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6.21 Der Satz der Mathematik
driickt keinen Gedanken aus.

Ludwig Wittgenstein

Infinitesimals and Other Complex Issues

Consider the real number line. As we know, it contains a lot of numbers which lie in a certain
order: of two numbers, one is always smaller than the other. It is therefore clear what we mean
by saying that a number lies between the other two. Now, let us look at the collection of all
those numbers that lie between 0 and 1, excluding 0 and 1 themselves. This collection, or set,
is denoted by (0,1).

Which numbers do we have in this set? Is number 3 there? No, because it is not between
zero and one. What about 17 No, because it was explicitly excluded. One half? Yes, it is
certainly between 0 and 1. What about the number 0.9543217 Yes again. But suppose I gave
you the number 0.999. .. in which all the infinitely many digits after the decimal point are equal
to 9. Does that number 0.999... belong to (0,1)? Clearly, if 0.999... happens to be equal to
1, then as noted above, it does not belong. On the other hand, if it is less than 1, then it does
belong, because it is also a positive number and so between 0 and 1.

Here is a conversation which I made up:

Teacher: Is 0.999... equal to 17
Student: 1 am not sure, but I think no.
Teacher: What you say is very interesting. Why do you think so?

Student: I can imagine that one minus an infinitely small number is less than one but greater
than 0.999.... Thus there is a number in between and so the two cannot be equal.

Teacher: There are several problems with that. You can only subtract a real number from a
real number. Do you think there are infinitely small real numbers?

Student: I've heard about a way to define such numbers. In that theory one can define
infinitesimals and use them for defining limits for example.

Teacher: Can you prove the existence of such numbers?
Vadim joins the conversation.
Vadim: Can you prove the existence of any numbers?

Teacher: Vadim, don’t mix things up. I am asking whether the existence can be proved from
the axioms of the real numbers. Anyway, you might want to figure out what 0.999. .. is,
if it is not 1.

Student: Umm...

Vadim: We should use the definition of 0.999..., I suppose.
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Hard thinking.
Student: Aha! 0.999... equals to the limit of the sequence 0.9,0.99,0.999,0.9999,0.99999, . . ..
Teacher: And you remember the definition of a limit...
Student: Yes... the limit seems to be 1. I was wrong, wasn’t I?

Vadim: You are hurrying too much. Remember that it is Teacher who taught you the definition
of a limit. She might be tricking you!

Student: Are you (looks at Vadim) saying that you (looks at Teacher) made up the definition
of a limit just in order to make 0.999... =17

Everyone’s puzzled for 1.999... seconds.
Teacher: Certainly I didn’t make it up. Can you think of other definitions of a limit?
Student: Well... it is the same as the supremum of the set {0.9,0.99,0.999,0.9999,...}.
Vadim: Let us denote it by 1 — d.
Student: Is d now an infinitely small number?
Vadim: Yes, for example d = 0.000...1. (Or it could be zero, if 0.999...=1.)
Student: Like what? Infinitely many zeroes and then one?
Vadim: Yeah!
Student: Hold on. What about the number 1 — d — d?
Vadim: You mean 1 — 0.000...27

Teacher: Good question, Student. It should clearly be less than 1 — d and hence not a
supremum. Therefore there is an n such...

n times

—
Student: ...that the number 0.99...9 is greater than 1 — d — d, but less than 1 — d. Same
holds for larger n:s, for instance if z =0.99...9,then 1 —d—d <z <1—d.

n+1
Teacher: Multiplying by 2 we get 20 <2 —2d=2—d —d.
Vadim: Oops.

Student: And then subtract one! And we get 2z — 1 < 1 — d — d. Substituting the value of x
wehave 1 —d—d>2-0.99...9-1=0.99...98>0.99...9.
—— N—— ——

n+1 n n

Teacher: That’s a contradiction! Therefore 0.999... = 1.

Student: Vadim, is everything alright?
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Vadim: Poor number 0.000...1. It cannot exist...

Teacher: Don’t worry. It can exist, if you only discard some of the axioms of the real numbers!

As the discussion shows, it is not completely trivial to decide whether 0.999... belongs to
(0,1) or not, and in order to solve that, or even to define this peculiar number uniquely, one
needs to use the axiom of completeness, i.e. the full machinery of the reals!

Is it possible to program a computer to decide whether or not a given number belongs to
(0,1) by only looking at the decimal digits of that number? Note that only a finite amount of
information can be fed into a computer at a time. Suppose I have a computer and its name
is Digitron. I start inputting my real number to Digitron one digit at a time: first five digits
are 0, ., 9, 9 and 9. At this point Digitron cannot yet decide whether the incoming number is
n (0,1), because if I continue giving only nines, the number will be 1 and so Digitron should
output “no”, whereas if some digit in the future will be less than 9, then the output should be
“yes”. And so Digitron asks for more input. And I give him 9,9, 9, 9, 9 and 9. The situation is
still unchanged. Digitron cannot know. And in fact, if I continue inputting only nines, Digitron
will never know and the program will not halt.

By the way, the same applies to the number 0.000.... Not as simple is this set (0,1) as it
seems to be.

However, (0,1) is of the simplest kind of sets that mathematicians encounter. A bit trickier

is for example the set
o0

U (2k, 2k +1).

It is the union of intervals from the even number 2k to the odd number 2k 4+ 1 and it goes
through all the positive even numbers! In order to know whether a given number ag.aiasas . ..
belongs to S1, one first needs to check whether aq is even and then, if it is even, to check whether
or not 0.ajasas ... belongs to (0,1). Or consider the set

S= U @r+D)

p is a prime

which consists only of those intervals (p,p + 1) in which p is a prime number. Now one has to
check the primeness of a number which is known to be a time consuming process.

The next paragraph is dedicated to building a complicated set T" and can be omitted.

For each positive natural number n = 1,2, ... let P, be the set of all those natural numbers
that are not divisible by n. Thus for example P3 = {1,2,4,5,7,8,...}. Above we denoted by
(a,b) the set of all numbers between a and b excluding a and b. Let us now denote by [a, b] the
same set but including both a and b. Let us define

So=|J 52, £

keP,

This set is the union of all intervals from 5 to

Qn L where k ranges over P,. For example

e
%)
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And then let us take the intersection of all these sets:

T=%=) U &2 %
n=2

n=2keP,

If you do not know what an intersection means, in this case it means the following: a number
belongs to T, if it belongs to every S, for n > 2.

Now, it should be fairly clear, that it is quite hard to tell for example whether the number
50224.666 . .. belongs to T' or not. Despite the description of T took only few lines of text.

One set can always be described in different ways and sometimes there might be a sur-
prisingly simple description of a set that has been given a complex description initially. For
example the set B = ;= (n, 10n?), the intersection of all intervals from n to 10n? has a simpler
description, because it is empty, B = &.

We define the descriptive complexity of a set to be the simplest possible description of that
set. Of course, this is vague, because we should define what it means to be the simplest. But
there is a natural definition for that: we just count how many times we had to apply intersections
and unions one after another starting from open intervals (a,b). Yes, it is that simple! The
description (,, U,,, Nk (@nmk; brmi) is more complex than the description |J,, (i (@mks bmk)-
This definition gives rise to the Borel hierarchy of sets.

Do all subsets of the reals belong to some level of the Borel hierarchy? Is it possible to
express any collection of the real numbers by taking repeatedly unions and intersections of
already defined sets? Is the descriptive hierarchy of all sets equal to the Borel hierarchy? No.
There are sets way more complex than that. The descriptive hierarchy continues from Borel sets
to the so called projective sets, the simplest of whom are the Yi-sets: the projections (shadows)
of Borel sets in the plane:

" i Borel set

Shadow

Why are we so interested in the careful study of the descriptive hierarchy of sets? There are
many reasons of course: the real line is one of the most central objects in whole mathematics.
One of the reasons, the logical reason, is that many mathematical problems can be reduced to
the question whether a certain real number belongs to a certain set. For example the question
whether there are natural numbers m and n such that TZL—Z = 2 is the same question as whether
V2 belongs to the set of the rational numbers. We can code various mathematical structures
to single real numbers: for instance a knot C@ is specified by a continuous curve and it is

well known that a continuous curve is specified by its restriction to rational numbers, i.e. by
a countable set, and nothing is easier than to put that set in the form of a countable binary
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sequence — a real number. Now the instance of the fundamental question of knot theory,
whether the knots @ and @ are equivalent, reduces to the question, whether the code of

C@ belongs to the set of codes of all the knots that are equivalent to CC_f@, .

A striking fact about the theory of reducing mathematical problems to the problems about
subsets of the reals is that the aim is not to try to solve these problems.! Instead, the aim is to
put mathematical problems into a hierarchy, by looking at the complexity of the corresponding
sets of real numbers and their descriptive complexity. When successful, we are able to state,
that a certain mathematical problem is so complex that it cannot be solved by means of non-
complex methods. Exactly in the same way as a complex Borel set cannot be described by a
simpler description.

Let me now return to the number 0.000...1. To emphasize that there are infinitely many
zeroes, let me rewrite it: 0.0000000... 1. As the discussioners above noted, this number cannot
belong to the set of real numbers. However, if we drop the completeness axiom, we can add that
number to our number line without any contradiction. Because sometimes mathematical objects
are not countable (or even essentially countable, as knots are), the theory of descriptions has
to be generalized so that dealing with uncountable mathematical structures is possible. This
leads to the study of uncountably long binary sequences. These are binary sequences much
longer than the ordinary real number’s decimal representations and even longer than putting
first infinitely many zeroes and then a one: 0.0000000... 1. They look more like this:

0.011010... 100010... 110110...1010...1111... 011010... 100010...0000...0010......,
N——

infinite
sequence

although they are much longer. Now, these sequences have uncountable length of a certain
cardinality (which we choose depending on the context). And to these sequences we are able
to code uncountable structures (of that fixed cardinality), and thence extend the domain of
descriptive set theory. And this is precisely what a large part of this thesis (Chapters 4 and 5)
is dealing with.

Disclaimer. This prologue does not contain any new results or facts that were not previously
known nor anything surprising to scientists in this field. The field of descriptive set theory
is around eighty, and its generalizations to uncountable realms around twenty years old. For
more on history see section History of the next chapter (page 18) and Section 4.1 of Chapter 4

(page 58).

LOf course this matter is not that simple and sometimes problems do get solved.
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When we look into the deep eyes
of the uncountable structures, we
are perhaps starting to see there
some compassion for our modest
advances, our budding infinite
trees, our courageous appeals to
stability and our resolve to play
the game to the end.

Jouko Viinanen

2.1 Overview

This thesis is about set theory and model theory, and how these two disciplines of mathematical
logic are linked together. Mathematical games are used to prove many results and especially
they play a role in connecting set theory with model theory. In these games players pick elements
from sets or models’ domains; the games are played on sets and models in the same, although
more abstract, way as the game of chess is played on the chessboard. Hence the name Playing
Games on Sets and Models.

This thesis consists of the three articles which go under Chapters 3, 4 and 5:

» Weak FEhrenfeucht-Fraissé Games by Tapani Hyttinen and Vadim Kulikov, published in
Trans. Amer. Math. Soc. 363 (2011), 3309-3334.

+ Generalized Descriptive Set Theory and Classification Theory by Sy-David Friedman, Tapani
Hyttinen and Vadim Kulikov, submitted (2011).

* Borel Reductions on the Generalized Cantor Space by Vadim Kulikov, submitted (July
2011).

Each of these articles has an introduction of its own. In this chapter I gather and explain
relevant ideas, methods and central results of the whole work in a hand waving way; also the
bibliographical references might not be precise in this chapter.

Despite it consists of published (and not yet published) articles, this thesis is a single unity:
the page numbering runs uniformly throughout the whole book and the bibliography, index and
list of symbols are common to all the chapters and are found in the end, starting on page 162.
Chapter 4 is a little bit modified version of that submitted to a journal, the main difference
being the presence of Theorem 4.39 which is left out from the submitted version for some reason.

Since this is my dissertation, I wish first to discuss my honest contribution to these articles.
In some cases it is easy, especially if the work is not done literally together. However in most
cases it is not easy, because in a mathematical joint work, when you sit down with colleagues
(or stand in front of a blackboard) and discuss a mathematical problem, it is hard to tell
afterwards which part was contributed by whom. Thus, what follows has to be taken with a
certain precaution.

The cover page of the paperback and all the graphics in the book I made using GIMP!. All
text has been written and typeset by me using BTEX with the following exceptions: the proofs

IThe GNU Image Manipulation Program
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of Theorems 4.38 and 4.90 are written by Tapani Hyttinen and typeset by me, and Remark
4.45 together with the proof following it is written by Sy-David Friedman and typeset by me.
I hope I didn’t leave anything out.

The first paper, Weak Ehrenfeucht-Fraissé Games is based on my Master’s thesis and is a bit
off the main theme. It is joint work with my supervisor Tapani Hyttinen, who also supervised
my Master’s thesis. The definition of the weak EF-game is due to Jouko Va&dn&nen. All the
major ideas of the proofs are due to Tapani, but most details are worked out by me (with grand
help though), especially in the proofs of Theorems 3.36 and 3.37. Example 3.20 is entirely my
invention.

The second and the largest paper, Generalized Descriptive Set Theory and Classification
Theory constitutes my Licentiate’s thesis which is joint work with my supervisor Tapani Hyt-
tinen and Prof. Sy-David Friedman from Kurt Godel Research Center of the University of
Vienna. Most of the major ideas of the proofs are due to Sy-David Friedman and Tapani Hyt-
tinen unless otherwise specified in the text. Most of the proofs of small lemmas and theorems,
like for example most of the proofs proofs in the introductory sections 4.2 and 4.5.1, are done
by me (they are not necessarily new results or even new proofs, just results that are needed
later in the work). Section The Identity Relation, page 79 is my work. Again the results of that
section are not very impressive, but later I contributed more deeply to that area in the article
Borel Reductions on the Generalized Cantor Space, Chapter 5. The proofs of Theorems 4.35,
4.44, 4.39 and Lemma 4.89 are almost entirely my work. The rest of the article is either fair
joint work or the results were proved by others and processed by me.

The third paper, Borel Reductions on the Generalized Cantor Space is my own work, except
that Tapani Hyttinen helped to complete some details concerning the proof of Theorem 5.12.
He also read the paper several times and gave me valuable comments.

2.2 A Bit of Set Theory

Ordinals are in the most fundamental role in this thesis, so let me write a few words about
them. A linear order is called a well-order if it contains no infinite descending sequences.
Ordinals are well-ordered sets and for each well-ordered set there is an ordinal that is order
isomorphic to that set. Ordinals themselves are initial segments of each other and the initial
segment ordering on the class of all ordinals is a well-order. We use the von Neumann ordinals
which are sets which are well-ordered by the €-relation. The smallest ordinal is the empty set
@ and is denoted often by 0. If v is an ordinal, then its successor o + 1 is the set o U {a}. If
A is a collection of ordinals, then (JA is an ordinal. Ordinals are transitive sets, so we have
aeEf <<= a<f=acCp.

If there is no bijection from any ordinal 8 < a to «, then « is called a cardinal number
or just a cardinal. Obviously for each ordinal there is only one cardinal number with which it
is in a bijective correspondence. By the well-ordering principle, every set A is in a bijective
correspondence with some (unique) cardinal number and this cardinal is called the cardinality
of A. The countable cardinal is denoted by w or Ry, the smallest uncountable cardinal is denoted
by wy or Ny, the smallest cardinal greater than w; is denoted by ws or Rs, and on and on. The
Greek letter w is used when we want to emphasize that we are thinking of the cardinal as an
ordinal. The Hebrew letter N is used when we want to emphasize that it doesn’t matter. More
generally kT denotes the least cardinal bigger than the cardinal x.
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By cf(a) we denote the cofinality of the ordinal «, it is the least ordinal 8 for which there
exists an increasing unbounded function f: 8 — «.

A subset of an ordinal S C « is closed if for every increasing sequence in S, the limit of that
sequence is in S provided that that limit is less than a. The set S is unbounded if for all f < «
there exists v € S, v > 3. The collection of closed unbounded (cub) sets is usually a filter? on
a (provided that the cofinality of « is uncountable). A set S C « is stationary if it intersects
all the closed unbounded subsets of a.

Cub sets are also of crucial importance to this work. To illustrate their applicability, let
f: w1 — wy be any function. Let C be the set of those « such that f[a] C a. Now C' is of
necessity a closed unbounded set. If A and B are relational (no function symbols) structures
with dom A = dom B = w; and f is an isomorphism between them, then C' contains the set D of
those « for which f[a] = « and is therefore a set of isomorphic substructures, i.e. ANa = BNa
for all @« € D. But it is easy to see that D is also closed unbounded. Most of our proofs for
non-isomorphism are based on this fact: a counter example, that structures are isomorphic,
gives us a big set (a member of the cub-filter) in which the initial segments of the models are
isomorphic.

ZFC

Above we made use of the well-ordering principle and other set theoretic assumptions. All these
follow from the axioms of ZFC.? Everywhere in this dissertation ZFC is assumed as the basic
theory in which we work. If extra assumptions are made, they are always explicitly mentioned
and if no such assumptions are mentioned, then it means that we are using ZFC. Also if we say
that something is consistent, then we mean that it is consistent with the axioms of ZFC.

2.3 Games

Games appeared in logic in 1930’s, when Leon Henkin introduced the notion of game semantics,
later developed by Paul Lorenzen in the 1950’s. The idea of the semantic game is to climb up
the semantic tree of a logical sentence. A semantic tree branches at quantifiers and at the signs
A and V. Here branching at a quantifier means checking all possible values of the quantified
variable.

2.1 Example. Let ¢p = (VxoR(z))A(3x1 R(z1)) and let the structure A be such that A = {a, b}
and R4 = {a}. The semantic tree will look like this:

R(a) R(b)  R(a) R(b)
\ / \
vmoR($0) E'SClR(LIEl)
\ o/
(VzoR(z0)) A Bx1R(z1))
The game starts at the root. If the quantifier V or the sign A is in question, then player I
chooses which branch to continue along, otherwise II chooses. If a negation occurs, then it

2A filter is a collection closed under finite intersections and taking supersets.
3Zermelo-Fraenkel axioms with the Axiom of Choice, for more information see [4] or [25].
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is dropped and the players change roles. They end up with an element in the structure for
each quantifier encountered on their way and an atomic formula into which the elements are
substituted. If the atomic formula with this substitution is true, then II wins and otherwise I
wins. The sentence is defined to be true if and only if I has a winning strategy and false if and
only if T has a winning strategy.

An extensive treatment of the use of games in modern mathematical logic can be found in
a book by Jouko Vadninen Models and Games, Cambridge University Press 2011.

Games play (indeed!) a major role in this thesis. We focus on infinite games of perfect
information. There are four types of games that appear:

» Ehrenfeucht-Fraissé games. These games represent back-and-forth systems and are de-
signed to measure the level of similarity between two mathematical structures. They define
tractable invariants of the isomorphism relation: if two structures are isomorphic, then they
are EF-equivalent.

» Semantic games. An instance of these is described above. Semantic games generalize
Tarski’s definition of truth so that it can be used for a wider scope of languages.

+ Cub-games. In cub-games players are climbing up ordinals. These games give useful char-
acterizations of cub and related filters on uncountable cardinals and are closely connected
to combinatorial principles in set theory.

» The Borel* game. Conventional Borel sets are built up from open sets using intersections
and unions. Each Borel set can be represented as a tree which represents the sequence of
intersections and unions and at the leaves of the tree there are basic open sets. By general-
izing this tree-definition we get a different outcome (the Borel* sets) than by generalizing
the conventional definition of closing open sets under intersections and unions.

2.3.1 Cub-games

The general form of a cub game is as follows. Let a be an ordinal and k a cardinal greater
or equal to . Let S C k. There are a moves in the game G,(S) and at the move =, first
player I picks an ordinal o, < & larger than any ordinal picked in the game so far and then
player I picks an ordinal 5, < k greater than a,. The winning criterion varies. Sometimes
the winning criterion for player II is that the supremum of the set picked during the game is
in S; sometimes the winning criterion for player II is that the limit points of the picked set
is a subset of S. Limit points could be restricted to various cofinalities etc. The usefulness
of the cub-games is that the set {S C x | player II has a winning strategy in G,(S)} forms
usually a filter on . This filter looks much like the cub-filter and often actually coincides with
it. Therefore translating between Ehrenfeucht-Fraissé games and cub-games gives a method of
applying the theory of cub filters and stationary sets to model theory.

2.3.2 Games and Languages

Weak EF-games

Ehrenfeucht-Fraissé games are a variant of back-and-forth systems in model theory. The stan-
dard EF-game is defined as follows:
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Definition. Let A and B be structures and + an ordinal. The Ehrenfeucht-Fraissé game of
length v, EF., (A, B), is played as follows. On the move «, o <+, player I chooses an element
aq € A (or b, € B). Then I answers by choosing an element b, € B (or a, € A). II wins if
the function f, which takes a,, to b, for each a@ <  is a partial isomorphism A — B. Otherwise
player I wins.

In Chapter 3 we study a weak version of the standard Ehrenfeucht-Fraissé game:

Definition. Let A, B and v be as in 3.2. The weak Ehrenfeucht-Fraissé game of length ~,
EF7 (A, B), is played as follows.

Player I chooses an element ag € AU B
Player II chooses an element bg € AU B.

Let X = {an | @ <7} U{bs | @ < v} be the set of all chosen elements. Player II wins if the
substructures generated by X N4 and X N B are isomorphic. Otherwise I wins.

The difference between these games in not only that EF, easier or as easy to win for II than
EF}, (which follows from the mere fact that the winning criterion is weaker), but also that EF,
is a closed game but EF}, isn’t. Closed means basically that if II didn’t lose at any particular
move, then she didn’t lose at all. Let us give an example of a EF},-game which shows that it
is not closed. Let A = B = (Q, <) be the rational numbers with the usual order and o = w.
No matter how player II plays, as long as she keeps the number of chosen elements in both
structures the same, she doesn’t lose at any move. Evidently she can still lose the whole game
if she doesn’t play well: the players might end up picking the whole of A and only the natural
numbers from B and these are not isomorphic linear orders. A closed game of length w is always
determined; this is known as the Gale-Stewart theorem. Therefore EF,, (A, B) is determined
for all structures A and B, but is EF], (A, B) necessarily determined? At least now we cannot
apply the Gale-Stewart theorem.

We show in chapter Weak Ehrenfeucht-Fraissé Games that despite the differences between
EF and EF*, the game of length w, EF] (A, B) is equivalent to the ordinary EF-game of the
same length, EF, (A, B). Equivalent for all models A and B, player II has a winning strategy
in EF, (A, B) if and only if she has one in EF} (A, B) and the same holds for player I. This
in turn implies that weak EF-games of length w characterize the L..,-equivalence as this char-
acterization result is well known for the ordinary EF-games (proved by Carol Karp). Thus we
have:

Theorem ([17]). Models A and B satisfy precisely the same formulas of Lo, if and only if
player I has a winning strategy in EF) (A, B). O

The language Lo, is obtained by closing the first-order language under arbitrary large
disjunctions and conjunctions over sets of formulas with finitely many variables.

Why, games can serve as invariants of the isomorphism relations on their own, without any
language being involved. This is the attitude we took when we considered longer EF-games, like
EF}, (A,B). Unlike the game of length w, the longer weak EF-games can be non-determined,
i.e. neither of the players has a winning strategy.

Let us return to the equivalence of EF,, and EF],. How is it proved? The weak game is
easier (or as easy) to win for player I and EF,, is determined. So it is sufficient to show that
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if T has a winning strategy in EF,, (A, B), then he also has one in EF,(A, B). Let 7 be the
strategy of I in EF, (A, B) and let

C ={S cdomAUdomB | card(S) = Ry and S is closed under 7}.

A strategy is a function from finite sequences of dom.A U dom B to dom.4 U dom 3, so any
countable set can be closed under 7 and the result is countable. Also C'is closed under countable
infinite unions of increasing chains.

Let us now give player I a winning strategy in the game EF} (A, B). At each move, player
I takes all the elements already picked in the game and closes that set under 7. He uses a
bookkeeping technique and enumerates these sets by his own moves during the game. Therefore
in the end, the set that has been picked, X C dom.AUdom B, is in C. Let us show that player
I has won: X N A% X N B. If not, then there would be an isomorphism f: X N A — X NB
and player II could have beaten 7 in EF, (A, B) by playing according to f, i.e. picking f(a)
whenever I picks a € A and picking f~!(a) whenever he picks a € B. Player I cannot escape
X using 7 since X € C, so this is a contradiction.

2.3.3 Games as Bridges Between Set Theory and Model Theory, Part 1

As T explained above, the games EF,, and EF}, are equivalent and since the first one is deter-
mined, also is the second. In Chapter 3 we also ask about longer games like EF;, , whether
they can be non-determined on some structures A and B.

In order to answer this question positively, we had to construct exemplifying structures A
and B on which EF, (A, B) is non-determined. To do this we developed a method of construct-
ing structures which made it possible to boil the question of determinacy of EF-games down to
the question of determinacy of cub-games, of which much is known. By developing the idea we
answered also more questions of the same nature like the following. For a given cardinal k > w,
are there structures A and B such that EF}, (A, B) is non-determined? Is it provable in ZFC
that such structures exist? Can these structures be of size k™7 (Exercise: they cannot be of
size < k.) Are there structures A and B and cardinals A < x such that player II has a winning
strategy in EF} (A, B) but not in EF} (A, B)?

The cub-games are about climbing up the ordinals. How is that related to EF-games which
are about picking elements from arbitrary mathematical structures? Assuming the Axiom of
Choice, as we do, any mathematical structure of cardinality x can be well-ordered in order type
k. Thus picking elements from that structure can be thought of as picking an ordinal below «.
If the game is long enough, or the structures are designed accordingly, the players must actually
climb up the ordering during the EF-game, or else they lose.

Following these lines we defined a method of constructing the structures A(S) and B(S)
for an arbitrary set S C k such that playing a weak EF-game between A(S) and B(S) is very
much like playing the cub-game on the set S. The idea is that A(S) and B(S) are trees and
all the branches in A(S) grow along closed subsets of S. B(S) is very similar to that, with the
exception that some branches continue growing through all the levels.

If S contains a closed unbounded set, then A(S) and B(S) are in fact isomorphic, because
now there is a closed unbounded set along which almost all branches can grow till the end in
both structures, so the difference that B has a long branch disappears. Denote by A, (S) and
B, (S) the trees restricted to levels < a. Now by the same argument A4, (S) and B,(S) are
isomorphic if and only if S N« contains a closed set which is unbounded in a.
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During the EF-game player I wants the game to end in a position in which non-isomorphic
segments A, (S) and B,(S) have been chosen and player Il wishes them to be isomorphic.
During the game the players (or one of them) make sure that in the end initial segments are
chosen and not only a part of them. If one looked only at the levels of the trees which are
already covered by the game, the game would look exactly as a cub-game.

In this “cub-game” player I wins if they hit an ordinal « such that o NS does not contain
a cub set and player I wins if they hit an ordinal « such that o NS contains a cub set. Now
from the theory of cub games we know that this game will be non-determined (under GCH at
least?), if {o | NS contains a cub set} is bistationary, i.e. a stationary set whose complement
is stationary.

The next problem is that it’s non-trivial whether there exists an S which satisfies this
requirement at all. But fortunately such an S can be always forced, so its existence is consistent
with ZFC+GCH.

2.4 Generalized Descriptive Set Theory and Classification
Theory

History

The beginning of generalized descriptive set theory dates back to the beginning of 1990’s when
Vaidnanen, Mekler, Shelah, Halko, Todorcevic and others started to look at the space 2*! from
the point of view of descriptive set theory, in other words classifying the subsets of that space
according to their descriptive complexity. This required generalizations of the known concepts
of Borel sets, projective sets, meager sets and other related concepts. Already at that stage
the theory diverges from the classical theory on the reals, namely there are three distinct
generalizations of the notion of Borel and there is no acceptable generalization of a (Lebesgue)
measure. Many implications to model theory of models of size X; were discovered already back
then. For more on the history of this subject and precise references, see Section 4.1 starting
from page 58.

2.4.1 Generalized Baire and Cantor Spaces

Standard descriptive set theory studies the space w® of all functions from w to w equipped with
the product topology. The motivation for that is explained in a hand-waving manner in the
prologue, Chapter 1. The space w® is called the (universal) Baire space and not without a rea-
son: every Polish space, i.e. completely metrizable separable topological space, is a continuous
image of w* and moreover Borel isomorphic to it. For example the real line R is a Polish space,
so to study the Borel and projective sets of reals is to study the Borel and projective subsets
of w*. The space 2¢ (functions from w to {0, 1} with product topology) is a compact subspace
of w* and is called the Cantor space. Every metrizable compact space is a continuous image of
the Cantor space.

These spaces are suitable also for studying isomorphism relations and other relations on
countable models as explained below in section Model Theory. Probably this was the leading

4The General Continuum Hypothesis, but in fact much weaker set theoretical assumptions suffice, see Sec-
tion 5.3, page 144.
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line towards the generalizations from 2¢ to 2** (all functions from w; to {0,1}) and more
generally to 2 and from w* to " (all functions from x to k). But once we take this step,
we must answer also: How to generalize the product topology? How to generalize Borel sets?
Which generalizations suits well the model theoretic purpose?

We define the topology on 2" to be generated by the sets

Ny ={n|nla=p}

for p € 2<F = Ua<r 2% This is finer than the standard product topology and as pointed out in
the prologue, is similar to the topology of the reals as it (almost) comes from the lexicographical
ordering of 2".

The Borel sets are obtained by closing the topology under unions and intersections of size
k. This raises many questions. Are Borel sets closed under complement? Do we get even all
closed sets like that? What if we explicitly close the collection under complements? Will there
be more than 2% Borel sets then? In this work we have smashed all these questions down by
assuming that k<" = k. This implies that closing open sets under intersections and unions of
size k gives a collection of size 2" closed under complements. Being of size 2 is important when
we want to use elements of 2% as codes for Borel sets. Recently Hyttinen proposed another way
of overcoming these questions without any restrictions on x (which is maybe still required to
be regular).

Another question is raised by the fact that this is only one out of three distinct ways to
generalize Borel sets (Definition 4.16 on page 67). The other two, Al and Borel* sets are
described below. Why we choose Borel as the Borel sets? First,

Borel C A} C Borel*,

([36], see Theorem 4.19 on page 68 for more) so they’re at the bottom of the descriptive hierarchy
among the candidates. Second, Borel sets are closed under complements (assuming k<" = k),
but it is consistent that Borel* aren’t and it is not even known whether they can be closed
(consistently, in which case Al = Borel*). Third, Borel sets form precisely the collection that
allows us to generalize the Lopez-Escobar theorem: they correspond to the formulas of L+,
similarly as the standard Borel sets correspond to the formulas of L., see Theorem 4.25 on
page 71 (the original proof is due to R. Vaught). The language L) is obtained from the first
order language by allowing conjunctions and disjunctions of length less than x and quantification
over symbol-tuples of length less than .

Using similar intuition of relating disjunction to unions and existential quantifiers and con-
junctions to intersections and universal quantifiers, one might conjecture similar things for other
languages. And in fact we proved that Al-sets correspond exactly to the formulas of Mr, ,a
generalization of L,+,; the idea of the proof is due to Sam Coskey and Philipp Schlicht and
uses a separation theorem by H. Tuuri, see Theorem 4.28 on page 74. The idea of this proof
is explained in the section Games as Bridges Between Set Theory and Model Theory, Part II
below.

Besides Borel sets we also generalize other notions from descriptive set theory such as meager
and co-meager sets and benefit from the generalized which say that (1) the space 2 is not
meager (generalization of the Baire category theorem) and (2) every Borel function (see below)
is continuous on a co-meager set (Theorem 4.34, page 4.34).
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Borel Reductions

Suppose that x is an infinite cardinal with k<% = k and assume that 2% is equipped with
a Borel structure as described above. Suppose that Ey and E; are equivalence relations on
2%. We say that Ey is Borel reducible to F1, if there exists a function f: 2% — 2% such that
(n,€) € By <= (f(n), f(£)) € E; for all n,& € 2% and for all open sets U C 2%, the set f~1[U]
is Borel. Such functions are in general called Borel functions

The intuitive meaning of this is that E; serves as an invariant of Ey modulo f which, in a
sense, puts FEy below Fj in the descriptive hierarchy. We will explore the implications of this
definition in section Model Theory below and will say more about it in section The Ordering of
Equivalence Relations further below.

2.4.2 Games as Bridges Between Set Theory and Model Theory, Part II

A set A C 2" is Borel*, if there exists a tree ¢ with no branches of length x and which has at
most k successors at each node and a function

h: {Branches of t} — {Basic open sets of 2"}

such that
17 € A <= Player II has a winning strategy in BG(t, h,n)

where the game BG is played as follows. At each move the players are located at some node
of t. If it is player I’s turn, he picks a successor of the node they’re in and the players move
to that picked node. If it is player II’s turn, she picks a successor of the node they’re in and
the players move to that picked node. The game starts at the root of ¢ and so they go up until
they have picked a branch b. If 5 € h(b), then player I wins and otherwise player I wins. Note
that if we require ¢ to have no infinite branches but otherwise keep the same requirements, this
would become the definition of a Borel set.

A statement that a given subset of 2 is Al or Borel* belongs to set theory. A statement
that a given model class is definable by a formula in a given language belongs model theory.
Theorem 4.28 says: a subset A of 2% is A}l if and only if the class of models coded by the
elements of A is definable by a formula in M, .

A formula of M,+, is a formula that may have infinitely long sequences of quantifiers, in
chains of length less than k. Formally, the formulas of M+, are labeled trees with no branches
of length x and at most k successors at each node. This labeled tree is a direct generalization
of a semantic tree of a first order sentence as described in Example 2.1 on page 14 and the
definition of truth is given via the semantic game.

There is no negation in the definition of M, +,. One can define a relative of the negation:
a dual of a formula, by switching all conjunctions to disjunctions, existential quantifiers to
universal and vice versa and the atomic formulas to their first-order negations. As a matter
of fact, a class definable by an M, + .-formula may not be the complement of a class of models
definable by its dual, even if restricted to models of size . If a formula 6 happens to be such that
its dual defines precisely the class of all the models not in the class definable by 6, we say that
these formulas are determined. The language M, is the set of determined M, +.-formulas.

For one direction of Theorem 4.28, suppose that the set A consists of codes for structures
definable by ¢ € M,+, and the complement of A is definable by ¢ € M,+,.. Intuitively A



2.4. Generalized Descriptive Set Theory and Classification Theory 00 21 0

consists of those n for which there exists a winning strategy of player II in the semantic game
for ¢ on the model coded by 7. But the strategies can be coded by elements of 2 in a way
that makes the set corresponding to the winning strategies closed, so A becomes a projection
of a closed set. But the same argument goes for the complement of A, so they are both ¥{ and
the definition of Al is that it is a Xi-set whose complement is also a X1-set.

To prove the other direction note first that if a set A C 2% is Borel* and its complement is
Borel*, then A is Al, because Borel® C X}. The definition of a Borel* set is game theoretic
as well as is the truth definition for M+ ,.-formulas. Moreover the class of trees used in these
definitions coincide. So we would like to use that coincidence to prove that if a set is A}, then
it is definable by an M, -formula which is precisely the other direction of Theorem 4.28.

To make a long story short, using the above described game theoretic similarity of Borel*
and M,+,, we prove that the set of models whose codes form a Borel* set can be defined by
a formula in ¥1(M,+,). That is, by a formula in M, +, fronted by one extra second-order
existential quantifier. We use the unary relation that is quantified to define a well-ordering
of order type x on the model’s domain. This allows us to translate the Borel*-game into the
M, +.-game. A separation theorem of H. Tuuri says that for any two disjoint model classes, C
and D, definable by ¥1(M,+,)-formulas, there exists a formula of M, ,. which defines a model
class containing C' but not containing D. A bit of further work reveals that this is sufficient to
complete the proof.

2.4.3 Model Theory

One logical motivation for studying the spaces 2 and their (standard) descriptive set theory
comes from model theory of countable models. Similarly 2* is a way to study model classes of
size k. By thinking of all countable models as having w as the domain, one can easily define a
coding such that each n € 2 corresponds to a countable model A,, with domain w. One such
coding is defined in section Coding Models, page 66. This coding is continuous in the sense that
for each n € 2% and n < w, there exists m < w such that 4, [ m is isomorphic to A¢ [ m for
all £ such that £ [n = n[n. Now isomorphism classes of models and isomorphism relations of
classes of models can be studied from the viewpoint of descriptive set theory being coded into
subsets of 2¢.

All this generalizes very straightforwardly to models of size x and initial segments of length
a < k instead of n < w etc. The isomorphism relation can be seen as a relation on the subset
of 2% consisting of those function that code models of 7. Thus for a theory 7" and a cardinal &,
define

= {(,€) € 2" | A ET, Ac ET, A, = A}

If k is fixed by the context, then we usually drop it from the notation

This time we find that the descriptive hierarchy of the isomorphism relations seen as subsets
of 2" goes in synch with the model theoretic complexity of countable first-order theories. In
fact, much more in synch than when dealing with countable models. Let 7" be a first order
theory and let M, (T') be the set of all models of T whose domain is x. By defining a coding as
explained in section Coding Models we get a one-to-one correspondence between M, (T') and a
subset of 2%. This subset is always Borel, because A\ T is a L.+, sentence and as explained in
the previous section defines a Borel set.
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The reasons for that synch, as can be seen from our proofs, include the powerful applicability
of stability theory to uncountable models and the richness of uncountable orderings.

The dividing line we draw between classifiable and unclassifiable theories is the equivalence
relation modulo one or another version of the non-stationary ideal. A set is non-stationary, if
its complement contains a cub-set. It is easily verified that the collection of all non-stationary
subsets of a cardinal is an ideal (it is closed under finite unions and under taking subsets).
Further restricting the sets to certain subsets of the cardinal one gets different versions of that
ideal. Let us denote such an ambiguously defined equivalence relation by FEng. We show that
Elns is Borel reducible to the isomorphism relations of unclassifiable theories but is not reducible
to the isomorphism relation of classifiable theories.® The reduction of Eng into the isomorphism
relation of unclassifiable theories is based on various ways of building models out of linear and
partial orderings. Two such methods, the well known construction of Ehrenfeucht-Mostowski
models and the one presented in the proof of Theorem 4.90, are used.

Unclassifiable Theories

For reducing FEyg into all unclassifiable theories except those that are stable unsuperstable,
EM-models are used, Theorem 4.83. We construct linear orders ®(S) for each stationary set
S C k such that the EM-models corresponding to ®(S) and ®(S’) are isomorphic if SA S’ is
non-stationary. These orderings are k-like, i.e. the initial segments have cardinality < x but the
whole ®(S) has cardinality . The isomorphism between ®(S) and ®(S’) for non-stationarily-
similar S and S’ is obtained by extending partial isomorphisms along a cub set C in which S
equals S’ i.e. which satisfies CNS = C' NS’ by using strong homogeneity of the initial segments
of ®(S) and ®(S’) at such points. The ideas here are borrowed from a paper by T. Huuskonen,
T. Hyttinen and M. Rautila as of 2004.

I invite the reader to use the intuition that ®(S) is k-like and think of an intuitive corre-
spondence between x and ®(5). Then it should make sense if I say that the ordering ®(5) is
defined such that it behaves in a slightly exceptional way at the “places” that correspond to the
ordinals of x that are in S. For each ®(S) we build a tree which consist of increasing sequences
of ®(5), so that branches occur only where the behavior of ®(.5) is in this way “exceptional”.

Then we use Shelah’s Ehrenfeucht-Mostowski construction on these trees to obtain a model
of the theory T for each such tree. If SA S’ is non-stationary, then ®(S) = &(S’) and the
corresponding trees are isomorphic and so the corresponding models are of course isomorphic
as well. On the other hand, assuming that there is an isomorphism f between the structures
but S A S’ is still stationary, we get a contradiction. Suppose S\ S’ is stationary and denote
S* =5\ 8’ The contradiction is obtained by finding initial segments of the models such that
they are isomorphic via f (i.e. closed under f) and so that they hit a “place” which is in S*,
so there is a branch in the skeleton of one of them, but not in the skeleton of the other. To
witness that this is actually a contradiction we refine S* so that the question boils down to
preservation of certain types by f in a contradictory way.

In the case of a stable unsuperstable theory, the above approach didn’t work, but a similar
one worked: instead of EM-models over the trees mentioned above we use a prime model
construction over another kind of trees, see Section 4.6.3. As in the construction described
above, we define a tree J(S) for each stationary S C k, but this time the trees have height

5See Theorems 4.81 (page 119), 4.83 (page 121) and 4.90 (page 137)
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w and size k. For such a tree J, a sequence (J%),< is a filtration of J, if it is a continuous
increasing sequence of small subtrees of .J whose union is J, where small means of size < k. For
each member of such a filtration, we can ask whether or not there is a branch going through that
member, i.e. whether there is an element 7 of J such that n ¢ J*, but nn € J* for all n < w.
We define the set S(J) to be the set of those ordinals for which there is a branch going through
J*. Clearly S(J) depends on the filtration chosen, but we define the trees J(S) such that it does
not depend on the filtration modulo the w-non-stationary sets, in fact S AS(J(S)) is always
non-stationary, i.e. there are branches going through in J(S) exactly at places corresponding
to ordinals in S with respect to a certain filtration. Since an isomorphism of two such trees
preserves a filtration on a closed unbounded set, this implies that S(J) is an invariant of the
isomorphism type of J.

In the construction of the trees J(.5), J(S’), we make sure that there are filtrations (J*(S5))a<x
and (J*(S5"))a<x of them such that if there is an increasing sequence (f;)i<q of partial isomor-
phisms from J(S) to J(S’) such that for all even i < o dom f; = J%(S) and ran f;y; =
JPi+1(8") for some B; < Bi41 such that J;_, dom f; = JA(S) and {J,_, ran f; = JP(S’) with
Ber\(SAS"), then the union J,_, fi is a partial isomorphism. This guarantees that S(.J)
is in fact a complete isomorphism invariant. Consequently, it becomes a complete isomorphism
invariant of the prime models over the trees J(S) constructed in the proof of Theorem 4.90.

Classifiable Theories

On the other side of the dividing line are the classifiable theories. The equivalence relation
modulo any kind of a non-stationary ideal, the vague concept of which was generally denoted
above by Eng, cannot be Borel reduced to an isomorphism relation of such a theory, Theorem
4.81, page 119.

Indeed, suppose there were such a reduction. The contradiction derives from the absolute-
ness of both, being Borel and classifiable, while being stationary is far from an absolute notion.
We are talking here about absoluteness with respect to forcing. Suppose ¢(z) is a formula of
set theory with one free variable. We say that ¢ is an absolute property of a with respect to the
forcing notion P, if ¢(a) holds and in all forcing extensions by P, ¢(a) remains to hold. By a the-
orem of Shelah, already mentioned above, the models of a classifiable theory are distinguishable
by an Ehrenfeucht-Fraissé game of length w where players are allowed to pick sets of size < &
where & is the size of the models. The existence of a winning strategy in such a game is absolute
with respect to forcings that do not add small subsets, meaning subsets of size less than x. Any
move in this game is a finite sequence of sequences and partial isomorphisms of length < &, so
the player who owned a winning strategy in the ground model can use the same strategy in the
generic extension and certainly it will work equally well, as no new moves (certain sequences
described above) is introduced neither any finite partial isomorphism is killed.

Borel sets in turn are absolute in the following way. As noted above in section Games as
Bridges Between Set Theory and Model Theory, Part II, Borel sets can be represented as labeled
trees of size k. These trees, as all models of size x, can be coded into elements of 2. These
codes remain Borel codes in the forcing extensions, although the sets that they code in the
extension might be different from those that they code in the ground model.

Now, we take a “model of ZFC” (not really) of size £ which contains the Borel code for the
reduction f and 2<% and which we call M. Note that since f is a Borel function, it is continuous
on a co-meager set (see section Generalized Baire and Cantor Spaces above). But the set of
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P-generic functions over M is also co-meager, where P = 2<%, In fact it is easy to find a P-
generic G over M whose symmetric difference from the constant zero function 0 is stationary.5
Without loss of generality we may assume that f is continuous also at 0. Now these functions,
G and 0 must be mapped to non-isomorphic models. By the assumption, there is a winning
strategy of player I in EF” on these models. That is, by the very definition of forcing, we can
find a condition p € G which forces that player I has a winning strategy in EFZ (f(G), f(0))
and also solves the structures f(G) and f(0) sufficiently far. Well, but now we just extend p
in another generic way, G’, so that G’ is equivalent to 0 modulo the non-stationary ideal but
preserves the winning strategy of I (by the absoluteness described above). For detailed proof,
see 4.81.

2.4.4 Games as Bridges Between Set Theory and Model Theory, Part II1

Suppose that T is a theory. The motto of Chapter 4 is that the more complex the isomorphism
relation of T' is model theoretically, the more complex it is set theoretically and vice versa. Let
us take a look at how do we establish such a correspondence and what plays the role of bridges
between set theory and model theory in this case.

The “Bridge Theorems” for this purpose are Theorems 4.68 and 4.70 on pages 112 and 115
respectively and the main ingredient of their proofs is constituted by — as the reader has surely
guessed — games.

As discussed in section Weak EF-Games above, the EF -equivalence is the same as the
Lsow-elementary equivalence. Thus, if EF-equivalence characterizes the isomorphism relation
of a theory T, i.e. all models A and B of T are isomorphic precisely when player II has a
winning strategy in EF,, (A, B), then it means that the models of T' can be fully described by
the language Lo, which makes the Model Theorist regard 7' as uncomplicated.

The first of these two theorems, 4.68 and 4.70, asserts that the isomorphism relation is Borel
if and only if the isomorphism types are classified by an Ehrenfeucht-Fraissé game: there exists
a tree t with no infinite branches and with at most k successors at each node such that two
models of the theory A and B are isomorphic if and only if player Il has a winning strategy
in EFy (A, B). This game differs from the EF-game defined above only a little. In EF} player
I picks at his moves a subset of size < x of the models’ domains together with an element of
t above any element picked by him earlier. Player II in turn chooses a partial isomorphism f
between the structures so that the set chosen by Iis included in dom f Uran f. Additionally f
has to extend all previously chosen partial isomorphisms. The game ends when player I cannot
go up the tree anymore.

Oune direction (from right to left) of the proof of 4.68 uses the fact that each Borel* set is
a Borel set if the defining tree has no infinite branches. Assuming that there is such a tree,
we take all possible plays of the game EF} (A, B). These plays form a tree u with no infinite
branches either. We label the branches of that tree with open sets that consist of model pairs
(or their codes) whose restrictions to the set picked during the game are isomorphic, i.e. player
I has won. Using the fact that isomorphism is characterized by this game, we show that the
Borel* set defined by u and the described labeling is precisely the isomorphism relation.

For the other direction, we form a model for each pair of models as follows. Let A and B
be models of T' we define a pair-structure (A; B) with the property that (A;B) = (A B) —

6Technically the function is UG and G is a sequence of partial functions, but we omit the difference and trust
the reader.
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A= A ANB = B. Then the isomorphism relation =7 becomes a subset of the set of pair-
structures and we assume that it is Borel. From Theorem 4.25 described above in section
Games as Bridges Between Set Theory and Model Theory, Part II, we have that there is a
sentence 0 of L.+, which defines the set E = {(A;B) | A = B}, so (by the standard results
4.10, 4.11 and 4.12) there is a tree ¢ which depends on # such that player II has a winning
strategy in EF} ((A;B), (A’; B')) only if the equivalence holds: (A;B) € E < (A;B) € E.
If we assume on contrary now that there are 4 and B isomorphic but not distinguishable by
EF; (A, B) (for this very same t), then we get a contradiction as follows: clearly (A, A) € F
and player IT has a winning strategy in EFy ((A;.A), (A; B)), but (A; B) ¢ E.

The second “Bridge Theorem”, 4.70, states a result that is, in a way, a converse to 4.68:
it states that if for every tree ¢ of a certain kind there are non-isomorphic models of T that
cannot be distinguished by EF}, then the isomorphism relation of T cannot be Al. Since
Borel C A1, the result is stronger than the corresponding direction of Theorem 4.68, although
the assumptions are stronger as well. The proof is based on a Lemma given by A. Mekler and
J. Vadnénen in their joint work on 2! in 1993 (Lemma 4.69 on page 115) which characterizes
the Al-sets via existence of certain trees.

The proof is quite detailed and its explanation in this introduction is unnecessary. However
the main idea (apart from Lemma 4.69) is based on the following. Let ¢ be a tree of (almost)
all partial isomorphisms between A and B. Now, assuming that the tree is carefully defined, if
player I has a winning strategy in EF} (A, B) for some tree u, then it is possible to construct
an order preserving function from w to ¢ using the winning strategy of player II: going through
all possible games in which player I goes up u, look at how player I goes up the isomorphism
tree and define the function accordingly.

2.5 The Ordering of the Equivalence Relations

In section Generalized Baire and Cantor Spaces above it was defined what it means for an
equivalence relation Fj to be Borel reducible to an equivalence relation F;. Given any class £
of equivalence relations on 2%, a legitimate question goes: “What kind of an ordering (£, <p)
is?”

The model theoretic part of the work is interested in the case where £ is the set of all
isomorphism relations on model classes of various theories. Our contribution to that question
is somewhat roughly and incompletely explained in the sections above.

But these contributions do not tell us much about the structure of this ordering. Is there
any hope of finding long chains, not only of isomorphism relations, but even of any Y}-relations
whatsoever? Can we generalize well known theorems from classical descriptive set theory such
as the Glimm-Effros dichotomy and the Silver dichotomy? In case x = w it is known that the
ordering of Borel equivalence relations (£2,<p) is very complicated: it contains a copy of the
ordering of Borel subsets of the reals ordered by inclusion (Adams-Kechris 2000). An older
result by Louveau and Velickovic from 1994 tells us that it contains a copy of the power set of
w ordered by inclusion modulo bounded sets.

The proofs of these theorems are not generalizable to the case K > w (at least we didn’t
see them to be), because they rely a lot on the induction principle on natural numbers, ergodic
theory, measure theory or even computability theory. The inductive proofs either fail at limit
ordinals or are based for example on the usage of regressive functions which are not supposed to
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be constant on a large set, so anyone in the know realizes that the generalizations are hopeless.

2.5.1 On the Silver Dichotomy

The Silver Dichotomy for a class of equivalence relations £ containing the identity relation,
states that if an equivalence relation F € £ has more than s equivalence classes, then the
identity relation id is reducible to it. Our account on that issue is summarized below. Recall
that =% is the isomorphism relation of the models of T' of size x seen as a relation on 2% via
coding.

+ Suppose & = {=4.| T is countable complete FO-theory}. If x is inaccessible, then the Silver
Dichotomy for £ holds, Theorem 4.37. The proof uses stability theory. If the theory is not
classifiable, we use a similar argument as that which allowed us to reduce the equivalence
modulo a version of a non-stationary ideal to =7 for successor . If it is classifiable, then,
once the number of models is greater than x, the depth of the theory is of necessity greater
than 1. This allows us construct primary models Ag for each S C & such that Ag cannot
be isomorphic to Ag/, if S A S’ is stationary (roughly similar argumentation as in the above
section Unclassifiable Theories by looking at “filtrations”).

+ There are theories on the edge: theories whose isomorphism relation is bireducible with the
identity, see Theorems 4.38 and 4.39.

» Suppose £ is the set of Borel equivalence relations. Then it is consistent that the Silver
Dichotomy fails for £. The counter example is constructed from a Kurepa tree, which is a
closed subset of 2%, still being of cardinality between x and 2%, or a version of that.

2.5.2 Above Borel

As pointed out above, we didn’t find it useful to try to generalize the proofs of Velickovic-
Louveau or Adams-Kechris theorems in order to show that (£, <p) is complex for some &.

However, adopting other (set theoretical) methods we first proved that if £ is the set of Borel*
equivalence relations, then starting from GCH one can force that this ordering contains a copy
of the power set of x ordered by inclusion, Theorem 4.55 page 99. Recall the theorem which
says that the equivalence modulo the non-stationary ideal is not reducible to the isomorphism
relation of a classifiable theory (Theorem 4.81) whose proof was explained above under the
caption Classifiable Theories. The proof here is similar. Only now we take a stationary set S
and declare n C k and £ C & equivalent, if (n A £)N.S is non-stationary. Denote this equivalence
relation by Ng (that is not how it is denoted in the text).

Now, if S and S’ are sufficiently different stationary sets (satisfy some non-reflecting require-
ments), then we can use similar idea as in the proof of Theorem 4.81 to show that Ng €5 Ng'.
On the other hand, if S C S’, our relation Ng is easily seen to be reducible to Ng:.

I said similar idea as in the proof of Theorem 4.81. But in that proof the idea was based on
the fact that the other equivalence relation had in some sense more forcing absoluteness than
the other, so that we could falsify the reduction by a forcing argument. But now both relations
are equally non-absolute. The trick is that we choose our forcing always depending on S and
S’ and put all our effort to make the forcing change Ng but preserve Ng/. This certainly makes
the proof much more complicated and factually it is almost five pages longer.
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The same idea is used then to show that it is consistent that the equivalence relations
modulo A-stationary ideals are all incomparable to each other, where A runs through all regular
cardinals below x, Theorem 4.59, page 104.

On the other hand, the existence of a certain diamond sequence implies a converse, namely
that the equivalence relation modulo p;-non-stationary ideal is reducible to the equivalence
relation modulo pe-non-stationary ideal when p; < po < k are regular. Thus the consistency of
a weakly compact cardinal (which guarantees the needed diamond) implies that it is consistent
that the equivalence relation modulo the w-non-stationary ideal is continuously reducible to
the equivalence relation modulo wi-non-stationary ideal on 2“2 and some related results, see
Theorem 4.58.

All equivalence relations so far are not Borel, because they contain some version of the
equivalence modulo the non-stationary ideal which cannot be Borel by Theorem 4.53, page 99..

2.5.3 Borel Equivalence Relations

Finally, in Chapter 5 the answer to the question concerning the complexity of (£, <p) is im-
proved. It is shown that the power set of k ordered by inclusion modulo the w-non-stationary
ideal can be embedded into (€2, <), the order of Borel equivalence relations ordered by Borel
reductions. This result holds in ZFC, assuming as always k<" = k > w. Further results are
proved with some extra assumptions. If [Jy holds and « is the successor of A, then P(x) ordered
by inclusion modulo the non-stationary ideal can be embedded into (€2, <p). If & is not a
successor of an w-cofinal cardinal or else kK = wy and <, holds, then P (k) ordered by inclusion
modulo bounded sets can be embedded into (€2, <j).

Prior to the appearance of these ideas, it was observed by T. Hyttinen and S. D. Friedman,
that the Glimm-Effros dichotomy fails for £ > w in the sense that there exists a Borel equivalence
relation not reducible to the identity but to which the equivalence relation modulo bounded
sets cannot be embedded either. This is strengthened in Chapter 5, because all relations in
the ranges of the embeddings described above are strictly between the identity and Ejy, the
equivalence relation modulo bounded sets.

For n,& € 2%, let n /A€ be the function in 2% such that for all @ < k, (N A&)(a) =0 <=
n(a) = (o). For each set S C k define the equivalence relation Eg as follows: n,& € 2 are
Egs-equivalent, if and only if for all ordinals o € SU{r} there exists § < a such that (n A &) (y)
has the same value for all v € (8, ), and if a = &, the value is 0 (Definition 5.19).

The rough idea is that we want to show that

1. if 8"\ S is stationary, then Eg €5 Fg and
2. if S’ \ S is non-stationary, then Es <p Eg'.

If we proved this, then the function S — Eg would be an embedding from P(x) into the Borel
equivalence relations and would preserve the reverse ordering modulo the non-stationary ideal.
Moreover, by taking S = &, we get from (2) that Es <p Fjy, since Ey = Ez. On the other
hand by (1), Ey €5 Eg for all stationary S and the identity relation reduces to each Eg via
the same reduction as the identity is normally reduced to Ej.

Well, item (1) can indeed be proved with “stationary” replaced by “w-stationary”, that is
Theorem 5.27.1a for A = w. The idea is as follows. Suppose that there is a continuous reduction
f from Eg to Fg/. The proof for a Borel reduction uses precisely the same argument using the
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existence of a co-meager set in which f is continuous, but care should be taken in order to hit
that co-meager set. (This is done in detail in the actual proof of Theorem 5.27.) If p € 2%,
a < k, let p71 denote the function n € 2% such that n | a = p and n(8) = 1 for all § > «
and similarly p™0. Player I and II play the cub-game of length w, see section Cub-games on
page 15. Player I wins if they hit an element of S”\ S. Let us define a strategy for player II.
At each move n she defines elements p9 € 27+, pl € 27 0 € 27 and ql € 27 as follows.

At even moves n she puts n° = p 70 and n' = p._ ;1. Now n° and n' are not Es-
equivalent, so she can find, by continuity of f, a v, > 7/,_; and ¢° and ¢} with dom¢® =
domg,, = 7, such that for some 7, ; < B8 < v, ¢3(8) # ¢,(8) and f[Np] C Ngp and
f[Np}l] C Ng1, where N, is the basic open set determined by p. After she has completed that,
she replies in the cub game by +/,.

At odd moves n she puts n° = p¥ ;70 and n' = p._, 0. Now " and n'! are Es-equivalent,
so she can find, by continuity of f, a v, > 7/,_; and ¢° and ¢. with dom¢® = domgq. = 7/,
such that for some v, _; < 8 <7, ¢3(8) = ¢, (8) and f[Nyo] C Ngo and f[Ny1] C Ngi. After
she has completed that, she replies in the cub-game by /.

Denote this strategy by o.

Now player I takes an ordinal o* from S’\ S that is closed under o. This is possible, because
the set of ordinals that are closed under o is cub and S’ \ S is stationary. In that way player
I can win the game by playing towards that chosen ordinal. During the game player II has
constructed elements p® = |, ., P, p' = Upcw P> ¢° = Upcw @ and ¢' = U, ., ¢, such that
dom p® = domp' = dom ¢® = dom ¢! = a*, p® and p' take cofinally same and different values
as well as ¢ and ¢' take cofinally same and different values. Additionally f [Npo] C Ngo and
fINp1] C Ny, but this is a contradiction, because p® and p' can be extended to Eg-equivalent
elements, since a* ¢ S, but ¢° and ¢! cannot be extended to Eg-equivalent elements, since
a* e S

However item (2) cannot be proved in its present form. The relations need to be modified
first. That is why we define a product of two equivalence relations on page 149.

Using this method P(x) modulo the A-non-stationary ideal can be embedded into Borel
relations, provided GCj-characterization holds (the cub-game characterization of A-stationary
sets). So when we embed P(x) modulo the general non-stationary ideal, more work is needed.

In order to reduce the problem to fixed cofinalities, we split stationary set .S into parts
of fixed cofinalities. The idea is to take the sum (a disjoint union, Definition 5.26) of the
corresponding equivalence relations. Let us call the equivalence relations that form the sum
building blocks and if the building block corresponds to, say cofinality A, call it building block
of cofinality \.

Before we take the sum, we have to make sure that the building blocks of coordinates of
different cofinalities cannot be reduced to each other. This is done by adding (taking a union
with) w-stationary test sets, so that they are disjoint for different cofinalities. This raises the
problem of what should be done with the building blocks of cofinality w and this problem is
solved by taking products of relations in an appropriate way, see the equation on page 156.

Since we are assuming in that proof that s is not inaccessible, if S"\ S is stationary, then
there is a cofinality A in which S’ \ S is stationary. The A-cofinal building block cannot be
reduced to other than the A-cofinal building block, because of the test sets and neither it can be
reduced to the A-cofinal building block by the A-stationarity of S’ \ S. Therefore the building
block of cofinality A cannot be reduced to any coordinate. However it is conceivable that it can
be reduced to the sum of products in some other nasty way, but we show that at least on some
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non-meager set the building block has to be reduced fully to some other building block and this
is enough to carry out the contradiction described above.

2.6 Summary

Historically, millennia ago, the real line was but an abstract yardstick to measure nature.
Nowadays it also codes classes of countable groups and orderings, it gives differential structures
to manifolds, hosts probability distributions and forcing notions, serves as a building block to
a vast majority of applied mathematical models, gives us an intuition of the infinity and large
cardinals and exploits the transcendental limits of our understanding.

No matter where we grasped our motivation to study the “uncountable version” of the reals,
as John von Neumann puts, there might be surprises:

A large part of mathematics which becomes useful [is] developed with absolutely no
desire to be useful, and in a situation where nobody could possibly know in what
area it would become useful; and there were no general indications that it ever would
be so.

On one hand this work continues a long standing tradition of searching for invariants of
model classes or proving that certain invariants cannot exist. The first paper, Chapter 3,
is wholly dedicated to such an invariant; it tells how strong that invariant is, how weak it
is, how it differs from the other known invariants and what are its boundaries. The second
paper, Chapter 4, draws a connection between the model theoretical invariant searching and
the descriptive set theory of generalized Baire spaces whose development started twenty years
ago. Finally, Chapters 4 and 5 drive further the set theory of the generalized Baire and Cantor
spaces. Since most of the proofs of the standard descriptive set theory do not generalize to this
context, we had to look at the questions with a fresh attitude. In particular we have found some
new proofs for some classical theorems and those proofs do generalize; on the other extreme we
have falsified many generalization attempts, such as the Silver dichotomy, see section Failures
of Silver’s Dichotomy, page 88.

On the other hand this thesis has a potential to give a basis for a new research tradition.
The picture of the generalized descriptive theory has been made clearer; some questions that
were obvious to ask are now answered and new questions that haven’t been asked before are
found. It is, if only a little, clearer now, which directions of this research area are promising
and which on contrary less so.

The next major step on the side of model theory would be to understand better the ordering
<p in the set of the isomorphism relations of countable complete first-order theories on models
of some fixed cardinality. This could greatly improve and refine our understanding of model
theory and more generally, why some problems are easier than others. Our contribution here is
that this ordering is at least in harmony with the well established principles of stability theory
and is worth looking at. The dividing line between classifiable and unclassifiable theories,
the non-stationary ideal (see section Model Theory, page 21), can be seen as a set theoretic
strengthening of Shelah’s Main Gap Theorem [39].

The set theoretic questions are countless. What else can we learn about the ordering of the
equivalence relations? What dichotomies are there? Despite that the obvious generalization of
the Glimm-Effros dichotomy fails, maybe there is another equivalence relation so that if Fj is
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replaced by it, then a dichotomy holds? What about the complexity hierarchy? What happens
if 2¥ > k7 Are there other important implications than the model theoretic ones?

A Personal Remark

Now, as this work is complete and I look back, I see that this process was of great impact on me.

Although far from all results being mine, I learned a lot from comprehending, processing
and putting them onto paper. Never before have I practiced anything as intensely nor imagined
that so much is possible to learn and understand.

The skill that I practiced is the skill of abstract thinking. It was a difficult psychological
process which gave awesome results. It is like developing a sixth sense; with this sense I can
now reliably look at abstract mathematical objects, probe them, modify them, discard them or
develop them.
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The argument “I may be
dreaming” is senseless for this
reason: if I am dreaming, this

remark is being dreamed as well —
and indeed it is also being

dreamed that these words have
any meaning.

Ludwig Wittgenstein

3.1 Introduction

Abstract

In this paper we define a game which is played between two players I and II on two mathematical
structures A and B. The players choose points from both structures in o moves and in the end of
the game the player II wins if the chosen structures are isomorphic. Thus the difference of this
to the ordinary Ehrenfeucht-Fraissé game is that the isomorphism can be arbitrary whereas
in ordinary EF-game it should be determined by the moves of the players. We investigate
determinacy of the weak EF-game for different « (the length of the game) and its relation to
the ordinary EF-game.

3.1.1 History and Motivation

The following question arises very often in mathematics: Does a given description of a mathe-
matical structure describe the structure up to isomorphism? Or equivalently: Is the structure
satisfying given conditions unique? And if it is unique, can we further weaken the description
or the conditions? Or if it is not unique, then how good the description still is? Model theory
and mathematical logic in general has a long history in studying these questions, in particular
classifying those ways of description which never lead to a unique solution, studying how much
information those descriptions provide, studying various equivalence relations between struc-
tures which are weaker than (but as close as possible to) isomorphism, constructing strongly
equivalent non-isomorphic models and giving methods to establish such weak equivalences be-
tween structures, which under some conditions may lead to a unique description.

On the other hand mathematicians often seek for methods to distinguish between structures
(invariants), which would be mathematically simple but which would still classify the structures
of a certain class well enough. In many cases, for example, isomorphism is too hard an invariant,
though it is the best possible for distinguishing structures. If one can show that a strong
invariant does not distinguish between structures of a certain class of structures, then one
knows that any invariant that would distinguish should be even more powerful.

One of the most celebrated solved problems in this area which was also one of the starting
points for further investigation was the Whitehead’s problem, which asks whether all Whitehead
groups' are free abelian. Saharon Shelah proved in 1974 that the answer is independent of
ZFC. Similar question that has been studied is whether an almost free (abelian) group is free

LA group G is Whitehead, if it is abelian and: For all abelian B and surjective homomorphism f: B — G
with ker(f) = Z there exists a homomorphism g: G — B with fog=idg
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(abelian). An almost free (abelian) group is such a group that all its countable subgroups (or
more generally all subgroups of size < « for £ an uncountable cardinal) are free (abelian). Many
other properties of free and almost free groups are studied in this context; they appear also in
the present chapter (Section 3.5.2, page 41).

In the 1950’s A. Ehrenfeucht and R. Fraissé introduced back-and-forth systems and what we
know today as Ehrenfeucht-Fraissé games. They showed that player II has a winning strategy
in this game of length n < w on structures A and B in a finite vocabulary if and only if the
structures satisfy exactly the same first-order formulas of quantifier rank n. Carol Karp proved
in 1965 that having a winning strategy (of player II) in EF-game of length w is equivalent to
Loow-equivalence. These characterizations have already proved to be very useful. Instead of
having the fact that the structures satisfy the same L ,-formulas which is very subtle and
difficult to handle, we have back-and-forth systems or winning strategies, for which things are
(almost) always easier to prove and which are intuitive concepts.

In 1977, Kueker introduced countable approximations, which are closely related (as appears
in the present article) to EF-games. Kueker studies how much information about a model can
we obtain by looking at its countable submodels. It turns out that two structures have a closed
unbounded set of isomorphic countable substructures if and only if they are L..,-equivalent
which by the above discussion is equivalent to a winning strategy of player II in the EF-game
of length w.

Kueker’s result can be reformulated in terms of games. If one does this reformulation, one
notices that the new game played is a natural modification of the EF-game, which at first sight
is easier for player Il i.e. provides a weaker equivalence. But as the results show it is not the case
(see Theorem 3.17, page 40). This article can be seen as a development of the idea of this new
game, generalizing the concept of countable approximations to “uncountable approximations”,
giving new viewpoints on characterizations of equivalences, introducing new similarity relations
between structures and finally constructing models with interesting properties with respect to
the given similarities. For example we give a method to construct structures on which the weak
game of length k can be non-determined for certain x and this method also provides structures
with non-reflecting winning strategies (see Section 3.6, page 55).

The authors wish to express their gratitude to Jouko Vaindnen who suggested them the
topic of the paper.

3.1.2 The Weak Game and a Sketch of the Results.

We introduce a similarity? relation on the class of first order L-structures for some (usually
relational) vocabulary L. We define a two player game, the weak Ehrenfeucht-Fraissé game,
which defines this relation in the same manner as the ordinary Ehrenfeucht-Fraissé game defines
the EF-similarity relations®. In the weak Ehrenfeucht-Fraissé game of length o on structures
A and B players I and II choose points from both structures and in the end player II wins if
and only if the chosen substructures of size < || are isomorphic; notably the isomorphism can
be arbitrary to contrast the ordinary EF-game. We denote the weak EF-game of length « on
structures A and B by EF (A, B).

2We use the word similarity relation instead of equivalence relation, because not all of them are equivalence
relations as shown later in this article.

3The relations being "player 1 does not have a winning strategy in the EF game between A and B’ and
?player II has o winning strategy in the EF game between A and B”.
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In the case of game length w, the question of whether EF} is determined and whether it
has any difference to the ordinary Ehrenfeucht-Fraissé game was solved — in a slightly different
context and formulation — in [30]. It turns out that a player wins EF,, if and only if he or she
wins EF}, and since EF,, is determined, also EF}, is determined.

Using this game we are able to generalize Kueker’s equivalence relation to longer games. In
fact we define two weak games. The other one is denoted EF°. EF° is weaker than EF and EF*
is weaker than EF°. We are more concentrated on studying EF*, because it has clear model
theoretic and set theoretic interpretations (see Theorem 3.12, page 38 and Section 3.5.4 page 47,
where a connection to the cub-game is drawn), it is easier to study and most importantly, since
the game EF° falls in between of the two other games, many results for EF* imply results for
EF°.

When we say the weak EF-game, we mean EF*. To sum up, we give the following results. If
the player X wins the game G if and only if he wins G/, we say that these games are equivalent,
and if not, we say that they are different. Here X is of course I or II.

e (Theorem 3.15 on page 38) If x<* = x, then I1EF)(A, B) = I1EF:(A,B).

(Theorem 3.17 on page 40) The games EF,, and EF}, are equivalent.

(Examples 3.18 and 3.19 pages 40 and 40) If w < o < wy, then EF}, is properly weaker
than EF,,.

e (Theorem 3.22 on page 41) It was shown in [35] that it is consistent with ZFC that GCH
and EF,, is determined on structures of size < Ny. This implies (using 3.15 page 38) that
it is consistent that all the games EF,, , EF;, and EF], are equivalent on structures of
size < Ny and are all determined.

o (Theorems 3.28 and 3.29 on pages 42 and 43) Assuming [J,,, in [35] groups F and G
of cardinality Ng were constructed such that EF,, (F,G) is not determined. On these
structures EF}, is determined and II wins. It is easy to generalize to (J,, and EF,, EF}.

e (Theorems 3.30, 3.31, 3.34, 3.33) Using these structures F and G we can construct struc-
tures F', G', M(F) and M (G) (under GCH all are of cardinality No) such that EF,,, (F’,G’)
is non-determined, but player Il wins EF;, (F',G’); the game EF;, (M(F), M(G)) is non-
determined, but II wins EF, (M (F), M(G)).

e (Theorem 3.39) It is consistent with ZFC that there are structures A and B of cardinality
N, such that EF], (A, B) is not determined.

e (Theorem 3.40) In ZFC, there are structures A and B (of course bigger than R,) such
that EF;, (A, B) is non-determined.

e (Example 3.20 and theorems 3.41, 3.42) In ZFC there are such structures that player I has
a winning strategy in EFj (A, B) but not in EF}, (A, B), where o < 3 are ordinal numbers.
It is consistent with ZFC that the above holds with « and 3 being both cardinals.



3.2. Definitions 00 35 00

3.2 Definitions

In this paper structures are ordinary structures of a first order vocabulary L unless stated
otherwise and are denoted by letters A, B, C and their domains respectively by A, B, C. Also
dom(.A) is the domain of A. If f: X — Y is a function, we denote X = dom(f) the domain of
fs flA] or fA the image of a set A C X as well as f~!B = f~![B] the inverse image of a set
B C Y. Range is denoted ran(f) = f[X].

3.1 Definition. A game G,(S) consists of a set S, game length - (an ordinal) and a winning
set W C (S x S)7. It is played between two players, I (he) and II (she). On the move 5 < v
player I chooses ag € S and then II chooses bg € S. Player II wins if and only if (a;, b;)i<y € W.
Otherwise player I wins.

3.2 Definition. Let A and B be structures and ~ an ordinal. The Fhrenfeucht-Fraissé game of
length v, EF. (A, B), is played as follows. On the move o, o < 7, player I chooses an element
aq € A (or b, € B). Then I answers by choosing an element b, € B (or a, € A). II wins if
the function f, which takes a, to b, for each a < +y is a partial isomorphism A — B. Otherwise
player I wins.

3.3 Definition. Let A, B and v be as in 3.2. The weak FEhrenfeucht-Fraissé game of length -,
EF’ (A, B), is played as follows.

Player I chooses an element ag € AU B
Player II chooses an element bg € AU B.

Let X = {an | @ <y} U{bs | @ < v} be the set of all chosen elements. Player II wins if the
substructures generated by X N4 and X N B are isomorphic. Otherwise I wins.

3.4 Definition. The game, which is exactly as in Definition 3.3, but where II has to play from
the different structure than I did on the same move, will be denoted EF (A, B).

By the weak Ehrenfeucht-Fraissé game we will refer to the game EF* defined in 3.3 and by
the weak EF-games we will refer to both EF* and EF°.

3.5 Definition. A strategy of player I in some game G.(S) is a function 7: S<7 — S. A
strategy 7 of player I is winning if player I always wins the game G,(S) by playing the
element 7((ba)a<p) on the B:th move, where b, are the elements that player II has chosen
before the §:th move, for each g < 7.

Note that in the case of Ehrenfeucht-Fraissé games on structures A and B, a strategy is
a function 7: (AU B)<7 — (AU B). The concepts of a strategy and a winning strategy are
defined analogously for player II. A game is said to be determined if one of the players has a
winning strategy, otherwise not determined or non-determined.

3.6 Definition. Assume that 7 is a strategy of player I and o is a strategy of player II.
Consider the game where I uses 7 and II uses o. If I wins, we say that o beats 7 and vice
versa.
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3.7 Lemma. A game G is non-determined if and only if for every strategy T of 1 there exists
a strategy of II that beats T and for every strategy o of Il there exists a strategy of I that beats
.

Proof. Straight from the definitions. O

Let us introduce some notations that will be used throughout the paper:

X1tGE Player X has a winning strategy in the game G.
A=B A and B are isomorphic.

A~, B  means the same as IITEF, (A, B).

A~2 B means the same as IITEF? (A, B).

A~ B means the same as IITEF (A, B).

All of the relations, ~., ~3 and ~ are equivalence relations on the class of L-structures.
It is clear that
T EF, (A, B) = T1EF] (A, B) = IITEF (A, B)

and
I1EF, (A, B) < I1EFS (A, B) < I1EF’ (A, B).

The converses are those which are hard to prove or disprove.
An easy example shows that EFy (A, B) and EF;},(A, B) are non-equivalent games for finite
E>1.

3.8 Example. Let A = N and B = Z equipped with the usual ordering on both. Then I
wins EFy (A, B) by playing first 0 € N and then n — 1 € Z, where n is the first move by II, so
I1EFk(A, B). On the other hand all finite linear orderings are isomorphic if and only if their
cardinality is the same. Thus I1EF} (A, B) and, I1EF; (A, B). In fact 1T EF; (A, B) holds
for all k¥ < w and linear orders A and B.

Let us turn now our attention to infinite games. Let x be a cardinal. Consider the game
EF;(A,B). Let S={X Cc AUB | |X| <k, XN A= XnNB}. Under the assumption k<% = x
player II has a winning strategy in EF, (A, B) if and only if S contains a k-cub set, and player
I has a winning strategy if and only if the complement of S, e.g. [AU B]<"€+ \ S contains a
k-cub set. The used concepts will be defined first.

3.9 Definition. Let (X, <) be a partial order. We say that a subset C' C X is a A-cub if the
following conditions are satisfied:

Closedness Assume that (¢;);< is an <-increasing chain of elements of C' and there exists an
element ¢ € X such that V(i < A)(¢; < ¢) and for all ¢ € X if ¢ < ¢, then ¢ < ¢; for
some i < A\. Then ¢ € C. The element c is called the supremum of the chain (¢;);<x.

Unboundedness For each ¢ € X there exists ¢/ € C such that ¢ < ¢'.
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Notation: [X]<"" = {Y C X | |Y| < x*}. This is not to be confused with already used
(X)<" = {f: o = X | @ < 7}. The set [X]<*" = {Y C X | |Y| < "} equipped with the
proper subset relation Y <Y’ <= Y C Y’ is a partially ordered set and it is understood what
is meant by a A-cub subset of [X]<*". A set C' C [X]<*" is cub if it is A-cub for all A < k.

Let A and B be two structures and let

S={XCAUB||X|<r XNAZXNB}C[AUB]<*" ().
Continuing this approach let us define:

3.10 Definition. Let A and B be some structures of the same vocabulary and A, 4 < k non-

zero cardinals, the length of the game & is infinite. Let us define the game EF)#(A, B), which
is played between I and II as follows. On the move o < &,

Player I chooses X, C AU B such that |X,| < A and then
Player I chooses Y, C AU B such that | X,| < p

In the end II wins if the substructures generated by AN
are isomorphic. Otherwise I wins.

X,UY, and BN{J,_, XaUY,

a<k a<k

In Definition 3.3, EF}, was defined for ordinals o.. We shall see now that when o = & is an
infinite cardinal, the defined games coincide.

3.11 Theorem. Let A\, pu and k be non-zero cardinals such that A\, u < K and x infinite. Player
I (1) wins the game EF} (A, B) if and only if he (she) wins the game EF (A, B).

Proof. Fix a bijective map f: k x k — k \ {0} such that for each o we have f(«, ) > a.
Assume first that II has a winning strategy in the game EF)*. Then the strategy of I in
EF; (A, B) is as follows. She imagines that she is playing EF)# against I. On each move she

chooses X, C AU B according to her strategy in the game EF}*, and when he chooses an
element x, € AU B, she considers it as the set {x,} being played by I in her imaginary game.
Also, she enumerates all these sets X, = {x,3 | 8 < k} (enumeration need not be one-to-one)
and on the v:th move she plays z¢-1(,) in the actual game. Thus she eventually picks the same

set as she would in EF)#,

On the other hand, if I wins EF’ (A, B) the strategy for her in EF)*# is a reasoning somewhat
converse to the previous: she imagines that they are playing EF). Every time he chooses a set
Xo € AU B, she enumerates it: X, = {za,5 | 8 < £} and imagines that he played x;-1(4) in
the game EF}, and in the actual game she plays {z,}, where z, is according to the winning
strategy in EF}. Eventually the same sets are enumerated as they were playing the imaginary
game of II. So the resulting substructures are isomorphic as she used a winning strategy.

The proofs for player I are completely analogous. O

Remark. This shows that actually all games EF)* (A, B), A, u < s are equivalent to the game
EF%*(A,B).
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*

It is also not difficult to see that in EF%* (A, B) we could require player II to choose on each

move such an X C AU B that X N A= X N B and it would not change the game (i.e. II wins
exactly on the same structures as before as well as I).

Using this new definition it is easy to see that (recall the definition of S from (x)):

3.12 Theorem. If S (resp. [AU B|<" \ S) contains a k-cub set, then IL (resp. 1) has a
winning strategy in EFY (A, B). If k<" = &, then the converse is also true: if I (resp. 1) wins
the game EF%(A, B), then S (resp. [AU B]<*" \ S) contains a k-cub set. O

3.13 Corollary. If I (resp. II) does not have a winning strategy in EF’ (A, B), then S (resp.
[AUB|<<"\ S) is k-stationary (intersects all k-cub sets). O

3.3 Similarity of EF, and EF}

Since the weak game is easier for the second player, the implications which are shown on the
Figure 3.1 are immediately verified.

M1 EF* (A, B)

T

~I1EF,(A, B) L M1 EF, (A, B)

T

~I1EF’(A,B)

Figure 3.1: Implications that follow directly from the definitions of the games.

One more implication can be proved under k<% = k:

3.14 Theorem. Let A and B be any structures and k a cardinal such that k<% = k. Then
ITEF,.(A,B) = I1EF. (A, B).

For later needs we shall prove a slightly more general result:

3.15 Theorem. Let A and B be any structures, k a cardinal and « an ordinal such that
<% = |Uger #°| = K. Then T1EF5(A, B) = I1EF; (A, B).

Proof. Assume that 7: (AU B)<® — (AU B) is the winning strategy of player Iin EF, (A, B).
We now claim that the set

W ={X € [AUB]<*" | X is closed under 7 and 7(@) € X} C [AUB]*"

is k-cub. To see this, note that:

1. If X € [AUBJ*", then by k<® = & there exist X’ C AU B, such that |X'| = &, X' is
closed under 7 and X U{r(@)} C X’. So X < X' e W.
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2. Assume (Xp)g<y, is increasing and each X is closed under 7. To see that |, X is also

<«
closed under 7, let k € (U5<HX5) . Then k € (Xp)” for some § < k and v < a < &,
but Xz is closed under 7.

Now it remains to show that if X UY € W (X C A, Y C B) then X and Y cannot be
isomorphic. By definition of W the set X UY is closed under 7, the winning strategy of I in
EF,(A, B). If there were an isomorphism f: X =2 Y, then II could win the game EF, (A, B)
when I uses 7: she plays according to the isomorphism f. Note that the first move of I 7(&) is
in X UY again by definition of W, and since W is closed under this strategy, also all subsequent
moves are there. A contradiction. So W is a k-cub set outside the set S of Theorem 3.12.

Now by theorem 3.12 I has a winning strategy in the game EF} (A, B) and so also in the
game EF, (A, B). O

3.16 Corollary. If k is such that k<" = k and EF (A, B) is determined, then EF (A, B) as
well as EF; (A, B) are determined and

A~B <— A~ B <— A~"B.

Proof. When EF-game is determined, we can add the implication =1 1+ EF,(A,B) — I 7
EF,. (A, B) to the diagram of Figure 3.1 and by theorem 3.15 we can add the implication
-I1EF.(A,B) - - I1EF.(A, B). After completing all implications which follow by combin-
ing th existing ones we obtain:

1 EF (A, B)

]~

~I1EF,(A,B) L M1 EF, (A, B)

\/

~I1EF% (A, B)

3.4 Countable Games

3.4.1 The Shortest Infinite Game EF

Let S={X CAUB|XNAZXNBand |X| <w} C[AUB]<“* for some structures A and
B. Recall that A =, B means that for all ¢ € Lo, A =¢ <= B ¢. It was proved in
[30] (Theorem 3.5) that

(a) A=ccw B <= S contains a cub-set
(b) AZsw B < [AUB]<“t\ S contains a cub-set.

This can be reformulated by Theorem 3.12 as follows:



00 40 oo Chapter 3. Weak Ehrenfeucht-Fraissé Games

(a) A=sw B <= OTEF,(A,B)
(b) A#ww B <= ITEF](A,B)
3.17 Corollary. The games EF; (A, B) and EF; (A, B) are determined for every A and B and
Any B <= A~ B <<= A~]B.

Proof. Because w<“ = w, we can apply 3.16. O

3.4.2 Counterexamples for Game Length o, w < a < w;

As mentioned, the result of Theorem 3.17 does not work for finite ordinals and it does not
generally extend for example to ordinals w < a < w; either.

3.18 Example. Let A = B = w;, R a unary relation such that R4 = w, R® = w; \ w. Now
clearly A ~,, B. Also if I fills the set w C A during the first w moves, the second player loses
the ordinary EF-game on the next move i.e. 11 EF,;1(A,B). But II survives in the weak
game. She survives as long as the length of the game is countable, because the only thing she
has to do is to choose the same amount of points with properties R and —R as I does.

3.19 Example. Consider the structures constructed in [37]: For B C w; let

o(B) = | {o} x 7a,

a<wi

where 7, =1+ Q if « € B and 7, = Q if @ ¢ B. The order on @ is lexicographical, that is
(a,q) < (B,p)if a < Bora= L and ¢ < p. We set now A = ®() and B = ®(w; \ w). The
game EF, 2(A, B) is a win for I, which implies the same for EF,, (A, B), where n > 2.

On the other hand it is easy to see that ITEF) (A, B).

w+n

Another example is given to manifest that player I can loose a shorter game but win a
longer one on the same structures.

3.20 Example. Let A = (R, <) be the real numbers with the usual ordering and B with domain
B = R X wy and lexicographical ordering ((z,a) < (y,8) <= a < pV(a=pFAx <y)).
These are dense linear orderings and are EF,-equivalent as a simple back-and-forth argument
shows, thus IITEF;, (A, B). However ITEF, (A, B): he can play such that an unbounded set
of A is chosen during the first w moves. But since any countable subset of B is bounded, I can
play an upper bound on the last move w + 1. But when the length of the game is increased
again to w + w, II wins again by picking countable elementarily equivalent substructures. In
fact ITEF}, (A, B) for successors w < a < wy and I1TEF}, (A, B) for limits w < o < wy.

3.5 Longer Games

In this section we will show that it is consistent with ZFC that

e EF,, and EF}, are equivalent on structures of cardinality < R, and are both determined.
(This requires the consistency of a weakly compact cardinal)
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there are structures A and B such that |[A| = [B| = 8y and A %, Bbut A~7 B.

e there are structures A, B, A’ and B’ such that |A| = |B| = |A| = |B'| =8y and A %, B
but A~ Band A' 25 B but A’ ~% B,

there are structures A and B such that |A| = |B| = Ry and EF, (A, B) is not determined.

there are structures A and B and cardinals ag < [y < a1 < p1 < ---, such that
|A] = |B| = Ry.wy1, for all n < w, a, is regular and f, is singular and A »#}, B but
A~j Bforalln < w.

And finally in ZFC we prove that there are structures .4 and B (of course bigger than Ry) such
that EF;, (A, B) is non-determined.

3.5.1 All Games Can Be Determined on Structures of Size N,
In [24] the following was proved (Corollary 13):

3.21 Theorem. It is consistent relative to the consistency of a weakly compact cardinal, that
CH and the game EF,, (A, B) is determined for all A and B of cardinality < Rs. O

3.22 Corollary. It is consistent relative to the consistency of a weakly compact cardinal that
CH and the games EF,, and EF}, are equivalent and both games are determined on structures
of cardinality Ns.

Proof. By Theorem 3.21 and CH we can use Corollary 3.16 to obtain the result. O

3.5.2 A~FB# A~, B on Structures of Size k"

Let us fix an uncountable regular cardinal k. We shall construct groups JF and G such that
EF,(F,Q) is non-determined. In fact F is the free abelian group of cardinality ' and G will
be an almost free abelian group of the same cardinality constructed using the combinatorial
principle O,. This construction was done in [35] in the case k = w; and is almost identical.
The proof that EF,(F,G) is non-determined is exactly the same as is the proof for k = w; in
[35]. Formally in this section, these groups will be models of a relational vocabulary.

3.23 Definition. The statement [J,, says that there exists a sequence (C, | @ < k¥, Ua = )
of sets such that

1. C, is a closed and unbounded subset of a.
2. If cf(a) < K, then |Cy| < k.
3. If v is a limit point of C, then C;, = C, N 7.

For the proof of the next theorem the reader is referred to [25] or to the primary source of
this result by Jensen [26].

3.24 Theorem. If V = L then O, holds. O

This square principle, [J,;, implies the existence of a non—reﬂec:cring stationary set £ on 7,
which we will use to construct our groups. Recall the notation S5 = {a < kT | cf(a) = w}.
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3.25 Lemma. Assume O,. Then there exists an w-stationary set E C S£+ such that for every
ordinal v < Kkt of cofinality k, the set E N+~ is non-stationary on 7.

Proof. This is standard and can be found for example in [25]. O

Now we are ready to construct the groups we talked about at the beginning of this section.
We shall use some well known facts about free abelian groups, direct products etc. As we
already noted, in this section groups will be models of a relational vocabulary. Substructures
are not necessarily groups.

As both, O, and GCH hold if V = L, the use of GCH makes no contradiction. The first
group F will be the free abelian group generated by x*:

F=Pz
i<kt

Another group will be a so-called almost free abelian group. The idea is that an almost free
group G is the union G = U, .+ G; of its subgroups G; such that

e Each G| is free.
e G; C G; whenever ¢ < j
e (G is not free.

3.26 Definition. A subgroup S of an abelian group G (write it additively) is pure if for all
r €S (FyeGny==x)) = (Jy €Sy ==x)). That is, if € S is divisible in G, it has to be
divisible in S.

Let Z*" stand for the direct product I, .+Z of k1 copies of integers. By z., we shall denote

the element of Z* which is zero on coordinates # ~v and 1 on the coordinate ~.
For each § € E (of Lemma 3.25) let us fix an increasing cofinal function 75: w — § such
that ns[w] N E = @ (for instance take successor ordinals only). Define

= +
z25 = E 2”.%7]5(”) ez" .
n=0

For each o < k% let G, be the smallest pure subgroup of 7% which contains the set {z4 | v <
a}U{zs |0 € ENna}. We set G = G,+. Let also F, be the free abelian group generated by
{zy | v < a} and set F = F,+. We shall denote by (y, | @ < ) the group generated by the

set {ya | @ < B}
The proof of the following lemma and the following theorem are exactly as in [35], w; changed
to k.

3.27 Lemma. For each o < k™ the group G, is free and if 3 € o'\ E, then any free basis of
Gp can be extended to a free basis of G, . O

3.28 Theorem. If O, and GCH, in particular if V = L, then EF (F,G) is not determined.
Remark. GCH can be avoided, see [35].
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Proof. (Sketch.) Player I does not win: The set S = {«& | ENa is non-stationary.} is stationary.
Given a strategy 7 of I, the set {a | F, UG, is closed undet 7} intersects S being cub and there
is an isomorphism F, = G,. So II just follows the isomorphism.

Player II doe not win: Assume that o is a winning strategy of player II. Player I takes an
«a € F such that F, UG, is closed under first w moves of II. In those first w moves player I
picks {z;,_ (n) | » < w} and a direct summand of 7. Let J be the set played so far in G,. In
the next w moves I picks the smallest pure subgroup of G containing J U {zs}. Denote it by
A. Now A/J is not a free group, but the corresponding structure K/I in F (I are the first w
moves in F and K are the first w+w moves) is free. In the ordinary EF-game the isomorphism
has to respect the order of moves, hence a contradiction. O

3.29 Theorem. Player I wins EF(F,G).

Proof. Recall Theorem 3.11, page 37. In the game EF.* player II can choose on each move
the set F3 U Gg, where (3 is such that all elements played before this move are in F3 U Gg.
Eventually substructures F,, and G, are picked at the end of the game. By Lemma 3.27 they
are isomorphic. O

353 A~ B#AA~°Band A~°B#A A~ Bif |Al = |B| = w+

Here we shall show that all these games can be different on structures of size k™. GCH is
assumed in all parts and & is a regular uncountable cardinal.
To prove that EF;, is different from EF,, we use a vocabulary with function symbols.

A ~° B Does Not Imply A ~, B

In this section we will use groups as models of a functional vocabulary. Thus instead of relation
+r we have function symbols + and — whose interpretations satisfy +(z,y) = z < (x,y,2) €
+p etc.

3.30 Theorem. Let F' and G’ be the groups constructed in the previous section presented with
function symbols +, —. Then EF.(F',G’) is non-determined.

Proof. The same reason as why EF, (F,G) is non-determined. O

3.31 Theorem. Let F' and G’ be the groups constructed in the previous paragraph presented
with function symbols +, —. Then player I wins EF; (F',G).

Proof. Note that now any substructure is a subgroup. Let us provide a winning strategy for
II by induction. Assume that on the move « the position of the game is such that the players
chose X C 7' and Y C G’ and the subgroups (X) and (Y') are isomorphic. Assume that I picks
next z € F'. Dimension of a free abelian group is the cardinality of the basis. Note that it is
unique, and in the case of abelian groups the dimension of a subgroup is always less or equal
to the dimension of the supergroup. If

dim(X U {z}) > dim(X),

then obviously
dim(X U {z}) = dim(X) + 1
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wherefore let IT pick an element y € G’ such that
dim(Y U{y}) = dim(X U {z})

(it is possible since X and Y are still subsets of dom(F’) and dom(G’) of size k, while | dom(F")| =
|dom(G’)] = k™). On the other hand, if = is such that dim(X U {z}) = dim(X), then we have
three cases:

C1l: dim(X) < w. II has to pick an element, which is already in (Y’).
C2: dim(X) > w and z € (X). II has to pick an element, which is already in (V).
C3: dim(X) > w and z ¢ (X). II has to pick an element, which is in G’ \ (Y).

If T picks an element from G’ instead of F’, the reasoning for player Il would be exactly the
same with the structures switched.

This strategy guarantees that at each move the groups generated by the played sequences
remain isomorphic and simultaneously it guarantees that if I picks at the end of the game
k points from one of the structures, then the same amount is picked from the other one and
moreover the chosen groups are isomorphic, because their sets of generators are of the same
cardinality. U

Thus F' ~% G’, however by Theorem 3.30, we have F’ 4, G'. Thus the intended result is
proved.

A ~* B Does Not Imply A ~2 B

Let us consider two structures, .4 and B such that EF,(A,B) is non-determined, but I 1
EF} (A, B). Using these structures, we shall construct new structures M(A) and M (B) such
that EF;, (M (A), M(B)) is non-determined but ITEF} (M (A), M(B)). Such structures A and
B of cardinality k¥ were constructed in the previous section, thus we can assume that A = F
and B = G (the free and almost free abelian groups of cardinality x*). Under GCH, we will
have [M(A)| = |[M(B)| = xt.

3.32 Definition. Let A be an L-structure. Let
LT =LU{<}U{P,|a <k, P, is a unary relation symbol},

where the new symbols are not in L. See remark in the end of this section for how to get rid of
an infinite vocabulary. We define M (A) to be the LT-structure with the domain

dom(M(A) ={f:a+1—>A|a<k}
and if f; € dom(M(A)), i < n and R is an n-place relation symbol of the vocabulary, we define
(for- - fam1) € MY = (fo(a0),. fa-r(an-1)) € BY,

where «; is the maximum of the domain of f;. The partial order f < g is defined for f, g € M(A)
such that f <M(A) g if f C g, that is g | dom(f) = f. The relations P, are interpreted as

PO{VI(A):{f|domf:oz—|—1}.
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Note that if A and B are isomorphic, then M (A) and M (B) are isomorphic. Also if (fi)i<a
is an increasing chain, then the reduction of the substructure {f; | i < o} C M(A) to L is
isomorphic to the substructure {f;(max(dom(f;))) | i < a} C A. But if we have a chain
{fi]i < a}in M(A) and another chain {g; | i < a} in M(B), then if there is an isomorphism
{fili<a} —={gi]i<a}, then it has to be order preserving.

We claim now that player I does not win EF; (M (A), M (B)).

3.33 Theorem. Player II does not have a winning strategy in EF; (M (A), M (B)).

Proof. Assume that o is a winning strategy of II. Player I will play so that the played elements
form a <-chain. This will force ¢ to do the same: if on some move II plays such that the chosen
elements of say M (A) fail to form a chain, the chosen elements of M (5) still form a chain and
I will play all subsequent moves in M (B) continuing that chain. Apparently, in the end, the
structures will not be isomorphic with respect to <. Also, if player I plays an element f on the
move «, then dom(f) = a4 1. This forces II to do the same because of the unary relations P,,
a < K.

Now player I, as playing EF; (M (A), M(B)), imagines that they are playing the game
EF, (A, B): whenever II picks f € M(A) or M (B), he imagines that she played f(maxdom(f))
from A or B. Let 7 be a strategy of I that wins the game EF, (A, B) (strategy of II is fixed by
o). He will pick elements according to this strategy except that he interprets them as functions
in the structures M(A) and M (B) in the way described above.

Because 7 wins in EF (A, B), the chosen structures are not isomorphic by the isomorphism
which respects the order of moves. But the order of moves is the same as that induced by the
ordering in M(A) and M (B). O

However it is necessary for I to be able to choose from which structure to play:
3.34 Theorem. Player II has a winning strategy in EF, (M (A), M (B)).

Proof. Again, the only thing we use about A and B is that EF, (A, B) is non-determined but
1 EF (A, B).
If X CcAUB, let
NX)={feMA)UM(B) |ranf C X}

and if Y € M(A) U M (B), then
N YY)={r € AUB |z € ran f for some f € Y}.
Realize that for all X, X' C AUB, Y, Y’ C M(A)U M (B) we have
o | X|<Kk < NX)<=k

e N(N"YY)) DY

N-Y(N(X)) = X

N(X NA) = N(X)NM(A) and N(X N B) = N(X)n M(B)

e X2 X «— N(X)N(X).
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By 3.12 it is enough to show that there is an x-cub set
CcS={XCcMAMUMB)|XNMA =2XnNMWB),|X| <k}

We know that S’ = {X C AUB| XNA=XXnNB, |X| <k} contains a cub set. Let it be
denoted by C’. We claim that the set

C={Y cMAUM®B)|Y =N(X), X €C'}

is cub and contained in S. Because X =Y = N(X) = N(Y), it is clear that C C S. Let us
show that it is cub.

Let Y € C. Then there is X € C’ such that X D N=1(Y). Then N(X) D N(N~(Y)) D Y.
And on the other hand, because X N A = X N B, we get

N(X)NM(A) = N(X N A) = N(X NB) = N(X) N M(B).

Thus C' is unbounded.

Assume that (Y;)i<x = (N(X;))i<x is an increasing chain in C'. Then X, is in fact an
increasing chain in C’. Thus we know |J,_,_X; € C’. But then N (UK,i XZ-) € C and it easy
to see that

1<K

N (U Xi> = U N(X;).
1<K 1<K

It is easy to see because the functions have always a domain of cardinality less than x, so if

f €N (U;<, Xi), then surely f € N (U, X;) for some o < x and since the chain is increasing

this implies f € X,. O

Remark. We used an uncountable vocabulary LT as the vocabulary of M (A) and M (B) because
we wanted to fix the levels of the <-tree. However we can do that by only a finite extension
of the vocabulary assuming that  is a successor cardinal. By Theorem 0.4 of Chapter VIII of
[39] if T is not a superstable theory, then there are models A; of T, i < 2" such that |A4;| = &
for all 4 and for all distinct indices ¢, j the model A; cannot be elementarily embedded in A;.

Because the theory of dense linear orderings without end points is unstable and has quantifier
elimination, there are 2 (we need only x) linear orderings of cardinality x such that they are
pairwise non-embeddable to each other. Let {Q; | ¢ < k} be a collection of such linear orderings.
Let L, A and B be as in the beginning of this section and define LT = L U {<, <*, R}, where
the new symbols are binary relations. Let M(A) and M (B) be the structures defined in this
section except that without the relations P,. Let us now define M’(A) (M’'(B) is similar). The
domain is the disjoint union

dom(M'(A)) = dom(M(A)) U| {@Qi | i < x}.

The symbol <* is interpreted as the ordering of the linear orderings @; and R is interpreted as
follows:
(f,q) € R < fedom(M(A) Adom(f)=i1+1Aqe€Q;,

i.e. we fix the (i 4+ 1):st level by the linear ordering @;. Now if at any move player II plays at
a different level than I, then he will play the corresponding linear ordering and II will not be
able to embed it to any other than the same one, thus losing the game.
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3.5.4 EF;, Can Be Non-determined on Structures of Size XN,

Recall that, by 3.13, page 38, in order to construct A and B such that EF], (A, B) is non-
determined, we have to find models A and B such that the set {X C AUB | XNA>~ XNB}is
at least w;-bistationary i.e. a stationary set whose complement is also stationary (if CH, then
it is enough).

3.35 Definition. Let w < A < a < p be such that A and p are regular cardinals and « an
ordinal. Then let S C p. The cub-game G§(S) is the following game played by players I and II.
On the move v < « first player I picks x., € p, such that z. is greater than any element played
so far in the game and then player II chooses y, € S such that y, > . Finally sequences
(€y)y<a and (Yy)y<a are formed. Player II wins if

(1) she has played according to the rules and

(2) eb{yy [y <o} CS,
Where clyB is the smallest \-closed set which contains B.

More on these games, see [22] and [16].

Let us consider the following construction. Let p be an uncountable cardinal and S C S%.
In the following p x w is equipped with reversed lexicographical order and pr; and pr, are
projections respectively onto pu and w. Then let

Alp, S) ={fra+l—> pxw|la<py,
f is strictly increasing, according to the reversed alphaberical order
for each n < w the set pry[ran(f) N (u x {n})]]

is w-closed in p and is contained in S}

and

B(p,S) ={f:a+1l—> pxwl|a<p,
f is strictly increasing,
for each n < w the set pry[ran(f) N (u x {n})]]
is w-closed as a subset of p and if n > 0, then is contained in S}.

The structures A(p,S) and B(u,S) are L-structures with universes A(y,.S) and B(y, S),
L={<}and f < g < f Cg. Their cardinality is 2<#. In B(u,.S) there is a branch which
goes through the tree, it consists of the functions f: o +1 — pu x w such that f(8) = (5,0).
Let us denote such function by id,41, it is an element of B(y, S).

Because we need to mark the levels, we will temporarily add p unary relation symbols to
the vocabulary {P, | @ < p} and interpret them to fix the levels:

PAmS) = {f € A(n, S) | dom(f) = o+ 1}

and
PEWS) = {f € B(u, S) | dom(f) = a + 1},
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In the end we will show how this can be avoided and done with a finite vocabulary. The
idea is of the same nature as that of Theorems 3.33, 3.34 and the remark which followed.

The idea here is that the structures A(y, S) and B(p, S) are trees and the subtrees A, =
{f € Alran(f1) € o} and B, = {f € B | ran(f1) C a} are isomorphic if and only if « N S
contains a cub. If S is complicated enough we get structures on which EF}, is not determined.

3.36 Theorem. Let > wy and S C SE. If player 1 does not have a winning strategy in G (.S)
and S contains arbitrarily long w-cub sets, then he does not have one in EF ], (A(u, S), B(1, S))

Remark. The existence of an arbitrarily long cub sets means that for every o < p, cf(a) > wy
there exists a subset of S which is w-closed and of order type a. Using the cub game and the
fact?, that player I does not have a winning strategy in the games G(S) for a < p, a > wy,
we can find ordinals « € p such that there is an w-cub set of order type o in SN a.

Proof. If f: v — p X w, denote by f1 = pryof and fo = pryof. Also for simplicity denote
A= A(u,S) and B = B(p, S),

Ao = {f € Al ran(f1) € )

and similarly
By ={f € B|ran(f1) € a}.
First we prove two claims. A map g: @ — « is w-continuous if for every increasing sequence

(k) k<w I @ g(Ug<wk) = Ug<wg(zk). Thus the image of such a function is w-closed. Define
¢ to be the set of such functions h:

C={h:a— SNal|a¢cS, hisw-continuous increasing and unbounded}

and
Co ={h e | dom(h) < a}

Claim 1: For each h € € with dom(h) = «. there exists an isomorphism F},: A, = B, in
such a way that if h C i/, then F}, C F},.

Proof of Claim 1. Let h: a« — SN« be as in the assumption. Then in particular & is an order
isomorphism « — h[a] and the former is an w-closed unbounded subset of . Hence we can
write h~! for the inverse h[a] — . For defining the isomorphism Fj,: A, — By, let f € A, be
arbitrary, say f: § - S X w, § < a. Put

By = min{f | f(B) ¢ hla] x {0}} U {4}
Now for all v < B¢ let Fi,(f)(v) = (h"1(f1(7)),0) and for all v > By define

AR D). i fu(By) ¢ hlal,
En(H) = { (0 f2(0) = £, it 1(B7) € hla].

Clearly F,(f) € B, and in fact Fn(f): 6 = a X w (same domain as that of f). We will show
that F} is an isomorphism.

4if T has a winning strategy in a game of length a, he has one also in the game of length cf(a), see [22] and
for more detailed approach part 2 of the proof of theorem 4.3 of [16].
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(1) Fj is one-to-one and onto. It suffices to define a working inverse map. Here we go:
Let g € B, be arbitrary, g: 6 — p X w. Let Sy = min{8 | ¢2(8) # 0} U {6} and let
F~1(g) = f: § — S x w be such that

h(g(7)), if v < fo,
f) =1 g9(v), if v > B and g1(Bo) € h[al,
(91(7),92(7) = 1), if v > B and g1(Bo) ¢ hlal,

It is not difficult to check that f € A, and Fj(f) = g.

(2) Fj preserves ordering and relations P, . For the P, it is already mentioned, that dom(f) =
dom(Fy(f)). Assume f < g. If 84 > dom(f), then for all v < dom(f) we have F,(f)(vy) =
=Y f(y) = b (g(7)) = Fu(g)(7), thus Fy(f) < Fr(g). So assume then 3, < dom(f),
in which case By = B, and f1(Bf) € hla] <= ¢1(B,) € hla]. Hence clearly F,(f)(y) =
Fr(g)(y) whenever 8y <y < dom(f). The case v < ; as above.

By (1) and (2) Fj, is an isomorphism.

Assume that A C h’. Then by definition Fjs1domnr = Fp, so the claim follows. O
Claim 2: Let h € € and v > dom(h). Then there exists A’ € €, which extends h and
v < dom(h).

Proof of Claim 2. Denote a = dom h and let 8 be such that

e B>n

i Cf(ﬂ) = w1,

e There is an w-cub-set W C SN 3 of order type S,
e he Qg.

This is possible by the assumption of the theorem. Assume 7n: § — W is an w-continuous order
isomorphism. Let ag = min(W \ 7) and

Unt1 = n(an) and o, = Un<wn.
Then n | (o, a,) is a function from (a, a,) to W N (e, o). Thus we can define
h=hU{a,a}Un] (o, ).

Then h': a,, — SNy, (note, that because h € €, « =domh € S) and ' € €g. O
Let us define a function K(v): h — h’, where b’ = h if ¥ < domh and if v > dom h, then
h' is obtained from h using Claim 2 and choice.

Let now 7 be any strategy of player Iin EF{!“1 (A, B). For simplicity let us assume without
loss of generality that 7((X;)i<g) C 7((X;)i<a), Whenever 5 < a.

Recall that [AU B]<t = {F C AUB | |F| < u}. Define a function G: [AU B]<* — p such
that G(F) = sup{ran(f1) | f € F}

Notation: if f: X — X is a function and J C X, let f.i[J] denote the closure of J under f:

fa[J] = the smallest subset of X, which contains J and is closed under f.
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Let 7* be a strategy of I in G¥'(S) which will be defined using 7.
First step:
7H(9) = G(7(2))

Next define 7*({y;)i<a) for @« = f 4+ 1 < wy, where y; are answers of II:
If B = 0, then let hy be an arbitrary element of €, such that yo < dom(hg). Because yo > 7%(9)
this implies 7(2) C Adom(ho) U Bdom(h)- Then (independently of whether 3 = 0 or not) define

Xs = (Fuy UF N [ 7((X0)ics) U idy, )
0B
™ ((Wi)ica) = G(T((Xi)i<p))
ho = K(ya)(hs)
Finally define 7*((y;)i<q) for « a limit < wy:
X. = |JXiufid,}
<o
T (Wi)ica) = G(T((Xi)i<a)
hoe = U h; if U dom h; € S i.e. such exists and otherwise arbitrary.
<o <o

Let now o* be a strategy of II, which beats 7* and finally the strategy o of I in EF1“t is
obtained from ¢* by induction as follows:

0((Xi)ica) = Xo as defined above.

Because o* beats 7%, it is obvious that h, exists for all limit «, since |J;_, domh; € S. Thus
for all ¢ < wy; we have X; N A= X; N B and moreover the isomorphisms extend each other i.e.

i<j:>XiCXjandFiCFj,

where F; is the isomorphism between X; N'A = X; N B and Fj is the isomorphism between
X;NA=X;NB. Thus o beats 7 and 7 is not winning. O

3.37 Theorem. Let ju be a cardinal, S C S and S = {a € St | anS contains a cub}. If
player I does not have a winning strategy in

G2 (8),
then she does not have one in EF;, (A(u,S),B(k,S)).

Proof. Let o be any strategy of Il in EF<1“ (A(u, S), B(u,S)). Without loss of generality,
assume that whenever a sequence (E;);<, is played, it holds that i < j — E; C Ej.
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Let C be the cub set {a < p | V8 < a(B+ B < a)}. Let G: [AU B|<* — p be as in the
proof of the previous theorem and G a similar function with a little modification:

G(F) =min{a € S| a > G(F) Aa > min(C\ G(F))}.

In the first part it only matters that G(F) € S’Aand G(F) = G(F). )
Let 0 be the strategy of player I in G (S) which is obtained from ¢ and G as follows:

0" ((ai)icy) = G(o(({ida,+1})i<y)),
cB

i.e. I imagines that I played the set {idy, 41} instead of ; in G} (S). Let 7* be the strategy

of Tin G¢!(S), which beats 0*. And then let the strategy 7 be such that if £; C AU B for

*
each i < v are the moves of I in EF;1“1, then

T((Ei)icy) = {idgs1} C B, where 8 = 7*((G(E}))i<+)}-

Assume the players picked X C AU B. Because 7* beats 0*, X N B C Bg(x) contains an
unbounded branch of length wy: {idg, 41 | ¢ < w1}, but there is no unbounded branch of such
length in the structure X N A C Ag(x) (because there is no w-cub set in G(X)).

It remains to show that the unbounded branch I = {idg,+1 | ¢ < w1} would be mapped to
an unbounded branch by an isomorphism. For a contradiction assume F' to be an isomorphism.
It preserves levels and the level of idg,+1 is B;, i.e. idg,+1 € Pg. So if F(idg,4+1) = fi, then
dom(f;) = ; + 1. Thus 8 = sup{dom(f) | f € F[I]} = U,,, dom(idg,+1) = U,.,, B and its
cofinality is wy. From the definition of G it follows that 8 is in C, hence

(Vy <B)(v+7v<B)

and hence if | J; pry(ran(f;)) < /8, then we had an increasing function § — a with o < /3, which
is a contradiction. O

By the two theorems above it is enough to find a set S C S¥ for which
ND1 Player I does not have a winning strategy in G (.S)

ND2 S contains arbitrarily long w-cub sets.

ND3 Player II does not have a winning strategy in G5! (S5).

where § = {a € Sk | «n S contains a cub}. Then EF}, (A(u,S), B(p,S)) is non-determined.

Stationary sets whose complement satisfies ND1 are called strongly bistationary, see [22]. A
generic set S C S22 obtained by standard Cohen forcing provides an example of a set, which
has intended properties ND1 and ND3. ND2 can then be obtained with the use of the following
lemma.

3.38 Lemma. Let S C u satisfy the properties ND1 and NDS3. Then there exists S* C u which
satisfies ND1, ND2 and NDS3.
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Proof. Let f: u — p be the continuous map defined as follows:

f(0)=0, fla+1l)=fle)+c, f(v)= U f(a), when 7 is a limit.

a<y

This function is clearly continuous. Let

S*=p\ flu\S],
Let us show that S* has the intended properties ND1-ND3. Note that f[S] C S*.

ND1 By the assumption, player I does not have a winning strategy in G¥*(S). Because f[S] C
S*, it is enough to show, that I does not have a winning strategy in G (f[S]). Define
ft: p— p as follows:

f7H @) =min{y € u| f(y) > z}.

Let 7 be any strategy of I in G¥*(f[S]). Then 7* = f~!lo 7o f is a strategy of I in
G¥1(S). Now by the assumption there is a strategy o* of player Il which beats 7*. Now
foo*o f~! beats 7.

ND2 This is clear from the definitions of S* and f.

ND3 For any set A C S denote A* =\ f[u\ Al and A = {a € SE | @n A contains a cub}.
Then because f is one-to-one and continuous, we have that

(9)" = (5%).
Then a similar deduction as for ND1 from the fact that ND3 holds for S follows.
O

Notation. If (A, <) is a well order, or A is a subset of an ordinal with the induced ordering,
then OTP(A) means the ordinal order isomorphic to (A, <), the order type.

3.39 Theorem. It is consistent that there are structures of cardinality No such that the game
EF;, is non-determined.

Proof. Forcing with {p: @ — ws | & < wy} starting with ground model in which GCH holds,
gives a generic set S such that {o € S¥2 | a N S contains cub} is w;-bistationary. Now using
GCH it is easy to show the intended properties ND1 and ND3. That for it is enough to note
that the sets S and {a | S N « contains cub} are bistationary. Then using GCH players can
take closures of each others strategies and beat them this way. For ND2 one can simply use
Lemma 3.38 but in this case it is not necessary.

The conditions ND1 — ND3 i.e. the assumptions of Theorems 3.36 and 3.37 on pages 48
and 50 are now satisfied. O

3.40 Theorem. Let y = max{(2*)",ws}. From ZFC it follows that there are models A and B
of cardinality 2<" such that EF}, (A, B) is non-determined.

Proof. Tt was shown in [3], lemma 7.7, that if 4 > w3 (as ours) then there are: a stationary
X C 8, and sets D, C a, for each o € X such that:
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1. D, is cub in «,
2. OTP(D,) = ws,
3. if @, 8 € X and v < min{e, £} is a limit of both D, and Dg, then D, Ny = DgN~.
4. if v € D, then + is a limit point of D,, if and only if v is a limit ordinal.
Define X' = X U{v | 3a > v(vy € lim D, = the limit points of D,)} and for each 8 in X’ let
g(B) =min{y € X | v > 8 A S is a limit point of D,} € X.
Clearly if 8 € X, then g(8) = 5. Then let
Cp = BNlim D).

We now have the coherence property: if 5 € C,, then C3 = N C,. Moreover each C, is
closed and if cf(a) > w1, then it is unbounded in @ and OTP(C,) < we. For each a < wy define

e Su={B€X'| OTP(Cy) = a},

b 8206 = Ua<6<w2 Sﬂ'

First we observe that for all @ < ws, S5, is w-stationary and wy-stationary. To see this let C
be an wi-cub set (w-case is similar). Because X is stationary, there exists a point £ € X Nlim C.
Thus now C' N ¢ is cub in £. Hence also C' N C¢ is cub and its order type is obviously ws
(¢ € X c Sk, and OTP(C¢) is at most wy). This implies the existence of 5 € C¢ N C such that
Cp is of order type > o and thus an element of S>,.

Because S, is stationary and is a union of w; disjoint sets, one of them must be stationary
itself. Thus for every a < wy there exists v > « such that .S, is w-stationary.

Now we refer to theorem 3.7 of [22] which states applied to our case:
Let A C St and assume A = UKM2 A;, where each A; is stationary and A; N A; = @ if
i # j. Then there is an ordinal j < wy such that I does not have a winning strategy in

G$1 (Sfj \ Uj<i<wz Ai)-

In our case A; are those sets |J,, ¢<,, , S5 NS¢ where (7i)i<w, is a sequence such that each
S, is w-stationary. There is wy of them as concluded and all disjoint. Let now ~ be such that
I does not have a winning strategy in G (S \ S>,) and

S =S\ S5,

The set S clearly satisfies the intended property ND1.
For ND3 we have to show that player II does not have a winning strategy in

G2 (S),

where § = SU {a € Sk | an S contains a cub}. Let us show first that {a € S | an
S does not contain cub} is wi-stationary. We know that in the complement of S there is S>,.
Let us show that if C' is an wy-cub, then there is a point a € C such that S>, N a contains a
cub, which is more than enough. Let 8 € X Nlim C and let @ be the (v + w1 ):st element of Cg
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and o' the 7:th element. Then all points of Cs N [/, ) are in S, because for these points,
say 0 € CgN [/, a), we have C5 = Cz N6 and it has order type > «. This implies that the set
{a € Sk | an S does not contain cub} is stationary.

Assume now that o is a strategy for I in G5! (S). The set
R={¢ € p|¢&is closed under o}

is wi-cub (A < g — A1 < p~* = p). Consequently there is o € RN {5 € Sk | BN
S does not contain cub}. Player I can now ensure that they play towards «, so o cannot be
winning. Thus ND1 and ND3 are satisfied and so by Lemma 3.38 page 51 and Theorems 3.36
and 3.37 the game EF}, (A(u, S), B(x,S)) is non-determined. O

Remark. In the beginning of this section we promised to show how the vocabulary can be
made finite. In order to do this, we have to construct p structures (C;)i<, such that for i # j
ITEF}, (Ci,C;) and add these structures to the levels using one binary relation. This replaces
the use of a unary relation P, for each level. During the game player I will make sure that if
levels o and 8 are played, then a ’subgame’ between C, in A and Cg in B is played to show
that they are different levels. In the end an isomorphism between the picked substructures can
only take C, in A to C, in B, because it otherwise contradicts the fact that I won all those
‘subgames’.

It remains to find structures C;, i < p for those u for which we proved our theorems, i.e.
p = wy and p = max{(2*)" ", wy}.

In the case 4 = wo just take all dense linear orders of cardinality w;. There are 2“ of
them and all different. Because of the small size, also I1EF}, (C;,C;) if C; and C; are two
non-isomorphic representatives.

Assume now that g = max{(2¥)*",ws}. It is enough to show that there are (2“1)*+ > pu
models for which the intended property holds.

Let the vocabulary consist of four binary relation symbols and one unary relation P:

L={R,<,<*, <* P}.

Let Q be the disjoint set of well orderings {« | 2“1 < OTP(«) < (2¢')*} and let W be the
disjoint set of well orderings {a | (241)* < OTP(a) < (2¥1)**}. Disjoint means that aNg = @
for all distinct elements «, 5 € Q@ or W. We have:

o Va € Q(|la] =241)

o |Q =(2)*

o Va € W(lal = (2°1)7)
o W] = (29)++.

For each o € Q let F,: P(w1) — « be a fixed bijection and for each i € W let G;: i — Q be
another fixed bijection. For each i € W define C; as follows:

e dom(C;) = wy U Q (disjoint union).

Ci .
o x<# 'y = zy€w Az <y (in w)
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e x<Ciy <= JacQr,yca)rr <y (ina)
o 1<*Ciy «— Ja,B € Q(G;l(a) <Gi_1(ﬂ)/\x€a/\y€5)

(,7) € RG <= (3X € P(w1))(3B€ Q)(a € X Az € BAF3(X) =2)

o PCi =y

Now we claim that I1EF “1(C;,C;) (the game, where the players can choose sets of size
w1, see Theorem 3.11 page 37) whenever i # j. On the first move player I chooses P¢ U P%,
After that player T picks a and 8 in Q such that G; '(a) < G; !(B) and G;l(a) > G;l(ﬁ),
ie. z€caANy e f=>z<"yinC and y <* z in C;. Such exist, because 7 and j are non-
isomorphic orders. Now player I must make sure that if there is an isomorphism between the
played substructures in the end, then it takes 5 in C; to B in C; and a in C; to o in C;. This
will result in a contradiction and there cannot be any isomorphism. Because every order ( in
Q is different from S (provided of course ¢ # /) the task is easy for player I. Every time an
element is played from an ordering ¢, player I picks two elements x,y € ( and z’,y’ € 8 such
that © < y, ¢ < 2/, Fg_l(a:) = Fﬂ_l(x’) and Fc_l(y) = Fﬁ_l(y’). Because of the relation R it
follows that 8 cannot be mapped to ¢ by an isomorphism. Similarly he manages with «.

3.6 Structures with Non-reflecting Winning Strategies

In this section GCH is assumed. Let u = N} . Put A = A(y,S) and B = B(u, S), where
S C SE is the generic set obtained by Cohen forcing as mentioned in the proof of Theorem 3.39.
It has the following property: the set

Ex ={a e S| anS contains a cub} (3 * %)

is A-bistationary for each regular A < pu.
Let oy = Weng1 (regular) and 3, = wy,.(n41) (singular).

3.41 Theorem. If A < u is regular (for example o), then player II cannot have a winning
strategy in the game EF} (A, B).

Proof. One can show as in theorem 3.37 that it is enough that player II does not have a winning
strategy in G~ (Ea,, ) (see (* * x) above). Let o be any strategy of II in this game. Then the
set

{a € 8% | ais closed under o}

is an-cub (by GCH) and thus the complement of F,  of (x x %) intersects it being stationary.
Player I can now easily play towards an element in this intersection. O

3.42 Theorem. Assume GCH. If cf(\) = w, A < u (for example X = j3,,), then player I has
a winning strategy in the game EF} (A, B).
Proof. Let n: w — X be a cofinal increasing map. As in the proof of Theorem 3.36, page 48,

there are isomorphisms Fg: Ag — Bg for each § in E,,. In the game EF}\”\ player II will
play as follows: assume that X, is the set of already picked elements. By the methods of
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the proof of theorem 3.36 she can choose an isomorphism Fj, such that (3, is greater than
sup{dom f | f € X,,} and Fpg, C Fg, C ---. Then she chooses the set (Fg, U anl)[Xn] At the
end of the game Uy, Fg, should be a partial isomorphism. O

Thus the sequence
ag < fo<ap <P <---,

where a, = Wy.ny1 and B, = Wy,.(n41) is such that A % B but A ~5 B.
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Your strength as a rationalist is
your ability to be more confused
by fiction than by reality... [He]
was confused. Therefore,
something he believed was fiction.

Eliezer Yudkowski

4.1 History and Motivation

There is a long tradition in studying connections between Borel structure of Polish spaces
(descriptive set theory) and model theory. The connection arises from the fact that any class
of countable structures can be coded into a subset of the space 2* provided all structures in
the class have domain w. A survey on this topic is given in [13]. Suppose X and Y are subsets
of 2 and let F; and E; be equivalence relations on X and Y respectively. If f: X — Y is
a map such that Fy(z,y) <= Ea(f(z), f(y)), we say that f is a reduction of E; to Ey. If
there exists a Borel or continuous reduction, we say that E; is Borel or continuously reducible
to Fs, denoted E; <p Fs or E; <. Fs. The mathematical meaning of this is that f classifies
E -equivalence in terms of Es-equivalence.

The benefit of various reducibility and irreducibility theorems is roughly the following. A
reducibility result, say E1 <p F», tells us that F; is at most as complicated as Fs; once you
understand Es, you understand F; (modulo the reduction). An irreducibility result, F1 €5 Eo
tells that there is no hope in trying to classify E; in terms of Fs, at least in a “Borel way”. From
the model theoretic point of view, the isomorphism relation, and the elementary equivalence
relation (in some language) on some class of structures are the equivalence relations of main
interest. But model theory in general does not restrict itself to countable structures. Most of
stability theory and Shelah’s classification theory characterizes first-order theories in terms of
their uncountable models. This leads to the generalization adopted in this paper. We consider
the space 2” for an uncountable cardinal x with the idea that models of size s are coded into
elements of that space.

This approach, to connect such uncountable descriptive set theory with model theory, began
in the early 1990’s. One of the pioneering papers was by Mekler and Vainénen [36]. A survey on
the research done in 1990’s can be found in [50] and a discussion of the motivational background
for this work in [49]. A more recent account is given the book [51], Chapter 9.6.

Let us explain how our approach differs from the earlier ones and why it is useful. For a
first-order complete countable theory in a countable vocabulary T and a cardinal k > w, define

Sf=1{n €2 | Ay T} and =5 = {(n.) € (S5)° | A, = A¢)

where n — A, is some fixed coding of (all) structures of size k. We can now define the partial
order on the set of all theories as above by

T<T < 2 <pf, .

~

As pointed out above, T <" T” says that 22%. is at most as difficult to classify as =,. But does
this tell us whether T is a simpler theory than T'? Rough answer: If k = w, then no but if
Kk > w, then yes.
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To illustrate this, let T = Th(Q, <) be the theory of the order of the rational numbers
(DLO) and let T be the theory of a vector space over the field of rational numbers. Without
loss of generality we may assume that they are models of the same vocabulary. It is easy to
argue that the model class defined by T” is strictly simpler than that of T. (For instance there
are many questions about 7', unlike 7", that cannot be answered in ZFC; say existence of a
saturated model.) On the other hand =% <p =%, and =%, £p =% because there is only one
countable model of T and there are infinitely many countable models of T7. But for £ > w
we have =24 L p =, and =, <p =F, since there are 2% equivalence classes of =/} and only one
equivalence class of =7%.

Another example, introduced in Martin Koerwien’s Ph.D. thesis and his article [29] shows
that there exists an w-stable theory without DOP and without OTOP with depth 2 for which 225
is not Borel, while we show here that for k<% = k > 2%, 2. is Borel for all classifiable shallow
theories (shallow is the opposite of deep). The converse holds for all k with k<% = k > w: if
=% is Borel, then T is classifiable and shallow, see Theorems 4.66, 4.71 and 4.72 starting from
page 112.

Our results suggest that the order <" for x > w corresponds naturally to the classification of
theories in stability theory: the more complex a theory is from the viewpoint of stability theory,
the higher it seems to sit in the ordering <" and vice versa. Since dealing with uncountable
cardinals often implies the need for various cardinality or set theoretic assumptions beyond
ZFC, the results are not always as simple as in the case k = w, but they tell us a lot. For
example, our results easily imply the following (modulo some mild cardinality assumptions on

K):
« If T is deep and T is shallow, then =¢ £ g X7,

» If T is unstable and 7" is classifiable, then = £ g =p/.

4.2 Introduction

4.2.1 Notations and Conventions
Set Theory

We use standard set theoretical notation:
+ A C B means that A is a subset of B or is equal to B.
+ A C B means proper subset.

+ Union, intersection and set theoretical difference are denoted respectively by AUB, AN B
and A\ B. For larger unions and intersections | J,; 4; etc..

iel
» The symmetric difference: AAB = (A\ B)U(B\ A)
+ P(A) is the power set of A and [A]<" is the set of subsets of A of size < &

Usually the Greek letters x, A and p will stand for cardinals and «, 8 and ~ for ordinals,
but this is not strict. Also 7, &, v are usually elements of k" or 2% and p, q,r are elements of
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K< or 2<%, cf(«) is the cofinality of a (the least ordinal 8 for which there exists an increasing
unbounded function f: § — «).

By S% we mean {o < k| cf(a) = A}. A A-cub set is a subset of a limit ordinal (usually of
cofinality > A) which is unbounded and contains suprema of all bounded increasing sequences
of length A. A set is cub if it is A\-cub for all A. A set is stationary if it intersects all cub sets
and A-stationary if it intersects all A-cub sets. Note that C' C & is A-cub if and only if C' N S¥
is A-cub and S C & is A-stationary if and only if S N S¥ is (just) stationary.

If (P,<) is a forcing notion, we write p < ¢ if p and ¢ are in P and ¢ forces more than p.
Usually P is a set of functions equipped with inclusion and p < ¢ <= p C ¢. In that case @
is the weakest condition and we write P IF ¢ to mean @ IFp . By Cohen forcing or standard
Cohen forcing we mean the partial order 2<% of partial functions from & to {0,1} ordered by
inclusion, where x depends on the context.

Functions

We denote by f(z) the value of x under the mapping f and by f[A] or just fA the image of
the set A under f. Similarly f~![A] or just f~'A indicates the inverse image of A. Domain
and range are denoted respectively by dom f and ran f.

If it is clear from the context that f has an inverse, then f~' denotes that inverse. For a
map f: X — Y injective means the same as one-to-one and surjective the same as onto.

Suppose f: X — Y is a function with range consisting of sequences of elements of Y of
length a. The projection prg is a function Y — Y defined by prg((yi)i<a) = ys. For the
coordinate functions of f we use the notation fg = prgof for all 5 < a.

By support of a function f we mean the subset of dom f in which f takes non-zero values,
whatever “zero” means depending on the context (hopefully never unclear). The support of f
is denoted by sprt f.

Model Theory

In section Coding Models on page 66 we fix a countable vocabulary and assume that all theories
are theories in this vocabulary. Moreover we assume that they are first-order, complete and
countable. By tp(a/A) we denote the complete type of a = (a1,...,alengtha) Over A where
length a is the length of the sequence a.

We think of models as tuples A = (dom A, P;!),, -, where the P, are relation symbols in
the vocabulary and the P are their interpretations. If a relation R has arity n (a property
of the vocabulary), then for its interpretation it holds that R C (dom .A)". In section Coding
Models we adopt more conventions concerning this.

In Sections The Silver Dichotomy for Isomorphism Relations (page 81) and Complezity of
Isomorphism Relations (page 111) we will use the following stability theoretical notions: stable,
superstable, DOP, OTOP, shallow and «(T"). Classifiable means superstable with no DOP nor
OTOP, the least cardinal in which T is stable is denoted by A(T).

Reductions

Let By C X2 and Ey; C Y2 be equivalence relations on X and Y respectively. A function
f+ X =Y is a reduction of Ey to Es if for all 2,y € X we have that E1y < f(x)Ea2f(y).
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Suppose in addition that X and Y are topological spaces. Then we say that E; is continuously
reducible to Es, if there exists a continuous reduction from F; to Fs and we say that E; is Borel
reducible to E5 if there is a Borel reduction. For the definition of Borel adopted in this paper,
see Definition 4.16. We denote the fact that E; is continuously reducible to Ey by Fy <. Fo
and respectively Borel reducibility by F; <p Es.

We say that relations Fy and FE; are (Borel) bireducible to each other if Es <p E; and
Ey <p Es.

4.2.2 Ground Work
Trees and Topologies

Throughout the paper k is assumed to be an uncountable regular cardinal which satisfies
KSR =k (%)

(For justification of this, see below.) We look at the space x* (the generalized Baire space),
i.e. the functions from & to x and the space formed by the initial segments x<%. It is useful to
think of k<" as a tree ordered by inclusion and of k" as a topological space of the branches of
k<"; the topology is defined below. Occasionally we work in 2% (the generalized Cantor space)
and 2<% instead of k" and k<".

4.1 Definition. A tree t is a partial order with a root in which the sets {z € t | x < y} are
well ordered for each y € t. A branch in a tree is a maximal linear suborder.

A tree is called a k\-tree, if there are no branches of length A or higher and no element has
> k immediate successors. If ¢ and t' are trees, we write ¢ < ¢’ to mean that there exists an
order preserving map f:t —t', a <; b= f(a) <¢ f(b).

Convention. Unless otherwise said, by a tree t C (k<%)™ we mean a tree with domain being a
downward closed subset of

(H<K>n N {(p07 e 7pn—1) | dompo == dompn—l}

ordered as follows: (po,...,Pn—1) < (Q0s---sqn-1) if pi C ¢ for alli € {0,...,n—1}. It is
always a K+, Kk + 1-tree.

4.2 Example. Let @ < k™ be an ordinal and let ¢, be the tree of descending sequences in
a ordered by end extension. The root is the empty sequence. It is a xtw-tree. Such ¢, can
be embedded into k<, but note that not all subtrees of k<% are rxtTw-trees (there are also
K1, w + 1-trees).

In fact the trees k<, 8 < k and t,, are universal in the following sense:
4.3 Fact (k<" = k). Assume thatt is a k¥, + 1-tree, 8 < k and t' is kT w-tree. Then
1. there is an embedding f:t — k<P,

2. and a strictly order preserving map f: t' — t, for some o < kT (in fact there is also such
an embedding f). O
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Define the topology on k" as follows. For each p € k<" define the basic open set
Np ={n € " [ n]dom(p) = p}.

Open sets are precisely the empty set and the sets of the form (J X, where X is a collection of
basic open sets. Similarly for 2*.

There are many justifications for the assumption (%) which will be most apparent after
seeing the proofs of our theorems. The crucial points can be summarized as follows: if (%) does
not hold, then

+ the space k" does not have a dense subset of size k,

+ there are open subsets of £" that are not x-unions of basic open sets which makes controlling
Borel sets difficult (see Definition 4.16 on page 67).

* Vaught’s generalization of the Lopez-Escobar theorem (Theorem 4.25, page 71) fails, see
Remark 4.26 on page 73.

* The model theoretic machinery we are using often needs this cardinality assumption (see
e.g. Theorem 4.31, page 75, and proof of Theorem 4.74, page 117).

Initially the motivation to assume (%) was simplicity. Many statements concerning the space
k<" are independent of ZFC and using (x) we wanted to make the scope of such statements
neater. In the statements of (important) theorems we mention the assumption explicitly.

Because the intersection of less than x basic open sets is either empty or a basic open set,
we get the following.

Fact (k<" = k). The following hold for a topological space P € {2" k" }:
1. The intersection of less than x basic open sets is either empty or a basic open set,
2. The intersection of less than k open sets is open,
3. Basic open sets are closed,
4. {A C P| A is basic open}| = &,
5. {AC P | Aisopen}| = 2°.
In the space k" x k" = (k*)? we define the ordinary product topology.

4.4 Definition. A set Z C s~ is X1 if it is a projection of a closed set C' C (k)%. A set is I}
if it is the complement of a Y1-set. A set is A} if it is both X1 and IT}.

As in standard descriptive set theory (k = w), we have the following;:

n

4.5 Theorem. For n < w the spaces (k%)™ and k" are homeomorphic. O

Remark. This standard theorem can be found for example in Jech’s book [25]. Applying this
theorem we can extend the concepts of Definition 4.4 to subsets of (x*)™. For instance a subset
A of (k%)™ is ¥1 if for a homeomorphism h: (k%)™ — k%, h[A] is 1 according to Definition 4.4.
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Ehrenfeucht-Fraissé Games

We will need Ehrenfeucht-Fraissé games in various connections. It serves also as a way of coding
isomorphisms.

4.6 Definition (Ehrenfeucht-Fraissé games). Let ¢ be a tree, x a cardinal and A and B struc-
tures with domains A and B respectively. Note that ¢ might be an ordinal. The game EF} (A, B)
is played by players I and II as follows. Player I chooses subsets of A U B and climbs up the
tree ¢ and player II chooses partial functions A — B as follows. Suppose a sequence

(X4, pis fi)icy

has been played (if v = 0, then the sequence is empty). Player I picks a set X, C AU B
of cardinality strictly less than s such that X5 C X, for all ordinals 6 < . Then player I
picks a p, € t which is <;-above all ps where § < . Then player II chooses a partial function
fy: A — B such that X, N A C dom f,, X, N B Cranf,, |domf,| < k and f5 C f, for all
ordinals 6 < 7. The game ends when player I cannot go up the tree anymore, i.e. (p;)i<y is a
branch. Player II wins if

Fr=U#

1<y
is a partial isomorphism. Otherwise player I wins.
A strategy of player II in EF (A, B) is a function

o: ([AUB]<" x t)<ht(t) — U B!,
Te[A]<s

where [R]<" is the set of subsets of R of size < x and ht(t) is the height of the tree, i.e.
ht(¢) = sup{a | « is an ordinal and there is an order preserving embedding o — t}.

A strategy of I is similarly a function
<ht(t)
7':( U BI) — [AUB]<" x t.
Te[A]<r

We say that a strategy 7 of player I beats strategy o of player II if the play 7 * ¢ is a win for

I. The play 7 o is just the play where I uses 7 and II uses ¢. Similarly o beats 7 if T x o is a

win for II. We say that a strategy is a winning strategy if it beats all opponents strategies.
The notation X 1 EFy (A, B) means that player X has a winning strategy in EF} (A, B)

Remark. By our convention dom . A = dom BB = &, so while player I picks a subset of dom AU
dom B he actually just picks a subset of x, but as a small analysis shows, this does not alter
the game.

Consider the game EF} (A, B), where |A| = |B| = &, |t| < x and ht(¢) < k. The set of
strategies can be identified with ", for example as follows. The moves of player I are members
of [AU B]<* x t and the moves of player II are members of UIE[A]G B!. By our convention
dom A = domB = A = B = &, so these become V = [x]~" x t and U = Ur¢[<~ k!. By our
cardinality assumption k<" = k, these sets are of cardinality .
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Let
U=k
g: U<F =k
h:V =k
E: VSt — g
be bijections. Let us assume that 7: U<® — V is a strategy of player I (there cannot be more
than x moves in the game because we assumed ht(t) < k). Let v, : k — &k be defined by

v, =hotog !

and if o: V<F — U is a strategy of player I, let v, be defined by
Ve =foook L
We say that v, codes .

4.7 Theorem (k<* = k). Let A < K be a cardinal. The set

C ={(w,n,&) € (k") | v codes a w.s. of I in EF(A,, A¢)} C (k7)?
is closed. If X\ < k, then also the corresponding set for player 1

D = {(v,n,€) € (k") | v codes a w.s. of 1 in EF}(A,, A¢)} C (k%)*
15 closed.
Remark. Compare to Theorem 4.14.

Proof. Assuming (v,,n,,&,) ¢ C, we will show that there is an open neighborhood U of
(¥, M0,&,) such that U C (k%)% \ C. Denote the strategy that v, codes by o,. By the as-
sumption there is a strategy 7 of I which beats o,. Consider the game in which I uses 7 and
IT uses o,.

Denote the ™ move in this game by (X, h,) where X, C A, U A¢ and hy: A, — Ag,
are the moves of the players. Since player I wins this game, there is o < A for which h, is not
a partial isomorphism between A, and Ag . Let

g = sup(X, Udom h, Uran hy)

(Recall dom A,, = A,, = & for any n by convention.) Let 7 be the coding function defined in
Definition 4.13 on page 66. Let
51 = 7T[€<w] + 1.

The idea is that 7, [ 51 and &, [ 51 decide the models Ano and .Ago as far as the game has been
played. Clearly 51 < k.

Up to this point, player II has applied her strategy o, precisely to the sequences of the
moves made by her opponent, namely to S = {(X;),<g | 8 < a} C domo,. We can translate
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this set to represent a subset of the domain of v,: S’ = k[S], where k is as defined before the
statement of the present theorem. Let 2 = (sup S’) + 1 and let

B = max{f1, B2}

Thus n, [ 3, &, [ 8 and v, [ B decide the moves (h,),y<q and the winner.
Now

U = {n&|viB=v,[BAnIB=n,1BNEIB=E 1B}
= Nygs X Nyjip X Neg1p-

is the desired neighborhood. Indeed, if (v,n,&) € U and v codes a strategy o, then 7 beats o
on the structures A,, Ag, since the first a moves are exactly as in the corresponding game of
the triple (v,,7,,&,)-

Let us now turn to D. The proof is similar. Assume that (v,,7n,,§,) ¢ D and v, codes
strategy 7, of player I. Then there is a strategy of Il, which beats 7,. Let 8 < « be, as before,
an ordinal such that all moves have occurred before 5 and the relations of the substructures
generated by the moves are decided by n, [3,€, [ 5 as well as the strategy 7,. Unlike for player
I, the win of II is determined always only in the end of the game, so § can be > A. This is why
we made the assumption A < k, by which we can always have § < k and so

U = A& |viB=v, [BAnIB=n,1BNEIB=¢ B}
= Nyjip X Ny X Neg 1.
is an open neighborhood of (v, 7,,¢,) in the complement of D. O

Let us list some theorems concerning Ehrenfeucht-Fraissé games which we will use in the
proofs.

4.8 Definition. Let T be a theory and A a model of T of size k. The L. .-Scott height of A is
sup{a | 3B = T(A % BATLTEFY, (A, B))},

if the supremum exists and oo otherwise, where ¢, is as in Example 4.2 and the subsequent
Fact.

Remark. Sometimes the Scott height is defined in terms of quantifier ranks, but this gives an
equivalent definition by Theorem 4.10 below.

4.9 Definition. The quantifier rank R(p) of a formula ¢ € Loy is an ordinal defined by
induction on the length of ¢ as follows. If ¢ quantifier free, then R(p) = 0. If ¢ = 3z (Z), then

R(w);}R(w(f)) + 1. If ¢ = =1, then R(p) = R(¢). If o = A\, Ya, then R(p) = sup{R(tq |
a <

4.10 Theorem. Models A and B satisfy the same Lo -sentences of quantifier rank < o if and

only if 1 EFY (A, B). O
The following theorem is a well known generalization of a theorem of Karp [27]:
4.11 Theorem. Models A and B are Lo, -equivalent if and only if IL 1 EF. (A, B). O

4.12 Remark. Models A and B of size k are L, +.-equivalent if and only if they are L.o.-
equivalent. For an extensive and detailed survey on this and related topics, see [51].
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Coding Models

There are various degrees of generality to which the content of this text is applicable. Many of
the results generalize to vocabularies with infinitary relations or to uncountable vocabularies,
but not all. We find it reasonable though to fix the used vocabulary to make the presentation
clearer.

Models can be coded to models with just one binary predicate. Function symbols often
make situations unnecessarily complicated from the point of view of this paper.

Thus our approach is, without great loss of generality, to fix our attention to models with
finitary relation symbols of all finite arities.

Let us fix L to be the countable relational vocabulary consisting of the relations P,, n < w,
L ={P, | n < w}, where each P, is an n-ary relation: the interpretation of P, is a set consisting
of n-tuples. We can assume without loss of generality that the domain of each L-structure of
size k is k, i.e. dom A = k. If we restrict our attention to these models, then the set of all
L-models has the same cardinality as x".

We will next present the way we code the structures and the isomorphisms between them
into the elements of xk* (or equivalently — as will be seen — to 2*).

4.13 Definition. Let 7 be a bijection 7: k<% — k. If € K, define the structure A, to have
dom(A,) =k and if (a1,...a,) € dom(A,)", then

(a1,...,an) € PA = n(r(ay,...,a,)) > 0.

In that way the rule n — A, defines a surjective (onto) function from " to the set of all
L-structures with domain x. We say that n codes A,,.

Remark. Define the equivalence relation on k" by n ~ £ <= sprtn = sprt £, where sprt means
support, see section Functions on page 60. Now we have n ~ { <= A, = A, i.e. the identity
map £ — £ is an isomorphism between A,, and A¢ when 7 ~ { and vice versa. On the other
hand k"/ ~2 2% so the coding can be seen also as a bijection between models and the space
25,

The distinction will make little difference, but it is convenient to work with both spaces
depending on context. To illustrate the insignificance of the choice between k" and 2%, note
that ~ is a closed equivalence relation and identity on 2% is bireducible with ~ on " (see
page 60).

Coding Partial Isomorphisms

Let £, € k" and let p be a bijection kK — k X k. Let v € k*, a < k. The idea is that for 5 < «,
p1(v(B)) is the image of 8 under a partial isomorphism and ps(v(8)) is the inverse image of S3.
That is, for a v € k%, define a relation F,, C k X k:

(B eF, <= (B<anp(v(B)=7)V(y<aAp(v(y) =5)

If v happens to be such that F}, is a partial isomorphism A¢ — A,;, then we say that v codes a
partial isomorphism between A¢ and A,), this isomorphism being determined by F,. If o = &
and v codes a partial isomorphism, then F, is an isomorphism and we say that v codes an
isomorphism.
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4.14 Theorem. The set
C ={(v,n,¢&) € (k")? | v codes an isomorphism between A, and A¢}

is a closed set.

Proof. Suppose that (v,1,£) ¢ C i.e. v does not code an isomorphism A, = A.. Then (at
least) one of the following holds:

1. F, is not a function,
2. F, is not one-to-one,
3. F, does not preserve relations of A,, Ae.

(Note that F, is always onto if it is a function and domv = &.) If (1), (2) or (3) holds for v,
then respectively (1), (2) or (3) holds for any triple (v/,7/,&’) where v/ € Ny, ' € Nypy and
&' € N¢p, so it is sufficient to check that (1), (2) or (3) holds for v [+ for some v < k, because

Let us check the above in the case that (3) holds. The other cases are left to the reader.
Suppose (3) holds. There is (ag,...,an—1) € (dom.A,)" = " such that (ao,...,an—1) € P,
and (ag,...,0n_1) € Pt and (Fu(ao), ..., Fulan—1)) ¢ P, Let B be greater than

max({m(ag,...,an—1),7(F,(ag),..., F,(an-1))} U{ao,...an—1,F,(ao), .., F,(an-1)})
Then it is easy to verify that any (',&', 1) € Ny 15 X Ngjg x Ny, 5 satisfies (3) as well. O
4.15 Corollary. The set {(n,£) € (k%)% | A, = A¢} is 1.
Proof. Tt is the projection of the set C' of Theorem 4.14. O

4.2.3 Generalized Borel Sets

4.16 Definition. We have already discussed Aj-sets which generalize Borel subsets of Polish
space in one way. Let us see how else can we generalize usual Borel sets to our setting.

* [9, 36] The collection of A-Borel subsets of " is the smallest set, which contains the basic
open sets of k* and is closed under complementation and under taking intersections of
size A. Since we consider only k-Borel sets, we write Borel = x-Borel.

+ The collection Al = ©1 N1I}.

* |9, 36] The collection of Borel* subsets of . A set A is Borel* if there exists a xT r-tree ¢
in which each increasing sequence of limit order type has a unique supremum and a function

h: {branches of t} — {basic open sets of k" }

such that n € A <= player II has a winning strategy in the game G(t, h,n). The game
G(t,h,n) is defined as follows. At the first round player I picks a minimal element of the
tree, on successive rounds he picks an immediate successor of the last move played by player
II and if there is no last move, he chooses an immediate successor of the supremum of all
previous moves. Player II always picks an immediate successor of the Player I's choice.
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The game ends when the players cannot go up the tree anymore, i.e. have chosen a branch
b. Player II wins, if » € h(b). Otherwise I wins.

A dual of a Borel* set B is the set

B ={¢| 11 G(t,h,6)}
where ¢ and h satisfy the equation B = {{ |II T G(¢, h,§)}. The dual is not unique.

Remark. Suppose that t is a 7 tree and h: {branches of t} — Borel® is a labeling function
taking values in Borel* sets instead of basic open sets. Then {n | II + G(t, h,n)} is a Borel* set.

Thus if we change the basic open sets to Borel* sets in the definition of Borel*, we get
Borel*.

4.17 Remark. Blackwell [2] defined Borel* sets in the case k = w and showed that in fact
Borel=Borel*. When & is uncountable it is not the case. But it is easily seen that if ¢ is a
ktw-tree, then the Borel* set coded by t (with some labeling h) is a Borel set, and vice versa:
each Borel set is a Borel* set coded by a x*w-tree. We will use this characterization of Borel.

It was first explicitly proved in [36] that these are indeed generalizations:
4.18 Theorem ([36], k<" = k). Borel C A} C Borel* C 1,

Proof. (Sketch) If A is Borel*, then it is 1, intuitively, because € A if and only if there exists
a winning strategy of player I in G(¢, h,n) where (t,h) is a tree that codes A (here one needs
the assumption k<" = & to be able to code the strategies into the elements of £"). By Remark
4.17 above if A is Borel, then there is also such a tree. Since Borel C Borel* by Remark 4.17
and Borel is closed under taking complements, Borel sets are Al.

The fact that Al-sets are Borel* is a more complicated issue; it follows from a separation
theorem proved in [36]. The separation theorem says that any two disjoint Yi-sets can be
separated by Borel* sets. It is proved in [36] for k = wy, but the proof generalizes to any &
(with k<% = k). O

Additionally we have the following results:
4.19 Theorem. 1. Borel C Al

2. Al ¢ %1

3. If V.= L, then Borel* = 1.

4. Al C Borel® holds if V = L, and also in every P-generic extension starting from a ground
model with k<" = k, where

P = {p|p is a function,|p| < k,domp C k x kT, ranp C {0,1}}.
Proof. (Sketch)
1. The following universal Borel set is not Borel itself, but is A}:

B = {(n,€) € 2" x 2% |  is in the set coded by (t¢, he)},
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where £ — (t¢, he) is a continuous coding of (ktw-tree, labeling)-pairs in such a way that
for all kT w-trees t C k< and labelings h there is £ with (t¢, he) = (¢, h). Tt is not Borel
since if it were, then the diagonal’s complement

D ={n|(n,n) ¢ B}

would be a Borel set which it is not, since it cannot be coded by any (t¢,he). On the
other hand its complement C' = (2%)2? \ B is X1, because (1,£) € C if and only if there
erists a winning strategy of player I in the Borel-game G(t¢, he,n) and the latter can be
coded to a Borel set. It is left to the reader to verify that when x > w, then the set

F={(n¢&v)|vcodes aw.s. for Iin G(te, he,n)}

is closed.

The existence of an isomorphism relation which is Af but not Borel follows from Theorems
4.72 and 4.73.

2. Similarly as above (and similarly as in the case x = w), take a universal Xi-set A C 2% x 2%
with the property that if B C 2% is any Y1i-set, then there is ) € 2 such that B x {n} C A.
This set can be constructed as in the case k = w, see [25]. The diagonal {n | (n,n) € A}
is 31 but not I1}.

3. Suppose V = L and A C 2" is ¥1. There exists a formula ¢(x, ) with parameter £ € 2%
which is ¥; in the Levy hierarchy (see [25]) and for all € 2¥ we have

neA = LE o)

Now we have that n € A if and only if the set

{a < K| 35(77 la,élae Lg, Lg = (ZFf A (a is a cardinal) A p(n [a,g[a)))}

contains an w-cub set.

But the w-cub filter is Borel* so A is also Borel*.

4. The first part follows from clauses (2) and (3) of this Theorem and the second part from
clauses (1), (6) and (7) of Theorem 4.52 on page 91, see especially the proof of (7). O

Open Problem. Is it consistent that Borel* is a proper subclass of Y1, or even equals A}? Is it
consistent that all the inclusions are proper at the same time: A C Borel* C $17

4.20 Theorem. For a set S C k" the following are equivalent.
1. S is X1,
2. S is a projection of a Borel set,
3. S is a projection of a Y1 -set,

4. S is a continuwous image of a closed set.
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Proof. Let us go in the order.
(1) = (2) Closed sets are Borel.

(2) = (3) The same proof as in the standard case x = w gives that Borel sets are ¥{ (see for
instance [25]).

(3) = (4) Let A C k" x k" be a L}-set which is the projection of A, S = pry A. Then let
C C K" x K" x K" be a closed set such that pr; C = A. Here pry: * x * — k" and
pry: k% X K" X K" — K" X k" are the obvious projections. Let f: k" x k" x k" — K" be
a homeomorphism. Then S is the image of the closed set f[C] under the continuous map
proopr; of L.

(4) = (1) The image of a closed set under a continuous map f is the projection of the graph

of f restricted to that closed set. It is a basic topological fact that a graph of a continuous
partial function with closed domain is closed (provided the range is Hausdorff). O

4.21 Theorem ([36]). Borel* sets are closed under unions and intersections of size k. O

4.22 Definition. A Borel* set B is determined if there exists a tree ¢ and a labeling function
h such that the corresponding game G(t, h,n) is determined for all € k" and

B = {n | II has a winning strategy in G(t, h,n)}.

4.23 Theorem ([36]). Al-sets are exactly the determined Borel* sets. O

4.3 Borel Sets, Al-sets and Infinitary Logic

4.3.1 The Language L.+, and Borel Sets

The interest in the class of Borel sets is explained by the fact that the Borel sets are relatively
simple yet at the same time this class includes many interesting definable sets. Below we prove
Vaught’s theorem (Theorem 4.25), which equates “invariant” Borel sets with those definable in
the infinitary language L,+,.. Recall that models A and B of size k are L,.+.-equivalent if and
only if they are L -equivalent. Vaught proved his theorem for the case x = w; assuming CH
in [52], but the proof works for arbitrary s assuming k<% = k.

4.24 Definition. Denote by S, the set of all permutations of x. If u € k<%, denote
i={peS,.|p*domu=u}.

Note that @ = S, and if u € k* is not injective, then @ = &.
A permutation p: kK — k acts on 2” by

pn=§ < p: A, = A¢ is an isomorphism.

The map n — pn is well defined for every p and it is easy to check that it defines an action of the
permutation group S, on the space 2. We say that a set A C 2% is closed under permutations
if it is a union of orbits of this action.
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4.25 Theorem ([52], k<" = k). A set B C k" is Borel and closed under permutations if and
only if there is a sentence ¢ in L+, such that B ={n| A, = ¢}.

Proof. Let ¢ be a sentence in L,+,. Then {n € 2 | A, = ¢} is closed under permutations,
because if n = p¢, then A, = A and A, = ¢ <= A; |= ¢ for every sentence . If ¢ is a
formula with parameters (a;);<o € K, one easily verifies by induction on the complexity of ¢

that the set
{ne2"| Ay | vl(ai)ica)}

is Borel. This of course implies that for every sentence ¢ the set {n | A, |= ¢} is Borel.
The converse is less trivial. Note that the set of permutations S, C x" is Borel, since

Sk = {nlnla) =pN {n | n(a) #n(B)} . ()
/BOI{ QQHT O£<Q<I€ open

For a set A C k" and u € k<%, define
A ={ne2"|{peul|pne A} is co-meager in u}.

From now on in this section we will write “{p € @ | pn € A} is co-meager”, when we really mean
“co-meager in @’
Let us show that the set

Z ={AC2"| AisBorel, A" is L+ ,-definable for all u € K<"}

contains all the basic open sets, is closed under intersections of size x and under complementation
in the three steps (a),(b) and (¢) below. This implies that Z is the collection of all Borel sets.
We will additionally keep track of the fact that the formula, which defines A** depends only
on A and domu, i.e. for each § < x and Borel set A there exists ¢ = go‘g such that for all
u € kP we have A" = {n | A, E ¢((u;)i<p)}- Setting u = @, we have the intended result,
because A*? = A for all A which are closed under permutations and ¢ is a sentence (with no
parameters).
If A is fixed we denote 4,0‘3 = 3.

(a) Assume ¢ € 2<% and let N, be the corresponding basic open set. Let us show that N, € Z.

Let u € x° be arbitrary. We have to find cpgq. Let 6 be a quantifier free formula with «
parameters such that:
Ng={ne2°[ Ay = 0((7)y<a)}-

Here (7)y<a denotes both an initial segment of « as well as an a-tuple of the structure.

Suppose a < 3. We have p € 4 = u C p~ !, so

ne N> {p € a|pne N,} is co-meager
{peul Ap = 0((7)y<a)} is co-meager
{peal Ay E0((p~"(7)y<a)} is co-meager

{peu| A, EO0((uy)y<a)} is co-meager

11t

independent of p

Ay B 0((uy)y<a)-

!
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Then ¢g = 6.
Assume then that a > . By the above, we still have

neN" < E={pcu|A =0((p " (7))y<a)} is co-meager

Assume that w = (wy)y<a € K is an arbitrary sequence with no repetition and such that
u C w. Since w is an open subset of @ and E is co-meager, there is p € w N E. Because
p € E, we have A, |= 0((p*1(7)),y<a). On the other hand p € w, so we have w C p~!, i.e.
wy = w(y) =p () for v < a. Hence

Ay = 0((wy)y<a)- (%)

On the other hand, if for every injective w € k%, w D u, we have (x), then in fact £ = @
and is trivially co-meager. Therefore we have an equivalence:

neN" <= (YwDu)(w e r* Aw inj. = A, = 0((wy)y<a))-
But the latter can be expressed in the language L+, by the formula ¢g((w;)i<g):
/\ (w; # wj) A ( \V/ wz)( /\ (w; # wj) — 9((wi)i<o¢))
1<j<B BLi<a i<j<a

0 was defined to be a formula defining N, with parameters. It is clear thus that 6 is
independent of u. Furthermore the formulas constructed above from 6 depend only on
f = domu and on 6. Hence the formulas defining N;* and N for domu = domv are the
same modulo parameters.

For each i < k let A; € Z. We want to show that ().__A; € Z. Assume that u € k<" is

arbitrary. It suffices to show that

N =(Na)™

<K i<K

1<K

because then @giAi is just the k-conjunction of the formulas gp‘gi which exist by the induction
hypothesis. Clearly the resulting formula depends again only on dom w if the previous did.
Note that a k-intersection of co-meager sets is co-meager. Now

ne ()45

i<K
(Vi< k)({p € a|pne A;}is co-meager)
(Vi< k)(Vi <k)({p€ualpne A;} is co-meager)
ﬂ{p €@ |pn € A;} is co-meager
<K
{peua|pne ﬂ A;} is co-meager

<K

n e (ﬂ Ai)*u.

1<K

1 111
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(¢) Assume that A € Z i.e. that A* is definable for any u. Let ©qom« be the formula, which
defines A**. Let now u € k<" be arbitrary and let us show that (A°)** is definable. We

will show that
(Ac)*u — ﬂ (A*v)c
vOou
i.e. for all n
n € (A9)™ <= Yv Du(n¢ A™). (4.1)
Granted this, one can write the formula “VYv D u=¢gom «((Vi)i<dom )", which is not of course
the real cpf}c which we will write in the end of the proof.

To prove (4.1) we have to show first that for all ) € k" the set B = {p € @ | pn € A} has
the Property of Baire (P.B.), see Section 4.4.3.

The set of all permutations S, C " is Borel by (-) on page 71. The set @ is an intersection
of S, with an open set. Again the set {p € @ | pn € A} is the intersection of @ and the
inverse image of A under the continuous map (p — pn), so is Borel and so has the Property
of Baire.

We can now turn to proving the equivalence (4.1). First “<

n¢ (A)"" = DB={pecu]|pne A} is not meager in @
= By P.B. of B there is a non-empty open U such that U \ B is meager
= There is non-empty v C @ such that o\ B is meager.
= There exists v C @ such that {p € v | pn € A} = 5N B is co-meager
= JvDu(ne A™).

And then the other direction “=":

ne (A9 = {pe€alpne A} is meager
= for all o C @ the set {p € ¥ | pn € A} is meager.
= Vo Ca(n¢ A™).

Let us now write the formula ¢ = gogc such that

Vo Cua(n ¢ A™) <= A, E¥((wi)icp),
where 8 = domu: let ¥((u;)i<p) be

/\ \V/Ii [ /\ () = ug) A /\ (z; # 33;)] — 20y ((i)i<y)

BLy<k i<y J<p 1<j<y

One can easily see, that this is equivalent to Vv D u(ﬁapdomv((vi)Kdomy)) and that ¢ depends
only on dom u modulo parameters. O

4.26 Remark. If k<% > k, then the direction from right to left of the above theorem does not
in general hold. Let (k, <, A) be a model with domain k, A C k and < a well ordering of x of
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order type k. Véindnen and Shelah have shown [46, Corollary 17| that if x = A1, k<F > &,
A<* = X and a forcing axiom holds (and wf = w; if A = w) then there is a sentence of L,
defining the set

STAT = {(k, <, A) | A is stationary}.

If now STAT is Borel, then so would be the set CUB defined in Section 4.4.3, but by Theorem
4.52(6), page 91, this set cannot be Borel since Borel sets have the Property of Baire by
Theorem 4.48 on page 91.

Open Problem. Does the direction left to right of Theorem 4.25 hold without the assumption

K< = RK?

4.3.2 The Language M, +, and Al-sets

In this section we will present a theorem similar to Theorem 4.25. It is also a generalization of
the known result which follows from [36] and [50]:

4.27 Theorem ([36, 50]:). Let A be a model of size wy. Then the isomorphism type I = {n |
A, = A} is Al if and only if there is a sentence ¢ in M+, such that I = {n| A, = ¢} and
2°\I ={n| A, E~ ¢}, where ~ 0 is the dual of 6.

The idea of the proof of the following Theorem is due to Sam Coskey and Philipp Schlicht:

4.28 Theorem (k<% = k). A set D C 2¢ is Al and closed under permutations if and only if
there is a sentence ¢ in M+, such that D = {n | A, |= ¢} and "\ D = {n | A, =~ ¢},
where ~ 6 is the dual of 6.

We have to define these concepts before the proof.

4.29 Definition (Karttunen [28]). Let A and x be cardinals. The language M), is then defined
to be the set of pairs (¢,.%) of a tree t and a labeling function .#. The tree ¢ is a Ax-tree where
the limits of increasing sequences of t exist and are unique. The labeling .Z is a function
satisfying the following conditions:

1. Z:t—aJaU{A\,V}IU{3x; | i < k}U{Vx; | i < k} where a is the set of atomic formulas
and a is the set of negated atomic formulas.

2. If z € t has no successors, then Z(¢t) € aU a.

3. If z € ¢ has exactly one immediate successor then .Z(t) is either Jz; or V; for some i < k.
. Otherwise .Z(¢t) € {V, \}-

e <y, Z(z) € {3z, Va;} and Z(y) € {Iz;,Vz;}, then i # 5.

[SLETN

4.30 Definition. Truth for M), is defined in terms of a semantic game. Let (¢,.£) be the
pair which corresponds to a particular sentence ¢ and let A be a model. The semantic game
S(p, A) = S(t, %, A) for My, is played by players I and II as follows. At the first move the
players are at the root and later in the game at some other element of t. Let us suppose that
they are at the element = € ¢. If Z(x) = \/, then Player II chooses a successor of = and the
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players move to that chosen element. If Z(x) = A, then player I chooses a successor of z and
the players move to that chosen element. If £ (x) = Vz; then player I picks an element a; € A
and if Z(x) = 3z, then player II picks an element a; and they move to the immediate successor
of x. If they come to a limit, they move to the unique supremum. If z is a maximal element
of ¢, then they plug the elements a; in place of the corresponding free variables in the atomic
formula Z(x). Player I wins if this atomic formula is true in A with these interpretations.
Otherwise player I wins.

We define A |= ¢ if and only if I has a winning strategy in the semantic game.

Given a sentence ¢, the dual sentence ~ ¢ is defined by modifying the labeling function
as follows. The atomic formulas are replaced by their negations, the symbols \/ and A switch
places and the quantifiers ¥V and 3 switch places. A sentence ¢ € M), is determined if for all
models A either A |= ¢ or A =~ ¢.

Now the statement of Theorem 4.28 makes sense. Theorem 4.28 concerns a sentence ¢
whose dual defines the complement of the set defined by ¢ among the models of size x, so it is
determined in that model class. Before the proof let us recall a separation theorem for M, +,.,
Theorem 3.9 from [48]:

4.31 Theorem. Assume k<% = X\ and let IRy and 3Sv be two X1 sentences where ¢ and )
are in M,.+,. and AR and 35 are second order quantifiers. If IRp A3ASY does not have a model,
then there is a sentence 0 € My+y such that for all models A

AE3JRp=AEfOand A=3Sy = AE~0 O

4.32 Definition. For a tree ¢, let ot be the tree of downward closed linear subsets of ¢ ordered
by inclusion.

Proof of Theorem 4.28. Let us first show that if ¢ is an arbitrary sentence of M, +,, then
D, ={n| A, | ¢} is £i. The proof has the same idea as the proof of Theorem 4.18 that
Borel* C 1. Note that this implies that if ~ ¢ defines the complement of D, in 2%, then D,
is Al

A strategy in the semantic game S(p, A,) = S(t,.Z, A;) is a function

v: ot x (domA,)<" — t U (t x dom A,)).

This is because the previous moves always form an initial segment of a branch of the tree
together with the sequence of constants picked by the players from dom A, at the quantifier
moves, and a move consists either of going to some node of the tree or going to a node of the
tree together with choosing an element from dom 4,,. By the convention that dom A, = &, a
strategy becomes a function

viot x K = tU (t X k),

Because t is a k1 k-tree, there are fewer than x moves in a play (there are no branches of
length x and the players go up the tree on each move). Let

frotx k<" = K

be any bijection and let
g:tU(tx k) =K
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be another bijection. Let F' be the bijection
F:(tU(tx K)7" = k8
defined by F(v) =gowvo f~1. Let
C = {(n,&) | F~'(¢) is a winning strategy of I in S(¢,.Z, A,)}.

Clearly D, is the projection of C'. Let us show that C' is closed. Consider an element (7,¢) in
the complement of C. We shall show that there is an open neighborhood of (7, &) outside C.
Denote v = F~1(£). Since v is not a winning strategy there is a strategy 7 of I that beats v.
There are a+1 < k moves in the play 7xv (by definition all branches have successor order type).
Assume that b = (;)i<q is the chosen branch of the tree and (¢;);<, the constants picked by
the players. Let 3 < x be an ordinal with the properties {f((2;)i<y, (¢i)i<y) | ¥ < a+1} C B
and

1" € Nyjp = Ay = ZL(xa)((¢i)i<a)- (%)
Such f exists, since [{f((zi)i<y, (¢i)icy) | ¥ < @+ 1} < k and Z(z,) is a (possibly negated)
atomic formula which is not true in A,,, because II lost the game 7 * v and because already a
fragment of size <  of A, decides this. Now if (/,&’) € N5 X Nepg and o' = F~1(¢'), then
v * 7 is the same play as 7 v'. So A, = L (x4)((¢i)ica) by (*) and (1, &’) is not in C' and

Nyg x Nejg

is the intended open neighborhood of (7, £) outside C. This completes the “if”-part of the proof.

Now for a given A € Al which is closed under permutations we want to find a sentence
¢ € M+, such that A = {n | A, E ¢} and 2¢°\ A = {n | A, E~ ¢}. By our assumption
k<" = k and Theorems 4.23 and 4.31, it is enough to show that for a given Borel* set B
which is closed under permutations, there is a sentence 3Ry which is ¥} over M,.+,. (as in the
formulation of Theorem 4.31), such that B = {n | A, = 3Ry }.

The sentence “R is a well ordering of the universe of order type x”, is definable by the
formula 6§ = 0(R) of L.+, C M,.+,:

” R is a linear ordering on the universe”

A ( \v/ xl) ( \/ ﬁR(xiH,xi))

<w i<w

A ‘v’x\/ Elyl

a<ki<a

(Vy(R(y, x) = \/ vi = y))] (4.2)
i<a
(We assume x > w, so the infinite quantification is allowed. The second row says that there are
no descending sequences of length w and the third row says that the initial segments are of size
less than . This ensures that 6(R) says that R is a well ordering of order type k).
Let ¢t and h be the tree and the labeling function corresponding to B. Define the tree t* as
follows.

1. Assume that b is a branch of ¢ with h(b) = N¢, for some ¢ € k" and a < k. Then attach
a sequence of order type o™ on top of b where

o = U rans,

sem—1[a]
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where 7 is the bijection k<% — k used in the coding, see Definition 4.13 on page 66.
2. Do this to each branch of ¢ and add a root r to the resulting tree.

After doing this, the resulting tree is t*. Clearly it is a kT k-tree, because t is. Next, define the
labeling function .Z. If « € ¢ then either .Z(z) = A or .Z(x) = \/ depending on whether it is
player I’s move or player II’s move: formally let n < w be such that OTP({y € t* | y < z}) =
a+n where « is a limit ordinal or 0; then if n is odd, put £ (z) = A and otherwise .Z(x) = V.
If = r is the root, then Z(z) = A. Otherwise, if x is not maximal, define

f=0TP{yct"\ (tu{r}) |y <z}

and set .Z(z) = Jxg.

Next we will define the labeling of the maximal nodes of t*. By definition these should be
atomic formulas or negated atomic formulas, but it is clear that they can be replaced without
loss of generality by any formula of M, +,; this fact will make the proof simpler. Assume that
2 is maximal in t*. Z(x) will depend only on h(b) where b is the unique branch of ¢ leading to
x. Let us define Z(x) to be the formula of the form 6 A ©,((x;)i<ax ), where 6 is defined above
and Oy is defined below. The idea is that

Ay = 0p((ay)y<ar)} <= n € h(b) and ¥y < & (a, = 7).

Let us define such a ©,. Suppose that & and « are such that h(b) = N¢}q. Define for s € 77 1[a]
the formula Aj as follows:

AS — Pdom57 if A§ ': Pdoms((s(i))iedom s)
b deoma if A§ l?é Pdoms((s(i))iedom s)

Then define

dol(@i)icar) =\ VuRy,z:) « \/(y=2;))]

<ot 1<t
wl((xi)i<a*) = /\ Ag((xs(i))iedoms)>
sem—1{a]
Oy = oA

The disjunction over the empty set is considered false.

Claim 1. Suppose for all n, R is the standard order relation on x. Then

(Ay, R) E Op((ay)y<ar) == n € h(b) ANVy <a’(ay =7).

Proof of Claim 1. Suppose A, = O((ay)y<a+). Then by A, = ¢o((ay)y<a+) we have
that (ay)y<ae+ is an initial segment of dom A, with respect to R. But (domA,, R) = (k, <),
so Vy < a*(a, = 7). Assume that 8 < « and n(8) = 1 and denote s = 7~ '(8). Then
Ay E Paom s((5(1))icdom s)- Since © is true in A, as well, we must have A} = Pyoms which by
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definition means that A¢ = Paom s((5(2))icdom s) and hence £(5) = &(n(s)) = 1. In the same
way one shows that if n(8) = 0, then &(8) =0 for all 3 < a. Hence nja =¢[a.

Assume then that a, = v for all ¥ < o* and that n € N¢o. Then A, trivially satisfies 1.
Suppose that s € 7~ ![a] is such that A¢ = Paom s((5(i))icdoms).- Then &(m(s)) = 1 and since
m(s) < o, also n(7(s)) =1, so Ay, = Paoms((5(4))icdoms). Similarly one shows that if

-Aé bé Pdoms((S(i))iEdoms)v

then A, I~ Piom s((5(7))icdoms). This shows that A, = A;((s(7))icdoms) for all s. Hence A,
satisfies 11, so we have A, | ©. U Claim 1

Claim 2. ¢, h, t* and £ are such that for all n € k"

1 G(t, h,n) <= 3R C (domA,)* 1 S(t*, L, A,).

Proof of Claim 2. Suppose o is a winning strategy of II in G(¢,h,n). Let R be the well
ordering of dom A, such that (domA,, R) = (x,<). Consider the game S(t*,.Z, A,). On the
first move the players are at the root and player I chooses where to go next. They go to to a
minimal element of ¢. From here on II uses o as long as they are in ¢. Let us see what happens
if they got to a maximal element of ¢, i.e. they picked a branch b from ¢. Since o is a winning
strategy of Il in G(¢, h,n), we have n € h(b) and h(b) = N¢|o for some & and «. For the next o
moves the players climb up the tower defined in item (1) of the definition of ¢*. All labels are
of the form x4, so player II has to pick constants from .4,. She picks them as follows: for the
variable 3 she picks § € K = dom A,,. She wins now if A, = O((8)s<a-) and A, = 6. But
n € h(b), so by Claim 1 the former holds and the latter holds because we chose R to be a well
ordering of order type k.

Let us assume that there is no winning strategy of I in G(¢, h,n). Let R be an arbitrary
relation on dom.A4,. Here we shall finally use the fact that B is closed under permutations.
Suppose R is not a well ordering of the universe of order type x. Then after the players reached
the final node of t*, player I chooses to go to € and player II loses. So we can assume that R
is a well ordering of the universe of order type k. Let p: kK — k be a bijection such that p(«) is
the oM element of x with respect to R. Now p is a permutation and {n | A,, € B} = B since
B is closed under permutations. So by our assumption that n ¢ B (i.e. I ¥ G(t, h,n)), we also
have pn ¢ B, i.e. player II has no winning strategy in G(¢, h, pn) either.

Suppose o is any strategy of II in S(t*,.Z,A,). Player I imagines that o is a strategy
in G(¢t,h,pn) and picks a strategy 7 that beats it. In the game S(t*,.Z, A,), as long as the
players are still in ¢, player I uses 7 that would beat o if they were playing G(t, h, pn) instead
of S(t*, %, n). Suppose they picked a branch b of t. Now pn ¢ h(b). If Il wants to satisfy g of
the definition of Oy, she is forced to pick the constants (a;);<~ such that a; is the i*" element
of dom A, with respect to R. Suppose that A, = ¢1((ai)icar) (recall O, = g A ¢1). But
then A,, = ¢¥1((7)y<a+) and also A, = 1¥o((7)y<a+), so by Claim 1 we should have pn € h(b)
which is a contradiction. O aim 2

O Theorem 4.28
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4.4 Generalizing Classical Descriptive Set Theory

4.4.1 Simple Generalizations
The Identity Relation

Denote by id the equivalence relation {(n,£) € (2%)? | n = ¢}. If we want to emphasize the set
on which the identity relation lies, we denote it by idy if the set is X. With respect to our
choice of topology, the natural generalization of the equivalence relation

Ey={(n,§) €2° x2¥ | In < w¥Vm > n(n(m) = &(m))}
is equivalence modulo sets of size < k:

Eg" ={(n,€) €2" x 2" | Ja <rVB > a(n(B) =£(8))},

although the equivalences modulo sets of size < A for A < k can also be studied:
Eg? = {(n,€) € 2" x 2" | BA C w[|A] < AAVB & A(n(B) = £(B))]},

but for A < & these turn out to be bireducible with id (see below). Similarly one can define
E; on k" instead of 2%,

It makes no difference whether we define these relations on 2% or x” since they become
bireducible to each other:

4.33 Theorem. Let \ < k be a cardinal and let ES*(P) denote the equivalence relation Eg*
on P € {2%,k"} (notation defined above). Then

EgA(2%) <c B (8%) and EgM (k") <o EgA(2").
Note that when \ = 1, we have E;*(P) = idp.

Proof. In this proof we think of functions n,£ € k" as graphs n = {(a,n(®)) | @ < }. Fix a
bijection h: k = k x k. Let f: 2% — k" be the inclusion, f(n)(«a) = n(«). Then f is easily seen
to be a continuous reduction E;*(2%) <. E;*(k"). Define g: k% — 2% as follows. For n € x* let
g(n)(a) = 1if h(a) € p and g(n)(a) = 0 otherwise. Let us show that g is a continuous reduction
E;MNK"®) <. ESM2). Suppose 1), € € k are E;*(k")-equivalent. Then clearly [n A¢| < A. On
the other hand

I'={a|gm)(a) #g(€)(a)} ={a|h(a) enA¢}
and because h is a bijection, we have that |I| < A.
Suppose 1 and £ are not E(f)‘(n")—equivalent. But then |n A €| > A and the argument above
shows that also |I| > A, so g(n)(«) is not E;*(2")-equivalent to g(&)(a).
g is easily seen to be continuous. O

We will need the following Lemma which is a straightforward generalization from the
case Kk = w:

4.34 Lemma. Borel functions are continuous on a co-meager set.
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Proof. For each 1 € k<" let V,, be an open subset of k" such that V;; A f~!N,, is meager. Let
D=x"\ |J V,Aaf'N,
HEK<“

Then D is as intended. Clearly it is co-meager, since we took away only a k-union of meager
sets. Let & € k<" be arbitrary. The set Dﬂf’lNE is open in D since Dﬂf’lNE = DNV and
so f[D is continuous. O

4.35 Theorem (k<" = k). E;* is an equivalence relation on 2% for all A < x and
1. E5 is Borel.
2. X% £ id.
3. If N < K, then id <, E0</\.
4. If X < &, then ES* <. id.

Proof. E5 is clearly reflexive and symmetric. Suppose nE; ¢ and € E5*¢. Denote = n~ {1}
and similarly for ,¢{. Then [ A¢] < A and [EA(] < X3 but nAC C (nAE) U(EAC). Thus
E;* is indeed an equivalence relation.

LEP = U ({08 n(e) =&@)).

A€[k]<* agA

open

2. Assume there were a Borel reduction f: 2% — 2° witnessing Fy <p id. By Lemma 4.34
there are dense open sets (D;)i<. such that f[(),_, D; is continuous. If p,q € 2¢ for
some « and £ € Ny, let us denote £P/9) = ¢~ (€1(k\ @), and if A C N, denote

Al/a) — {n(p/q) |ne Al
Let C is be the collection of sets, each of which is of the form
U [D; N Np}(ﬁ/q)
ge2«

for some a < k and some p € 2%. It is easy to see that each such set is dense and
open, so C' is a collection of dense open sets. By the assumption k<% = k, C has size
k. Also C contains the sets D; for all i < &, (taking a = 0). Denote D = ,_,. D;.
Let n € NC, & = f(n) and & # &, & € ran(f | D). Now ¢ and & have disjoint open
neighborhoods V' and V' respectively. Let a and p,q € 2% be such that n € N, and such
that DN N, C f~}[V] and DN N, C f~1[V']. These p and ¢ exist by the continuity of f
on D. Since n € (C and n € N, we have

ne[D;N Nq](Q/P)
for all i < k, which is equivalent to
7P/ e [D; N N,]

for all i < &, i.e. 7P/? is in D N N,. On the other hand (since D; € C for all i < k and
because n € N,), we have € D N N,. This implies that f(n) € V and f(n®/9) € V'
which is a contradiction, because V and V' are disjoint and (n,7?/9) € E.
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3. Let (A;)i<x be a partition of « into pieces of size : if i # j then A;NA; = &, ;.. Ai = K
and |A4;| = k. Obtain such a collection for instance by taking a bijection h: kK — k X k and
defining A; = h= Y[k x {i}]. Let f: 2% — 2% be defined by f(n)(a) = n(i) = « € A;.
Now if n = &, then clearly f(n) = f(£) and so f(n)Eg*f(€). If n # &, then there exists i
such that n(i) # £(i) and we have that

Ai Hal f(n)(e) # f(E)(@)}

and A; is of size Kk > .

4. Let P = k<" \ k<*. Let f: P — & be a bijection. It induces a bijection g: 2F — 2.
Let us construct a map h: 2% — 2% such that g o h is a reduction EO<)‘ — idgx. Let us

denote by E<*(a) the equivalence relation on 2% such that two subsets X,Y of a are
E<*(a)-equivalent if and only if | X AY| < \.

For each a in A < a < & let h, be any reduction of E<*(a) to idsa. This exists
because both equivalence relations have 2% many classes. Now reduce EO<’\ to id,<~ by
f(A) = (ha(ANa) | A < a < k). If A, B are E;*-equivalent, then f(A) = f(B).
Otherwise f,(ANa) differs from f, (B Na) for large enough o < x because A is less than
k and k is regular. Continuity of h is easy to check. O

4.4.2 On the Silver Dichotomy

To begin with, let us define the Silver Dichotomy and the Perfect Set Property:

4.36 Definition. Let C € {Borel, Al, Borel*, 31, 111 }.

By the Silver Dichotomy, or more specifically, k-SD for C we mean the statement that there
are no equivalence relations E in the class C such that £ C 2 x 2 and F has more than &
equivalence classes such that id €p F, id = ida=.

Similarly the Perfect Set Property , or k-PSP for C, means that each member A of C has
either size < k or there is a Borel injection 2* — A. Using Lemma 4.34 it is not hard to see
that this definition is equivalent to the game definition given in [36].

The Silver Dichotomy for Isomorphism Relations

Although the Silver Dichotomy for Borel sets is not provable from ZFC for x > w (see Theorem
4.44 on page 89), it holds when the equivalence relation is an isomorphism relation, if k£ > w is
an inaccessible cardinal:

4.37 Theorem. Assume that k is inaccessible. If the number of equivalence classes of =1 is
greater than k, then id <, Zr.

Proof. Suppose that there are more than s equivalence classes of =27. We will show that then
idor <. 2. If T is not classifiable, then as was done in [41], we can construct a tree t(S)
for each S C Sf and Ehrenfeucht-Mostowski-type models M (¢(S)) over these trees such that
it SAS is stationary, then M (¢(S)) 2 M(¢(S")). Now it is easy to construct a reduction
[+ idax <¢ Esx (see notation defined in Section 4.2.1), so then 1 — M (t(f(n))) is a reduction
id <c gT~



00 82 00 Chapter 4. Generalized Descriptive Set Theory and Classification Theory

Assume now that T is classifiable. By A(T") we denote the least cardinal in which T is stable.
By [40] Theorem XIII.4.8 (this is also mentioned in [12] Theorem 2.5), assuming that =, has
more than x equivalence classes, it has depth at least 2 and so there are: a A(T)"-saturated
model B = T, |B] = X(T), and a \(T)"-saturated elementary submodel A < B and a ¢ B
such that tp(a/B) is orthogonal to A. Let f: k — & be strictly increasing and such that for
all @ < K, f(a) = pt, for some p with the properties A(T) < u < &, cf(p) = p and p?>* = p.
For each 1 € 2° with ~1{1} is unbounded we will construct a model A,. As above, it will be
enough to show that A, % A whenever n~ {1} A¢~1{1} is A-stationary where A\ = A\(T")*.
Fix n € 27 and let A = \(T)*.

For each o € n~1{1} choose B, O A such that

1. rg: B2 By, 1o [ A =id4.

2. Ba laU{Bs | Ben {1}, 8 # a}

Note that 2 implies that if o # 3, then B, NBs = A. For each o € n71{1} and i < f(a) choose
tuples a$ with the properties

3. tp(af!/Ba) = ma(tp(a/B))
4. ai s, Ufaf [ § < f(@),j # i}
Let A, be F{-primary over

Sy =J(Ba la < {1} Ul Haf o <7 {1},i < f(a)}.

It remains to show that if S§¥ Nn~*{1} A¢~{1} is stationary, then A, % A,. Without loss
of generality we may assume that Sy Nn='{1}\ £7!{1} is stationary. Let us make a counter
assumption, namely that there is an isomorphism F': A, — Ag.

Without loss of generality there exist singletons b and sets B}, i < k of size < A such that
Ay =5, UU,;.,. b and (S, (b], B} )i<x) is an F3-construction.

Let us find an ordinal o < x and sets C C A, and D C A; with the properties listed
below:

(a) aen {1} \ & {1}

(b) D= F[C]

(¢) VBe (a+ )Ny H{1}(Bs C C) and VB € (a+ 1) NE~H{1}(Bs C D),

(d) for all i < f(a), V8 € ann {1}(a’ € C) and VB € an&~{1}(a? € D),

(e) |Cl=1ID| < f(a),

(f) For all 3, if B3N C\ A # @, then Bg C C and if Bg N D\ A # @, then Bz C D,

(g) C and D are \-saturated,

(h) if b € C, then B} C [S, UUJ{b | j <i}]NC and if b € D, then B*  [Se UU{BS | j <

N D.
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This is possible, because n~1{1} \ ¢"1{1} is stationary and we can close under the proper-
ties (b)—(h).

Now A, is F{-primary over C U S, and A¢ is Fy-primary over D U S, and thus A, is
F{-atomic over C'U S, and A¢ is F§-atomic over D U Sg. Let

I = {a? | i < f(a)}.

Now |I, \ C| = f(a), because |C| < f(a), and so I, \ C # @. Let ¢ € I, \ C and let
A C S¢\ D and B C D be such that tp(F(c)/AU B) - tp(F(c)/D U S¢) and |[AU B| < A.
Since o ¢ £'{1}, we can find (just take disjoint copies) a sequence (A;);<f(q)+ such that
A; CIoNAg, tp(Ai/D) =tp(A/D) and A; |p U{A, | j #i,5 < f(a)T}

Now we can find (d;);< f(a)+, such that

tp(di~ A" Bi/2) = tp(F(c)~ A~ B/2),
Then it is a Morley sequence over D and for all i < f(a)™T,
tp(di/D) = tp(F(c)/D),

which implies
tp(F 1 (d;)/C) = tp(c/C),

for some i, since for some i we have ¢ = a'. Since by (c), B, C C, the above implies that
tp(F ™ (di)/Ba) = tp(af’ /Ba)
which by the definition of af, item 3 implies
tp(F~'(di)/Ba) = ma(tp(a/B)).

Thus the sequence (F~'(d;))i<f(a)+ Witnesses that the dimension of 74(tp(a/B)) in A, is
greater than f(«). Denote that sequence by J. Since 7, (tp(a/B)) is orthogonal to A, we can
find J' C J such that |J'| = f(a)™ and J’ is a Morley sequence over S,,. Since f(a)™ > A, this
contradicts Theorem 4.9(2) of Chapter IV of [40]. O

Open Problem. Under what conditions on x does the conclusion of Theorem 4.37 hold?

Theories Bireducible With id

4.38 Theorem. Assume k<" = Kk = N, > w, K is not weakly inaccessible and \ = |a + w|.
Then the following are equivalent.

1. There is v < wy such that 3, () > k.
2. There is a complete countable T such that id <p =7 and =7 <p id.

Proof. (2)=(1): Suppose that (1) is not true. Notice that then x > 2¥. Then every shallow
classifiable theory has < x many models of power k (see [12], item 6. of the Theorem which is
on the first page of the article) and thus id € g=7. On the other hand if T is not classifiable and
shallow, =1 is not Borel by Theorem 4.72 and thus it is not Borel reducible to id by Fact 4.78.



00 84 0 Chapter 4. Generalized Descriptive Set Theory and Classification Theory

(1)=(2): Since cf(k) > w, (1) implies that there is @ = §+ 1 < w; such that J,(\) = k.
But then there is an L*-theory T which has exactly x many models in cardinality x (up to
isomorphism, use [12], Theorem 6.1 items 2. and 8.). But then it has exactly x many models
of cardinality < k, let A;, i < k, list these. Such a theory must be classifiable and shallow.
Let L be the vocabulary we get from L* by adding one binary relation symbol E. Let A be an
L-structure in which E' is an equivalence relation with infinitely many equivalence classes such
that for every equivalence class a/FE, (Ala/E)[L* is a model of T*. Let T = Th(A).

We show first that identity on {n € 2%| n(0) = 1} reduces to =7. For all n € 2", let BB, be a
model of T of power « such that if n(¢) = 0, then the number of equivalence classes isomorphic
to B; is countable and otherwise the number is k. Clearly we can code B, as &, € 2" so that
1+ &, is the required Borel reduction.

We show then that =7 Borel reduces to identity on

X={n:k—>(k+1)}
Since T™* is classifiable and shallow, for all 4,7 < k the set
{ne X[ (A4, 10/E) L = A}
is Borel. But then for all cardinals 6 < k and i < k, the set
{neX |card{6/E| 6§ <k, (Ay0/E)IL* = A;}) =6}
is Borel. But then 7 ~— &, is the required reduction when
§(1) = {o/E | 6 <k, (Ay[0/E)[L" = Ai}|. 0

In the above it was assumed that x is not inaccessible. If x is inaccessible, then (2) of the
above theorem always holds:

4.39 Theorem. Suppose k is inaccessible and k<% = k. Then there is a theory T such that
=1 1s bireducible with idsox .

Proof. Let M be the model with domain M = dom M = w U (w x w) and a binary relation R
which is interpreted

RM = {(a, (b,c)) € M* |a € w, (b,c) € w x w,a = b}.

Then our intended theory is the complete first-order theory of this structure 7' = Th(M).
Let C ={Rg | <k} and C=wUC.
Let A be a model of T of size x and let f4: C — C be a function such that

fa®p) = card({z € A card({(a,b) € A| R(z, (a,))}) = Ng}), (%)

i.e. f4(Ng) equals the number of elements which are R-related to exactly X elements. Clearly
A = B is equivalent to fa4 = f5.
Let go: ft = C and g;: u — C be bijections. Let us define the function F' by

F(€) = g1 © fa. © 9o
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Now F'is a reduction =p < idg~. By Theorem 4.33, page 79, id.~ is continuously bireducible
with ids«. Let us show that F' is Borel. In order to do it, we will use the easy direction (right
to left) of Theorem 4.25 on page 71. Because every basic open set in k" is an intersection of
the sets of the form

Uys = {n € " [n(v) = o},
it is enough to show that F'~'[U,s] is Borel for any v,d € k.
n € F~1[U,s] is equivalent to
(x) there exists exactly g1(5) elements in F~1(n) which are R-related to exactly go(v) elements.

We can express (%) in L.+,.. First, let us define the formula ¢, for A < k which says that the
variable x is R-related to exactly A\ elements:

@ Ju[ (A =) AN R A (R V2 =) |
i< Jo<ji<A <A <A

Then one can write the formula which says that there are exactly v < x such zj that satisfy

PA:

Yrp - 3 zk{( /\ - = :z:j> A /\ ox(zg) /\Vz(cpA(z) — \/ (z = xk))]

k<v 1<j<v k<v k<v

For the cases v = k, 0 = k, define

puton): A\ 1[0 [( Ao 2 0) 1 RG]

B<ki<f i<B

and

Yert N\ \v/ Tk {3%[( N (25 # fﬂk)) /\SDA(%)H
B<r k<p k<pB
Note that the last formulas say “for all 8 < k there exist more than (...”, but it is equivalent to
“there exist exactly k...” in our class of models, because the models are all of size .

Thus 14, (+),¢(5) is defined for all v < x and § < . By the direction right to left of Theorem
4.25 this implies that the sets F_lU—Y(s are Borel. This proves &1 <p idg«.

Since k is inaccessible, the other direction follows from Theorem 4.37, page 81. On the
other hand one easily constructs such a reduction from scratch. Let us do it for the sake of
completeness.

Let us show that id <. 2r. Let us modify the setting a little; let Cc, = {A < Kk |
A is a cardinal} and C¥, = C«, \ w and let

ho: K%an

and
hli R — C<,€

be increasing bijections. Suppose ) € " and define f,;: C¥,, — C«,; by

Fa(N) = [(haomohg (V]



00 86 00 Chapter 4. Generalized Descriptive Set Theory and Classification Theory

(recall that  is inaccessible). Let us now build the model M,;:

domMy = | {0 f3(0)} x [f5(N) U £5(A) x Al

A€CY,

(that is, formally dom M,, consists of pairs and triples the first projection being a pair of the
form (X, f,,(A))) and for all z,y € dom M,;:

R(z,y) <= 33aIB(z = (A, f(N), @) Ay = (A, f(N), v, B)).
Denote the mapping 1 — M,, by G, i.e. G(n) = M,,. Clearly M,, = T. Let us show that
My 2Me <= M, =M <= n==¢.

The implications from right to left are evident. Suppose h: M, — M, is an isomorphism.
Since it preserves relations, the restrictions send bijectively the A-levels to some other N-levels:

RS fr ()} x Had U{B} x Al = {(V, fo(X)} x {a'}U{B'} x X]

is a bijection which implies A = X'. Further, by bijectivity, the map a — o’ induced by these
restrictions is also bijective (by preservation of relations, pairs are sent to pairs), so this map
a — o is a bijection between f,(\) and f¢()), thus they are the same cardinal for all A, i.e.
/ n = J -

For a model of the form M, and o < &, let

Mata = (U A £} X [fa(N) U £5(0) x A

AeCE
A<hq(a)

equipped with the relation RMn1e = RM N (dom M)
Let us fix a well ordering of dom A for each model A € ran G as follows. If z,y € dom M,,
then

T<y = pry(z) < pry(y)
or pry(z) = pry(y) Apry(z) < pry(y)
or pry(z) = pry(y) Apra(z) = pry(y) A prs(z) < prs(y)
Note that in the last case it might happen that there is no third projection of x, in that case
define prg(z) to be —1. (If pry(y) were also undefined, then we had = y.) The initial segments
with respect to < are of size less than k, because f,(\) and A are elements of C«,; and < is
clearly a well ordering. Moreover, since we added the + in the definition of f,(\), we have that
VAVR(fn(A) > 0), so we get the following:

(x*) Suppose x is the v*! element of the model with respect to <. Then pr,(z) < ~. Hence
for any n

M, N{z € domM,, | OTP«(z) <~}
C M1
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Note also that if My} = Mg, then the identity map id: My = Mg preserves <.

Recall the coding n — A, of the Definition 4.13. In the definition it is assumed that
dom A = k, but instead of that we can use the well-ordering <. More precisely, for a given
model A, let ¢(A) denote some 7 such that there is an isomorphism f: A, = A which preserves
the ordering of the domain: f(a) is the at! element of dom A with respect to <. In our present
case, c: ranG — k",

Let us show that the map F' = coG: n+ ¢(M,,) is continuous and therefore is the intended
bijection. For that purpose let us equip ran G with a topology 7. We will then show that G is
continuous with respect to that topology and then show that also c is continuous.

Let 7 be the topology on ran G generated by

Up ={M, |pCn}
for p € k<. In fact 7 is the topology co-induced by G, so it trivially makes G continuous:
G™'U, = N,,.

Let us show that
U,={M €eranG | M, C M}. (% * %)

Suppose M, € U, for some n. This is equivalent to that there is £ with p C & such that
M, = M. This in turn is equivalent with p C 7, since necessarily n = {. So M,, € U, implies

Mp = Myjdomp
My U O X ) U () x A

xeCcy,
A< hq(dom p)

c M,

Assume that M € ranG, M, C M and that 7 is such that M = M,,. Let us assume that
¢ is such that p C € and let us show that £ [domp C 7. Let A < hg(domp). Then because
fe(X) > 0, we have

(A, fe(N),0) € M,,.
By the assumption M, C M,, this implies (A, f¢(A),0) € M,,. By definition, this can only
happen if f,(\) = fe(A). Thus for all X\ < hg(domp), we have f,(X) = fe(A). Recall that hy
and hg are an increasing bijections, so

VA < ho(domp)](f,(N) = fe(N)
VA < ho(dom p)]((h1 o no hg ") () = (hy o €0 hg ) ()
[Vao < dom p]((h1 o n)(a) = (h1 0 &)(a))

[Vao < dom p](n(a) = £(a))

[Vao < dom p](n(ar) = p(ar))

1117

=pCn.
Consider now the coding c¢: ranG — k™. Let N¢jo be a basic open set of k. Let M be
a model in ¢ *Ng¢,. Let us show that there is an open 7-neighborhood of M inside ¢ N¢/q.
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We know that & | a decides a segment of M that is below y*® element with respect to <, for
some 7. Denote that segment by S C M. Let n be such that M = M,,. From (xx) we have:
S c M,n{zedomM,|OTP.(z) <~}
C M+
Let us show that U,(,41) is an open neighborhood of M inside ¢ '[N¢ta). Suppose M €

Upi(v+1) and ¢(M) = ¢. Then by (xx x) we have M, ,11) C M. Let S C M be the subset
of M decided by ¢ [a. Thus

{OTP«(z) |z € S’} ={OTP«(z) | z € S},

but by the note after (xx) we have S = 5" and since S C M, (y41) and My (y41) = Mcpy41)s
the codings must coincide and we have ¢ [a =& [a, i.e. ¢(M) € Nepq. O

Failures of Silver’s Dichotomy

There are well-known dichotomy theorems for Borel equivalence relations on 2. Two of them
are:

4.40 Theorem (Silver, [47]). Let E C 2¥ x 2% be a I} equivalence relation. If E has uncount-
ably many equivalence classes, then idow <p E. ]

4.41 Theorem (Generalized Glimm-Effros dichotomy, [11]). Let E C 2“ x 2¥ be a Borel
equivalence relation. Then either E <pg idsw or else By <. E. ]

As in the case kK = w we have the following also for uncountable x (see Definition 4.36,
page 81):

4.42 Theorem. If k-SD for 11} holds, then the k-PSP holds for ¥1-sets. More generally, if
C € {Borel, A}, Borel*, 31,111}, then k-SD for C implies k-PSP for C', where elements in C' are
all the complements of those in C.

Proof. Let us prove this for C = II}, the other cases are similar. Suppose we have a Yi-set A.

Let
E={€)n=¢or (¢ A)A(E ¢ A}

Now E =idU(2%\ A)%. Since A is X}, (2% \ A)? is II} and because id is Borel, also F is IIj.
Obviously |A| is the number of equivalence classes of E provided A is infinite. Then suppose
|A| > k. Then there are more than s equivalence classes of E, so by x-SD for I}, there is a
reduction f: id < E. This reduction in fact witnesses the PSP of A. O

The idea of using Kurepa trees for this purpose arose already in the paper [36] by Mekler
and Viininen.

4.43 Definition. If t C 2<% is a tree, a path through ¢ is a branch of length x. A k-Kurepa
tree is a tree K C 2<% which satisfies the following:

(a) K has more than x paths,
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(b) K is downward closed,
(c) for all & < k, the levels are small: [{p € K | domp = a}| < |a+ w|.
4.44 Theorem. Assume one of the following:
1. K is regular but not strongly inaccessible and there exists a rx-Kurepa tree K C 2<%,

2. K is reqular (might be strongly inaccessible), 2% > k™ and there exists a tree K C 2<%
with more than k but less than 2% branches.

Then the Silver Dichotomy for k does not hold. In fact there an equivalence relation E C

2% x 2% which is the union of a closed and an open set, has more than k equivalence classes but
idex € E.

Proof. Let us break the proof according to the assumptions (1) and (2). So first let us consider
the case where « is not strongly inaccessible and there is a k-Kurepa tree.

(1): Let us carry out the proof in the case k = wy. It should be obvious then how to generalize
it to any k not strongly inaccessible. So let K C 2<“1 be an w;-Kurepa tree. Let P be the
collection of all paths of K. For b € P, denote b = {b, | @ < wy} where b, is an element of K
with domain «.

Let

C={ne2|n=J babe P}
a<wi
Clearly C' is closed.

Let E={(n,&) | (n¢g CANEEC)V (ne CAn=E)} In words, E is the equivalence
relation whose equivalence classes are the complement of C' and the singletons formed by the
elements of C. F is the union of the open set {(n,€) | n ¢ C A& ¢ C} and the closed set
{(n,& |ne CnArnp=¢& ={(nmn | ne C} The number of equivalence classes equals the
number of paths of K, so there are more than w; of them by the definition of Kurepa tree.

Let us show that idow; is not embeddable to E. Suppose that f: 2t — 21 is a Borel
reduction. We will show that then K must have a level of size > w; which contradicts the
definition of Kurepa tree. By Lemma 4.34, page 79, there is a co-meager set D on which f[D
is continuous. There is at most one 1 € 2** whose image f(n) is outside C, so without loss of
generality f[D] C C. Let p be an arbitrary element of K such that f~![N,] # @. By continuity
there is a ¢ € 2<“* with f[N,ND] C N,. Since D is co-meager, there are n and £ such that  # ¢,
g Cnand g C& Let oy <wp and po and p; be extensions of p with the properties py C f(7),
p1 C f(§), ag = dompy = domps, f~'[Np] # @ # f~[N,,] and N,, NN, = @. Note that po
and p; are in K. Then, again by continuity, there are gy and ¢; such that f[N,, N D] C N, and
f[Ng, N D] C Np,. Continue in the same manner to obtain «,, and p, € K for each n < w and
s €2<¥sothat s C s <= p, C ps and oy, = domp, <= n = doms. Let a = sup,,_, .
Now clearly the «o’s level of K contains continuum many elements: by (b) in the definition of
Kurepa tree it contains all the elements of the form (J,, _ pyin for n € 2 and 2% > w;.

If k is arbitrary regular not strongly inaccessible cardinal, then the proof is the same, only
instead of w steps one has to do A steps where X is the least cardinal satisfying 2* > .

(2): The argument is even simpler. Define the equivalence relation E exactly as above. Now E
is again closed and has as many equivalence classes as is the number of paths in K. Thus the
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number of equivalence classes is > k but id cannot be reduced to E since there are less than 2"
equivalence classes. O

4.45 Remark. Some related results:

1. In L, the PSP fails for closed sets for all uncountable regular . This is because “weak
Kurepa trees” exist (see the proof sketch of (3) below for the definition of “weak Kurepa
tree”).

2. (P. Schlicht) In Silver’s model where an inaccessible  is made into ws by Levy collapsing
each ordinal below to w; with countable conditions, every Y1 subset X of 2“1 obeys the
PSP.

3. Supercompactness does not imply the PSP for closed sets.

Sketch of a proof of item (8). Suppose k is supercompact and by a reverse Easton iteration add
to each inaccessible o a “weak Kurepa tree”, i.e., a tree T, with ot branches whose 5" level
has size S for stationary many 3 < «. The forcing at stage « is a-closed and the set of branches
through T}, is a closed set with no perfect subset. If j: V — M witnesses A-supercompactness
(A > k) and G is the generic then we can find G* which is j(P)-generic over M containing j[G]:
Up to A we copy G, between A and j(x) we build G* using AT closure of the forcing and of the
model M, and at j(x) we form a master condition out of j[G(x)] and build a generic below it,
again using A\ closure. O

4.46 Corollary. The consistency of the Silver Dichotomy for Borel sets on wy with CH implies
the consistency of a strongly inaccessible cardinal. In fact, if there is no equivalence relation
witnessing the failure of the Silver Dichotomy for wy, then wo is inaccessible in L.

Proof. By a result of Silver, if there are no wi-Kurepa trees, then ws is inaccessible in L, see
Exercise 27.5 in Part III of [25]. O

Open Problem. Is the Silver Dichotomy for uncountable k consistent?

4.4.3 Regularity Properties and Definability of the CUB Filter

In the standard descriptive theory (k = w), the notions of Borel, Al and Borel* coincide and
one of the most important observations in the theory is that such sets have the Property of
Baire and that the Yi-sets obey the Perfect Set Property. In the case x > w the situation is
more complicated as the following shows. It was already pointed out in the previous section
that Borel C Al. In this section we focus on the cub filter

CUB = {n € 2° | n }{1} contains a cub}.
The set CUB is easily seen to be Yi: the set
{1 ({1} &7 H{1H A (9 {1} is cub)}

is Borel. CUB (restricted to cofinality w, see Definition 4.51 below) will serve (consistently) as
a counterexample to A}l = Borel*, but we will show that it is also consistent that CUB is Af.
The latter implies that it is consistent that Ai-sets do not have the Property of Baire and we
will also show that in a forcing extension of L, Al-sets all have the Property of Baire.
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4.47 Definition. A nowhere dense set is a subset of a set whose complement is dense and
open. Let X C k". A subset M C X is k-meager in X, if M N X is the union of no more than
k nowhere dense sets,
M = U N;.
1<K

We usually drop the prefix “x-".

Clearly k-meager sets form a k-complete ideal. A co-meager set is a set whose complement
is meager.

A subset A C X has the Property of Baire or shorter P.B., if there exists an open U C X
such that the symmetric difference U A A is meager.

Halko showed in [9] that
4.48 Theorem ([9]). Borel sets have the Property of Baire. O

(The same proof as when x = w works.) This is independent of the assumption k<% = k.
Borel* sets do not in general have the Property of Baire.

4.49 Definition ([34, 36, 18]). A kT k-tree ¢ is a kA-canary tree if for all stationary S C S¥
it holds that if P does not add subsets of & of size less than x and P kills the stationarity of S,
then P adds a k-branch to t.

Remark. Hyttinen and Rautila [18] use the notation s-canary tree for our £t r-canary tree.

It was shown by Mekler and Shelah [34] and Hyttinen and Rautila [18] that it is consistent
with ZFC+GCH that there is a x* k-canary tree and it is consistent with ZFC+GCH that there
are no k1 r-canary trees. The same proof as in [34, 18] gives the following:

4.50 Theorem. Assume GCH and assume A < K are regular cardinals. Let PP be the forcing
which adds k™ Cohen subsets of k. Then in the forcing extension there are no k\-canary
trees. O

4.51 Definition. Suppose X C k is stationary. For each such X define the set
CUB(X) = {n € 2| X \ n *{1} is non-stationary},
so CUB(X) is “cub in X™.
4.52 Theorem. In the following k satisfies k<" = k > w unless stated otherwise.
1. CUB(SE) is Borel*.

2. For all regular A\ < r, CUB(SY) is not A} in the forcing extension after adding k' Cohen
subsets of k.

3. If V.= L, then for every stationary S C k, the set CUB(S) is not Al.

4. Assume GCH and that k is not a successor of a singular cardinal. For any stationary set
Z C k there exists a forcing notion P which has the k¥ -c.c., does not add bounded subsets
of k and preserves GCH and stationary subsets of k \ Z such that CUB(k \ Z) is Al in
the forcing extension.
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5. Let the assumptions for  be as in (4). For all reqular X\ < r, CUB(SY%) is A} in a forcing
extension as in (4).

6. CUB(X) does not have the Property of Baire for stationary X C k. Here the assumption
K<" = £ is not needed. (Proved by Halko and Shelah in [10] for X = k)

7. It is consistent that all Ai-sets have the Property of Baire. (Independently known to P.
Liicke and P. Schlicht.)

Proof of Theorem 4.52.

Proof of item (1). Let t = [k]<“ (increasing functions ordered by end extension) and for all
branches b C ¢

h(b) = {¢ € 2" | 6(233 b(n)) # 0}.

Now if x \ €71{0} contains an w-cub set C, then player II has a winning strategy in G(t, h, §):
for her n'" move she picks an element = € ¢ with domain 2n + 2 such that x(2n + 1) is in C.
Suppose the players picked a branch b in this way. Then the condition £(b(2n + 1)) # 0 holds
for all n < w and because C is cub outside £~1{0}, we have £(sup,,,, b(n)) # 0.

Suppose on the contrary that S = ¢71{0} is stationary. Let o be any strategy of player
O. Let C, be the set of ordinals closed under this strategy. It is a cub set, so there is an
a € C,NS. Player I can now easily play towards this ordinal to force a = sup,,, b(n) and so
&(sup,, ., b(b)) = 0, so o cannot be a winning strategy. Oitem (1)

Proof of item (2). It is not hard to see that CUBY is Al if and only if there exists a kA-canary
tree. This fact is proved in detail in [36] in the case kK = w;, A = w and the proof generalizes
easily to any regular uncountable x along with the assumption k<% = k. So the statement
follows from Theorem 4.50. Uitem (2)

Proof of item (3). Suppose that ¢ is ¥; and for simplicity assume that ¢ has no parameters.
Then for x C x we have:

Claim. ¢(z) holds if and only if the set A of those « for which there exists 8 > « such that
Lg = (ZF~ A (w < a is regular) A ((S N a) is stationary ) A ¢(z N «))

contains C'N S for some cub set C.

Proof of the Claim. “=7. If ¢(z) holds then choose a continuous chain (M; | i < k) of
elementary submodels of some large ZF~ model Ly so that x and S belong to My and the
intersection of each M; with x is an ordinal «; less than k. Let C be the set of «;’s, cub in k.
Then any « in C'N S belongs to A by condensation.

“” If () fails then let C be any cub in k and let D be the cub of « < k such that H(«)
is the Skolem Hull in some large Ly of o together with {x,S,C} contains no ordinals in the
interval [, k). Let a be the least element of S Nlim(D). Then « does not belong to A: If Lg
satisfies (2 N ) then 5 must be greater than § where H(a) = Lj is the transitive collapse of

H(a), because ¢(z N «) fails in H(a). But as lim(D) N« is an element of L, , and is disjoint
from S, it follows that either « is singular in Lg or SN« is not stationary in Lz, and hence
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not in Lg. Of course o does belong to C' so we have shown that A does not contain S N C for
an arbitrary cub C in . O Claim

It follows from the above that any 3; subset of 2% is A; over (L}, CUB(S)) and therefore
if CUB(S) were A; then any 3; subset of 2% would be Aj, a contradiction. Oitem (3)

Proof of item (4). If X C 27 is A{, then {n € X | n~'{1} C k\ Z} is A{, so it is sufficient to
show that we can force a set F C Z which has the claimed property. So we force a set £ C Z
such that F is stationary but F N« is non-stationary in « for all @ < k and « \ E is fat. A set
is fat if its intersection with any cub set contains closed increasing sequences of all order types
< K.

This can be easily forced with

R={p:a—2|a<kp {1}NB C Z is non-stationary in 3 for all B < a}

ordered by end-extension. It is easy to see that for any R-generic G the set E = (UG)~*{1}
satisfies the requirements. Also R does not add bounded subsets of x and has the x™-c.c. and
does not kill stationary sets.

Without loss of generality assume that such F exists in V' and that 0 € E.

Next let Py = {p: @ — 2<% | a < k,p(B) € 2°,p(8)"1{1} C E}. This forcing adds a
O p-sequence (A, | a € E) (if G is generic, set A, = (UG)(a) '{1}) such that for all B C E
there is a stationary S C F such that A, = BN a for all a € S. This forcing Py is < x-closed
and clearly has the kT-c.c., so it is easily seen that it does not add bounded subsets of x and
does not kill stationary sets.

Let ¥(G,n,S) be a formula with parameters G € (2<%)* and n € 2 and a free variable
S C k which says:

Va < kla €S < Gla) {1} =n"H1}Nna).

If (G(a) ' {1}) o< happens to be a { g-sequence, then S satisfying 1 is always stationary. Thus
if Gy is Po-generic over V and 7 € 2¥, then (1/(Go,7,S) — (S is stationary))¥[Gol,

For each 1 € 27, let S, be a nice Py-name for the set S such that V[Go] | %(Go,n,S)
where Gy is Po-generic over V. By the definitions, Py I- “Sn C E is stationary” and if n # 7/,
then Py I- “5‘,] N Sn’ is bounded”.

Let us enumerate E = {; | i < x} such that i < j = ; < 3; and for n € 2 and v € &
define n + 7 to be the & € 2% such that £(8;) = 1 for all i < v and &(8,4;) = n(B;) for j = 0.
Let

Fy = {n€ 27 | n(0) = 0}V (+)

Now for all 5,1’ € Fy and a,@’ € k, n+a =1’ + o implies n = ' and @ = o’. Let us now
define the formula ¢(G,n, X) with parameters G € (2<%)*, n € 2" and a free variable X C k\ F
which says:

(n(0) =0) AVa < k[ (e € X = 3S(¥(G,n+2a,5) AS is non-stationary))
Ao ¢ X = 3S((G,n+2a+1,5) A S is non-stationary))].

Now, we will construct an iterated forcing P+, starting with Pg, which kills the stationarity
of S, for suitable n € 2F such that if G is P, +-generic, then for all S C x\ E, S is stationary
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if and only if
3 € 25(p(Go, 1, 9))

where Gy = G | {0}. In this model, for each n € Fp, there will be a unique X such that
©(Go,n, X), so let us denote this X by X,. It is easy to check that the mapping n — X,
defined by ¢ is 1 so in the result, also S = {S C x\ E | S is stationary} is %1. Since cub and
non-stationarity are also ¥1, we get that S is A}, as needed.

Let us show how to construct the iterated forcing. For S C x, we denote by T'(S) the partial
order of all closed increasing sequences contained in the complement of S. Clearly T'(S) is a
forcing that kills the stationarity of S. If the complement of S is fat and S is non-reflecting, then
T'(S) has all the nice properties we need, as the following claims show. Let f: k™\{0} — T xx™
be a bijection such that fi(vy) < 7.

P is already defined and it has the k™-c.c. and it is < s-closed. Suppose that P; has been
defined for ¢ < « and o; has been defined for i < Ua such that o; is a (nice) P;-name for a
kF-c.c. partial order. Also suppose that for all i < Ua, {(Sij,0:;) | 7 < w1} is the list of all
pairs (S, 0) such that S is a nice P;-name for a subset of \ E and § < &, and suppose that

ga:{Sf(i)|i<a}—>F0 (% * )

is an injective function, where Fj is defined at (x).

If a is a limit, let P, consist of those p: a — |J, ., domo; with [sprt(p)| < s (support,
see page 60) such that for all v < o, p [y € P, and let g, = ;.. 9i- Suppose a is a
successor, a = v+ 1. Let {(S,;,0,;) | j < #} be the the list of pairs as defined above. Let
(8,68) = (Sf(,y),éf(,y)) where f is the bijection defined above. If there exists ¢ < v such that
S'f(i) = S'f(,y) (i.e. S; has been already under focus), then let g, = g,. Otherwise let

o = g U{(Ss2),m)}-

where 7 is some element in Fj \ rang,. Doing this, we want to make sure that in the end
ran g.+ = Fp. We omit the technical details needed to ensure that.
Denote n = g(S¢(4)). Let o, be a P,-name such that for all P,,-generic G, it holds that

oy = T($n+26)7 if VIG,] E (65 € S:If(v)) A (Sf(v) is stationary)]
P'Y I 0y = T(Sn+2§+1)7 if V[GFY] ': [(5“7) ¢ Sf(,y)) A (Sf(,y) is stationary)]
o, = {0}, otherwise.

Now let P, be the collection of sequences p = (p;)i<~ such that p [y = (p;)i<y € Py, p, € domo,
and p [~ IFp, py € 0, with the ordering defined in the usual way.

Let G be P, +-generic. Let us now show that the extension V[G] satisfies what we want,
namely that S C s\ E is stationary if and only if there exists n € 2 such that S = X,, (Claims
3 and 4 below).

Claim 1. For a < k™ the forcing P, does not add bounded subsets of x and the suborder

Qa=1{p|pEPys,p={pi)ica where p; € V for i < a}

is dense in P,.
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Proof of Claim 1. Let us show this by induction on o < x™. For Py this is already proved
and the limit case is left to the reader. Suppose this is proved for all v < o < k* and a = B+ 1.
Then suppose p € Py, p = (pi)i<a- Now p| S IF pg € og. Since by the induction hypothesis
Pg does not add bounded subsets of xk and Qg is dense in Pg, there exists a condition r € Qg,
r > p| B and a standard name § such that r |- ¢ = pg. Now 77 () is in Qq, so it is dense in
P,. To show that P, does not add bounded sets, it is enough to show that Q. does not. Let us
think of Q, as a suborder of the product ], ,2<". Assume that 7 is a Q-name and p € Q,
forces that |7| = A < & for some cardinal A\. Then let (M;s)s<, be a sequence of elementary
submodels of H(xT) such that for all 6, 8

|M5| <K

(a
(b

)
)5<5$M5§M5,
(¢) MsNk C Mg,

)

(d) if B is a limit ordinal, then Mg = J M,

a<f
(e) if K = AT, then M C My and if & is inaccessible, then MJ;M‘” C Mgy,
(f) Mo € Moy,

(g) {p’K/aQa7T7 E} C MO-

This (especially (e)) is possible since & is not a successor of a singular cardinal and GCH holds.
Now the set C = {Ms;Nk | J < k} is cub, so because  \ E is fat, there is a closed sequence s of
length A+ 1in C'\ E. Let (d;);<x be the sequence such that s = (Ms, N k)i<r. For ¢ € Q,, let

m(q) = inf rangqg(v). (%)
Y€Esprt g

Let po = p and for all i < « let p;y1 € Ms,., \ Ms, be such that p; < pij1, pit1 decides
i+ 1 first values of 7 (think of 7 as a name for a function A — x and that p; decides the first
i values of that function) and m(p;+1) > Ms, N k. This p;41 can be found because clearly
pi € Ms,,, and Ms, , is an elementary submodel. If i is a limit, 7 < A, then let p; be an upper
bound of {p; | j < i} which can be found in Ms,,, by the assumptions (f), (e) and (b), and
because Ms, Nk ¢ E. Finally let p) be an upper bound of (p;);<» which exists because for all
a € U, sprtp; sup;yranp;(a) = Ms, Nk is not in £ and the forcing is closed under such
sequences. So py decides the whole 7. This completes the proof of the claim. O Claim 1

So for simplicity, instead of P+ let us work with Q,.+.

Claim 2. Let G be P,+-generic over V. Suppose S C k, S € V[G] and S is a nice name
for a subset of x such that S¢ = S. Then let v be the smallest ordinal with S € V[G,]. If
(S C x\ E is stationary)"[¢+]| then S is stationary in V[G]. If § = S, for some n € V and
VIG,] E oy # T((Sn)cvr{o}) for all v < kT, then S is stationary in V[G].

Proof of Claim 2. Recall, o, is as in the construction of P,+. Suppose first that S C x\ £
is a stationary set in V|G, for some v < x*. Let us show that S is stationary in V|[G]. Note
that V[G] = V[G,][G"] where G = G [{a | @ > v}. Let us show this in the case v = 0 and
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S € V, the other cases being similar. Let C be a name and p a condition which forces that C
is cub. Let us show that then pI- SN C # &. For ¢ € Q.+ let m(q) be defined as in (x) above.

Like in the proof of Claim 1, construct a continuous increasing sequence (M, )q<; of elemen-
tary submodels of H(xtT) such that {p,x,P.+,S,C} € My and M, N & is an ordinal. Since
{My,Nk|a<k,My,NkKk=a}iscub, there exists a € S such that M, Nx = « and because E
does not reflect to o there exists a cub sequence

cC{Mgnk|B<a, Mgnk=p0}\E,

¢ = (Ci)i<cf(a). Now, similarly as in the proof of Claim 1, we can choose an increasing (p;);<cf(a)
such that py = p, p; € Q.+ for all i, p;1 IF B e C for some ¢; < B < ciy1s Pig1 € Me,,, \ M,
and m(pi+1) = ¢. If i is a limit, let p; be again an upper bound of {p; | j < i} in M,,.
Since the limits are not in F, the upper bounds exist. Finally perq) IF a € C', which implies
Def(a) IF SN C # @, because o was chosen from S.

Assume then that S = Sn for some 1 € V such that

V[G'y] = oy # T((Sn)Gwr{O})
for all v < x*. To prove that (S,)¢ is stationary in V[G], we carry the same argument as the
above, a little modified. Let us work in V[Go| and let py force that

Vy < kT (0 # T(Sy)).

(This po exists for example because there is at most one 7 such that o, = T(S,)) Build the
sequences ¢, (M, )i<ct(a) and (Pi)i<ct(a) in the same fashion as above, except that assume
additionally that the functions g+ and f, defined along with P+, are in M,,.

At the successor steps one has to choose p; 1 such that for each v € sprt p;, pi41 decides o,.
This is possible, since there are only three choices for o, namely {@}, T'(Set2q+1) Or T'(Set24)
where £ and « are justified by the functions g.+ and f. For all v € sprt p; let us denote by
& the function such that p; 1 [y IF 0, = T(Se,). Clearly n # &, for all v € sprtp;. Further
demand that m(p;11) > sup(S, N Se,) for all v € sprtp;. It is possible to find such p;;; from
M, 41 because M, is an elementary submodel and such can be found in H (k") since &, # 7
and by the definitions .S, N S¢_ is bounded. U Claim 2

Claim 3. In V|[G] the following holds: if S C  \ E is stationary, then there exists n € 2€ with
n(0) = 0 such that S = X,,.

Proof of Claim 3. Recall the function g.+ from the construction of P+ (defined at (* x *)
and the paragraph below that). Let n = g+ (S) where S is a nice name S € V such that
Sg = S. If a € S, then there is the smallest v such that S = St(y) and « = dy(4) (where
f is as in the definition of P.+). This stage v is the only stage where it is possible that
VIG,] E 0, = T(Sy12a+1), but since V[G,] = @ € S, by the definition of P, it is not the
case, so the stationarity of S,t2.+1 has not been killed by Claim 2. On the other hand the
stationarity of Sy 424 is killed at this level v of the construction, so o € X, by the definitions
of ¢ and X,,. Similarly if a ¢ S, we conclude that o ¢ X,,. O laim 3
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Claim 4. In V[G] the following holds: if S C x \ E is not stationary, then for all n € 2F with
7(0) = 0 we have S # X,,.
Proof of Claim 4. It is sufficient to show that X, is stationary for all n € 2F with 5(0) = 0.
Suppose first that n € Fy C V. Then since g,.+ is a surjection onto Fy (see (x * *)), there exists
aname S such that S = S is stationary, S C x \ E and g,.+ (S) = 7. Now the same argument
as in the proof of Claim 3 implies that X, = S, so X, is stationary by Claim 2.

If n ¢ Fo, then by the definition of n — X, it is sufficient to show that the {-sequence
added by Py guesses in V|G| every new set on a stationary set.

Suppose that 7 and C are nice P,+-names for subsets of & and let p be a condition forcing
that C is cub. We want to find v and ¢ > p such that

g (UG HL} =7NH) A (1 €C)

where Gy = G | {0} is the name for the Py-generic. To do that let po > p be such that
po k7 ¢ P(k)V.

Similarly as in the proofs above define a suitable sequence (M;);< of elementary submodels,
of length A < k, where A is a cofinality of a point in F, such that sup; ,(M; Nk) =« € E and
M;Nk ¢ E for all i < A. Assume also that py € My. Suppose p; € M; is defined. Let p;11 > p;
be an element of M;;1 \ M; satisfying the following:

1. p;y1 decides o for all B € sprt p;,

2. for all 8 € sprt p; there is ' € M,1; such that p;+q IF 8" € 7 A g, where &g is defined as
in the proof of Claim 2 and p;;; decides what it is,

3. piy1 decides 7 up to M; Nk,
4. pi1lF0 € C for some § € M1\ M;,
5. m(pi+1) > M; Nk, (m(p) is defined at (%)),

Item (1) is possible for the same reason as in the proof of Claim 2 and (2) is possible since
pi IF V¥ € P(r)V ( # Sp).
Since M; Nk ¢ E for i < A, this ensures that the sequence pg < p; < ... closes under limits
< A Let px = U, pi and let us define ¢ D py as follows: sprt ¢ = sprt py, for § € sprtpy \ {0}
let domg = a+ 1, px(d) C q(9), ¢(@) =1 and ¢(0)(«r) = 7 Ny (7 means here what have been
decided by {p; | ¢ < A}). Now ¢ is a condition in the forcing notion.
Now certainly, if ¢ € G, then in the extension 7¢ N a = (UGo)(a) {1} and a € C, so we
finish. O Claim 4
|:litem (4)

Proof of item (5). If x = AT, this follows from the result of Mekler and Shelah [34] and
Hyttinen and Rautila [18] that the existence of a kA-canary tree is consistent. For arbitrary
A < k the result follows from the item (4) of this theorem proved above (take Z = £\ SY).

Uitem (5)

Proof of item (6). For X = « this was proved by Halko and Shelah in [10], Theorem 4.2. For
X any stationary subset of x the proof is similar. It is sufficient to show that 2% \ CUB(X) is
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not meager in any open set. Suppose U is an open set and (D, )q<x is a set of dense open sets
and let us show that
2"\ CUB(X))nUN () Da # 2.
a<k
Let p € 2<% be such that N, C U. Let pg > p be such that py € Dy. Suppose pg are defined for
B < a+1. Let po41 be such that pat1 = Pa, Pat1 € Dat1. Suppose pg is defined for 8 < o and
a is a limit ordinal. Let p, be any element of 2<% such that p, > UB<a D3, Pa (Zup dompg) =0
<o

and po € Dy. Let n = U, Pa- The complement of n~'{1} contains a cub, so X \ n~'{1}
is stationary whence n ¢ CUB(X) and so € 2"\ CUB(X). Also clearly n € U N[, Da
Uitem (6)

Proof of item (7). Our proof is different from that given by Liicke and Schlicht. Suppose
k<" = k > w. We will show that in a generic extension of V all Al-sets have the Property of
Baire. Let
P = {p | pis a function,|p| < k,domp C k x k™ ,ranp C {0,1}}

with the ordering p < ¢ <= p C ¢ and let G be P-generic over V. Suppose that X C 2” is a
Al-set in V[G]. It is sufficient to show that for every r € 2<% there is ¢ D r such that either
Ny \ X or N, N X is co-meager. So let r € 2<% be arbitrary.

Now suppose that (p;)i<. and (g;)i<. are sequences in V[G] such that p;, ¢; € (2<%)2 for all
1 < k and X is the projection of

Co = (2)*\ U N,

<K

C1=(2%)\ | Ng..

<K

and 2%\ X is the projection of

(By Np, we mean N, 1 X N2 where p; = (pl,p?).) Since these sequences have size k, there exists
o < n* such that they are already in V[G,,] where Go, = {p € G | domp C k X a;}. More
generally, for E C P and A C k™, we will denote E4 = {p € E | domp C k x A} and if p € P,
similarly pa = p[(k x A).

Let az > ay be such that r € Gq,} (identifying £ x {az} with x). This is possible since
G is generic. Let x = Gq,y. In V[G], 2 € X or x € 2"\ X, so there are az > ag, p € Ga,,
P{as} O 7 and a name 7 such that p forces that (x,7) ¢ N, for all i < x or (z,7) & N,, for all
i < k. Without loss of generality assume that p forces (z,7) ¢ N,, for all i < k. Also assume
that 7 is a P,,-name and that oz = o + 2.

By working in V[G,,| we may assume that oy = 0. For all ¢ € Pil}’ priy € g and i < K,
let D; 4 be the set of all s € Pyqy such that p{go} C s, dom(s) > dom(p;) and there is ¢’ € Py
such that ¢ C ¢’ and s U ¢’ decides 7 | dom(p Clearly each D;, is dense above pygy in Pygy
and so it suffices to show that if y € 2~ is such that for all ¢ < k and ¢ as above there is a < &
such that y [ o € D; 4, then y € X. So let y be such. Then we can find z € 2" such that for
all i < x and ¢ as above there are «, 3 < k such that a > dom(p}) and y [« U z | 8 decides
t = 7 [dom(p?). By the choice of p, (y [dom(p}),t) # p;. Letting 7* be the function decided by
y and z, (y,7%) € Cy and so y € X. Oitem (7)

O Theorem 4.52
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Remark (cf(k) = k > w). There are some more results and strengthenings of the results in
Theorem 4.52:

1. (Independently known by S. Coskey and P. Schlicht) If V = L then there is a A] well-order
of P(x) and this implies that there is a Al-set without the Baire Property.

2. Suppose that w < k < A, k regular and ) inaccessible. Then after turning X into x* by
collapsing each ordinal less than A to k using conditions of size < k, the Baire Property
holds for A} subsets of x"~.

4.53 Corollary. For a reqular A < x let NSy denote the equivalence relation on 2% such that
nNS\E if and only if =1 {1} A E71{1} is not \-stationary. Then NSy is not Borel and it is not
Al in L or in the forcing extensions after adding k' Cohen subsets of k.

Proof. Define a map f: 2® — (2%)2 by n +— (&, \ n). Suppose for a contradiction that NS} is
Borel. Then
NSz =NS\n{(a,n) |n € 2"}
| —

closed

is Borel, and further f~![NSg] is Borel by continuity of f. But f~![NSg] equals CUB which is
not Borel by Theorem 4.52 (6) and Theorem 4.48. Similarly, using items (2) and (3) of Theorem
4.52, one can show that NS, is not Al under the stated assumptions. O

4.4.4 Equivalence Modulo the Non-stationary Ideal

In this section we will investigate the relations defined as follows:

4.54 Definition. For X C k, we denote by Ex the relation
Ex ={(n,&) €2 x 2% | (n {1} A¢7'{1}) N X is not stationary}.

The set X consists usually of ordinals of fixed cofinality, i.e. X C S for some pu. These
relations are easily seen to be ¥1. If X C S%, then it is in fact Borel*. To see this use the same
argument as in the proof of Theorem 4.52 (1) that the CUB[-set is Borel*.

An Antichain

4.55 Theorem. Assume GCH, k<" = k is uncountable and p < x is a reqular cardinal such
that if K = AT, then p < cf(\). Then in a cofinality and GCH preserving forcing extension,
there are stationary sets K(A) C S} for each A C k such that Exay €5 Ex(p) if and only if
Ad¢ B.

Remark. Compare to Theorems 5.11 and 5.12 on page 146.

Proof. In this proof we identify functions € 25" with the sets n~1{1}: for example we write
n N & to mean n~ {1} N¢~H{1}.
The embedding will look as follows. Let (S;);<, be pairwise disjoint stationary subsets of

lim ), = {a € S} | a is a limit of ordinals in S} }.
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Let

(*)

If X; C Xy C K, then Ex, <p Ex,, because f(n) =nN X; is a reduction. This guarantees
that
Al C Ay = K(Al) <B K(AQ)

Now suppose that for all & < k we have killed (by forcing) all reductions from K(a) = Fg_
to K(k\ a) = EUg;éa s for all a < k. Then if K(A;) <p K(A2) it follows that A; C Aj:
Otherwise choose o € Ay \ A2 and we have:

K(a) <p K(A1) <p K(A2) <p K(k\ ),
contradiction. So we have:
A C Ay = K(Al) <B K(Ag)

It is easy to obtain an antichain of length x in P(x) and so the result follows.
Suppose that f: Ex <p Ey is a Borel reduction. Then g: 2® — 2% defined by ¢(n) =
f(n) A £(0) is a Borel function with the following property:

nN X is stationary <= g¢(n) NY is stationary.

The function g is Borel, so by Lemma 4.34, page 79, there are dense open sets D; for i < K
such that g [ D is continuous where D = (1,_, D;. Note that D; are open so for each i we can
write D; = ;. Np(i.j), where (p(4,j));<x is a suitable collection of elements of 2<*.

Next define Qg: 2<% x 2<% — {0,1} by Q,(p,q) = 1 <= N,ND C g ![N,] and
Ry k X k — 25" by Rg(i,j) = p(i, j) where p(i,j) are as above.

For any Q: 2<% x 2<% — {0, 1} define Q*: 2% — 2" by

QO () = {f’ s.t. Va < k38 < kQ(n]B,€a) = 1 if such exists,

0, otherwise.

And for any R: k X k — 2<% define
R* = () U Nrgp-
<K J<K

Now clearly Ry = D and QD =g[D, i.e. (Q, D) codes gD in this sense. Thus we have
shown that if there is a reduction Ex <p Ey, then there is a pair (Q, R) which satisfies the
following conditions:

1. Q: (2<%)? — {0,1} is a function.

2. Q(v,2) =1,
3. If Q(p,q) = 1 and p' > p, then Q(p’,q) = 1,
4. f Q(p,q) =1 and ¢’ < ¢, then Q(p,¢') =1
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5. Suppose Q(p,q) =1 and a > domq. There exist ¢’ > ¢ and p’ > p such that dom¢ = «
and Q(p',¢') =1,

. Q(p,q) =Q(p,¢') =1, then ¢ < ¢ or ¢’ <y,
R: k X kK — 2<F is a function.

. For each i € x the set |, NR(,j) is dense.

© o N o

. For all n € R*, nN X is stationary if and only if Q*(n N X)NY is stationary.

Let us call a pair (Q, R) which satisfies (1)-(9) a code for a reduction (from Ex to Ey ).
Note that it is not the same as the Borel code for the graph of a reduction function as a set.
Thus we have shown that if Ex <p Fy, then there exists a code for a reduction from Ex to
FEy. We will now prove the following lemma which is stated in a general enough form so we
can use it also in the next section:

4.56 Lemma (GCH). Suppose p11 and jo are reqular cardinals less than s such that if Kk = AT,
then pz < cf(X), and suppose X is a stationary subset of Si; , Y is a subset of S, XNY =@
(relevant if p1 = p2) and if py < po then N X is not stationary in « for all « € Y. Suppose
that (Q, R) is an arbitrary pair. Denote by ¢ the statement “(Q, R) is not a code for a reduction
from Ex to Ey”. Then there is a T -c.c. < k-closed forcing R such that R I .

Remark. Clearly if y1 = po = w, then the condition ps < cf(\) is of course true. We need this
assumption in order to have v<#2 <  for all v < .

Proof of Lemma 4.56. We will show that one of the following holds:
1. ¢ already holds, i.e. {@}IF ¢,
2.P=2%"={p:a—=2|a<k}lp,

3. RIF ¢,

where
R={(p,q) |p,ge2*,a<k,XNpNgqg=,qis u-closed}

Above “q is py-closed” means “q~ {1} is u1-closed” etc., and we will use this abbreviation below.
Assuming that (1) and (2) do not hold, we will show that (3) holds.

Since (2) does not hold, there is a p € P which forces = and so P, = {g € P | ¢ > p} IF —¢.
But P, = P, so in fact P IF =y, because ¢ has only standard names as parameters (names
for elements in V', such as @, R, X and Y). Let G be any P-generic and let us denote the
set G~1{1} also by G. Let us show that G'N X is stationary. Suppose that C is a name and
r € P is a condition which forces that C is cub. For an arbitrary qq, let us find a ¢ > go which
forces C NG N X # @. Make a counter assumption: no such ¢ > ¢o exists. Let ¢ > go and
a1 > dom gy be such that ¢ IF &1 € C’, domg; > «; is a successor and ¢; (maxdomg;) = 1.
Then by induction on 7 < k let ¢;y1 and ;11 > domg; be such that ¢; 11 IF &;41 € C,
domg;+1 > ;41 is a successor and ¢;41(maxdomg;+1) = 1. If j is a limit ordinal, let ¢; =
Ui<j @ U {(sup;; domg;, 1)} and a; = sup;; ;. We claim that for some i < , the condition
q; is as needed, i.e.

G FGNXNC+#o
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Clearly for limit ordinals j, we have a; = maxdomg; and ¢;(a;) = 1 and {«; | j limit} is cub.
Since X is stationary, there exists a limit jo such that a;, € X. Because go forces that C is
cub, ¢g; > q; > qo foralli < j, ¢; IF &; € C and Qj = sup,.; a;, we have ¢; |- o € CnX. On
the other hand ¢;(c;) =1, so g; I ; € G so we finish.

So now we have in V[G] that G N X is stationary, G € R* (since R* is co-meager) and @
is a code for a reduction, so @* has the property (9) and Q*(GN X)NY is stationary. Denote
Z=Q*(GNX)NY. We will now construct a forcing Q in V[G] such that

VI[G] E (QIF“G N X is not stationary, but Z is stationary”).

Then V[G] = (Q IF ¢) and hence P+ Q I . On the other hand Q will be chosen such that
P x @ and R give the same generic extensions. So let

Q={¢:a—=2|XNGNqg=9d,qis u-closed}, (%)

Clearly Q kills the stationarity of G N X. Let us show that it preserves the stationarity of Z.
For that purpose it is sufficient to show that for any nice Q-name C for a subset of x and any
peQ,if plF“Cis pg-cub”, then p I (C'NZ # ).

So suppose C' is a nice name for a subset of x and p € Q is such that

plE« C is cub”

Let A > r be a sufficiently large regular cardinal and let N be an elementary submodel of
(H(\),p,C,Q, k) which has the following properties:

*[N| = pe
* N2 C N
» a=sup(N Nk) € Z (This is possible because Z is stationary).

Here we use the hypothesis that po is at most c¢f(A\) when k = AT. Now by the assumption
of the theorem, o \ X contains a p-closed unbounded sequence of length 2, (®;)icpu,. Let
(D;)i<p, list all the dense subsets of QV in N. Let go > p, go € Q" be arbitrary and suppose
¢; € QV is defined for all i < . If v = 3+ 1, then define ¢ to be an extension of gg such that
¢y € D and dom ¢y = a; for some «o; > domgg. To do that, for instance, choose o; > dom g3
and define ¢’ D gg by dom¢’ = «;, ¢(6) = 0 for all 6 € dom ¢’ \ dom ¢z and then ¢’ to ¢ in Dg.
If v is a limit ordinal with cf(y) # p1, then let gy =, ¢ If cf(y) = 1, let

¢ = (|J @) (supdomg;, 1)

i<y <

Since N is closed under taking sequences of length less than 2, ¢, € IN. Since we required
elements of Q to be p;-closed but not y-closed if cf(y) # g1, ¢y € Q when cf(y) # p1. When
cf(y) = p1, the limit sup, ., domg; coincides with a limit of a subsequence of (a;)i<,, of
length 411, i.e. the limit is ag for some 3 since this sequence is j1-closed. So by definition
sup; ., domg; ¢ X and again ¢, € Q.

Then ¢ = U, qy is a QN -generic over N. Since X NY = @, also (X NG)NZ = @ and
a ¢ X NG. Hence ¢~ (a,1) is in Q. We claim that ¢ IF (C'N Z # @).
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Because p IF “C is unbounded”, also N E (I« Cis unbounded”) by elementarity. As-
suming that \ is chosen large enough, we may conclude that for all QV-generic g over N,
Nlg] k= “C, is unbounded”, thus in particular N[g] = “C, is unbounded in #”. Let G be Q-
generic over V|G| with ¢ € G;. Then Ccl D C’q which is unbounded in « by the above, since
sup(k N N) = a. Because Cg, is pip-cub, a is in Cg, .

Thus P+ Q IF ¢. It follows straightforwardly from the definition of iterated forcing that R
is isomorphic to a dense suborder of P Q where Q is a P-name for a partial order such that
Q¢ equals Q as defined in (xx) for any P-generic G.

Now it remains to show that R has the x¥-c.c. and is < x-closed. Since R is a suborder of
P x P, which has size k, it trivially has the x*-c.c. Suppose (p;, ¢;)i<~ is an increasing sequence,
v < k. Then the pair

w0 =((Up) (@0, (Ua) (a1)

<y 1<y

is an upper bound. ULemma 4.56

Remark. Note that the forcing used in the previous proof is equivalent to k-Cohen forcing.

4.57 Corollary (GCH). Let K: A — Ey, ., 5. be as in the beginning of the proof. For each
pair (Q, R) and each o there is a < r-closed, k*-c.c. forcing R(Q, R, ) such that

R(Q, R, @) I “(Q, R) is not a code for a reduction from K({a}) to K(x\ {a})”
Proof. By the above lemma one of the choices R = {&}, R = 2<" or
R={(p,q) |pge2’ B<k SaNpng=D,qis p-closed}
suffices. O

Start with a model satisfying GCH. Let h: kT — k% x k x kT be a bijection such that
hs(a) < a for @ > 0 and h3(0) = 0. Let Py = {@}. For each o < K, let {oga0 | B < KT} be
the list of all Po-names for codes for a reduction from K({a}) to K(x \ {a}). Suppose P; and
{0pai | B < KT} are defined for all i < v and « < k, where v < k™ is a successor vy =+ 1, P;
is < r-closed and has the x™-c.c.

Consider oy,(g). By the above corollary, the following holds:

Ps IF [FR e P(2<" x2<%)(Ris < w-closed, KT-c.c. p.o. and

R I 0oyp,(g) is not a code for a reduction.”)]
So there is a Pg-name pg such that Pg forces that pg is as R above. Define
Py =A{(pi)icy | ((pi)icp € Pg) A ((pi)icp IF ps € pp)}-
And if p = (p;)icy € P, and p' = (p})i<y € P, then

p<p, P = [(Pi)i<p <es (P))i<s] N(P})i<p = (Pp <py P3)]
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If v is a limit, v < &7, let

Py ={(pi)i<y | VB(B <v = (pi)i<p € Pg) A (|sPrt(pi)icy| < K)},

where sprt means support, see page 60. For every «, let {oga, | 8 < T} list all Pg-names for
codes for a reduction. It is easily seen that P, is < s-closed and has the kT-c.c. for all v < x*

We claim that P+ forces that for all o, K({a}) €5 K(x \ {a}) which suffices by the
discussion in the beginning of the proof, see (x) for the notation.

Let G be P, +-generic and let G, =“ G NP,” for every v < x. Then G, is P,,-generic.

Suppose that in V[G], f: 2" — 2% is a reduction K({a}) < K(x\ {a}) and (@, R) is the
corresponding code for a reduction. By [32] Theorem VIIL5.14, there is a § < s+ such that
(Q,R) € V[Gs]. Let dy be the smallest such 4.

Now there exists 0yas,, & Ps,-name for (Q, R). By the definition of h, there exists a § > dp
with h(d) = (v, @, dp). Thus

Ps41 IF“0~as, is not a code for a reduction”,

i.e. V[Gss1] = (Q, R) is not a code for a reduction. Now one of the items (1)—(9) fails for (Q, R)
in V[Gs41]. We want to show that then one of them fails in V[G]. The conditions (1)—(8) are
absolute, so if one of them fails in V[Gs41], then we are done. Suppose (1)—(8) hold but (9)
fails. Then there is an n € R* such that Q*(n N Stay) N Si\q is stationary but n M S,y is not
or vice versa. In V[Gs14] define

P = {(pi)icn+ € Pt | (Pi)ico+1 € Gos1}-

Then P°+! is < k-closed. Thus it does not kill stationarity of any set. So if G®*1 is Ps , -generic
over V[Gs11], then in V[Gs11][G°FY], (Q, R) is not a code for a reduction. Now it remains to
show that V[G] = V[Gs41][G?T!] for some G°T!. In fact putting G°+! = G we get P°*1-generic
over V[Gs41] and of course V[Gs41][G] = V]G] (since G511 C G). O Theorem 4.55

Remark. The forcing constructed in the proof of Theorem 4.55 above, combined with the forcing
in the proof of item (4) of Theorem 4.52, page 91, gives that for k<% = k > w; not successor of
a singular cardinal, we have in a forcing extension that (P(k), C) embeds into (€21, <p), i.e.
the partial order of Al-equivalence relations under Borel reducibility.

Reducibility Between Different Cofinalities

Recall the notation defined in Section 4.2.1. In this section we will prove the following two
theorems:

4.58 Theorem. Suppose that x is a weakly compact cardinal and that V = L. Then
(A) Esg <¢ Ereg(r) for any regular X\ < k, where reg(rx) = {\ < k| A is regular},

(B) In a forcing extension Ege» <. Egez. Similarly for A, AT and AT instead of w, wy and
wy for any reqular A < k.
4.59 Theorem. For a cardinal k which is a successor of a reqular cardinal or Kk inaccessible,

there is a cofinality-preserving forcing extension in which for all reqular A < k, the relations
Egy are <p-incomparable with each other.
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Let us begin by proving the latter.

Proof of Theorem 4.59. Let us show that there is a forcing extension of L in which Ege:
and Eg-» are incomparable. The general case is similar.

We shall use Lemma 4.56 with gy = w and us = w; and vice versa, and then a similar
iteration as in the end of the proof of Theorem 4.55. First we force, like in the proof of
Theorem 4.52 (4), a stationary set S C S%? such that for all « € S3?, aN S is non-stationary
in a. Also for all a € S22, aN Sg? is non-stationary.

By Lemma 4.56, for each code for a reduction from Fg to ES:’jf there is a < ws-closed ws-c.c.

forcing which kills it. Similarly for each code for a reduction from Eg«> to Egw2. Making an
wsz-long iteration, similarly as in the end of the proof of Theorem 4.55, we can kill all codes
for reductions from Eg to Ege» and from Ege to Ege». Thus, in the extension there are no

reductions from Ege2 to Ege» and no reductions from Eges to Eges. (Suppose there is one of
alatter kind, f: 22 — 2«2, Then g(n) = f(nNS) is a reduction from Eg to Esif .) O Theorem 4.59

4.60 Definition. Let X,Y be subsets of x and suppose Y consists of ordinals of uncountable
cofinality. We say that X <{-reflects to Y if there exists a sequence (D, )ney such that

1. D, C « is stationary in «,
2. if Z C X is stationary, then {a € Y | D, = Z N a} is stationary.
4.61 Theorem. If X {-reflects to Y, then Ex <. Ey.
Proof. Let (D,)acy be the sequence of Definition 4.60. For a set A C k define
f(A) ={a e Y|AN X N D, is stationary in a}. (7)

We claim that f is a continuous reduction. Clearly f is continuous. Assume that (AA B)NX
is non-stationary. Then there is a cub set C C K\ [[AAB)NX]. Now ANXNC=BnNnXnNC
(#4). The set ' = {a < £ | CNa is unbounded in a} is also cub and if @ € YNC’, we have that
D, N C is stationary in «. Therefore for o € Y N C’ (4ii) we have the following equivalences:

a€ f(A) <= AnXnD, is stationary
ANXNCnN D, is stationary
g BNnXnCnND, is stationary
BNnXnND, is stationary
MO f(B)

Thus (f(A) A f(B))NY C k\ C" and is non-stationary.
Suppose A A B is stationary. Then either A\ B or B\ A is stationary. Without loss of
generality suppose the former. Then

S={aeY |(A\B)NXNa=D,}

is stationary by the definition of the sequence (D,)qecy. Thus for « € S we have that A N
XND,=AnXNn(A\B)nXnNna=(A\B)NXNa is stationary in « and BN X N D, =
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BNXN(A\B)NXNa= @ is not stationary in a. Therefore (f(A) A f(B))NY is stationary
(as it contains S). O

Fact (II}-reflection). Assume that k is weakly compact. If R is any binary predicate on V. and
VA is some 11} -sentence where ¢ is a first-order sentence in the language of set theory together
with predicates {R, A} such that (Vi;, R) |= VA, then there exists stationary many o < k such
that (Vo, RNV,,) =VAp.

We say that X strongly reflects to Y if for all stationary Z C X there exist stationary many
a €Y with X N« stationary in a.

4.62 Theorem. Suppose V = L, k is weakly compact and that X C k and Y C regk. If X
strongly reflects to Y, then X <{-reflects to Y .

Proof. Define D, by induction on « € Y. For the purpose of the proof also define C,, for each
a as follows. Suppose (Dg, Cg) is defined for all 8 < a. Let (D, C) be the L-least! pair such
that

1. C is cub subset of a.
2. D is a stationary subset of X N«
3. forall feYNC,DNB# Dg

If there is no such pair then set D = C = @. Then let D, = D and C, = C. We claim that
the sequence (D, )qcy is as needed. To show this, let us make a counter assumption: there is
a stationary subset Z of X and a cub subset C' of x such that

CnY c{aeY |Dy#ZnNa}. (%)

Let (Z,C) be the L-least such pair. Let A > k be regular and let M be an elementary submodel
of Ly such that

1. | M| < &,
2.a=MnrkeYnNnC,

3. Z N a is stationary in «,
4. {Z,C, X, Y,k} C M

(2) and (3) are possible by the definition of strong reflection. Let M be the Mostowski collapse
of M and let G: M — M be the Mostowski isomorphism. Then M = L. for some v > «. Since
kN M = «, we have

GZ)=ZNa,GIC)=CNa, G(X)=XnNa, GY)=Y Na and G(k) = a, (**).

Note that by the definability of the canonical ordering of L, the sequence (Dg)g<,. is defin-
able. Let ¢(z,y, ) be the formula which says

IThe least in the canonical definable ordering on L, see [32].
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“(x,y) is the L-least pair such that z is contained in X N «, x is stationary in «, y is cub in «
andzNB#Dgforall feynY Na”

By the assumption,
L= ¢(Z,C k), s0 M |=¢(Z,C,k) and Ly = 9(G(Z),G(C),G(k)).

Let us show that this implies L = ¢(G(Z2), G(C),G(k)), i.e. L Eo(ZNa,CNa,a). This will
be a contradiction because then D, = Z N« which contradicts the assumptions (2) and (x)
above.

By the relative absoluteness of being the L-least, the relativised formula with parameters

¢1(G(2),G(C), G(k)) says

“(G(Z),G(C)) is the L-least pair such that G(Z) is contained in G(X), G(Z) is (stationary)L~
in G(k), G(C) is cub in G(k) and G(Z) N B # D;;7 forall B € G(C)NG(Y)NG(k).”

Written out this is equivalent to

“(ZNa,CNa)is the L-least pair such that Z N« is contained in X N, Z N« is
(stationary)l~ in o, C N is cub in @ and Z N 3 # Dé” forall e CNY Na

Note that this is true in L. Since Z N « is stationary in « also in L by (3), it remains to show
by induction on § € aNY that ZNa Dé” = Dé‘ and C’BLw = Cé and we are done. Suppose we

have proved this for 6 € SNY and § € aNY. Then (Dé”,(]{;”) is
(a) (the least L-pair)’~ such that
(b) (Cjp is a cub subset of 3)L,
(c) (Dg is a stationary subset of 3)L~
(d) and for all § € Y N3, (DN # Ds)L.
(e) Or there is no such pair and Dg = @.

The L-order is absolute as explained above, so (a) is equivalent to (the least L-pair)’. Being
a cub subset of « is also absolute for L., so (b) is equivalent to (Cj is a cub subset of o). All
subsets of 3 in L are elements of L+ (see [32]), and since « is regular and 8 < o < vy, we have
P(B) C L. Thus

(Dg is stationary subset of 3)L7 <= (Dj is stationary subset of 3)%.

Finally the statement of (d), (Dg N & # Ds)E is equivalent to Dg N 4§ # D(;L” as it is defining
Dg, but by the induction hypothesis D(SL” = D, so we are done. For (e), the fact that

P(ﬁ) C L\ﬁ\* CcL,C L,y

as above implies that if there is no such pair in L., then there is no such pair in L. O
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Proof of Theorem 4.58. In the case (A) we will show that S¥ strongly reflects to reg(x) in L
which suffices by Theorems 4.61 and 4.62. For (B) we will assume that r is a weakly compact
cardinal in L and then collapse it to wa to get a {-sequence which witnesses that S%2 {$-reflects
to S5? which is sufficient by Theorem 4.61. In the following we assume: V = L and & is weakly
compact.

(A): Let us use II}-reflection. Let X C S%¥. We want to show that the set
{\ €reg(k) | X N\ is stationary in A}
is stationary. Let C' C k be cub. The sentence
“(X is stationary in k) A (C is cub in k) A (k is regular)”

is a I1}-property of (V, X, C). By Ili-reflection we get § < r such that (Vs, XNJ, CNJ) satisfies
it. But then ¢ is regular, X N4 is stationary and § belongs to C.

(B): Let k be weakly compact and let us Levy-collapse & to ws with the following forcing;:
P = {f: regr — r< | ran(f(n) C i, | F(n) # 2} < w}.

Order P by f < g if and only if f(u) C g(p) for all p € reg(x). For all p put P, = {f € P |
sprt f C u} and P# = {f € P | sprt f C x\ 1}, where sprt means support, see page 60.

Claim 1. For all regular p, w < i < &, P, satisfies the following:
(a) If u > wyq, then P, has the p-c.c.,
(b) P, and P* are < w;-closed,
(c) P=P, IFwy =&,
(d) If 4 < K, then P IF cf(@t) = wy,

(e) if p € P, 0 aname and p IF “o is cub in wy”, then there is cub E C & such that p I+ E Co.

Proof. Standard (see for instance [25]). O

We want to show that in the generic extension S%? {-reflects to So2. It is sufficient to show
that S¢2 {-reflects to some stationary Y C S¢? by letting D, = o for o ¢ Y. In our case
Y ={p e VI[G]| (k€ reg(r))"}. By (d) of Claim 1, Y C S%2, (reg(x))" is stationary in V (for
instance by I1}-reflection) and by (e) it remains stationary in V|[G].

It is easy to see that P = P, x P*. Let G be a P-generic over (the ground model) V. Define
G,=GNP,.

and
Gt =G NPr.

Then G, is P,-generic over V.
Also G* is P#-generic over V[G ]| and V[G] = V[G,][G*].
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Let
E={peP|(p>q Ap.lFp"ecD)}

Then E is dense above ¢: if p > ¢ is arbitrary element of P, then ¢ IF 3p’ > p#(p’ € D). Thus
there exists ¢’ > ¢ with ¢’ > p,, ¢ € P, and p’ > p,p’ € P* such that ¢’ I p' € D and so
(@' Tr)U(p' [(k\p)) is above p and in E. So there is p € GNE. But then p, € G, and p* € G*
and p, IF p* € D, so G*ND # @. Since D was arbitrary, this shows that G* is P*-generic
over V[G,]. Clearly V[G] contains both G, and G*. On the other hand, G = G, U G*, so
G € V[G,][G"]. By the minimality of forcing extensions, we get V[G] = V|[G,][G"].

For each p € reg(k) \ {w, w1} let

k.: pt — {o| o is a nice P, name for a subset of p}

be a bijection. A nice P, name for a subset of /i is of the form

e} x Aq |a € BY,

where B C fi and for each a € B, A, is an antichain in P,. By (a) there are no antichains of
length v in P, and |P,| = p, so there are at most ©<* = y antichains and there are p* subsets
B C p, so there indeed exists such a bijection %k, (these cardinality facts hold because V = L
and p is regular). Note that if o is a nice P,-name for a subset of /i, then o C V,.

Let us define

w =

D — { {k#([(UG)(/ﬁ)}(O))} . if it is stationary
n otherwise.

Now D, is defined for all 4 € Y, recall Y = {u € V[G] | (1 € regr)¥'}. We claim that (D,,),cy
is the needed <{)-sequence. Suppose it is not. Then there is a stationary set S C S¥2 and a cub
C C wq such that for all « € CNY, D, # SNa. By (e) there is a cub set Cy C C such that
Co € V. Let S be a nice name for S and p’ such that p’ forces that S is stationary. Let us show
that

H={q>p|qlFD,= 80 for some € Cy}

is dense above p’ which is obviously a contradiction. For that purpose let p > p’ be arbitrary
and let us show that there is ¢ > p in H. Let us now use I1j-reflection. First let us redefine P.
Let P* = {q | Ir € P(r | sprtr = q)}. Clearly P* = P but the advantage is that P* C V, and
P = P*NV, where P}, is defined as P,. One easily verifies that all the above things (concerning
P,, P etc.) translate between P and P*. From now on denote P* by P. Let

R=(Px {0}) U (S x {1}) U (Co x {2}) U ({p} x {3})

Then (Vi, R) = VAyp, where ¢ says: “(if A is closed unbounded and r > p arbitrary, then there
exist ¢ > r and « such that « € A and ¢ IFp & € S).” So basically VAp says “p IF (S is
stationary)”. It follows from (e) that it is enough to quantify over cub sets in V. Let us explain
why such a formula can be written for (V, R). The sets (classes from the viewpoint of V) P,
S and Cy are coded into R, so we can use them as parameters. That r > p and ¢ > r and
A is closed and unbounded is expressible in first-order as well as o € A. How do we express
qFp & € S? The definition of ¢ is recursive in «:

a={(8,1e) | B <}



00 110 o© Chapter 4. Generalized Descriptive Set Theory and Classification Theory

and is absolute for V.. Then ¢ IFp & € S is equivalent to saying that for each ¢’ > ¢ there
exists ¢ > ¢’ with (&,¢”) € S and this is expressible in first-order (as we have taken R as a
parameter).

By IIi-reflection there is p € Cj such that p € P, and (V,,, R) = VAyp. Note that we may
require that p is regular, i.e. (jig € Y)VIE and such that o € SNy implies (&, p) € S for some
peP,. Let S5, =5NV,.

Thus p IFp, “ .u is stationary”. Define ¢ as follows: domq = domp U {u*}, qlpu=plu
and q(ut) = f, dom f = {0} and f(0) = k;l(Su). Then ¢ IFp S, = D, provided that ¢ IFp
“S 1 is stationary”. The latter holds since P* is < wi-closed., and does not kill stationarity of
(S#)Gu so (S#)G“ is stationary in V[G] and by the assumption on p, (S,)a, = (Su)¢. Finally,
it remains to show that in V[G], (S,)e = SNpu. But this again follows from the definition of y.

Instead of collapsing k to ws, we could do the same for A+ for any regular A < x and obtain
a model in which ES§++ <c EsiIJr . ]

n

Open Problem. Is it consistent that Sg? Borel reduces to Sg2?

EO and ES;

In the Section 4.4.4 above, Theorem 4.59, we showed that the equivalence relations of the form
Es; can form an antichain with respect to <g. We will show that under mild set theoretical
assumptions, all of them are strictly above

Bo={(n.€) | n~'{1} A€"{1} is bounded}.

4.63 Theorem. Let k be regular and S C k stationary and suppose that . (S) holds (i.e., Ok
holds on the stationary set S). Then Eq is Borel reducible to Eg.

Proof. The proof uses similar ideas than the proof of Theorem 4.61. Suppose that the . (.5)
holds and let (D, )qcs be the &, (S5)-sequence. Define the reduction f: 2% — 2" by

f(X)={ae S| D, and X N« agree on a final segment of o}

If X|Y are Eyp-equivalent, then f(X), f(Y) are Eg-equivalent, because they are in fact even
FEy-equivalent as is easy to check. If X,Y are not Eg-equivalent, then there is a club C of «
where X, Y differ cofinally in «; it follows that f(X), f(Y) differ on a stationary subset of S,
namely the elements o of C' NS where D, equals X N a. O

4.64 Corollary. Suppose k = AT = 2*. Then Ej is Borel reducible to Es where S C H\Sg"f()\)
1§ stationary.

Proof. Gregory proved in [8] that if 2# = ™ = k, u is regular and A < g, then $,(S%) holds.
Shelah extended this result in [45] and proved that if x = AT = 2* and S C »\ Sti(n)» then

Ok (S) holds. Now apply Theorem 4.63. O

4.65 Corollary (GCH). Let us assume that k is a successor cardinal. Then in a cofinality and
GCH preserving forcing extension, there is an embedding

Fi(P(r),C) = (71, <p),
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where ET1 is the set of ¥1-equivalence relations (see Theorem 4.55) such that for all A € P(k),
Ey is strictly below f(A). If k is not the successor of an w-cofinal cardinal, we may replace %}
above by Borel*.

Proof. Suppose first that k is not the successor of an w-cofinal cardinal. By Theorem 4.55 there
is a GCH and cofinality-preserving forcing extension such that there is an embedding

F:{P(r),C) = (€77, <p).

From the proof of Theorem 4.55 one sees that f(A) is of the form Eg where S C Sf. Now Ejy
is reducible to such relations by Corollary 4.64, as GCH continues to hold in the extension.

So it suffices to show that Eg €p Ey for stationary S C SZ. By the same argument as in
Corollary 4.53 on page 99, Eg is not Borel and by Theorem 4.35 on page 80, Fjy is Borel, so by
Fact 4.78 on page 119, Eg¢ is not reducible to Ep.

Suppose k is the successor of an w-cofinal ordinal and £ > w;. Then, in the proof of Theorem
4.55 replace p by wy and get the same result as above but for relations of the form Eg where
ScSg-

The remaining case is £ = wy. Let {S, | @ < w1} be a set of pairwise disjoint stationary
subsets of wy. Let P be the forcing given by the proof of Theorem 4.55 such that in the P-
generic extension the function f: (P(w1),C) — (8", <p) given by f(A) = Fj__, s, is an
embedding. This forcing preserves stationary sets, so as in the proof of clause (4) of Theorem
4.52, we can first force a {-sequence which guesses each subset of J,.,, Sa on a set S such
that SN S, is stationary for all a. Then by Corollary 4.64 Fy is reducible to Ey, .. s. for all
A C k. O

Remark. The embeddings of Theorems 5.11 and 5.12 (page 146) are in contrast strictly below Fy.

4.5 Complexity of Isomorphism Relations

Let T be a countable complete theory. Let us turn to the question discussed in Section 4.1:
“How is the set theoretic complexity of = related to the stability theoretic properties of T'7”.
The following theorems give some answers. As pointed out in Section 4.1, the assumption
that x is uncountable is crucial in the following theorems. For instance the theory of dense
linear orderings without end points is unstable, but = is an open set in case k = w, while we
show below that for unstable theories T' the set =7 cannot be even A} when x > w. Another
example introduced by Martin Koerwien in his Ph.D. thesis and in [29] shows that there are
classifiable shallow theories whose isomorphism is not Borel when k = w, although we prove
below that the isomorphism of such theories is always Borel, when <% = x > 2%, This justifies
in particular the motivation for studying the space x" for model theoretic purpose: the set
theoretic complexity of = positively correlates with the model theoretic complexity of T'.

The following stability theoretical notions will be used: stable, superstable, DOP, OTOP,
shallow, A\(T") and x(T). Classifiable means superstable with no DOP nor OTOP and A\(T) is
the least cardinal in which 7T is stable.

Recall that by =% we denote the isomorphism relation of models of T" whose size is k. The
main theme in this section is exposed in the following two theorems:
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4.66 Theorem (k<" = k). Assume that k is a successor and let T be a complete countable
theory. If =% is Borel, then T is classifiable and shallow. If additionally xk > 2%, then the
converse holds: if T is classifiable and shallow, then =% is Borel.

4.67 Theorem (k<" = k). Assume that for all A < k, \ < k and k > w1. Then in L and
in the forcing extension after adding x* Cohen subsets of k we have: for any theory T, T is
classifiable if and only if =1 is Af.

The two theorems above are proved in many sub-theorems below. Our results are stronger
than those given by 4.66 and 4.67 (for instance the cardinality assumption x > w; is needed
only in the case where T is superstable with DOP and the stable unsuperstable case is the only
one for which Theorem 4.67 cannot be proved in ZFC). Theorem 4.66 follows from Theorems
4.71, 4.72. Theorem 4.67 follows from Theorems 4.73, 4.74, 4.75 and items (2) and (3) of
Theorem 4.52.

4.5.1 Preliminary Results

The following Theorems 4.68 and 4.70 (page 115) will serve as bridges between the set theoretic
complexity and the model theoretic complexity of an isomorphism relation.

4.68 Theorem (k<" = k). For a theory T, the set =t is Borel if and only if the following holds:
there exists a kT w-tree t such that for all models A and B of T, A~ B < W 1 EF;(A,B).

Proof. Recall that we assume dom A = k for all models in the discourse. First suppose that
there exists a kT w-tree ¢ such that for all models A and B of T, A~ B <= I 1 EF} (A, B).
Let us show that there exists a kTw-tree u which constitutes a Borel code for 27 (see Remark
4.17 on page 68).

Let u be the tree of sequences of the form

<(p03 A0)7 va (plv Al)a fla LR (pn,An)v fn>
such that for all i < n

1. (ps, A;) is a move of player Iin EF}, ie. p; € t and A; C k with |4;] < &,

2. fiisamove of player Il in EFy, i.e. it is a partial function k — & with | dom f;], | ran f;| <
and A; C dom f; Nran f;

3. ((po, Ao), fo, (p1, A1), f1,- -, (Pn, An), fn) is a valid position of the game, i.e. (p;)icn is
an initial segment of a branch in ¢t and 4, C A; and f; C f; whenever i < j < n.

Order u by end extension. The tree u is a kT w-tree (because t is and by (3)).
Let us now define the function

h: {branches of u} — {basic open sets of (x")?}.

Let b C u be a branch,

b= {@7 <(p0’ A0)>7 <(p0,A0), f0>7 LR <(p0,A0), fO, ) (pfﬁ Ak)a fk>}
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It corresponds to a unique EF-game between some two structures with domains . In this
game the players have chosen some set A, = Uigk A; C k and some partial function f; =
Uick fit & = k. Let h(b) be the set of all pairs (7,€) € (k) such that fi.: A, [ Ax = Ae | Ax
is a partial isomorphism. This is clearly an open set:

(7775) € h(b) = Nn[((sup A )+1) X Nﬁ[((sup Ag)+1) - h’(b)

Finally we claim that A, = A; <= II 1 G(u,h,(n,&)). Here G is the game as in Definition
4.16 of Borel* sets, page 67 but played on the product x* x x". Assume A, = A¢. Then
I + EF;(A,, A¢). Let v denote the winning strategy. In the game G(u, h, (1,£)), let us define
a winning strategy for player II as follows. By definition, at a particular move, say n, I chooses
a sequence

((Po; Ao); fos - - - (Pny An)).

Next II extends it according to v to

<(p05A0)7f0a s (pnyAn)vfn>a

where f,, = v((po, 40),--.,(Pn,An)). Since v was a winning strategy, it is clear that f, =
U< fi is going to be a isomorphism between A, [ A and A¢ [ Ak, so (n,€) € h(b).

Assume that A, 2 A¢. Then by the assumption there is no winning strategy of II, so
player I can play in such a way that f,, = Ui@C fi is not an isomorphism between A, [UA; and
Ag¢ [UA;, so (n,€) is not in h(b). This completes the proof of the direction “<".

Let us prove “=". Suppose = is Borel and let us show that there is a tree as in the
statement of the theorem. We want to use Theorem 4.25 and formalize the statement “=r is
definable in L,.+,.” by considering the space consisting of pairs of models.

Denote the vocabulary of A and B as usual by L. Let P be a unary relation symbol not in
L. We will now discuss two distinct vocabularies, L and L U {P} at the same time, so we have
to introduce two distinct codings. Fix an n € 2. Let A, denote the L-structure as defined in
Definition 4.13 of our usual coding. Let p: kK Uk<* — & be a bijection and define A" to be the
model with dom A" = k and if a € dom A", then A" = P(a) <= n(p(a)) = 1 such that if
(a1,...,a,) € (dom AM™, then A" = P,(as,...,a,) < n(p(ai,...,a,)) = 1. Note that we
are making a distinction here between x and x{°}.

Claim 1. The set W = { € 2% | s = |PA"| = |x \ PA"|} is Borel.

Proof of Claim 1. Let us show that the complement is Borel. By symmetry it is sufficient to
show that
B={n|r>P"}

is Borel. Let I C k be a subset of size < k. For 5 ¢ I define U(I, 8) to be the set
UL, B) = {n [ n(p(B)) = 0}.
Clearly U(I,f3) is open for all I, 5. Now

B = U ﬂ U(I,B).

Te[s]<r pel
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By the assumption x<* = k, this is Borel (in fact a union of closed sets). O laim 1

Define a mapping h: W — (2%)? as follows. Suppose £ € W. Let
rii K — PA£
and .
ro: k— K\ PA
be the order preserving bijections (note PA" C k = dom .A").
Let 71 be such that r; is an isomorphism
Ay, = (AN PAY L
and 72 such that r5 is an isomorphism
Ay, = (AS\ PA) L.

Clearly n; and 7, are unique, so we can define h(§) = (1, 72)-

Claim 2. h is continuous.
Proof of Claim 2. Let U = N, x N, be a basic open set of (27)2, p,q € 2<* and let
€€ h ' U]. Let PA° = {B; | i < k} be an enumeration such that 8; < B; < i< jand

similarly 5\ PA* = {v; | i < k}. Let a = max{SBdom ps Ydom ¢} + 1. Then N¢jo C A1 [U]. Thus
arbitrary ¢ in h~1[U] have an open neighborhood in h~1[U], so it is open. O Claim 2

Recall our assumption that E = {(n,§) € 2" | A,, = A¢} is Borel. Since h is continuous and
in particular Borel, this implies that

E' ={n| Apm) 2 Anyiy} =h'E

is Borel in W. Because W is itself Borel, E’ is Borel in 2%. Additionally, E’ is closed under
permutations: if A" is isomorphic to A%, then A7NPA” is isomorphic to A$ NPA* and AT\ PA”
is isomorphic to AS \ PA°, so if A7 € E’, then also AS € E’ (and note that since 5 € W, also
& € W). By Theorem 4.25 (page 71), there is a sentence 6 of L.+, over LU{P} that defines E’.
Thus by Theorem 4.10 (page 65) and Remark 4.12 (page 65) there is a xTw-tree ¢ such that

if € E' and € ¢ E’, then Tl Y EFf (A", A%). ©)
We claim that ¢ is as needed, i.e. for all models A, B of T'
A= B < N 1TEF;(AB).

Suppose not. Then there are models A % B such that I 1 EF} (A, B). Let 1 and £ be such
that Ay, () = Ano(n) = Anye) = A and Ay, ) = B. Clearly n € E', but £ ¢ E', so by (O
there is no winning strategy of Il in EF} (A", A%) which is clearly a contradiction, because II can
apply her winning strategies in EF (A, B) and EF} (A, A) to win in EFf (A7, A%). O Theorem 4.68

We will use the following lemma from [36]:
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4.69 Lemma. Ift C (k<%)2 is a tree and ¢ € k", denote
t(§) ={p € x=" | (p,{ [ domp) € t}
Similarly if t € (k<%)3, then
t(n, &) = {p € 5= | (p,n[domp,{ [domp) € t}.
Assume that Z is ¥1. Then Z is Al if and only if for every tree t C (k<%)? such that
t(&) has a k-branch <= (€ Z

there exists a k¥ r-tree t' such that £ € Z <= t(§) £ t'. (Recall that t <t when there exists
a strictly order preserving map t — t')

4.70 Theorem. Let T be a theory and assume that for every k+ k-tree t there exist (n,£) € (25)?
such that A, Ac E T, A, % A¢ but L+ EFy (A, A¢). Then = is not Al

Proof. Let us abbreviate some statements:
A(t): t C (k<%)3 is a tree and for all (n, &) € (k)2
(n,€) €2y <= t(n,£) contains a k-branch .
B(t,t'): t C (k<) is a kT k-tree and for all (1, &) € k~,
(n,€) €=r <= t(n,§) L t'.

Now Lemma 4.69 implies that if =7 is Al, then Vt[A(t) — F'B(t,t')]. We will show that
Jt[A(t) AVE'=B(t,t')], which by Lemma 4.69 suffices to prove the theorem. Let us define ¢. In
the following, v,, 1, and &, stand respectively for v [a, [« and £ [ a.

t = {(Va,Na:&a) | @ < k and v codes an isomorphism between A, and A¢}.

Using Theorem 4.14 it is easy to see that ¢ satisfies A(¢). Assume now that ¢’ is an arbitrary
kT k-tree. We will show that B(t,t’) does not hold. For that purpose let u = w x t’ be the tree
defined by the set {(n,s) | n € w,s € t'} and the ordering

(7?,0,80) <u (nl,sl) — (80 <y 81V (80 =51 A Ang <y 7?,1)) (1)

This tree u is still a kT k-tree, so by the assumption of the theorem there is a pair (£1, &) such
that Ag, and Ag, are non-isomorphic, but II 1 EF;, (Ag, , Ag, ).
It is now sufficient to show that t(£1,&2) £ t'.

Claim 1. There is no order preserving function
ot = t',

where ot’ is defined in Definition 4.32.
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Proof of Claim 1. Assume g: ot’ — ¢, is order preserving. Define xy = g(&) and
To=g({y et | <aly<zp)}) for 0 <a<k

Then (Z4)a<x contradicts the assumption that ' is a k¥ rk-tree. O Claim 1

Claim 2. There is an order preserving function

ot’ = t(&1,62).

Proof of Claim 2. The idea is that players I and II play an EF-game for each branch of
the tree ¢’ and II uses her winning strategy in EF; (A, , Ag,)to embed that branch into the
tree of partial isomorphisms. A problem is that the winning strategy gives arbitrary partial
isomorphisms while we are interested in those which are coded by functions defined on page 67.
Now the tree u of (1) above becomes useful.

Let o be a winning strategy of player Il in EF},(Ag,, Ae,). Let us define g: ot’ — ¢(&1,&2)
recursively. Recall the function 7 from Definition 4.13 and define

C ={a|n[a~¥] =a}.

Clearly C is cub. If s C t’ is an element of ot’, then we assume that g is defined for all s’ <,y s
and that EF} is played up to (0,sups) € u. If s does not contain its supremum, then put
9(s) = Uy <, 9(s'). Otherwise let them continue playing the game for w more moves; at the n'®
of these moves player I picks (n,sups) from v and a § < k where § is an element of C' above

max{ran f,_1,dom f,_1}

where f,_1 is the previous move by II. (If n = 0, it does not matter what I does.) In that
way the function f =J,_,, fn is a partial isomorphism such that dom f = ran f = a for some
ordinal «. It is straightforward to check that such an f is coded by some v,: a — k. It is an
isomorphism between A¢, Na and Ag, N a and since « is in C, there are £} and &, such that
§ila C &, & la C & and there is an isomorphism A = Ag coded by some v such that
Vo = v]a. Thus v, € t(&£1, &) is suitable for setting g(s) = v,. O claim 2

O Theorem 4.70

4.5.2 Classifiable
Throughout this section « is a regular cardinal satisfying k<" = k > w.
4.71 Theorem (x > 2¥). If the theory T is classifiable and shallow, then =1 is Borel.

Proof. If T is classifiable and shallow, then from [40, Theorem XIII.1.5 and Claim XIII.1.3] it
follows that the models of T" are characterized by a fragment of L, +, which consists of formulas
of bounded quantifier rank (the bound depends on depth of T'). By the standard argument
this implies that the game EF} characterized models of T' of size k up to isomorphism, where
t is some kTw-tree (in fact a tree of descending sequences of an ordinal @ < x™). Hence by
Theorem 4.68 the isomorphism relation of T is Borel. O
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4.72 Theorem. If the theory T is classifiable but not shallow, then =1 is not Borel. If K is
not weakly inaccessible and T is not classifiable, then =1 is not Borel.

Proof. If T is classifiable but not shallow, then by [40] XIII.1.8, the Ly,-Scott heights of models
of T of size x are not bounded by any ordinal < x™ (see Definition 4.8 on page 65). Because
any k1 w-tree can be embedded into ¢, = {decreasing sequences of a} for some « (see Fact 4.3
on page 61), this implies that for any xTw-tree ¢ there exists a pair of models A, B such that
A % B but I T EF; (A, B). Theorem 4.68 now implies that the isomorphism relation is not
Borel.

If T is not classifiable & is not weakly inaccessible, then by [41] Theorem 0.2 (Main Conclu-
sion), there are non-isomorphic models of T' of size x which are L. ,-equivalent, so the same
argument as above, using Theorem 4.68, gives that =7 is not Borel. O

4.73 Theorem. If the theory T is classifiable, then =r is Al.

Proof. Shelah’s theorem [40, Theorem XIII.1.1] says that if a theory T is classifiable, then any
two models that are Lo ,-equivalent are isomorphic. But L, equivalence is equivalent to EF;’-
equivalence (see Theorem 4.11 on page 65). So in order to prove the theorem it is sufficient to
show that if for any two models A, B of the theory T it holds that I T EF[; (A, B) <— A~ B,
then the isomorphism relation is Al. The game EF? is a closed game of length w and so
determined. Hence we have I 1 EF; (A, B) <= A% B. By Theorem 4.7 the set

{(v,m,€) € (k%)® | v codes a winning strategy for I 1 EFZ(A,,A¢))}
is closed and thus {(n,&) | A, % A¢} is X1, which further implies that =7 is Af by Corol-
lary 4.15. O

4.5.3 Unclassifiable
The Unstable, DOP and OTOP Cases

As before, x is a regular cardinal satisfying k<% = k > w.
4.74 Theorem. 1. If T is unstable then =7 is not Af.
2. If T is stable with OTOP, then =7 is not A},
3. If T is superstable with DOP and r > w1, then =1 is not Al.

4. If T is stable with DOP and X = cf(\) = MN(T) + A<*T) > w;, k > At and for all £ < K,
&N < K, then =7 is not A}. (Note that x(T) € {w,w;}.)

Proof. For a model A of size x of a theory T let us denote by
E(A)
the following property: for every ™ k-tree ¢ there is a model B of T of cardinality  such that

IO+ EF;(A,B) and A 2 B.
For (3) we need a result by Hyttinen and Tuuri, Theorem 6.2. from [23]:
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Fact (Superstable with DOP). Let T be a superstable theory with DOP and k<" = k > w;.
Then there exists a model A of T of cardinality x with the property E(A).

For (4) we will need a result by Hyttinen and Shelah from [21]:

Fact (Stable with DOP). Let T be a stable theory with DOP and A = cf(\) = \(T) + A<*(T) >
wi, k<% =Kk > At and for all £ < k, € < k. Then there is a model A of T of power k with
the property E(A).

For (1) a result by Hyttinen and Tuuri Theorem 4.9 from [23]:

Fact (Unstable). Let T be an unstable theory. Then there exists a model A of T of cardinality
K with the property E(A).

And for (2) another result by Hyttinen and Tuuri, Theorem 6.6 in [23]:

Fact (Stable with OTOP). Suppose T is a stable theory with OTOP. Then there ezists a model
A of T of cardinality x with the property E(A).

Now (1), (2) and (4) follow immediately from Theorem 4.70. O

Stable Unsuperstable

We assume <" = k > w in all theorems below.
4.75 Theorem. Assume that for all A < k, \¥ < k.
1. If T is stable unsuperstable, then =1 is not Borel.

2. If Kk is as above and T is stable unsuperstable, then =1 is not A} in the forcing extension
after adding kT Cohen subsets of r, or if V = L.

Proof. By Theorem 4.90 on page 137 the relation Egs: can be reduced to =7. The theorem
follows now from Corollary 4.53 on page 99. O

On the other hand, stable unsuperstable theories sometimes behave nicely to some extent:

4.76 Lemma. Assume that T is a theory and t a k™ k-tree such that if A and B are models of
T, then A~ B < N1 EF;(A,B). Then = of T is Borel*.

Proof. Similar to the proof of Theorem 4.68. O

4.77 Theorem. Assume k € I[s] and k = \* (“s € I[k]” is known as the Approachability
Property and follows from A<* = )\, see Section 5.3 on page 144 of this thesis). Then there
exists an unsuperstable theory T whose isomorphism relation is Borel*.

Proof. In [19] and [20] Hyttinen and Shelah show the following (Theorem 1.1 of [20], but the
proof is essentially in [19]):

Suppose T = ((w*, E;)i<w), where nE;¢ if and only if for all j < 4, n(j) = £(4). If k € I[x],
x = AT and A and B are models of T' of cardinality «, then A = B <= I 1 EF} ,,(A,B),
where + and - denote the ordinal sum and product, i.e. A-w + 2 is just an ordinal.
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So taking the tree ¢ to be A - w + 2 the claim follows from Lemma 4.76. O

Open Problem. If k = 2“, is the isomorphism relation of all classifiable and shallow theories
Borel on structures of size k7

Open Problem. We proved that if k > 2“ the isomorphism relation of a theory T is Borel if
and only if T is classifiable and shallow. Is there a connection between the depth of a shallow
theory and the Borel degree of its isomorphism relation? Is one monotone in the other?

Open Problem. Can it be proved in ZFC that if T is stable unsuperstable then =7 is not A}?

4.6 Reductions

Recall that in Section 4.5 we obtained a provable characterization of theories which are both
classifiable and shallow in terms of the definability of their isomorphism relations. Without the
shallowness condition we obtained only a consistency result. In this section we improve this to
a provable characterization by analyzing isomorphism relations in terms of Borel reducibility.

Recall the definition of a reduction, section Reductions page 60, and recall that if X C & is
a stationary subset, we denote by Ex the equivalence relation defined by

Vn, € € 2°(nEx¢ <= (n {1} A¢7H{1}) N X is non-stationary),

and by S¥ we mean the ordinals of cofinality A that are less than k.
The equivalence relations Ex are Y1 (nEx¢ if and only if there exists a cub subset of

£\ (XN (nAg))).
Simple conclusions can readily be made from the following observation that roughly speak-
ing, the set theoretic complexity of a relation does not decrease under reductions:

4.78 Fact. If Ey is a Borel (or Al) equivalence relation and Ey is an equivalence relation with
Eo <p FE1, then Ey is Borel (respectively Al if Ey is Al). O

The main theorem of this section is:
4.79 Theorem. Suppose k = AT = 2 > 2% where A<* = \. Let T be a first-order theory.

Then T is classifiable if and only if for all regular p <k, Egr £ p 5.

4.6.1 Classifiable Theories
The following follows from [40] Theorem XIII.1.1 (see also the proof of Theorem 4.73 above):

4.80 Theorem ([40]). If a first-order theory T is classifiable and A and B are non-isomorphic
models of T of size k, then 11 EFL (A, B). O

4.81 Theorem (k<" = k). If a first-order theory T is classifiable, then for all A < k

Esg €5 5 .
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Proof. Let NS € {Es; | A € reg(r)}.
Suppose r: 2% — 27 ig a Borel function such that

Vn,f € 2K(-Ar(n) ): T A Ar(g) ': T A (77 st <~ -Ar(n) = -’47‘(5))) (V)

By Lemma 4.34, page 79, let D be an intersection of k-many dense open sets such that
R = r | D is continuous. D can be coded into a function v: k X K — k<% such that D =
Ni<k Uj<n No(ij)- Since R is continuous, it can also be coded into a single function u: k<" x
k<" — {0,1} such that

Rn) =¢§ <= (Va <r)3FB <r)un]f,Ela) =1].
(For example define u(p,q) =1if DN N, C R7'[N,].) Let

o(n,&u,v) = (Va < k)(3B < K)[unB,{1a) =1 A (Vi < k)(Tj < k)N € Ny jl-

It is a formula of set theory with parameters u and v. It is easily seen that ¢ is absolute for
transitive elementary submodels M of H (k™) containing s, u and v with (k<F)M = <,

Let P = 2<% be the Cohen forcing. Suppose M < H (k™) is a model as above, i.e. transitive,
k,u,v € M and (k<*)M = k<#. Note that then PU {P} C M. Then, if G is P-generic over M,
then UG € D and there is £ such that o(UG,§, u,v). By the definition of ¢ and u, an initial
segment of £ can be read from an initial segment of UG. That is why there is a nice P-name 7
for a function (see [32]) such that

(p(UG’ TG? u? v)

whenever G is P-generic over M.
Now since the game EF[ is determined on all structures, (at least) one of the following
holds:

L. there is p such that p IF IT T EF(A;, A, ()
2. there is p such that p I- Tt EF[(A-, A,@))

where 0 is the constant function with value 0. Let us show that both of them lead to a
contradiction.
Assume (1). Fix a nice P-name o such that

plF“o is a winning strategy of Il in EF((A,, A,())”

A strategy is a subset of ([x]<")<% x k<" (see Definition 4.6 on page 63), and the forcing does
not, add elements to that set, so the nice name can be chosen such that all names in dom o are
standard names for elements that are in ([k]<%)<¥ x k<F € H(x™T).

Let M be an elementary submodel of H(x™) of size x such that

{u,v,0,7(0),7,P} U (k+1)UM<" C M.

Listing all dense subsets of P in M, it is easy to find a P-generic G over M which contains p
and such that (UG)~1{1} contains a cub. Now in V, UG WS 0. Since p(UG, 7¢,u,v) holds, we
have by (V):

Are # Aro)- (1)
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Let us show that og is a winning strategy of player I in EF(A,., A.)) (in V) which by
Theorem 4.80 above is a contradiction with (1).

Let p be any strategy of player I in EF( (A, A, ) and let us show that og beats it.
Consider the play o * 1 and assume for a contradiction that it is a win for I. This play is well
defined, since the moves made by p are in the domain of o by the note after the definition of
o, and because ([k]<")<¥ x k<" C M.

The play consists of w moves and is a countable sequence in the set ([x]<%) x k<. Since P is
< k closed, there is gg € P which decides og * p (i.e. og, * u = 0, * o whenever g9 € GoNGh).
Assume that G’ is a P-generic over V with ¢y € G’. Then

(o % W)V = (o6 % WVIE = (66 # p)V
(again, because P does not add elements of k<*) and so
(o0¢r * 1 is a win for I)V[G/]

But ¢ IF “o * p is a win for II”, because gy extends p and by the choice of o.

The case (2) is similar, just instead of choosing UG such that (UG)~1{1} contains a cub,
choose G such that (UG)~'{0} contains a cub. Then we should have A, = A, g which
contradicts (2) by the same absoluteness argument as above. O

4.6.2 Unstable and Superstable Theories

In this section we use Shelah’s ideas on how to prove non-structure theorems using Ehrenfeucht-
Mostowski models, see [41]. We use the definition of Ehrenfeucht-Mostowski models from [23,
Definition 4.2.].

4.82 Definition. In the following discussion of linear orderings we use the following concepts.

+ Coinitiality or reverse cofinality of a linear order 7, denoted cf*(n) is the smallest ordinal
a such that there is a map f: o — n which is strictly decreasing and ran f has no (strict)
lower bound in 7.

« If n = (n,<) is a linear ordering, by n* we denote its mirror image: n* = (1, <*) where
r<'y <= y<uw

» Suppose A is a cardinal. We say that an ordering 7 is A-dense if for all subsets A and B of
1 with the properties Va € AVb € B(a < b) and |A| < A and |B| < A there is x € 5 such
that a < x < bfor all a € A, b € B. Dense means w-dense.

4.83 Theorem. Suppose that k = \T = 2* such that \<* = \. If T is unstable or superstable
with OTOP, then Egy <c =r. If additionally X\ > 2%, then Esy <c =1 holds also for superstable
T with DOP.

Proof. We will carry out the proof for the case where 7' is unstable and shall make remarks on
how certain steps of the proof should be modified in order this to work for superstable theories
with DOP or OTOP. First for each S C S¥, let us construct the linear orders ®(.S) which will
serve a fundamental role in the construction. The following claim is a special case of Lemma
7.17 in [14]:
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Claim 1. For each cardinal p of uncountable cofinality there exists a linear ordering n = 7,
which satisfies:
Ln=n+mn,

2. forala< u,n=n-a+n,

3.n=En-ptn-wi,

4. 7 is dense,

5. [nl = n,
6. cf*(n) = w.

Proof of Claim 1. Essentially the same as in [14]. U Claim 1

For a set S C S¥, define the linear order ®(S) as follows:

o(8) => (i, 9),
1<K
where 7(i,S) = nx if i ¢ S and 7(¢,S) = ny - wi, if ¢ € S. Note that ®(S5) is dense. For
a < B < k define
o(S,a,8) = > 7(i,5).
a<i<f

(These definitions are also as in [14] although the idea dates back to J. Conway’s Ph.D. thesis
from the 1960’s; they are first referred to in [37]). From now on denote n = ny.

Claim 2. If o ¢ S, then for all 8 > « we have ®(S, o, 5+ 1) 2 n and if « € S, then for all
B > a we have ®(S, o, 0+ 1) 2 n - wi.

Proof of Claim 2. Let us begin by showing the first part, i.e. assume that « ¢ S. This
is also like in [14]. We prove the statement by induction on OTP(8 \ «). If 8 = «, then
O(S,a,a0 + 1) = n by the definition of ®. If § = v + 1 is a successor, then 8 ¢ S, because S
contains only limit ordinals, so 7(8,5) = n and

O(S, o, 4+ 1) = (S, 0,7 +14+1) = (S, 0,7+ 1) +1n

which by the induction hypothesis and by 1 is isomorphic to n. If 8 ¢ S is a limit ordinal,
then choose a continuous cofinal sequence s: cf(8) — S such that s(y) ¢ S for all v < cf(8).
This is possible since S contains only ordinals of cofinality A. By the induction hypothesis
O(S,a,8(0)+1) =,

(S, s(y)+1,s(y+1)+1)=n

for all successor ordinals v < cf(f8),

(S, s(y),s(y+1)+1)xn
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for all limit ordinals v < cf(8) and so now
(S, a0, f+1)=n-cf(B)+n

which is isomorphic to n by 2. If 3 € S, then cf(8) = X and we can again choose a cofinal
sequence s: A — [ such that s(«) is not in S for all @ < A. By the induction hypothesis. as
above,

(S, 0, 80+1)=n-A+7(8,9)

and since § € S we have 7(8,5) = n - wy, so we have
(S, 0,8+ 1) =n-A+n-wi

which by 3 is isomorphic to 7.
Suppose a € S. Then o+ 1 ¢ S, so by the previous part we have

O(S,a,f+1) = 7(a, S) + (S, + 1,6+ 1) =0 -wj +n=n-wi.
U Claim 2

This gives us a way to show that the isomorphism type of ®(S) depends only on the Egg-
equivalence class of S:

Claim 3. If 5,5’ C S§ and S A S’ is non-stationary, then ®(S5) = &(S5").

Proof of Claim 3. Let C be a cub set outside SAS’. Enumerate it C = {o; | i < K}
where (a;);<, is an increasing and continuous sequence. Now ®(S) = |, ®(S, s, ;11) and
O(S") = U;jer (9, @i, i41). Note that by the definitions these are disjoint unions, so it is
enough to show that for all i < k the orders ®(S, a;, ;1) and ®(S’, o, a;41) are isomorphic.
But foralli <k a; € S <= «; € 5, so by Claim 2 either

(I)(Sy Qi ai+1) = n = Q(Slv ai7ai+1)

(if a; ¢ S) or
¢(57 Qg ai+1) = n- WT = ¢(517 (073} a’i+1)

(if a; € S). U Claim 3

4.84 Definition. K\ is the set of L-models A where L = {<, <, (P.)a<x, h}, with the prop-
erties

+ dom A C IS* for some linear order I.

Vr,y e Alz <y <= z Cy).

» Vo € A(P,(x) <= length(x) = a).

e,y € Al <y < Jz€ A((z,y € Succ(2)) NI E x <vy))]

 h(z,y) is the maximal common initial segment of = and y.
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For each S, define the tree T'(S) € K} by
T(S) =®(S)“*U{n: A = ®(S) | n increasing and
of (®(S) \ {z | (By € rann)(z <y)}) = wi}.

The relations <, <, P, and h are interpreted in the natural way.
Clearly an isomorphism between ®(.S) and ®(S’) induces an isomorphism between 7'(.S) and
T(S"), thus T(S) = T(5") if SA S’ is non-stationary.

Claim 4. Suppose T is unstable in the vocabulary v. Let T} be T with Skolem functions in the
Skolemized vocabulary v; D v. Then there is a function P(S%) — {A' | A' E T, |AY| = &k},
S +— A'(S) which has following properties:

(a) There is a mapping T'(S) — (dom.A*(S))" for some n < w, n — ay, such that A(S) is
the Skolem hull of {a, | n € T(S)}, i.e. {a, | n € T(S)} is the skeleton of A'(S). Denote
the skeleton of A by Sk(A).

(b) A(S) = AY(S) v is a model of T.

(c) Sk(A'(S))is indiscernible in A'(S), i.e. if 71, € T(S) and tp 1 (7/D) = tp 1. (£/D), where
tp,.¢. is the quantifier free type, then tp(a;/@) = tp(ag/D) where ag = (ap,, -, Gy )
This assignment of types in A'(S) to q.f.-types in T(S) is independent of S.

(d) There is a formula ¢ € L, (v) such that for all n,v € T(S) and o < A, if T(S)
P\(n) A Py(v), then T(S) |=n > v if and only if A(S) = ¢(ay,,a.).

Proof of Claim 4. The following is known:

(F1) Suppose that T' is a complete unstable theory. Then for each linear order 7, T' has an
Ehrenfeucht-Mostowski model A of vocabulary vy, where |v1| = |T'|+w and order is definable
by a first-order formula, such that the template (assignment of types) is independent of 7.2

It is not hard to see that for every tree t € K we can define a linear order L(t) satisfying the
following conditions:

1. dom(L(t)) = (domt x {0}) U (domt x {1}),

2. for all a € t, (a,0) <p@) (a,1),

3. ifa,bet, thena < b <= [(a,0) <pu) (b,0)] A[(b, 1) <p (a,1)],
4. if a,b € t, then

(@£ b)A(b£a) < [(b1) <pw (a,0)] V[(a,1) <pe) (b,0)].

2This is from [42]; there is a sketch of the proof also in [23, Theorem 4.7].
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Now for every S C k, by (F1), there is an Ehrenfeucht-Mostowski model A'(S) for the linear
order L(T(S)) where order is definable by the formula ¢ which is in L. Suppose 7j =
(M0, --->mn) and € = (&, - - ., &,) are sequences in T'(S) that have the same quantifier free type.
Then the sequences

<(770’0)= (7707 1)7 (7]170)7 (7717 1)7 EERE) (nn70)7 (77717 1)>

and
<(£07 O)a (50, ]-)7 (’513 0)7 (flv 1)7 vy (gnao)v (gna ]-)>

have the same quantifier free type in L(T(S)). Now let the canonical skeleton of A!(S) given
by (F1) be {a, | x € L(T(S))}. Define the T'(S)-skeleton of A'(S) to be the set

{am,0) " amy [neT(9)}.

Let us denote b, = a(y,0)" a(y,1)- This guarantees that (a), (b) and (c) are satisfied.
For (d) suppose that the order L(T(S)) is definable in A(S) by the formula (4, ), i.e.
A(S) E v(ag,ay) <= = <yforz,y € L(T(S)). Let ¢(xo,x1,yo,y1) be the formula

P(x0,y0) N U(y1,21).

Suppose 7, v € T(S) are such that T(S) = Pa(n) A Pa(v). Then

@((alﬁo)’ (aV’ 1)7 (aTI’ 0)7 (0’7]7 1))

holds in A(S) if and only if v <p(g) 7. U Claim 4

Claim 5. Suppose S — A(S) is a function as described in Claim 4 with the identical notation.
Suppose further that S,S" C S§. Then S A S’ is non-stationary if and only if A(S) = A(S’).

Proof of Claim 5. Suppose SAS’ is non-stationary. Then by Claim 3 T(S) = T(S")
which implies L(T'(S)) = L(T(S’)) (defined in the proof of Claim 4) which in turn implies
A(S) = A(S").

Let us now show that if S A S’ is stationary, then A(S) % A(S’). Let us make a counter
assumption, namely that there is an isomorphism

f: A(S) = A(S)

and that S A S’ is stationary, and let us deduce a contradiction. Without loss of generality we
may assume that S\ S’ is stationary. Denote

Xo=8\9
For all a < k define T%(S) and T%(S") by
T4S)={neT(S) | rann C ®(S5,0,5 + 1) for some S < a}

and
T(S")y={neT(S)|rann C ®(5",0,8+ 1) for some § < a}.

Then we have:
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(i) if a < B, then T*(S) C T?(S)
(i) if v is a limit ordinal, then T7(S) = U, T*(5)

The same of course holds for S’. Note that if & € S\ §’, then there is n € T*(S) cofinal in
(5,0, ) but there is no such n € T*(S’) by definition of ®: a cofinal function » is added only
if cf*(®(S, @, k)) = wy which it is not if o ¢ S’. This is the key to achieving the contradiction.
But the clauses (i),(ii) are not sufficient to carry out the following argument, because we
would like to have |T%(S)| < k. That is why we want to define a different kind of filtration for
T(S), T(5).
For all a € X fix a function
Ws € T(S) 1)

such that domng = A, for all 8 < A, 9§ [ € T*(S) and n§ ¢ T(S5).

For arbitrary A C T(S)UT(S’) let clsk(A) be the set X C A(S)U.A(S’) such that X N.A(S)
is the Skolem closure of {a, | n € ANT(S)} and X N .A(S’) the Skolem closure of {a, | €
ANT(S")}. The following is easily verified:

There exists a A\-cub set C' and a set K* C T*(S) UT<(S’) for each o € C such that

(i) If a < 3, then K~ C K#

(ii") If v is a limit ordinal in C, then K7 = J,con, K

(iii) for all § < «, nf € K“. (see (1) above)
(iv) |K¥ = A

(v) clsk(K®) is closed under f U f~1.

(vi) {n e T*(S)UT*(S") | domn < A} C K.
(vii) K is downward closed.

Denote K" = J,.,. K. Clearly K* is closed under f U f~! and so f is an isomorphism
between A(S) N clgk(K*) and A(S") N clgk (K*). We will derive a contradiction from this, i.e.
we will actually show that A(S) N clgk(K*) and A(S’) N clgk(K*) cannot be isomorphic by f.
Clauses (iii), (v), (vi) and (vii) guarantee that all elements we are going to deal with will be in
K",

Let

Xi=XoNnC.
For a € X7 let us use the following abbreviations:
+ By A, (S) denote the Skolem closure of {a, | n € K*NT(S)}.
» By A,(S’) denote the Skolem closure of {a, | n € K*NT(S")}.
s K*(S)=K*NT(S).

C Ko(S') = Ko NT(S").
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In the following we will often deal with finite sequences. When defining such a sequence we
will use a bar, but afterwards we will not use the bar in the notation (e.g. let a = @ be a finite
sequence...).

Suppose a € X;. Choose

=& eT(9) (2)
to be such that for some (finite sequence of) terms 7 = T we have
f(ani) = W(aﬁﬁ)
= (m(@eg (1)1 Ogg length(€g))) - - Tlength 7 (Agg (1), - - Geg (lemgen(é5))))-

Note that £ is in K" by the definition of K“’s.

Let us denote by nj3, the element 75 [ 3. (3)

Let

& ={rer(s) I} e <}
Also note that €& ¢ K? for some f.

Next define the function g: X; — & as follows. Suppose a € X;. Let g(«) be the smallest
ordinal 3 such that ¢ N K%(S") ¢ K?(S’). We claim that g(a) < a. Clearly g(a) < «, so
suppose that g(a) = a. Since &5 is finite, there must be a (i) € £ such that for all 5 < «
there exists v such that £(i) [y € K(S") \ KP(S'), i.e. £§(i) is cofinal in ®(S’,0, «) which it
cannot be, because « ¢ 5.

Now by Fodor’s lemma there exists a stationary set

X2CX1

and -y such that g[Xs] = {y0}-
Since there is only < s many finite sequences in K, (S’), there is a stationary set

X3 C X5

and a finite sequence ¢ = £ € K7(S’) such that for all o € X3 we have £2 N K" (S') = &,
where &, is the set

&={rveT(S)|v<(forsome ¢ €&} K™(S).
Let us fix a (finite sequence of) term(s) m = 7 such that the set
Xo={aeXs | flagy)=rm(ag)}
is stationary (see (1)). Here f(@) means (f(a1),..., f(aGlengtha)) and 7(b) means
(m1(b1, - .., Dlengtha)s - - - » Tlength (D1, - - -, Dlengtha))-

We can find such 7 because there are only countably many such finite sequences of terms.

We claim that in T'(S’) there are at most A\ many quantifier free types over &.. All types
from now on are quantifier free. Let us show that there are at most A\ many 1-types; the general
case is left to the reader. To see this, note that a type p over &, is described by the triple

(Vps Bpy mp) (%)
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defined as follows: if 7 satisfies p, then v, is the maximal element of £, that is an initial segment
of n, B, is the level of n and m,, tells how many elements of £, N Pyom,+1 are there <-below
n(domw,) (recall the vocabulary from Definition 4.84, page 123).

Since v, € &, and &, is of size A, 8, € (A+ 1) U{oo} and m, < w, there can be at most A
such triples.

Recall the notations (1), (2) and (3) above.

We can pick ordinals o < o, a, &’ € X4, a term 7 and an ordinal 8 < A such that

ng #ng
flang) = 7(agg) and f(a, o) = 7(a,) for some &5, &5,

tp(£5/64) = tp(€5 /&)
and
tp(£5/€:) = tn(€F /€. (4)
We claim that then in fact

tp(€5 /(6. U{EX D)) = to(€g /(& U{EX' D).

Let us show this. Denote
p=1tp(§5/(& U{E D)
and
P =tp(&5 /(& U{E D)

By the assumption (4) however p [ £, = p’ [ €, so because it is a tree, it sufficies to show that
pI{EY T =p [{&Y }. Since o and o are in X3 and X5, we have £ NK* (5') =& NK*(S') =
& C K(S’). On the other hand f [ A,/ (S) is an isomorphism between A,/ (S) and A,/ (S"),
because v and o' are in X1, so £5,£5 € K (S'). Thus £§ and {§ are either both in {, whence

they are the same, or not whence they both are not below §§‘,. From (4) it follows that £§ and
ﬁgl are on the same level and if ffl is also on the same level, then the above also implies that

they are both <-below £¢". From (4) and the above we also have that h(§g7§a/) = h(fg‘/,é“o‘/)
(see Definition 4.84).
Now we have: £§ and 7 are such that f(ane) = 7m(aeg) and £§ and 7 are such that f(a,q) =

7(agg). Similarly for o/. The formula ¢ is defined in Claim 4.
We know that

A(S) E @(anﬁl’a’n‘gl)

and because [ is isomorphism, this implies
A(S') b o f a0, F(a,)

which is equivalent to

A(S") b= e(m(age ), T(agy)
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(because «, o’ are in X4). Since T'(S’) is indiscernible in A(S’) and fgl and £F have the same

type over over (&, U {£%'}), we have
A(S) | p(mlagy ), T(agy)) <= @(m(agy ), m(acs)) (%)

and so we get

A(S") | e(m(agy), 7(acg))
which is equivalent to

A(S) | o(fayer), flang))

and this in turn is equivalent to

A(S) F plag,ayg)

The latter cannot be true, because the definition of 3, o and o’ implies that ng/ #* n5- Uctaim 5

Thus, the above Claims 1 — 5 justify the embedding of Egy¢ into the isomorphism relation
on the set of structures that are models for T' for unstable T'. This embedding combined with
a suitable coding of models gives a continuous map.

DOP and OTOP cases. The above proof was based on the fact (F1) that for unstable theories
there are Ehrenfeucht-Mostowski models for any linear order such that the order is definable
by a first-order formula ¢ and is indiscernible relative to L, (see (c¢) on page 124); it is used
in (%) above. For the OTOP case, we use instead the fact (F2):

(F2) Suppose that T is a theory with OTOP in a countable vocabulary v. Then for each dense
linear order 1 we can find a model A of a countable vocabulary v; D v such that A is an
Ehrenfeucht-Mostowski model of 7" for  where order is definable by an L, ,-formula.?

Since the order ®(S) is dense, it is easy to argue that if T'(S) is indiscernible relative to Ly,
then it is indiscernible relative to Lo, (define this as in (c) on page 124 changing tp to tp;__ ).
Other parts of the proof remain unchanged, because although the formula ¢ is not first-order
anymore, it is still in L.

In the DOP case we have the following fact:

(F3) Let T be a countable superstable theory with DOP of vocabulary v. Then there exists a
vocabulary vy D v, |v;| = wi, such that for every linear order n there exists a vi-model
A which is an Ehrenfeucht-Mostowski model of T' for n where order is definable by an
Ly, w,-formula.*

Now the problem is that ¢ is in Le,,- By (c) of Claim 4, T'(S) is indiscernible in A(S) relative
to L, and by the above relative to Loo,. If we could require ®(S) to be wi-dense, we would
similarly get indiscernible relative to Loo,. Let us show how to modify the proof in order to
do that. Recall that in the DOP case,we assume A > 2“.

In Claim 1 (page 122), we have to replace clauses (3), (4) and (6) by (3’), (4’) and (6’):

3Contained in the proof of [38, Theorem 2.5]; see also [23, Theorem 6.6].
4This is essentially from [43, Fact 2.5B]; a proof can be found also in [23, Theorem 6.1]
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B)n=n-pt+n w,
(4’) 7 is wi-dense,
(6”) cf*(n) = ws.

The proof that such an 7 exists is exactly as the proof of Lemma 7.17 [14] except that instead
of putting p = (w;1)¥ put u = w, build §-many functions with domains being countable initial
segments of wy instead of finite initial segments of w and instead of Q (the countable dense
linear order) use an w;-saturated dense linear order — this order has size 2* and that is why the
assumption A > 2 is needed.

In the definition of ®(S) (right after Claim 1), replace wi by w* and 7 by the new 7 satistying
(3%), (4’) and (6’) above. Note that ®(S) becomes now w;-dense. In Claim 2 one has to replace
w} by w*. The proof remains similar. In the proof of Claim 3 (page 123) one has to adjust the
use of Claim 2. Then, in the definition of T'(S) replace wy by w.

Claim 4 for superstable 7" with DOP now follows with (c) and (d) modified: instead of
indiscernible relative to L., demand L, and instead of ¢ € L, we have now ¢ € Ly.,.
The proof is unchanged except that the language is replaced by L., everywhere and fact (F1)
replaced by (F3) above.

Everything else in the proof, in particular the proof of Claim 5, remains unchanged modulo
some obvious things that are evident from the above explanation. O Theorem 4.83

4.6.3 Stable Unsuperstable Theories

In this section we provide a tree construction (Lemma 4.89) which is similar to Shelah’s construc-
tion in [41] which he used to obtain (via Ehrenfeucht-Mostowski models) many pairwise non-
isomorphic models. Then using a prime-model construction (proof of Theorem 4.90, page 137)
we will obtain the needed result.

4.85 Definition. Let I be a tree of size k. Suppose (1)< is a collection of subsets of I such
that

» For each o < k, I, is a downward closed subset of I
*Uacnla =1

*Hfa< B <k, then I, C g

» If v is a limit ordinal, then I, =, Ia

» For each a < k the cardinality of I, is less than k.

Such a sequence (I, )a<s is called k-filtration or just filtration of I.

4.86 Definition. Recall K7, from Definition 4.84 on page 123. Let K}, = {A[L* | A€ K}\},
where L* is the vocabulary {<}.
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4.87 Definition. Suppose t € K¢, is a tree of size £ (i.e. t C £5%¥) and let T = (I)a<x be a
filtration of t. Define

Sz(t) = {a < k| @ et)(domn=w)AVn <wnine l)A@n¢ Ia)]}

By S ~ns S’ we mean that S A S’ is not w-stationary

4.88 Lemma. Suppose trees to and t1 are isomorphic, and I = (I)a<x and J = (Jo)a<x are
k-filtrations of to and t1 respectively. Then Sz(tg) ~ns S7(t1).

Proof. Let f: tg — t1 be an isomorphism. Then fZ = (f[l])a<x is a filtration of ¢; and
o€ SI(to) <~ «c sz(tl). (*)

Define the set C' = {a | f[Io] = Ja}. Let us show that it is cub. Let o € k. Define o = «
and by induction pick (an)n<w such that f[I,,] C Jq, ., for odd n and J,, C f[la,,,] for even
n. This is possible by the definition of a s-filtration. Then a,, = |J a, € C. Clearly C is
closed and C C s\ Sfz(t1) A Sz (1), so now by (%)

Sz(to) = Spz(t1) ~ns Sz (t1). O

n<w

4.89 Lemma. Suppose for A < rk, \* < k and k<% = k. There emists a function J: P(k) —
Ky, such that

trx
+ VS C k(|J(S)| = k).

» If S C Kk and T is a Kk filtration of J(S), then Sz(J(S)) ~ns S.
. If So ~NS Sl, then J(So) = J(Sl)

Proof. Let S C SZ and let us define a preliminary tree I(S) as follows. For each o € S let
C,, be the set of all strictly increasing cofinal functions 7: w — a. Let I(S) = [k]~“ U Uaes Ca

where M<w is the set of strictly increasing functions from finite ordinals to k.
For ordinals a < 8 < k and ¢ < w we adopt the notation:

o Bl={yla<y< B}
o, B)={yv]la<y<B}

© fla, 8,1) = Uicjcufn: [i,4) = [a, B) | n strictly increasing}
For each «, 8 < k let us define the sets P,‘;"B, for v < k as follows. If « = f =~ =0, then

PY0 = I(S). Otherwise let {Ps‘”@ | ¥ < K} enumerate all downward closed subsets of f(a, 3,7)
for all 4, i.e.

{P,?”B |y <k}= U P(f(a,B3,i)) N{A| Ais closed under inital segments}.
i<w

Define
a(PP)
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to be the natural number ¢ such that PA‘Y"’B C f(oz, B,1). The enumeration is possible, because
by our assumption k<% = k we have

U PG 8,0)| < wxIP((0,8,0)
<w

< wx [P(BY)]

= wx?2%

< WXK

Let S C k be a set and define J(S) to be the set of all n: s — w x k% such that s < w and the
following conditions are met for all 4,5 < s:

1. 7 is strictly increasing with respect to the lexicographical order on w x x*.
2. m () <m(i+1) <m()+1

(i) =0 = ma(i) = n3(1) = na(i) =0

() <m(i+1) = na(i+1) = (i) +nald)

(1) =m(i+1) = (Vk € {2,3,4}) (e (i) = (i + 1))

if for some k < w, [i,j) = n; *{k}, then

ns 1 [i, ) € P ™

m
m
m

S ok W

7. if s = w, then either
(Fm <w)(Vk <w)(k >m — m(k) =mk+1))
or
supranns € S.

8. Order J(S5) by inclusion.

Note that it follows from the definition of ng“’ﬁ and the conditions (6) and (4) that for all
1 < j <domn, ne J(S):

9. i < j—ns(i) <ns(j).

For each o < & let
J*(S) = {n € J(S) |rann C w x (B + 1)* for some B < a}.

Then (J*(S))a<x is a s-filtration of J(S) (see Claim 2 below). For the first item of the lemma,
clearly |J(S)| = k.
Let us observe that if n € J(S) and ran; = w, then

supranfy < supranfy = supranns = sup rans (#)
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and if in addition to that, n [k € J¥(S) for all k and n ¢ J*(S) or if rann; = {0}, then
supranmns = a. (®)

To see (#) suppose rann; = w. By (9), (75(7))i<w is an increasing sequence. By (6) supranns >
supranms = supran,. By (4), suprann, > supranns and again by (4) supranny > sup rany.
Inequality supranns; < « is an immediate consequence of the definition of J*(S), so (®) follows
now from the assumption that n ¢ J(S5).

Claim 1. Suppose £ € J*(S) and n € J(S). Then if dom¢ < w, £ C n and (Vk € domn \
domf)(m(k) = &1 (maxdom &) A my (k) > 0), then n € J*(S).

Proof of Claim 1. Suppose &, € J*(S) are as in the assumption. Let us define 8y =
&r(maxdom ), B3 = &(maxdomé), and By = £4(maxdom ). Because £ € J*(S), there is 3
such that fs, 83, B4 < f+1and 8 < a. Now by (5) n2(k) = B2, n3(k) = B3 and n4(k) = a4, for all
k € domn\domé&. Then by (6) for all k¥ € domn\ dom¢ we have that 82 < n5(k) < 83 < 8+1.
Since & € J¥(5), also B4 < B+ 1, s0 n € J¥(S5). O claim 1

Claim 2. |J(S)| = &, (JY(S))a<x is a r-filtration of J(S) and if S C x and Z is a s-filtration
of J(S), then Sz(J(S)) ~ns S.

Proof of Claim 2. For all a < &, J%(S) C (w x a*)S¥, so by the cardinality assumption of
the lemma, the cardinality of J*(S) is < k if & < & (J*(S) = J(5)). Clearly a < § implies
J*(S) € JP(S). Continuity is verified by

U J*S) = {neJ(S)|3a<~,3B<alrann Cwx (B+ 1)}

= {ne€J(9) |38 <Uy(rann Cwx (B+1)")}

which equals J7(S) if «y is a limit ordinal. By Lemma 4.88 it is enough to show Sz(J (S)
for Z = (J*(5))a<k, and we will show that if Z = (J%(S))a<x, then in fact Sz(J(S)) =

Suppose o € Sz(J(S)). Then there is n € J(S), domn = w, such that nk € J*(S ) or all
k < w but n ¢ J*(S). Thus there is no 8 < « such that rann C w x (8 + 1)* but on the other
hand for all k < w there is 3 such that rann [k C w x (8+1)%. By (5) and (6) this implies that
either rann; = w or rann; = {0}. By (®) on page 133 it now follows that supranns = « and
by (7), a € S.

Suppose then that oo € S. Let us show that o € Sz(J(S5)). Fix a function 7,: w — k with
supran?n, = «. Then 7, € I(S) and the function 1 such that n(n) = (0,0,0,0,74(n)) is as
required. (Recall that P"° = I(S) in the definition of .J(S)). O claim 2

Claim 3. Suppose S ~ng S’. Then J(S) = J(5').

Proof of Claim 3. Let C C x\ (SAS’) be the cub set which exists by the assumption. By
induction on i < x we will define «; and Fj,, such that

(a) Ifi < j <k, then a; < o and F,, C Fy,.

(b) If ¢ is a successor, then «; is a successor and if ¢ is limit, then «; € C.
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(¢) If v is a limit ordinal, then a., = sup, ., @,
(d) F,, is a partial isomorphism J(S) — J(5’)

(e) Suppose that @ = v + n, where v is a limit ordinal or 0 and n < w is even. Then
dom F,,, = J*(S) (el). If also n > 0 and (7x)k<e is an increasing sequence in J(5)
such that 7 = (J,., m ¢ J(S), then U, ., Fa,(n) ¢ J(S) (e2).

(f) If ¢ = v+n, where v is a limit ordinal or 0 and n < w is odd, then ran F,,, = J*(5’) (f1).
Further, if (x)r<. is an increasing sequence in J*(S’) such that n = U, ., m ¢ J(5'),
then Uy, F&,' () ¢ J(S) (£3).

(g) If dom¢ < w, £ € dom F,,, | dom¢ = € and (Vk > dom¢)(nmi(k) = & (maxdomé) A
m(k) > O), then 7 € dom F,,,. Similarly for ran F,,

(h) If £ € dom F,,; and k < dom¢&, then £ [k € dom F,,.
(i) For all n € dom F,,,, domn = dom(F,,(n))

The first step. The first step and the successor steps are similar, but the first step is easier.
Thus we give it separately in order to simplify the readability. Let us start with ¢ = 0. Let
ag = B+ 1, for arbitrary 5 € C. Let us denote by

o(a)

the ordinal that is order isomorphic to (wx a?, <jex). Let 7 be such that there is an isomorphism
h: P0(@0) o joo(§) and such that n(P)*) = 0. Such exists by (1). Suppose that i € J*(S).
Note that because PS’O‘O and J*0(S) are closed under initial segments and by the definitions of
n and Pﬁ’ﬁ, we have dom h~1(n) = dom 7, Define ¢ = F,, (1) such that dom ¢ = domn and for
all £ < dom¢

G(k)=1
» &(k)=0
&3(k) = o(an)
s Ga(k) =~
& (k) = h~1(n) (k)

Let us check that & € J(S’). Conditions (1)-(5) and (7) are satisfied because & is constant
for all k € {1,2,3,4}, £,(i) # 0 for all i and &5 is increasing. For (6), if &, '{k} is empty, the
condition is verified since each Pﬁ’ﬂ is closed under initial segments and contains the empty
function. If it is non-empty, then & = 1 and in that case &' {k} = [0,w) and by the argument
above (domh~1(n) = domn = dom¢) we have & = h™1(n) € PS’F)(O‘O) = ng(((?))’§3(o), so the
condition is satisfied.

Let us check whether all the conditions (a)-(i) are met. In (a), (b), (c), (€2) and (f) there
is nothing to check. (d) holds, because h is an isomorphism. (el) and (i) are immediate from
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the definition. Both J0(S) and P (@) are closed under initial segments, so (h) follows, be-
cause dom F,,, = J*(S) and ran F,, = {1} x {0} x {6(a0)} x {7} x P)*. Claim 1 implies
(g) for dom F,,,. Suppose ¢ € ran F,, and n € J(S’) are as in the assumption of (g). Then
m (i) =& (¢) = Lforall i < domn. By (5) it follows that 12(i) = &2(i) = 0, n3(i) = &3(4) = 0(ayg)
and 74(7) = &4(¢) =~y for all i < domn, so by (6) 15 € Pg’a(%)
1 € ran Fy,.

and since h is an isomorphism,

Odd successor step. We want to handle odd case but not the even case first, because the
most important case is the successor of a limit ordinal, see (wt¢) below. Except that, the even
case is similar to the odd case.

Suppose that j < & is a successor ordinal. Then there exist 3; and n; such that j = 8; +n;
and f is a limit ordinal or 0. Suppose that n; is odd and that «; and F,, are defined for all
[ < j such that the conditions (a)—(i) and (1)—(9) hold for | < j.

Let a; = B+ 1 where 3 is such that 8 € C, ran F,,, , C JP(S"), B > a;_1. For convenience
define £(—1) = (0,0,0,0,0) for all £ € J(S) U J(S’). Suppose n € ran F,,,_, has finite domain
domn =m < w and denote & = Fa_ﬁl(n) Fix , to be such that ii(Pg") = m and such that
there is an isomorphism h,, : Pf;j;ﬁ — W, where

W= {C | dom ¢ = [m75)7m <s < W777A<maC(m)> ¢ ra‘nFa‘jf]?n/\C € Jaj(sl)}a

a=E&(m—1)+E&(m—1)and = a+ o6(e;) (defined in the beginning of the First step).
We will define F,; so that its range is J/(S’) and instead of F,,; we will define its inverse.
So let n € J*(S’). We have three cases:

(1) n €eranF,

i1
(1) Im <domn(nm cranFy, , Anl(m+1) ¢ F,,_,),
(cee) ¥Ym < domn(n[(m+1) €ranF,, , An¢ranFy,, ).

Let us define £ = Fa_j1 (n) such that dom ¢ = domn. If (¢) holds, define £(n) = Fozal(n)(n) for
all n < domn. Clearly £ € J(S) by the induction hypothesis. Suppose that (¢2) holds and let
m witness this. For all n < dom¢ let

» If n <m, then &(n) = F; 1 (nIm)(n).

Oéj_l

* Suppose n > m. Let

) (

< &a(n) =&(m—1) +&(im—1)
) = &(m) + o(a; )

- &a(n) = vim

Next we should check that £ € J(S5); let us check items (1) and (6), the rest are left to the
reader.
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(1) By the induction hypothesis £ ['m is increasing. Next, &1(m) = & (m—1)+1, 80 E(m—1) <jex
E(m). If m < ny < ng, then & (ny) = & (ne) for all k € {1,2,3,4} and &5 is increasing.

(6) Suppose that [i,j) = & '{k}. Since & | [m,w) is constant, either j < m, when we are
done by the induction hypothesis, or ¢ = m and j = w. In that case one verifies that
n[[m,w) € W = ran hy,, and then, imitating the corresponding argument in the first step,
that

& [m,w) = byt (1 [m, w))

_ pa(m).&a(m)

and hence in dom A}, s ()

Suppose finally that (t.¢) holds. Then dom#n must be w since otherwise the condition (cut)
is simply contradictory (because 1 | (domn — 14 1) = 5 (except for the case dom#n = 0, but
then condition (¢) holds and we are done)). By (g), we have ran7; = w, because otherwise we
had n € ran F,; . Let F . '(n) = € = U, F3,", (n1n).

Let us check that it is in J(S). Conditions (1)—(6) are satisfied by &, because they are
satisfied by all its initial segments. Let us check (7).

First of all £ cannot be in J*-1(5), since otherwise, by (d) and (i),

F(Xj—l(é—) = U Faj71(§rn) = U nin=mn

nw n<w

were again in ran Fy,, ,. If j — 1 is a successor ordinal, then we are done: by (b) a;_; is a
successor and we assumed 1 € J(S7), so by (e2) we have £ € J(S). Thus we can assume that
j — 1 is a limit ordinal. Then by (b), o;_q is a limit ordinal in C' and by (a), (e) and (f),
ranF,, | = J%-1(S') and dom F,, , = J*-*(S). This implies that rann ¢ w x B* for any
f < aj—1 and by (®) on page 133 we must have supranns = a1 which gives o;_1 € S" by (7).
Since ;1 € C C K\ SAS’, we have a;_; € S. Again by (®) and that dom F,, , = J*-1(S)
by (el), we have supranés; = «;_1, thus £ satisfies the condition (7).

Let us check whether all the conditions (a)-(i) are met. (a), (b), (c) are common to the
cases (¢), (¢t) and (wee) in the definition of Fojjl and are easy to verify. Let us sketch a proof for
(d); the rest is left to the reader. '

(d) Let n1,m2 € ran Fy,; and let us show that
m G = Fl(m) G Fyl(np).

The case where both 7; and 79 satisfy (ct) is the interesting one (implies all the others).

So suppose 71,m2 € (tt). Then there exist m; and mo as described in the statement
of (1t). Let us show that m; = mo. We have n1 [ (my +1) = o | (my + 1) and
[ (my+1) ¢ ranFy,, |, so mg < my. If my < my, then my < dommn, since m; <
dom ;. Thus if my < my, then 1y [ (mo + 1) =02 [ (m2 + 1) ¢ ran Fy,,_,, which implies
my = m;y. According to the definition of F, ' (n;)(k) for k < domm, F, ' (n;)(k) depends
only on m; and n [ m; for ¢ € {1,2}. Since m; = mq and n; [ m; = 192 | ma, we have
F71(m) (k) = F; (n2)(k) for all k < dom ;.

J J
Let us now assume that 77 ¢ 72. Then take the smallest n € dom7; N dom 7, such that
ni(n) # ne(n). Tt is now easy to show that 7, *(11)(n) # F, ' (n2)(n) by the construction.
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Even successor step. Namely the one where j = 4+ n and n is even. But this case goes
exactly as the above completed step, except that we start with dom F,,, = J% (S5) where a;
is big enough successor of an element of C' such that J%i(S) contains ran F,,, , and define
§ = Fu,;(n). Instead of (e) we use (f) as the induction hypothesis. This step is easier since one
does not need to care about the successors of limit ordinals.
Limit step. Assume that j is a limit ordinal. Thenlet a; = (J;_; o and Fo; = U, Fa,. Since
a; are successors of ordinals in C, «; € C, so (b) is satisfied. Since each Fj,, is an isomorphism,
also their union is, so (d) is satisfied. Because conditions (e), (f) and (i) hold for i < j, the
conditions (e) and (i) hold for j. (f) is satisfied because the premise is not true. (a) and (c)
are clearly satisfied. Also (g) and (h) are satisfied by Claim 1 since now dom F,; = J%/(S) and
ran Fy,; = J%(S") (this is because (a), (e) and (f) hold for i < j).
Finally F' = |J,_, Fa., is an isomorphism between .J(S) and J(S"). O claim 3
O Lemma 4.89

4.90 Theorem. Suppose k is such that k<% = k and for all A\ < K, \¥ < k and that T is a
stable unsuperstable theory. Then Eg. <. Zr.

Proof. For n € 2% let J, = J(n~*{1}) where the function J is as in Lemma 4.89 above. For
notational convenience, we assume that J, is a downward closed subtree of KkSY. Since T is
stable unsuperstable, for all n and ¢ € J,, there are finite sequences a; = @/ in the monster
model such that

1. If dom(t) = w and n < w then

a¢ ,l{ atn-

U at[m
m<n

2. For all downward closed subtrees X,Y C J,,

Ju + Un

at
tEX i eXny ©tEY

3. For all downward closed subtrees X C J, and Y C J, the following holds: If f: X — Y
is an isomorphism, then there is an automorphism F' of the monster model such that for

allt e X, F(a)) = a’}(t)
Then we can find an Ff-construction

(U ar, (0, B)ick)

ted,
(here (t(b/C), D) € FJ if D C C is finite and b, C, see [40]) such that

b; there is o < 8 < & such that Bg = B and

<o

(x) for all & < &, c and finite B C U,¢;, ar UU

stp(bg/B) = stp(c/B).
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Then
My=Jaul|JbET

te, i<k

Without loss of generality we may assume that the trees J, and the F/J-constructions for M,
are chosen coherently enough such that one can find a code &, for (the isomorphism type of)
M, so that 1 — &, is continuous. Thus we are left to show that nEs~n’ <= M, = M,

“=” Assume J, = J,. By (3) it is enough to show that F/-construction of length r satisfying
(x) are unique up to isomorphism over J,. J, Gt~ But (%) guarantees that the proof of the
uniqueness of F-primary models from [40] works here.

“«<” Suppose F': M, — M, is an isomorphism and for a contradiction suppose (n,7’) ¢ Esx.
Let (J;)a<x be a filtration of J; and (J)a<x be a filtration of J,/ (see Definition 4.85

above). For a < &, let
My =|JaulJb

teJo i<a
and similarly for »’:
My =] aeu b
tEJ;/ i<a

Let C be the cub set of those o < & such that F' [ M7 is onto My and for all ¢ < a,
B; ¢ My and B; C My, where (U,c; ,, (b}, B;)i<p) is in the construction of M, . Then we
n

can find o € lim C such that in J, there is t* satisfying (a)—(c) below, but in J,, there is
no such t*.:

(a) dom(t*) = w,
(b) t* & Jy,
(c) for all B < « there is n < w such that t* [n € J2'\ Jff,
Note that
(xx) if a € C and ¢ € M, there is a finite D C UteJ;; a; such that (¢(c, UteJU ar), D) € FJ

w

Let ¢ = F(a;~). By the construction we cat find finite D C M}, and X C J,; such that

(t(c,M,‘])‘, U U a?/),DU U a?l> e Fl.
ted,, tex

But then there is § € C, 8 < «, such that D C M;f, and if u <t for some t € X, then u € J,’?,
(since in J, there is no element like t* is in .J;)). But then using (xx) and (2), it is easy to see
that
c | My
MP,
n
On the other hand, using (1), (2), (**) and the choice of ¢* one can see that a;« 4 M,/ a
MP

contradiction. O
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Open Problem. If k = AT, X regular and uncountable, does equality modulo A\-non-stationary
ideal, Esr, Borel reduce to T for all stable unsuperstable 7'

4.7 Further Research

In this section we merely list all the questions that also appear in the text:

Open Problem. Is it consistent that Borel* is a proper subclass of Y1, or even equals A}? Is it
consistent that all the inclusions are proper at the same time: A}l C Borel* C %1?

Open Problem. Does the direction left to right of Theorem 4.25 hold without the assumption
k<P = K?

Open Problem. Under what conditions on s does the conclusion of Theorem 4.37 hold?

Open Problem. Is the Silver Dichotomy for uncountable k consistent?

Open Problem. 1Is it consistent that S Borel reduces to Sg27

Open Problem. We proved that the isomorphism relation of a theory T is Borel if and only if
T is classifiable and shallow. Is there a connection between the depth of a shallow theory and
the Borel degree of its isomorphism relation? Is one monotone in the other?

Open Problem. Can it be proved in ZFC that if T is stable unsuperstable then =7 is not A}?

Open Problem. If K = AT, X regular and uncountable, does equality modulo A-non-stationary
ideal, Egs, Borel reduce to T' for all stable unsuperstable 7'

Open Problem. Let Ty, be the theory of dense linear orderings without end points and Ty,

the theory of random graphs. Does the isomorphism relation of T, Borel reduce to Tqi, i.e.

ngr <B gleo ?



o0 140 oo



Rorel Reductions on
the Gerveralized

Cantor Space



00 142 o© Chapter 5. Borel Reductions on the Generalized Cantor Space

If your method does not solve the
problem, change the problem.

Saharon Shelah

5.1 Introduction

It is shown that the partial order of Borel equivalence relations on the generalized Baire spaces
(2" for kK > w) under Borel reducibility has high complexity already at low levels (below Ejp).

This extends an answer stated in [6] to an open problem stated in [7] and in particular solves
open problems 7 and 9 from [6].

The development of the theory of the generalized Baire and Cantor spaces dates back to
1990’s when it A. Mekler and J. Viinénen published the paper Trees and I1}-Subsets of “1w;
[36] and A. Halko published Negligible subsets of the generalized Baire space w?*. More recently
equivalence relations and Borel reducibility on these spaces and their applications to model
theory have been under focus, see my latest joint work with S. Friedman and T. Hyttinen [7].

Suppose & is an infinite cardinal and let £Z be the collection of all Borel equivalence relations
on 2”. (For definitions in the case k > w see next section.) For equivalence relations Ey and E4
let us denote Ey <p Ej if there exists a Borel function f: 2% — 2% such that (n,§) € By <—
(f(n), f(€)) € Ey. The relation <p defines a quasiorder on £Z, i.e. it induces a partial order
on £8/ ~p where ~p is the equivalence relation of bireducibility: Ey ~p E; <= (Eo <p
Eqy) A (E7 < Ep).

In the case k = w there are many known results that describe the order (€5, <z). Two of
them are:

Theorem (Louveau-Velickovic [33]). The partial order {P(w),C.) can be embedded into the
partial order (E8,<g), where A C, B if A\ B is finite.

Theorem (Adams-Kechris [1]). The partial order (B,C) can be embedded into the partial order
(EB <p), where B is the collection of all Borel subsets of the real line R. In fact, the embedding
is into the suborder of (£8,<p) consisting of the countable Borel equivalence relations, i.e., those
Borel equivalence relations each of whose equivalence classes is countable.

Our aim is to generalize these results to uncountable £ with k<" = k and it is proved
that (P(k), Cns(w)) can be embedded into (EB <B), where A CnNs(w) B means that A\ B is
not w-stationary. This is proved in ZFC. However under mild additional assumptions on s or
on the underlying set theory, it is shown that (P(k), Cns) can be embedded into (€2, <p),
where A Cng B means that A\ B is non-stationary and that (P(x), C,) can be embedded into

(EB <p), where A C, B means that A\ B is bounded.

Assumption. Everywhere in this chapter it is assumed that x is a cardinal which satisfies
|*] = k for all @ < k. This requirement is briefly denoted by k<" = .
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5.2 Background in Generalized Descriptive Set Theory

5.1 Definition. Consider the function space 2% (all functions from & to {0,1}) equipped with
the topology generated by the sets

Ny ={n€2”|nla=p}

for « < k and p € 2. Borel sets on this space are obtained by closing the topology under
unions and intersections of length < x, and complements.

An equivalence relation F on 2* is Borel reducible to an equivalence relation E’' on 27
if there exists a Borel function f: 2% — 2% (inverse images of open sets are Borel) such that
nE¢ < f(n)E'f(&). This is denoted by E <p E'.

The descriptive set theory of these spaces, of equivalence relations on them and of their
reducibility properties for k > w, has been developed at least in [7, 9, 36]. For x = w this is the
field of standard descriptive set theory.

By idx we denote the identity relation on X: (n,€) € idx <= (n,£) € X2 An = ¢ and
by FEy the equivalence relation on 2" (or on " as in the proof of Theorem 5.30) such that
(n,8) € By <= {a|n(a) # &(a)} is bounded.

Notation. Let £8 denote the set of all Borel equivalence relations on 2% (i.e. equivalence
relations E' C (2%)2 such that F is a Borel set). If X,Y C k and X \ Y is non-stationary, let
us denote it by X Cns Y. If X \ 'Y is not A-stationary for some regular A < &, it is denoted by
X CNS()) Y.

The set of all ordinals below x which have cofinality A is denoted by S%, and lim(x) denotes
the set of all limit ordinals below . Also reg x denotes the set of regular cardinals below x and

K _ K

ssi= U si
nwZ=A
pETEg K

K _ K

S = U Su'
PEX
HETeg K

If AC a and « is an ordinal, then OTP(A) is the order type of A in the ordering induced
on it by a.
For ordinals a < 3 let us adopt the following abbreviations:

(o) = {v]a<y<pl,
sl ={yla<y <8},
(ol ={v <y <),

o, B)={yla<y< B}

If  and £ are functions in 2%, then A€ is the function ¢ € 2% such that (o) =1 <
n(a) # &(a) for all @ < K, and 77 = 1 — 7 is the function ¢ € 2* such that ((a) = 1 — n(a) for
all @ < k. If A and B are sets, then A A B is just the symmetric difference.

For any set X, 2% denotes the set of all functions from X to 2 = {0,1}. If p € 2[%%) and
n € 2l*") then p~n € 2% is the catenation: (p™n)(B) = p(B) for B < a and (p™n)(B) = 1n(B)
for 8 > a.



00 144 o© Chapter 5. Borel Reductions on the Generalized Cantor Space

5.2 Definition. A co-meager subset of X is a set which contains an intersection of length < &
of dense open subsets of X. Co-meager sets are always non-empty and form a filter on 2, [36].
A set X has the Property of Buaire if there exists an open set A such that X A A is meager,
i.e. a complement of a co-meager set. As in standard descriptive set theory, Borel sets have the
Property of Baire (proved in [9]). For a Borel function f: 2% — 2" denote by C(f) one of the
co-meager sets restricted to which f is continuous (such set is not unique, but we can always
pick one using the Property of Baire of Borel sets, see [7]).

5.3 Lemma. Let D be a co-meager set in 2% and let p,q € 2% for some o < k. Then there
exists n € 219" such that p~n € D and ¢-n € D. Also there exists n € 21“%) such that
p~neD and ¢g-n €D wheren =1—n.

Proof. Let h be the homeomorphism N, — N, defined by p~n + ¢~ n. Then h[N, N D] is
co-meager in N, so N, N D N A[N, N D] is non-empty. Pick " from that intersection and let
n =n"[[a,k). This will do. For the second part take for h the homeomorphism defined by

p = qn. O

5.3 On Cub-games and GC)-characterization

The notion of cub-games is a useful way to treat certain properties of subsets of cardinals.
They generalize closed unbounded sets and are related to combinatorial principles such as [J;,.
Under mild set theoretic assumptions, they give characterizations of CUB-filters in different
cofinalities. Treatments of this subject can be found for example in [15, 16, 22].

5.4 Definition. Let A C k. The game GCy(A) is played between players I and II as follows.
There are A moves and at the i:th move player I picks an ordinal a; which is greater than
any ordinal picked earlier in the game and then II picks an ordinal 8; > «a;. Player II wins if
sup,; .y o; € A. Otherwise player I wins.

5.5 Definition. A set C' C k is A-closed for a regular cardinal A < &, if for all increasing
sequences (o € C' | i < \), the limit sup,;_, a; is in C. A set C C & is closed if it is A-closed
for all regular A < k. A set is A-cub if it is A-closed and unbounded and cub, if it is closed and
unbounded. A set is A-stationary, if it intersects all A-cub sets and stationary if it intersects all
cub sets.

5.6 Definition. We say that GC)-characterization holds for «, if
{A C k| I has a winning strategy in GC,(A)} = {A C x| A contains a A-cub set}

and we say that GC-characterization holds for k if GCy-characterization holds for x for all
regular A < k.

5.7 Definition. Assume x = A" and p < ) a regular uncountable cardinal. The square
principle on k for u, denoted L, defined by Jensen in case A = p, is the statement that there
exists a sequence (C, | o € SE ) with the following properties:

1. C, C a is closed and unbounded in «,

2. if B € lim C,, then Cy = N Co,
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3. if cf(a) < p, then |Cy| < p.

5.8 Remark. For w < p < X in the definition above, it was proved by Shelah in [44] that O}

holds (can be proved in ZFC, for a proof see also [3, Lemma 7.7]). If u = A, then O = fo is
denoted by [, and can be easily forced or, on the other hand, it holds, if V' = L. The failure
of OJ,, implies that g+ is Mahlo in L, as pointed out by Jensen, see [25].

5.9 Definition. For x > w, the set I[x] consists of those S C & that have the following property:
there exists a cub set C' and a sequence (D, | @ < k) such that

1. D, C P(a), |Dal < &,
2. D, C Dg for all a < 3,

3. for all « € C'N S there exists F C « unbounded in « and of order type cf(«) such that
for all 8 < a, EN S € D, for some v < .

5.10 Remark. The following is known.
1. I[«] is a normal ideal and contains the non-stationary sets.
2. If X\ < k is regular and S¥ € I[x], then GCy-characterization holds for x.

3. If p is regular and x = p*, then S£ € I[x], [44]. This follows also from 4. and Remark
5.8

4. When A > w, then O implies that S§ € I[k] (take D, = {Co NP | B < a}).
5. S5 € I[n).

6. If s<* = k = AT, then GC,-characterization holds for « if and only if x € I[x] if and only
if S§ € I[k], see [15, Corollary 2.4] and [44].

7. The existence of A < x such that GCy-characterization does not hold for « is equiconsistent
with the existence of a Mahlo cardinal.! Briefly this is because the failure of the character-
ization implies the failure of [Jy which implies that A™ is Mahlo in L as discussed above.
On the other hand, in the Mitchell model, obtained from Sj, = {§ < A | ¢ is inaccessible}
where A > « is Mahlo, it holds that Si, ¢ I[x"], [15, Lemma 2.6].

8. If k is regular and for all regular u < k we have u<* < x, then x € I[x].
Remark. As Remark 5.10 shows, the assumption that GCy-characterization holds for x is quite

weak. For instance GC,-characterization holds for all regular k > w and GCH implies that
GC ) -characterization holds for x for all regular A < k.

LA good exposition of this result can be found in Lauri Tuomi’s Master’s thesis (University of Helsinki, 2009).
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5.4 Main Results

Theorems 5.11 and 5.12 constitute the goal of this work. They are stated below but proved in
the end of this section, starting at pages 153 and 156 respectively.

5.11 Theorem. Assume that \ < k are reqular and GCy-characterization holds for k. Then
the order (P(k), Cns(n)) can be embedded into (E5,<p) strictly between idgx and Eo. More
precisely there exists a one-to-one map F: P(k) — EZ such that for all X,Y € P(k) we have
idax <5 F(X) <5 Eo and

XCNS()\)Y — F(X)<p F(Y).

5.12 Theorem. Assume either k = wy; or K = AT > wy; and [O,. Then the partial order
(P(k), Cns) can be embedded into (€5, <p).

5.4.1 Corollaries

5.13 Corollary. Assume that A < k is reqular. Additionally assume one of the following:
1. k= pu™, pis regular and X < p,
2. k= XT and O, holds,
3. for all regular u < k, p=* < Kk (e.g. K is wy or inaccessible).

Then the partial order (P(k), Cng(y)) can be embedded into (EB <B).

K

Proof. Any of the assumptions 1 — 3 is sufficient to obtain GCjy-characterization for x by
Remarks 5.10 and 5.8, so the result follows from Theorem 5.11. O
5.14 Corollary. The partial order (P(k), Cns(w)) can be embedded into (€2, <p). In particular
(P(w1), Cns) can be embedded into (EF ,<p) assuming CH.

Proof. By Remark 5.10 GC,-characterization holds for x for any regular x > w, so the result
follows from Theorem 5.11. O

5.15 Definition. Let S C k. Then the combinatorial principle $,(S) states that there exists
a sequence (D, | a € S) such that for every A C & the set {&| AN a = D,} is stationary.

5.16 Theorem (Shelah [45]). If k = AT = 2" and S C &\ Sti(n s stationary, then $n(S5)
holds. O

5.17 Corollary. 1. The ordering (P(k),C) can be embedded into (E8, <p).

K

2. Assume that k = wy and O, holds or that k is not a successor of an w-cofinal cardinal.
Then also the ordering (P(k), C.) can be embedded into (EP,<p), where C, is inclusion
modulo bounded sets.
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Proof. For the first part it is sufficient to show that the partial order (P(x), C) can be embedded
into (P(k), Cngw))- Let G(A) = U;cx Si where {S; C SZ | i < k} is a collection of disjoint
stationary sets. Then A C B <= G(A) Cns G(B), so this proves the first part.

For the second part, let us show that if {,(S%) holds, then (P(k),C.) can be embedded
into (P(k),Cns(n))- Then the result follows. If x = w; and ¢, holds, then it follows by
Corollary 5.14. On the other hand, if s is not a successor of an w-cofinal cardinal, then from
Theorem 5.16 it follows that . (S/%) holds and the result follows again from Corollary 5.14.

Suppose that (D, | a € S%) is a ¢k (S5)-sequence. If XY C afor a < k, let X C, Y
denote that there is 8 < a such that X \ § C Y \ 3, i.e. X is a subset of Y on a final segment
of «. Note that this coincides with the earlier defined C, when @ = k. For A C & let

H(A)={a<k|Dy Cs ANa}.

If A C, B then there is v < k such that A\ v C B\~ and if 8 > ~ is in H(A), then
Dg C. AN B and since ANS C,. BN B, we have Dg C. BN S, so H(A) C,. H(B) which finally
implies H(A) CNS(w) H(B)

Assume now that A ¢, B and let C = A\ B. Let S’ be the stationary set such that for
all a € 8, CNa = D,. Let S be the A-stationary set S N {a | C is unbounded below a}.
S is stationary, because it the intersection of S’ and a cub set. Now for all & € S we have
Dy=CnacCAna,so S C H(A). On the other hand if & € S, then

D, \(BNna)=(Cna)\(BNna)=((A\B)na)\(BNna)=CnNa«a
is unbounded in «, so Do ¢+ BNa and so S C H(A)\ H(B), whence H(A) ¢nsny H(B). O

5.18 Corollary. There are 2" equivalence relations between id and Ey that form a linear order
with respect to <p.

Proof. Let K = {n € 2¢ | (38)(Vy > B)(n(y) = 0)}, let f: K — &k be a bijection and for
n,& € 2" define n < £ if and only if

n(minfa [ n(a) # {()}) < {(minfa [ n(a) # &(a)}).

Forne 2t let A, = {f(§) | {<nn& e K}. Clearly A, C A¢ if and only if n < £ and the latter
is a linear order. The statement now follows from Corollary 5.17. O

5.4.2 Preparing for the Proofs

5.19 Definition. For each S C limk let us define equivalence relations E%, Es and E%(«),
a < k, on the space 2% as follows. Suppose 7, ¢ € 2° for some § < k and let ( = n A €. Let us
define n and £ to be E%(d)-equivalent if and only if for all ordinals o € SN ¢ there exists f < «
such that ¢(v) has the same value for all v € (8, ). Let Ef = E%(k) and Eg = E§N Ey, where
Ejy is the equivalence modulo bounded sets.

Remark. If S = @, then Eg = Eg = Ep. If S = limk or equivalently if S = lim, x = S
(w-cofinal limit ordinals), then Fg = E{j, where E is defined in [6].

5.20 Theorem. For any S C limk the equivalence relations Es and E are Borel.
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Proof. This is obvious by writing out the definitions:

E; = U( () {08 In(n#smu N {(77,5)\77(7):5(7)}),

a€S B<a  B<y<a B<y<a
B = |J N A®9 16 =6}

a<k a<lf<k
Es = E%NE,.

O

The ideas of the following proofs are simple, but are repeated many times in this article in
one way or another.

5.21 Theorem. For all S Climk, Fs £p idax and Ef <p ida-.

Proof. For the first part suppose f is a Borel reduction from Fg to ida«. Let 1 be a function
such that n and 77 = 1 — n are both in C(f) (see Definition 5.2, page 144). This is possible by
Lemma 5.3, page 144. Then (n,7) ¢ Es. Let a be so large that f(n) [a # f(7) [« and pick 3
so that

fINgis N C(f)] € Nyipyra
and
fINats NC()] € Nyyra-

This is possible by the continuity of f on C(f). By Lemma 5.3 pick now a ¢ € 2[%%) so that
nB~¢C e C(f) and 7] 57¢ € C(f) which provides us with a contradiction, since

(n1B7¢a1B7C) € Es, but f(n187C) # f(167¢)

To prove the second part it is sufficient to construct a reduction from E§ to id,«, since id,«
and idy~ are bireducible (see [7]). Let us define an equivalence relation ~ on 2<% such that p ~ ¢
if and only if dom p = dom ¢q and p A ¢ is eventually constant, i.e. for some o < dom p, (p A q)(7)
is the same for all v € [a,domp). Let s: 2<% — k be a map such that p ~ ¢ < s(p) = s(q).
Suppose 1 € 2" and let us define { = f(7) as follows. Let 3, denote the 7:th element of S and
let £(v) = s(n[By). Now we have nE%¢ if and only if n [, = £[ 3, for all v € « if and only if
fn) = (©): O

5.22 Corollary. Let S C k. If p € 2<% and C C N, is any co-meager subset of Ny, then there
is no continuous function C' — 2% such that (n,£) € EsNC? < f(n) = f(£).

Proof. Apply the same proof as for the first part of Theorem 5.21; take C instead of C(f) and
work inside N, e.g. instead of 1,7 take p™n, p™7 for suitable n € 2ldomp,k) O

5.23 Definition. A set A C k does not reflect to an ordinal «, if the set a«N A is non-stationary
in a, i.e. there exists a closed unbounded subset of «a outside of A N a.

5.24 Theorem. If k = AT > w; and 05 holds, u < A, then for every stationary S C Sf,
there exists a set BE.(S) C S (nr for non-reflecting) such that BY.(S) does not reflect to any
a € SE,NSE,, and the sets lim C,, witness that, where (Cy | o € SE ) is the Ux-sequence, i.e.
im C,, C a\ BE(S) for a € SE, NS, . Since cf(a) > w, im C, is cub in a.
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Proof. This is a well known argument and can be found in [25]. Let g: S — & be the function
defined by g(o) = OTP(C,). By the definition of 0,, OTP(C,) < p for a € Sf, so for

a > ;1 we have g(a) < a. By Fodor’s lemma there exists a stationary BX.(S) C S such that
OTP(C,) = OTP(Cp) for all o, 8 € B.(p). If o € lim Cp, then C,, = Cg N« and therefore

nr

OTP(C,) < OTP(Cp). Hence limCys C 5\ BX.(S). O

5.25 Definition. Let F; be equivalence relations on 2°*{} for all i < a where a < k. Let
E =@, ., Ei be an equivalence relation on the space 2°*< such that (n,{) € E if and only if
for all i < a, (n](k x {i}),&[(k x {i})) € E;.

Naturally, if a = 2, we denote @), _, E; by just Ey ® E; and we constantly identify orx{i}
with 2.
5.26 Definition. Given equivalence relations E; on 21"} for i < a < k™, let @, E; be an
equivalence relation on (J,_,, 26141} such that 7 and ¢ are equivalent if and only if for some
i<a,n €27} and (n,€) € E;.

Intuitively the operation @ is taking disjoint unions of the equivalence relations. As above,
if say a = 2, we denote ,_, E; by just Ey ® E1 and we identify 271} with 2~
5.27 Theorem. Assume that )\ € reg k and GCy-characterization holds for k.

1. Suppose that S1,S2 C S%, and that (Sz \ S1) N S5 is stationary. Then the following
holds:

(a) ES1 7<\B ESz'
(b) If p € 2<% and C C N, is any co-meager subset of N,, then there is no continuous
function C — 2% such that (n,€) € Es, NC? < (f(n), f(£)) € Es,.

2. Assume that K = A\t > w1, p € reg(k) \ {w} and O} holds. Let S C Sf be any stationary
set and let B¥.(S) be the set defined by Theorem 5.24. Then the following holds:

(a) Suppose that S1,S> C S;;, B C Bj.(S) and let S; = S1UB, S5 = S UB. If
(85 \ S1) N Sy is stationary, then Es; £Lp Eg;.

(b) Let Sy, S2, B, Si and Sy be as above. If (S3\ S1) NS} is stationary, p € 2<% and
C C N, is any co-meager subset of N,,, then there is no continuous function C' — 2~
such that (1,€) € Es; N C? <= (f(n), f(§)) € Es,-

3. Let S1,S2, A1, Ay C St be either such that So\ S1 and Az \ Sy are stationary or such that
Sa\ A1 and As \ Ay are stationary. Then the following holds:

((l) ES’1 ®EA1 £B E52 ®EA2,

(b) If C C (2%)? (we identify 27*2 with (2%)?) is a set which is co-meager in some N, =
{n e (2%)? | nldomr = r}, r € (2%)2, a < k, then there is no continuous function
f from C N N, to (2%)? such that (n,€) € (Es, ® Ea,)NC? <= (f(n), f(&)) €
Es, ® E4,.

4. Assume that S1,S2, Ay C k are such that As \ Sy and Sy \ S1 are w-stationary. Then

(a) Es, £p Es, ® Ea,.
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(b) If p € 2<% and C C N, is any co-meager subset of N, then there is no continuous
function C — (2%)% such that (n,€) € Es, NC? <> (f(n), f(£)) € Es, ® Ea,.

5. Assume that S1, A1, S2, Ay C Kk are such that Az \ Ay is w-stationary. Then

(a) Es, ® Ea, €8 Eg,ua,-
(b) Ifp € (2<%)? and C C N, is any co-meager subset of N, then there is no continuous
function C — 2% such that (n,€) € (Es, @ Ea,)NC? <= (f(n), f(£)) € Es,ua,-

Proof. Ttem 1b of the theorem implies item la as well as all (b)-parts imply the corresponding
(a)-parts, because if f: 2% — 2% is a Borel function, then it is continuous on the co-meager set
C(f) (see Definition 5.2). Let us start by proving 1b:

Assume that Sy \ S7 is A-stationary, p € 2<%, C' C N, and assume that f: C' — 2" is
a continuous function as described in the Theorem. Let us derive a contradiction. Define a
strategy for player II in the game GCy (s \ (S2 \ S1)) as follows.

Denote the i:th move of player I by a; and the i:th move of player I by ;. During the
game, at the i:th move, i < ), player I secretly defines functions p?, p}, ¢?, ¢} € 2<% in such a
way that for all 7 and all 7 < ¢ we have

(a) domp} = dompj = B; and o; < domgj,, = domgj,; < «j;, and if j is a limit, then
SUp; < i < domq? = domqjl < B,

(b) p) CpYy1s o CPi1s @ Cafyy and ¢f Cgfyy,
(c) f[CﬂNpg] C Nq? and f[CﬁNpi] - Nqi1.

Suppose it is i:th move and ¢ = v+ 2k for some k£ < w and  which is either 0 or a limit ordinal,
and suppose that the players have picked the sequences (¢;);<; and (5;);<;. Additionally II
has secretly picked the sequences

(0)i<ss P1)i<is (@))i<sy (47 )icj

which satisfy conditions (a)—(c). Assume first that i is a successor. If ¢9_; is not £, (dom¢f_,)-
equivalent to g}_;, then player II plays arbitrarily. Otherwise, to decide her next move, player
IT uses Lemma 5.3 (page 144) to find € 2%-1%) and ¢ = 1 — 1, such that p? ,~n € C
and p;_; "¢ € C. Then she finds 3/ > «; such that f(p?_,7n)(8) # f(pi_,"&)(d) for some
6 € [ag,B]). This is possible since f is a reduction and (¢)_;,q; ;) € E% . Then she picks
B; > B. so that

flien N(p?,l“n) Fﬁi] C Nf(p?,l“n) 18]

and
FICN NG ~ey15] C Nyt ~eys:-

This choice is possible by the continuity of f. Then she (secretly) sets p) = (p?_,7n) | Bi,
pi = Pioi " 1 Bis @@ = f(p)—1 ") 1 B; and ¢f = f(p;_,~€) | Bj- Note that the new partial
functions secretly picked by II satisfy conditions (a)—(c).

If 4 is a limit, then player II proceeds as above but instead of pj' ; she uses (J; _, p},
n € {0,1}, and instead of B;—; she uses sup; ; 8. If ¢ is 0, then proceed in the same way
assuming p°; =pt, =¢*, =¢ ;= and a_; =531 =0.
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Suppose i = v + 2k + 1 where v is again a limit or zero and k¥ < w. Then the moves go
in the same way, except that she sets n = ¢ instead of n = 1 — £ and requires f(p?_; 7 n)(d) =
F(pL,~€)(6) for some 6 € [a;_1,3)) instead of f(p)_,~n)(8) # f(pl_,~€)(d) for some & €
[ai—1, B}). Denote this strategy by o.

Since S5\ 5] is stationary and GCy-characterization holds for k, player I is able play against
this strategy such that sup,_, o; € S2\ Si. Suppose they have played the game to the end, so
that player II used o, player I has won and they have picked the sequence (o, 5; | i < \). Let

) = sup a; = sup 3; = sup dom p; = sup dom g;
i<A i<A i<A i<A

and

R=Ur nn=Unr &= and gy =Ja"
i<X i<A i< i<
By continuity, p%, p}, ¢) and ¢} satisfy condition (c) above and domp$ = domp} = dom ¢} =
dom ¢} = sup, ., & = sup, ., Bi, so ay is well defined.

On one hand q?\ and q}\ cannot be extended in an Eg,-equivalent way, since either they
cofinally get same and different values below ay € Sz, or they are not E%, (v)-equivalent already
for some v < ay. On the other hand p9 and p} can be extended in an Eg,-equivalent way, since
@y is not in 57 and for all v < A, sup;, .., ., is not p-cofinal for any y > A, so cannot be in S;
either (x).

Let n,€ € 2° be extensions of p§ and p} respectively such that (n,£) € Es, N C% Now
f(n) and f(£) cannot be Eg,-equivalent, since by condition (c), they must extend ¢} and ¢}
respectively.

Now let us prove 2b which implies 2a. Let (C* | o € Sg/) be the [j-sequence and denote
by t# the function o — C¥.

Let player II define her strategy in the game GC(x \ (5% \ S7)) exactly as in the proof of
1b. Note that S5\ S; = S3 \ S1 since u > w. Denote this strategy by o. We know that, as
above, Player I is able to beat ¢. However, now it is not enough, because in order to be able
to extend p{, and p}, in an Eg -equivalent way, he needs to ensure that

St Nlimy,({a; i< p}) =2 ()

where lim,, X is the set of w-limits of elements of X, i.e. we cannot rely on the sentence followed
by () above. On the other hand (*x) is sufficient, because S C Sj; U Sf.

Let us show that it is possible for player I to play against o as required.

Let v > « be a sufficiently large cardinal and let M be an elementary submodel of (H,,, o, k, t*)
such that |[M| < k and o = kN M is an ordinal in S} \ S7.

In the game, suppose that the sequence d = (a;, 3; | j < i) has been played before move ¢
and suppose that this sequence is in M. Player I will now pick «; to be the smallest element in
C¥ which is above sup;; 8;. Since C4 N3 = C} for any 5 € lim C% and Cjj € M, this element
is definable in M from the sequence d and t*. This guarantees that the sequence obtained on
the following move is also in M. At limits the sequence is in M, because it is definable from ¢t
and o. Since OTP(C#) = p, the game ends at « and player I wins. Also the requirement (*x) is
satisfied because he picked elements only from C# and so lim,{e; | i < p} C lim,(C*) C a\ B
which gives the result.
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Next let us prove 3b which again implies 3a. The proofs of 4 and 5 are very similar to that
of 3 and are left to the reader.

So, let S1, A1, Sa, As, C and 7 be as in the statement of 3 and suppose that there is a counter
example f. Assume that Sy \ S and A, \ S; are stationary, the other case being symmetric.
Let us define the property P:

P: There exist p,p’ € (2%)2, p = (p1,p2) and p’ = (p}, pb), such that

(a) rCpnyp,
(b) p2 = p3y, (p1,P1) € E%, (a+ 1) (see Definition 5.19, page 147),

(c) forall p € CN N, and 0" € CN Ny, n = (n,m2), 1 = (1,13), if n2 = 75 and
(m,m) € B, then f(n)1 A f(n')1 C dompy where f(n) = (f(n)1, f(n)2)-

We will show that both P and =P lead to a contradiction. Assume first -P. Now the argument
is similar to the proof of 1b. Player II defines her strategy in the same way but this time she
chooses the elements p? and ¢7 from (2%)? instead of 2 so that pl' = (PF1,019), 4 = (411, 4rs)
and for all i < A, p?, = pj,. In building the strategy she looks only at ¢, and ignores g7,
In other words she pretends that the game is for Eg, and Eg, in the proof of 1. At the even
moves she extends p), and p;; by 1 and 7’ which witness the failure of item (c) (but not of
(a) and (b)) of property P for p} and p;. Then there is a € f(n)1 A f(1')1, & > domp},. And
then she chooses qgl and qil’1 to be initial segments of f(n); and f(n'); respectively.

At the odd moves she just extends p?)l and pl{l in an Eg,-equivalent way, so that she finds
an o > dompyy, ¢y and ¢/, such that ¢7;(a) = ¢}, (a) and f[Nyp NC] C Nyo.

As in the proof of 1, I responses by playing towards an ordinal in S5 \ S;. During the game
they either hit a point at which q22 and q},Z cannot, be extended to be F4,-equivalent or else
they play the game to the end whence ¢ ; and g}, cannot be extended in a Eg,-equivalent
way but pg and p}\ can be extended to Eg, ® E4,-equivalent way.

Assume that P holds. Fix p and p’ which witness that. Now player II builds her strategy as
if they were playing between Eg, and E4,. This time she concentrates on q?)Q and qi{2 instead
of ¢, and ¢} ;. At the even moves she extends p), and p;; by n and 7 respectively for some
7. Also, as above, p22 and pl{Q are extended in the same way. By item (c¢) f(n)1 A f(n'); is
bounded by domp?’l, but f(n) and f(n’) can’t be Eg, ® E4,-equivalent, because f is assumed
to be a reduction. Hence there must exist a > domp,, ¢, and g7, such that ¢f,(a) # ¢j ().
The rest of the argument goes similarly as above. O

5.28 Corollary. If GCy-characterization holds for k and S C k is A-stationary, then Ey £ Eg.
In particular, if S is w-stationary, then Ey £ Eg.

Proof. Follows from Theorem 5.27.1a by taking S; = @, since Eg = Ey and GC,-characterization
holds for k. O

5.29 Corollary. There is an antichain® of Borel equivalence relations on 2% of length 2.

2By an antichain I refer here to a family of pairwise incomparable elements unlike e.g. in forcing context.
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Proof. Take disjoint w-stationary sets S;, i < k. Let f: kK X 2 — k be a bijection. For each
ne2flet Ay ={(a,n) ek x2|(n=0An(a) =1)V(n=1An(a) =0)}. For each n # &
clearly A, \ A¢ # @ # A¢ \ A,). Let

Snz_U S;.

i€ f[Ay]
Now {Es, | n € 2"} is an antichain by Theorem 5.27.1b. O

Let us show that all these relations are below FEjy. It is already shown that they are not
above it (Corollary 5.28), provided GCy-characterization holds for k. Again, similar ideas will
be used in the proof of Theorems 5.11 and 5.12.

5.30 Theorem. For all S, Fs <p Ejy.

Proof. Let us show that Eg is reducible to Ey on " which is in turn bireducible with Fy on 2"
(see [7]). Let us define an equivalence relation ~ on 2<% as on page 148, such that p ~ ¢ if and
only if domp = dom g and p A q is eventually constant, i.e. for some a < domp, (p Aq)(y) is
the same for all v € [o,domp). Let s: 2<% — k be a map such that p ~ ¢ < s(p) = s(q).
Let {A; | i € S} be a partition of lim « into disjoint unbounded sets. Suppose n € 2 and define
f(n) =& € k" as follows.

» If v is a successor, & = 8 + 1, then &(a) = n(B).
» If v is a limit, then a € A; for some ¢ € S. Let £(a) = s(n i)

Let us show that f is the desired reduction from FEg to Ey. Assume that n and £ are Fg-
equivalent. If v is a limit and o € A;, then, since n and £ are Fg-equivalent, we have n[i ~ £ |1,

so s(nli) =s(€4) and so f(n)(a) = f(§)(«). There is S such that n(y) = £(v) for all v > 5.
This implies that for all successors v > 5 we also have f(n)(v) = f(£)(vy). Hence f(n) and f(§)
are Fy-equivalent. Assume now that n and £ are not Fg-equivalent. Then there are two cases:

1. n A¢ is unbounded. Now f(n)(8+1) = n(8) and f(§)(B+1) = £(B) for all S, so we have
{B1n(B) #EB)}={B1fmMB+1)#EB+1)}

If the former is unbounded, then so is the latter.

2. For some i € S, n]i o0 &[i. This implies that f(n)(a) # f(§)(a) for all a € A4;. and we
get that {8 | f(n)(8) # &(B)} is again unbounded.

It is easy to check that f is continuous. O

5.4.3 Proofs of the Main Theorems

Proof of Theorem 5.11. The subject of the proofis that for a regular A < &, if GC)-characterization
holds for x, then the order (P(k), Cns(y)) can be embedded into (£F,<p) strictly below Ej
and above ida-.

Let h: w x & — K be a bijection. Let h: 29%% — 25 he defined by h(n)(a) = n(h~Y(a)).
We define the topology on 2“** to be generated by the sets {h=*V | V is open in 2*}. Then
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his a homeomorphism between 2¢*% and 2”. If g: kK X kK — Kk is a bijection, we similarly get
a topology onto 2%** and a homeomorphism g from 2% onto 2%. By combining these two
we get a homeomorphism between 2¢*% x 2% and 2*, and so without loss of generality we can
consider equivalence relations on these spaces.

For a given equivalence relation E on 2%, let E be the equivalence relation on 24** x 2~
defined by

(1,6, (0,€)) €E <= n=n"N(E)€E.
Essentially E is the same as id ® F, since 29X% a2 2%,

5.31 Remark. Corollary 5.22, Theorem 5.27 and Corollary 5.28 hold even if Eg is replaced
everywhere by Eg for all S C k.

Proof. Let us show this for Theorem 5.27.1. The proof goes exactly as the proof of Theorem
5.27.1, but player I now picks the functions pj from J,_, 2“** x 2% instead of 2<%, pi! =
(i 15 PR2), and requires that at each move pf | = py ;. Otherwise the argument proceeds in
the same manner. Similarly for 5.27.2, 5.27.3, 5.27.4 and 5.27.5.

Modify the proof of the first part of Theorem 5.21 in a similar way to obtain the result for
Corollary 5.22. Corollary 5.28 follows from the modified version of Theorem 5.27. O

For S C k let
G(S) = Esg\s-

Let us show that G: P(k) — £ is the desired embedding. Without loss of generality let
us assume that G is restricted to P(S%), whence stationary is the same as A-stationary and
non-stationary is the same as not A-stationary. For arbitrary S, S2 C SY we have to show:

1. If S5\ S is stationary, then Es, €5 Es,
2. If S5\ S; is non-stationary, then Eg, <p Eg,
3. idax < Es, <p Eo.
If n € 2977 denote n;(a) = n(i, o) and (7;)i<w = 0.
Claim 1. If Sy \ S; is stationary, then Es, €5 Es,. Also Ey € Es.

Proof. Follows from Theorem 5.27.1a and Remark 5.31. O

Claim 2. If S5\ S} is non-stationary, then Eg, <p Fsg,.

Proof. Let us split this into two parts according to the stationarity of S;. Assume first that
So is non-stationary. Let C' be a cub set outside Sy. Let f: 2% — 29*% x 2% he the function
defined as follows. For n € 2% let f(n) = ((ni)i<w, &) be such that n;(«) = 0 for all & < k and
i <wand &(a)=0forall a ¢ C. If a € C, then let {(a)) = n(OTP(aN C)). This is easily
verified to be a reduction from Fy to Eg,. By the following Claim 3, Eg, <p FEp, so we are
done.
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Assume now that S5 is stationary. Note that then S; is also stationary. Let C be a cub set
such that So N C C Sy. Assume that ((1;)i<w,&) € 29%" x 2% and let us define

FUM)i<wr €)) = ((0)i<w, &) € 2977 x 28

as follows. For i > 0 let
77£+1 =i
For all a < &, let £'(a) = &(min(C \ «)). Then let s be the function as defined in the proof of
Theorem 5.21 (on page 148) and for all @ < & let B(«) be the a:th element of S; \ Ss. For all
a < K, let
mo(c) = (€1 B(a)).
Let us show that this defines a continuous reduction.

Suppose ((79)i<w, &%) and ((n})i<w, ) are Eg, -equivalent. Denote their images under f by
((0)i<w, C%) and {(p})i<w, () respectively. Since 7Y = n} for all i < w, we have p? = p! for
all 0 < i < w. Since for all a € S; we have that £° | & and ¢! [ a are ~-equivalent (as in the
definition of s), we have that p3(3) = pg(B) for all B < k.

Suppose now that a € S,. The aim is to show that (°[a ~ (! a. If a ¢ C, then there is
B < a such that C' N (B, a) = &, because C is closed. This implies that for all < v <+’ < a,
min(C \ v') = min(C \ 7), so by the definition of f, (°(y) = ¢°(v') and (' (y) = ¢! (7). Now
by fixing 7o between 3 and o we deduce that ¢° | (8, ) is constant and ¢! [ (3, «) is constant,
since for all 7 < a we have C°(7) = ¢%(0) and ¢1(3) = CL(y0) = C1(7). Hence (C°A¢Y) [(B, a)
is constant which by the definition of ~ implies that ¢°[a ~ ¢! Ja.

If « € C, then, since « is also in Sa, we have by the definition of C' that a € S;. Thus, there
is B < a such that (£ A¢Y)[(B,a) is constant which implies that for some & € {0,1} we have
(CON Y (y) =k forall v € (B,a) N C. But if v € (B,a) \ C, then, again by the definition of f,
we have ((° A ¢ (y) = (¢ A¢CH () for some v € (B,a) N C, so (C° A ¢)(v) also equals to k.

This shows that ¢° and (' are Ef -equivalent. It remains to show that they are Eo-
equivalent. But since £° and &' are Ep-equivalent, the number k € {0, 1} referred above equals
0 for all a large enough and we are done.

Next let us show that if (7)<, £%) and ((n})i<w, £') are not Eg, -equivalent, then ((p?);<., ¢°)
and ((p})i<w, (') are not Eg,-equivalent. This is just reversing implications of the above argu-
ment. If n{ # n; for some i < w, then p?; # pl,,, so we can assume that (¢,¢*) ¢ Eg,. If £
and &' are not E§ -equivalent, then p°(a) # p'(a) for some o < k.

The remaining case is that £ and &' are Ej -equivalent but not Fp-equivalent. But then
in fact €0 A €' is eventually equal to 1, since otherwise the sets

Cr={a|{B<al(A)B)=1}is unbounded in o}

and
Co={a|{B<al(EA)(B)=0}is unbounded in o}

are both cub and by the stationarity of S7, there exists a point a € C1NC3N.S; which contradicts
the fact that & and & are EY -equivalent. So £ A ¢! is eventually equal to 1 and this finally
implies that also ¢° and ¢! cannot be Ey-equivalent. O

Claim 3. Let S C S5. Then id <p Es <p FEy. If S is stationary, then also Ey €5 Es.
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Proof. If n € 2%, let ng = n and 7;(a)) = {() = 0 for all @ < k. Then n — ((1;)i<w, &) defines a
reduction from id to Eg. On the other hand Eg is not reducible to id by Remark 5.31.

Let u: 2¥*" — 2% be a reduction from idgwxs to Ey. Let v: 2% — 2% be a reduction from
Es to Ey which exists by 5.30. Let {A, B} be a partition of x into two disjoint unbounded
subsets. Let (n,7') € 2“*% x 2% and let us define & = f(n,n') € 2°. If a € A, then let
&(a) = u(n)(OTP(an A)). If a € B, then let () = v(n')(OTP(a N B)). (See page 143 for
notation.)

Now if ((no,n0), (n1,m})) € (2*% x 2%)2 are Eg-equivalent, then both u(ng) Awu(n;) and
v(ny) Awv(ny) are eventually equal to zero which clearly implies that f(no,n5) A f(n1,n) is
eventually zero, and so f(no,n) and f(n1,n)) are Eg-equivalent. Similarly, if (ng, 7)) and
(m,n;) are not Eg-equivalent, then either u(ng) A wu(n) or v(ny) A v(n)) is not eventually zero,
and so f(no,n}) and f(n1,n]) are not Ep-equivalent.

If S is stationary, then Ey £p Eg by Corollary 5.28 and Remark 5.31. O

O

Proof of Theorem 5.12. Let us review the statement of the Theorem: assuming x = wi, or
x = At and Oy, the partial order (P(k), Cns) can be embedded into (€5, <p).

If kK = w1, then this is just the second part (a special case) of Corollary 5.17 on page 146
and follows from Theorem 5.11.

Recall Definition 5.26 on page 149. Let us see that if o < &, then (J,_, 2rx{i} {5 home-
omorphic to 2% and so the domains of the forthcoming equivalence relations can be thought
without loss of generality to be 2%. So fix o < k. For all 34+ 1 < a let (g: 8+ 1 — 2 be the
function {g(y) = 0 for all v < 8 and (3(8) = 1 and let {,: a — 2 be the constant function with
value 0. Clearly ({)s<q is a maximal antichain. By rearranging the indexation we can assume
that ({3)s<a is @ maximal antichain. If n € 2rx{i} < a, let € = n+ i be the function with
domé = [i +1,k) and &(y) = n(OTP(y\ 7)) and let

fn) =G6G"(n+1i).

Then f is a homeomorphism | J,_,, orx{i} 5 9n,

Agsume S C k and let us construct the equivalence relation Hg. Denote for short r = reg &,
the set of regular cardinals below . Since & is not inaccessible, |r| < k. Let {K, C S| p e r}
be a partition of S/ into disjoint stationary sets. For each p € r\ {w}, let A, = B}, (K,) be
the set given by Theorem 5.24. Additionally let {A% AL A2 A3} be a partition of K, into
disjoint stationary sets.

Let

Hs = (id2r ®Eazy((snsp)\a0) @ Eao)
®(idzs ®Eazu(snspnaz) @ Eay)
©® @(idzﬁ ®E(Smsg)uAM)-

HET
n>w

This might require a bit of explanation. Hg is a disjoint union of the equivalence relations
listed in the equation. The final part of the equation lists all the relations obtained by splitting
the set S into pieces of fixed uncountable cofinality and coupling them with the non-reflecting
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w-stationary sets A,. The operation E +— ida~ ®F is the same as the operation E — E in
the proof of Theorem 5.11 above after the identification 2¢** = 2%. The first two lines of the
equation deal with the w-cofinal part of S. It is trickier, because the “coding sets” A, also
consist of w-cofinal ordinals. The way we have built up the relations makes it possible to use
Theorem 5.27 to prove that S+ H,\ g is the desired embedding.

In order to make the sequel a bit more readable, let us denote

BY(S) = (idox ®E a2 ((snsmna0) @ Eao),
B.(S) (idox @E a3 u((snssnaL) @ Ear),
BM(S) = (idZN ®E(SQSS)UA,L)a
for p € r\ {w}. With this notation we have
Hs = B2(S) @ BL(S) @ @D Bu(S).

HET
u>w

Let us show that S — H,\g is an embedding from (P(x),Cns) into (€2, <p). Suppose
S5\ S is non-stationary. Then for each p € r\ {w} the set

((SENSy)UAL)\ ((SpnS1)UA)
is non-stationary as well as are the sets
(AZ U ((S2 0 SE)\ A2)) \ (45 U (511 S5\ AQ))
and
(A2 U ((S2 nSE)\ A)) \ (AD U ((S10.85)\ AL))
so by Claim 2 of the proof of Theorem 5.11 (page 154) we have for all p € r \ {w} that

(idox ®E(s,ns5)04,) < (id2s ®E(s,ns0)04, ),

(idox @Ea2u((sinsgnay)) <B (idar @F a2 0((s2ns5)\49))5
and

(idar ®E a3 u((s1ns5)\4)) <8 (d2r @F a3 u((sanspnaL))-
Of course this implies that for all x4 € r\ {w}

(idor @ Eazu((sinsgnag) © Bag) <p (idzx @Eazu((ssnsm)\42) @ Eag)
and that

(id2r ®E 43 y((sy,nsnAL) @ Ea1) <p (idax @FEas U((s2nss)\AL) @ Ear)

which precisely means that B2 (S1) <p B%(S2), BL(S1) <p BL(S2) and B,(S1) <p B,(S2) for
all p € r\ {w}. Combining these reductions we get a reduction from Hg, to Hg,.

Assume that S3 \ Sp is stationary. We want to show that Hg, €5 Hs,. Hg, is a disjoint
union the equivalence relations B (S1), BL(S1) and B,,(S1) for u € r\ {w} . Let us call these
equivalence relations the building blocks of Hg, and similarly for Hg,.

Each building block of Hg, can be easily reduced to Hg, via inclusion, so it is sufficient to
show that there is one block that cannot be reduced to Hg,. We will show that if i, is the least
cardinal such that S N (S2\ S1) is stationary, then
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» that building block is By, (S1), if 1 > w.
+ that building block is either BY(S1) or B (S1), if p1 = w.

Such a cardinal u; exists because & is not inaccessible and |r| < k.

Suppose that f is a reduction from a building block of Hg,, call it B, to Hg,. Hg, is a
disjoint union of less than  building blocks whose domains’ inverse images decompose dom f
into less than x disjoint pieces and one of them, say C, is not meager. By the Property of Baire
one can find a basic open set U such that CNU is co-meager in U. Let C(f) be a co-meager set
in which f is continuous. Now f [ (U NC NC(f)) is a continuous reduction from B restricted
to (UNCNC(f))? to a building block of Hg,. Thus it is sufficient to show that this correctly
chosen building block of Hg, is not reducible to any of the building blocks of Hg, on any such
UNCNC(f). This will follow from Theorem 5.27 and Remark 5.31 once we go through all the
possible cases. So the following Lemma concludes the proof.

5.32 Lemma. Assume that juy € r is the least cardinal such that (S2\ S1) N S} is stationary.
If 1 > w, then

(i) for all pa > w, B, (S1) €5 By, (52),
(i) By, (S1) €5 BY(S2),
(ii1) By, (S1) £p B, (S2),
and if p1 = w, then
(i*) for all pz > w, BY(S1) %5 By, (S2),
(ii*) for all pz > w, BL,(S1) €5 By, (S2),
(#i*) either
Bi(S1) &5 By(S2) and BL(S1) &5 B, (S2) (1)
or
B,,(S1) &5 B(S2) and B, (S1) &5 B, (Ss). (2)
Proof of the lemma. First we assume p; > w.

(i) There are two cases:

Case 1: pg = 1. Denote B=A,, = A,, and 5] = (S; ﬂSl'jl) U B and S} = (52 ﬂSﬁz) UB.
Now B,,(S1) = id®Eg, and B, (S2) = id®Eg,. Since by definition B = B} (K,,)
where K, C Sf; is stationary, and (S2\ S1)NS};, is stationary, the sets S and S5 satisfy
the assumptions of Theorem 5.27.2b, so the statement follows from Theorem 5.27.2b
and Remark 5.31.

Case 2: g # p1. Let S1 = (S1 NS} )U A, and S5 = (S2NS))) U A,, whence By, (51) =
id®Eg, and By,(S2) =id®Eg;. Now §1 C S§, and S5 C S%, and since A, NA,, =
&, the result follows from Theorem 5.27.1b and Remark 5.31.
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(ii) Let ST = (S1NSf)UA,,, Sy =A2U((S2nS5)\ AY), and Ay = AD. By definition,
B)(S5) = idas ®Es;, © E g,

and By, (S1) = Eg;. Since A, N A2 = @, S{NSE = Ay, and A2 C S5, we have that
S5\ S} is w-stationary, because it contains A%. Also A2 \ Sf = A%, because S; N A% = &,
so A5\ S{ is w-stationary. Now the result follows from Theorem 5.27.4b and Remark 5.31.

(iii) Similar to (ii).
Then we assume p; = w.

(i*) Let ST = AZU((S1NSE)\AD), Ay = A Ay = A, and Sy = (S2NS};,). Since AJNA,, = &,
we have that A} \ A} is w-stationary, so by Theorem 5.27.5 and Remark 5.31,

d®Es; @ Egy £p id®@Eg;uay,
which by definitions is exactly the subject of the proof.
(ii*) Similar to (i*).
(iii*) The situation is split into two cases, the latter of which is split into two subcases:

Case 1: ((S2\S1)NSE)\(AZUAY) is stationary. Let S; = A2U((S1NSE)\A2), A} = A%, S} =
AZU((SaNSE)\AY) and A = A%. Now A4\ S] is obviously w-stationary, since it is equal
to AY. Also S5\ S} is stationary, because it equals to ((S2\ S1)NSE)\ (A2 UAY) which
is stationary by the assumption. Now the first part of (1) follows from Theorem 5.27.3b
and Remark 5.31, because BY(S1) = id®Eg @ Ear and B)(S2) =id®FEs; ® Eay,. On
the other hand let S = A3 U((S2NS%)\ AL) and Ay = AL. Now S5\ A} is stationary,
because A3 C S§ but A2 N A} = A3 N A° = . Also A} \ A} is stationary since
AN AL = ALNAY = @. Now also the second part of (1) follows from Theorem 5.27.3b
and Remark 5.31, because BY(S1) =id®Eg ® Ex; and Bi(S;) =id®Egy @ Eay.

Case 2: ((S2\ S1)NSE)\ (42 U AY) is non-stationary.

Case 2a: ((S2\S1)NSH)\ (A2 UAL) is stationary. Now (2) follows from Theorem 5.27.3b
and Remark 5.31 in a similar way as (1) followed in Case 1.

Case 2b: ((S2\ S1) N SE)\ (A2 U AL) is non-stationary. Now we have both:
((S2\ S1) NS5\ (A2 U AY) is non-stationary (%)

and
((S2\ S1) NS5\ (A2 U AL) is non-stationary. (xx)

Now from (%) it follows that S \ S1 Cns() A2 U A2, From (xx) it follows that
So \ S1 CNs(w) A3 U AL. This is a contradiction, because Sy \ S; is w-stationary
and (A2 UA2)N (A2 UAL) =o. O

O
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5.5 On Chains in (5, <)
There are chains of order type T in Borel equivalence relation on 2~:

5.33 Theorem. Let k > w. There are equivalence relations R; € EE, for i < x*, such that
1<) = RigBRjg_EO-

5.34 Remark. In many cases there are x™-long chains in the power set of x ordered by inclusion
modulo the non-stationary ideal whence a weak version of this theorem could be proved using
Theorem 5.12. Namely if the ideal Ifg of non-stationary subsets of  is not x'-saturated,
then there are x*-long chains. In this case being not xk*-saturation means that there exists
a sequence (A; | i < k™) of subsets of x such that A; is stationary for all ¢ but A, N 4; is
non-stationary for all ¢ # j. Now let f, be a bijection from & to « for all a < k™ and let

Ba= v Ay ={a| for somei < a,a € Ap ()
i<a

It is not difficult to see that (B, | @ < k™) is a chain. On the other hand the existence of such
a chain implies that Ifg is not x*-saturated.

By a theorem of Gitik and Shelah [25, Theorem 23.17|, Ifg is not k' -saturated for all
Kk = Ny, By a result of Shelah [25, Theorem 38.1], it is consistent relative to the consistency
of a Woodin cardinal that Ilt% is No-saturated in which case there are no chains of length wo
in (P(w1),Cns)- On the other hand in the model provided by Shelah, CH fails. According to
Jech [5] it is an open question whether CH implies that Iffﬁs is not Ny-saturated.

However, as the following shows, it follows from ZFC that there are x*-long chains in
(EB <) for any uncountable k.

Proof of Theorem 5.33. By the proof of Corollary 5.29, page 152, one can find w-stationary sets
S; for i < k7 such that S;\ S; and S;\ S; are stationary whenever i # j. For all j € [1,x1), let

R; = P Es.,

i<j

where the operation & is from Definition 5.26, page 149.
Let us denote P4 = J;c 4 20x{i} for A C k7, i.e. for example P; = Uie; grx i}
Let us show that

1. ifi < 7y then R; <p Rj,
2. if i < j, then R; €5 R,
3. foralli < xT, R; < Fy.

Item 1 is simple: let f: P, — P; be the inclusion map (as P; C P;). Then f is clearly a
reduction from R; to R;.

Suppose then that ¢ < j and that ¢ < k < j. To prove 2 it is sufficient to show that there is
no reduction from Eg, to R;. Let us assume that f: 2% — P; is a Borel reduction from Eg, to
Rj. Now

2% = U f_l[P{a}]a

a<i
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so one of the sets f—* [P{ay] is not meager; let ag be an index witnessing this. Note that o < F,
because ay < i < k. Because f is a Borel function and Borel sets have the Property of Baire,
we can find a p € 2<% such that C = N, N C(f) N f~[Py;;] is co-meager in N,. But now f[C
is a continuous reduction from Eg, N C? to Eg, which contradicts Theorem 5.27.1b.

To prove 3 we will show first that R; <p @j<i Ey and then that ®j<i Ey <p Ey, after
which we will show that Fy €5 R; for all i.

Let f; be a reduction from Eg; to Ey for all j < i given by Claim 3 of the proof of Theorem
5.11. Then combine these reductions to get a reduction from R; to EBj <i Eo. To be more
precise, for each € Pyjy let f(n) be £ such that & € Py, and £ = f;(n).

Let {Ag | k < i} be a partition of « into disjoint unbounded sets. Let € P;. By definition,
n € Py for some k < i. Define £ = F'(n) as follows. Let f: A; — & be a bijection.

» If a € A;, then let £(a) = n(f(@)).
- If o € Aj and j # k, then let {(a) = 0.
» If a € Ay, then let {(a) = 1.

It is easy to see that F'is a continuous reduction.

Assume for a contradiction that Fq <p R; for some ¢ < k*. Then by 1 and transitivity,
Ey <p Rj for all j € [i,xT). By the above also R; <p Ey for all j € [i,x") which, again by
transitivity, implies that the relations R; for j € [i,x) are mutually bireducible to each other
which contradicts 2. O
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Ehrenfeucht-Fraissé-game, see game, EF-game

building block, 28, 157 Ehrenfeucht-Mostowski models, 121

canary tree, 91 filter, 14

Cantor space, 18 filtration, 130
cardinal, 13, 59
classifiable, 111

forcing, 60
Cohen forcing, 60

closed, 14
A-closed, 144 game, 35
closed unbounded, 14, 36 E*F—game, 37
closure EF-game, 16, 35
of a function, 49 strategy, 63
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Glimm-Effros dichotomy, 88
saturated linear order, 130

ideal, 22 Scott height, 65

identity, 79 Silver dichotomy, 81, 88

infinitary logic, 70 square principle, 41

injective, 60 stable, 111

invariant, 15, 32 stationary, 14, 60, 144

isomorphism relation, 21, 58 A-stationary, 60
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