
Fast Distributed Approximation Algorithms for
Vertex Cover and Set Cover in Anonymous Networks

Matti Åstrand
matti.astrand@helsinki.fi

Jukka Suomela
jukka.suomela@cs.helsinki.fi

Helsinki Institute for Information Technology HIIT, University of Helsinki
P.O. Box 68, FI-00014 University of Helsinki

ABSTRACT
We present a distributed algorithm that finds a maximal
edge packing in O(∆ + log∗W) synchronous communication
rounds in a weighted graph, independent of the number of
nodes in the network; here ∆ is the maximum degree of the
graph and W is the maximum weight. As a direct applica-
tion, we have a distributed 2-approximation algorithm for
minimum-weight vertex cover, with the same running time.
We also show how to find an f -approximation of minimum-
weight set cover in O(f2k2 + fk log∗W) rounds; here k is
the maximum size of a subset in the set cover instance, f is
the maximum frequency of an element, and W is the maxi-
mum weight of a subset. The algorithms are deterministic,
and they can be applied in anonymous networks.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Prob-
lems—computations on discrete structures

General Terms
Algorithms, Theory

1. INTRODUCTION
In this work, we present deterministic distributed approx-

imation algorithms for two classical problems: minimum-
weight vertex cover and minimum-weight set cover.

1.1 Edge Packings and Vertex Covers
Let G = (V,E) be a simple, undirected, node-weighted

graph; each node v ∈ V is associated with a positive weight
wv. A set C ⊆ V is a vertex cover if each edge has at least
one endpoint in C, and it is a minimum-weight vertex cover
if it also minimises its total weight

w(C) =
∑
v∈C

wv.

c© ACM, 2010. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in Proc. 22nd ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA’10, June
13–15, 2010, Thira, Santorini, Greece).
http://doi.acm.org/10.1145/1810479.1810533

While vertex cover is a classical NP-hard optimisation
problem, there is a simple technique for obtaining efficient
approximation algorithms: find a maximal edge packing (a
maximal dual solution) and output all saturated nodes. For
a nonnegative function y : E → [0,+∞), let us define the
shorthand notation

y[v] =
∑

e∈E: v∈e

y(e)

for each v ∈ V . We say that y is an edge packing if y[v] ≤ wv

for all v ∈ V . A node v ∈ V is saturated in the edge packing
y if y[v] = wv. An edge e = {u, v} ∈ E is saturated if u or v
or both are saturated, i.e., y(e) cannot be increased without
violating the constraint y[u] ≤ wu or y[v] ≤ wv. An edge
packing y is maximal if all edges are saturated.

Let C(y) be the set of nodes saturated in y. The classi-
cal result by Bar-Yehuda and Even [6] shows that if y is a
maximal edge packing then C(y) is a 2-approximation of a
minimum-weight vertex cover; for the sake of completeness,
we give a short proof here. First, observe that C(y) is a
vertex cover by definition: if an edge is not covered by C(y),
then y is not maximal. To show the approximation ratio, let
C∗ be a minimum-weight vertex cover. As C(y) contains at
most two endpoints of each edge and C∗ contains at least
one endpoint of each edge, we have

w(C(y)) =
∑

v∈C(y)

y[v] =
∑
e∈E

y(e) |e ∩ C(y)|

≤ 2
∑
e∈E

y(e) |e ∩ C∗| = 2
∑
v∈C∗

y[v] ≤ 2w(C∗).

In a centralised setting, a maximal edge packing y is easy
to find: for each e ∈ E, in an arbitrary order, increase the
value y(e) until one of the endpoints of e becomes satu-
rated. In this work, we give an efficient distributed algo-
rithm that finds a maximal edge packing, and hence also a
2-approximation of a minimum-weight vertex cover.

1.2 Fractional Packings and Set Covers
To deal with the set cover problem in a distributed setting,

it is convenient to restate the problem by using a bipartite
graph H = (S ∪ U,A). Each node s ∈ S represents a subset,
each node u ∈ U represents an element of the universe, and
an edge {s, u} ∈ A denotes that the element u ∈ U is a
member of the subset s ∈ S. Each subset node s ∈ S is
associated with a positive weight ws. A collection C ⊆ S is a
set cover if each element u ∈ U has at least one neighbour in
C, and it is a minimum-weight set cover if it also minimises
its total weight w(C) =

∑
s∈C ws.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14921853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.acm.org/10.1145/1810479.1810533

Let y : U → [0,+∞) be a nonnegative function. Define
the shorthand notation

y[s] =
∑

u∈N(s)

y(u)

for each s ∈ S; here N(s) ⊆ U is the set of elements adjacent
to the subset node s. We say that y is a fractional packing
if y[s] ≤ ws for all subset nodes s ∈ S. A subset node s ∈ S
is saturated in the fractional packing y if y[s] = ws. An
element u ∈ U is saturated if at least one adjacent subset
node s with {s, u} ∈ A is saturated, i.e., y(u) cannot be
increased. A fractional packing y is maximal if all elements
u ∈ U are saturated.

The classical result mentioned in Section 1.1 has a straight-
forward generalisation to the set cover problem [6]. Let C(y)
be the set of subset nodes s ∈ S saturated in y. Let f be
the maximum degree of the elements u ∈ U , that is, an
element occurs in at most f subsets. Now if y is a maxi-
mal fractional packing, then C(y) is an f -approximation of
a minimum-weight set cover. The proof in the previous sec-
tion holds almost verbatim, replacing the constant 2 with f .

1.3 Model of Distributed Computing
In our vertex cover algorithm, the graph G = (V,E) rep-

resents a distributed system: each node v ∈ V is a computa-
tional entity and each edge {u, v} ∈ E denotes a communi-
cation link between the nodes u and v. Similarly, in our set
cover algorithm, the graph H = (S ∪ U,A) represents a dis-
tributed system, and each node x ∈ S∪U is a computational
entity. (Naturally, we do not assume that the physical struc-
ture of a real-world distributed system is exactly equal to H;
it is sufficient that we can efficiently simulate computation
in H by using the physical computers and communication
links between them. Section 5 gives an example of such a
simulation.)

We use the model of synchronous distributed algorithms.
All nodes execute the same algorithm. During each syn-
chronous communication round, each node in parallel (i) per-
forms local computation, (ii) sends one message to each of
its neighbours, (iii) waits while the messages are propagated
along the edges of the communication graph, and (iv) re-
ceives one message from each of its neighbours. As usual,
the running time of a synchronous distributed algorithm is
the total number of synchronous communication rounds.

In the case of the vertex cover problem, each node v ∈ V
gets its own weight wv as input. When the algorithm termi-
nates, each node must produce one bit of output: whether it
is part of the vertex cover or not. In the set cover problem,
each subset node s ∈ S gets its own weight ws as input; the
elements u ∈ U have no input. When the algorithm termi-
nates, each s ∈ S must output one bit indicating whether it
is in the set cover or not.

Our algorithms are designed for anonymous networks; we
do not assume that the nodes have any unique identifiers.
Hence we have to specify carefully how the nodes can address
their neighbours when they send and receive messages. We
consider two models:

Port-Numbering Model. A node v with degree deg(v)
can refer to its neighbours by integers 1, 2, . . . , deg(v);
these integers are called port numbers. A node can
send a different message to each neighbour, and it
knows which message was received from which neigh-
bour.

Broadcast Model. There are no port numbers. A node
has to send the same message to each neighbour, and it
does not know which message was received from which
neighbour.

Put otherwise, in the port-numbering model, a node v pro-
duces a vector with deg(v) outgoing messages and it receives
a vector with deg(v) incoming messages; the ith outgoing
message corresponds to the same neighbour as the ith in-
coming message. In the broadcast model, a node v produces
only one outgoing message and it receives a multiset with
deg(v) incoming messages. We discuss the properties of the
broadcast model in more detail in Section 7.

1.4 Notation
We focus on the case of bounded degrees and bounded

weights. In the vertex cover algorithm, we assume that there
are global parameters ∆ and W such that deg(v) ≤ ∆ and
wv ∈ {1, 2, . . . ,W} for all v ∈ V . We assume that all nodes
know these two parameters, which may represent, e.g., in-
trinsic hardware constraints such as the number of physical
communication ports in a device and the precision of the
registers used to store the weights; note that the algorithms
are fast even if one chooses a very large value of W such as
W = 264.

Similarly, in the case of the set cover algorithm, we assume
that there are global parameters f , k, and W such that
deg(u) ≤ f , deg(s) ≤ k, and ws ∈ {1, 2, . . . ,W} for all
u ∈ U and s ∈ S.

Throughout this work, logarithms are to base 2. The
function log∗ n denotes the iterated logarithm of n, that is,
log∗ n = 0 if n ≤ 1, and otherwise log∗ n = 1 + log∗(logn).

1.5 Contributions
In Section 3, we present a distributed algorithm that finds

a maximal edge packing in O(∆ + log∗W) synchronous com-
munication rounds. As a direct application, we have a dis-
tributed 2-approximation algorithm for minimum-weight ver-
tex cover with the same running time. For unweighted
graphs (W = 1), the running time is simply O(∆). This
algorithm assumes the port-numbering model.

In Section 4, we present a distributed algorithm that finds
a maximal fractional packing inO(f2k2 + fk log∗W) rounds.
Again, as a direct application, we have a distributed f -
approximation algorithm for minimum-weight set cover with
the same running time. This algorithm does not require port
numbering; we show how to implement the algorithm in the
broadcast model.

In Section 5, we show how to apply the algorithm of Sec-
tion 4 to find a maximal edge packing and 2-approximation
of vertex cover in O(∆2 + ∆ log∗W) rounds in the broadcast
model.

Our algorithms are strictly local in the sense that that run-
ning time of the algorithm does not depend on the number
of nodes in the network [27, 31]. Moreover, our algorithms
are deterministic. Among others, this means that standard
techniques [4, 5, 23] can be used to convert our algorithms
into efficient self-stabilising algorithms [10].

2. RELATED WORK
In an unweighted graph, a maximal matching provides a

maximal edge packing and therefore a 2-approximation of a
minimum vertex cover. Hańćkowiak et al.’s [13] distributed

Table 1: A Comparison of Fast Distributed Algorithms for Vertex Cover

deterministic weighted approximation time (W = 1) algorithm

no yes 2 O(logn) [12]
no yes 2 O(logn) [17]
yes no 3 O(∆) [30]
yes no 2 O(log4 n) [13] (matching)
yes no 2 O(∆ + log∗ n) [28] (matching)
yes no 2 O(∆2) [2]
yes yes 2 + ε O(log(ε−1) logn) [16]
yes yes 2 + ε O(ε−4 log ∆) [21] + [14]
yes yes 2 O(∆ + log∗ n) [28] (edge colouring)
yes yes 2 O(1) if ∆ ≤ 3 [2]
yes yes 2 O(∆) this work

In the table, n = |V | and ε > 0. The running times are stated for the case of unweighted
graphs. For randomised algorithms the running times hold in expectation or with high
probability.

algorithm finds a maximal matching in O(log4 n) rounds,
and Panconesi and Rizzi’s [28] algorithm finds a maximal
matching in O(∆ + log∗ n) rounds.

In a weighted graph, we can use an edge colouring to find
a maximal edge packing. Given an edge colouring with k
colours, we can find a maximal edge packing in O(k) rounds:
first saturate all edges of colour 1 in parallel, then saturate
all edges of colour 2 in parallel, etc. For example, Panconesi
and Rizzi’s [28] algorithm finds an O(∆)-edge colouring in
O(∆ + log∗ n) rounds, and hence provides an O(∆ + log∗ n)-
time algorithm for finding a maximal edge packing.

However, any deterministic algorithm that uses maximal
matchings or edge colourings has two drawbacks. First, such
algorithms assume that each node has a unique identifier –
indeed, finding a maximal matching or an edge colouring
is impossible in anonymous networks. Second, the running
time of any such algorithm must depend on the number of
nodes in the network, even in the case ∆ = 2 – this is the
seminal result by Linial [25].

Other vertex cover algorithms are summarised in Table 1.
To our knowledge, none of the algorithms from prior work
has the same combination of features as our algorithm: (i) de-
terministic, (ii) 2-approximation, (iii) for weighted vertex
cover, and (iv) running time independent of n.

Many vertex cover algorithms have also a generalisation
to set covering. For example, LP approximation schemes [18,
21] and deterministic rounding [14] provide a (2 + ε)-approxi-
mation for vertex cover, and the same technique gives an
(f + ε)-approximation for set cover. However, there are also
algorithms that are relevant specifically in the case of the set
cover problem. A trivial constant-time algorithm provides a
k-approximation: each element u ∈ U chooses an adjacent
subset s ∈ S of minimum weight; all such subsets are added
to the cover. Randomised LP rounding [18, 20, 21, 22] gives
the expected approximation factor of O(log k).

Several lower bounds are known for local algorithms (dis-
tributed algorithms with running time independent of the
number of nodes in the network). Czygrinow et al. [9] and
Lenzen and Wattenhofer [24] have shown that finding a
constant-factor approximation of maximum independent set
in a directed cycle is not possible in O(1) rounds using a
deterministic algorithm. As a direct consequence, even if
W = 1 and ∆ = 2, there is no deterministic local (2− ε)-

approximation algorithm for vertex cover. A straightfor-
ward local reduction shows that there is no deterministic
local (min{f, k} − ε)-approximation algorithm for set cover,
either (see Section 6 for details). This lower bound is tight,
as our local algorithm achieves the approximation factor f
and the trivial algorithm achieves the approximation fac-
tor k.

The running time of our edge packing algorithm depends
on both ∆ and W , and both of these are unavoidable. First,
even if W = 1, there is no O(1)-approximation algorithm
for vertex cover with running time o(log ∆/ log log ∆) [19].
Second, even if ∆ = 2, there is no deterministic algorithm
for maximal edge packing with running time O(1) [2].

3. VERTEX COVER IN THE PORT-
NUMBERING MODEL

In this section we present an algorithm that finds a max-
imal edge packing (and hence a 2-approximation of vertex
cover) in O(∆ + log∗W) rounds. The algorithm uses the
port-numbering model.

3.1 Overview
Our algorithm works in two phases. Phase I constructs

a (possibly non-maximal) edge packing y, and a (possibly
improper) node colouring c in the graph G. We say that an
edge is multicoloured if its endpoints have different colours
in c. The key observation is that if an edge is not saturated in
y, then it is multicoloured in c. Phase II uses the colouring c
to saturate all multicoloured edges.

Phase I uses the degrees and the weights of the nodes in
G to derive both the edge packing y and the colouring c. It
turns out that in those cases in which finding multicoloured
edges is impossible – regular graphs with equal node weights
– we can saturate the edges already during Phase I.

Phase I uses steps that are similar to, e.g., Khuller et
al.’s [16] algorithm or Papadimitriou and Yannakakis’s [29]
“safe algorithm”: each node v ∈ V offers wv/deg(v) units to
each incident edge, and each edge accepts the minimum of
the offers that it receives. Phase II is similar to the graph
colouring algorithm by Goldberg et al. [11] and the edge
colouring algorithm by Panconesi et al. [28]: we partition
the multicoloured edges into ∆ forests of rooted trees, and

we use Cole and Vishkin’s [8] colour reduction techniques to
3-colour each tree.

3.2 Phase I
For an edge packing y and an improper colouring c, let

ry(v) = wv − y[v] be the residual weight of v ∈ V , and let

Eyc =
{
{u, v} ∈ E : ry(v) > 0, ry(u) > 0, c(u) = c(v)

}
be the set of edges that are not saturated in y and not mul-
ticoloured in c. Let Gyc = (Vyc, Eyc) be the subgraph of G
induced by Eyc, and let degyc(v) be the degree of v ∈ Vyc in
the subgraph Gyc.

In the distributed algorithm, the colour c(v) is stored in
the local memory of the node v ∈ V , and identical copies
of the value y(e) are stored in both endpoints of the edge
e ∈ E. During Phase I, the colours will be sequences of
rational numbers. Initially, we set y(e) ← 0 for each e ∈ E,
and c(v) is an empty sequence for each node v ∈ V . At
this point, no edge is saturated or multicoloured, and hence
Gyc = G.

During the algorithm, we will increment the values y(e)
and add more elements to the sequences c(v) until Eyc = ∅.
It turns out that it is sufficient to repeat the following steps
for ∆ times:

(i) Set x(v)← ry(v)/degyc(v) for each node v ∈ Vyc.

(ii) Set y(e) ← y(e) + min {x(u), x(v)} for each edge e =
{u, v} ∈ Eyc.

(iii) Add the element x(v) to the sequence c(v) for each
node v ∈ Vyc, and add the element 1 for each node
v ∈ V \ Vyc.

The following lemma shows the correctness of the algo-
rithm.

Lemma 1. In each iteration of steps (i)–(iii), the maxi-
mum degree of Gyc decreases by at least one.

Proof. Let v ∈ Vyc before step (i). If we have x(u) ≥
x(v) for each neighbour u of v in Gyc, then we will saturate
v during the step (ii). Otherwise there is a neighbour u of
v with x(u) < x(v). If the edge {u, v} is not saturated after
step (ii), it is multicoloured after step (iii). In summary,
each node is removed from Gyc or loses at least one edge.
Moreover, edges which were saturated remain saturated and
edges which were multicoloured remain multicoloured.

It follows that after ∆ iterations, Gyc is empty and all
edges are saturated or multicoloured. At this point, the
colours c(v) are – somewhat inconveniently – sequences of
∆ rational numbers. However, the rational numbers in c(v)
are not arbitrary, as shown by the following lemma.

Lemma 2. For each v ∈ V and for each element q of c(v),
we have 0 < q ≤W and q(∆!)∆ ∈ N.

Proof. A simple induction shows that if we multiply
each weight wv by (∆!)k before running the algorithm, then
x(v), y(e), and ry(v) will be integral during the first k iter-
ations of steps (i)–(iii).

Hence an injection can be defined from the possible values
of c(v) to the set {1, 2, . . . , χ} for χ = (W (∆!)∆)∆. In what
follows, we re-interpret the colouring c as a mapping c : V →
{1, 2, . . . , χ}.

3.3 Phase II
Let

A =
{

(u, v) : {u, v} ∈ E,
ry(v) > 0, ry(u) > 0, c(u) < c(v)

}
be the set of unsaturated edges, oriented from a lower to
higher colour. Note that the directed graph G′ = (V,A) is
acyclic, and c is a proper χ-colouring in G′.

We partition A in ∆ forests, F1, F2, . . . , F∆: using the
port numbering, each node u adds the first outgoing edge to
F1, the second outgoing edge to F2, etc. The outdegree of
each node in Fi = (V, Fi) is at most one, and hence it is a
forest of rooted trees, with edges oriented towards the root
nodes.

For each forest Fi in parallel, we can find a 3-colouring
in O(log∗ χ) rounds by using a Cole–Vishkin style colour
reduction algorithm [8, 11]. For each j ∈ {1, 2, 3}, let Fij

consist of the edges (u, v) ∈ Fi such that u has colour j in
the forest Fi.

We consider each i ∈ {1, 2, . . . ,∆} and j ∈ {1, 2, 3} in
sequence, and saturate all edges in Fij . Since the graph
induced by Fij consists of rooted stars (i.e., rooted trees of
height 1), it is easy to saturate all edges of Fij in parallel.
Consider a star, with the root node v ∈ V and with the leaf
nodes L ⊂ V . In one communication round, the root node
can gather the residual weights ry(u) for all leaves u ∈ L
and compute the ratio

α =
∑
u∈L

ry(u)

ry(v)
.

If α < 1, we increase y({u, v}) for each u ∈ L by ry(u), and
we saturate all leaf nodes. Otherwise we increase y({u, v})
for each u ∈ L by ry(u)/α, and we saturate the root node.

The sets Fij form a partition of A. In summary, we have
saturated all edges of A in O(∆ + log∗ χ) communication
rounds.

Theorem 1. There is a deterministic algorithm that finds
a maximal edge packing in O(∆ + log∗W) synchronous com-
munication rounds.

Proof. Phase II saturates all edges that were not sat-
urated in Phase I. Since Phase I takes O(∆) rounds and
Phase II takes O(∆ + log∗ χ) rounds, it is sufficient to show
that log∗ χ = O(log∗∆ + log∗W). To this end, let M =
max {W,∆, 4} and observe that log logχ ≤ 4 logM .

4. SET COVER IN THE BROADCAST
MODEL

In this section we present an algorithm that finds a max-
imal fractional packing (and hence an f -approximation of
set cover) in O(f2k2 + fk log∗W) rounds in the broadcast
model.

Our fractional packing algorithm builds on the same basic
idea as the edge packing algorithm in Section 3: we construct
a (non-maximal) packing and an (improper) colouring hand
in hand, and if a step does not improve the packing, we
can show that it will improve the colouring. However, there
are also many differences between the two algorithms. For
example, while the edge packing algorithm runs the Cole–
Vishkin colour reduction step only once, in the case of frac-
tional packing we will have to run the colour reduction step
repeatedly.

4.1 Preliminaries
Recall that we represent a set cover instance as a bipartite

graph H = (S ∪U,A) with subset nodes s ∈ S and elements
u ∈ U . We use N(s) ⊆ U to denote the set of elements
adjacent to s ∈ S, and conversely N(u) ⊆ S to denote the
set of subset nodes adjacent to u ∈ U . Let

K =
{

(u, s, v) : s ∈ S, u ∈ N(s), v ∈ N(s), u 6= v
}

consist of all length-2 simple paths in H that start and end
in U . If we interpret (u, s, v) ∈ K as a directed edge from u
to v, we can construct the directed multigraph K = (U,K).
In K there are |N(u) ∩N(v)| directed edges from u to v.
The outdegree, indegree, and number of distinct neighbours
of any node u ∈ U in K is at most D = (k− 1)f . The graph
K is used only in the analysis of the algorithm; we do not
maintain it explicitly.

During the execution of the algorithm, each element u ∈ U
is associated with two values: y(u) ∈ [0,+∞) and c(u) ∈
{1, 2, . . . , D + 1}. Here y is a fractional packing, and c is an
improper colouring of K. We say that an edge (u, s, v) ∈ K
is multicoloured if c(u) 6= c(v). Recall that an element u ∈ U
is saturated if it is adjacent to a saturated subset node s ∈ S.

Let ry(s) = ws − y[s] be the residual weight of the subset
node s ∈ S. Let Uy ⊆ U be the set of elements u ∈ U that
are not saturated in y, let

Uyi =
{
u ∈ Uy : c(y) = i

}
consist of unsaturated elements of colour i, and let Uyi(s) =
Uyi ∩ N(s) be the set of unsaturated elements of colour i
adjacent to s. Let

Kyc =
{

(u, s, v) ∈ K : u ∈ Uy, v ∈ Uy, c(u) = c(v)
}

be the set of edges of K that are not multicoloured in c and
join unsaturated elements. We define the subgraph Kyc of
K by setting Kyc = (Uy,Kyc).

Remark 1. Even thought the definitions resemble those of
the edge packing algorithm, they are not completely analo-
gous. In Section 3, we associate a colour c(v) with each node
of G and a value y(e) with each edge of G. In this section,
we associate a colour c(u) with each node of K and also a
value y(u) with each node of K.

4.2 Algorithm
Initially, we set y(u) ← 0 and c(u) ← 1 for each element

u ∈ U . None of the nodes of K is saturated and none of the
edges is multicoloured, and hence Kyc = K; see Figure 1 for
an example.

The algorithm consists of D+ 1 iterations. Each iteration
j ∈ {1, 2, . . . , D + 1} proceeds as follows:

(a) For each colour i ∈ {1, 2, . . . , D + 1}, perform the sat-
uration phase for colour i; see Section 4.3.

(b) Perform the colouring phase; see Section 4.4.

Eventually, after the last iteration, Uy will be empty and
hence y is a maximal edge packing.

4.3 Saturation Phases
The saturation phase for colour i consists of the following

steps; see Figure 1a for an example. In the following, we use
the shorthand notation S′ = {s ∈ S : Uyi(s) 6= ∅}.

0 0 0 0 0 0

443322p(u):
c(u): 1 1 1 1 1 1

c(u): 1 12 3

(d)

u3 u4 u5

2
2 3

2 3
4 4

3qi(s):

4 9 8 12
4 9 8 12ry(s):

ws:

xi(s):

(a)

(e)

(b)

(c)

y(u):

u3u1 u4 u5u2 u6Kyc:

Kyc: u3 u4 u5 u6

u3 u4 u5 u6B:
c1(u): 3 3 4 4

1 2 1 3c2(u):

u3 u4 u5 u6Kyc:

H:

s1 s2 s3 s3 ∈ S

u6 ∈ Uyiu1 u2

Figure 1: Fractional packing algorithm, the first it-
eration. Initially, all elements are in Uy1. (a) The
saturation phase for colour i = 1; black nodes are
newly saturated. (b) Directed multigraph Kyc be-
fore the saturation phase. (c) Graph Kyc after the
saturation phase. Nodes u1 and u2 are saturated
and hence removed from the graph. Nodes u3 and
u4 were adjacent to the saturated node u2, and hence
their outdegree has decreased. (d) Subgraph B = B1.
Nodes u5 and u6 were not adjacent to any saturated
node; hence they have a positive outdegree in B. A
χ-colouring c1 of B and a weak 3-colouring c2 of B; for
each node, at least one of the successors has a differ-
ent colour in c2. (e) Graph Kyc after the colouring
phase. In comparison with figure (b), the outdegree
of each node has decreased by at least one.

(i) Each u ∈ U broadcasts y(u). Each s ∈ S computes
y[s] and ry(s).

(ii) Each s ∈ S broadcasts ry(s). Each u ∈ U determines
whether it is saturated and whether it is in Uyi.

(iii) Each u ∈ U broadcasts a bit indicating whether u ∈
Uyi. Each s ∈ S computes the size of Uyi(s). Each
s ∈ S′ sets xi(s)← ry(s)/|Uyi(s)|.

(iv) Each s ∈ S′ broadcasts xi(s). Each u ∈ Uyi sets
p(u)← min {xi(s) : s ∈ N(u)}.

(v) Each u ∈ Uyi broadcasts p(u). Each s ∈ S′ sets
qi(s)← min {p(v) : v ∈ Uyi(s)}.

(vi) Each u ∈ Uyi sets y(u)← y(u) + p(u).

These steps require O(1) rounds per colour, in total O(D)
rounds. Clearly the edge packing y remains feasible after
the saturation phase.

We will use the following observation in the colouring
phase.

Lemma 3. Consider a node u ∈ Uyi that was not satu-
rated in step (vi). Let s be a neighbour of u with p(u) = xi(s),
and let v be a neighbour of s with qi(s) = p(v). Then s is
not saturated, v 6= u, and p(u) > p(v).

Proof. If u is not saturated, the subset node s is not
saturated either. Hence there was a neighbour t ∈ Uyi(s)
that increased y(t) by less than xi(s), that is, p(t) < xi(s).
This means that p(v) = qi(s) ≤ p(t) < xi(s) = p(u), and
the claim follows.

4.4 Colouring Phase
We begin by introducing some notation that facilitates

the analysis of the colouring phase. For each colour i, let us
define the set

Bi =
{

(u, s, v) ∈ K : p(u) = xi(s),

qi(s) = p(v), u, v ∈ Uyi

}
and the subgraph Bi = (Uyi, Bi) of the graph Kyc. Each
node u ∈ Uyi is associated with a value p(u), and Lemma 3
shows that these values are strictly decreasing in the direc-
tion of the edges. It follows that the subgraphs Bi are di-
rected acyclic graphs. The subgraphs are by construction
node-disjoint; let B be the union of these graphs.

Now consider a colour i and an element u ∈ Uyi that
was not saturated in any of the saturation phases. Then we
can choose two nodes s and v as in Lemma 3; in particu-
lar, v 6= u. Note that before this iteration, both u and v
were unsaturated and they had the same colour i; therefore
(u, s, v) was an edge in Kyc. If v became saturated during
the saturation phases, the edge (u, s, v) is no longer part of
Kyc. Otherwise the edge (u, s, v) is in the set Bi. In sum-
mary, each element that was not saturated either loses at
least one outgoing edge during the saturation phases, or has
at least one outgoing edge in the subgraph B.

Now we are ready to describe the distributed algorithm
that implements the colouring phase. First, we use the ra-
tional numbers p(u) and a reasoning similar to Lemma 2 to
construct a χ-colouring c1 of the subgraph B, with

χ = W (k!)(D+1)2 .

Second, we use the algorithm that we describe in Section 4.5
to construct a weak 3-colouring c2 of B in O(log∗ χ) rounds:
each element u ∈ Uyi with a positive outdegree in B has
at least one successor v with a different colour. Put other-
wise, there is a subgraph B′ of B such that c2 is a proper
3-colouring of B′, and each node with a positive outdegree
in B has a positive outdegree in B′ as well.

Then we set c3(u)← 3c(u) + c2(u) for each node u ∈ Uyi

to construct an improper 3(D + 1)-colouring c3 of Kyc, with
the following properties:

(a) If (u, s, v) is an edge of B′ then c3(u) 6= c3(v).

(b) If (u, s, v) ∈ K and c(u) 6= c(v) then c3(u) 6= c3(v).

In other words, edges in B′ become multicoloured, and mul-
ticoloured edges in K remain multicoloured. Finally, we use
a trivial O(D)-time colour reduction algorithm to construct
an improper (D + 1)-colouring c4 of Kyc with the same prop-
erties.

We set c← c4; after that, we have e /∈ Kyc for each edge
e of B′. Hence the outdegree of each node u ∈ Uy in Kyc

has decreased by at least one during the iteration: either we
saturated a neighbour of u in one of the saturation phases,
or we have at least one outgoing edge in B. In the latter
case, we also have at least one outgoing edge in B′, which
we multicoloured in the colouring phase. In the worst case,
a node u ∈ U loses only one outgoing edge during each
iteration j = 1, 2, . . . , D and finally becomes saturated and
removed from Uy during the last iteration j = D + 1.

Theorem 2. There is a deterministic algorithm that finds
a maximal fractional packing in O(f2k2 + fk log∗W) syn-
chronous communication rounds.

Proof. Each iteration takes O(D + log∗ χ) communica-
tion rounds and there are O(D) iterations. The claim follows
from log∗ χ = O(log∗D + log∗W) and D = O(fk).

4.5 Weak Colour Reduction
In the colour reduction algorithm, each node u ∈ Uy main-

tains a value c′(u). Let B(u) ⊆ Uy be the set of successors
of u in B and let L(u) = {c′(v) : v ∈ B(u), c′(v) 6= c′(u)}.
If L(u) 6= ∅, we define `(u) = minL(u). The graph B′
is defined to consist of all edges (u, s, v) of B such that
L(u) 6= ∅ and `(u) = c′(v); see Figure 2 for an example.
Let B′(u) ⊆ B(u) be the set of successors of u in B′.

We do not maintain B or B′ explicitly. Nevertheless, each
node u ∈ Uy can compute the current values of L(u) and
`(u) by using the following algorithm:

(i) Each v ∈ Uy broadcasts the triplet

(c′(v), c(v), p(v)).

Let M(s) be the set of messages received by s ∈ S.

(ii) Each s ∈ S broadcasts the triplets{
(c′(v), i, xi(s)) : (c′(v), i, p(v)) ∈M(s),

p(v) = qi(s)
}
.

Let M ′(u) be the set of triplets received by u ∈ Uy.

(iii) Each u ∈ Uy constructs

L(u) =
{
c′(v) : (c′(v), i, xi(s)) ∈M ′(u),

c(u) = i, p(u) = xi(s)
}
.

(c)

6 6

5

1

1

4

2

33

2

2

(a) (b)

10

20

30

50

70

40

60

90

8

5 5

8

6

Figure 2: Weak colour reduction, two iterations. Ar-
rows illustrate the directed acyclic graph B, the num-
bers are the current values of c′(u), and thick lines
highlight the subgraph B′. Dotted edges are not
properly coloured; nevertheless, each node with a
positive outdegree has at least one successor with a
different colour.

Now we are ready to describe how the algorithm manipu-
lates the colours c′. Initially, we set c′ ← c1. At this point,
if B(u) 6= ∅, we also have L(u) 6= ∅ and hence B′(u) 6= ∅.

Then we apply repeatedly the Cole–Vishkin colour reduc-
tion technique for trees [8, 11]. In the Cole–Vishkin algo-
rithm, each node is assumed to have at most one successor.
Each node in parallel inspects the current colour of its suc-
cessor and chooses a new colour; it is guaranteed that the
successor chooses a different colour. In our case, each node
u ∈ Uy with L(u) 6= ∅ may have several successors in B′,
but all successors of u have the same colour `(u). Hence we
can simply proceed as if u had only one successor of colour
`(u); the Cole–Vishkin algorithm then guarantees that the
new colour of u is different from the new colour of each
v ∈ B′(u). In particular, if L(u) was nonempty, it will be
nonempty also after each colour reduction step. Hence we
maintain the invariant that B(u) 6= ∅ implies B′(u) 6= ∅.
After O(log∗ χ) iterations, we have reduced the number of
colours in c′ to 3.

5. VERTEX COVER IN THE BROADCAST
MODEL

The edge packing algorithm from Section 3 assumed that
we have a port numbering in the graph G. Now we proceed
to show how to find a maximal edge packing in the broad-
cast model. Naturally, we can represent an edge packing
instance (G, w) as a fractional packing instance (H, w). We
have f = 2 and k = ∆; each node v ∈ V is associated with
a subset node s(v) ∈ S, and each edge e ∈ E is associated

with an element u(e) ∈ U . The algorithm A of Section 4
finds a maximal fractional packing in H; hence it is suffi-
cient to design an algorithm that simulates the execution of
A in H, using the broadcast model and the communication
network G. It should be noted that while the elements u ∈ U
are computational entities in H, we do not have any inter-
nal state associated with an edge e ∈ E in G. Nevertheless,
the simulation is possible (without increasing the number of
communication rounds, but at the cost of increasing message
complexity).

For each v ∈ V and i, let h(v, i) be the full history of
all messages that the subset node s(v) has sent during the
communication rounds 1, 2, . . . , i in A; similarly, for each
e ∈ E, let h(e, i) be the full history of the element u(e). We
maintain the following invariant: after the communication
round i, each node v ∈ V knows h(v, i). The base case i = 1
is trivial. For the general i > 1, we use an algorithm in
which each v ∈ V broadcasts h(v, i − 1). Hence for each
edge e = {v, u} ∈ E incident to v, the node v knows both
h(v, i−1) and h(u, i−1), which constitute the full history of
messages received by u(e) before the round i. In particular,
v can simulate u(e) in A for i rounds to determine h(e, i) for
each incident e ∈ E, and then v can simulate s(v) in A for 1
round to determine h(v, i). Eventually, v can determine the
multiset of the values f(s(e)) for incident edges e; in partic-
ular, v knows whether A saturates the subset node s(v).

6. LOWER BOUNDS
In this section, we focus on the unweighted set cover prob-

lem. Let us fix the constants k ≥ 1 and f ≥ 1, and let
p = min{f, k}. We have already seen how to find a p-
approximation of a minimum-size set cover: if f < k, we
can apply the f -approximation algorithm from Section 4,
and if f ≥ k, we can apply the trivial k-approximation algo-
rithm. Neither of the algorithms needs unique identifiers –
port numbering is sufficient – and the running time is inde-
pendent of the number of nodes.

If we assume the port-numbering model, no deterministic
algorithm can achieve a better approximation ratio than p,
regardless of the running time. To see this, consider the
complete bipartite graph Kp,p, and choose the port numbers
in a symmetric manner (see Figure 3 for an example in the
case p = 3). Any deterministic distributed algorithm has to
make the same decision for each subset node as their local
views are identical. Hence the solution computed by the
algorithm has size p, while there is an optimal solution of
size 1.

If we had unique node identifiers, we could use them to
break symmetry. However, if we focus on strictly local al-
gorithms (with running time independent of the number of
nodes), it turns out that we have the same lower bound p
for the best possible approximation factor.

2

2

3

3

2

2

3

1 1

1
2

1
1

1

3

2 33

Figure 3: A symmetric set cover instance, f = k = 3.

C:

u1
H:

u2 v2

u v

v1

Figure 4: A local reduction from the problem of
finding an independent set in a numbered directed
cycle C to the problem of finding a set cover in the
graph H. In this example, p = 3.

In a directed cycle, each node has one incoming edge and
one outgoing edge. A numbered directed n-cycle is a directed
n-cycle in which each node is assigned a unique identifier
from the set {1, 2, . . . , n}. Czygrinow et al. [9] and Lenzen
and Wattenhofer [24] show that a constant-time determinis-
tic algorithm cannot find a large independent set in a num-
bered directed n-cycle; the following lemma is an adaptation
of their results:

Lemma 4 ([9, 24]). Let A be a deterministic distrib-
uted algorithm that finds an independent set in any num-
bered directed cycle in O(1) communication rounds. For any
α > 1 there exists an integer n0 with the following property:
for every n ≥ n0 there is a numbered directed n-cycle C in
which A outputs an independent set with fewer than n/α
nodes.

We use this result and a simple local reduction to establish
the lower bound. To reach a contradiction, let ε be a positive
constant, and assume that there exists a deterministic local
algorithm A′ that computes a (p− ε)-approximation of a
minimum set cover, provided that each subset node and each
element is associated with a unique node identifier. The
running time of A′ must be independent of the number of
nodes in the network; however, the algorithm A′ and its
running time may depend on the value of p.

We show that A′ can be used to find a large independent
set in a numbered directed cycle. Given a numbered directed
n-cycle C = (V,E), with n divisible by p, construct a set
cover instance H = (S ∪ U,A) as follows. For each node
v ∈ V there is a subset node v1 ∈ S and an element v2 ∈ U .
There is an edge {u1, v2} ∈ A iff the unique directed path
from u ∈ V to v ∈ V in C has length at most p − 1. See
Figure 4 for an illustration.

The unique node identifiers in H are inherited from C
(e.g., if the identifier of v ∈ V is i then the identifier of
v1 ∈ S is 2i − 1 and the identifier of v2 ∈ U is 2i). Clearly,
any computation in H can be simulated by a distributed
algorithm in C; the running time increases by a constant
factor O(p).

Now let us simulate the algorithm A′ in H, and let C ⊆ S
be the set cover computed by A′. An optimal set cover
C∗ in H would take every pth subset node from S; hence
|C∗| = n/p. By assumption, |C| ≤ (p− ε)|C∗| = (1− ε/p)n.
This implies that the complement S\C has size at least nε/p.

Let X = {v ∈ V : v1 ∈ S \ C}; again, |X| ≥ nε/p. Let C′
be the subgraph of C induced by the set X. The subgraph
C′ consists of paths (and isolated nodes which we consider
as paths of length 0). Since C is a set cover in H, there
cannot be a path with p or more nodes in C′. Thus there

are at least nε/p2 connected components in the subgraph C′.
Let I consist of the nodes in C′ with indegree 0 (i.e., the first
node of each path). By construction, I is an independent set
for C, with |I| ≥ nε/p2. Choosing α = p2/ε and a sufficiently
large n contradicts Lemma 4.

7. DISCUSSION
Usually, in the study of deterministic distributed algo-

rithms, one takes for granted that each node has a unique
identifier. There are only a few positive results related to
anonymous networks. Mayer et al. [26] study local algo-
rithms for weak colouring in anonymous networks with odd
degrees; however, they have to assume not only a port num-
bering but also an orientation in order to break symmetry.
Angluin [1], Attiya et al. [3], and Yamashita and Kameda [32]
have studied computation in the port-numbering model, but
many of their theorems are impossibility results, and the
positive results focus on computability instead of time com-
plexity. Boldi and Vigna [7] is a rare example of a work that
explicitly considers the broadcast model, which is strictly
weaker than the port-numbering model.

Our work shows that there are non-trivial graph problems
that can be solved very efficiently in the broadcast model.
Indeed, if we consider the approximability of the vertex cover
problem, the broadcast model is surprisingly capable: our al-
gorithm finds a 2-approximation in the broadcast model, and
it is known that a deterministic local algorithm cannot find a
better approximation even if we had unique node identifiers.
Incidentally, finding a better constant factor approximation
has been conjectured to be computationally hard even from
the perspective of centralised algorithms [15].

While challenging to design, deterministic distributed al-
gorithms in the broadcast model have many curious prop-
erties. If a deterministic distributed algorithm A uses the
broadcast model, the output of A (together with the input)
must have the same automorphisms as the graph G (and lo-
cal inputs, if any): in a symmetric graph, the output must
be symmetric. Moreover, we can apply the same reasoning
to any covering graph of G [31, §5]. Consider, e.g., the case
that G is the Frucht graph, which is 3-regular but has only
the trivial automorphism. The universal covering graph of
G is the infinite 3-regular tree T . If we apply A to T , then
each node must produce the same output, as this is the only
solution with the same automorphisms as T . Because A
cannot distinguish between G and T , we conclude that if
we apply A to G, each node must produce the same output.
In particular, if A finds a maximal edge packing, it must
produce the solution y(e) = 1/3 for each edge e. None of
this holds in the port-numbering model, as the port num-
bers may be used to break symmetry – for example, a prior
algorithm [2] never sets y(e) = 1/3 in any graph.

In summary, distributed algorithms that use the broad-
cast model are able to produce highly symmetric solutions
without explicitly identifying the symmetries in the input.
This property may make such algorithms attractive also in
a non-distributed setting.

8. ACKNOWLEDGEMENTS
Thanks to Christos Koufogiannakis, Valentin Polishchuk,

and Joel Rybicki for discussions and comments. This work
was supported in part by the Academy of Finland, Grants
116547 and 132380, by Helsinki Graduate School in Com-

puter Science and Engineering (Hecse), and by the Founda-
tion of Nokia Corporation.

9. REFERENCES
[1] D. Angluin. Local and global properties in networks of

processors. In Proc. 12th Symposium on Theory of
Computing (STOC 1980), pages 82–93. ACM Press,
1980.

[2] M. Åstrand, P. Floréen, V. Polishchuk, J. Rybicki,
J. Suomela, and J. Uitto. A local 2-approximation
algorithm for the vertex cover problem. In Proc. 23rd
Symposium on Distributed Computing (DISC 2009),
volume 5805 of LNCS, pages 191–205. Springer, 2009.

[3] H. Attiya, M. Snir, and M. K. Warmuth. Computing
on an anonymous ring. Journal of the ACM,
35(4):845–875, 1988.

[4] B. Awerbuch and M. Sipser. Dynamic networks are as
fast as static networks. In Proc. 29th Symposium on
Foundations of Computer Science (FOCS 1988), pages
206–219. IEEE, 1988.

[5] B. Awerbuch and G. Varghese. Distributed program
checking: a paradigm for building self-stabilizing
distributed protocols. In Proc. 32nd Symposium on
Foundations of Computer Science (FOCS 1991), pages
258–267. IEEE, 1991.

[6] R. Bar-Yehuda and S. Even. A linear-time
approximation algorithm for the weighted vertex cover
problem. Journal of Algorithms, 2(2):198–203, 1981.

[7] P. Boldi and S. Vigna. An effective characterization of
computability in anonymous networks. In Proc. 15th
Symposium on Distributed Computing (DISC 2001),
volume 2180 of LNCS, pages 33–47. Springer, 2001.

[8] R. Cole and U. Vishkin. Deterministic coin tossing
with applications to optimal parallel list ranking.
Information and Control, 70(1):32–53, 1986.

[9] A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak.
Fast distributed approximations in planar graphs. In
Proc. 22nd Symposium on Distributed Computing
(DISC 2008), volume 5218 of LNCS, pages 78–92.
Springer, 2008.

[10] S. Dolev. Self-Stabilization. The MIT Press,
Cambridge, MA, 2000.

[11] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon.
Parallel symmetry-breaking in sparse graphs. SIAM
Journal on Discrete Mathematics, 1(4):434–446, 1988.

[12] F. Grandoni, J. Könemann, and A. Panconesi.
Distributed weighted vertex cover via maximal
matchings. ACM Transactions on Algorithms,
5(1):1–12, 2008.

[13] M. Hańćkowiak, M. Karoński, and A. Panconesi. On
the distributed complexity of computing maximal
matchings. SIAM Journal on Discrete Mathematics,
15(1):41–57, 2001.

[14] D. S. Hochbaum. Approximation algorithms for the
set covering and vertex cover problems. SIAM Journal
on Computing, 11(3):555–556, 1982.

[15] S. Khot and O. Regev. Vertex cover might be hard to
approximate to within 2− ε. Journal of Computer and
System Sciences, 74(3):335–349, 2008.

[16] S. Khuller, U. Vishkin, and N. Young. A primal-dual

parallel approximation technique applied to weighted
set and vertex covers. Journal of Algorithms,
17(2):280–289, 1994.

[17] C. Koufogiannakis and N. E. Young. Distributed and
parallel algorithms for weighted vertex cover and other
covering problems. In Proc. 28th Symposium on
Principles of Distributed Computing (PODC 2009),
pages 171–179. ACM Press, 2009.

[18] F. Kuhn. The Price of Locality: Exploring the
Complexity of Distributed Coordination Primitives.
PhD thesis, ETH Zürich, 2005.

[19] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In Proc. 23rd Symposium
on Principles of Distributed Computing (PODC 2004),
pages 300–309. ACM Press, 2004.

[20] F. Kuhn, T. Moscibroda, and R. Wattenhofer.
Fault-tolerant clustering in ad hoc and sensor
networks. In Proc. 26th International Conference on
Distributed Computing Systems (ICDCS 2006). IEEE
Computer Society Press, 2006.

[21] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The
price of being near-sighted. In Proc. 17th Symposium
on Discrete Algorithms (SODA 2006), pages 980–989.
ACM Press, 2006.

[22] F. Kuhn and R. Wattenhofer. Constant-time
distributed dominating set approximation. Distributed
Computing, 17(4):303–310, 2005.

[23] C. Lenzen, J. Suomela, and R. Wattenhofer. Local
algorithms: Self-stabilization on speed. In Proc. 11th
Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS 2009), volume 5873 of
LNCS, pages 17–34. Springer, 2009.

[24] C. Lenzen and R. Wattenhofer. Leveraging Linial’s
locality limit. In Proc. 22nd Symposium on Distributed
Computing (DISC 2008), volume 5218 of LNCS, pages
394–407. Springer, 2008.

[25] N. Linial. Locality in distributed graph algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[26] A. Mayer, M. Naor, and L. Stockmeyer. Local
computations on static and dynamic graphs. In Proc.
3rd Israel Symposium on the Theory of Computing and
Systems (ISTCS 1995), pages 268–278. IEEE, 1995.

[27] M. Naor and L. Stockmeyer. What can be computed
locally? SIAM Journal on Computing,
24(6):1259–1277, 1995.

[28] A. Panconesi and R. Rizzi. Some simple distributed
algorithms for sparse networks. Distributed Computing,
14(2):97–100, 2001.

[29] C. H. Papadimitriou and M. Yannakakis. Linear
programming without the matrix. In Proc. 25th
Symposium on Theory of Computing (STOC 1993),
pages 121–129. ACM Press, 1993.

[30] V. Polishchuk and J. Suomela. A simple local
3-approximation algorithm for vertex cover.
Information Processing Letters, 109(12):642–645, 2009.

[31] J. Suomela. Survey of local algorithms, 2010.
Manuscript submitted for publication.

[32] M. Yamashita and T. Kameda. Computing on
anonymous networks: Part I – characterizing the
solvable cases. IEEE Transactions on Parallel and
Distributed Systems, 7(1):69–89, 1996.

http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1109/SFCS.1988.21938
http://dx.doi.org/10.1109/SFCS.1988.21938
http://dx.doi.org/10.1109/SFCS.1988.21938
http://dx.doi.org/10.1109/SFCS.1988.21938
http://dx.doi.org/10.1109/SFCS.1991.185377
http://dx.doi.org/10.1109/SFCS.1991.185377
http://dx.doi.org/10.1109/SFCS.1991.185377
http://dx.doi.org/10.1109/SFCS.1991.185377
http://dx.doi.org/10.1109/SFCS.1991.185377
http://dx.doi.org/10.1016/0196-6774(81)90020-1
http://dx.doi.org/10.1016/0196-6774(81)90020-1
http://dx.doi.org/10.1016/0196-6774(81)90020-1
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1145/1435375.1435381
http://dx.doi.org/10.1145/1435375.1435381
http://dx.doi.org/10.1145/1435375.1435381
http://dx.doi.org/10.1145/1435375.1435381
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1137/S0895480100373121
http://dx.doi.org/10.1137/0211045
http://dx.doi.org/10.1137/0211045
http://dx.doi.org/10.1137/0211045
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1006/jagm.1994.1036
http://dx.doi.org/10.1006/jagm.1994.1036
http://dx.doi.org/10.1006/jagm.1994.1036
http://dx.doi.org/10.1006/jagm.1994.1036
http://dx.doi.org/10.1145/1582716.1582746
http://dx.doi.org/10.1145/1582716.1582746
http://dx.doi.org/10.1145/1582716.1582746
http://dx.doi.org/10.1145/1582716.1582746
http://dx.doi.org/10.1145/1582716.1582746
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1109/ICDCS.2006.40
http://dx.doi.org/10.1109/ICDCS.2006.40
http://dx.doi.org/10.1109/ICDCS.2006.40
http://dx.doi.org/10.1109/ICDCS.2006.40
http://dx.doi.org/10.1109/ICDCS.2006.40
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1007/s00446-004-0112-5
http://dx.doi.org/10.1007/s00446-004-0112-5
http://dx.doi.org/10.1007/s00446-004-0112-5
http://dx.doi.org/10.1007/978-3-642-05118-0_2
http://dx.doi.org/10.1007/978-3-642-05118-0_2
http://dx.doi.org/10.1007/978-3-642-05118-0_2
http://dx.doi.org/10.1007/978-3-642-05118-0_2
http://dx.doi.org/10.1007/978-3-642-05118-0_2
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1007/PL00008932
http://dx.doi.org/10.1145/167088.167127
http://dx.doi.org/10.1145/167088.167127
http://dx.doi.org/10.1145/167088.167127
http://dx.doi.org/10.1145/167088.167127
http://dx.doi.org/10.1016/j.ipl.2009.02.017
http://dx.doi.org/10.1016/j.ipl.2009.02.017
http://dx.doi.org/10.1016/j.ipl.2009.02.017
http://www.iki.fi/jukka.suomela/local-survey
http://www.iki.fi/jukka.suomela/local-survey
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599

	Introduction
	Edge Packings and Vertex Covers
	Fractional Packings and Set Covers
	Model of Distributed Computing
	Notation
	Contributions

	Related Work
	Vertex Cover in the Port-Numbering Model
	Overview
	Phase I
	Phase II

	Set Cover in the Broadcast Model
	Preliminaries
	Algorithm
	Saturation Phases
	Colouring Phase
	Weak Colour Reduction

	Vertex Cover in the Broadcast Model
	Lower Bounds
	Discussion
	Acknowledgements
	References

