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Abstract

In remote-sensing studies, particles that are comparable to the wavelength ex-
hibit characteristic features in electromagnetic scattering, especially in the degree of
linear polarization. These features vary with the physical properties of the particles,
such as shape, size, refractive index, and orientation. In the thesis, the direct prob-
lem of computing the unknown scattered quantities using the known properties of
the particles and the incident radiation is solved at both optical and radar spectral
regions in a unique way.

The internal electromagnetic fields of wavelength-scale particles are analyzed
by using both novel and established methods to show how the internal fields are
related to the scattered fields in the far zone. This is achieved by using the tools
and methods that were developed specifically to reveal the internal field structure
of particles and to study the mechanisms that relate the structure to the scattering
characteristics of those particles. It is shown that, for spherical particles, the internal
field is a combination of a forward propagating wave with the apparent wavelength
determined by the refractive index of the particle, and a standing wave pattern
with the apparent wavelength the same as for the incident wave. Due to the surface
curvature and dielectric nature of the particle, the incident wave front undergoes a
phase shift, and the resulting internal wave is focused mostly at the forward part
of the particle similar to an optical lens. This focusing is also seen for irregular
particles. It is concluded that, for both spherical and nonspherical particles, the
interference at the far field between the partial waves that originate from these
concentrated areas in the particle interior, is responsible for the specific polarization
features that are common for wavelength-scale particles, such as negative values and
local extrema in the degree of linear polarization, asymmetry of the phase function,
and enhancement of intensity near the backscattering direction.

The papers presented in this thesis solve the direct problem for particles with
both simple and irregular shapes to demonstrate that these interference mechanisms
are common for all dielectric wavelength-scale particles. Furthermore, it is shown
that these mechanisms can be applied to both regolith particles in the optical wave-
lengths and hydrometeors at microwave frequencies. An advantage from this kind
of study is that it does not matter whether the observation is active (e.g., polari-
metric radar) or passive (e.g., optical telescope). In both cases, the internal field is
computed for two mutually perpendicular incident polarizations, so that the polar-
ization characteristics can then be analyzed according to the relation between these
fields and the scattered far field.
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2011. Polarization of light backscattered by small particles. Journal of Quantitative

Spectroscopy and Radiative Transfer, 112, 2193–2212
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1 Introduction

Active and passive remote sensing using electromagnetic radiation is a large area of re-
search ranging from nano-scale particles to surfaces of celestial bodies, and from the
gamma rays to radio frequencies. However, the interaction of electromagnetic radiation
with the matter can be characterized with only a few quantities: the size of the object
compared to the wavelength of the radiation, the refractive index of the object relative
to the surrounding medium, the geometric shape of the object, and the orientation of the
object relative to the incoming radiation. Depending on the particular area of research,
these characteristics can have quite limited variation in reality. It is therefore feasible
to make assumptions about the physical properties of the objects being observed, and
model the interaction of the electromagnetic radiation with the objects. This is the direct
problem. In the inverse problem, the physical properties of the objects are constrained
from remote-sensing observations. However, inverse problems can be ill-posed, especially
without any knowledge of the in-situ environment. The direct problem can be used to
get information about the mechanisms that govern the interaction. Once the mechanisms
are known, solving the inverse problem can be improved.

1.1 Regolith particles

Regolith is the topmost layer of loose matter on terrestrial bodies that covers solid rock.
It consists of irregular rock, mineral, and glassy fragments. The physical properties of
single particles vary within planets, moons, and asteroids, but they are usually dielectric
in nature at optical wavelengths. Together the regolith particles form a randomly rough,
particulate, and porous medium with the average porosity, i.e., the volume fraction of the
void, of about 70% at the surface. The lunar regolith is the most studied solar-system
surface outside the Earth. During the Apollo missions about 382 kg of surface samples
were returned to the Earth for study. The average diameter of the lunar regolith particles
is between 60-80 µm. In absence of real samples, analog regolith particles are usually used
for measurements. Analog particles must have statistically similar physical properties as
real samples. Example images from the scanning-electron microscope for regolith analog
particles for the Moon and Mercury are shown in Fig. 1.

At optical wavelengths, the regoliths of atmosphereless bodies can be studied with both
ground-based and space-based telescopes. Depending on the physical properties of the
surface, the observed signal originates from a varying combination of single and multiple
scattering of sunlight from the surface. Generally, the brighter a surface is, the more con-
tribution from multiple scattering relative to single scattering. At microwave frequencies,
the regoliths are usually studied with either passive radiometers to reveal thermal distri-
butions, or active synthetic-aperture radars aboard satellites that can penetrate deeper,
and be used to map sub-surface layers.

Polarimetric measurements can be made with both optical telescopes and radars. Op-
tical telescopes are passive devices that observe the scattered sunlight, which is typically
only weakly polarized. By using polarizers and other optical elements in front of the
receiver, the polarized components of the scattered wave can be measured. Radars, on
the other hand, are active devices and transmit radar signals that are polarized in a spe-
cific way. The backscattered radar signal can then be received at different polarization
channels to obtain the polarized components of the scattered wave.
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Figure 1: Scanning-electron microscope images of regolith analog particles for the Moon
(left) and for Mercury (right). The images are from McKay et al. (1993) and Helbert
et al. (2007). The frame width for the image on the left is 900 µm. The main crystalline
phases are glass (GL), olivine (OL), and plagioclase (not shown).

.

1.2 Negative polarization

The degree of linear polarization for unpolarized incident light is defined as P = (I⊥ −
I‖)/(I⊥ + I‖), where the scattered intensities I⊥ and I‖ refer to the polarized compo-
nents perpendicular and parallel to the scattering plane (defined by the light source, the
scatterer, and the observer), respectively. Negative polarization is produced, when the
parallel component of the scattered field is larger that the perpendicular component. Par-
ticles small compared to the wavelength interact with the incoming radiation as a single
electric dipole. The angular profile of the degree of linear polarization is a symmetric bell-
shaped curve; positive for all scattering angles. Such polarization is called Rayleigh-like.
Wavelength-scale particles, however, exhibit non-Rayleigh-like features, such as negative-
polarization branches (NPBs), interference extrema at certain angles, and asymmetry be-
tween the forward and backward scattering angles. These features are present for single
particles with various shapes, sizes, refractive indices, and orientations (Hansen & Travis
1974, Yanamandra-Fisher & Hanner 1999, Petrova et al. 2000). For multiple scattering
by Rayleigh-like particles, NPBs and interference extrema are absent.

One of the more interesting features is negative polarization, which is most striking for
symmetric particles such as spheres. Spherical particles exhibit wide and deep branches of
negative polarization at all scattering angles. These features are diminished for irregular
particles such as Gaussian random particles (Muinonen et al. 2007), agglomerated-debris
particles (Zubko et al. 2005), fluffy particles (Lumme & Rahola 1994), and aggregates
of spherical particles (Nakamura & Okamoto 1999), although some single-scattering mea-
surements from irregular mineral particles show negative values at intermediate scattering
angles (Muñoz et al. 2001). This indicates that polarimetric quantities, especially the de-
gree of linear polarization, are sensitive to particle shape. In addition to shape, the
orientation of particles can also have a profound effect on the negative polarization. This
can be seen for, e.g., spheroidal particles (Asano 1983) and hexagonal ice crystals (Yang
& Liou 1996).

Although irregularity and variance in size and orientation of particles tend to dampen
the presence of negative polarization, it persists near the backscattering region. This
region, which is typically between 150 − 180◦ scattering angles, is called NPB. NPB
is common for dielectric particles. For highly absorbing irregular particles it is absent
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(Zubko et al. 2009). As regoliths consist mostly of dielectric particles at wavelength-
scale sizes, NPB is also observed for most atmosphereless Solar-system bodies. It has
been observed for the Moon (Lyot 1929, Shkuratov et al. 1992), Mercury (Mallama et al.
2002), asteroids (Goidet-Devel et al. 1995), comets (Levasseur-Regourd et al. 1996), and
the Galilean satellites of Jupiter (Rosenbush & Kiselev 2005).

When observing surfaces that consist of bright material, i.e., have a high albedo,
multiple scattering must also be taken into account. This is especially true near the
exact backscattering angle, which sometimes exhibits an NPB that is attributed to the
coherent backscattering mechanism (CBM; Shkuratov 1989, Muinonen 1990). CBM is
a multiple-scattering phenomenon associated to the interference of reciprocal waves. It
manifests itself only near the backscattering direction, and it is generally observed in icy
surfaces, such as Saturn’s rings (Mishchenko 1993). It is also seen in regolith analog struc-
tures (Shkuratov et al. 2002), as well as in numerical computations of multiple scattering
(Muinonen & Zubko 2010). Muinonen et al. (2010) presented a novel scattering model for
interpreting the polarimetric phase curves for atmosphereless solar-system bodies. In the
model, the single scatterers were assumed to be negatively polarizing, and were incorpo-
rated into a coherent-backscattering model. Without CBM and/or negatively polarizing
single scatterers, multiple scattering does not produce negative polarization.

1.3 Hydrometeors

Hydrometeors are particles that are formed by either condensation or deposition of water
vapor in the Earth’s atmosphere. These include, e.g., raindrops, hailstones, snowflakes,
sleet, and graupel particles. All hydrometeors are mixtures of solid ice and liquid wa-
ter with specific physical properties, such as the shape and density, determined by the
processes that created them. The most common processes are coalescence of small water
droplets into larger drops, depositional growth of ice crystals, melting of hydrometeors
during precipitation, accretion of hydrometeors by small supercooled water droplets, i.e.
riming, and aggregation of ice crystals into snowflakes. The size of hydrometeors varies
from micrometer-sized water droplets to centimeter-sized hailstones. The shapes vary
from almost spherical droplets and symmetric ice crystals to highly irregular snowflakes.

Because of the immediate effect of precipitation on traffic and infrastructure, it is im-
portant to monitor the precipitation continuously with operational instruments, such as
weather radars. Ground-based radars are beam-scanning devices used mainly for weather
surveillance, while satellite radars are used for cloud studies and surface mapping. Polari-
metric weather radars can be used to, e.g., estimate rainfall and snowfall rates, detect hail,
classify hydrometeor types, and derive water-ice content of clouds (Atlas et al. 1953, Ay-
din et al. 1986, Matrosov 1998, Straka et al. 2000). The advantage of space-borne radars
is that the signal attenuation by the atmosphere is diminished. One distinct feature in
radar meteorology is the bright band, which is an enhancement in the backscattered signal
at the melting layer (Ryde 1946, Austin & Bemis 1950, Smyth & Illingworth 1998). It is
produced by the liquid-water coating of melting ice particles mainly because liquid water
is highly reflective at radar frequencies, and the melted particles scatter similarly to large
raindrops.

Another important area of research is hydrometeor classification based on different
polarization quantities, i.e., dual-polarization radar observables, the most important being
the horizontal reflectivity, the differential reflectivity, the linear depolarization ratio, the
copolarized correlation coefficient, and the specific differential phase. Due to the different
morphologies of hydrometeor types and the associated processes that govern their creation,
their polarimetric signatures can be categorized into different, but also slightly overlapping
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regions. Old classification schemes used Boolean logic to determine the hydrometeor type
for a given set of radar observables, but modern schemes use fuzzy logic that can also take
into account measurement errors (Liu & Chandrasekar 2000).

1.4 Snowflakes

Natural ice crystals show remarkable variation in shape, and these have been classified
according to the main crystal habit, which describes the overall shape of the mineral
(Nakaya 1954, Magono & Lee 1966). The habit of an ice crystal, as it grows, depends
on the ambient conditions in the precipitating cloud. The main quantities that govern
the growth are temperature, degree of supersaturation, and the dynamics of the cloud
that controls the variability of these quantities (Fig. 2). The growth process itself can be
understood by the Wegener-Bergeron-Findeisen mechanism, which explains the growth
of ice at the expense of supercooled water droplets in the cloud (Pruppacher & Klett
1997). Due to the hexagonal symmetry of molecular water ice, natural ice crystals also
show hexagonal symmetry (Pauling 1935). However, the most abundant type of water
ice in the universe is amorphous ice observed in the interstellar medium (Festou et al.
1993). The different structure of interstellar ice is mainly due to the lower temperatures
and dryness of the environment compared to the Earth’s atmosphere. Also, interstellar
water ice is the principal component in cosmic organics, which means that usually it is
not pure, but contaminated with carbon and nitrogen (Jenniskens 1993). This difference
can be observed with near-infrared spectroscopy.

Figure 2: Morphology of ice crystals as a function of temperature and water supersatu-
ration (Libbrecht 2005).

As the ice crystals fall, they can collide and aggregate into larger snowflakes, when
the conditions are right. This process has been modeled using stochastic principles for
spherical (Maruyama & Fujiyoshi 2005), dendritic (Kraus 1966), and columnar particles
(Westbrook 2004). During aggregation, the snowflakes can grow up to 5–10 times larger
in diameter when compared to the size of single crystals. At radar frequencies, this
corresponds to an increase of 42–60 dB in radar reflectivity. Melting can further enhance
the reflectivity and produce the bright band.

In free fall, ice crystals can stick to each other very loosely, which leads to a very fluffy
structure for the snowflakes. Typical densities vary between 0.2–0.1 g cm−3 for small
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snowflakes to 0.05–0.01 g cm−3 for large snowflakes. This process is usually explained by
sintering (Hobbs 1965) and mechanical interlocking (McIlveen 1992). There is a physical
limit to the size of snowflakes, since the probability of breakup increases rapidly as size
increases due to higher collisional damage and stress. This complicated phenomenon is
explained in more detail by Göke (1999).

1.5 Modeling backscattering by snowflakes at radar frequencies

One of the advantages, when modeling falling snow, is that it is usually possible to get
in-situ measurements using cameras and collectors. The most important physical proper-
ties that affect backscattering by snowflakes are particle mass, physical dimensions, and
shape. As the polarization characteristics are sensitive to changes in these, it is crucial to
constrain them in order to solve the direct scattering problem more accurately, and also
to improve the inverse problem at the same time.

Different mass-diameter relations have been determined from direct measurements of
snowflakes. These relations can be used to estimate the mass of snowflakes from the
diameter: m = αDβ, with α and β being the measured coefficients (Pruppacher & Klett
1997). Because it is usually assumed that snowflake aggregates are fractals to a large
degree (Maruyama & Fujiyoshi 2005, Ishimoto 2008, Schmitt & Heymsfield 2010), β is
the fractal dimension, which can be estimated from the images of the particles. The fractal
dimension of snowflakes depends mainly on the habits of its constituent ice crystals. Values
typically vary between 1.8 and 2.4 depending on the main habits. A more direct measure
of mass can be done with hot plates.

Snowflake diameter is usually estimated from the images as the maximum horizontal
extent of the particle. This definition is however sensitive to orientation effects, such as
turbulence around the instruments. A better estimate could be the maximum extent in
some arbitrary direction not fixed to any axes (Korolev & Isaac 2003). Some sample
images of hydrometeors taken by the two-dimensional stereo probe (2D-P; top four rows)
and the cloud-particle imager (CIPG; bottom five rows) are shown in Fig. 3. The images
were taken from an aircraft at different altitudes during the light precipitation validation
experiment (LPVex) near Helsinki between 15th September and 31st December 2010.

In scattering problems, the size of particles is usually expressed in size parameters
x = ka = πD/λ = πDf/c (k, λ, and f are the wave number, wavelength and frequency
of the incident wave, respectively, a and D are the radius and diameter of the particle,
respectively, and c the speed of light).

Ground-based weather radars usually operate at C (5.6 GHz) and S (2.7 GHz) -
bands, which means that the maximum size parameters of snowflakes (with the maximum
diameter Dmax usually between 1 and 25 mm) vary between x = 0.06–1.5 at the C band
and x = 0.03–0.7 at the S band. At these radar frequencies, even simple scattering
models can provide reasonably good estimates for the backscattering properties. Space-
based radars operate at Ku (13.6 GHz), Ka (35.6 GHz), and W (94 GHz) -bands. The
corresponding size parameters vary between x = 0.14–3.6 at the Ku band, x = 0.37–
9.3 at the Ka band, and x = 1.0–24.6 at the W band. The largest snowflakes are not
seen by these instruments due to the higher attenuation through the atmosphere at higher
frequencies. Despite this restriction, simple models can fail to estimate the backscattering
quantities at these frequencies. The particle shape starts to dominate backscattering as
the size reaches the wavelength scale.
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Figure 3: Top four rows are shadow images taken by the 2D-P stereo probe (resolution 200
µm/pixel), and the bottom five rows are shadow images taken by the CIPG cloud-particle
imager (resolution 25 µm/pixel) during the LPVex field campaign near Helsinki (15 Sep
- 31 Dec, 2010).

1.6 The aim of the thesis

The aim of the thesis is to show the relationship between the internal and scattered fields,
and provide evidence that interference between the partial waves originating from the
certain ares in the particle interior are responsible for the non-Rayleigh-like polarization
and scattering characteristics for wavelength-scale particles. The studies in Papers I-III
show that it is convenient to divide the internal field into two components: the longitudinal
component and the transverse component. The longitudinal component is defined as the
component parallel to the incident wave vector and the transverse component as the
remaining component in the plane perpendicular to the incident wave vector. In Paper
IV, the longitudinal component is studied in detail, and it is proposed that focusing of
the incident wave is responsible for the localized bright areas in the energy density at the
forward part of the particle. It is also shown that these areas are also responsible for
the negative polarization at intermediate scattering angles. In Paper V, it is shown that
symmetric particles exhibit similar features in the scattered field characteristics at different
scattering angles. Simple formulas are used for the size parameter and refractive index to
define the angular locations of these features. The physical interpretation explaining the
features in the scattered fields is based on the distribution of the internal energy density
of the particles. They conclude that the internal field of spherical particles is composed of
two main components: a distorted plane wave with apparent wavelength λ/m (m is the
relative refractive index) and a standing wave near the particle perimeter with apparent
wavelength λ. This standing wave is formed by waves propagating in opposite directions.
Due to the circular pattern of the energy density maxima, its relation to the far field can
be described as an ’interference dial’, which selects destructive/constructive interference
at certain scattering angles between the partial waves originating from the maxima.

In Papers VI and VII, the backscattering quantities of hydrometeors are studied at
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several radar frequencies, and it is shown that the polarization observables, such as the
differential reflectivity and the linear depolarization ratio, are very sensitive to particle
inhomogeneity and shape. Effective-medium approximations (EMA) cannot be used con-
sistently for these quantities, especially at the higher radar frequencies, when the particles
are wavelength-scale. The studies in Paper VI show that the presence of melt water can
produce large errors in the computed backscattering quantities, which should be taken
into account in modeling. In Paper VII, it is found that, when computations for exact
shape models are compared to those for homogeneous spheroids using EMAs, the exact
shapes do not show any interference features that are characteristic of spheroids. It is
suggested that these differences could be explained by the regular structure of the internal
field for spheroids. In the introductory part of the thesis, we make a new case study, which
uses the tools developed for Papers IV and V, and apply them to radar backscattering by
snowflakes in Paper VII. The suggestion is verified at least for one case.

The thesis is organized as follows. In Sect. 2, the theories of electromagnetic scat-
tering are introduced, and relevant scattering quantities are defined. Section 3 presents
various shape models used in the studies. In Sect. 4, the numerical scattering models are
introduced, and in Sect. 5, the interference mechanisms for the internal field components
are introduced and the results for wavelength-scale particles are summarized. Sect. 6
provides the summaries of the papers in the thesis, while Sect. 7 presents the conclusions
of the studies and future prospects. The included papers of the thesis are shown after the
introductory part.
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2 Theory of electromagnetic scattering

2.1 Basic theory

The macroscopic electromagnetic fields inside matter can be described by the Maxwell
equations (Jackson 1998)

∇ ·D(r, t) = ρ(r, t),

∇×E(r, t) = −∂B(r, t)

∂t
,

∇ ·B(r, t) = 0,

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
, (1)

where D is the electric displacement, E the electric field, B the magnetic induction, H the
magnetic field, ρ the macroscopic charge density, and J the macroscopic current density.
The charge and current densities are related through the continuity equation

∂ρ(r, t)

∂t
+∇ · J(r, t) = 0. (2)

The field vectors in Eqs. (1) are related through the electromagnetic properties of the
(non-dispersive) matter

D(r, t) = ǫ(r)E(r, t),

B(r, t) = µ(r)H(r, t),

J(r, t) = σ(r)E(r, t), (3)

where ǫ, µ, and σ are the electric permittivity, magnetic permeability, and conductivity
of the matter, respectively.

At the boundary of a particle, the electromagnetic properties can change abruptly, and
produce discontinuity for the field vectors. Therefore, it is required that certain conditions
are valid at the boundary

(B2 −B1) · n = 0,

(D2 −D1) · n = ρS,

n× (E2 − E1) = 0,

n× (H2 −H1) = JS, (4)

where the subscripts 1 and 2 denote the two media with different properties, n the surface
normal at the boundary, ρS the surface charge density, and JS the surface current density.
In the absence of surface charges and currents, the boundary conditions state that the
normal components ofB andD, and the tangential components of E andH are continuous
across the boundary.

For time-harmonic (oscillating) plane waves propagating in a homogeneous, linear,
isotropic, and non-absorbing medium, the electric (E) and magnetic (H) fields are al-
ways in phase and oscillating in orthogonal directions with respect to the direction of
propagation and each other. The complex-field representation of the waves is

E(r, t) = E0 exp(ik · r− iωt),

H(r, t) = H0 exp(ik · r− iωt), (5)
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where r is the radius vector from an arbitrary origin, k the wave vector, and ω the angular
frequency of the wave.

The Maxwell equations can be combined to produce the electromagnetic wave equa-
tions for the time-harmonic fields:

∇2E+ k2E = 0,

∇2H+ k2H = 0, (6)

which are valid for any superposition of time-harmonic plane waves. In addition, the wave
vector of the propagating wave must satisfy

k · k = ω2ǫµ, (7)

which can also be expressed in terms of the complex refractive index m,

m2 =
ǫµ

ǫ0µ0

, (8)

where ǫ0 and µ0 are the permittivity and permeability of vacuum, respectively.
The time-averaged energy density of the time-harmonic electromagnetic plane wave in

a non-dispersive medium is

U(r) =
1

2
Re[ǫ(r)]|E0|2. (9)

2.2 Light scattering theory

Light scattering is a common phenomenon happening in all media that contains atoms.
A macroscopic particle is composed of a large number of small volume elements, dipoles.
When the particle is illuminated by an electromagnetic wave, i.e., an oscillating applied
field, it induces a dipole moment into the volume elements and excites the dipoles. The
dipoles start to oscillate as a response to the field with the same frequency, and produce
secondary radiation. The scattered wave is formed by superposing all the partial waves
reradiated by the dipoles. This scattered radiation can be observed in any direction and
varies with the physical properties of the particle and the scattering direction. The fraction
of the total amount of the scattered energy density in a given direction is described by
the phase function of the particle.

There are usually three reference frames that are used in scattering problems: the
particle reference frame, the incident wave reference frame, and the scattered wave refer-
ence frame. The shape and orientation of the particle are usually defined in the particle
reference frame, which can be chosen arbitrarily and independently from the other frames.
The incident wave vector and incident polarization of the electromagnetic wave define the
incident wave reference frame. The wave vectors of the incident and scattered wave define
the scattered wave reference frame. Since the particle reference frame is always bound to
the particle and stationary, it is a laboratory reference frame. This is not required for the
other frames.

Figure 4 shows the geometry of the scattering from an arbitrary particle as defined
by Bohren & Huffman (1983). All scattering quantities are derived in the scattered wave
reference frame, usually with respect to the scattering plane, which is determined by the
incident and scattering wave vectors, ki = kiêz,ks = ksêr, respectively (êr is the unit
vector to the scattering direction). In the far-field region (kr ≫ 1), the scattered wave,
specified by the scattering field vector Es, is spherical and transverse: êr · Es ≈ 0. The
electric fields of the incident and scattered waves can then be divided into two components:
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the component parallel to the scattering plane and the component perpendicular to the
scattering plane,

Ei = E‖iê‖i + E⊥iê⊥i,

Es = E‖sê‖s + E⊥sê⊥s. (10)

The direction of scattering is specified by the scattering angle θ (in the scattering plane)
and the azimuth angle φ (perpendicular to the scattering plane). In scattering methods,
it is usually assumed that the propagation direction of the incident wave coincides with
the Z-axis of the particle reference frame.

Figure 4: The scattering geometry of an arbitrary particle.

2.3 Stokes vector and Mueller matrix

The polarization state of an electromagnetic wave can be expressed using the Stokes vector
I = {I, Q, U, V }. The relation between the Stokes vectors of the incident electromagnetic
field Iinc and the scattered field Isca is given by the 4 × 4 scattering matrix F(θ) or the
Mueller matrix for single particles,









Isca
Qsca

Usca

Vsca









=
1

k2r2









F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

















Iinc
Qinc

Uinc

Vinc









. (11)

The degree of linear polarization for unpolarized incident light is P = −Q/I =
−F21/F11, and the degree of circular polarization is V/I = F41/F11, where I is the total
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intensity of the scattered/incident light. The depolarization ratio is D = 1 − F22/F11.
Only seven of the sixteen elements of the scattering matrix are independent. The de-
pendencies of the elements are described by Hovenier & van der Mee (2000). Usually
the scattering volume is composed of particles in various sizes, shapes, orientations, and
refractive indices. Therefore, the elements of the scattering matrix are averages over these
properties.

The elements of the Stokes vector are related to the electric field components by

I = E‖E
∗
‖ + E⊥E

∗
⊥,

Q = E‖E
∗
‖ − E⊥E

∗
⊥,

U = E‖E
∗
⊥ + E⊥E

∗
‖ ,

V = i(E‖E
∗
⊥ − E⊥E

∗
‖). (12)

2.4 Amplitude scattering matrix

The relationship between the incident and scattered field is given by the 2 × 2 complex
amplitude scattering matrix S or the Jones matrix for polarized incident field,

(

Esca,‖

Esca,⊥

)

=
eik(r−z)

−ikr

(

S2 S3

S4 S1

)(

Einc,‖

Einc,⊥

)

, (13)

The information content of Eqs. (11) and (13) is identical. The equations for com-
puting the scattering matrix elements from the amplitude matrix elements are given by,
e.g., Bohren & Huffman (1983). The elements of the amplitude scattering matrix are
not observable quantities, but complex representations of the transformation between the
incident field and the scattered field. The amplitude scattering matrix is defined only for
a single particle in a fixed orientation. The elements Si (i = 1, 2, 3, 4) of the matrix are
complex numbers representing the change in amplitude and phase of the incident field

S1 = a1e
iφ1 ,

S2 = a2e
iφ2 = a2e

iφ1ei(φ2−φ1),

S3 = a3e
iφ3 = a3e

iφ1ei(φ3−φ1),

S4 = a4e
iφ4 = a4e

iφ1ei(φ4−φ1), (14)

where ai are the amplitudes and φi the phases of the amplitude matrix elements. Notice
that the phases of the other elements are defined with respect to the S1 element, providing
a common phase factor eiφ1 leaving only seven independent variables. Since the factor
represents only a constant phase for all elements, it can be chosen arbitrarily: φ1 = 0.

In radar applications, the amplitude matrix elements are sometimes needed for the
modeled particles, but these are not always provided by the scattering methods, which
usually output only the scattering matrix elements (Eq. 11). If the polarization state of
the incident wave is defined using the Stokes vector, the amplitude matrix elements can
be obtained from the corresponding scattering matrix elements

S1 = a1 = [
1

2
(F11 − F12 − F21 + F22)]

1/2,

S2 = a2e
iφ2 =

1

2a1
[F33 + F44 + i(F34 − F43)],

S3 = a3e
iφ3 =

1

2a1
[F31 − F32 + i(F42 − F41)],

S4 = a4e
iφ4 =

1

2a1
[F13 − F23 + i(F14 − F24)]. (15)
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Notice that there are several ways to formulate Eqs. (15), because only seven from
the sixteen elements of the scattering matrix elements are independent. Also notice that
Eqs. (15) only hold in fixed orientation. Both F and S are usually defined in the forward-
scattering alignment (FSA) convention in light scattering applications (Ulaby & Elachi
1990). In radar applications, the backscattering alignment (BSA) convention is used.
The difference between the conventions is that in FSA the scattering is defined from the
viewpoint of the electromagnetic wave, whereas in BSA it is defined from the viewpoint
of the transmitter (radar). Mathematically, these are related by

SBSA =

(

1 0
0 −1

)

SFSA. (16)

2.5 Indirect and direct problems

In inverse/indirect problems, the physical properties of the scatterer are unknown. When
the scattered intensities are observed in different polarization states and wavelengths, they
reveal the nature by which the electromagnetic field is interacting with the scatterer. This
allows to determine and constrain the properties of the scatterer by constructing empirical
laws that combine the observed properties to the physical ones.

In direct problems, the physical properties of the scatterer are known or at least
assumed to be known. In this case, the scattering can be modeled using a method suitable
for the task (see Section 4). The incident field is also assumed to be known. In passive
remote sensing, it is usually the sunlight, while for active remote sensing, the transmitted
radar/lidar signal. The objective is to compute the unknown scattered intensities. To get
results that mimic reality, a set of different sample particles with varying sizes, shapes,
refractive indices, and orientations usually need to be created and modeled. The results
are averaged over these samples.

In practice, the inverse and direct problems are solved together. The observations
of light scattering help to constrain the physical properties that are put into the direct
problem. However, this is usually very difficult to achieve mainly due to many sources of
uncertainties in the observations. Therefore, direct in-situ measurements of the particles
themselves can be very helpful to narrow down the physical properties. This is feasible for
ground-based applications, such as snowfall measurement, but very difficult for regolith
studies of other Solar system bodies. One can thus use terrestrial applications also to test
methods intended for astronomical targets. Regolith analog particles can be used as a
substitute in this case.

2.6 Radar observables

Polarimetric weather radars transmit short electromagnetic pulses that are polarized in
orthogonal incident directions, horizontal (h) and vertical (v), which refer to the local
geodetic coordinates of the radar system. In this reference frame, the amplitude scattering
matrix in Eq. (13) can be defined using the BSA convention as

(

Esca,v

Esca,h

)

=
eik(r−z)

−ikr

(

Svv Svh

Shv Shh

)(

Einc,v

Einc,h

)

, (17)

where |Svh|2 = |Shv|2 due to the reciprocity at backscattering.
The received signal for the different transmitted/received polarizations from a single
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particle is proportional to its cross section,

σhh =
4π

k2
|Shh|2 =

2π

k2
(F11 − F12 − F21 + F22) [m2],

σvv =
4π

k2
|Svv|2 =

2π

k2
(F11 + F12 + F21 + F22) [m2],

σvh =
4π

k2
|Svh|2 =

2π

k2
(F11 − F12 + F21 − F22) [m2], (18)

where F denotes the elements of the scattering matrix (Eq. 11).
In real situations, the scattering medium is composed of many particles with different

sizes, shapes, melting phases, and orientations. In this case, the backscattered signal is
proportional to the sum of the average scattered intensity from all the particles in the
volume observed (averaging is denoted by brackets 〈〉 hereafter). Several radar observables
can be defined based on the total scattering of the medium. The attenuation of the radar
signal due to absorption and scattering is usually handled separately and is not included
in the definitions.

The horizontal reflectivity

Zh = Cn0〈σhh〉, [mm6 m−3] (19)

where n0 is the number density of the particles, is the total horizontal reflectivity in a
volume for a horizontally polarized incident wave. The coefficient C = 1.6×1019/(πk4|K|2)
(|K|2 = |(ǫ − ǫ0)/(ǫ + 2ǫ0)|2 is due to the reflectivity factor of Rayleigh scatterers, when
expressed in units of mm6 m−3. Together with other radar observables, Zh is important
in identifying different hydrometeor types (e.g., Straka et al. 2000, Liu & Chandrasekar
2000).

The differential reflectivity

ZDR =
〈σhh〉
〈σvv〉

(20)

describes the ratio of the backscattered power for horizontally and vertically polarized
radar beam, and for particles small compared to the wavelength, is a measure of the
reflectivity-weighted mean axis ratio of hydrometeors in a volume.

The linear depolarization ratio

LDRvh =
〈σvh〉
〈σhh〉

(21)

describes the ratio of the backscattered power for horizontally polarized transmitted radar
beam received in the vertically polarized channel and the corresponding beam received in
the horizontally polarized channel. It is a function of hydrometeor asphericity, thermo-
dynamic phase, and orientation in the plane of polarization. Both ZDR and LDRvh are
affected by polarization-state-dependent attenuation in the atmosphere. Zh, ZDR, and
LDRvh are usually expressed as 10log(.) in dB units.

The copolarized correlation coefficient defines two radar observables,

ρhvexp(iδhv) =
〈ShhS

∗
vv〉

[〈|Shh|2〉〈|Svv|2〉]1/2
,

ρhv =
[〈F33 + F44〉2 + 〈F43 − F34〉2]1/2

[〈F11 − F12 − F21 + F22〉〈F11 + F12 + F21 + F22〉]1/2
, (22)

δhv = arg(〈ShhS
∗
vv〉) = arctan

[〈F43 − F34〉
〈F33 + F44〉

]

, (23)

13



where ρhv is the amplitude and δhv the argument of the correlation coefficient. ρhv is
a measure of the degree of correlation between the horizontally and vertically polarized
backscattered waves. It measures the variability in the horizontal and vertical sizes of
hydrometeors and is sensitive to mixtures of particles with different phases. δhv is a
measure of non-Rayleigh-like scattering by partially aligned scatterers. Neither ρhv nor
δhv are affected by attenuation. δhv is also known as the backscatter differential phase.

The specific differential phase

KDP = 103(
180

π
)(
2π

k
)n0Re[〈S1(k,k)− S2(k,k)〉] [deg km−1] (24)

is the difference between the propagation constants for horizontally and vertically polar-
ized waves, and can be used to measure the difference in attenuation for the horizontal and
vertical signals. It is also used to distinquish between statistically isotropic and anisotopic
hydrometeors.

It should be noted that multiple scattering between the particles is not included in the
definitions. According to Battaglia et al. (2005), its contribution to the signal is negligible
when compared to single scattering. It is usually assumed that the number densities are
small enough that near-field effects between the particles can also be neglected.
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3 Shape models

There are no perfect shapes in nature. Due to the chaotic and stochastic behavior of
natural phenomena, there is a variation of shapes in both macroscopic and microscopic
scales from idealized shape models. As shape is one of the most important physical
property of particles in scattering, it is therefore crucial to try to model it as realistically
as possible. Due to the large variation in real shapes, it is usually not important to be
deterministic in the modeling. Stochastic similarity is usually sufficient in order to obtain
the relevant scattering quantities for the study. This is the main principle used in the
thesis.

3.1 Simple models

Regularity and symmetry in shape has its advantages when modeling scattering. For
simple shapes, such as spheres, cubes, cylinders, and spheroids, it is possible to solve
the scattering exactly/analytically. This means that, as long as the implementation is
convergent, one can be confident that the accuracy of the results is sufficient regardless
of the other physical properties of the particle. Simple shape models can also be used as
a comparison to check accuracy of approximate scattering models, and to demonstrate
the effect of irregularity on the scattering quantities. However, due to the availability of
computer resources and improved models, it is no longer necessary to restrict solely to
simple shapes. Simple shape models have been used in Papers I, II, IV, V, VI, and, VII.

3.2 Gaussian-random-sphere model

Gaussian-random-sphere particles (GRS) are nonspherical particles with a random varia-
tion in the radius obeying multivariate lognormal statistics (Muinonen et al. 1996). The
size is specified by the mean radial distance a. The radius vector of a Gaussian-random
sphere particle is

r(θ, φ)er =
a exp (s(θ, φ))√

1 + σ2
er,

s(θ, φ) =
∞
∑

l=0

l
∑

m=−l

slm Ylm(θ, φ),
(25)

where σ is the relative standard deviation of radial distance, s = s(θ, φ) is the logarith-
mic radial distance, Ylm are the orthonormal spherical harmonics, and slm are Gaussian
random variables with zero means.

If the angular separation between two directions (θ1,φ1) and (θ2,φ2) is denoted by ϑ,
the covariance function Σs(ϑ) describes the autocovariance between two random variables
s(θ1, φ1) and s(θ2, φ2). It can be expressed as a series of Legendre polynomials

Σs(ϑ) =
lmax
∑

l=0

ClPl(cosϑ), (26)

where the coefficients Cl ≥ 0, and the series in truncated to some finite value denoted by
lmax. The coefficients can be defined as a power-law function

lmax
∑

l=0

Cl = C
lmax
∑

l=0

l−ν = ln(1 + σ2), (27)

where C is a normalization constant, and ν the power-law index of the covariance function.
In this case, the covariance function is governed by σ and ν.
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The GRS model has been used to study asteroid shapes (Muinonen 1998), Solar sys-
tem dust particles (Muinonen 1996, Muinonen et al. 2007), ice particles (Nousiainen &
McFarquhar 2004), and dust particles in the Earth’s atmosphere (Veihelmann et al. 2006,
Nousiainen, Muñoz, Lindqvist, Mauno & Videen 2011). One of the justifications for ap-
plying the GRS model to these particles is the central limit theorem, which states that
the shape parameters of natural particles, with finite mean and variance, exhibit normal
statistics for large numbers of random samples. The GRS model was used in Papers II,
III, and V. A sample shape with σ = 0.245 and ν = 4 is shown in Fig. 5 (left).

3.3 Agglomerated-debris model

Since natural particles exhibit surface roughness in all length scales, it is useful to use a
shape model that incorporates rough structure. Zubko et al. (2007) showed that, when
introducing roughness to the GRS model, the degree of linear polarization is very sensitive
to this, and generally increased at intermediate scattering angles as roughness increased.
Near the backscattering direction, increasing roughness resulted in a non-monotonic be-
havior with respect to the refractive index and the size parameter.

Zubko et al. (2005) introduced the agglomerated-debris model (AD) for interplanetary
dust particles. They are generated from a spherical particle by damaging it in a ran-
dom way. The spherical particle is projected initially upon a three-dimensional lattice of
dipoles. This lattice is divided into two parts: the surface layer and the internal region.
Among the surface dipoles, about 0.8% are chosen randomly to be seed particles of empty
space. Among the internal dipoles, about 0.016% are chosen randomly to be seed parti-
cles having the refractive material of the irregular particle, and about 0.016% are chosen
randomly to be seed particles of empty space. After this initial random selection, all the
other dipoles within the lattice are marked as having the optical properties of empty space
or of the material, based on which type of seed dipole lies closest. The resulting particle
resembles highly irregular agglomerated debris. The material in these particles occupies
only about 26% of the volume, which makes them rather fluffy. The AD model is also
used in Paper IV. A sample shape of an AD particle is shown in Fig. 5 (right).

3.4 Fractal model

In addition to irregularity and roughness, some natural particles also exhibit fractal struc-
ture, i.e., self-similarity in finite length scales. Typical examples are soot particles (Sam-
son et al. 1987), snowflakes (Schmitt & Heymsfield 2010) and dendritic ice crystals in the
Earth’s atmosphere (Shibkov et al. 2003).

In Paper VII, we use the fractal model by Ishimoto (2008). In the model, the snowflake
is generated by an iterative procedure in a cubic lattice, starting with a single ice element
at the center of the lattice. At each iteration step, the lattice size is doubled in each di-
mension, and a number of new ice elements are positioned at random lattice sites adjacent
to the existing elements. The total number of elements occupied after each iteration step
is controlled by the fractal dimension fd

Ni = 2i(fd+0.2), i = 1, ..., Niter, (28)

where the additional factor 0.2 is introduced in order to preserve the box dimensions of
the fractals.

Due to the lattice representation of the fractal, it is straightforward to convert the
generated shapes for the discrete-dipole approximation (Sect. 4.5). There are a few dis-
advantages of using the fractal model to represent real snowflakes. One is that, especially
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Figure 5: Examples of a Gaussian-random-sphere (left) and an agglomerated debris par-
ticle (right).

for small fractal dimension (fd < 2.0), some parts of the fractal can be separated and
would not be snow aggregates in a strict sense. Another disadvantage is that, in or-
der to model very large snowflakes, the number of maximum iterations must be so large
(Niter > 8) that the available computer memory will become a limiting factor. This can be
circumvented to some degree by increasing the lattice spacing. Sample shapes of fractal
particles are shown in Fig. 6.

Figure 6: Examples of fractal particles with the fractal dimension fd = 1.88 (left) and
fd = 2.4 (right). Number of iterations Niter = 7.

3.5 Aggregation model for ice crystals

Compared to the mathematical model of fractal particles, a more physical way to represent
snowflakes is a model that simulates the aggregation process of ice crystals. In Paper VII,
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the model by Westbrook (2004) is implemented. The model simulates the aggregation
process in a physically realistic way using an iterative and stochastic approach. First, a
cloud of single ice crystals in random orientations is generated. During each iteration step,
two aggregates or single ice crystals, specified by indices i and j, are chosen randomly
from the generated cloud and placed in random positions within the cross sections defined
by their radii of gyration

Rgyr,i =

[

∑Ni

l=1 r
2
l ml

∑Ni

l=1ml

]1/2

, (29)

where ml is the mass and rl the radial distance of the lth dipole from the center of mass,
and Ni the number of dipoles in aggregate i. For two aggregates with maximum radii
Rmax,i, Rmax,j, and falling speeds vi, vj , the probability of collision

Γij ∝ π(Rmax,i +Rmax,j)
2|vi − vj|. (30)

If there is a collision, the particles are connected from their nearest points projected to
the horizontal plane. The generated aggregate is returned to the cloud. If there is no
collision, a new pair is chosen randomly.

In our model, we reorient the new aggregates based on their maximum moment of
inertia. This increases their radii of gyration, which are computed with respect to the
vertical axis. According to, e.g., Cho et al. (1981), ice crystals tend to fall with their
major dimensions oriented horizontally. One advantage of the aggregation model is that
the single ice crystals can be generated beforehand with other algorithms and then rescaled
and reoriented according to known relationships between the physical properties of crystals
and different habits. One disadvantage is that the model does not take into account
snowflake break-up during aggregation. This might make the generated particles fluffier
than real snowflakes. Sample shapes of aggregate particles are shown in Fig. 7.

Figure 7: Examples of aggregate particles with ten (left) and one hundred dendritic ice
crystals (right).
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4 Scattering methods

For particles smaller than the wavelength, i.e., in the Rayleigh region, the applied field of
the particle can be considered to be homogeneous and therefore does not produce shape-
dependent effects in scattering. However, the varying dimensions of the particle respond
to the incident field differently, especially for particles in fixed or preferential orientations.
These differences can be seen in the polarimetric quantities. For particles comparable
in size to the wavelength, i.e., wavelength-scale particles, the applied field is no longer
homogeneous and various interference phenomena can produce distinct features in the
scattered field, which vary as a function of size, shape, refractive index, and orientation
of the particle.

4.1 Rayleigh approximation

When the size of the scatterer, specified by the size parameter, is small compared to the
wavelength, the applied field E0, incident on the scatterer, can be approximated to be
homogeneous inside the particle and the particle can be approximated as a single dipole.
The applied field induces a dipole moment

P = βE0 (31)

in the particle, where β is the polarizability tensor of the particle. This is called the
electrostatics approximation. The conditions for the approximation are: x ≪ 1 (small
size relative to the external wavelength) and |m|x ≪ 1 (small size relative to the internal
wavelength). If the particle is spherical and composed of isotropic matter, β is scalar and
isotropic, i.e., its polarimetric properties do not depend on the propagation direction or
how the applied field is polarized. However, if the particle is nonspherical, β is no longer
scalar. For example, if the particle is ellipsoidal with dimensions (a,b,c) in Cartesian
coordinates, the polarizability tensor

β = V







m2−1
1+L1(m2−1)

0 0

0 m2−1
1+L2(m2−1)

0

0 0 m2−1
1+L3(m2−1)






, (32)

where V = 4πabc/3 is the volume of the ellipsoid, and Li (L1 + L2 + L3 = 1) are the
geometric factors, which are one-dimensional integrals. For oblate spheroids (e.g., van de
Hulst 1957),

L3 =
1 + f 2

f 2
(1− arctan f

f
), (33)

where f 2 = a2/c2 − 1, and L1 = L2. Here the polarizability is a diagonal tensor, because
the incident wave reference frame coincides with the principal axes of the ellipsoid. For
other incident wave or particle reference frames, as described by Gledhill & McCall (2000)
and Battaglia et al. (1999), the polarizability tensor of the spheroid can be obtained by
rotating the coordinate system with two Euler rotations specified by the angles (αE ,βE)

β ′ = T−1βT, (34)

where the rotation matrix

T =





cosαE cosβE sinαE cosβE − sin βE

− sinαE cosαE 0
cosαE sin βE sinαE sin βE cosβE



 . (35)
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In a time-harmonic applied field, the dipole oscillates with the same period as the
applied field with the amplitude specified by the induced dipole moment. The elements
of the amplitude scattering matrix are given by

S1 = ik3
3

∑

k=1

Tk2βkTk2,

S2 = ik3(cos θ
3

∑

k=1

Tk1βkTk1 − sin θ
3

∑

k=1

Tk3βkTk1),

S3 = ik3(cos θ
3

∑

k=1

Tk1βkTk2 − sin θ
3

∑

k=1

Tk3βkTk2),

S4 = ik3
3

∑

k=1

Tk2βkTk1, (36)

which for a spherical particle reduces to S1 = ik3β, S2 = ik3β cos θ, S3 = 0,, and S4 = 0.
For Rayleigh-type scattering, the degree of linear polarization for unpolarized incident

light is a bell-shaped curve with a maximum at the exact 90◦ scattering angle (Fig. 8;
right panel). As can be seen, the positive polarization peak is due to the perpendicular
component of the scattered field dominating over the parallel component at intermediate
scattering angles (Fig. 8; left panel).
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Figure 8: The parallel and perpendicular intensities (left panel, solid and dotted lines,
respectively) and the degree of linear polarization (right panel) for a small sphere (x =
0.001).

4.2 Lorenz-Mie theory

The interaction of an electromagnetic plane wave with a spherical particle in a non-
absorbing medium was first described independently by four authors: Lorenz (1890),
Love (1899), Mie (1908) and Debye (1909). When the wave equations (Eq. 6) are solved
in spherical polar coordinates, the electromagnetic field can be described by the vector
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spherical wave functions M and N as (e.g., Bohren & Huffman 1983)

Einc =
∞
∑

n=1

n
∑

m=−n

(amnRgMmn + bmnRgNmn),

Eint =

∞
∑

n=1

n
∑

m=−n

(cmnRgMmn + dmnRgNmn),

Esca =

∞
∑

n=1

n
∑

m=−n

(pmnMmn + qmnNmn), (37)

where (a,b) are the coefficients for the incident electric field, (c,d) the coefficients for
the internal electric field, and (p,q) the coefficients for the scattered electric field. Rg
denotes the fact that the spherical Bessel functions must be regular at the origin for both
the incident and internal fields. The coefficients are functions of the size parameter and
the refractive index of the sphere, and can be determined from the boundary conditions
between the scatterer and the medium. Notice that the incident wave expansion requires
regularity at the origin. Also, the scattered wave expansion has been shown to be valid
outside the circumscribing sphere of the particle.

In practical implementations, the infinite series in Eqs. (37) are usually truncated to
certain N a priori. This is due to the limited precision of the floating-point arithmetic,
when performing upward recurrence for the coefficients (Bessel functions). According to
Wiscombe (1980), a sufficient criterion to guarantee convergence is an integer closest to

N =







x+ 4x1/3 + 1 0.02 ≤ x ≤ 8
x+ 4.05x1/3 + 2 8 < x < 4200
x+ 4x1/3 + 2 4200 ≤ x ≤ 20000,

(38)

where the x1/3-terms have been added in order to include edge wave contributions that
exhibit resonance effects (e.g., Pluchino 1981). Generally, for n < x, the asymptotic
behavior of the Bessel functions is oscillatory, whereas for n > x, it is exponentially
decreasing. This behavior is explained by van de Hulst (1957) based on the localization
principle. It states that a term of the order n corresponds to a ray passing the origin at a
distance (n+ 1

2
)λ/2π. Rays hitting the sphere correspond to n+ 1

2
< x, and rays passing

the sphere correspond to n+ 1
2
> x.

The relation of the internal field and scattered field in resonance modes for large spher-
ical particles has been studied by, e.g., Fahlen & Bryant (1968), Chylék et al. (1980),
Probert-Jones (1984), and Chylék et al. (1985). According to Chylék et al. (1980), the
ripple structure in extinction and sharp spikes in the backscattering are due to resonances
in the partial wave scattering amplitudes. They also show that by removing a partic-
ular n-mode from the Mie solution, one spike will disappear from the scattered field.
Probert-Jones (1984) shows, using the localization principle, that the sharp spikes in the
backscattering at certain size parameters cannot be attributed to surface waves/rays, but
that each spike originates from a certain coefficient an and bn. At least for large spheres,
these resonance modes correspond to an increase in internal energy density at r/a ∼ 1/m
(a is the radius, and r the radial distance from the center). Near the surface they form a
spherical standing wave.

Due to the symmetry of spherical particles, there is no cross-polarization terms in the
amplitude scattering matrix (S3=S4=0), and therefore no depolarization of the incident
field. Because of this, only three of the elements in the scattering matrix are independent:
F 2
11 = F 2

12 + F 2
33 + F 2

34. Also, wavelength-scale spherical particles exhibit a wide range of
values for the degree of linear polarization, as can be seen in Fig. 9.
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Figure 9: Same as in Fig. 8, but for a sphere with size parameter x = 8 and refractive
index m = 1.55.

The Lorenz-Mie theory has been extended for concentrically layered spheres by Aden
& Kerker (1951) and aggregates of spheres by Bruning & Lo (1971).

4.3 T -matrix method

The T -matrix method (TMM) is an exact method for computing scattering from waveleng-
th-scale, homogeneous, and nonspherical particles. It was initially based on the extended
boundary condition method by Waterman (1965), who applied it to single homogeneous
particles. Peterson & Ström (1973) extended it to multilayered particles and clusters
of nonspherical particles. Although TMM is applicable to any star-like particle (i.e., a
particle which has a single-valued radial distance for each surface point), in practice the
shapes that can be modeled with TMM are usually spheroids, finite circular cylinders,
Chebyshev particles (Mishchenko 2000), and polyhedra (Kahnert et al. 2001). This is
mainly because symmetries in particle shape can be utilized in TMM resulting in signif-
icant improvement in execution times. For general non-axisymmetric particles, there are
a few methods available (Wriedt & Doicu 1997, Laitinen & Lumme 1998, Petrov et al.
2011).

TMM expands the incident, internal, and scattered fields as vector spherical wave
functions. It computes the T matrix, which transforms the incident field coefficients to
the scattered field coefficients. With the boundary conditions for the incident and internal
fields, the coefficients for the internal field can be determined with the matrix Q

(

ainc

binc

)

=

(

Q11 Q12

Q21 Q22

)(

cint
dint

)

, (39)

where the elements ofQ are surface integrals that depend on the shape, size, and refractive
index of the particle. Using the boundary conditions again for the internal and scattered
fields, the coefficients for the scattered field are found with the matrix RgQ

(

psca

qsca

)

= −
(

RgQ11 RgQ12

RgQ21 RgQ22

)(

cint
dint

)

, (40)

where the elements of RgQ are also surface integrals similar to the matrix Q. Using Eqs.
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(39) and (40), the T matrix of the particle can be found,

T = −RgQQ−1, (41)

and it can be used to compute any scattering quantity for a given incident field. The
validity of TMM near the particle surface is uncertain and depends on the shape of the
particle. According to the Rayleigh hypothesis, the scattered field expansion is valid
near the surface, but its applicability to rough surfaces was criticized by, e.g., Lippmann
(1953). More recent investigations have also shown that there can be convergence issues
with TMM, when a spheroidal particle is close to a plane interface indicating that the
hypothesis may not be valid in this case (Doicu et al. 1999).

One advantage of TMM is that the T matrix needs only to be computed once for a
given particle shape, size, orientation, and refractive index. The scattering problem can
then be solved for any incident and scattered direction or polarization. This is a distinct
advantage of TMM against volume-integral methods, such as the discrete-dipole approx-
imation (DDA). The disadvantage is that TMM is applicable to homogeneous particles
only. TMM has been further developed into the null-field method with discrete sources
(NFM-DS), reviewed by Wriedt (2007). NFM-DS has less restrictions on shape, and can
even be applied to inhomogeneous particles (Schmidt & Wriedt 2009).

4.4 Effective-medium approximation

Particle inhomogeneity can be accounted for with the effective-medium approximation
(EMA) by replacing the inhomogeneous particle with an equivalent homogeneous parti-
cle. When the exact composition of a particle is not known or the scattering must be
computed relatively fast, it is usually practical to average the optical properties of a com-
posite particle, e.g., by using EMA. There are many EMAs available (Chýlek et al. 2000),
with the Maxwell-Garnett (M-G) and the Bruggeman formulas being the most common.
Sihvola (1989) provides a generic mixing formula that includes both the M-G and Brugge-
man formulas. It is usually assumed that one constituent is the matrix, and the other
constituents are the inclusions that are embedded in the matrix. The inclusions are as-
sumed to be spherical or ellipsoidal, uniformly distributed, and must be much smaller
than the wavelength. In M-G, the effective relative permittivity

ǫeff = ǫm
ǫi(1 + 2fi) + ǫm(1 + 2fm)

ǫi(1− fi) + ǫm(3− fm)
, (42)

where fi and fm, fi + fm = 1, are the volume fractions of the inclusion and the matrix,
respectively, and ǫi and ǫm are the relative permittivies. Notice that Eq. (42) produces a
different value for ǫeff when switching between the inclusion and the matrix. Eq. (42) can
also be generalized to have multiple asymmetric inclusions. For a three component case,
Eq. (42) can be applied twice. First, two of the three components are mixed, and then
the resulting effective medium is mixed with the remaining constituent. This results in
six possible combinations. Fabry & Szyrmer (1999) and Russchenberg & Ligthart (1996)
investigated which combinations produce best estimate for the radar reflectivity, when
used in a melting-layer model and compared to observations. Meneghini & Liao (2000)
provided an extended EMA that is derived from the average internal field amplitudes of
the scattering elements. Applicability of EMAs to model snowflakes was studied in Papers
VI and VII.
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4.5 Discrete-dipole approximation

The discrete-dipole approximation is a numerical method commonly used to compute light
scattering by irregularly shaped particles. It was first introduced by DeVoe (1964) for
small aggregate particles. The currently adopted theory, however, is based on the coupled
dipole method by Purcell & Pennypacker (1973), in which the particle is discretized as a
set of dipoles on a cubic lattice. The dipoles are separated by a dimensionless distance
kd. Each dipole has the optical response of the material located in the corresponding real
space. This is represented by the dipole moment Pi for the ith dipole. Once Pi has been
computed for each dipole, any scattering quantity can be obtained by using the volume-
integral equation. Mathematically, Pi (i = 1, 2, ..., N) are found from a linear system of
equations

Einc
i = β−1

i Pi +
∑

j 6=i

G(ri, rj)Pj, j = 1, 2, ..., N, (43)

where Einc
i = E0e

ik·ri is the incident field at dipole i, Pi the dipole moment at dipole i,
βi the polarizability of dipole i, ri the radius vector of the ith dipole, and G the Green’s
tensor between dipoles i and j.

There are several expressions for β in Eq. (43) (e.g., Yurkin & Hoekstra 2007). In
general, β is a function of k, m, and d. In the limit kd → 0, the Clausius-Mossotti
equation relates the polarizability of a cubic lattice of isotropic (spherical) dipoles to the
relative permittivity of the lattice,

βCM =
3d3

4π

ǫr − 1

ǫr + 2
, (44)

where it is assumed that the number density of dipoles n0 = 1/d3. Notice that when
substituting the polarizability from the electrostatics theory for small spheres into Eq.
(44), it yields the M-G formula for the effective permittivity (Eq. (42)).

Draine (1988) improved the polarizability description for finite kd by introducing the
radiative-reaction correction in order to satisfy the optical theorem. He later refined
the polarizability by requiring that the lattice reproduces the dispersion relation of a
continuous medium with effective permittivity ǫ(ω) (Draine & Goodman 1993). This
is called the lattice dispersion relation (LDR), and it has become the most common
description of the polarizability of dipoles in a lattice:

βLDR =
βCM

1 + βCM

d3
[(b1 +m2b2 +m2b3S)k2d2 − 2

3
ik3d3]

b1 = −1.8915316, b2 = 0.1648469, b3 = −1.7700004

S =
1

k2E2
0

(k2
xE

2
0,x + k2

yE
2
0,y + k2

zE
2
0,z). (45)

It has been shown that the LDR formula loses accuracy for refractive indices |m −
1| > 2 (Yurkin et al. 2010). At microwave frequencies below 10 GHz, liquid water can
have |m − 1| > 7. Filtered coupled dipoles (FCD) provides a better description of the
polarizability

βFCD =
βCM

1 + βCM

d3
[−4

3
k2d2 − 2

3
ik3d3 − ln((π−kd)/(π+kd))

π
k3d3]

. (46)

Notice that kd < π is required. In addition, the interaction term of point dipoles, i.e., the
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Green’s tensor, is replaced with the filtered Green’s tensor

GFCD(ri, rj) = I

(

k2gF (R) +
g′F (R)

R
+

4π

3
hr(R)

)

+
R̂R̂

R2

(

g′′F (R)− g′F (R)

R

)

,

hr(R) =
sin(kFR)− kFRcos(kFR)

2π2R3
,

gF (R) =
1

πR
[sin(kR)[iπ + Ci((kF − k)R)− Ci((kF + k)R)] +

cos(kR)[Si((kF + k)R) + Si((kF − k)R)]], (47)

where kF = π/d is the wave number corresponding to the grid, hr(R) is the filter impulse
response, gF (R) is the filtered scalar Green’s function, and I is the identity tensor.

DDA is a flexible method for computing light scattering from arbitrarily shaped and
inhomogeneous particles. Generally, there are two conditions that validate DDA. First,
the dipole spacing relative to the internal wavelength must be small enough. Second, the
number of dipoles must be large enough to represent the shape of the particle adequately.
It is usually required that |m|kd < 1.0, but a more restrictive requirement |m|kd < 0.5
is given by Penttilä et al. (2007). At microwave frequencies, Teschl & Randeu (2009)
recommend |m|kd < 0.05 for particles with liquid water. The choice of polarizability in
Eq. (43) can have significant influence on the accuracy (Yurkin et al. 2010). The validity
of DDA is discussed by, e.g., Draine (2008), Yurkin et al. (2006), Yurkin & Hoekstra
(2007), and Zubko et al. (2010).

4.6 Exact vs. approximate methods

There are two types of accuracy with scattering models: accuracy of theory and accuracy
of computation. The Mie theory is an exact theory for spherical particles, regardless of the
size parameter or refractive index of the particle, whereas the Rayleigh approximation is an
approximate theory for particles small compared to the wavelength. In practice, due to the
limited accuracy of the floating-point arithmetic in computers and limited computational
resources, the computational implementation of these scattering models have limitations
not proposed by the theories. The practical limitations can also sometimes be more
relaxed than specified by the theory, i.e., the Rayleigh approximation, which can produce
adequate results up to x ≈ 1. On the other hand, DDA is an approximate theory that
can be applied to arbitrarily shaped particles, but its accuracy is determined mostly by
the available computer resources.

Due to practical reasons, accuracy is usually not as important as efficiency. Efficiency
is a computational property of an implementation. It is determined by the speed of com-
putation and the amount of resources used, such as memory. The analytical solutions to
scattering problems are almost always more efficient than the numerical ones. There are,
however, only a limited number of cases, where there actually exists an analytical solu-
tion. Sometimes implementations of exact theories can provide results not possible with
numerical methods, and this compromise between accuracy and efficiency is a necessary
evil.
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5 Polarization studies of wavelength-scale particles

5.1 Radiation problem

In a direct scattering problem, the incident field is known, the properties of the scatterer
are known and the scattered field can be readily computed. However, this does not reveal
the interaction between the incident field and the scatterer, or the interaction between
different parts of the particle itself. It is therefore important to study how the internal
field of the particle is distributed and how it relates to the scattered field. This can be
achieved by solving an equivalent problem of radiation from a set of dipoles. DDA seems
to be the most convenient method for this kind of study.

To obtain the internal field for a set of dipoles, the scattering problem must be solved
first with DDA. The structure of the internal field depends both on the incident field (k
and E0) and the properties of the scatterer. To study the relation between the internal
field and polarization quantities of the scattered field, the scattering problem must be
solved for two orthogonal incident polarizations defined with respect to the scattering
plane (see Section 2.2). This produces two different internal field distributions for a given
scatterer in a fixed orientation. They can be analyzed with respect to the scattered far-
field components parallel and perpendicular to the scattering plane. This produces four
independent quantities that are related to the elements of the amplitude scattering matrix
(Eq. (9)).

The scattered field components in the far-field region can be derived from the internal
field as,

E‖s =
exp(ikr)

ikr
[e‖s ·

N
∑

j=1

Eint
j exp(−ier · krj)],

E⊥s =
exp(ikr)

ikr
[e⊥s ·

N
∑

j=1

Eint
j exp(−ier · krj)], (48)

where E‖s is the scattered-field component parallel to the scattering plane, E⊥s is the
component perpendicular to the plane, rj is the position vector of the jth radiating
element, Eint

j is the internal-field vector at position j, r is the distance from the particle
to the observer in the far field, and N is the number of radiating elements inside the
particle.

5.2 Methods of study

Given the internal field at discrete locations inside the scatterer, there are many ways
to study the relation between the internal and scattered fields. One method is an active
approach, in which the internal field is modified or switched off completely at certain loca-
tions inside the scatterer. For example, Zubko et al. (2006) studied the effect of modifying
the dipole-dipole interactions in the DDA formulation on the degree of linear polarization.
Muinonen et al. (2006) noticed that switching off the entire longitudinal component of
the internal field of a spherical particle produced Rayleigh-like polarization. In Papers II,
and III, the effect of switching off the entire longitudinal component of internal field is
compared to the unmodified case. In Paper IV, only specific parts inside the scatterer are
switched off. When the scattered field derived from the modified internal field is compared
to the unmodified case, the difference between these cases gives information about the
contribution of the selected locations inside the scatterer to the total scattering. However,
it is not obvious, which locations to select for the study.
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Since the total scattering is the result of interactions between all the radiating elements,
it is difficult to decouple these interactions from the integrated scattering quantities.
According to Eq. (48), the scattered field components depend both on the internal field
amplitudes of the elements and the relative phases between them. In principle, each
component in the summation can be considered as a partial wave originating from an
element j and the total scattered wave as a superposition of them. The amplitudes
describe the localized energy density of the partial waves, while the phases describe the
interference between these waves. A similar interpretation is also used by Mishchenko
et al. (2011).

If the elements that have the largest energy densities are switched off, it is evident that
the differences between modified and unmodified cases are larger than when switching off
the elements with lowest energy densities. This kind of study will therefore reveal the
relative contribution of the elements to the scattered field characteristics. This can be
achieved by first ordering the dipoles based on their local energy density, and computing
the total energy density of all dipoles. Then, a cutoff value can be chosen, which is a
fraction of the total energy density. A subset of the ordered dipoles, starting from the
most brightest that have larger total energy density than the cutoff value, are called core
dipoles. All other dipoles are called non-core dipoles (Paper IV). Then the cutoff value
in percentage

cutoff = 100 ·
∑M

i=1E
∗
int,iEint,i

∑N
i=1E

∗
int,iEint,i

, (49)

where M is the number of core dipoles.
Notice that switching off the internal field for certain element is not the same as

removing the element entirely from the scatterer. The latter approach modifies the shape,
which has a strong influence on the distribution of internal field due to the interaction
between the elements. It has an unpredictable effect on the scattered field, and would
invalidate the comparison. In the former approach, only the local internal field is modified
keeping shape intact. This ensures that all else is fixed, when the scattered field of modified
and unmodified cases are compared. This kind of method is analogous to a phased array,
which is a group of antennas that can be controlled separately to get a desired far-field
pattern for the whole antenna (e.g., Visser 2005). In this case, the individual antennas
correspond to the elements that can be switched off.

Two partial waves that have the same amplitude but opposite phase will always in-
terfere destructively and produce no contribution to the superposition (Eq. (48)). Waves
with the same phase interfere constructively and produce enhancement/no cancellation.
Extending this principle to all elements in a given line or a plane therefore gives informa-
tion about the interference phenomena that are occuring between the partial waves from
the elements. Given a set of internal-field amplitudes and phases, this provides a method
to compute integrated maps of the internal-field energy densities. In the method, the
three-dimensional field is projected to a two-dimensional image plane by adding the com-
plex internal-field amplitudes along the scattering direction including the relative phase
of the radiating elements/dipoles in the far field. For each point/pixel in the image plane,
this produces a complex vector representing the far-field amplitudes of the entire line of
dipoles in Eq. (48). In this way, the contribution from each line of dipoles to the far-field
scattering characteristics can be analyzed independently from each other. In addition
to the integration of the line of dipoles, one additional integration of the dipole planes
can be made in two orthogonal directions, êθ and êφ, producing two profile curves for
the particle. By further integrating these planes into one complex vector for the whole
particle, the total scattered field amplitude is obtained. In addition to the energy density,
the phase can also be included in the profile curves to reveal destructive and constructive
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interferences between the lines/planes of dipoles.
For polarization studies, the internal field must be computed for two orthogonal in-

cident polarizations for each sample particle (Sect. 2.2). Notice that in order to resolve
phase information from the internal field, the particle must be in a fixed orientation. Any
averaging of the localized fields will make the phase information ambiguous and results
in a loss of information. This is analogous to the relation between the S (Sect. 2.4) and
F (Sect. 2.3) matrices, where the imaginary representation of the scattering system is
transformed into a real form using the Stokes/Mueller formalism. There is no loss of in-
formation in the case of a single particle in a fixed orientation. However, when computing
scattering from a medium of different particles in different orientations, as in the case of
a planetary regolith or the Earth’s atmosphere, the number of independent terms in the
scattering matrix decreases, and leads to a loss of information of the individual particles.
This means that phase information cannot be used when studying the internal fields of a
mixture of particles.

5.3 Mechanisms for polarization phenomena

The internal field of a scatterer is determined by both the properties of the scatterer and
the incident field. For a given particle, the propagation direction and the polarization of
the incident field determine the localized distribution of the internal field. It is therefore
convenient to divide the internal field into components that are defined with respect to
the incident wave reference frame. The longitudinal component of the internal field is
defined as the component parallel to the incident propagation direction specified by the
wave vector of the incident field, while the transverse components of the internal field are
defined as the two orthogonal components parallel to the two orthogonal polarizations of
the incident field. This definition was introduced in Paper I.

Wavelength-scale scatterers interact strongly with the incident electromagnetic wave,
because the size of the scatterer is no longer smaller than the wavelength and the incident
electromagnetic field can no longer be considered to be homogeneous inside the scatterer.
The internal field structure of wavelength-scale scatterers can partly be understood by an
analogy to the geometric optics approximation (GOA), i.e., particles large compared to
the wavelength. Due to the surface curvature and the dielectric nature of the scatterer, a
phase shift is produced between the internal and incident waves. Because this phase shift
is larger for the waves going through the center than those going through the perimeter,
it produces a circular internal wave front with the focal point at the forward part of
the particle. The apparent wavelength λ/m of the internal wave is determined by the
refractive index of the particle. As these waves are focused to the forward part of the
scatterer, they produce concentrated regions of the internal-field energy density. These
regions are sometimes called ’hot spots’ and they are very prominent for regular particles
(Owen et al. 1981, Benincasa et al. 1987, Barton 2002, Astafyeva & Babenko 2004, Li
et al. 2005). This focusing of light is also the defining feature in optical lenses. Fuller
(1991) demonstrates that, for larger size parameters (x = 50), the maximum local energy
density is shifted to the forward part of the near field, and that such particles can be
used as lenses. The studies presented in Papers II and IV demonstrate that this focusing
effect can be extended to the interiors of wavelength-scale particles. It is interesting to
hypothesize that, in principle, this focusing could heat up the particles from the inside
and modify their internal structure, maybe even fracture them.

It should be noted that the interpretation for the internal-field structure can be mis-
leading. Although the refractive index is used to represent the electromagnetic properties
of the particle regardless of its size parameter, i.e., from the Rayleigh approximation
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to wavelength-scale to GOA, it manifests itself differently in these regimes. For single
dipoles, it determines the induced dipole moment and is a direct response of the matter
to the applied field (see Sect. 4.1). For large particles, it determines the direction of the
refracted wave. This change in direction is due to the change in the speed of the elec-
tromagnetic wave. The interaction of the wave with the particle is localized and because
of this, mostly the boundaries and surfaces of particles define the scattering quantities.
For wavelength-scale particles, both of these explanations are inaccurate. The local field
inside the particle is the result of all interactions between the radiating elements of the
particle following the incident-field response. Due to this non-localized property of the
internal field for wavelength-scale particles, the analogy is inaccurate.

In addition to the propagating distorted wave focused to the forward part of the
particle, there is a circular pattern of local maxima located near the perimeter of the
particle seen for both the longitudinal and transverse components. Due to the regular
phase structure of the maxima, the circular pattern can be interpreted as a standing
wave with waves propagating in opposite directions along the perimeter, always forming
roughly x number of maxima and minima. This also follows from geometry: the maximum
circumference of a spherical particle is p = 2πa = xλ. For each wavelength, there is one
maximum and minimum amplitude making 2x energy density maxima in total. The
apparent wavelength of this standing wave corresponds closely to the external wavelength
due to the proximity to the surface and the boundary conditions for electromagnetic
waves.

An example of the three-dimensional structure of the internal field for a spherical
particle with size parameter x = 8 and the refractive index m = 1.55 is given in Fig. 10.

Figure 10: The local energy density distributions for the longitudinal (left panel) and
transverse (right panel) component of the internal field for a spherical particle using 90%
cutoff (core dipoles). The size parameter is x = 8 and the refractive index m = 1.55.
The incident wave is X-polarized and propagating in the positive Z-direction. Non-core
dipoles have been made slightly transparent.

In the next sections, the longitudinal and transverse components are discussed in more
detail to better understand the internal field structure of wavelength-scale particles. A
spherical particle is used as an example.
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5.3.1 Longitudinal component of the internal electric field

Since the longitudinal component is parallel to the wave vector of the incident field, it is
always in the scattering plane, which is defined by the wave vectors of the incident and
scattered field. This means that it does not contribute to the perpendicular component of
the scattered field. For the parallel component, its contribution varies as a function of the
scattering angle. In the far field, the scattered wave is transverse, i.e., perpendicular to the
direction of propagation defined by the wave vector of the scattered field. Because of this,
there is a geometric factor |ê‖s · êz| = sin θ (assuming that the wave is propagating along
the positive Z-axis) in the scattered field originating from the longitudinal component. At
the 90◦ scattering angle, the factor equals one, and decreases to zero towards the forward
and backward scattering directions, giving the largest contribution to the scattered field
at intermediate scattering angles.

For a symmetric particle, such as a sphere, the distribution of the longitudinal com-
ponent is also symmetric (e.g., Ren 1994). This is seen in Fig. 11, which shows the
distribution of the normalized energy density of the longitudinal component only. The
phase, which is coded in color according to Fig. 11 (bottom panel), is also shown. For
a given incident polarization, there is an odd parity (opposite phase) with respect to the
central plane that is perpendicular to the incident polarization. Because of the symme-
try, there is no net-longitudinal component for spherical particles, and other particles
rotationally symmetric with respect to the wave vector of the incident field. Therefore,
any non-Rayleigh-like polarization characteristic must be due to interference between the
partial waves of the scatterer.

Whether the incident field is polarized either parallel or perpendicular to the scat-
tering plane, two concentrated areas or internal field extrema are formed at the forward
part of the particle (Fig. 11; left) that are located in the plane defined by the incident
polarization and propagation direction. These maxima are separated by about half a
wavelength, and have opposite phases. When the incident field is polarized parallel to the
scattering plane, at intermediate scattering angles (near the X -axis direction), the partial
waves originating from these extrema interfere constructively and produce enhancement
for the parallel component of the scattered field. The two extrema do not contribute to
the perpendicular component in this reference frame. When the incident field is polarized
perpendicular to the scattering plane, these extrema are the same as for the parallel case,
but are located perpendicular to the scattering plane. In this case, the extrema interfere
destructively at all scattering angles, and do not contribute to the scattered field. For
an unpolarized incident wave, the scattered field is averaged over two polarizations of the
incident field, and due to the constructive interference for the parallel component, the
degree of linear polarization P = (E⊥E

∗
⊥ − E‖E

∗
‖)/(E⊥E

∗
⊥ + E‖E

∗
‖) is mostly negative at

intermediate scattering angles. This was shown in Papers II and III, where the degree
of linear polarization became almost Rayleigh-like as the entire longitudinal component
is switched off. Near the backscattering direction, switching off did not have much of an
effect, because of the geometric factor for the longitudinal component. In Paper IV, it was
shown that, at intermediate scattering angles, switching off the longitudinal component
only for the core dipoles (elements with the largest energy densities) increased the degree
of linear polarization substantially, when compared to the unmodified cases. It was con-
cluded that only about 5% of the dipoles are responsible for the negative polarization at
intermediate scattering angles.

For irregular particles, the distribution of the internal field is no longer symmetric
due to the irregular surface. Because of this, there is a net-longitudinal component at
intermediate scattering angles. This will enhance the parallel component of the scattered
field and produce negative polarization at intermediate scattering angles. However, ac-
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Figure 11: The normalized energy density at the central X−Z (top left panel) and Y −Z
(top right panel) planes for the longitudinal component, when the incident wave is X-
polarized, i.e., parallel to the scattering plane (X −Z). The incident wave is propagating
along the positive Z-axis. The size parameter is x = 8 and the refractive index ism = 1.55.
The color coding for the phase is shown in the panel at the bottom.

cording to the results in Paper IV, the contribution from the interference between the
partial waves to the enhancement is also significant for irregular particles. This means
that the irregular surface does not completely destroy the regular structure of the internal
field. The results in Paper IV did show that, as irregularity increases, the amount of
negative polarization decreases. In Paper III, when the entire longitudinal component
was switched off, polarization became generally more positive for a GRS particle than for
a sphere with the same size parameter and refractive index. This can be explained by a
weaker interference between the partial waves for nonspherical particles.

5.3.2 Transverse component of the internal electric field

By definition, the transverse component is always in the plane perpendicular to the prop-
agation direction of the incident wave. It is therefore also the main component in the
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internal fields. Because the scattering problem is solved for two orthogonal polarizations
of the incident field, the transverse component always contributes to both the parallel and
perpendicular components of the scattered field. In the far field, the largest contribution
comes from scattering angles near the forward and backward directions with the smallest
contribution at the 90◦ scattering angle (contrary to the longitudinal component). This
is due to the geometric factor |ê‖s · ê‖i| = cos θ for the case with the polarization of the
incident field parallel to the scattering plane. When the polarization of the incident field
is perpendicular to the scattering plane, it has the same contribution to the scattered field
at all scattering angles.

Just as for the longitudinal component, the distribution of the transverse component
is symmetric for particles that are rotationally symmetric with respect to the polarization
of the incident field (Fig. 12). Instead of two prominent maxima, as for the longitudi-
nal component, there are several local maxima formed as a wavelike pattern with one
prominent maximum at the forward part of the particle. According to our interpretation
in Paper V, the maxima around the perimeter form a standing wave pattern with every
other maximum being in phase. This standing wave is formed by two waves propagating
in opposite directions along the perimeter. In addition to the standing wave, there is a
central forward propagating wave. Due to the boundary conditions for an electromagnetic
wave (Sect. 2.1), the separation of the maxima are about half of a wavelength around the
perimeter of the particle. Near the center, the wavelength decreases by a factor of 1/m
according to the refractive index, which corresponds to a total phase shift 2x|m− 1| with
respect to the incident wave (van de Hulst 1957).

Notice that in the plane parallel to the polarization of the incident field (Fig. 12;
left), only the central wave is present, whereas in the plane perpendicular to the incident
polarization (Fig. 12; right), the standing wave pattern is clearly visible in addition to the
central wave. In Paper V, the far-field mapping of this regularly placed ring of maxima
is described as ’an interference dial’. The number of both maxima and minima for the
half circle equals roughly, but not exactly, to the size parameter of the particle (e.g., in
the case of Fig. 12, it is 9). This pattern can also be seen in Paper II for other size
parameters. In Paper V, this pattern is shown to be responsible for the non-Rayleigh-like
interference features, such as NPBs, observed for wavelength-scale particles at certain
scattering angles. For spherical particles, the pattern is very symmetric, which results in
large negative and positive values for the degree of linear polarization due to an almost
complete destructive/constructive interference between the partial waves originating from
the maxima.

In the exact backscattering direction, it is clear that due to the pairwise symmetry of
the maxima the partial waves interfere constructively. Rotating the dial by a sequence of
quarters of a wavelength λ/4, here λ corresponding to the apparent wavelength between
the maxima, along the perimeter is the same as rotating the scattering wave vector by a
certain angle. This equals to a change in the scattering angle by ∆θ = 2π/(4×9) = π/18.
This follows closely to the angular interval of maxima and minima in the total intensity
seen in Fig. 9 (left). In this geometry, the partial waves interfere destructively with
almost pairwise cancellation for I⊥ (Fig. 12; right), which is seen in P as a deep negative
peak near the backscattering direction (Fig. 9; right). When rotating another quarter
of a wavelength, there is pairwise enhancement, which is seen as a positive peak in P .
Continuing this rotation, all peaks in P can be traced to a rotation in the interference dial.
It should be noted that since the degree of polarization is the ratio of two angularly varying
quantities, ∆θ does not exactly match the interval seen for P . Nevertheless, based on the
results in Papers II, III, IV and V, there is a clear dependence between the distribution of
the internal field energy density and the angular far-field scattering features. The success
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of the interference rules, presented in Paper V, to determine the particle size parameters,
refractive indices, and shape from the scattered field characteristics, further reinforces the
idea that there is a clear connection, at least for simple shapes.

Figure 12: Same as in Fig. 11, but for the transverse component. Color coding for the
phase is also shown in Fig. 11.

For irregular particles, this connection becomes more complicated since there is no
simple way to describe an irregular particle. In Paper IV, it was evident that the distri-
bution of energy density for the internal field depends greatly on the exact shape of the
particle. It was also shown that there is a clear connection between the maxima of the
longitudinal component and the negative polarization at intermediate scattering angles.
Therefore, generalizing the interference rules to irregular particles seems to require an
extensive amount of work. In principle, the tools that were developed for the studies in
the thesis can be used for particles of any shape and composition. In practice, the analysis
of a single shape can be time consuming making a more comprehensive study currently
infeasible.

5.4 Case study: snowflakes at microwave frequencies

The results of Paper VII indicate that, for wavelength-scale particles, the shape of the
particle is an important parameter, especially for fluffy structures. Trying to replace a
realistic snowflake shape with an equivalent spheroidal particle seems to fail at least for
the backscattering quantities. A similar conclusion for fluffy particles is also given by
Nousiainen, Kahnert & Lindqvist (2011). This discrepancy between the shape models
can be analyzed with the tools developed previously for Papers IV and V. Here, a new
study is presented, where these tools are applied to a snowflake at the W band (94 GHz).

In this study, one example aggregate snowflake shape is used to compute the internal
field at each dipole site with DDA. The sample is chosen according to the maximum size
parameter x = 3.2, which happens to coincide with the first interference minimum for
the backscattering cross section (Fig. 6 in Paper VII). A spheroid with the same size,
aspect ratio, and orientation is also used to compute the internal fields with DDA. For
the spheroid, the mixture of ice and air is handled by computing the effective refractive

33



index using the M-G EMA. The particle can therefore be characterized as soft due to the
presence of air inside it.

Figure 13: The copolarized contributions from the internal fields to the backscattering
far-field at the W band for an aggregate of 100 ice crystals (top panels) and a similar
sized soft-spheroid particle (bottom panels). On the left panels, the incident field is
polarized parallel to the scattering plane (vv), and on the right panels, perpendicular to
the scattering plane (hh). The maximum size parameter x = 3.2. The refractive index of
the aggregate is m = 1.7844 + i0.0021. The effective refractive index of the spheroid is
meff = 1.0005 + i0.000001.

Fig. 13 shows the far-field backscattering contributions from the internal fields of a
realistic snowflake (top panels) and a soft spheroid (bottom panels) using the integrated
map tool developed previously (Sect. 5.2). From the top panels it is clear that the fluffy
structure of snowflakes causes the internal field to be generally weak and unfocused. There
are no local bright maxima typical for solid shapes. The largest far-field contributions are
located at the parts with a concentration of ice crystals. In addition, the phases between
the different parts of the snowflake seem to be almost random, which is seen as a large
oscillation in the curves on the top and on the right (dashed line). Due to the irregular
shape, there is a small difference in the total backscattered intensity between the parallel
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(top left panel) and perpendicular (top right panel) component shown as a number in the
top right corner in each panel.

For the soft spheroid (bottom panels), the structure of the internal field is completely
different as compared to the aggregate snowflake (top panels). There are two bright rings,
a narrower ring near the perimeter and a wide ring near the center. The phase of these
rings is opposite, which again can be seen in dashed lines in the curves on the top and on
the right. Because of this, there is destructive interference/partial cancellation between
the partial waves originating from the outer and inner rings in the exact backscattering
direction. This decreases the backscattering cross section of the soft spheroids relative
to the aggregate (Fig. 6 in Paper VII). To verify this, another soft spheroid is chosen
with maximum size parameter x = 4.5, which does not show the interference feature.
The integrated maps for the particle are shown in Fig. 14. As can be seen, there is
one wide ring near the perimeter and a small maximum at the center. Again, the ring
and the maximum are in opposite phase, but due to the relatively small contribution
of the central maxima compared to the ring, the destructive interference/cancellation is
diminished. To conclude, the reason between the difference in backscattering cross sections
of soft spheroids and aggregates is destructive interference inside the spheroid. In fact,
this study proposes that the oscillating maxima and minima present for the backscattering
cross sections as size parameter increases, for spherical/spheroidal particles, is due to this
same interference mechanism. The interference rules presented in Paper V can be applied
to specify the locations for these features.

Since the phase structure of the internal fields in wavelength-scale snowflakes is to a
large extent random, it is evident that the interaction between the elements is small as
compared to the response to the incident field. This leads to the Rayleigh-Gans approx-
imation (RGA), where the near-field interaction between the elements is neglected and
only the far-field interference is taken into account. The agreement between RGA and
DDA for fluffy snowflakes has already been verified by Westbrook et al. (2006). They
also demonstrated the inability of the soft-sphere model to estimate backscattering cross
sections at high microwave frequencies.

Figure 14: Same as in Fig. 13, but for a soft-spheroid particle with maximum size
parameter x = 4.5.
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6 Summary of papers

6.1 Paper I

Light scattering by Gaussian random particles with discrete-dipole approx-

imation. The scattering by wavelength-scale GRS particles is studied for various size
parameters and refractive indices. It is found that there are four ubiquitous phenomena
for the scattering characteristics: an enhancement for the phase function towards the ex-
act backscattering direction, a systematic NPB near backscattering, a double-lobe feature
for the depolarization ratio (Lindqvist et al. 2009), and interference maxima at interme-
diate scattering angles. Also, the polarization norm, polarization asymmetry parameter,
the phase-function asymmetry parameter, and the degree of linear polarization for GRS
particles are compared to spherical particles with the same size parameters and refrac-
tive indices. It is found that there are significant differences depending on the physical
parameters, especially for larger sizes and refractive indices. Increasing σ (Sect. 3.2) also
increases the differences. A new mechanism based on the internal fields to interpret the
scattering characteristics is also presented.

6.2 Paper II

Interrelating angular scattering characteristics to internal electric fields for

wavelength-scale spherical particles. In this paper, we use the Lorenz-Mie theory
and discretize the internal electric field of spherical particles into small elements. The
longitudinal component is studied by switching it off entirely for the elements, and com-
paring the scattered field characteristics between the exact (unmodified) and modified
cases. The transverse components are studied by dividing the particle interior into cells,
and computing the corresponding radiation scattering characteristics for the particle inco-
herently. This eliminates the interference of the partial waves between the cells, and shows
the contribution of the transverse components to scattering when compared to the exact
solution. It is found that, for particles with |m| > 1, both the longitudinal and transverse
components are concentrated in the forward part of the particle, while for |m| < 1 they
are concentrated in the backward part. For the more absorbing case (m = 2 + 2i), the
internal field is concentrated near the surface. When the entire longitudinal component
is switched off, the degree of linear polarization becomes more positive overall. When
the interior is also divided into four incoherent parts, the polarization becomes positive
for all scattering angles, except for large (x > 4) particles, which still shows the negative
polarization branch near backscattering. When the interior is further divided into sixteen
incoherent cells, polarization becomes positive for all studied cases, and the resulting po-
larization curve is almost Rayleigh-like. It is concluded that the longitudinal component
has a strong contribution to the negative polarization over a wide range of scattering
angles, while the transverse component dominates near the backscattering angle. The
transverse component is also seen to be responsible for the backscattering peak.

6.3 Paper III

Interrelating angular scattering characteristics to internal electric fields for

Gaussian-random-sphere particles. This paper is continuing the study of Paper II
by applying the same methods to wavelength-scale GRS particles. It is found that for both
m = 1.55 and m = 1.33 cases, the same mechanisms that were investigated in Paper II
for spheres, can also explain the polarization characteristics of Gaussian-random-sphere
particles. The negative polarization at intermediate scattering angles is explained by
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constructive interference between two opposite maxima of the longitudinal component
that are separated by about half a wavelength at the forward part of the particles. It is
also suggested that interference is weaker for the Gaussian-random-sphere particles than
spherical particles, because the division into four incoherent cells is enough to eliminate
any negative polarization, which is not the case with spherical particles.

6.4 Paper IV

Interpretation of single-particle negative polarization at intermediate scatter-

ing angles. Papers I, II, and III concentrate on studying the origin of the negative
polarization for single wavelength-scale particles. This paper concentrates on the longitu-
dinal component of the internal field, and provides a more thorough understanding of the
polarization characteristics associated with it. The degree of linear polarization is studied
for spherical, Gaussian-random-sphere and agglomerated debris particles by switching off
the longitudinal component from core, noncore, and random dipoles. These are defined
by a preset cutoff value from the total energy density of all dipoles after the dipoles are
arranged according to their energy densities. This allows to locate the dipoles that have
the largest contribution to the longitudinal component. It is found that a relatively small
number of core dipoles contribute to the negative polarization at intermediate scattering
angles. For both Gaussian and debris particles, it is about 5% of all dipoles. The interfer-
ence between the partial waves is studied using two approaches. In the first approach, the
core dipoles are switched off separately for the two incident polarizations. It is found that
interference has a large contribution in scattering characteristics for irregular particles
similar to spheres. In the second approach, interference is studied using integrated maps
of the energy densities. It is shown that there is mostly constructive interference for the
parallel component between the partial waves originating from the bright areas for all the
different shapes studied. It is concluded that negative polarization near backscattering
and the double-maximum feature in the depolarization ratio are due to the transverse
component of the internal field.

6.5 Paper V

Polarization of light backscattered by small particles. In this paper, the linear
polarization characteristics at the backscattering regime for spherical, cubic, spheroidal,
and clusters of four spherical particles are studied using size parameters 4 ≤ x ≤ 10
and refractive indices 1.1 ≤ m ≤ 1.9. In addition, spherical and spheroidal particles in
random orientation are studied using the same method as in Paper IV. It is found that
the internal field of wavelength-scale particles is a combination of a standing wave near
the perimeter and a distorted plane wave with the wavelength controlled by the refractive
index of the particle along the central axis and changing to the incident wavelength near
the perimeter of the particle. The circular wave-like pattern near the perimeter of the
particle is interpreted to be a standing wave, which is formed in the plane perpendicular
to the incident polarization. Its contribution to the scattered field can be characterized as
an ’interference dial’, which selects at certain scattering angles either pairwise destructive
or constructive interference between the maxima in the wave pattern. In addition, new
interference rules for the negative and positive polarization extrema in the degree of linear
polarization are presented, which can provide a way to invert physical properties of the
particles from their scattering characteristics.
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6.6 Paper VI

Modeling C-band single scattering properties of hydrometeors using discrete-

dipole approximation and T-matrix method. In this paper, polarization radar
quantities are investigated at the C-band for spherical and spheroidal ice particles, as
well as clusters of spherical ice particles that contain liquid water. The main purpose
of this paper is to investigate the applicability of DDA to model scattering from these
particles when compared to exact theories. It is found that for homogeneous particles,
e.g., pure ice or pure water, DDA agrees well with the exact theories. For water-coated
ice particles, there can be relative errors about 25% in the backscattering cross sections
and larger for the extinction cross sections. The errors in the extinction are mainly due to
the errors in the absorption. The reason for the errors is too small a grid for the coating.
The agreement between DDA and the superposition TMM for a random cluster of ten ice
spheres is good, but for clusters with 30% water, there can be almost 9% relative error
in the backscattering cross sections, and 27% error in LDRvh. It is suggested that, for
clusters of spheres containing water, increasing the grid size for the constituent spheres
should greatly improve the accuracy. It is also found that using filtered coupled dipoles as
the polarizability in DDA effectively doubles the accuracy for spherical particles containing
only water.

6.7 Paper VII

Radar backscattering from snowflakes: comparison of fractal, aggregate, and

soft-spheroid models. Three different snowflake models; namely, fractal, aggregate,
and soft-spheroid models, are used in this paper to compare their polarimetric radar
quantities and applicability in the C-, Ku-, Ka- and W-bands. It is found that the
polarimetric radar quantities agree well between the fractal and aggregate models for all
the studied frequencies. The soft spheroid model agrees fairly well at the C- and Ku-
bands, but underestimates the cross sections by a factor of 10 at the Ka-band, and a
factor of 50-100 at the W-band. For the linear depolarization ratio, there are consistent
differences between fractals and aggregates, as well as aggregates and spheroids.

6.8 Author’s contribution

This section describes the author’s contribution in the papers of the thesis. In Paper I, I
carried out all the Mie scattering computations and the comparative study between the
GRS and spherical particles. In Papers II-IV, I analyzed the results and made all the
plots. In Paper II, I wrote a Mie scattering code using Fortran 90, which computes the
internal electric and magnetic fields at discrete locations inside the scatterer, and outputs
them in a file for analysis. I also implemented the code for the internal field modification
together with K. Muinonen. I used these codes to compute the Mie scattering results in
Papers I and II. In Paper III, I used the same codes as in Paper II, and applied them to
the DDA computations by E. Zubko. In Paper IV, I wrote a visualization program for the
integrated energy density maps using Matlab. The computations were performed with
the DDA code by E. Zubko. In Paper V, I carried out computations for the spherical and
spheroidal particles using TMM, and made all the scattering plots. I also computed the
integrated energy density maps, using the ADDA code by Yurkin & Hoekstra (2011), and
the visualization program, provided text to the introduction and helped to analyze the
results. In Paper VI, I carried out all computations using the ADDA code, the TMM code
by Mishchenko (1991), and the superposition TMM code by Mackowski & Mishchenko
(1996), and analyzed the results. In Paper VII, I implemented all the shape models,
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and made the program to compute the physical properties of the generated particles. I
also improved the fractal and aggregate models to include preferential orientations. I
carried out all the DDA computations using ADDA, and J. Leinonen provided the TMM
computations. I analyzed the results.
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7 Conclusions and future prospects

The thesis shows that the non-Rayleigh-like features in the scattering quantities seen for
wavelength-scale particles with varying shapes and refractive indices are due to the inter-
ference between the partial waves originating from certain parts of the particle interior.
These parts can be identified by concentrations of local energy densities. The contri-
butions from these parts to the scattered field can be analyzed using different methods,
such as switching off the most contributing parts and comparing the scattered field to the
unmodified case, or by using partial integration maps to identify destructive/constructive
interference between the partial waves.

Because the structure of the internal field is determined by the incident polarization
and propagation directions, as well as the physical properties of the particle, it was pro-
posed in Paper I that it is convenient to divide the internal field into two components: the
longitudinal and transverse components. From the results in Paper II and III, it is clear
that the longitudinal component contributes mostly at the intermediate scattering angles,
while the transverse component at the forward and backward scattering angles. In Paper
IV, the longitudinal component was studied in more detail, and the studies showed that
even for irregular particles, such as GRS and AD particles, the internal field is largely
focused on the forward part and interference from the partial waves is not diminished
totally by the irregular surface. It was also shown that only about 5% of the dipoles
contribute to the negative polarization at intermediate scattering angles.

The physical interpretation of the interference mechanism is as follows: as the incident
wave front reaches the particle, it is refracted in a sense that the wave fronts at different
locations on the particle surface undergo different relative phase shifting due to the relative
refractive index of the particle. This refracted wave front is focused on the forward part
of the particle. It is also evident from the internal field structure of spherical particles,
shown in Papers II and V, that some partial waves are not transmitted through the
particle, but go around the particle in opposite directions, and form a circular standing
wave near the perimeter. The size parameter of the particle seems to determine the
number of maxima forming for the standing wave pattern. For the transverse component,
this pattern is stronger in the plane perpendicular to the incident polarization (Paper
V), while for the longitudinal component, it is always in the plane parallel to the incident
polarization (Paper IV). At least for the spherical particles, this means that the NPB near
the backscattering direction in the degree of linear polarization is due to the destructive
interference for the perpendicular (transverse) component, while the negative polarization
at intermediate scattering angles is due to the constructive interference for the parallel
component (longitudinal). In addition to the NPBs, the mechanism presented in the thesis
also explains the enhancement of the phase function near the backscattering direction and
the double-lobe feature for the depolarization ratio (Paper V).

One interesting aspect of the studies is that the characteristics in the degree of lin-
ear polarization for simple shapes, such as spheres, spheroids, cubes, and small clus-
ters of spheres, are similar for different size parameters and refractive indices. These
non-Rayleigh-like characteristics begin near the size parameter x = 2 and become more
numerous as the size increases. This behavior can be understood by the interference
mechanism for the internal fields. It has been shown that the number of maxima for the
standing wave equals roughly the size parameter. For x = 2, there are only two maxima;
a minimum and a maximum for the amplitude of the standing wave. This is the shortest
possible standing wave that can form inside the particle. As the size is increased, more
maxima are generated, and this seems to continue even for particles large as compared
to the wavelength. The interference patterns in the scattered field for wavelength-scale
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particles can be understood by the interference dial, and the locations for the maxima
and minima can be determined from the interference rules presented in Paper V, at least
for simple nonspherical particles. It is under study, how these can be applied to irregular
particles. Nevertheless, the interference mechanism seems to be valid for particles with
rough surface as was shown in Papers III and IV.

One area of research that seems to benefit from these mechanisms is the modeling
of hydrometeors at microwave frequencies. For high frequencies, typical for space-borne
radars, the sizes of hydrometeors, especially snow particles, are wavelength-scale. Due to
their dielectric nature, all the results from the internal field studies are also applicable
to these particles. However, since snowflakes are very fluffy in structure, this means that
the internal field is not focused and can be almost random in phase resulting in weak
interference features in the scattered field. For solid, homogeneous particles it is clear
that the incident field is focused and the interference between the partial waves produces
distinct features in the scattered field. This is evident from the results in Papers VI and
VII. It is this difference in the shape and structure between the models that should be
taken into account when modeling backscattering by snowflakes at microwave frequencies.
The first results, when applying the Rayleigh-Gans approximation to snowflakes, have
already shown that the interactions between the dipoles can be neglected to a large extent.
We plan to investigate this in more detail and produce a simpler scattering model that
can be applied to fluffy structures at wavelength-scale sizes.

One question for explaining the negative polarization still remains: what is the re-
lationship between CBM and the mechanisms presented in Papers I–V? It would be
important to find the answer to help interpret the remote sensing observations from at-
mosphereless solar-system bodies. Hopefully this can be answered in our future studies.
One thing is certain; we must first look at the direct problem in detail before being able
to make realistic assumptions for the inverse problem. With the help of the tools and
interpretations that were developed for the studies in the thesis, this should be feasible.
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