-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Helsingin yliopiston digitaalinen arkisto

Almost Stable Matchings by
Truncating the Gale-Shapley Algorithm

Patrik Floréen, Petteri Kaski,
Valentin Polishchuk, and Jukka Suomela*

Abstract

We show that the ratio of matched individuals to blocking pairs
grows linearly with the number of propose—accept rounds executed by
the Gale—Shapley algorithm for the stable marriage problem. Conse-
quently, the participants can arrive at an almost stable matching even
without full information about the problem instance; for each partici-
pant, knowing only its local neighbourhood is enough. In distributed-
systems parlance, this means that if each person has only a constant
number of acceptable partners, an almost stable matching emerges af-
ter a constant number of synchronous communication rounds.

We apply our results to give a distributed (2 + €)-approximation
algorithm for maximum-weight matching in bicoloured graphs and a
centralised randomised constant-time approximation scheme for esti-
mating the size of a stable matching.

1 Introduction

The social networking boom brings up computational challenges unforeseen
in the past. In a modern large-scale network, gathering full information
about the whole network in one place is practically impossible. This moti-
vates design and analysis of local algorithms [22,26,31] in which the output
of a node depends only on the input within a constant number of edges
(hops) from the node.

In this paper we study a local version of the classical Gale-Shapley algo-
rithm [9] for the stable marriage problem. We show that early termination
of the algorithm leads to a matching with relatively few unstable edges in
the case when the preference list of each participant has bounded length.

*Helsinki Institute for Information Technology HIIT, University of Helsinki. Ad-
dress: P.O. Box 68, FI-00014 University of Helsinki, Finland. FEmail addresses: patrik.
floreen@cs.helsinki.fi, petteri.kaski@cs.helsinki.fi, valentin.polishchuk@cs.helsinki.fi, jukka.
suomela@cs.helsinki.fi.

https://core.ac.uk/display/14921851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.1 Matchings

We follow the convention (see, e.g., Fleiner [8]) that an instance of the
stable marriage problem is specified by a simple undirected bipartite graph
§ = (RU B, E); the graph may be disconnected but there are no isolated
nodes. Call the nodes in R red, the nodes in B blue, and the graph G a
bicoloured graph. Each node v € RU B has a linear order on the adjacent
nodes. The linear order constitutes the matching preference for v; if a node
u is not adjacent to v, then neither u is an acceptable partner for v nor v is
acceptable for u.

Denote by A the maximum degree of a node of §. That is, A is the
maximum number of acceptable partners for one participant. In a social
network, the bound on the degree of a node v may not necessarily be due to v
being particularly picky; the bound may just reflect the fact that the number
of participants, information about whom is available (or comprehensible, or
relevant) to v, is limited. Throughout this work we assume that A is a
constant.

A set of edges M C FE is a matching if every node is incident to at most
one edge in M. Two nodes joined by an edge in M are matched in M; a node
not incident to an edge in M is unmatched in M. An edge {u,v} € E\ M is
unstable relative to M if both (i) u is unmatched or prefers v over its current
match in M; and (ii) v is unmatched or prefers u over its current match in
M. The matching M is stable if there are no unstable edges.

Let € > 0 be some constant. This work is centred on the following notion
of “almost stability”; see Section 6 for background and motivation.

Definition 1. A matching M is e-stable if the number of unstable edges is
at most €| M]|.

A matching (stable or not) is mazimal if it is not a subset of a larger
matching; it is mazimum if it has the maximum size among all the matchings.
In an edge-weighted graph, a mazimum-weight matching is the one that
has the maximum weight among all the matchings. A greedy matching is
a maximal matching obtained by adding the edges one by one, in order
of decreasing weight. It is well-known that the greedy matching is a 2-
approximation to the maximum-weight one [3].

1.2 Model of Distributed Computing

We view § as the communication graph of a distributed system: if {u,v} € FE,
then the node u and the node v can exchange messages.

Let T be a constant that determines the trade-off between the stability
and the running time. Initially, each node v € RU B knows the following in-
formation: its colour (i.e., whether v € R or v € B), its degree d(v), and the
constant 7. The node v has d(v) ports through which it can communicate
with its neighbours; the ports are numbered according to v’s preferences.

We assume synchronous communication. On each time step, every node
can (i) receive messages from its neighbours, (ii) perform deterministic lo-
cal computations, and (iii) send a message to each of its neighbours. The
algorithm runs for 7" synchronous time steps, after which each node needs
to produce the output: which of the neighbours, if any, is its partner in the
matching. Naturally we require that the output is consistent: if v announces
that v is its partner, then v must announce that u is its partner.

To be consistent with the model traditionally used in the study of local
algorithms [26], we allow arbitrarily large messages and unbounded local
computation. However, our algorithms do not need to exploit either of
these assumptions: the messages are very small (few bits per edge on each
synchronous time step) and local computations are simple.

1.3 Statement of Results

Our main contribution lies in an analysis of the “transient phase” of the
Gale—Shapley algorithm for the stable marriage problem. We truncate the
algorithm to a specified number of proposal rounds and investigate the re-
sulting matching for stability. We find that a constant number of rounds
suffice to obtain a constant ratio of unstable edges to matching edges. We
obtain the following result.

Theorem 1. There exists a deterministic distributed algorithm that finds
an e-stable matching in a bicoloured graph in time T < 4 + 2A2 /e.

We also consider the case where G is an edge-weighted graph, and the
preferences are determined by the edge weights: each node prefers its inci-
dent edges in order of their weight, with the heaviest edge being the most
preferred. If all weights are distinct, the unique stable matching in G is the
greedy one, and its weight is at least 1/2 of that of the maximum-weight
matching. In general, an almost stable matching can be a poor approxima-
tion to the maximum-weight one; say, a super-heavy edge may be missing
from the almost stable matching. Fortunately, the particular almost sta-
ble matching from Theorem 1 is much better in this sense: our algorithm
returns an almost stable matching that is almost as large and heavy as a
stable matching.

Theorem 2. There exists a deterministic distributed algorithm that finds
a (2 + €)-approzimation for maximum-weight matching in bicoloured graphs
in time T <44 2A/e.

It is well-known that every stable matching in § has the same size [10,
Section 1.4.2]; denote the size by |M|. Given access to G via a preference
oracle (queried with a node, the oracle replies with the colour of the node and
the adjacent nodes listed in order of preference), the algorithm in Theorem 1

enables estimation of the size of a stable matching using a constant number
of queries to the oracle. We analyse the non-degenerate case A > 3.

Theorem 3. For any 0 < § < 1/2, 0 < e <1, and A > 3, there exists a
randomised algorithm that, given access to a preference oracle for G, makes
at most 25000 2(A — 1)3+48/¢1n 6= queries to the oracle and outputs with
probability at least 1 — & an estimate 1 such that | — |M|| < e[M].

Here it should be stressed that the algorithm in Theorem 3 estimates
the size of a stable matching, not just an e-stable matching.

1.4 Overview

The rest of the paper is structured as follows. Section 2 reviews related work.
Sections 3 and 4 present and analyse the distributed, truncated version of the
Gale—Shapley algorithm. Section 5 applies this algorithm to prove Theorems
1-3. In Section 6 we present some concluding remarks that in particular
relate stable and almost stable matchings in a distributed setting.

2 Related Work

The stable marriage problem remains a subject of active research. The book
by Gusfield and Irving [10] is a comprehensive survey on the problem; see
the MATCH-UP workshop [11] for the latest developments.

2.1 Almost Stable Matching

Abraham et al. [1] study almost stable matchings in the stable roommates
problem. The recent work by Bir6 et al. [4] is particularly close to ours:
they, too, consider the stable marriage problem with incomplete preference
lists, and aim at finding a matching with few unstable edges. However, in
terms of computational complexity, their work goes in the opposite direction.
Their task is to find a mazimum matching that minimises the number of
unstable edges. It turns out that this makes the problem computationally
much more difficult: the problem is NP-hard, unlike the classical stable
marriage problem. In contrast, we do not require that the matching is a
maximum matching, which makes the problem computationally easter: the
problem admits a constant-time distributed algorithm, unlike the classical
stable marriage problem.

2.2 Distributed Stable Matching

Everyone witnesses evolution of matchings in real-world and virtual-world
social networks; in its simplest form, the matchings attempt to attain stabil-
ity by switching along unstable edges. In a seminal work, Knuth [19] showed

that such a switching may go in cycles, never resulting in a stable matching.
Roth and Vande Vate [30] showed that switching randomly almost surely
leads to stability.

Note that switching partners along unstable edges can be done in a dis-
tributed manner. The Gale-Shapley algorithm is also parallel by its nature:
the proposals/rejects can be undertaken by all men/women simultaneously
during synchronised rounds (albeit it can happen that only one man is free
at a round [10, Section A.3], [33]). Lower bounds on the running time of the
algorithm [10, Section 1.5] show that a linear number of rounds is required
to attain stability. But can a nearly stable matching be obtained with fewer
rounds?

Several works have addressed the last question with experiments. Quinn
[29] observes experimentally that a matching with only a fraction of unstable
edges emerges long before the Gale-Shapley algorithm converges. Lu and
Zheng [23] propose a parallel algorithm that outperforms the Gale-Shapley
algorithm in practice. Theorem 1 gives theoretical support to the findings in
Quinn [29]. Theorem 1 also addresses the concern expressed in the conclu-
sions of Lu and Zheng [23] where it is claimed that “Most of existing parallel
stable matching algorithms cannot guarantee a matching with a small num-
ber of unstable pairs within a given time interval.” Theorem 1 suggests
that if the number of acceptable partners for each participant is bounded,
the Gale—Shapley algorithm guarantees a small relative number of unstable
edges.

From a theory perspective, apparently only a few papers address de-
centralised implementations of the Gale-Shapley algorithm and/or stability
after early termination of a stable matching algorithm. In a recent paper [6]
it is claimed that “little theory exists concerning instability.” Khuller et
al. [17] give bounds on the performance of a simple online algorithm. Feder
et al. [7] show that a stable matching can be found on a polynomial number
of processors in sublinear time; their algorithm is not local. Other work on
parallel stable matching include Tseng and Lee [33], Tseng [32], and Hull [15].
Eriksson and Héggstrom [6] prove that a simple heuristic works well for ran-
dom inputs. Our Theorem 1 shows that the Gale—Shapley algorithm works
well for an arbitrary input.

Kipnis and Patt-Shamir [18] present lower bounds on the distributed
complexity of computing a stable matching, and they also consider the case
of almost stable matchings (they use the terminology “p-approximation for
distributed stable matchings” to refer to an almost stable matching). How-
ever, their work uses a model of distributed computing in which the size of
a message is bounded.

2.3 Local Algorithms and Matchings

The running time 7" of the algorithms presented in this work only depends on
the degree bound A and the desired stability or approximation guarantee e.
For a constant A and ¢, these are constant-time algorithms; the running
time is independent of the number of nodes in the network, the diameter
of the network, or other global properties. Such constant-time distributed
algorithms are known as local algorithms [22,26, 31].

There is a range of negative results related to local algorithms for maxi-
mal matching [22] and approximate maximum matching [5,20,21,25]. Even
if each node is assigned a unique identifier and the network topology is an
n-cycle, it is not possible to break the symmetry in the network and find a
constant-factor approximation for maximum matching. Without any auxil-
iary information beyond unique node identifiers, positive results are known
only in rare special cases, most notably for graphs where each node has an
odd degree [24,26].

Hence some auxiliary information is needed. For example, in problems
related to stable marriage, it is natural to assume that every participant
knows his/her gender. This assumption has not been exploited much in
prior work on distributed, deterministic constant-time algorithms. We are
only aware of Hanc¢kowiak et al. [12], which shows that there is a constant-
time algorithm for maximal matching in bicoloured bounded-degree graphs.
Similarly to our algorithm, their algorithm does not need unique node iden-
tifiers; port numbering [2] is sufficient.

Other work on constant-time distributed algorithms for matching usually
assumes either randomness [14,20,21,27,34] or geometric information [13,35].
We refer to the survey [31] for further information on local algorithms.

2.4 Centralised Constant-Time Algorithms and Matchings

Our centralised constant-time approximation algorithm in Theorem 3 is
based on the ideas of Parnas and Ron [28] and Nguyen and Onak [27].
Their work presents constant-time approximation algorithms for estimat-
ing the size of a maximal matching, maximum-cardinality matching, and
maximum-weight matching. Our work complements this line of research by
presenting an algorithm for estimating the size of a stable matching.

3 Algorithm

We work with the following distributed variant of the Gale—Shapley algo-
rithm. Each blue node b € B maintains the variable p(b) which is the match
of b in the current matching or L (b is unmatched). Each red node r € R
maintains the following variables: C(r) is the list of candidates for matching;
¢(r) is the candidate from whom r is waiting for a response or L (r has no

current candidate); and p(r) is the match of r in the current matching or L
(r is unmatched).

The algorithm executes in rounds. Each round consists of two turns, a
blue turn followed by a red turn. Each node v € RU B is active during turns
of its colour.

Blue turn. FEach blue node b € B completes the following read—compute—
write cycle. Initially, p(b) = L.

1. Receive all incoming messages; let P be the subset of neighbours that
sent the message ‘propose’. If P is empty, do nothing during this turn.

2. If p(b) # L, then set Q@ «— P U {p(b)}; otherwise set @ « P.
3. Let ¢ be the node in () most preferred by b.

4. If g # p(b):

(a) If p(b) # L then send the message ‘break’ to p(b).
(b) Send the message ‘accept’ to q.

(c) Set p(b) — q.
5. For each r € P\ {q}:

(a) Send the message ‘reject’ to r.

Red turn. Each red node r € R completes the following read—compute—
write cycle. Initially, C'(r) consists of all adjacent blue nodes, in order of
decreasing preference, most preferred first; ¢(r) = L; p(r) = L.

1. If e(r) # L
(
(

a) Receive a message m from c(r).

(c) If m= I‘Q]GCt then remove ¢(r) from C(r).
(d) e(r)
2. If p(r) # L:

(a
(b

3. If p(r) = L and C(r) is not empty:

)

b) If m = ‘accept’ then p(r) « c(r).
)
)

) Receive a message m from p(r), if any.
) If m = ‘break’ then remove p(r) from C(r), and set p(r) «— L.

(a) Let ¢(r) be the first element of C(r).
(b) Send the message ‘propose’ to ¢(r).

4 Analysis

We adopt the convention of using a subscript ¢ = 1,2, ... to denote the state
of the algorithm at the end of round . For example, p;(r) denotes the value
of the variable p(r) in the local state of r at the end of round .

At the end of round i = 1,2, ..., the local state variables p;(-) define a
matching

M; = {{r,pi(r)} : 7 € R, pi(r) # L}
= {{b,pi(b)} : b€ B, pi(b) # L} C E.

4.1 Lost Edges and Convergence to Stability

We start from a restatement, in our terms, of the fact that as the Gale—
Shapley algorithm progresses, women only improve their match and men
only get worse.

Lemma 1. If an edge {r,b} € E\ M; with r € R and b € B is unstable in
M; then b is present in Ci(r) and r is unmatched at the end of round i.

Proof. If b is not in C;(r), then either b rejected r or broke up with r earlier,
which means that b prefers its current match to r. If b is in C;(r) and r is
matched, then r has not proposed to b yet, which means that r prefers its
current match to b. O

During each round, each red node r € R removes at most one blue node
b € B from C(r). We say that such an edge {r,b} is a lost edge because
it can no longer occur in the matching. We write L; C F for the set of all
edges lost by the end of round i. Note that L; = () because only ‘propose’
messages are sent during the first round.

Because F is a finite set and L;—; C L; C F, there exists a z € {2,3,...}
such that L, = L,_1. Since received ‘reject’ and ‘break’ messages increase
the number of lost edges, it follows that no such messages were received
during round z. In particular, any unmatched r € R at the end of round
z must have C,_i(r) empty (and hence C,(r) empty), because otherwise
it would have received a ‘reject’ or ‘break’ during round z. It follows by
Lemma 1 that M, is a stable matching. Let us denote this stable matching
by My in what follows.

4.2 Weight and Potential

Associate with each edge e € E a positive integer weight w(e) such that
the weights respect the preferences of each node; that is, whenever a node v
prefers z over y, it holds that w({v,z}) > w({v,y}). This is always possible,
e.g., by choosing w = 1. In fact, to prove Theorem 1, taking w = 1 is

sufficient, while the proof (and actually the statement) of Theorem 2 deals
with an arbitrary w.

Associate with each blue node b € B the weight w;(b) = w({b,p;(b)}) if b
is matched; otherwise w;(b) = 0. The total blue weight, w;(B) = >, g wi(b),
is equal to the total weight of the matching M;.

Associate with each red node r € R a potential f;(r) as follows. If r is
matched or Cj(r) is empty, set fi(r) = 0. Otherwise, set f;(r) = w({r,b})
where b is the first element of C;(r).

Intuitively, the potential f;(r) is an upper bound for the extra weight
that r could have if we ran the algorithm further than ¢ rounds. In a stable
matching, f;(r) = 0 for all » € R, but we do not necessarily achieve this
by running the algorithm for a constant number of rounds. However, we
can derive an upper bound for the total potential f;(R) = >, cp fi(r) by
observing that lost edges are heavier than those along which proposals (will)

go.
Lemma 2. For alli=2,3,... it holds that f;(R) < w(L;) —w(L;—1).

Proof. Each » € R that has a positive potential at the end of round i > 2
has either received a ‘reject’ or ‘break’ during the round ¢; in both cases r
has removed a unique blue node b from C(r). The weight of the lost edge
{r,b} is at least the potential f;(r) because C(r) is ordered by decreasing
preference. The claim follows by taking the sum over all red nodes and edges
lost during round <. O

Lemma 3. For alli=2,3,... it holds that f;(R) < fi—1(R).

Proof. Consider the red turn at round ¢. The potential of a red node r € R
changes only if it receives a message. First, if r receives a ‘reject’ message
during round 7, the potential of r at end of round 7 may change but it does not
increase, that is, fi(r) < fi_1(r). Second, if r receives a ‘break’ message from
a blue node b, there is a unique red node g that receives an ‘accept’ message
from b. In this case the potential of ¢ decreases from f;_1(q) = w({g,b})
to fi(q) = 0 while the potential of r increases from f;_1(r) = 0 to fi(r) <
w{r,b}) < w({g,b}) = fi—1(g). Third, if r receives an isolated ‘accept’
message (without an associated ‘break’ message), fi(r) =0 < f;_i(r). The
claim follows by taking the sum over all ‘reject’ messages, all ‘break’—‘accept’
matches, and all isolated ‘accept’ messages during round <. O

Lemma 4. For alli=2,3,... it holds that w(L;) > (i — 1) fi(R).

Proof. By Lemma 2 and Lemma 3, we have
w(Li) = w(Li) = w(Ly) =Y _(w(L;) = w(Lj-1))
j=2
> > fi(R) = (i—1)fi(R). -
j=2
Lemma 5. For alli=2,3,... it holds that w(L;) < (A — 1)w;(B)

Proof. A blue node b € B can lose an incident edge {r,b} during round
j=2,3,...,7 only if b is matched at the end of round j with a node that b
prefers to r. Put otherwise, if {r,b} € L; \ Lj_1, then w({r,b}) < w;(b) <
w;(b). The last inequality follows because each b € B, once matched, only
changes to a more preferred match. Furthermore, a blue node can lose at
most A — 1 incident edges. O

Lemma 6. Forally > 0 andi > 1+ (A—1)/v it holds that f;(R) < yw;(B).
Proof. By Lemma 4 and Lemma 5. O

5 Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. For the purpose of analysis, set w(e) = 1 for all
e € E. Then |M;| = w;i(B), so Lemma 6 and ¢ > 1+ (A — 1)/~ imply
fi(R) < ~|M;|. Denote by u; the number of unstable edges in E \ M.
Because f;(R) counts the number of unmatched red nodes with a nonempty
C;(r), it follows from Lemma 1 that u; < Af;(R). Thus, v = ¢/A gives
u; < €|M;| fori > 14+ A(A—-1)/e.

We can choose an integer i < 2+ A2/e. We can compute M; in i rounds
or T = 2i < 4+ 2A? /e synchronous communication steps.]

Proof of Theorem 2. Let a positive integer weight w(e) for each edge
e € E be given as input. Re-assign the preferences of each node v so that
whenever w({v,z}) > w({v,y}) for two edges {v,z},{v,y} € E, the node
v prefers x to y. Execute the algorithm in Section 3 for ¢ rounds to obtain
the matching M;. Let M* C E be a maximum-weight matching.

For each red node r € R, let g(r) C B consist of the matches of r in M;
and in M*, if any. In particular, |g(r)| < 2 for all 7 € R, and [g~}(b)| < 2
for all b € B.

Let {r,b} € M* with r € R and b € B. Exactly one of the following
holds at the end of round ¢:

1. The node r has not received a response from b. If r is matched with
by # b, r prefers by over b and w({r,b}) < w({r,be}) = w;(bs). Other-
wise r is unmatched, b is in C;(r), and w({r,b}) < fi(r).

10

2. The node r has received a response from b. Then b is matched with r or
with some other red node that b prefers over r. Thus w({r,b}) < w;(b).

For every {r,b} € M* thus
w({r,b}) < filr) + Y wile)
ceg(r)
and hence

wM) =Y w{rb})

{rbteM*

< L)+ D wile)

reR reRceg(r)

<> Filr)+ > 2wi(b)

reR beB
= fz(R) =+ Qwi(B).

From Lemma 6 we conclude that
w(M*) < (24 e)w;(B) = (2 + e)w(M;)

whenever ¢ > 1+ (A —1)/e.
We can choose an integer i < 2+ A/e. We can compute M; in ¢ rounds
or T'= 2i < 44 2A /e synchronous communication steps. O

Proof of Theorem 3. Let us first recall a convenient Chernoff-type upper
bound for the tail probability of a binomial random variable Z ~ Bin(k, p),
where k is a positive integer and 0 < p < 1. For 0 < 8 < 1, we have

B2pk
).

Pr(|Z — pk| > Bpk) < 2exp(M)
(See Janson et al. [16, Corollary 2.3] for a proof.)

Let 0 < 0 <1/2,0 < e <1, and A > 3 be given. For the purpose
of analysis, set w(e) = 1 for all e € E. We estimate the size of the stable
matching My, in G using a randomised algorithm that queries the preference
oracle for §. We assume that the number of nodes, n, is given as input to
the algorithm.

Let us first relate |M;| to |Ms|. We have |M;| < |[My| because every
blue node, once matched, remains matched. Furthermore, |My| < |M;| +
fj(R) because every red node r € R with empty C;(r) will be unmatched in

M. Let A A

€ -2 -1
= =14+ —"-. 2
8A’ - € + 4A~ 2)

11

Note that v < 1. By w;(B) = |M;| and Lemma 6 we have
€
|Mj| < [Moo| < (1+4A7)[M| < [My[+ 5 - | Mo, (3)

It thus suffices to have an estimate for |M;|.
Because § has no isolated nodes, |R| < A|B| and |B| < A|R|. Because
a stable matching is maximal and there are no isolated nodes,

AlMw| > |R], (4)
AlMy| > |B|. (5)

By (3) we have |My| < 2|M;| and thus

R

— < < .
Bl < gy < ©)
Since n = |R| + | B|, we have
n
< <n.
o <IRI<n)
et 6(A+1 6
NOZ(;_)IH(S, N > Np. (8)
y

We use the following procedure to estimate |M;|. First, select N nodes
uniformly at random and query the oracle for their colour. Denote by X
the number of red nodes among the N nodes. Then, select N red nodes
uniformly at random; that is, select 2(A + 1) N nodes uniformly at random
and select the first N red nodes among those (if not enough red nodes
occur, output ‘failure’ and stop); denote by Z the number of red nodes
obtained (that is, failure occurs if and only if Z < N). For each red node,
we determine whether it is matched in Mj; denote by Y the number of
selected red nodes that are matched in M;. Output

2 b
=)~

and stop.
To analyse the procedure, let us first derive upper bounds for the prob-
abilities of certain “bad” events.
Let us first derive an upper bound for the probability of failure. Let
|R| 1

12

By (7) we have § < 1/2. Furthermore, by (7) we have that Z < N implies
|Z — pk| > N = ppk. Thus, from (1), (7), and (8) it follows that

Pr(Z < N) < 2exp<—623pk>

coenf N)09
=SSP\ Tsa Ty) S

Let us now derive an upper bound for the probability that the random
variable X/N significantly deviates from its expectation |R|/n. Let

R
p:u, k=N, and [=17.

n

Observe that 5 <1 by (2). By (1), (7), and (8), we have

Pr(% —p‘ > ﬂp> = Pr(|X — pk| > Gpk)

2
SQexp(—ﬂ pk)
3
(ﬁ2|R|N>
=2exp| ————
3n

32N B)
<20 gsim) <5

Finally, let us now derive a similar bound for the probability that the
random variable Y/N significantly deviates from its expectation |M;|/|R].
Let

| Mj|
p=)
|R|
Observe that 5 <1 by (2). By (1), (6), and (8), we have

k=N, and [=17.

Pr(% —p’ > 619) = Pr(|Y — pk| > Bpk)

2
SZexp(—ﬂpk>

3

2|, |N
=2e0 (-

B°N)
< —_] < =,
—QGXP< 6(A+1)) =3

Next we show that, with probability at least 1 — §, the estimate m
approximates | M| with the claimed accuracy. Observe first that |ac—bd| <

13

alc—d|+d|a—10| for a,b,c,d > 0. Thus, with probability at least 1— ¢, both
no failure occurs and

A X Y Rl [Mj
Ml =nl=. — .
= Ml =0l - IR|
<n<X. Y M| 1Myl X_VR|>
="\N' N R[| TRl [N n ©)
TN Rl R n

€
< 2yn = 29(|R| +|B]) < 447 |Moo| = 3 - [Mo

where the last inequality follows by (4) and (5). Thus, with probability at
least 1 — 9, we have

i — [M|

IN

[= M5] + |V = | Mo
5 Mool £ 5 - [Mac| = | Mo

IN

where the last inequality follows by (3) and (9).

It remains to derive an upper bound for the number of oracle queries
we make to compute the estimate. First, we make N queries to determine
X. Second, we make 2(A + 1)N queries to obtain N red nodes (or declare
failure). Third, for each of the N red nodes, we execute the algorithm in
Section 3 for j rounds to determine whether the node is matched in M;.
Each round of the algorithm propagates information (messages) for at most
two hops in G, which implies that we can decide whether any given r € R
is matched in M if we know the preferences of all nodes within distance 2j
from 7 in G. There are at most

2j—1 A
T+AY (A-1)=14+——"—((A-1)% -1) <3(A-1)¥
+;<) =1+ 51— (A-D¥ —1) <3(A-1)
such nodes. Because A > 3 and § < 1/2, we have

No = 384A%(A+1)e ?(In6+Ind 1)
3\’ 4 5 o (InG6)
< = L. — -
< 384 <2> 5 (A —1)%€ (1n2+1> Ino
< 6195(A —1)%¢?Ins L.

Therefore we can select integers j and N such that j < 2Ae™! and N <
6250(A — 1)3¢721n 1. In total we make at most

N+2(A+1)N+3(A-1)¥N<4A-1)%N
< 250006 2(A — 1)3H48/e I 671

queries. This completes the proof.]

14

6 Concluding Remarks

Robustness and Parallelism. We mention three further interpretations
of Theorem 1, each of which is an immediate consequences of the fact that
in T synchronous communication steps, information can only be propagated
from distance 7' in the network.

e Robustness and dynamic graphs. The e-stable matching M from The-
orem 1 is robust in a dynamic network. A change in the network only
affects M in the radius-T neighbourhood around the point of change.

e Awailable information. Information within the radius-7 neighbour-
hood of an edge e is sufficient to determine whether e is part of the
globally consistent e-stable matching M.

e Parallelism and circuit complexity. For any graph, we can construct
a bounded-fan-in Boolean circuit that maps the matching preferences
to an e-stable matching. The depth of the circuit only depends on the
constants A and ¢, not on the size of the graph.

Almost Stable vs. Stable. While an almost stable matching is robust
to change in the preferences, this is not the case for a stable matching.
For example, consider the following graph where the numbered edge ends
indicate preference rankings (the most preferred match has rank 1).

1 182 182 1R2 1R2 19
1¥2 12 1X%2 1W2 1¥W2

Now transpose the preferences shown in boldface to obtain a graph whose
unique stable matching is edge-disjoint from the unique stable matching in

the original graph.
@]

Thus, a single transposition in preferences can force every match to break up.

This example shows that every node must have essentially complete in-
formation about the network to arrive at a stable matching. In particular,
if each node initially knows only its neighbours and its own preferences, the
number of communication steps required between neighbours is linear in the
diameter of the network.

15

Definition of Almost Stable. Our results are somewhat oblivious to the
exact definition of an “almost stable” matching. The number of unstable
edges (blocking pairs) appears to be generally accepted as a basic measure
of instability [1,4,6,17], but one could equally well consider other measures.
For example, one can consider the number of nodes that are endpoints of
unstable edges.

Naturally we must measure stability in relation to some other quantity;
an absolute guarantee of stability cannot be achieved in constant time. We
have chosen to measure the number of unstable edges relative to |M]|, as
this gives us the strongest results when compared with other quantities such
as |R|, |B|, |[RUB|, |E|, and |R||B|, each of which is at least as large as
|M|. Eriksson and Haggstrom [6] provide arguments in favour of comparing
unstable edges to |E)|.

Marriages vs. Roommates. An immediate question is whether our re-
sults apply to the stable roommates problem — the non-bipartite version of
the stable marriage problem. Unfortunately, a non-bipartite graph need not
have an e-stable matching for € < 1: consider a triangle with “rotational-
symmetric” preferences — there is one unstable edge to every matching edge.

2 1
1 2

Bicoloured vs. Bipartite. A graph is 2-colourable if and only if it is
bipartite. Given a global view of a bipartite graph, it is trivial to 2-colour
the graph. In the context of distributed algorithms this relationship is more
subtle, however. Linial [22] shows that there is no constant-time algorithm
for finding a maximal matching in a cycle with 2n with vertices. Czygrinow
et al. [5] show that finding a constant-factor approximation to maximum-
cardinality matching with a deterministic constant-time algorithm is not
possible either. However, these negative results heavily rely on the fact that
the nodes in the bipartite graph do not know their colours in a 2-colouring.
Theorem 2 shows that knowledge of the colour is not only necessary but
also sufficient to find a constant-factor approximation of maximum-weight
matching with a deterministic distributed constant-time algorithm.

A Lower Bound on Approximating Maximum-Weight Matching.
The approximation factor of 2 + € in Theorem 2 is almost the best possible
for any algorithm (distributed or centralised) that has access only to the
relative order of the weights, and not their numerical values. To see that no
algorithm can have the approximation factor 2 — € for any ¢ > 0, consider
the following graph with the weight o > 1.

16

«
1 1

If @ > 1, an algorithm must include the edge with weight « into the output
(otherwise the algorithm has no approximation guarantee at all). But then
the algorithm, having access only to the relative order of the weights, must
include this edge also when 1 < a < 2/(2 — €), which contradicts with the
approximation guarantee 2 — e.

Acknowledgements

This work was supported in part by the Academy of Finland, Grants 116547,
117499, and 118653 (ALGODAN), by Helsinki Graduate School in Computer
Science and Engineering (Hecse), and by the Foundation of Nokia Corpora-
tion.

We acknowledge email exchange with the members of the Algorithms
and Complexity Research at Glasgow group, and thank the organisers of
ALGO 2008 for the creative atmosphere at the conference. We thank the
anonymous reviewers for their useful comments.

References

[1] David J. Abraham, Péter Bir6, and David F. Manlove. “Almost stable” match-
ings in the roommates problem. In Proc. 8rd Workshop on Approzimation and
Online Algorithms (WAOA, Palma de Mallorca, Spain, October 2005), volume
3879 of Lecture Notes in Computer Science, pages 1-14. Springer, Berlin, Ger-
many, 2006.

[2] Dana Angluin. Local and global properties in networks of processors. In Proc.
12th Annual ACM Symposium on Theory of Computing (STOC, Los Angeles,
CA, USA, April 1980), pages 82-93. ACM Press, New York, NY, USA, 1980.

[3] David Avis. A survey of heuristics for the weighted matching problem. Net-
works, 13(4):475-493, 1983.

[4] Péter Bird, David F. Manlove, and Shubham Mittal. Size versus stability in
the marriage problem. In Proc. 6th Workshop on Approximation and Online
Algorithms (WAOA, Karlsruhe, Germany, September 2008), volume 5426 of
Lecture Notes in Computer Science, pages 15-28. Springer, Berlin, Germany,
20009.

[5] Andrzej Czygrinow, Michal Hanékowiak, and Wojciech Wawrzyniak. Fast dis-
tributed approximations in planar graphs. In Proc. 22nd International Sym-
posium on Distributed Computing (DISC, Arcachon, France, September 2008),
volume 5218 of Lecture Notes in Computer Science, pages 78-92. Springer,
Berlin, Germany, 2008.

17

http://dx.doi.org/10.1007/11671411_1
http://dx.doi.org/10.1007/11671411_1
http://dx.doi.org/10.1007/11671411_1
http://dx.doi.org/10.1007/11671411_1
http://dx.doi.org/10.1007/11671411_1
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1002/net.3230130404
http://dx.doi.org/10.1002/net.3230130404
http://dx.doi.org/10.1007/978-3-540-93980-1_2
http://dx.doi.org/10.1007/978-3-540-93980-1_2
http://dx.doi.org/10.1007/978-3-540-93980-1_2
http://dx.doi.org/10.1007/978-3-540-93980-1_2
http://dx.doi.org/10.1007/978-3-540-93980-1_2
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6

(6]

Kimmo Eriksson and Olle Haggstrom. Instability of matchings in decentralized
markets with various preference structures. International Journal of Game
Theory, 36(3-4):409-420, 2008.

Toma&s Feder, Nimrod Megiddo, and Serge A. Plotkin. A sublinear parallel
algorithm for stable matching. Theoretical Computer Science, 233(1-2):297—
308, 2000.

Tamds Fleiner. A fixed-point approach to stable matchings and some applica-
tions. Mathematics of Operations Research, 28(1):103-126, 2003.

David Gale and Lloyd S. Shapley. College admissions and the stability of
marriage. The American Mathematical Monthly, 69(1):9-15, 1962.

Dan Gusfield and Robert W. Irving. The Stable Marriage Problem: Structure
and Algorithms. The MIT Press, Cambridge, MA, USA, 1989.

Magnts M. Halldérsson, Robert W. Irving, Kazuo Iwama, and David F.
Manlove, editors. MATCH-UP: Matching Under Preferences — Algorithms
and Complexity. Satellite workshop of ICALP 2008, July 2008.

Michat Hanékowiak, Michat Karonski, and Alessandro Panconesi. On the dis-
tributed complexity of computing maximal matchings. In Proc. 9th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA, San Francisco, CA,
USA, January 1998), pages 219-225. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 1998.

Marja Hassinen, Joel Kaasinen, Evangelos Kranakis, Valentin Polishchuk,
Jukka Suomela, and Andreas Wiese. Analysing local algorithms in location-
aware quasi unit-disk graphs, 2009. Manuscript submitted for publication.

Jaap-Henk Hoepman, Shay Kutten, and Zvi Lotker. Efficient distributed
weighted matchings on trees. In Proc. 13th International Colloquium on Struc-
tural Information and Communication Complexity (SIROCCO, Chester, UK,
July 2006), volume 4056 of Lecture Notes in Computer Science, pages 115-129.
Springer, Berlin, Germany, 2006.

M. Elizabeth C. Hull. A parallel view of stable marriages. Information Pro-
cessing Letters, 18(2):63-66, 1984.

Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random Garphs. John
Wiley & Sons, New York, NY, USA, 2000.

Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms
for weighted bipartite matching and stable marriages. Theoretical Computer
Science, 127(2):255-267, 1994.

Alex Kipnis and Boaz Patt-Shamir. A note on distributed stable matching. In
Proc. 29th IEEFE International Conference on Distributed Computing Systems
(ICDCS, Montreal, QC, Canada, June 2009), pages 466-473. IEEE, Piscat-
away, NJ, USA, 2009.

Donald E. Knuth. Mariages Stables. Les Presses de 'Université de Montréal,
1976.

Fabian Kuhn. The Price of Locality: Exploring the Complezity of Distributed
Coordination Primitives. PhD thesis, ETH Ziirich, 2005.

18

http://dx.doi.org/10.1007/s00182-007-0081-6
http://dx.doi.org/10.1007/s00182-007-0081-6
http://dx.doi.org/10.1007/s00182-007-0081-6
http://dx.doi.org/10.1016/S0304-3975(99)00125-5
http://dx.doi.org/10.1016/S0304-3975(99)00125-5
http://dx.doi.org/10.1016/S0304-3975(99)00125-5
http://dx.doi.org/10.1287/moor.28.1.103.14256
http://dx.doi.org/10.1287/moor.28.1.103.14256
http://www.optimalmatching.com/workshop
http://www.optimalmatching.com/workshop
http://www.optimalmatching.com/workshop
http://dx.doi.org/10.1007/11780823_10
http://dx.doi.org/10.1007/11780823_10
http://dx.doi.org/10.1007/11780823_10
http://dx.doi.org/10.1007/11780823_10
http://dx.doi.org/10.1007/11780823_10
http://dx.doi.org/10.1016/0304-3975(94)90042-6
http://dx.doi.org/10.1016/0304-3975(94)90042-6
http://dx.doi.org/10.1016/0304-3975(94)90042-6
http://dx.doi.org/10.1109/ICDCS.2009.69
http://dx.doi.org/10.1109/ICDCS.2009.69
http://dx.doi.org/10.1109/ICDCS.2009.69
http://dx.doi.org/10.1109/ICDCS.2009.69

[21]

[24]

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of
being near-sighted. In Proc. 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA, Miami, FL, USA, January 2006), pages 980-989. ACM
Press, New York, NY, USA, 2006.

Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on
Computing, 21(1):193-201, 1992.

Enyue Lu and S.Q. Zheng. A parallel iterative improvement stable match-
ing algorithm. In Proc. 10th International Conference on High Performance
Computing (HiPC, Hyderabad, India, December 2003), volume 2913 of Lecture
Notes in Computer Science, pages 55—-65. Springer, Berlin, Germany, 2003.

Alain Mayer, Moni Naor, and Larry Stockmeyer. Local computations on static
and dynamic graphs. In Proc. 3rd Israel Symposium on the Theory of Com-
puting and Systems (ISTCS, Tel Aviv, Israel, January 1995), pages 268-278.
IEEE, Piscataway, NJ, USA, 1995.

Thomas Moscibroda. Locality, Scheduling, and Selfishness: Algorithmic Foun-
dations of Highly Decentralized Networks. PhD thesis, ETH Ziirich, 2006.

Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM
Journal on Computing, 24(6):1259-1277, 1995.

Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms
via local improvements. In Proc. 49th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS, Philadelphia, PA, USA, October 2008),
pages 327-336. IEEE Computer Society Press, Los Alamitos, CA, USA, 2008.

Michal Parnas and Dana Ron. Approximating the minimum vertex cover in
sublinear time and a connection to distributed algorithms. Theoretical Com-
puter Science, 381(1-3):183-196, 2007.

Michael J. Quinn. A note on two parallel algorithms to solve the stable mar-
riage problem. BIT Numerical Mathematics, 25(3):473-476, 1985.

Alvin E. Roth and John H. Vande Vate. Random paths to stability in two-sided
matching. Econometrica, 58(6):1475-1480, 1990.

Jukka Suomela. Survey of local algorithms. http://www.iki.fi/jukka.
suomela/local-survey, 2009. Manuscript submitted for publication.

S. S. Tseng. The average performance of a parallel stable marriage algorithm.
BIT Numerical Mathematics, 29(3):448-456, 1989.

S. S. Tseng and R. C. T. Lee. A parallel algorithm to solve the stable marriage
problem. BIT Numerical Mathematics, 24(3):308-316, 1984.

Mirjam Wattenhofer and Roger Wattenhofer. Distributed weighted matching.
In Proc. 18th International Symposium on Distributed Computing (DISC, Am-
sterdam, Netherlands, October 2004), volume 3274 of Lecture Notes in Com-
puter Science, pages 335-348. Springer, Berlin, Germany, 2004.

Andreas Wiese and Evangelos Kranakis. Local maximal matching and local
2-approximation for vertex cover in UDGs. In Proc. 7th International Confer-
ence on Ad-Hoc Networks € Wireless (AdHoc-NOW, Sophia Antipolis, France,
September 2008), volume 5198 of Lecture Notes in Computer Science, pages
1-14. Springer, Berlin, Germany, 2008.

19

http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1007/b94479
http://dx.doi.org/10.1007/b94479
http://dx.doi.org/10.1007/b94479
http://dx.doi.org/10.1007/b94479
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1109/FOCS.2008.81
http://dx.doi.org/10.1109/FOCS.2008.81
http://dx.doi.org/10.1109/FOCS.2008.81
http://dx.doi.org/10.1109/FOCS.2008.81
http://dx.doi.org/10.1016/j.tcs.2007.04.040
http://dx.doi.org/10.1016/j.tcs.2007.04.040
http://dx.doi.org/10.1016/j.tcs.2007.04.040
http://dx.doi.org/10.1007/BF01935367
http://dx.doi.org/10.1007/BF01935367
http://www.iki.fi/jukka.suomela/local-survey
http://www.iki.fi/jukka.suomela/local-survey
http://www.iki.fi/jukka.suomela/local-survey
http://www.iki.fi/jukka.suomela/local-survey
http://dx.doi.org/10.1007/b101206
http://dx.doi.org/10.1007/b101206
http://dx.doi.org/10.1007/b101206
http://dx.doi.org/10.1007/b101206
http://dx.doi.org/10.1007/978-3-540-85209-4_1
http://dx.doi.org/10.1007/978-3-540-85209-4_1
http://dx.doi.org/10.1007/978-3-540-85209-4_1
http://dx.doi.org/10.1007/978-3-540-85209-4_1
http://dx.doi.org/10.1007/978-3-540-85209-4_1

	Introduction
	Matchings
	Model of Distributed Computing
	Statement of Results
	Overview

	Related Work
	Almost Stable Matching
	Distributed Stable Matching
	Local Algorithms and Matchings
	Centralised Constant-Time Algorithms and Matchings

	Algorithm
	Analysis
	Lost Edges and Convergence to Stability
	Weight and Potential

	Proofs of Theorems 1, 2 and 3
	Concluding Remarks

