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Abstract
QCD factorization in the Bjorken limit allows to separate the long-distance physics from the
hard subprocess. At leading twist, only one parton in each hadron is coherent with the hard
subprocess. Higher twist effects increase as one of the active partons carries most of the
longitudinal momentum of the hadron, x → 1. In the Drell-Yan process πN → µ−µ+ + X,
the polarization of the virtual photon is observed to change to longitudinal when the photon
carries xF & 0.6 of the pion. I define and study the “Berger-Brodsky” limit of Q2 →∞ with
Q2(1− x) fixed. A new kind of factorization holds in the Drell-Yan process in this limit, in
which both pion valence quarks are coherent with the hard subprocess, the virtual photon
is longitudinal rather than transverse, and the cross section is proportional to a multiparton
distribution.

Generalized parton distributions contain information on the longitudinal momentum and
transverse position densities of partons in a hadron. Transverse charge densities are Fourier
transforms of the electromagnetic form factors. I discuss the application of these methods
to the QED electron, studying the form factors, charge densities and spin distributions of
the leading order |eγ〉 Fock state in impact parameter and longitudinal momentum space. I
show how the transverse shape of any virtual photon induced process, γ∗(q) + i→ f , may be
measured. Qualitative arguments concerning the size of such transitions have been previously
made in the literature, but without a precise analysis. Properly defined, the amplitudes and
the cross section in impact parameter space provide information on the transverse shape of
the transition process.
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Chapter 1

Introduction

The Standard Model of particle physics accurately describes the strong and electroweak
interactions between point-like elementary particles. Elastic ep→ ep scattering experiments
performed in the 1950s showed that the proton is not point-like, but has a finite charge radius
of O(10−15 m). In the late 1960s, the observation of Bjorken scaling in inelastic ep → eX
scattering experiments led to the parton model, in which the nucleon is composed of point-
like quarks bound together by the strong interaction. Peculiarly, the strength of the strong
interaction seemed to diminish in scattering processes involving a large momentum transfer,
a property called asymptotic freedom.

Quantum chromodynamics (QCD) emerged as the correct quantum field theory describing
the strong interaction, based on the SU(3) color gauge group. The QCD coupling constant
decreases logarithmically with the momentum transfer Q2, allowing the use of perturbation
theory in studying processes involving a large momentum transfer. The elementary degrees
of freedom in the QCD Lagrangian are quarks and gluons, which are bound together to
form color neutral bound states such as the proton and the pion, collectively referred to
as hadrons. One of the main challenges of hadron physics is to understand the wealth of
phenomena related to hadrons in terms of the quark and gluon degrees of freedom.

The quantum numbers of the hadron, such as its momentum, charge and spin are di-
vided between the constituent partons, and this division is described by certain density
distributions. These distributions are measurable in a variety of scattering processes involv-
ing hadrons. According to QCD factorization, the inclusive deep inelastic scattering (DIS)
eN → eX cross section is expressed as a product of the hard parton level cross section and
the soft parton distribution functions (PDFs) of the hadron. These distributions are univer-
sal, in the sense that they do not depend on the scattering process under consideration. QCD
factorization is valid in the Bjorken limit of hard processes, in which the hard scale Q2 →∞
and the energy transfer ν to the target in its rest frame increases as ν ∝ Q2.

In the leading twist contribution to DIS in the Bjorken limit, only one parton is coherent
with the hard virtual photon. Higher twist effects are suppressed by powers of 1/Q2, but
generally increase as one of the active partons has a longitudinal momentum fraction xi → 1.
In the Drell-Yan (DY) process, πN → µ−µ+ + X, the polarization of the virtual photon
producing the muon pair is observed to change to longitudinal when the photon carries a
longitudinal momentum fraction xF & 0.6 of the pion. In paper I, we defined the “Berger-
Brodsky” (BB) limit of Q2 →∞ with Q2(1− x) fixed, and apply it to the DY process. One
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CHAPTER 1. INTRODUCTION 2

of the valence quarks in the pion then has xi → 1, and the hard photon is coherent with
both quarks. We showed that in the DY process a new kind of factorization holds in the
BB limit, in which the virtual photon is longitudinal rather than transverse, and the cross
section is proportional to a multiparton distribution involving four quark fields, which would
be of higher twist in the standard Bjorken limit. The DY amplitude in the BB limit follows
simple helicity systematics.

Inclusive DIS provides the most accurate measurement of the longitudinal momentum
distributions of partons in the nucleon. Generalized parton distributions (GPDs) contain
information on the quark densities in transverse position space through the transverse mo-
mentum dependence, but their measurement is more involved than that of the PDFs. Trans-
verse quark densities have been studied using models for the GPDs. The GPDs reduce to
the electromagnetic form factors when integrated over the longitudinal momentum fraction
x. Thus, the transverse charge density of a nucleon is defined as a two-dimensional Fourier
transform of its form factors, a connection that has attracted considerable interest in recent
years. The form factors are well defined at all Q2 and are much easier to measure than the
GPDs, which has allowed to plot the nucleon charge densities in transverse position space.
Transition (resonance) charge densities have also been considered.

The QED electron has been much studied in the literature, both as a field theory template
for QCD hadrons, and for interest in its own right. In paper II, we studied the form factors,
transverse densities and spin distributions of the leading order |eγ〉 Fock state of the QED
electron in impact parameter space. Only transversally compact Fock states contribute to
the leading behavior of the Dirac and Pauli form factors, while distributions weighted by the
transverse size of the Fock state have divergences, which could affect the color transparency
of hadrons rescattering in a nucleus. There is controversy in the literature on how to split the
spin of the nucleon into separate contributions from quark and gluon angular momentum.
The helicity of the parent electron is conserved for each |eγ〉 Fock state, while the helicities
and orbital angular momentum of the daughter electron and photon depend on their impact
parameter and longitudinal momentum fraction. We showed that the sign of the electron
anomalous magnetic moment can be understood intuitively from the transverse densities,
addressing a challenge by Feynman.

Nucleon transverse charge densities are accessed via form factors measured in γ∗(q)+N →
N with the resolution b ∼ 1/Qmax. The process can be thought of as a relativistic analogue of
electron microscopy. In paper III, we considered the transverse shape of any virtual photon
induced process, γ∗(q) + i → f , where the initial and final states can consist of several
hadrons. Qualitative arguments concerning the effective size of the region in transverse
space where such transitions take place have been made literature, but without quantitative
verification. We showed how a specific Fourier transform of the γ∗(q) + N → f transition
amplitude measures the transverse shape of the transition process, and is given by the overlap
of the light-front wave functions of the initial and final state. Only Fock states that are
common to both the initial and final state contribute to the transition amplitude. The
Fourier transformed cross section reflects the difference between the impact parameters of
the quark struck in the amplitude and its complex conjugate.

This thesis is organized as follows. In chapter 2, I discuss the properties of QCD and
hadron structure. I review factorization in the Bjorken limit, using DIS as an example. I
discuss PDFs and GPDs as equal light-front time matrix elements. In chapter 3, I review
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the electromagnetic form factors of nucleons. I discuss how transverse densities are obtained
from the GPDs, and that the nucleon transverse charge densities are Fourier transforms of
the form factors. In chapter 4, I discuss high x processes and the BB limit of Q2 →∞ with
Q2(1 − x) fixed. I explain how factorization in the DY process πN → µ−µ+ + X differs
from usual QCD factorization in this limit, leading to a longitudinal virtual photon and a
multiparton distribution at leading order. In chapter 5, I discuss the form factors, charge
densities and spin distributions of the leading order |eγ〉 Fock state of the QED electron.
I show how to obtain the form factors from the charge densities, leading to an intuitive
argument on the sign of the electron anomalous magnetic moment. In chapter 6, I discuss
the possibility of measuring the transverse shape of any virtual photon induced transition
process, γ∗(q)+i→ f . I show how a specific Fourier transform of the amplitude measures the
transverse shape of the transition, and that the Fourier transformed cross section reflects the
difference between the impact parameters of quark struck in the amplitude and its complex
conjugate. Conclusions and outlook are given in chapter 7.



Chapter 2

QCD and parton distributions

In this chapter I discuss the properties of quantum chromodynamics, and the prospects and
challenges related to the study of hadrons. I review factorization and parton distribution
functions, using deep inelastic scattering as an example. I discuss transverse momentum
distributions and generalized parton distributions. I review the method of light-front quan-
tization, concentrating on the Fock expansion in terms of the light-front wave functions of
hadrons.

2.1 QCD and hadron structure
Quantum chromodynamics (QCD) is strongly believed to be the correct quantum field theory
describing the strong interaction, one of the four fundamental forces. QCD is a local gauge
theory based on the non-abelian SU(3) symmetry group, with the Lagrangian density

LQCD(x) =
∑

flavors

q̄A(x)(i /DAB −mδAB)qB(x)− 1

4
Ga
µν(x)Gµν

a (x) (2.1)

where qA(x) and Ga
µν(x) are the quark field and gluon field strength operators, respectively.

Due to the color confining nature of QCD, the degrees of freedom present in the Lagrangian
(2.1), namely, quarks and gluons, are not observed as free particles in nature. Through the
strong interaction, quarks and gluons form color neutral bound states known as hadrons,
such as the proton and the pion. One of the main challenges in the study of QCD and
hadron physics is to understand the wealth of phenomena related to hadrons in terms of the
basic quark and gluon degrees of freedom. For example, one may ask, how does the complex
spectrum of hadron masses arise from the simple Lagrangian (2.1), a question to which so far
only numerical lattice studies of QCD [1, 2] have been able to provide answers. QCD inspired
phenomenology such as the nonrelativistic quark model [3, 4] have also been successful.

As mentioned, hadrons are composite particles of quarks and gluons, collectively referred
to as partons. The measurable properties of the hadron, such as its momentum, charge, and
spin, are divided nontrivially between the constituent partons. This division is described
by certain density distributions, which can be measured in a variety of scattering processes
involving hadrons. Possibly the best-known examples are the parton distribution functions
(PDFs) of the hadron, which describe the distribution of longitudinal momentum between

4



CHAPTER 2. QCD AND PARTON DISTRIBUTIONS 5

the partons. The knowledge of the PDFs of the proton is of practical importance in the
analysis of hard scattering, for example at the CERN LHC. Much of this chapter is devoted
to reviewing the theoretical properties of the PDFs and other related distributions, and their
definitions as equal light-front time matrix elements.

2.2 Factorization and DIS
Perturbation theory is one of the key tools in the study of scattering processes. In pertur-
bation theory, one expands the scattering amplitude in powers of the coupling constant of
the theory, which is thus assumed to be sufficiently small. Each term in the expansion can
be calculated using Feynman rules, which are derived from the Lagrangian of the theory.
Perturbation theory works extremely well in the case of quantum electrodynamics (QED).
The property of asymptotic freedom allows the application of perturbation theory in QCD
if the scattering process has some high momentum scale Q2. (See [5] for a review on QCD
perturbation theory). In chapter 3, I will discuss the transverse charge densities of hadrons,
the study of which does not depend on having such a high scale.

In addition to asymptotic freedom, factorization is an integral tool in the study of scat-
tering processes involving hadrons. Factorization describes the incoherence between the long
distance, soft dynamics involving momenta Q . ΛQCD ∼ 200 MeV, and the short distance,
hard dynamics with Q � ΛQCD. The separation is in practice done at some factorization
scale ΛQCD � µF � Q, the dependence on which vanishes if one takes all orders of perturba-
tion into account. The cross section is then expressed as a product of the hard, parton level
cross section, and the soft PDFs and fragmentation functions of the hadrons. The PDFs and
fragmentation functions are universal, in the sense that they do not depend on the scattering
process under consideration. (See [6] for a review on QCD factorization).

Inclusive deep inelastic scattering (DIS), e+p→ e+X, is a classic example of factorization,
and it also provides the most accurate measurement for the PDFs of the proton (see [7] for
recent data). In the one-photon approximation, the electron and the proton exchange a
virtual photon, and the hard scale is given by the virtuality of the photon, Q2 = −q2, which
thus needs to be large. Factorization is valid in the Bjorken limit of

Q2 →∞, xBj =
Q2

2P · q
fixed (2.2)

where q and P are the four-momenta of the photon and the initial proton, respectively. DIS
is conveniently analyzed in the “infinite momentum” or light-front (LF) frame, where the
photon momentum is along the negative z-axis. In the Bjorken limit (2.2), the LF energy
q− of the photon is O(Q2), while q+ remains finite (q± = q0 ± q3). Due to the phase factor
exp(i q · x) of the photon propagator, the photon probes the proton at an instant of LF time
x+ = t + z . 1/q− → 0. Using completeness of states at x+ ' 0, the DIS cross section
is given by the discontinuity of the forward scattering amplitude. The leading twist term
for Q2 → ∞ is given by the “handbag diagram” (see Fig. 2.1), while other higher twist
contributions are suppressed by powers of 1/Q2. The DIS cross section is then given by the
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Figure 2.1: The leading term for the DIS cross section in the Bjorken limit (2.2) is given by
the handbag diagram, where the photon vertices in the amplitude and its complex conjugate
are separated by a lightlike distance x+ ' 0.

convolution of the PDF fi/p(x,Q
2) and the hard cross section σ̂,

σDIS =
∑
i

ˆ 1

0

dx fi/p(x,Q
2) σ̂(e+ i→ e+ i) (2.3)

where the struck parton has p+
i = xP+, x ' xBj at leading twist, and the PDF is the equal

LF time matrix element

fq/p(x,Q
2) =

1

8π

ˆ
dx− e−ixP

+x−/2 〈p|q̄(x−)γ+W [x−, 0]q(0)|p〉|x+'0, x⊥∼1/Q (2.4)

which indeed only depends on the proton state |p〉, as required by universality. The transverse
resolution x⊥ ∼ 1/Q induces a calculable, logarithmic dependence on Q2. The Wilson line
W [x−, 0] in the PDF (2.4) describes the soft rescattering of the struck quark and the proton
within the finite distance x− . 1/(mqx), an effect of which can not be neglected even by
choosing the gauge A+ = 0. Thus, the PDFs are not to be strictly interpreted as parton
probabilities [8].

2.3 TMDs and GPDs
In addition to the PDF (2.4), other distributions are obtained at leading twist by increasing
the number of measured observables. In semi-inclusive DIS, e + N → e + j/h(~l⊥) + X, the
transverse momentum ~l⊥ of the final state jet or hadron reflects the distribution of transverse
momentum ~k⊥ of the struck quark inside the nucleon (see Fig. 2.2). Similarly as the PDF,
the transverse momentum distribution (TMD) is defined as the equal LF time matrix element

fq/N(x,~k⊥) =
1

8π

ˆ
dx−

d2~x⊥
(2π)2

e−ixP
+x−/2+i~k⊥·~x⊥

× 〈N |q̄(x−, ~x⊥)γ+W [x−, ~x⊥; 0]q(0)|N〉|x+'0 (2.5)

which then measures the longitudinal momentum fraction and the transverse momentum
of the struck quark, and reduces to the PDF (2.4) if integrated over ~k⊥. The distribution
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Figure 2.2: Left: The TMD fq/p(x,~k⊥) probes the longitudinal momentum fraction x and
transverse momentum ~k⊥ of quarks in the nucleon. Right: The GPDs H(x, ξ, t) and E(x, ξ, t)
correspond to the lower vertex of the non-forward amplitude shown in the figure.

(2.5) is unpolarized; Assigning definite helicity or transverse spin for the nucleon and/or
the struck quark leads to several other TMDs, which reflect correlations between the spin
polarization vectors and ~k⊥. (See [9] for a review on TMDs). Factorization for the TMDs
is less clear-cut than for the PDF, essentially because the Wilson line W [x−, ~x⊥; 0] in (2.5)
affects the transverse momentum of the final state jet. This rescattering effect is sensitive to
the environment of the scattering process, making the TMDs process dependent, breaking
universality [10]. The size of this factorization breaking effect is unclear, however.

Generalized parton distributions (GPDs) are non-forward equal LF time matrix elements
of the PDF operator in (2.4), which are functions of the average longitudinal momentum
fraction x between the struck parton in the initial and final state, the skewness ξ which
measures their difference, and the momentum transfer t between the initial and final state
nucleon (see Fig. 2.2). The GPDs H(x, ξ, t) and E(x, ξ, t) are defined through the relation

1

8π

ˆ
dz− eimxz

−/2〈P +
1

2
∆|q̄(−z

2
)γ+W [−1

2
z−,

1

2
z−]q(

1

2
z)|P − 1

2
∆〉z+=z⊥=0

=
1

2P+
ū(P +

1

2
∆)
[
H(x, ξ, t)γ+ + E(x, ξ, t) iσ+ν ∆ν

2m

]
u(P − 1

2
∆) (2.6)

where ξ = xBj/(2− xBj) and t = ∆2. Factorization is valid for |t| � Q2, which leads to the
handbag diagram shown in Fig. 2.2. The physical content of the GPDs is quite extensive:
For ξ 6= 0, they measure the coherence between partons of different longitudinal momentum,
and hence, longitudinal momentum correlations in the nucleon. (See [11] for a review on
GPDs). Through the momentum exchange t, the GPDs contain information on the parton
distributions in transverse space, a subject we will return to later in chapter 3. Ji’s sum
rule [12], essentially the statement that the total spin of a nucleon is the sum of the angular
momenta of the quarks and gluons, is expressed using the GPDs H(x, ξ, t) and E(x, ξ, t).
As in the case of the TMDs, one may also vary the helicities of the nucleon, producing the
helicity flip GPDs H̃(x, ξ, t) and Ẽ(x, ξ, t). The GPDs contain all the information encoded
in the PDFs and form factors of the nucleon, as they satisfy

lim
t→0, ξ→0

H(x, ξ, t) = f(x)
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∀ξ :

ˆ 1

−1

dx H(x, ξ, t) = F1(t) (2.7)

∀ξ :

ˆ 1

−1

dx E(x, ξ, t) = F2(t)

where F1(t) and F2(t) are the Dirac and Pauli form factors of the nucleon, respectively, which
we will discuss in detail in chapter 3. Measuring the GPDs is more involved than the PDFs,
and while ξ and t are fixed by kinematics, x is integrated over in most observables. The GPDs
are accessible at amplitude level in deeply virtual compton scattering, e + N → e + γ + N
(see [13] for a review).

2.4 Light-front quantization
The matrix elements appearing in the definitions of the PDFs (2.4), TMDs (2.5) and GPDs
(2.6) are matrix elements between nucleon states at the same light-front (LF) time x+ ' 0.
This leads to the method of LF quantization, in which the nucleon states are also quantized
at fixed LF time x+ = 0. (See [14] for a review on LF quantization). The hadron is concisely
described in terms of its constituent quarks and gluons using the LF Fock expansion,

|P+, ~p⊥, λ〉x+=0 =
∑
n,λi

n∏
i=1

[ˆ 1

0

dxi√
xi

ˆ
d2~ki
16π3

]
16π3δ(1−

n∑
i=1

xi)δ
(2)(

n∑
i=1

~ki)

× ψλn(xi, ~ki, λi)|n;xiP
+, xi~p⊥ + ~ki, λi〉 (2.8)

where ψλn(xi, ~ki, λi) are the LF wave functions of the hadron, describing the n-parton Fock
state. The partons have longitudinal momentum fractions xi, transverse momenta ~ki relative
to the hadron, and LF helicities λi (see Fig. 2.3). The LF wave functions ψλn(xi, ~ki, λi) are
independent of the momentum P+, ~p⊥ of the hadron, and they are thus able to describe
a multitude of different scattering processes involving hadrons, as will become apparent in
this thesis. Inserting the expansion (2.8) to the expression for the PDF (2.4), neglecting the

Figure 2.3: The LF Fock expansion describes the hadron at x+ = 0 in terms of its constituent
partons.
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Wilson line and the logarithmic Q2 dependence, the PDF is

fq/N(x) =
∑
n,λi

n∏
i=1

[ˆ 1

0

dxi

ˆ
d2~ki
16π3

]
16π3δ(1−

n∑
i=1

xi)δ
(2)(

n∑
i=1

~ki)

× |ψNn (xi, ~ki, λi)|2
∑
k

δ(xk − x) (2.9)

where the Fock state only contributes if it contains a quark with xk = x. The PDF fq/N(x)
is process independent by universality, and so are the LF wave functions of the nucleon
ψNn (xi, ~ki, λi). The absolute square of the LF wave function in (2.9) allows us to regard the
PDF as a probability density of finding quarks with the longitudinal momentum fraction x.
The TMD (2.5), again neglecting the rescattering in the target, is similarly

fq/N(x,~k⊥) =
∑
n,λi

n∏
i=1

[ˆ 1

0

dxi

ˆ
d2~ki
16π3

]
16π3δ(1−

n∑
i=1

xi)δ
(2)(

n∑
i=1

~ki)

× |ψNn (xi, ~ki, λi)|2
∑
k

δ(xk − x)δ(2)(~kk − ~k⊥) (2.10)

which can then be interpreted as the probability density of finding quarks with the longitudi-
nal momentum fraction x and transverse momentum ~k⊥ in the nucleon. The GPDs and the
form factors of the nucleon can also be expressed in terms of the LF wave functions, allowing
their description in terms of the Fock states, which we will return to in the next chapter.



Chapter 3

Form factors and transverse densities

In this chapter I review the properties of the electromagnetic form factors of hadrons, and
their measurement in elastic scattering processes. I discuss their interpretation in terms of
their parton constituents using the LF Fock expansion. I explain the relation between the
GPDs and transverse quark densities. I review the transverse charge densities of hadrons as
two-dimensional Fourier transforms of the form factors, also giving a partonic interpretation
in terms of the LF Fock states. I show some results that have been obtained for the nucleon
using the method of charge densities.

3.1 Elastic processes and form factors
The standard PDFs discussed in chapter 2 are measured in the inclusive process e+N → e+X
assuming that the virtuality of the exchanged photon Q2 is large enough for factorization
to hold. The elastic scattering process e + N → e + N is also of significant importance
to the study of hadrons: For example, the finite size of the proton was inferred from data
on elastic electron-proton scattering [15]. In the one-photon approximation, by Lorentz and
gauge invariance, the N + γ∗ → N scattering amplitude is expressed using the Dirac F1

and Pauli F2 form factors (see Fig. 3.1), which depend only on the virtuality of the photon
Q2 = −q2,

Aµλ,λ′ ≡ 〈P +
1

2
q, λ′| Jµ(0) |P − 1

2
q, λ〉

= ū(P +
1

2
q, λ′)

[
F1(Q2)γµ + F2(Q2)

i

2m
σµνqν

]
u(P − 1

2
q, λ) (3.1)

Figure 3.1: The N + γ∗ → N scattering amplitude is given by the form factors F1 and F2.

10
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where Jµ(0) =
∑

q eq q̄(0)γµq(0) is the photon electromagnetic current, eq being the fractional
electric charge of the quark. Unlike the PDFs, the form factors are well defined at all values
Q2 of the exchanged momentum, and there is a wealth of data on F1(Q2) and F2(Q2) of the
nucleon, parametrized in various ways (see [16] for recent data). The electron form factors
are calculable in QED perturbation theory, F (e)

1 (Q2) being infrared divergent, while F (e)
2 (0)

is equal to the anomalous magnetic moment of the electron which provides precision tests of
QED. In the “LF frame” where q+ = 0, the form factors are

F1(Q2) =
1

2P+
A+

++

F2(Q2) =
me−iφq

|~q⊥|P+
A+

+− (3.2)

explaining why F1 and F2 are called the helicity non-flip and helicity flip form factors, re-
spectively. The form factors in (3.2) are matrix elements of the J+(0) current, making an
interpretation in terms of the Fock states possible: Using the LF Fock expansion (2.8) for
the states |P ± 1

2
q〉 at x+ = 0 , the form factors are given by

1

2P+
A+
λ,λ′ =

∑
n,λi

n∏
i=1

[ˆ 1

0

dxi

ˆ
d2~ki
16π3

]
16π3δ(1−

n∑
i=1

xi)δ
(2)(

n∑
i=1

~ki)

×
∑
k

ek [ψλ
′

n (xi, ~k
′
i, λi)]

†ψλn(xi, ~ki, λi) (3.3)

where ~k′k = ~kk + (1− xk)~q⊥ for the struck quark, ~k′i = ~ki − xi~q⊥ for the spectators, and ek is
the fractional charge of the struck quark [17]. The expression (3.3) is diagonal in the number
of partons in the Fock states, since pair production is absent: a photon with q+ = 0 cannot
create two partons with 0 < xi ≤ 1. Since there is only a single photon interaction vertex,
the form factors do not contain a Wilson line, making the expression in terms of the LF wave
functions (3.3) exact (up to higher order electromagnetic corrections).

3.2 GPDs and transverse densities
The elastic scattering process e + N → e + N is analogous to the method of electron mi-
croscopy, in which electrons are scattered off a target, and the spatial charge density of the
target is given by the 3d Fourier transform over the exchanged momentum. It is then rea-
sonable to expect that the form factors F1(Q2) and F2(Q2) provide information on the quark
density of the nucleon at any photon virtuality Q2. However, unlike in electron microscopy,
the partons in the nucleon are not static targets, but highly relativistic, and move as fast
as the photon probe. This makes the classical interpretation of the 3d Fourier transform of
the form factors as the charge density of the nucleon incomplete. It has been shown that
due to relativistic effects, the pion form factor has no interpretation in terms of a 3d charge
density [18]. In a frame where the photon moves rapidly in the −z direction, the photon
probes the partons in the nucleon at equal LF time x+ = 0. Thus, the charge densities are
more accurately defined as an equal LF time matrix element between nucleon states defined
at x+ = 0, also allowing an interpretation in terms of the Fock states.
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Figure 3.2: The Fourier transform of the GPD gives the distribution of quarks in transverse
position space.

The connection between the transverse charge densities and the form factors was first
achieved through the GPDs. As mentioned in chapter 2, the GPDs contain information on
the spatial quark densities through the dependence on the exchanged momentum t = ∆2.
Choosing the LF frame q+ = 0, ignoring the Wilson line and setting ξ = 0, the helicity
non-flip GPD is

Hq/N(x, ~q 2
⊥) =

1

8π

ˆ
dz− eixP

+z−/2〈P+,
1

2
~q⊥, λ|q̄(−

z

2
)γ+q(

1

2
z)|P+,−1

2
~q⊥, λ〉z+=z⊥=0 (3.4)

Fourier transforming over the transverse momentum ~q⊥ leads to the quark density in trans-
verse position space [19] (see Fig. 3.2),

fq/N(x,~b⊥) =

ˆ
d2~q⊥
(2π)2

e−i~q⊥·
~b⊥ Hq/N(x, ~q 2

⊥) (3.5)

which measures both the longitudinal momentum fraction and the transverse position of the
struck quark. As already mentioned, extracting the GPD Hq/N(x, ξ = 0, ~q 2

⊥) from scatter-
ing data is difficult, and often requires choosing a model for the GPD, leading to model
dependence of the quark distribution fq/N(x,~b⊥). Such transverse quark densities have been
studied in the literature [20, 21].

Using the LF Fock expansion (2.8) for the initial and final nucleon states in the GPD
(3.4), one gets

Hq/N(x, ~q 2
⊥) =

∑
n,λi

n∏
i=1

[ˆ 1

0

dxi

ˆ
d2~ki
16π3

]
16π3δ(1−

n∑
i=1

xi)δ
(2)(

n∑
i=1

~ki)

×
∑
k

δ(x− xk) [ψλn(xi, ~k
′
i, λi)]

†ψλn(xi, ~ki, λi) (3.6)

with ~k′k = ~kk + (1− xk)~q⊥ for the struck quark and ~ki = ~ki − xi~q⊥ for the spectators. To see
that the Fourier transformed GPD (3.5) indeed corresponds to a quark density, we write it
in terms of the impact parameter LF wave functions of the nucleon, defined as

ψλn(xi,~bi, λi) =
n∏
i=1

[ˆ d2~ki
16π3

]
16π3δ(2)(

n∑
i=1

~ki) exp
(
i

n∑
i=1

~ki ·~bi
)
ψλn(xi, ~ki, λi) (3.7)

which describe a nucleon state with momentum P+ and transverse “center of momentum”
~bN =

∑
xi~bi = 0, whereas the partons in the n-parton Fock state have impact parameters ~bi.

The inverse relation of (3.7) is
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ψλn(xi, ~ki, λi) =
n∏
i=1

[ˆ
4π d2~bi

] 1

4π
δ(2)(

n∑
i=1

xi~bi) exp
(
−i

n∑
i=1

~ki ·~bi
)
ψλn(xi,~bi, λi) (3.8)

Inserting this into (3.6) and performing the Fourier transform in (3.5), the quark density in
transverse position space becomes

fq/N(x,~b⊥) =
∑
n,λi

n∏
i=1

[ˆ 1

0

dxi

ˆ
4π d2~bi

] 1

4π
δ(1−

n∑
i=1

xi)δ
(2)(

n∑
i=1

xi~bi)

×
∑
k

δ(2)(~b⊥ −~bk)δ(x− xk) |ψλn(xi,~bi, λi)|2 (3.9)

where the Fock state only contributes if it contains a quark with xk = x and ~bk = ~b, and the
absolute square of the wave function enables its interpretation as a probability density.

3.3 Transverse charge densities
As mentioned in chapter 2, the GPDs reduce to the electromagnetic form factors when
integrated over the longitudinal momentum fraction, since

ˆ ∞
−∞

dx exp(ixP+z−/2) =
4π

P+
δ(z−) (3.10)

The two photon vertices in the GPD essentially coalesce in spacetime (see Fig. 3.3), setting
the Wilson line to unity. This motivates to work directly with the form factors: They are
much easier to measure than the GPDs, allowing to plot the quark density distributions
without model dependence. Unlike the PDFs or the GPDs, the form factors do not depend
on having a hard scale Q2 →∞; Instead, all values of the photon virtuality contribute to the
density distribution, with the expected resolution b ∼ 1/Qmax. Thus, the transverse charge
density of a nucleon with LF helicity λ = ±1

2
is defined as the Fourier transform of the form

factor [22, 23],

Figure 3.3: The Dirac and Pauli form factors are obtained from the GPDs, here shown for
F1.
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ρ0(~b) ≡
ˆ

d2~q

(2π)2
e−i~q·

~b 1

2P+
〈P+,

1

2
~q, λ|J+(0)|P+,−1

2
~q, λ〉

=

ˆ ∞
0

dQ

2π
QJ0(bQ)F1(Q2) (3.11)

where the momentum of the virtual photon is q = (0+, 0−, ~q), J0 is a Bessel function and
Q2 = ~q2. In terms of the impact parameter LF wave functions (3.7),

ρ0(~b) =
∑
n,λi,k

ek

n∏
i=1

[ˆ 1

0

dxi

ˆ
4π d2~bi

] 1

4π
δ(1−

n∑
i=1

xi)δ
(2)(

n∑
i=1

xi~bi)

× δ(2)(~b−~bk) |ψλn(xi,~bi, λi)|2 (3.12)

By rotational symmetry, the transverse density ρ0(~b) depends only on |~b|. For a transversely
polarized nucleon with spin in the x-direction, one similarly defines

ρx(~b) ≡
ˆ

d2~q

(2π)2
e−i~q·

~b 1

2P+
〈P+,

1

2
~q, Sx = +

1

2
| J+(0) |P+,−1

2
~q, Sx = +

1

2
〉

= ρ0(~b) + sin(φb)

ˆ ∞
0

dQ

2π

Q2

2m
J1(bQ)F2(Q2) (3.13)

where we used |Sx = +1
2
〉 =

[
|λ = +1

2
〉+ |λ = −1

2
〉
]
/
√

2, and thus the helicity flip form factor

F2(Q2) also contributes. The density ρx(~b) may also be written in terms of the absolute
squares of the wave functions as in (3.12) by replacing ψλn → (ψ

λ=+1/2
n + ψ

λ=−1/2
n )/

√
2. The

transverse charge densities ρ0(~b) and ρx(~b) of the proton and the neutron are shown in Fig.
3.4, where the authors used parametrized data [24, 25] for the nucleon form factors. The
neutron transverse charge density is negative at the origin, whereas in the classical definition
of the charge densities as 3d Fourier transforms, the neutron charge density is positive [26],
a qualitative difference between the two methods. Transition charge densities have also been
considered, where the LF matrix element in (3.11) is a transition form factor describing
N + γ∗ → N∗. The transition charge densities have been plotted for p → ∆+(1232) [27]
and p → N∗(1440) [28], both in the unpolarized and polarized cases. In chapter 6, we will
consider generalized transverse charge densities describing i+ γ∗ → f , where the initial and
final states can consist of several particles.
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Figure 3.4: Upper row: The transverse charge densities ρ0 and ρx of the proton and the
neutron along the by axis. The dashed lines correspond to the unpolarized densities (3.11),
while the solid lines are for the densities with the nucleon polarized in the x-direction as in
(3.13). Lower row: The transverse charge densities for the proton and the neutron polarized
in the x-direction. Figures from [27].



Chapter 4

Factorization at fixed Q2(1− x)

Scattering processes have succesfully been analyzed using factorization in the Bjorken limit of
Q2 →∞, as discussed in chapter 2. At leading twist, only one active parton in each nucleon
takes part in the hard subprocess. Qualitatively new features are observed in situations, where
one of the active partons in the hadron carries most of its longitudinal momentum, so that the
longitudinal momentum fraction x → 1. In the Drell-Yan (DY) process, πN → µ−µ+ + X,
the polarization of the virtual photon producing the muon pair is measured to change to
longitudinal when the photon carries a longitudinal momentum fraction xF & 0.6 of the
pion. In paper I, we defined the “Berger-Brodsky” (BB) limit, where the hard scale Q2 →∞,
while Q2(1 − x) is fixed, and apply it to the DY process. In this limit, one of the valence
quarks in the pion has x→ 1, and the hard photon is coherent with both quarks. We showed
that in the DY process a new kind of factorization holds in the BB limit, in which the
virtual photon is longitudinal rather than transverse, and the cross section is proportional to
a multiparton distribution involving four quark fields, which would be of higher twist in the
Bjorken limit. The DY amplitude in the BB limit follows simple helicity systematics.

4.1 The Berger-Brodsky (BB) limit
The standard factorization between hard and soft subprocesses in scattering reactions is
achieved in the Bjorken limit, where a hard scale Q2 →∞, while the longitudinal momentum
fractions xi of the active partons are held fixed. The cross section then factorizes into a
product of the soft PDF and the hard, parton level cross section. At leading twist, only one
parton in each nucleon takes part in the hard subprocess. Higher twist effects are suppressed
by powers of 1/Q2, but generally increase [29] as xi → 1 (see Fig. 4.1), implying an increase
in the coherence between the active and spectator partons. In the Drell-Yan (DY) process
πN → µ+µ− + X, the polarization of the virtual photon producing the muon pair changes
from transverse to longitudinal, when the photon carries a longitudinal momentum fraction
xF & 0.6 of the pion [30, 31] (see Fig. 4.2). One of the valence quarks in the pion then carries
most of the longitudinal momentum of the pion, and the hard photon is coherent with both
quarks [32]. A similar change in polarization was observed at high xF in πN → J/ψ + X
[33]. The transverse single-spin asymmetry (SSA) in pp↑ → π(xF , k⊥) + X, measured by
AN = (σ↑ − σ↓)/(σ↑ + σ↓), where the l arrows indicate the transverse polarization of the

16



CHAPTER 4. FACTORIZATION AT FIXED Q2(1−X) 17

Figure 4.1: The effective higher twist distribution functions CHT (x) of the proton and the
deuteron, which represent the higher twist contributions to the proton and deuteron structure
functions. The data has been extrapolated from the largeW 2 region to the region 4.0GeV2 ≤
W 2 ≤ 12.5 GeV2 using NnLO analyses. Figures from [29].

proton, was found to increase as a function of xF [34, 35] (see Fig. 4.2). The SSA also does
not decrease as a function of k⊥, whereas the leading twist prediction is AN ∝ ΛQCD/k⊥.
Generating the SSA requires a helicity flip and a dynamical phase in a subprocess, which is
coherent with the high k⊥ parton [36].

To qualitatively understand the onset of coherence between the spectators and the hard
subprocess for the Fock state containing the active parton with x→ 1, we consider the life-
time of such a Fock state, which is inversely proportional to the energy difference between
the hadron and the Fock state,

2p∆E ' m2
h −

∑
i

p2
i⊥ +m2

i

xi
(4.1)

at high momentum p of the hadron. The life-time is determined by the spectators with
xi ∝ 1 − x. If 1 − x ' Λ2

QCD/Q
2, 2p∆E ' Q2 and the life-time of the Fock state is short,

comparable to the duration of the hard subprocess. Hence, the BB limit is defined as

Q2 →∞, Q2(1− x) = fixed (4.2)

which was initially used to predict the change of polarization in the DY process at high xF
[32]. Later it was shown that in pp↑ → π(xF , k⊥)+X a large SSA AN of O(1) can arise in the
BB limit using a perturbative example calculation [36]. In DIS, γ∗N → X, the BB limit of
fixed Q2(1− xBj) corresponds to a fixed hadronic (resonance) mass MX . The Bloom-Gilman
duality is a remarkable equality between the inclusive DIS data with Q2 → ∞ at fixed xBj,
and the exclusive resonance contributions measured at lower Q2 with fixedMX (see [37] for a
review). The duality suggests that the photon scatters off the same Fock states with the same
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Figure 4.2: Left: Fermilab E615 data for the cross section dσ
d cos θ

∝ 1 + α cos2 θ in π−N →
µ+µ−+X, where Q > 4 GeV and plab = 263 GeV/c. Figure from [30]. Right: Fermilab E704
data for AN(xF ) in pp↑ → π + X, where k⊥ was integrated from 0.5 GeV to 2.0 GeV for π0

data and from 0.7 GeV to 2.0 GeV for π± data, and plab = 200 GeV/c. Figure from [34].

hard subprocess cross section in eN → eX and eN → eN∗. The exclusive transition process
is coherent over the whole wave function of the nucleon, implying coherence in inclusive
processes in the BB limit.

4.2 The Drell-Yan (DY) process in the BB limit
For the DY process πN → µ+µ− + X, according to factorization in the Bjorken limit of
Q2 = x1x2s→∞ with x1, x2 fixed, the leading twist cross section has the valence contribution

σDY = fq̄/π(x1) fq/N(x2) σ̂(q̄q → γ∗ → µ+µ−) (4.3)

Only one active parton in the pion and the nucleon takes part in the hard subprocess, which
is incoherent with the spectators. The virtual photon producing the muon pair is transverse,
since the annihilating quarks are nearly on-shell (see Fig. 4.3). As mentioned, the photon is
longitudinally polarized for high xF , implying that the active parton in the pion has x→ 1.
In the BB limit of Q2 →∞ with Q2(1−xF ) fixed, the quark in the pion transfers nearly all of
its momentum to the antiquark through the exchange of a gluon with virtuality q1 = O(Q2).
The antiquark also has virtuality q2 = O(Q2), and the virtual photon is longitudinal. The
stopped quark is then coherent with the virtual photon (see Fig. 4.3) [32].

The factorized form of the DY cross section in the BB limit differs from (4.3), as we next
discuss. The kinematics are shown in Fig. 4.3. In the nucleon rest frame,

k = (0+, k−,~0⊥)
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Figure 4.3: The polarization of the virtual photon in DY scattering changes to longitudinal
in the BB limit, and the stopped quark is coherent with the hard process.

p = (mN ,mN ,~0⊥) (4.4)
q = (Q2/q−, q−, ~q⊥)

where we take k− →∞ neglecting the pion mass, and thus s ' mNk
− →∞. In the BB limit,

xF ≡ q−/k− → 1 at fixed ~q⊥, keeping also xB ≡ q+/p+ = Q2/s and xM ≡ Q2(1−xF )/(q+p−)
fixed. The hadronic mass is

M2
X = (k + p− q)2 ' (1− xB)[s(1− xF ) +m2

N ]− ~q2
⊥ (4.5)

which is thus fixed, and may be small or large depending on s(1− xF ). The momenta of the
valence quarks of the pion are

k1 = (0+, zk−, ~k⊥)

k2 = (0+, (1− z)k−,−~k⊥) (4.6)

where the transverse momenta k2
⊥ � Q2 are neglected in the hard subprocess. The stopped

quark has finite momentum l1 in the nucleon rest frame, and is connected to the soft matrix
element of the nucleon. This is analogous to the analysis of DIS in the target rest frame,
where the scattering may be viewed as the splitting of the virtual photon, γ∗(Q2) → qq̄,
where the fast quark has momentum fraction xq ' 1, and the scattering of the antiquark
with finite momentum and xq̄ ∼ Λ2

QCD/Q
2 in the target determines the DIS cross section

[38, 39]. The quark and gluon virtualities are q2
1 ' −zk−l+1 and q2

2 ' −k−l+1 , which are
O(Q2). The momenta q−1 , q

−
2 are also O(Q2), implying that the hard subprocess occurs in

an instant of LF time |y+
1 − y+

3 | = O(1/Q2) → 0, |~y1⊥ − ~y3⊥| = O(1/Q) → 0. In the hard
subprocess, it suffices to take

l1 = (xp+, 0−,~0⊥)

l2 = ((x+ xB)p+, 0−,~0⊥) (4.7)

Thus both valence quarks in the pion effectively reverse their direction along the z-axis,
allowing the helicity analysis of section 4.3.

Using perturbative propagators for the gluon q1 and the quark q2, and connecting the
quarks l1 and l2 to the soft matrix element, the scattering amplitudes are given by the
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Figure 4.4: The Feynman diagrams contributing to π+N → γ∗X in the BB limit. The arrows
indicate directions of momenta, and the yi are positions of the interaction vertices.

Feynman diagrams depicted in Fig. 4.4. The pion contributes via its distribution amplitude
φπ(z), and for each final stateX, the target matrix element is a transition GPD with skewness
(l+2 − l+1 )/p+ = xB. For X = N , the amplitudes correspond to the exclusive DY process
πN → γ∗N [40], as well as the time-reversed version of deeply exclusive meson production
γ∗N → πN . The factorization discussed in chapter 2 is equally valid for the transition GPDs
when X 6= N [41], since MX � Q. The scattering amplitude is calculated as

T (π+N → γ∗LX) =
−ieg2CF

2πQ
√

2Nc

ˆ
dxC(xB, x) (4.8)

×
ˆ
dy−1 e

−iy−1 xp+/2〈X(p′)|ψ̄u(y1)γ+γ5ψd(0)|N(p)〉y+1 =y1⊥=0

where

C(xB, x) =

ˆ 1

0

dz φπ(z)
[ed
z

1

x− iε
+

eu
1− z

1

xB + x+ iε

]
(4.9)

The amplitude for the production of a transverse photon is suppressed by a factor of 1/Q,
for which we give an intuitive explanation in section 4.3. The inclusive cross section is

σ(π+N → γ∗LX) =
1

2s

∑
X

ˆ
dq−d~q2

⊥
(2π)32q−

|T (π+N → γ∗LX)|2 (2π)4δ(4)(k + p− q − p′) (4.10)

The completeness sum
∑

X includes summing over p′, which is restricted by the delta func-
tion. Integrating over ~q⊥ = −~p′⊥ eliminates the transverse momentum constraint, and the
longitudinal delta functions can be incorporated into the soft matrix element as position
integrals. The inclusive cross section (4.10) is then given given by a forward multiparton
distribution (see Fig. 4.5) depending on the fractional “+” momenta

xB = q+/p+, x = l+1 /p
+, x′ = l′+1 /p

+ (4.11)

and the fractional “−” momentum transferred to the inclusive system,

xM = k−(1− xF )/p−,
xB + ~q 2

⊥/m
2
N

1− xB
≤ xM <∞ (4.12)
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Figure 4.5: The multiparton distribution fdū/p(xB, xM , x, x
′) in the inclusive cross section

(4.14) involving four quark fields.

The forward multiparton distribution is

fdū/p(xB, xM , x, x
′) (4.13)

= 1
4(4π)3

´
dy−1 dy

−
2 dy

−
3 dy

+
3 exp

(
1
2
i[−y−1 l+1 + y−2 l

′+
1 − y−3 q+ + y+

3 xMp
−]
)

×〈N(p)|ψ̄d(y3)γ+γ5ψu(y2 + y3)ψ̄u(y1)γ+γ5ψd(0)|N(p)〉yi⊥=0, y+1 =y+2 =0

and the inclusive cross section is

dσ(π+N → γ∗LX)

dM2
X

=
2(eg2CF )2

Q2s2(1− xB)Nc

ˆ
dxdx′C(xB, x)C∗(xB, x

′)fdū/p(xB, xM , x, x
′) (4.14)

The dependence on xM separates fdū/p(xB, xM , x, x′) from usual higher twist multiparton
distributions [42]. In the Bjorken limit at fixed xF , we would have xM → ∞ and thus
y+

3 = 0. The u-quark in the pion then has l−1 = k−(1− xF )→∞ and forms a jet in the final
system X. The GPD in the scattering amplitude (4.8) then reduces to the standard d-quark
PDF, as expected.

4.3 DY helicity systematics
In the BB limit of π+N → γ∗X, the photon carries the helicity of the pion λ = 0, which
intuitively follows from the fact that the virtual photon is coherent with the whole Fock state
of the pion. This argument does not work for the proton induced DY process pN → γ∗X,
since |∆λ| ≥ 1/2 for a transverse or longitudinal photon. The DY scattering amplitude in
the BB limit follows simple helicity systematics, since:

1. All transverse momenta are restricted, k⊥, q⊥, l⊥ ∼ ΛQCD.

2. Angular momentum Jz = Sz + Lz is conserved in each vertex.

3. The helicities of the quark lines are conserved up to terms mq/Q.

The helicities of the virtual quark and the gluon are followed by expressing their propagators
as sums over helicities using the Dirac u and v spinors, as well as the polarization vectors εµλ
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Figure 4.6: Left: Helicity analysis for π+N → γ∗X, where the particles have momenta in the
±z direction as shown in the parentheses. The double arrows indicate the Sz of the particles
in units of 1

2
~. Right: Helicity analysis for pN → γ∗X in the same notation.

of the gluon,

/p+m

p2 +m2 − iε
=

∑
s=± 1

2

1

2Ep

[u(~p, s)ū(~p, s)

p0 − Ep + iε
+
v(−~p, s)v̄(−~p, s)
p0 + Ep − iε

]
−gµν +

kµkν

k2
=

∑
λ=±1,0

εµλ(k)ενλ(k)∗ (4.15)

In the leading contribution to the scattering amplitude, the helicities are then obtained by
simple addition. The analysis for one of the Feyman graphs of the pion induced DY process
is shown in Fig. 4.6, where the photon is longitudinal. Using a three-quark Fock state for
the proton, the analysis predicts that the photon is transverse in pN → γ∗X. The analysis
for one of the eight Feynman graphs is shown in Fig. 4.6. In a similar case of the exclusive
p̄N → γ∗π process, the photon was also found to be transversely polarized [43].



Chapter 5

Transverse shape of the electron

Transverse charge densities given by elastic nucleon and N → N∗ transition form factors
have been studied using GPD models, as discussed in chapter 3. In paper II, we applied
these methods to the QED electron, which serves as a field theory model for QCD hadrons,
and is of interest in its own right. We studied the form factors, transverse densities and spin
distributions of the leading order |eγ〉 Fock state of the QED electron in impact parameter
space. The LF wave functions of the |eγ〉 state are calculated in impact parameter space,
which allows closed form expressions for the electron distributions. The Dirac and Pauli form
factors are expressed in terms of the charge densities, which allowed us to study the transverse
size of the Fock states contributing to the electron form factors at any Q2. Only transversally
compact Fock states contribute to the leading behavior of the Dirac and Pauli form factors,
while distributions weighted by the transverse size of the Fock state have divergences, which
could affect the color transparency of hadrons rescattering in a nucleus. The helicity of
the parent electron is conserved for each |eγ〉 Fock state, while the helicities and orbital
angular momentum of the daughter electron and photon depend on their impact parameter
and longitudinal momentum fraction. We showed that the sign of the electron anomalous
magnetic moment can be understood intuitively from the transverse densities, addressing a
challenge by Feynman.

5.1 Electron distributions in impact parameter space
As discussed in chapter 3, GPDs correspond to parton densities in longitudinal momentum
fraction x and impact parameter ~b when Fourier transformed over the transverse momentum.
The transverse charge densities are x-integrated GPDs, and are obtained from the Fourier
transformed electromagnetic form factors. The nucleon and transition charge densities have
been studied using form factor data. In this chapter, I apply these methods to the QED
electron. The leading order |eγ〉 Fock state of the electron has been used as a field theory
model for QCD hadrons in several studies [44, 45, 46, 47, 48]. The GPDs were expressed
in terms of the LF wave functions in impact parameter space, which are calculable for the
electron in QED perturbation theory. The LF wave functions of the |eγ〉 Fock state in
momentum space in the A+ = 0 gauge are given in [49]. For an electron localized at ~b = 0,
we define xe ≡ x = 1 − xγ, ~be ≡ ~b = −(1 − x)~bγ/x and denote me ≡ m (see Fig. 5.1).

23
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Figure 5.1: The first order |eγ〉 Fock state of the electron localized at ~b = 0.

The impact parameter wave functions of the |eγ〉 Fock state are expressed in terms of the
momentum space ones as in (3.7),

ψλλe,λγ (x,
~b) =

ˆ
d2~k

16π3
exp
[
i
~b · ~k
1− x

]
ψλλe,λγ (x,

~k) (5.1)

Using the identities
ˆ 2π

0

dφ eiz cosφeinφ = 2πinJn(z),

ˆ ∞
0

dt
tν+1Jν(at)

(t2 + z2)µ+1
=

aµzν−µ

2µΓ(µ+ 1)
Kν−µ(az) (5.2)

we have, denoting ~b = b(cosφb, sinφb) and λ = ±1
2
≡ ±,

ψ+
+1/2,+1(x,~b) = [ψ−−1/2,−1(x,~b)]† = −iem

√
1− x

4
√

2π2
e−iφbK1(mb)

ψ+
+1/2,−1(x,~b) = [ψ−−1/2,+1(x,~b)]† = i

em
√

1− x
4
√

2π2
x e+iφbK1(mb)

ψ+
−1/2,+1(x,~b) = [ψ−+1/2,−1(x,~b)]† = −

em
√

(1− x)

4
√

2π2
(1− x)K0(mb) (5.3)

ψ+
−1/2,−1(x,~b) = [ψ−+1/2,+1(x,~b)]† = 0

There is no explicit factor of m associated with the wave functions in which the electron
helicity flips; The dependence on m appears through the index n of the modified Bessel
function Kn(mb). Using (3.9), the wave functions (5.3) determine the electron densities of
the |eγ〉 state,

ρ0(x,~b) =
αm2

2π2

[1 + x2

1− x
K2

1(mb) + (1− x)K2
0(mb)

]
ρx(x,~b) = ρ0(x,~b) +

αm2

π2
sinφb xK0(mb)K1(mb) (5.4)

The modified Bessel function behaves as Kn(z) ' e−z
√
π/2z for z → ∞, and K0(z) '

ln(1/z), K1(z) ' 1/z for z → 0. The densities thus vanish rapidly as b� 1/m, and become
more peaked at low b � 1/m as x → 1. However, the densities have broad distributions
in b for all x (see Fig. 5.2). Because

∑
i xi
~bi = 0, one might expect ρ0(x,~b) → δ(2)(~b) as

x→ 1. The photon impact parameter ~bγ = −x~b/(1−x)→∞ as x→ 1, and therefore allows
the density to remain wide. In QCD, color confinement would impose ~bγ . 1/ΛQCD, forcing
~b→ 0 as x→ 1.
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Figure 5.2: 2π2

αm2 (1− x)ρ0(x,~b) for x = 0 and x = 1. Note that the origin is at b = 0.1/m.

The spin of the electron is distributed among the constituents of the |eγ〉 Fock state. The
Ji sum rule [12],

1

2
=

1

2

∑
q

∆q +
∑
q

Lzq + Jzg (5.5)

expresses the Jz = 1/2 of the nucleon as a sum of the helicities 1
2
∆q and orbital angular

momenta Lzq of quarks, and the angular momenta Jzg of gluons, which are related to GPDs,
and are thus in principle measurable. Alternative decompositions of the nucleon spin have
been considered [50, 48], and there is controversy on how to split the angular momentum into
separate quark and gluon contributions, and whether the gluon angular momentum can itself
be split into spin and orbital parts [51]. We studied the expectation values of the electron
helicity λe, the photon helicity λγ, and the orbital angular momentum Lzeγ = −i∂φb of the
|eγ〉 Fock state as functions of x and ~b, defining the expectation value of the electron helicity
λe for a parent electron with helicity λ as

〈λe〉λ ≡
1

N

∑
λe,λγ

〈λ;λe, λγ|Sze |λ;λe, λγ〉

=
1

2N

∑
λγ

[
|ψλ+,λγ |

2 − |ψλ−,λγ |
2
]

(5.6)

which integrated over the impact parameter is proportional to the spin dependent g1(x)
distribution. The expectation values of the photon helicity and orbital angular momentum
are defined similarly. For λ = +1

2
, we have

N〈λe〉+ =
αm2(1− x)

8π3

1

2

[
(1 + x2)K2

1(mb)− (1− x)2K2
0(mb)

]
N〈λγ〉+ =

αm2(1− x)

8π3

[
(1− x)2K2

1(mb) + (1− x)2K2
0(mb)

]
(5.7)

N〈Lzeγ〉+ = −αm
2(1− x)

8π3

[
(1− x)2K2

1(mb)
]
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Figure 5.3: The expectation values 〈λe〉+, 〈λγ〉+ and 〈Lzeγ〉+ in the |eγ〉 Fock state as functions
of the longitudinal momentum fraction x for b = 0.1/m and b = 2/m.

where the normalization constant is

N ≡
∑
λe,λγ

|ψ+
λe,λγ
|2

=
αm2(1− x)

8π3

[
(1 + x2)K2

1(mb) + (1− x)2K2
0(mb)

]
(5.8)

The expectation values (5.7) satisfy 〈λe〉+ + 〈λγ〉+ + 〈Lzeγ〉+ = 1/2, as expected. The x-
dependence of each contribution is plotted in Fig. 5.3 for b = 0.1/m and b = 2/m. As x→ 1,
the electron carries all of the spin, while 〈λγ〉+ and 〈Lzeγ〉+ vanish. For small x and b, the
electron carries most of the spin, while 〈λγ〉+ and 〈Lzeγ〉+ are large and cancel each other. We
also studied the expectation value of the transverse spin for a transversely polarized electron,

〈Sxe 〉x ≡
1

N

∑
λe,λγ

〈Sx =
1

2
;λe, λγ|Sxe |Sx =

1

2
;λe, λγ〉 (5.9)

which integrated over the impact parameter is proportional to the transverse spin distribution
h1(x). Using |Sx = +1

2
〉 =

[
|λ = +1

2
〉 + |λ = −1

2
〉
]
/
√

2 and Sxe |Sx = 1
2
;λe, λγ〉 = |Sx =

1
2
;−λe, λγ〉, we have

N〈Sxe 〉x =
αm2(1− x)

8π3

[
xK2

1(mb) + sinφb (1− x)K0(mb)K1(mb)
]

(5.10)

which is plotted in Fig. 5.4 for b = 1/m. The electron carries all of the transverse spin as
x → 1, while the contribution is ∝ x at small x. The results are qualitatively the same for
all b.

5.2 Form factors from impact parameter densities
The transverse charge densities were expressed in terms of the form factors in (3.11) and
(3.13). Using the closure of Bessel functions, the equations may be inverted,
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Figure 5.4: The expectation value 〈Sxe 〉x in the |eγ〉 Fock state as a function of the longitudinal
momentum fraction x, integrated over φb and for b = 1/m.

F1(Q2) = 2π

ˆ ∞
0

db bJ0(bQ)ρ0(~b)

F2(Q2) =
2πm

Q

ˆ ∞
0

db bJ1(bQ)
(
ρφb=π/2x (~b)− ρφb=3π/2

x (~b)
)

(5.11)

which allowed us to study the transverse size of the Fock states contributing to the form
factors at any Q2. Similar studies have been made using GPD models for the nucleon [52, 53].
The general expectation is that only compact Fock states with b . 1/Q contribute to the
form factors as Q2 →∞ at fixed x. Using (5.4), the order α form factors of the electron are

F1(Q2) =
αm2

π

ˆ 1

0

dx

ˆ ∞
0

db bJ0(bQ)
[1 + x2

1− x
K2

1(mb) + (1− x)K2
0(mb)

]
F2(Q2) =

4αm3

πQ

ˆ 1

0

dx x

ˆ ∞
0

db bJ1(bQ)K0(mb)K1(mb) (5.12)

The Dirac form factor has the usual 1/(1−x) IR singularity and a logarithmic UV divergence,
since K1(mb) ' 1/mb for b � 1/m. Renormalizing the UV divergence leaves a pointlike
contribution to F1(Q2), which is finite as Q2 → ∞. The low b approximation for the UV
finite term, which is suppressed by m2/Q2 as Q2 →∞, however diverges for large b ≡ u/m,

F1(Q2, b→ 0) ' α

π

ˆ 1

0

dx

ˆ ∞
0

du J0

(Q
m
u
)[1 + x2

1− x
1

u
+ (1− x)u(lnu)2

]
(5.13)

signifying that only the leading contribution to F1(Q2) at high Q2 is restricted to small
impact parameters. The low b approximation for the IR and UV finite Pauli form factor is
(t ≡ bQ)

F2(Q2, b→ 0) ' 2αm2

πQ2

ˆ ∞
0

dt J1(t) ln
(Q
m

1

t

)
=

αm2

πQ2
ln
(Q2

m2

)[
1 +O

(
1/ ln(Q2/m2)

)]
(5.14)

which agrees with the leading Q2 →∞ behavior of the standard result, signifying that only
compact Fock states contribute to F2(Q2) at high Q2, even though the convergence to small
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Figure 5.5: The ratio F2(Q2, bmax)/F2(Q2), when the integral in (5.12) is restricted to b ≤ bmax

and Q2 = 100m2.

b is rather slow (see Fig. 5.5). The size distribution of the Fock states contributing to the
form factors could affect the color transparency of quark fluctuations q → qg rescattering
in a nucleus, where the rescattering amplitude is also weighted by size of the fluctuation
r⊥ = b/(1 − x). When the b-integrals in (5.13) and (5.14) are multiplied by b/(1 − x),
the b-integral in F2(Q2) diverges, while the x-integral in F1(Q2) diverges linearly at the
endpoint x = 1. In contrast, in deeply exclusive meson production, γ∗(Q2)A → MA, the
size of the Fock states is determined by the wave function of the virtual photon, which is
proportional to K0,1(bQ), guaranteeing that the size distribution vanishes exponentially for
b & 1/Q even after multiplied by any power of b. Color transparency is indeed seen in
meson electroproduction [54], whereas the measurement of nucleon form factors in a nuclear
environment failed to see evidence for color transparency [55].

According to (5.11), the anomalous magnetic moment is given by the charge density,

F2(0) = πm

ˆ ∞
0

db b2
(
ρφb=π/2x (~b)− ρφb=3π/2

x (~b)
)

(5.15)

which is an exact relation. This leads to an interesting, classical argument for the positivity of
the electron anomalous magnetic moment, addressing a challenge already posed by Feynman
[56]. Feynman called for more intuition on QED perturbative calculations, specifically noting
that: “We have no physical picture by which we can easily see that the correction is roughly
α/2π, in fact, we do not even know why the sign is positive (other than by computing it)”.
Attemps have been made to answer this challenge by using dispersion theory in the non-
relativistic limit [56], or by studying the effect of low-energy vacuum fluctuations on the
electron [57]. Our qualitative argument is as follows. The charge density ρx(~b) measures
the current j+ = j0 + j3 of a particle at x+ = 0 with spin in the x-direction. Then, for
a classical spinning object, j3(y > 0) > 0 while j3(y < 0) < 0, and thus the density
difference ρφb=π/2x (~b)− ρφb=3π/2

x (~b) > 0 in (5.15) (see Fig. 5.6). A similar argument was used
to understand the sign of the SSAs observed in semi-inclusive DIS [58].
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Figure 5.6: The current jz > 0 and jz < 0 for a classical spinning body with Lx > 0. The
virtual photon measures j+ = j0 + jz at x+ = 0, which is larger for y > 0 than for y < 0.



Chapter 6

Measuring transverse shape with virtual
photons

Nucleon transverse charge densities are accessed via form factors measured in γ∗(q)+N → N
with the resolution b ∼ 1/Qmax, as discussed in chapter 3. In paper III, we considered
the prospects of measuring the transverse shape of any virtual photon induced process,
γ∗(q) + i → f , where the initial and final states can consist of several hadrons. Quali-
tative arguments concerning the size of such transitions have been used in the literature,
but without quantitative verification. We showed how a specific Fourier transform of the
γ∗(q) +N → f transition amplitude measures the transverse shape of the transition process,
and is given by the overlap of the LF wave functions of the initial and final state. Only
Fock states that are common to both the initial and final state contribute to the transition
amplitude. The Fourier transformed cross section, on the other hand, reflects the differ-
ence between the impact parameters of the quark struck in the amplitude and its complex
conjugate. We illustrated the method using examples with two-body final states.

6.1 Transverse shape of transition processes
The q-dependence of the virtual photon interaction in γ∗(q) +N → N provides information
on the transverse densities of the nucleon, as discussed in chapter 3. In accordance with
this and the electron microscopy analogy discussed in section 3.2, the q-dependence should
provide information on the transverse shape and size of any virtual photon induced transition
process, γ∗(q) + i → f , where the initial and final states can consist of several particles.
Such information could allow qualitatively new insight into strong interaction dynamics in
transverse space. For example, in γ∗N → πN, one expects the impact parameter distribution
to narrow with the relative transverse momentum k⊥ between the pion and the nucleon, since
perturbative QCD predicts that the πN system has a small size at large momentum transfer.
Such compactness of the πN system is suggested by the observed color transparency of high-
energy pions dissociating into exclusive jets, where the measured A-dependence of the cross
section agrees with the prediction for color transparency at high relative momentum k⊥ [59,
60] (see Fig. 6.1). Large angle photoproduction cross sections are compatible with constituent
counting rules, which predict that the energy dependence of the two-body exclusive reaction

30
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Figure 6.1: Left: The measured value and the color transparency prediction for the exponent
α in the high-energy pion dissociation cross section σ ∝ Aα. Table from [60]. Right: The
large angle photoproduction cross section s11dσ(γD → pn)/dt at θcm = 89◦ as function of the
photon energy Eγ, showing the constituent counting rule behavior for Eγ & 1 GeV. Figure
from [66].

cross section is
dσ

dt
=
f(θcm)

sn−2
(6.1)

where s and t are the usual Mandelstam variables, θcm is the center-of-mass angle and n
denotes the number of elementary fields in the initial and final states [61, 62]. Thus, n = 9
for both σ(γp → π+n) [63] and σ(γp → K+Λ) [64, 65], while n = 13 for σ(γD → pn) [66]
and σ(γ 3He → pp(n)) [67] at θcm ' 90◦, which are satisfied by the data at surprisingly
low energies (see Fig. 6.1). The constituent counting rules are based on perturbative QCD,
signifying that the scattering Fock states are compact. Measuring the q2-dependence of large
angle electroproduction would allow to study the transverse size of the Fock states. High-
energy diffractive processes such as γ∗N → ρN (see [68] for a review) could allow the study of
the impact parameter distributions of low x quarks, which are expected to be broader than for
higher x quarks. In heavy quark production processes such as γ∗N → KΛ and γ∗N → DΛc,
the impact parameter distributions should narrow with the heavy quark mass, since both the
creation and annihilation of heavy quarks has limited transverse range ∼ 1/mq.

6.2 Impact parameter analysis of γ∗N → f

In the one-photon approximation, the lepton scattering amplitude is

M(lN → l′f) = −e2ū(l′)γµu(l)
1

q2

ˆ
d4x e−iq·x 〈f(pf )|Jµ(x)|N(p)〉 (6.2)

To arrive at an interpretation in terms of the Fock states, we need to identify the J+(x)
contribution in (6.2). For l− → ∞ with fixed q, the lepton part is ū(l′)γµu(l) = 2l−δ−µ , and
the amplitude becomes

M(lN → l′f) = −e2 l
−

q2
〈f(pf )|J+(0)|N(p)〉(2π)4δ(4)(pf − p− q) (6.3)
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In analogy with the nucleon charge densities, the Fourier transform of the generalized form
factor 〈f(pf )|J+(0)|N(p)〉 is done in a frame where

p = (p+, p−,−1

2
~q)

q = (0+, q−, ~q) (6.4)

pf = (p+, p− + q−,
1

2
~q)

The transverse momentum eigenstates are expanded in impact parameter states using |p+, ~p〉 =

4π
´
d2~b ei~p·

~b|p+,~b〉, and the excitation amplitude in impact parameter space is then

AfN(~b) ≡
ˆ

d2~q

(2π)2
e−i~q·

~b 1

2p+
〈f(pf )|J+(0)|N(p)〉 (6.5)

=

ˆ
d2~q

(2π)2
d2~bN d

2~bf e
−i~q·(~b+~bN/2+~bf/2) (4π)2

2p+
〈f(p+,~bf )|J+(0)|N(p+,~bN)〉

The impact parameter states have the LF Fock expansions in terms of the impact parameter
wave functions,

|p+,~b〉x+=0 =
∑
n

n∏
i=1

[ˆ 1

0

dxi√
xi

ˆ
4πd2~bi

] 1

4π
δ(1−

n∑
i=1

xi)δ
(2)(~b−

n∑
i=1

xi~bi)

×ψn(xi,~bi −~b)
n∏
i=1

b†(xip
+,~bi)d

†(...)a†(...)|0〉 (6.6)

The electromagnetic current is J+(x) = eq q̄(x)γ+q(x) = 2eqq
†
+(x)q+(x), where q+(x) =

1
4
γ−γ+q(x), and the quark field is

q+(0+, x−, ~x) =

ˆ
dk+

k+
θ(k+)

[
b(k+, ~x)u+(k+)e−ik

+x−/2 + d†(k+, ~x)v+(k+)eik
+x−/2

]
(6.7)

where the operators at fixed transverse position ~x are b(k+, ~x) =
´

d2~k
16π3 e

i~k·~xb(k+, ~k) and
the spinors satisfy u†+(k+, λ′)u+(k+, λ) = k+δλ′,λ. The quark field eliminates an operator
b†(xkp

+,~bk) from (6.6) at ~bk = ~x = ~0⊥ both in |N〉 and |f〉, and the remaining n− 1 partons
are thus identical in (6.5). The amplitude is diagonal in the number of Fock states, since
a photon with q+ = 0 cannot create a qq̄ pair. The constraints

∑
i xi = 1 force also the

momentum fraction xk of the struck quark to be the same, and the constraints ~b =
∑

i xi
~bi

require that the impact parameters of |N〉 and |f〉 are equal, ~bf = ~bN . The excitation
amplitude in impact parameter space (6.5) becomes

AfN(~b) =
∑
n

n∏
i=1

[ˆ 1

0

dxi

ˆ
4πd2~bi

] 1

4π
δ(1−

n∑
i=1

xi)δ
(2)(

n∑
i=1

xi~bi)

×[ψfn(xi,~bi)]
†ψNn (xi,~bi)

∑
k

ek δ
(2)(~bk −~b) (6.8)
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Figure 6.2: The J+ electromagnetic current probes the Fock state of the γ∗ + N → f
transition. Only Fock states that are common to |N〉 and |f〉 contribute, and the amplitude
in impact parameter space is given by the overlap of the LF wave functions ψNn and ψfn.

which thus gets contributions only from LF Fock states that are common to |N〉 and |f〉 which
have a quark or antiquark at transverse position ~bk = ~b (see Fig. 6.2). The distribution in ~b
provides information about the transverse size of the intermediate Fock states, which may be
studied as a function of the final state |f〉. The amplitude AfN(~b) is universal, in the sense
that it depends only on the LF wave functions of |N〉 and |f〉, which are process independent.
For N = f , the expression (6.8) reduces to the positive definite nucleon charge density ρ0(~b)
discussed in chapter 3.

6.3 Two-body final states
In the analysis of section 6.2, the final state can consist of several hadrons, |f〉 = |h1, h2...hn〉,
and its momentum pf = p+ q varies with the Fourier transform in (6.5). We are then free to
specify the relative momenta of the hadrons, each one of which has its own Fock expansion.
The multihadron Fock state may also be expanded using a LF Fock expansion in terms of
the LF wave functions of the hadrons. For a pion-nucleon final state, in order to conform
with the general Lorentz covariance of LF states,

|πN(p+
f , ~pf ;ψ

f )〉 =

ˆ 1

0

dx√
x(1− x)

ˆ
d2~k

16π3
ψf (x,~k)|π(p1)N(p2)〉 (6.9)

where ψf (x,~k) is a freely chosen function of the relative variables x, ~k and

p+
1 = xp+

f , ~p1 = x~pf + ~k

p+
2 = (1− x)p+

f , ~p2 = (1− x)~pf − ~k (6.10)

Since x, ~k are independent of pf , this defines the pion and nucleon momenta p1, p2 at all
photon momenta q in the Fourier transform. If we fix the pion and nucleon momenta, the
wave function ψf in (6.9) is a δ-function in x and ~k. If we consider a resonance contribution
to the amplitude, such as γ∗N → N∗(1440) → πN , the invariant mass of the πN state is
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fixed,

p2
f = (p1 + p2)2 =

m2
π

x
+

m2
N

1− x
+

~k2

x(1− x)
= m2

N∗(1440) (6.11)

and the excitation amplitude in impact parameter space (6.5) in the frame (6.4) is given by
the N → N∗(1440) transition charge densities. If we do not specify an intermediate state, the
γ∗N → πN amplitude can be expressed using six invariant amplitudes [69, 70], and the LF
helicity amplitudes in impact parameter space (6.5) can be evaluated via a numerical Fourier
transform using existing parametrisations of experimental data, and studied as functions of
x and ~k.

We studied the lµ → l′µγ process as a QED example of a two-body final state. One of
the helicity amplitudes for γ∗µ→ µγ expressed in terms of the relative variables is

A
µγ,+(1/2)
+(1/2)+1 (~q;x,~k) = 2e

√
x
[ ~e− · ~k

(1− x)2m2 + ~k2
− ~e− · (~k − (1− x)~q)

(1− x)2 + (~k − (1− x)~q)2

]
(6.12)

where ~eλ · ~k = −λeiλφk |~k|/
√

2. The Fourier transform in (6.5) gives the amplitude for the
virtual photon to interact with the muon at ~b,

A
µγ,+(1/2)
+(1/2)+1 (~b;x,~k) = 2e

√
x
[ ~e− · ~k

(1− x)2m2 + ~k2
δ(2)(~b)− i

2
√

2π

me−iφb

1− x
K1(mb)

]
exp
(
−i

~k ·~b
1− x

)
(6.13)

The first term arises from the interaction with the initial state muon at ~b = 0, and the second
term reflects the impact parameter distribution of the final state muon in the µγ state at
~b = 0. Precisely the same result is obtained from the expression for the amplitude in terms of
the µ→ µγ LF wave functions (6.8). Choosing the µγ wave function ψf (x,~k) to correspond
with a muon at fixed impact parameter ~b ′µ,

A
µγ,+(1/2)
+(1/2)+1 (~b;x,~b

′

µ) =
√
x(1− x)ψ+

+(1/2)+1(x,~b
′

µ)[−δ(2)(~b) + δ(2)(~b−~b ′µ)] (6.14)

Thus the virtual photon interacts with the initial muon at ~b = ~0 or the final muon at ~b = ~b
′
µ.

We also considered the QED process lγ∗ → l′µ−µ+ with similar results.

6.4 Cross section in impact parameter space
The scattering amplitudes 〈f(pf )|J+(0)|N(p)〉 in the impact parameter space transition am-
plitude AfN(~b) have nontrivial phases, and a partial wave analysis is possible only for a
limited subset of all amplitudes, whereas the cross section is measurable. The Fourier trans-
formed cross section for lN → l′f with l− → ∞ at fixed momentum transfer q = l − l′ is
proportional to

SfN(~b) =

ˆ
d2~q

(2π)2
e−i~q·

~b| 1

2p+
〈f(pf )|J+(0)|N(p)〉|2

=

ˆ
d2~bq AfN(~bq)A

∗
fN(~bq −~b) (6.15)
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Figure 6.3: The real and imaginary parts of the Fourier transformed cross section
bS

µγ,+(1/2)
+(1/2)+1 (~b;x,~k) for γ∗µ→ µγ with ~k||~b.

Thus the~b-distribution in the Fourier transformed cross section reflects the difference between
the impact parameters of the quark struck in the amplitude and its complex conjugate. The
cross section has a real part that is even under ~b → −~b, and an imaginary part that is
odd, which vanishes if the squared matrix element in (6.15) is invariant under ~q → −~q.
A nonvanishing imaginary part can be caused by a correlation with ~q and a transverse
direction defined by the final state f , such as a transverse momentum or polarization. For
|f〉 = |π(p1)N(p2)〉 discussed in section 6.3, the cross section is a function of the relative
variables x and ~k,

ˆ
d2~q

(2π)2
e−i~q·

~b~q4dσ(lN → l′πN)

d2~q dx d2~k
=

α2

4π3

1

x(1− x)
SπN,N(~b;x,~k) (6.16)

For the QED example γ∗µ → µγ, where the impact parameter space amplitude is given by
(6.13),

S
µγ,+(1/2)
+(1/2)+1 (~b;x,~k) = 4e2x

[ ~k2/2

(1− x)2m2 + ~k2
δ(2)(~b)− im |

~k| cos(φb − φk)
(1− x)2m2 + ~k2

K1(mb)

2π(1− x)

+
K0(mb)− 1

2
mbK1(mb)

4π(1− x)2

]
exp
(
−i

~k ·~b
1− x

)
(6.17)

which is plotted in Fig. 6.3. The three terms in (6.17) correspond to 2, 1, and 0 of the virtual
photon interactions occurring on the initial muon, and the imaginary part arises from the
correlation between ~b and ~k.



Chapter 7

Conclusions and outlook

High-energy scattering experiments provide a window for studying hadron structure and
QCD dynamics. The parton picture of the hadron is obtained by using the method of LF
quantization. The division of momentum, spin and charge between the partons in the hadron
are described by measurable distribution functions. In this thesis, I discussed both inclusive
and exclusive scattering processes, in which these distributions are accessible.

Parton distributions are generally accessed via QCD factorization, which is based on the
incoherence between the soft and hard dynamics in the scattering process. Factorization
is valid in the Bjorken limit of hard processes, in which Q2 → ∞ and the LF energy q−

of the photon increases as q− ∝ Q2. Only one parton in each hadron takes part in the
hard subprocess in the Bjorken limit. Coherence effects are, however, expected and observed
when one of the active partons carries x → 1. In paper I, we defined and studied the BB
limit of Q2 → ∞ with Q2(1 − x) fixed, concentrating on the DY process πN → µ−µ+ +
X, where x is the momentum fraction of the pion carried by the lepton pair. We showed
that a new kind of factorization holds in the BB limit. The virtual photon polarization is
longitudinal rather than transverse in the DY process, and the cross section is proportional
to a multiparton distribution, which would be of higher twist in the standard Bjorken limit.
The DY amplitudes follow simple helicity systematics in the BB limit.

Generalized parton distributions (GPDs) contain information on the transverse distribu-
tion of quarks, but their measurement is more involved than those of the standard parton
distributions measured in inclusive processes. The transverse charge densities are defined
as Fourier transforms of the electromagnetic form factors, a connection that has attracted
considerable interest in recent years. The form factors are well defined at all Q2, and are
much easier to measure than the GPDs, which has allowed to plot the nucleon charge den-
sities model independently. In paper II, we applied these methods to the QED electron by
studying the form factors, charge densities and spin distributions of the |eγ〉 Fock state in
impact parameter space. Only transversally compact Fock states contribute to the leading
behavior of the Dirac and Pauli form factors. The Fock state conserves the spin of the
electron, while the separate contributions from the helicities and orbital angular momentum
of the constituents depend on the impact parameter and longitudinal momentum fraction.
We showed that the sign of the electron anomalous magnetic moment can be understood
intuitively from the transverse densities.

Nucleon transverse charge densities are accessed via form factors measured in γ∗(q)+N →

36
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N . In paper III, we considered the transverse shape of any virtual photon induced transition
process, γ∗(q) + i → f , where the initial and final states can consist of several hadrons.
Qualitative arguments concerning the size of such processes have been used in the literature,
but without quantitative verification. We showed how a specific Fourier transform of the
γ∗(q) +N → f transition amplitude measures the transverse shape of the transition process,
and is given by the LF wave functions of the nucleon and the final state. The Fourier
transformed cross section reflects the difference between the impact parameters of the quark
struck in the amplitude and its complex conjugate.

The relevance of the BB limit to other high x processes merits further study. It has
been shown that a large transverse single-spin asymmetry of O(1) in pp↑ → π(xF , k⊥) + X
can arise in the BB limit, but factorization analogous to the one considered in paper I is
needed for a quantitative analysis. The generalized charge densities considered in paper III
have several avenues of application, as discussed in chapter 6. As a first study, the existing
parametrisations of experimental data on γ∗N → πN would allow a study of the transverse
extent of the transition process as a function of the relative momentum between the nucleon
and the pion.
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