [23,25]. 

3.3. Electrical properties of bulk ZnO and AZO  

To investigate the electrical properties of the bulk material, we measured the resistance with a two-point 
measurement setup as described from Pluemel [36] or Bubenhofer et al. [15]. To ensure a dense packing of the 
particles, the measurements were carried out with a pressure of 3.7x103 bar. The results are shown in Table 2.  

 
Table 2: Sheet-resistance of the bulk materials 

Sample Sheet resistance [Ohm*m] 

ZnO 1.28x105 

AZO, h=0.9 130 

AZO, h=2 51 

AZO, h=3 34 

AZO, h=6 24 

AZO, h=12 23 

  

The incorporation of aluminum in ZnO has a big impact on the electrical properties as the sheet-resistance for 
doped ZnO decreases up to 4 magnitudes. So independent of the hydration ratio the incorporation of aluminium as 
dopant improves the electrical properties. But the influence of the hydration ratio or the resulting change of crystal-
morphology influences the electrical properties. A general decrease of the resistance with increasing hydration ratio 
is obvious, whereas it is just significant from AZO h=0.9 to h=2 with about 80 Ohm*m. Reasons for this difference 
may be caused by a lower particle-to-particle contact since these particles are strongly agglomerated as we can see 
on the SEM photograph for AZO h=0.9. In contrast to that the difference of the sheet-resistance between AZO h=6 
and 12 is negligible as we calculated a standard deviation of 1.6 Ohm*m. Even though in literature the decrease of 
the bulk conductivity due to minimizing the amount of grain boundaries with increasing crystal-size is mentioned, 
we could not find significant differences, especially when the crystal-size strongly increases from AZO h=6 with 
37 nm for the [002] plane up to 59 nm for AZO h=12 as it becomes obvious from Figure 4. If we correlate the results 
of electrical analysis with those of the 27Al-NMR analysis, it is to note that the amount of amorphous located 
aluminium increases with increasing hydration ratio. If we assume that the amorphously coordinated aluminum 
behaves as insulating “shell” as described from Avadhut et al. [25], it is possible that this insulating phase 
additionally hinders the electron transfer and counteracts an improvement of the electron-transfer by minimizing the 
amount of grain boundaries. But since we can’t prove this hypothesis with the help of our analysis, we can just guess 
about it. 
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Fig. 4. Sheet-resistance of pressed AZO powders in dependence of the crystal-growth in [002] plane.  

4. Conclusion 

We investigated the influence of the water content and aluminum as dopant on the crystal growth of AZO 
nanoparticles and showed that aluminum strongly hinders the preferential growth of undoped ZnO in [002] direction. 
Through the addition of water the crystal-growth of AZO particles can be influenced and controlled so that spherical 
as well as rod-shaped particles can be obtained. The resistance of the obtained AZO particles is four magnitudes 
lower compared to the undoped ZnO and a slight improvement of the electrical properties with increasing crystal-
size is noticeable. With the help of 27Al-NMR analysis we can show that the amount of amorphous located 
aluminium increases if the hydration ratio increases and may act as insulating shell that reduces the electron-transfer 
from particle to particle. Our results present an easy way to synthesize highly crystalline and conductive particles 
that can be used for further investigations, for example the influence of particle sizes on the opto-electronical 
properties. 
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Appendix A.  

A.1. 27Al-NMR spectra of AZO particles  

 

Fig. A1. 27Al-NMR spectra of AZO synthesized with different hydration ratio normalized for the peak at 81 ppm  
and cut at a value of 2 for the y-axis. 


