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2 Abbreviations 
 
AC  adenylyl cyclase 
AHP  afterhyperpolarizing potential 
AMPA  2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid 
CA1  cornu ammonis 1 
CA3  cornu ammonis 3 
cAMP   cyclic AMP 
EPSC  excitatory postsynaptic current 
GABA  gamma amino butyric acid 
GDP  Giant depolarizing potential 
GluA1-4 glutamate AMPA receptor subunits 1-4 
GluK1-5 glutamate kainate receptor subunits 1-5 
ImAHP  medium afterhyperpolarizing current 
IPSC  inhibitory postsynaptic current 
IsAHP  slow afterhyperpolarizing current 
KAR   kainate receptor 
LTD  long term depression 
LTP  long term potentiation 
mEPSC  miniature excitatory postsynaptic current 
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NMDA  N-Methyl-D-aspartatic acid 
PKA   protein kinase A 
PKC   protein kinase C 
PLC  phospholipase C 
Pr  release probability 
tKAR  tonically activated kainate receptors 
trkB  BDNF-neurotrophic tyrosine kinase receptor type 2 
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3 Abstract 

 
Fast excitatory transmission between neurons in the central nervous system is mainly 
mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further 
categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-
oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) 
subclasses. In the rat and the mouse hippocampus, development of glutamatergic 
transmission is most dynamic during the first postnatal weeks. This coincides with the 
declining developmental expression of the GluK1 subunit-containing KARs. However, the 
function of KARs during early development of the brain is poorly understood. The present 
study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play 
a central role in functional development of the hippocampal CA3-CA1 network. The study 
shows for the first time how concomitant pre- and postsynaptic KAR function contributes to 
development of CA3-CA1 circuitry by regulating transmitter release and interneuron 
excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a 
novel mechanism for silencing and unsilencing early synapses and thus shaping the early 
synaptic connectivity. 
 
The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. 
The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells 
and interneurons are tonically activated by ambient glutamate and that they regulate 
glutamate release differentially, depending on target cell type. At synapses to pyramidal 
cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, 
at synapses to interneurons, tKARs facilitate glutamate release. On the network level these 
mechanisms act together upregulating activity of GABAergic microcircuits and promoting 
endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an 
instrumental role in the functional development of the hippocampal circuitry.  
 
The next step was to investigate the role of GluK1 -containing receptors in the regulation of 
interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum 
is markedly decreased during development. The shift involves tKARs that inhibit medium-
duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. 
This promotes burst spiking of interneurons and thereby increases GABAergic activity in the 
network synergistically with the tKAR-mediated facilitation of their excitatory drive. During 
development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is 
dramatically increased due to decoupling tKAR activation and ImAHP modulation. These 
changes take place at the same time when the endogeneous network oscillations disappear.  
 
These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic 
transmission  and  thus  gate  the  feedforward  excitatory  drive  to  the  area  CA1.  Here  
presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong 
facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to 
high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 
circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel 
presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. 
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The present results shed new light on the mechanisms modulating the early network activity 
that paves the way for oscillations lying behind cognitive tasks such as learning and memory. 
Kainate receptor antagonists are already being developed for therapeutic use for instance 
against pain and migraine. Because of these modulatory actions, tKARs also represent an 
attractive candidate for therapeutic treatment of developmentally related complications 
such as learning disabilities.  
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4 Introduction 
L-glutamate is the major transmitter mediating fast excitatory transmission in the 
mammalian central nervous system. Glutamate binds to three subtypes of ionotropic 
glutamate receptors (iGluRs) namely AMPA, NMDA and KARs (Jahr & Stevens, 1987; Ozawa 
et al, 1998). In addition to iGluRs glutamate is a ligand to three sub-groups of metabotropic, 
seven transmembrane region, G-protein coupled receptors, mGluRs (Conn & Pinn, 1997). 
The iGluRs are homo- or heteromeric tetrameric receptor channels composed of multiple, 
often alternatively spliced and edited 
subunits; GluA1-4 for AMPA receptors, 
NR1,2A-D for NMDA receptors and 
GluK1-5 for kainate receptors (Lerma 
2003; Lerma 2006). The ionotropic 
action of AMPA and NMDA receptors is 
well understood (Ben-Ari et al., 1997; 
Wisden & Seaburg, 1993) whereas the 
function of kainate receptors is slowly 
emerging from obscurity (Contractor et 
al., 2011; Jane et al., 2009; Kullmann 
2001).  
 
Glutamate elicits its actions 
predominantly through phasic synaptic 
transmission but recent results have 
shown, however, that this is not the 
whole picture. Many studies have 
confirmed the finding that ambient 
levels of glutamate activate presynaptic 
NMDARs (Sah et al, 1989) and mGluRs 
(Losonczy et al., 2003) and subsequently 
regulate transmitter release. 
Glutamatergic transmission in the 
hippocampus (fig. 1) is under dynamic 
development during the first postnatal 
weeks  in  rats  (Fiala  et  al.,  1998;  Hsia  et  
al., 1998; Tyzio et al., 1999), and 
ambient glutamate levels are high. At 
the same time KARs are heavily 
expressed (Bahn et al., 1994; Ritter et 
al., 2002).  

4.1 KAR-mediated transmission in mature hippocampus 
In the adult brain postsynaptic KARs mediate slow, small amplitude excitatory postsynaptic 
currents (Castillo et al., 1997; Vignes & Collinridge 1997) while their presynaptic function is 
to act as auto- or heteroreceptors regulating transmitter release at both glutamatergic and 
GABAergic synapses in many areas of the nervous system (Kullmann, 2001; Lerma, 2003; 
Isaac et al., 2004; Lauri et al., 2001a&b; Pinheiro & Mulle 2008; Jane et al., 2009). The roles 
of KARs in the neonatal brain are not well understood. 

Figure 1: Major glutamatergic connections in the 
hippocampal formation 
 
There are three main types of excitatory glutamatergic 
principal cells in the hippocampal formation. Dentate 
gyrus (DG) cells recieve input from entorhinal cortex via 
perforant path (pp) and project their axons to CA3 
pyramidal cells through the mossy fibers (mf). In turn the 
CA3 pyramidal cells project their axons to pyramidal cells 
in CA1. Together these connections form the trisynaptic 
pathway, a term coined by Per Andersen in 1979. In 
addition to the mossy fibers, CA3 pyramidal cells receive 
input from septum and the contralateral CA3 through the 
associational commissural (A/C) pathway and from the 
entorhinal cortex through the perforant path (PP).  
Entorhinal cortex also innervates the CA1 area directly 
(Schematic of the rat brain adapted from Andersen et al., 
2007)  
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Kainate receptors are structurally similar to AMPARs since they also are tetramers, but built 
from 5 subunits; GluK1-5. The basic subunits GluK1-3 (formerly known as GluR5-7) can form 
functional homomers when expressed in recombinant expression systems (Barberis et al., 
2008; Perrais et al., 2009) whereas the high affinity subunits GluK4-5 (formerly known as 
KA1-2) cannot. GluK4-5 can co-assemble with GluK1-GluK3 altering biophysical properties of 
the receptors (Pinheiro & Mulle, 2006; Contractor et al., 2011). This gives a rise to diverse 
properties and function of KARs and variability of the KAR subunit composition at tissue- 
(Wisden and Seeburg, 1993) and single cell level (Bureau et al., 2000; Ruano et al., 1995). 
GluK1 and GluK2 also coassemble forming recombinant and native receptors with novel 
functional properties (Cui & Mayer, 1999; Mulle et al., 2000; Paternain et al., 2000). 
Complexity is further increased by RNA editing and by the existence of splice variants for 
GluK1, GluK2, and GluK3 receptor subunits (Bettler and Mulle, 1995; Dingledine et al., 1999; 
Jaskolski et al., 2004; Lerma et al., 2001) 

4.2 KARs control GABAergic input to hippocampal pyramidal cells 
Synaptically-released L-glutamate acting on KARs can regulate the activity of interneurons 
by providing postsynaptically-mediated excitatory drive (Cossart et al., 1998; Frerking et al., 
1998; Frerking & Ohliger-Frerking, 2002; Goldin et al., 2007) or directly depolarizing axons 
(Semyanov & Kullmann, 2001).  Activation of somatodendritic KARs presumably underlies 
interneuron depolarization and, in concert with direct axonal excitation, increases 
spontaneous action potential-dependent release of GABA from interneuron synapses to 
pyramidal cells. This result is reproduced with exogenous application of KAR agonists 
(Cossart et al, 1998; Frerkinget al., 1998). Both pharmacological evidence (Cossart et al., 
1998) and studies using GluK1 deficient mice (Bureau et al., 1999) support a role for GluK1-
containing subtypes in this effect, probably in heteromeric combination with GluK2 (Mulle 
et al., 2000).  
 
In addition, pharmacological studies suggest that KARs can directly depress GABAergic 
synapses (Clarke et al., 1997; Rodríguez-Moreno et al., 1997).  Whether this represents a 
distinct effect of KARs, located on the presynaptic terminals of interneurons themselves, or 
results from an indirect consequence of interneuronal depolarization through the activation 
of somatodendritic KARs is somewhat controversial. It was proposed that the resultant 
increase in GABA as a result of spontaneous interneurone activity lead to a direct reduction 
of evoked GABA release following the activation of presynaptic GABAB receptors  and  a  
passive shunting of the postsynaptic GABAergic response via the activation of postsynaptic 
GABAA receptors (Frerking et al., 1999).  However, such an explanation appears insufficient 
to account for the observed effects of kainate receptor activation on GABAergic 
transmission in area CA1. In particular, most studies agree that GABAB antagonists have no 
effect on the depressant effect of KARs on evoked GABA release (Clarke et al., 1997; 
Frerking et al., 1998; Min et al., 1999; Rodríguez–Moreno et al., 1997; 2000). Furthermore, 
the two effects, namely interneuron depolarisation and depression of evoked GABAergic 
transmission, can be dissociated pharmacologically (Cossart et al., 1998; Rodríguez-Moreno 
et al., 2000) and appear to couple to separate signalling systems (Rodríguez-Moreno & 
Lerma, 1998; Rodríguez-Moreno et al., 2000). 
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potentiation (LTP) (Weisskopf et al., 1994). The Ca2+ release from intracellular stores can be 
triggered by Ca2+-permeable presynaptic KARs (Lauri et al., 2003a). Presynaptic KARs in 
these synapses contain GluK2, GluK5 (Bureau et al., 1999; Wisden & Seeburg 1993) and 
possibly GluK4 and GluK3 subunits (Pinheiro et al., 2007). Although GluK1 subunits were not 
detected in the in situ hybridization experiments (Bureau et al., 1999; Wisden & Seeburg 
1993), pharmacological evidence speaks for their existence (Lauri et al., 2001b) and 
involvement in mossy fiber LTP (Contractor et al., 2001). 
 
An inherent property of mossy fiber synapses (fig 4B) is their prominent KAR dependent 
frequency facilitation which facilitates transmission during rapid afferent stimulation (Lauri 
et al., 2001a, 2001b; Schmitz et al., 2001; Contractor et al., 2001). Furthermore KARs can 
rapidly regulate glutamate release (within 10 ms) and thus can efficiently control short-term 
dynamics  of  synaptic  transmission  (Lauri  et  al.,  2001a,  Lauri  et  al.,  2001b,  Schmitz  et  al.,  
2001, Contractor et al., 2001, Kidd et al., 2002, Delaney and Jahr, 2002). 
 
In addition to mossy fibers, CA3 pyramidal cells receive input from septum and the 
contralateral CA3 through the associational commissural (A/C) pathway and from the 
entorhinal cortex through the perforant path (PP). The A/C terminals express GluK1 and 
GluK2-containing KARs that depress glutamate release. On the contrary PP terminals 
express GluK1 and GluK2 containing KARs that facilitate glutamate release (Contractor et al., 
2000) emphasizing circuit-specific modulation by KARs. 
 
KARs have been shown to play important role in maturation of synaptic connectivity during 
development. Activation of KARs at early postnatal stage in hippocampus depresses 
glutamate release and decreases synaptic network activity. Prolonged activation of KARs in 
organotypic slices however results in massive formation of new glutamatergic synapses 
(Vesikansa et al., 2007; see also Lauri et al., 2003b). Furthermore, KARs have important roles 
in presynaptic regulation of neonatal long term depression (LTD), LTP and short term 
plasticity (STP) (Sallert et al., 2007, Lauri et al 2007).  

4.4 KARs control cellular excitability 
In some CA1 interneurons KARs mediate excitatory synaptic currents with remarkably slow 
kinetics (Cossart et al., 1998; Frerking et al., 1998). Similar somatodendritic KAR-mediated 
currents have also been reported in CA3 pyramidal cells (Vignes & Collinridge, 1997; Castillo 
et  al,.  1997)  (fig.  4D).  In  these  synapses,  sustained  kinetics  may  be  an  adaptation  to  
integrate excitatory inputs over a larger time window (Lerma, 2003). In addition, CA1 
pyramidal  cells  have GluK2 and GluK5 -containing KARs (Bureau et al.,  1999) which can be 
activated synaptically to elicit sustained suppression of a Ca2+-activated K+ current (IAHP). This 
signaling cascade requires G-protein-mediated activation of phospholipase C (PLC) and 
subsequently PKC (Melyan et al.,2002;2004). Further studies have shown that in addition to 
PKC, both PKA and and mitogen-activated protein kinases are involved in the regulation of 
the IsAHP (Grabauskas et al. 2007). 
 

The afterhyperpolarizing current (IsAHP) is a calcium-activated hyperpolarizing current which 
is mediated via activation of K+ channels. The current has a slow rising phase and duration of 
seconds (Lancaster & Adams, 1986; Sah, 1996). In CA1, IsAHP is activated by increased action 
potential firing and consequent calcium influx, and it provides an effective negative 
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feedback mechanism to protect the network from overexitability (Madison & Nicoll, 1984; 
Traub et al., 1993). Hyperpolarising IsAHP supresses action potential firing and is responsible 
for spike frequency adaptation during repetitive discharge. Inhibition of the slow 
afterhyperpolarizing current KARs can thereby upregulate cellular excitability (fig 4C).  
 
A study by Fisahn et al. (2005) showed that the IsAHP in CA3 pyramidal cells is intact in GluK1 
but absent in GluK2-/- mice suggesting a role for the GluK2 containing receptors in 
regulation of the current. Similar to these results Ruiz et al. (2005) concluded that both 
GluK2-/- and GluK5-/- mice have attenuated IsAHP in CA3 pyramidal cells. Interestingly 
Fernandez et al. (2009) introduced somewhat contradictory results showing that ablation of 
subunits GluK4&5 completely removes the ionotropic response in CA3 pyramidal cells, 
whereas the KAR-regulated IsAHP is unaffected. In the CA3 pyramidal cells the IsAHP regulation 
depends on G-proteins, PLC and PKC (fig 4C) (Ruiz et al., 2005). An afterhyperpolarizing 
current is also seen in CA3 interneurons but with faster kinetics than in pyramidal cells. This 
medium afterhyperpolarizing current (ImAHP)  is  mediated  by  a  Ca2+ -dependent apamin 
sensitive K+ conductance (Aoki et al., 2000; Savic et al., 2001). No KAR dependence for this 
current had been reported.  

4.5 KARs in synchronous network oscillations 
Kainate  injections  into  the  brain  have  been  used  as  a  model  for  mesial  temporal  lobe  
epilepsy because the symptoms are reminiscent of those reported in humans having this 
disease (Ben-Ari, 1985; Nadler et al., 1978). Early studies suggested that kainate causes its 
neurotoxic effects by acting on excitatory amino acid receptors (Herndon et al., 1977) but 
the identity of the receptors has remained a mystery until development of specific 
pharmacological tools (reviewed in Lodge, 2009). Since the division of excitatory amino acid 
receptors into AMPARs, NMDARs and KARs, the subunits comprising these receptors have 
been well described and the subunit specific drugs as well as genetically modified animals 
have been developed (reviewed in Contractor et al., 2011). This has revealed that animals 
lacking GluK2 subunit are less susceptible to kainate injections than wildtypes suggesting a 
contribution of this subtype in generation of pathological synchrony (Mulle et al., 1998). 
Further GluK1 antagonism protects from pilocarpine-induced seizures (Smolders et al., 
2002) while injection of GluK1 agonist causes seizures apparently by an action in the 
amygdala (Rogawski et al., 2003; Kaminski et al., 2004). 
 
In vitro kainate-induced gamma (20-80 Hz) oscillations are reduced in CA3 of GluK2-/- mice 
while GluK1-/- mice have an increased susceptibility to kainate (Fisahn et al., 2004) 
suggesting opposite roles for the two subunits. Further, GluK1 antagonism has been shown 
to reduce the frequency of hippocampal theta oscillations in vivo (Huxter et al., 2007). Other 
studies, however, have shown that GluK1 agonism does not induce gamma band oscillatory 
activity but antagonism reduces the power of these kainate induced oscillations (Brown et 
al., 2006). The opposite results could be explained by functional compensation and 
alterations in trafficking and expression of KAR subunits in the knockout mice (Christensen 
et al., 2004, Jaskolski et al, 2004).  
 
Spontaneous synchronous activity characterizes immature neuronal networks and it is 
thought to play an important role in controlling the development of synaptic circuitry (for 
review, see Zhang and Poo, 2001). In the neonatal hippocampus, spontaneous network 
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bursts are seen both in vitro (Ben-Ari et al., 1989; Garaschuk et al., 1998; Palva et al., 2000) 
and in vivo (Lahtinen et al., 2001; Leinekugel et al., 2002). This activity consists of glutamate 
receptor-driven synchronous firing of neurons, which are rhythmically paced by GABAA 
receptor-mediated conductances (Khazipov et al., 1997; Bolea et al., 1999; Lamsa et al., 
2000,  Lamsa  &  Taira,  2003).  The  bursts  appear  to  be  critical  for  normal  hippocampal  
development  (Groc  et  al.,  2002;  Lauri  et  al.,  2003;  Huupponen  et  al.,  2007),  and  are  
developmentally down-regulated such that in a mouse or rat brain they are no longer seen 
by  the  end  of  the  second  postnatal  week  (Ben-Ari  et  al.,  1989;  Garaschuk  et  al.,  1998;  
Khazipov et al., 2004). 
 
Interestingly, transient upregulation of GluK1 expression in the hippocampus coincides with 
the timeline for appearance of spontaneous network bursts (Bahn et al., 1994; Ritter et al., 
2002; Ben-Ari, 1989). The strong developmental correlation between KAR expression profile 
and hippocampal spontaneous activity hints that KAR might play a role in the regulation of 
this activity during this crucial phase of development. The idea is supported by the roles 
KARs play in the modulation of glutamatergic and GABAergic transmission in hippocampus.  
 
In addition to the work presented in my thesis, relatively few studies have addressed the 
role of high affinity KARs in the neonatal hippocampal CA3 area (Caiati et al, 2010 and Juuri 
et al., 2010). Caiati and colleagues show that presynaptic KARs on immature mossy fiber 
terminals in the neonatal CA3 tonically depress GABA release. Juuri et al. (2010) 
demonstrate that KARs can initiate network bursts by inducing ectopic spikes in CA3 
pyramidal cells. Allene et al. (2008) have further shown that a certain form of early network 
oscillations (cENOs) is dependent on KARs and endogenous glutamate. 
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5 Aims of the study 
 
The aim of this thesis was to elucidate the role of KARs in the modulation of excitatory 
transmission and hippocampal network activity in the hippocampus during early postnatal 
development. The physiological function of GluK1 subunit (formerly known as GluR5) 
containing KARs was of particular interest since expression of the subunit is strictly 
developmentally regulated and it coincides temporally with the dramatic changes in the 
synaptic functions in the hippocampus. Hitherto, very little has been shown about the KARs 
in the hippocampal synaptic transmission early in development.  
 
The specific aims were to:  
1: Study whether KARs are endogenously activated during early postnatal development 
(original publications I, II, III) 
2: Study what possible physiological functions KARs might have in the hippocampus at early 
developmental stage, in particular in modulation of glutamatergic transmission. I decided to 
look into   

a) pyramidal-pyramidal cell synapses (I, III) and 
b) pyramidal cell-interneuron synapses (I)  

3: Study whether KARs play a role in regulation of interneuron’s excitability and the early 
synchronous activity controlled by these cells (I, II). 
4: Elucidate the mechanisms by which KARs tune the glutamate release and synaptic 
dynamics during early postnatal development (III).
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6 Materials and methods  
 
The detailed descriptions of the experimental protocols can be found in the original 
publications. The following is a brief explanation of what was performed and why. 
 
300-400 µm thick transversal slices from rat and mouse hippocampi were cut in ice cold 
ringer’s solution using a vibratome. The slices were kept in rest in room temperated (20-24 
°C) ringer’s solution for at least 1h before the recordings. Cell somata were found under 
visual guidance using infrared illumination with differential contrast imaging technique or 
Dodt gradient optics. In addition, in publication II biocytin was routinely added to the 
pipette filling solution and the cells were visualized by Alexa 568-avidin immunostaining and 
fluorescence microscopy. 
 
The recordings were done at 320C, with exception of the evoked EPSCs in publication III, in a 
flowthrough submerged chamber. To answer the questions stated in the aims of the study, 
different electrophysiological and molecular methods stated in table 1 were used. In order 
to isolate events, different drugs were administered in the flowthrough system (table 2). 
Likewise to focus on certain mechanisms in the neuronal membrane, different filling 
solutions in the measuring pipette were used (table 3). pH of the filling solutions was 
adjusted to 7.2 and osmolarity to 285. The resistance of the pipettes was 3-5 mOhm except 
for pipettes used in perforated patch recordings that were 12-14 mOhm. Voltage clamp 
recordings where access resistance exceeded 25 Mohms or where the range exceeded 15% 
were discarded. 
 
Data were collected using PClamp-, WinLTP-program-, Win-EDR- and pulse softwares. For 
statistical analysis, ANOVA following Tukey’s honestly significant difference (HSD 
comparison), Student’s two-tailed t test or Pearson’s 2 was used. P < 0.05 was considered 
as statistically significant. 
 
All experiments were done in accordance with the guidelines given by the ethics committee 
for animal research at the University of Helsinki. 
 
Table 1: Methods used 
 

 
 
 
 
 
 
 
 
 
 
 
 

Method Use Publication 
patch clamp voltage clamp I-III 
patch clamp current clamp II 
perforated patch voltage clamp III 
cell-attached recording monitor cell firing II 
immunostaining, infrared 
optics 

visualize interneurons II 

HPLC verify the effect of the glutamate scavenger II 
genetically modified 
animals 

GluK1 -/- mice were used to  
I: check the specificity of the GluK1 agonist and 
antagonist used 
II: study the responses in hippocampal cells 
lacking the GluK1 subunit 

I-III 
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Table 2: Drugs used 
 
Drug Concentration Action Publication 
ATPA 1µM GluK1 agonist I III 
LY382884 10µM GluK1 antagonist I III 
Tetrodotoxin 1µM Blocker of voltage gated Na+ channels I III 
Picrotoxin 100µM GABAAR antagonist I III 
CGP55845A 1µM GABABR antagonist I III 
GYKI53655 50µM AMPAR antagonist I III 
NBQX 20µM AMPA and KAR antagonist I III 
LY341495 100µM mGluR1-8 antagonist I III 
TBOA 50µM glutamate uptake inhibitor I III 
GPT + pyruvate  glutamate scavenger I III 
GDP S 0.3mM blocker of G-proteins (intracellular) II III 
PTX 5µM/ml blocker of G-proteins (incubation) II III 
KAINATE 50nM KAR agonist III 
CPA 1µM adenosine receptor agonist III 
D-AP5 50µM NMDA antagonist I III 
propanolol 1µM blocker of noradrenergic receptors II 
yohimbine 5µM blocker of noradrenergic receptors II 
coryanthine 5µM blocker of noradrenergic receptors II 
SB-269970 0.1µM blocker of serotonergic receptors II 
ketanserin 10µM blocker of serotonergic receptors II 
WAY-100635 1µM blocker of serotonergic receptors II 
SCH-23390 10µM blocker of dopaminergic receptors II 
sulpiride 20µM blocker of dopaminergic receptors II 
atropine sulfate 1µM blocker of cholinergig muscarinic 

receptors 
II 

SR-141716 5µM blocker of CB1 cannabinoid receptors II 
BIS 1µM PKC inhibitor II-III 
APAMIN 100nM SK2 channel blocker II 
    
 
 
Table 3: Filling solutions used 
 

 Filling solution Use Publication 
Cesium based mPSC recordings I-III 
K-gluconate based current clamp II 
K-gluconate based low EGTA 
filling solution + 10mM BAPTA 

ImAHP recordings 
recording of NMDA responses 

III 
III 

filling solution + GDP betas block G-protein mediated 
transmission intracellularly 

II-III 

filling solution + BIS block PKC mediated transmission 
intracellularly 

II-III 

K-gluconate with gramicidin or 
amphoterricin 

perforated patch recordings III 
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 7 Results 

7.1 tKARs regulate glutamate release in the hippocampal CA3 area at early 
postnatal age (I) 

7.1.1 GluK1-containing tKARs differentially regulate glutamatergic input to CA3 
pyramidal cells and interneurons 
In order to study the patterns and regulation of spontaneous network activity in area CA3 of 
the neonatal (P3-P6) hippocampus, whole cell patch clamp recordings were made from 
pyramidal cells and interneurons. A low chloride (2mM) potassium gluconate filling solution 
was used to discriminate excitatory postsynaptic currents (EPSCs) from inhibitory 
postsynaptic currents (IPSCs). When clamped to -60 mV, glutamatergic conductances 
generated inward- and GABAergic conductances outward currents. 
 
To find out if GluK1 subunit containing kainate receptors modulate the spontaneous activity 
the selective agonist ATPA (1 M) was applied in the perfusion bath (Clarke et al., 1997). In 
pyramidal cells the pharmacological activation of tKARs increased spontaneous IPSC (sIPSC) 
frequency, decreased the spontaneous EPSC (sEPSC) frequency and decreased the 
occurrence of the synchronous spontaneous bursts characteristic to the neonatal 
hippocampal network (Ben-Ari 2001; Palva et al., 2000). Hereafter, these events will be 
referred to as GDPs (giant depolarizing potentials) as they were first introduced (Ben-Ari et 
al., 1989). In interneurons ATPA had stereotypically similar effects on sIPSC- and GDP 
frequency but opposite effect on the occurrence of sEPSCs compared to pyramidal cells. 
 
To understand the physiological role of these tKARs the GluK1-selective antagonist 
LY382884 (Bortolotto et al., 1999; Lauri et al., 2001a) was used. Bath application of the 
antagonist reduced the occurrence of GDPs recorded in CA3 pyramidal cells and 
interneurons but had no effect on the occurrence of sIPSCs. The frequency of sEPSCs, 
however, was increased in pyramidal cells and decreased in interneurons. In order to 
further understand the role of GluK1 containing tKARs the mice lacking GluK1 subunit were 
used. In GluK1 -/- interneurons, the occurrence of sEPSCs was lower than in the wildtypes. 
There were no differences in the occurence of sIPSCs between the wildtype and the GluK1 -
/- interneurons. In GluK1 -/- pyramidal cells the frequency of sEPSCs was higher than in wild 
type mice. In contrast, the frequency of sIPSCs in GluK1 -/- pyramidal cells was lower than in 
the wild types (table 4, unpublished data). The results thus supporting the view that GluK1 
containing tKARs depress glutamate release to CA3 pyramidal cells and facilitate glutamate 
release to CA3 interneurons.   
 
To confirm the specifity of the drugs the pharmacological experiments were repeated with 
wildtype- and GluK1 -/- mice. In pyramidal cells LY382884 did not affect sEPSC frequency in 
GluK1 -/- mice but increased sEPSC frequency in wildtype mice similarily as in rats 
confirming that the effects of LY382884 are specifically mediated by tKARs containing the 
subunit GluK1. In GluK1-/- interneurons ATPA had similar effects as in GluK1 -/- pyramidal 
cells. ATPA did not affect the sEPSC frequency but elevated the frequency of sIPSCs and 
network bursts. In GluK1 -/- pyramidal cells ATPA did not affect the frequency of sEPSCs but 
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elevated the frequency of sIPSCs and network bursts thus calling for further investigations 
on the pharmacological selectivity of ATPA (table 5, unpublished data). 

7.1.2 GluK1-containing tKARs modulate presynaptic glutamate release in age-
dependent manner 

The amplitude and kinetics of the sEPSCs were unaltered by ATPA or LY382884 which 
suggests a presynaptic mechanism of regulation. One way to determine whether the 
mechanism regulating synaptic transmission is pre- or postsynaptic is to measure miniature 
postsynaptic currents (mPSPs) in the presence of TTX and to isolate the tKAR mediated 
transmission, by blocking NMDA-, GABAA-, GABAB - and metabotropic glutamate receptors. 
In neonatal pyramidal cells LY382884 increases and ATPA decreases the frequency of 
mEPSCs. On the contrary in neonatal interneurons LY382884 decreases- and ATPA increases 
the mEPSC frequency.  
 
A comparison between GluK1-/- and wildtype mice further support presynaptic regulation 
of transmission. In pyramidal cells, the mEPSC frequency was higher in the GluK1-/- 
compared to the wildtype mice. In interneurons the mEPSC frequency was lower in the 
GluK1 -/- than in the wildtype mice (table 5, unpbublished results). Thus tKARs inhibit 
glutamate release to pyramidal cells and facilitate release at glutamatergic terminals onto 
interneurons in an action potential independent manner. Experiments on older animals 
showed that the mechanism is developmentally regulated and no longer seen in P14-P16 
animals. 

7.1.3 tKARs do not modulate presynaptic GABA release in neonatal rat CA3 area 

KARs have been shown to regulate action potential-independent GABA release in adult CA1 
(Cossart  et  al.,  2001;  Mulle  et  al.,  2000;  Rodríguez-Moreno  and  Lerma,  1998)  (but  see  
Frerking et  al.,  1999;  Jiang et  al.,  2001;  Semyanov and Kullmann,  2001).  To study whether  
tKARs influence GABA release in the neonatal hippocampus by a direct action on GABAergic 
terminals, miniature IPSCs (mIPSCs) were recorded from CA3 pyramidal neurons and 
interneurons.  Neither ATPA nor LY382884 had significant effect on mIPSCs in interneurons 
or pyramidal cells suggesting that GluK1 is not clearly regulating presynaptic GABA release in 
neonatal CA3 area. In interneurons, the mIPSCs did not differ significantly between GluK1 -/- 
and wildtype mice. In pyramidal cells, however, the mIPSC frequency was lower in GluK1-/- 
compared to wildtypes (table 5, unpublished data), a finding which is somewhat contrast to 
what has been previously reported (Maingret et al., 2005; Caiati et al., 2010).  

7.1.4 Suppressing but not facilitatory effects of tKARs on glutamate release 
dependend on pertussis toxin sensitive G-proteins and PKC 

The depression of excitatory synaptic transmission in area CA1 by pharmacological 
activation of KARs (Chittajallu et al., 1996; Frerking et al., 2001; Clarke and Collingridge, 
2002) has been suggested to involve a G-protein-mediated mechanism (Frerking et al., 
2001), similar to that involved in the regulation of GABA release in CA1 (Rodríguez-Moreno 
and Lerma, 1998). In order to investigate the G-protein dependency, slices were treated 
overnight with pertussis toxin (PTX). Pharmacological activation or blockade of GluK1 
containing tKARs affects the frequency of mEPSCs in both pyramidal cells and interneurons 
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in acute slices. In PTX treated slices, however, neither ATPA nor LY382884 had any effect on 
mEPSC frequency in pyramidal cells suggesting a G-protein dependent regulation of 
glutamate release. In interneurons, PTX treatment did not block the original effect in mEPSC 
frequency by ATPA or LY382884 indicating that G-protein dependent mechanism is not 
involved. 

The KARs acting via a G-protein-mediated signaling mechanism have been shown to couple 
to activation of PKC (Rodríguez-Moreno and Lerma, 1998). To investigate if the tKARs 
regulating glutamate release in CA3 are PKC dependent, slices were preincubated in 1 
µMbisindolylmaleimide VIII acetate for 30 min (Toullec et al., 1991) before the effects of 
pharmacological activation or blockade of tKARs on mEPSC frequency was tested. Inhibition 
of PKC blocked the regulatory actions of tKARs on mEPSC frequency in pyramidal cells but 
not in interneurons, having an effect similar to that of inhibition of G-proteins. Thus the 
inhibitory but not facilitatory effects of tKARs are coupled to intracellular mechanisms 
involving G-proteins and PKC.  

7.1.5 Presynaptic tKARs are regulated by ambient levels of L-glutamate 

One possible explanation for the tonic activation of presynaptic KARs in neonatal, but not in 
2-week-old animal CA3 is a difference in the ambient glutamate concentration and/or 
diffusion of glutamate. These parameters are attributable to developmental changes 
because both the glutamate transport mechanisms and tortuosity of the extracellular space 
are in a dynamic range during that period (Khalilov et al., 1997; Rusakov and Kullmann, 
1998; Sykova et al., 2000; Danbolt, 2001). 

To test whether manipulation of the extracellular glutamate concentration affects the 
activation of presynaptic tKARs and consequently change mEPSC frequency, an enzymatic 
“glutamate scavenger” was used (Overstreet et al., 1997; Min et al., 1998). In line with the 
hypothesis removal of extracellular glutamate increased the frequency of mEPSCs. In 
addition the facilitatory effect of LY382884 on mEPSC frequency was blocked in these 
conditions suggesting that in control conditions high ambient levels of glutamate tonically 
depress glutamate release through tKARs. In contrast raising glutamate levels by blocking 
the glutamate uptake inhibitor with TBOA decreased the mEPSC frequency. Neither the 
scavenger nor TBOA had significant effects in P14-P16 rats. Endogenous glutamate thus 
provides a tonic but submaximal activation of presynaptic tKARs at CA3 terminals in the 
neonatal hippocampus. 
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7.2 tKARs increase spike firing in neonatal CA3 interneurons by attenuating 
afterhyperpolarizing K+ current (II) 

7.2.1 GluK1 subunit-containing tKARs regulate spontaneous interneuron firing at 
P3–P5 but not at P14–P16 

The former results demonstrated that glutamatergic input to interneurons in CA3 is 
facilitated  by  GluK1  containing  receptors.  To  take  a  closer  look  at  the  tKAR  function  in  
interneurons in neonatal CA3, on-cell recordings were made from wildtype and GluK1-/- 
mice from both neonates (P3-P5) and juveniles (P14-P16). First, we found that the 
frequency of spontaneous firing in wildtype interneurons is strongly downregulated during 
the first weeks of life, a finding that had not been reported previously. Interestingly, the 
firing of interneurons in GluK1 -/- mice was found to be significantly lower compared to 
wildtypes. Indeed, the frequency was very similar to that seen in wildtypes at P14-P16. In 
the GluK1 -/- mice no differences in firing frequency was seen between the two age groups. 

Application of the GluK1 antagonist LY382884 attenuates interneuronal firing reversibly in 
wildtype- but not in GluK1 -/- or juvenile (P14-P16) mice. At least partially the altered firing 
rate in GluK1 -/- interneurons could be explained by the developmentally regulated tKAR 
mediated presynaptic facilitation of glutamate release  

7.2.2 tKARs increase interneuron firing by depressing an afterhyperpolarizing 
current at P3–P5 

Another explanation for the tKAR mediated effect of interneuronal firing would be a 
postsynaptic somato-dendritic depolarization. Accordingly, pharmacological activation of 
tKARs with the GluK1 agonist ATPA depolarized the interneurons. LY382884, however did 
not alter the resting membrane potential, suggesting that no tKARs are present 
postsynaptically, consistent with the earlier findings that LY382884 has no effect on sIPSCs 
in either pyramidal cells nor interneurons. 

It has been shown that in CA1 and CA3 pyramidal cells the slow afterhyperpolarizing current 
(IsAHP)  is  regulated by KARs (Melyan et  al.,  2002;  Melyan et  al.,  2004;  Ruiz  et  al.,  2005).  In  
order to see if a similar mechanism exists in neonatal CA3 stratum lucidum interneurons 
intrasomatic depolarizing pulses were applied in voltage clamp mode. The experiments 
revealed a current with the characteristics of a medium afterhyperpolarizing current (Aoki & 
Baraban, 2000). To see if this current is modulated by tKARs, GluK1 activation and blockade 
was tested. Indeed, ATPA decreased the current whereas LY382884 increased it. The current 
was partially inhibited by apamin suggesting it to be mediated via Ca2+ sensitive K+ channels 
previously described in adult CA3 inteneurons (Savic et al 2001, Aoki & Baraban 2000). 
However, the modulatory actions of tKAR antagonists and agonists on the medium 
afterhyperpolarizing current (ImAHP) were not seen in juvenile mice indicating 
developmental regulation. 
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7.2.3 tKAR-coupled depression of ImAHP is mediated via a G-protein- dependent 
mechanism and activated by ambient glutamate  

The afterhyperpolarizing currents can be modulated by noradrenaline-, serotonin-, 
dopamine-, aceylcholine-, mGlu- and cannabinoid receptors (Sah & Faber, 2002; Vogalis et 
al., 2001). To see if tKARs depresses the ImAHP indirectly through some of these mechanisms, 
a cocktail containing antagonists for all of the above receptors was used. In these conditions 
ATPA still depressed the ImAHP. Since ambient glutamate tonically regulates synaptic 
connections  to  CA3  neurons  (Lauri  et  al.,  2005)  we  went  on  and  studied  the  effect  of  
glutamate scavenger on the ImAHP. Interestingly the scavenger increased the ImAHP 
amplitude and masked the effect of LY382884 suggesting a tKAR mediated regulation of 
ImAHP and thus interneuronal excitability. This tonic modulation of ImAHP was not seen in 
P14-16 mice. 

Intracellular application of GDPbetaS increased the mAHP and masked the effect of ATPA, 
suggesting a G-protein dependent mechanism. Blocking PKC mediated transmission with BIS 
did not affect the mAHP or alter the actions of ATPA. The downstream mechanism is thus G-
protein but not PKC dependent.  

7.2.5 tKAR-coupled AHP regulates endogenous activity patterns in the immature 
hippocampus 

At the level of hippocampal network, selective inhibition of the ImAHP by apamin increased 
the frequency of spontaneous network bursts in P3-P5 neurons. This was accompanied by 
an increased firing of interneurons. The apamin-induced increase in firing was more 
prominent in the GluK1 -/- mice than in wildtype littermates which is consistent with the 
idea that tKAR mediate tonic depression of the ImAHP in the wildtype mice. 

7.3 Functional maturation of CA1 Synapses Involves Activity-Dependent Loss 
of tKAR-mediated Inhibition of Glutamate Release (III) 

7.3.1 Presynaptic tKARs inhibit glutamate release in developing pyramidal cell 
synapses in the area CA1 

In  the  adult  hippocampus,  pharmacological  activation  of  KARs  in  area  CA1  leads  to  
depression of glutamatergic transmission through a Ca2+- (Chittajallu et al., 1996; Kamiya & 
Ozawa 1998) and G-protein (Frerking et al., 2001) mediated mechanism. These KARs have 
also been shown to contain the GluK1 subunit (Vignes et al., 1998; Clarke & Collingridge 
2002). 

The expression of the GluK1 subunit in CA1 is high during the first postnatal week (Bahn et 
al., 1994; Bettler et al., 1990; Ritter et al., 2002). To study whether these receptors are 
endogenously activated in P3-P5 rats, the GluK1-selective KAR antagonist LY382884 was 
used. LY382884 reversibly increased evoked EPSC (eEPSC) amplitude and decreased the 
failure rate. Additionally LY382884 increased the mEPSC frequency in the presence of the 
GABAB antagonist CGP. Interestingly the above effects of LY382884 were absent in P14-16 
rats although experiments with ATPA proved that KARs still depress glutamate release at 
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this developmental stage. The above results suggest that presynaptic tKARs tonically 
decrease the probability of glutamate release at immature CA1 synapses and that the tonic 
control is present only early in development. The results in neonates could also be explained 
by  insertion  of  AMPA  receptors  at  silent  synapses  (Malinow  &  Malenka,  2002)  or  indirect  
activation of KARs by a modulatory substance such as acetylcholine (Maggi et al., 2004), 
ATP/adenosine (Zhang et al., 2003, Safiulina et al., 2005) or glutamate binding to 
metabotropic glutamate receptors (Scanziani et al., 1997). Antagonism of these receptors, 
however, had no effects on the actions of tKARs in neonatal CA1 (see publication III for 
details). 

7.3.2 Ambient glutamate reduces release probability via presynaptic tKARs and 
modifies synaptic facilitation  

Given that tKARs excert a tonic inhibitory action on glutamate release in the neonatal CA1, 
their role in frequency dependent synaptic transmission was investigated. Immature 
synapses in CA1 are heterogeneous in terms of their short-term dynamics. Although some of 
the excitatory synapses have a high probability of release and are characterized by synaptic 
depression, others have a low probability of release and facilitate release during repetitive 
activity (Hanse and Gustafsson, 2001; Dobrunz & Stevens, 1997; Palmer et al., 2004). Similar 
facilitation is a characteristic feature of the mossy fiber synapse in CA3, in which presynaptic 
KARs play an important role in regulating glutamate release (Lauri et al., 2001a, 2001b; 
Schmitz et al., 2001). 

To investigate the short term dynamics of synapses in neonatal CA1, EPSCs were evoked 
with train of 5 stimuli  at 50 Hz. Based on the responses to these trains the synapses were 
categorized into facilitatory and non facilitatory. Application of LY382884 turned facilitatory 
synapses into non-facilitatory while having no effect on non-facilitatory synapses. At an age 
of P14 no facilitatory synapses were seen anymore and LY382884 did not have any effect on 
the EPSCs. These findings suggest that presynaptic tKARs are endogenously activated only in 
the facilitating neonatal inputs and that they tonically keep Pr low, allowing for the large 
facilitation during repetitive activity, such as high frequency bursts spontaneously generated 
in the newborn hippocampus (Lamsa et al., 2000; Palva et al., 2000). 

As we demonstrated (publications I, II), ambient glutamate activates tKARs in the neonatal 
hippocampus. As expected removing ambient glutamate with the glutamate scavenger 
mimicked the pharmacological effect of LY382884 turning facilitatory synapses into non-
facilitatory and having no effect on non-facilitatory synapses. The scavenger also completely 
occluded the effects of LY382884. The results strongly suggest that the tKARs regulating Pr 
in neonatal facilitatory CA1 synapses are tonically activated by ambient glutamate. 
Removing glutamate in older animals (P14) did not have any significant effect. In order to 
test if the lack of effect was due to low glutamate levels the glutamate concentration was 
experimentally increased with the glutamate uptake inhibitor TBOA. Increasing glutamate 
concentration did not have any effect suggesting a developmentally regulated change in the 
functional properties of presynaptic tKARs. 
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7.3.3 Presynaptic tKARs maintain low release probability in facilitatory synapses via 
G-proteins 

G-proteins have been shown to be involved in the inhibition of synaptic transmission 
between CA3 and CA1 neurons induced by pharmacological activation of KARs (Frerking et 
al., 2001). In line with these results, incubating neonatal hippocampal slices in pertussis 
toxin masked the effects of LY382884, glutamate scavenger and ATPA on mEPSC frequency 
suggesting a G-potein mediated mechanism. To isolate the mechanism to the presynaptic 
side, GDPbetaS was applied through the measuring pipette. This manipulation did not 
prevent the facilitation of mEPSC frequency in response to LY382884. The depression of 
glutamate release in neonatal CA1 synapses induced by presynaptic tKARs is thus G-protein 
mediated, but differing from adult neurons the mechanism is tonically activated by ambient 
glutamate. 

7.3.4 tKARs explain heterogeneity in excitatory synapses’ facilitation properties in 
developing CA1 

In the studies of short term dynamics of the CA1 synapses the GluK1 antagonist LY382884 
had  an  effect  on  facilitatory  synapses  only.  One  explanation  for  this  is  that  the  affinity  of  
tKARs at facilitatory synapses is higher compared to non-facilitatory inputs. In order to 
clarify this, experiments were done with 50 nM kainate which selectively activates high- but 
no low-affinity KARs (Lauri et al., 2001a; Schmitz et al., 2001).  

50nM kainate did not have any detectable effect on eEPSCs in control conditions but when 
glutamate was removed with the glutamate scavenger, 50nM kainate depressed eEPSC 
amplitude at facilitatory synapses having no effect on non-facilitatory inputs. Accordingly 
the depression of eEPSC was also associated with an increased facilitation in response to 5-
pulse stimuli at 50Hz.  Further, the differences in facilitatory and non facilitatory synapses 
persisted after altering extracellular divalent concentrations. The above results strongly 
suggest that high-affinity tKARs are selectively expressed at facilitatory neonatal CA1 
synapses. 

7.3.5 Induction of LTP at facilitating neonatal synapses rapidly alters tKAR 
activation and short term dynamics  

The dynamic properties of glutamatergic CA1 synapses are closely correlated with the tonic 
regulation of the KARs suggesting a developmental mechanism rendering immature, 
facilitatory synapses to mature none-facilitatory ones. Because LTP-like processes are 
thought to be important in synaptic maturation (Abbot & Nelson, 2000) we next tested 
whether LTP-induction affects the tKAR-dependent synaptic dynamics. In two pathway 
experiments the synapses were first categorized as facilitatory or non facilitatory. Pathway 
specific LTP (pairing protocol) was more robust in facilitatory synapses compared to non 
facilitatory ones. Application of LY382884 increased EPSC amplitude in facilitatory synapses 
in the non LTP pathway but not in the LTP pathway regardless if the input was initially 
facilitatory or non facilitatory. LTP also masked the previously shown effects of the 
glutamate scavenger. Further, induction of LTP caused a decrease of facilitation in initially 
facilitating synapses. 
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7.3.6 LTP induces a change in affinity of tKARs regulating glutamate release 

LTP caused a rapid loss in presynaptic tKAR activity but whether this was due to 
internalization of receptors or due to changes in the properties of tKARs was still unknown. 
To investigate if functional tKARs remain in presynaptic terminals after LTP induction, the 
KAR agonist ATPA was applied. ATPA caused a depression in EPSC amplitude suggesting that 
the tKARs still are present and that the loss of activity after LTP rather depends on a change 
in the functional properties of tKARs. 

The tonic activation of tKARs apparently requires high affinity receptors. The loss in 
functional tKAR activity after LTP could thus be due to a decrease in affinity. To elucidate 
this, 50nM kainate was applied to the initially facilitatory pathways before and after 
removal of glutamate. In the pathways where LTP was induced, 50nM kainate failed to have 
any detectable effect both before and after application of the glutamate scavenger. In the 
control pathway, however, kainate still depressed the eEPSC. 

The results suggest that LTP causes a rapid decrease in the affinity of presynaptic tKARs at 
facilitating inputs.  

Table 4. Effect of ATPA and LY382884 on spontaneous activity in CA3 pyramidal cells and 
interneurons in wildtype and GluK1-/- mice compared. NA = not available, no eff = no effect, 
- = suppressing effect on frequency, + = enhancing effect on frequency. 
 
Event pyramidal cells interneurons 
 ATPA 

wt 
ATPA 
GluK1-/- 

LY382884 
wt 

LY382884 
GluK1 -/- 

ATPA 
wt 

ATPA 
GluK1-/- 

LY382884 
wt 

LY38288
4 GluK1 
-/- 

sEPSC - no eff + no eff  NA - NA 
sIPSC ++ + no eff NA ++ + no eff NA 
mEPSC - NA + NA + NA - NA 
mIPSC no eff  NA no eff  NA no eff  NA no eff  NA 
GDPs - + -  no eff - + - no eff 
 
Table 5. Summary data showing the occurrence of spontaneous activity in CA3 in wildtype 
and GluK1-/- mice. Diff = difference, the symbol states the difference between the 
genotypes. 
 
Event events / minute in pyramidal cells events / minute in interneurons 
 wildtype diff GluK1-/- wildtype diff GluK1-/- 
sEPSC 5.9 ± 1.1, n=7 < 17.8 ± 4.9,n=7 36.6 ± 8, n=7 > 18.09 ± 6.2 n=15 
sIPSC 83.9 ± 20.2, n= 3 > 13.1 ± 4.3, n=7 30.4 ± 7.3, n=6 = 32.5 ± 6.9, n=9 
mEPSC 2.54 ± 0.2, n=8 < 3.92 ± 0.7, n=19 32.9 ± 8.1 n=7 > 13.1 ± 3.7 n=14 
mIPSC 33,98 ± 7,2 n=5  > 12 ± 3.4, n=6 36.3 ± 10.8 n=4 > 9.8 ± 3.4, n=6 
GDP 0.7 ± 0.09, n=7 < 2.7 ± 0.4, n=7 0.9 ± 0.11, n=7 < 1.86 ± 0.2, n=15 
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8 Discussion 
During the course of this study, several novel features of KAR-mediated synaptic signaling 
have been discovered. The major finding is that a population of GluK1 subunit-containing 
KARs is tonically activated by ambient glutamate (the receptors referred to as tKARs) during 
a restricted developmental period. tKARs are involved in several neuronal functions in the 
hippocampus, and are likely to be important for the development of hippocampal 
circuitries. The physiological implications of these tKAR-associated functions are 
widespread, ranging from synapse formation to emergent cognitive-range oscillations in the 
hippocampus. These will be discussed below. 

8.1 tKARs in the neonatal hippocampus are activated by ambient glutamate 
in a developmentally restricted manner 
By manipulating the levels of extracellular glutamate it was possible to modulate tKAR 
activation and its effects (on spontaneous activity, eEPSCs and ImAHP) bidirectionally. 
Interestingly, the tKAR activation-linked effects were lost by the end of the second postnatal 
week. There are two plausible but not mutually exclusive explanations for this. First, it is 
known that the expression of glutamate transporters is upregulated during development 
thus resulting in more powerful glutamate clearance from the extracellular volume (Danbolt 
2001). Also, the tortuosity of the extracellular space increases during development 
restricting the glutamate diffusion (Sykova et al., 2000). Consequently, by maturation there 
would be less ambient glutamate available to activate tKARs which explains the 
developmental decline in the tKAR-linked functions. Experiments where glutamate 
concentration was elevated in the P14-P16 tissue, however, showed that the tKAR function 
cannot be restored solely by increasing the ambient glutamate concentration. The GluK1 
KARs could still be activated pharmacologically by the selective agonist ATPA indicating 
persistent presence of the receptor. The most parsimonious explanation for these results is 
that such developmental alterations in the function depend on changes in the receptor 
affinity  (because  of  lack  of  effect  of  LY382884  in  the  presence  of  TBOA)  or  in  signaling  
mechanisms downstream to the receptor activation. 

8.2 Downstream signalling and developmental changes in tKARs 
The affinity of kainate receptors depend on the composition of subunits. The high affinity 
subunits GluK4 and GluK5 cannot form homomers but act to increase the affinity of GluK1-3 
containing receptors (Werner et al., 1991; Herb 1992). The developmentally regulated 
change in affinity of the tKARs could thus reflect a changed composition of the receptors. In 
addition, the mRNA editing and possibly the alternate splicing of KAR subunits change 
during development (Bernard et al., 1999; Boutz et al., 2007). The presynaptic tKARs in the 
neonatal  CA1,  however,  shifted  from  a  high  affinity-  to  a  low  affinity  mode  rapidly  in  
response to induction of LTP. At least in these synapses, the functional regulation seems to 
be because of fast alterations of the affinity of the receptor per se.  This event appears too 
fast to be explained by changes in subunit composition. The initial high affinity state of the 
tKAR suggests the presence of either GluK4 or GluK5 subunits. What the mechanism 
decreasing the affinity so swiftly is remains to be elucidated, but a direct modification of the 
receptor, such as phosphorylation, is a strong candidate.  
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A recent study provides novel information about the molecular switch responsible for this 
transition  in  affinity.  It  is  established  that  BDNF  increases  the  release  probability  at  CA1  
synapses to pyramidal cells (Tyler et al., 2001 & 2006; Mohajerani et al., 2007). Sallert et al. 
(2009) showed that blocking BDNF-neurotrophic tyrosine kinase receptor type 2 (TrkB) 
prevented the transition in tKAR-mediated signaling in response to LTP in neonatal CA1 
pyramidal cell synapses. In addition, the BDNF-mediated enhancement of glutamate release 
is age dependent (Gottschalk et al., 1998), similar to the developmental downregulation of 
the function of tKARs which is likely to depend on a developmentally regulated increase in 
release probability similar to that shown by Wasling et al. (2004). 

KARs mediate both ionotropic and metabotropic actions in target neurons (Rodríguez-
Moreno and Lerma, 1998; Melyan et al., 2002; Rozas et al., 2003). The tonically active KARs 
that  depress  glutamate  release  at  terminals  to  CA3 and CA1 pyramidal  cells  are  G-protein  
coupled. The effects of both GluK1 agonist and antagonist were blocked by pertussis toxin. 
In addition, the depression of glutamate release in CA3 was PKC dependent, similar to that 
shown for regulation of GABA release in CA1 (Rodríguez-Moreno et al., 1998). These 
findings demonstrate that tKARs depress glutamate release in a metabotropic manner 
similar  to  KARs  in  mature  CA1 area  (Frerking  et  al.,  2001).  Yet,  the  mechanism is  tonically  
regulated by tKARs binding ambient glutamate. Interestingly, the tKAR-dependent 
facilitation of glutamate release to interneurons was insensitive to inhibitors of G-proteins 
and PKC suggesting other signalling cascades. In the immature brain, GluK1 and GluK2 are 
mostly unedited at the Q/R site and thus Ca2+ permeable (Bernard et al., 1999; Lee et al., 
2001). tKAR-mediated Ca2+ influx could facilitate glutamate release to interneurons in an 
analogous fashion to the facilitation of glutamate release at mature mossy fiber terminals 
(Lauri et al., 2003a). 

A metabotropic G-protein mediated action of KARs have been shown to regulate AHPs and 
consequently action potential firing in CA3 and CA1 pyramidal cells (Melyan et al., 2002, 
2004; Ruiz et al., 2005). In adult CA3 pyramidal cells, IsAHPs and ImAHPs can be suppressed by 
Gluk2 but not GluK1-containing KARs leading to increased firing frequency (Fisahn et al., 
2005). It has also been reported that IsAHPs in CA3 pyramidal cells can be inhibited by 
endogenously activated G-protein coupled KARs and that these KARs require the 
coexpression of the high affinity subunit GluK5 (Ruiz et al., 2005). In the present study, a 
GluK1 antagonist revealed endogenously active KARs that depress an apamin sensitive ImAHP 
in a G-protein but not PKC dependent manner. Similar to the KARs in pyramidal cells, the 
activation of tKARs depresses the ImAHP and thus increases interneuronal firing. The study by 
Ruiz et al, 2005 suggested that activation of KARs regulating IsAHP requires the coexpression 
of high affinity subunit GluK5. In the present study experiments done with GluK5-/- mice still 
showed the regulation of interneuronal excitability  by tKARs indicating that GluK5 is not 
required for tKAR-mediated regulation of ImAHP in interneurons. 

8.3 Presynaptic tKARs in neonatal CA3 facilitate glutamate release to 
interneurons but depress release to pyramidal cells  
The tKARs in area CA3 regulate glutamate release differentially depending on the target cell 
type. In synapses to pyramidal cells they depress glutamate release while they facilitate 
glutamate release to interneurons (fig. 5). This functional discrepancy of tKARs at 
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experiments (see sample traces in fig 6D,E).  Further, in wildtype mice, a more robust AHP 
was seen upon application of the GluK1 antagonist LY382884. Thus, at least two separate, 
tKAR-linked mechanisms regulate interneuronal firing in the newborn hippocampus.  It 
appeared that the tKARs directly regulate interneuronal firing by depressing an apamin 
sensitive K+ current, ImAHP (fig 6). This represents a novel physiological role for tKARs: the 
depression of the ImAHP promotes repetitive firing  of interneurons during the first postnatal 
week, a time when characteristic high frequency network bursting is seen in hippocampal 
networks both in vivo and in vitro (Lahtinen et al. 2002; Palva et al., 2000). The tonic control 
diminishes during the development increasing the ImAHP and consequently, decreasing the 
interneuron’s firing rate. Thus, the findings reveal a critical endogenous mechanism that 
controls GABAergic transmission during development that can be of vital importance in the 
development of functional synaptic circuits in the hippocampus. 
 
According to the statistics the tKAR dependent ImAHP is a generic property of the most of the 
interneurons at this developmental stage. Interestingly Bonifazi et al recently revealed the 
existence of HUB interneurons that orchestrate synchrony in the developing hippocampal 
networks. Given the strong role in controlling the overall activity, it is possible that most of 
the recorded interneurons in this thesis were of the HUB-interneuron type (Bonifazi et al., 
2009). 

8.6 tKARs operate as gatekeepers at glutamatergic synapses to CA1 
pyramidal cells  
During the first postnatal days CA1 hippocampal 
glutamatergic transmission is based almost 
entirely on NMDA receptors and AMPAR-
deficient silent synapses (fig. 7A) are converted 
to synapses with both AMPA and NMDA 
responses by associative pairing of pre- and 
postsynaptic activity (Durand et al., 1996; Liao et 
al., 1995). Silent glutamatergic synapses thus are 
developmentally expressed so that virtually all 
CA3-CA1 synapses to pyramidal cells are silent at 
birth and by the end of the second postnatal 
week around half of them are activated. This 
can be seen as an age dependent increase in the 
AMPA/NMDA ratio measured by evoked EPSCs 
(Hsia et al., 1998). 
 
In terminals to CA1 pyramidal cells where high 
affinity tKARs are present, the release 
probability is low due to tonic inhibition of 
glutamate release. This mechanism depresses 
transmission between pyramidal cells, filtering 
out background activity and only allowing high 
frequency activity to pass through (fig. 8). In this 
way high affinity tKARs act as presynaptic 
silencers (fig. 7B) of CA1 synapses, enabling 
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Figure 7. Silent synapses  
 
Three alternative mechanisms for developmental 
silencing of glutamatergic synapses:  A) postsynaptic 
silencing where the presynaptic terminal is working 
normally but the postsynaptic side has only NMDA 
receptors for the time being (Montgomery et al., 
2001). B) presynaptic silencing where the release 
probability of transmitter is low or zero (Gasparini et 
al., 2000; Maggi et al., 2003) and C) synapses where 
glutamate release is impared because of a slow fusion 
pore (Choi et al., 2001) or because of a non-functional 
presynaptic terminal and diffusion of glutamate from 
nearby synapses (Kullmann et al., 1996; Rusakov & 
Kullmann, 1998). For a review on silent synapses see 
Kerchner & Nicoll (2008). 
 

Low Pr 

Low Pr 



34 
 

pathways recieving high
associated 
the expression of this mechanism is restricted to the first postnatal weeks coinciding with 
the decrease in the number of silent synapses. This finding suggests a novel presyna
developmentally regulated mode of silencing in the neonatal hippocampus, where 
expression of high affinity tKARs acts as 
activity patterns such as high

 
It has been shown that in hippo
AMPAR silencing that can be reversed by Hebbian induction in a developmentally regulated 
manner (Montgomery and Madison, 20
2007, 2008). The silencing could depend on endocytosis of AMPARs from the postsynaptic 
membrane (Daw et al., 2000; Man et al., 2000). Likewise, the unsilencing could depend on 
recruitment and insertion of AM
1999). The discovery of tKARs
action. The lability of neonatal synapses seems thus to depend on both presynaptic and 
postsynaptic mec
stabilize these synapses and the silen
waiting for activation. A prolonged silence lead
activation 
 
Glutamate receptors have been shown to participate in the activity dependent shaping of 
synaptic circuitry (McKinney et al. 1999; Fischer et al. 2000; Chang & De Camilli, 2001; Luthi

Figure 8. High 
 
A: Presynaptic high affinity KARs lower the release probability by a G
and which can seen as a frequency facilitation in response to
the affinity of the KARs suddenly change increasing release probabilty  (Pr) und thus unsilencing the 
synapse and converting it to ”mature” form. As a result, the facilitation is much less prominent after th
second postnatal week. 

pathways recieving high-frequency input 
associated with transformation of high
the expression of this mechanism is restricted to the first postnatal weeks coinciding with 
the decrease in the number of silent synapses. This finding suggests a novel presyna
developmentally regulated mode of silencing in the neonatal hippocampus, where 
expression of high affinity tKARs acts as 
activity patterns such as high-frequency input or a GDP.

It has been shown that in hippo
AMPAR silencing that can be reversed by Hebbian induction in a developmentally regulated 
manner (Montgomery and Madison, 20
2007, 2008). The silencing could depend on endocytosis of AMPARs from the postsynaptic 
membrane (Daw et al., 2000; Man et al., 2000). Likewise, the unsilencing could depend on 
recruitment and insertion of AMPARs from intracellular pools (Lledo et al.,  1998; Shi et al.,  

The discovery of tKARs, however, offers an alternative or concomitant mechanism of 
action. The lability of neonatal synapses seems thus to depend on both presynaptic and 
postsynaptic mechanisms (Hanse et al., 2009). It is thought that Hebbian type of activity can 
stabilize these synapses and the silen
waiting for activation. A prolonged silence lead

ctivation of the synapse to its stabilization.

Glutamate receptors have been shown to participate in the activity dependent shaping of 
synaptic circuitry (McKinney et al. 1999; Fischer et al. 2000; Chang & De Camilli, 2001; Luthi

. High affinity KARs enable frequency facilitation at terminals to neonatal CA1 pyramidal cells 

: Presynaptic high affinity KARs lower the release probability by a G
and which can seen as a frequency facilitation in response to
the affinity of the KARs suddenly change increasing release probabilty  (Pr) und thus unsilencing the 
synapse and converting it to ”mature” form. As a result, the facilitation is much less prominent after th
second postnatal week. (Lauri et al., 2006).

frequency input to enhance Pr and stabiliz
with transformation of high-affinity KARs to low

the expression of this mechanism is restricted to the first postnatal weeks coinciding with 
the decrease in the number of silent synapses. This finding suggests a novel presyna
developmentally regulated mode of silencing in the neonatal hippocampus, where 
expression of high affinity tKARs acts as the silencer that can be uns

frequency input or a GDP. 

It has been shown that in hippocampal neurons, repeated synapse activation leads to 
AMPAR silencing that can be reversed by Hebbian induction in a developmentally regulated 
manner (Montgomery and Madison, 2004; Xiao et al., 2004; Abrahamsson et al., 2005, 
2007, 2008). The silencing could depend on endocytosis of AMPARs from the postsynaptic 
membrane (Daw et al., 2000; Man et al., 2000). Likewise, the unsilencing could depend on 

PARs from intracellular pools (Lledo et al.,  1998; Shi et al.,  
, however, offers an alternative or concomitant mechanism of 

action. The lability of neonatal synapses seems thus to depend on both presynaptic and 
hanisms (Hanse et al., 2009). It is thought that Hebbian type of activity can 

stabilize these synapses and the silent ones could thus represent a pool of nascent synapses 
waiting for activation. A prolonged silence leads to synapse elimination and converse

stabilization. 

Glutamate receptors have been shown to participate in the activity dependent shaping of 
synaptic circuitry (McKinney et al. 1999; Fischer et al. 2000; Chang & De Camilli, 2001; Luthi

affinity KARs enable frequency facilitation at terminals to neonatal CA1 pyramidal cells 

: Presynaptic high affinity KARs lower the release probability by a G
and which can seen as a frequency facilitation in response to a 5 pulse train at 50Hz. 
the affinity of the KARs suddenly change increasing release probabilty  (Pr) und thus unsilencing the 
synapse and converting it to ”mature” form. As a result, the facilitation is much less prominent after th

(Lauri et al., 2006). 

and stabilize the synapse. 
affinity KARs to low-affinity receptors. Remarkably 

the expression of this mechanism is restricted to the first postnatal weeks coinciding with 
the decrease in the number of silent synapses. This finding suggests a novel presyna
developmentally regulated mode of silencing in the neonatal hippocampus, where 

the silencer that can be unsilenced by 

neurons, repeated synapse activation leads to 
AMPAR silencing that can be reversed by Hebbian induction in a developmentally regulated 

04; Xiao et al., 2004; Abrahamsson et al., 2005, 
2007, 2008). The silencing could depend on endocytosis of AMPARs from the postsynaptic 
membrane (Daw et al., 2000; Man et al., 2000). Likewise, the unsilencing could depend on 

PARs from intracellular pools (Lledo et al.,  1998; Shi et al.,  
, however, offers an alternative or concomitant mechanism of 

action. The lability of neonatal synapses seems thus to depend on both presynaptic and 
hanisms (Hanse et al., 2009). It is thought that Hebbian type of activity can 

could thus represent a pool of nascent synapses 
to synapse elimination and converse

Glutamate receptors have been shown to participate in the activity dependent shaping of 
synaptic circuitry (McKinney et al. 1999; Fischer et al. 2000; Chang & De Camilli, 2001; Luthi

affinity KARs enable frequency facilitation at terminals to neonatal CA1 pyramidal cells 

: Presynaptic high affinity KARs lower the release probability by a G-protein – PKC mediated mechanism 
a 5 pulse train at 50Hz. B: After LTP induction 

the affinity of the KARs suddenly change increasing release probabilty  (Pr) und thus unsilencing the 
synapse and converting it to ”mature” form. As a result, the facilitation is much less prominent after th

. This is 
Remarkably 

the expression of this mechanism is restricted to the first postnatal weeks coinciding with 
the decrease in the number of silent synapses. This finding suggests a novel presynaptic  
developmentally regulated mode of silencing in the neonatal hippocampus, where 

d by specific 

neurons, repeated synapse activation leads to 
AMPAR silencing that can be reversed by Hebbian induction in a developmentally regulated 

04; Xiao et al., 2004; Abrahamsson et al., 2005, 
2007, 2008). The silencing could depend on endocytosis of AMPARs from the postsynaptic 
membrane (Daw et al., 2000; Man et al., 2000). Likewise, the unsilencing could depend on 

PARs from intracellular pools (Lledo et al.,  1998; Shi et al.,  
, however, offers an alternative or concomitant mechanism of 

action. The lability of neonatal synapses seems thus to depend on both presynaptic and 
hanisms (Hanse et al., 2009). It is thought that Hebbian type of activity can 

could thus represent a pool of nascent synapses 
to synapse elimination and conversely 

Glutamate receptors have been shown to participate in the activity dependent shaping of 
synaptic circuitry (McKinney et al. 1999; Fischer et al. 2000; Chang & De Camilli, 2001; Luthi 

affinity KARs enable frequency facilitation at terminals to neonatal CA1 pyramidal cells  

PKC mediated mechanism 
: After LTP induction 

the affinity of the KARs suddenly change increasing release probabilty  (Pr) und thus unsilencing the 
synapse and converting it to ”mature” form. As a result, the facilitation is much less prominent after the 



35 
 

et al., 2001; Tashiro et al., 2003; Richards et al., 2005). It was recently shown that prolonged 
activation of tKARs in CA1 in slice cultures leads to an increase in the number of functional 
synapses seen in frequency of mEPSCs (Vesikansa et al., 2007). These data together with the 
findings in this thesis suggest that GluK1-containing tKARs in CA1 probably have an 
important role in formation- and stabilization of synapses in the immature hippocampus.  

8.7 The role of tKARs in early synchronized network activity  
Oscillatory activity is found in many areas of the brain such as the olfactory bulb, 
hippocampus, thalamus and the neocortex (Buzsaki & Draguhn, 2004). Oscillations in the 
frequency bands theta (4-12 Hz) and gamma (30-90 Hz) have received most of the attention 
because they are thought to be involved in higher brain functions such as temporal 
encoding, sensory binding of information and storage and recollection of information 
(Lisman 1995, 1999). Conversely, disruption of gamma oscillations could underlie cognitive 
symptoms in psychiatric disorders such as schizophrenia (Spencer et al., 2003, Lewis et al., 
2005). Inhibitory interneurons have a key role in regulating time and space in the oscillatory 
activity, balancing excitation and controlling pyramidal cell spike timing (Mann & Paulsen 
2007; Klausberger & Somogyi, 2008). Although the importance of interneurons is well 
established it has recently become evident that KARs affect interneuronal function and thus 
have an impact on network behavior. Activation of somatodendritic KARs depolarize 
interneurons in both CA1 an CA3 which leads to strong increase in tonic GABAergic input to 
principal cells in the above areas (Cossart et al., 1998; Fisahn et al., 2004; Frerking et al., 
2002). In addition, KARs may also directly depolarize some interneuron’s axons in CA1 
(Semyanov & Kullmann, 2001). In vitro kainate-induced oscillations are reduced in CA3 of 
GluK2-/- mice while GluK1-/- mice have a higher susceptibility to kainate (Fisahn et al., 2004) 
suggesting opposite roles for the two subunits. Other studies, however, have shown that 
GluK1 agonism does not induce epileptiform activity but antagonism reduces the power of 
kainate induced oscillations (Brown et al., 2006). 
 

In the neonatal brain, spontaneous oscillatory activity is thought to play an important role in 
controlling the development of synaptic circuitry (for review, see Zhang and Poo, 2001). The 
high-frequency bursts appear to be critical for normal hippocampal development (Groc et 
al. 2002; Lauri et al. 2003, Huupponen et al., 2007), and they are developmentally down-
regulated such that they are no longer seen by the end of the second postnatal week (Ben-
Ari et al. 1989; Garaschuk et al. 1998; Khazipov et al. 2004). In addition to interneuronal 
activity, glutamatergic transmission is involved in generating and regulating the activity and 
excitability of the immature hippocampal network (Bolea et al., 1999; Garashuk et al., 1999, 
Khalilov et al., 1999, Lamsa et al., 2000). Interestingly, the disappearance of the bursts 
coincides with the developmental downregulation of tKARs. 
 
Blockade of GluK1-containing tKARs decreases the occurrence of the high frequency bursts. 
One explanation is that inhibition of the tKARs reduces interneuron activity and 
synchronization and therefore reduces the frequency of network bursts. Activation of tKARs 
by the agonist ATPA completely blocks the occurrence of neonatal network bursts 
accompanied by an increase in sEPSCs and a tenfold increase in sIPSCs. The depression of 
bursts is likely because of increased shunting of the network by increased asynchronous 
GABAergic transmission and a shift in the balance between excitation and inhibition (Lamsa 
et al., 2000). Interestingly application of kainate at concentrations 25-50nM, selective for 
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high affinity kainate receptors increases the frequency of network bursts (Juuri et al., 2010).  
This effect is attributable to KAR-mediated ectopic spiking of CA3 pyramidal cells. An 
increase in burst frequency can also be induced by increasing interneuronal excitability in 
CA3 by blocking the apamin sensitive, tKAR mediated mAHP. Interestingly both ATPA and 
high concentrations of kainate initially increases the burst frequency before attenuating it, 
suggesting that initial activation of high affinity tKARs increase the synchrony of the 
network, but when the concentration of kainate overrides the threshold for selective 
activation of high affinity receptors, the synchrony gets disrupted and the bursting 
disappears. 
 
In mice lacking the GluK1 subunit the frequency of network bursts is higher compared to 
wildtypes (table 4). This result is in contrast with the results from recordings of spontaneous 
activity when blocking GluK1 with LY382884. However, the frequency of mIPSCs and IPSCs 
to CA3 pyramidal cells was lower in GluK1 -/- mice compared to wildtype littermates. Maybe 
a lower inhibition of pyramidal cells enables them to fire more and thus increase the burst 
frequency, in a similar way that of low concentrations of kainate that induce ectopic spiking 
and increased bursting. The high bursting could be a reflection of compensatory 
mechanisms in GluK1 -/- that rescues the function of the network. Interestingly the bursts in 
GluK1 -/- mice disappeared at an age of P12 compared to P10 in wildtypes, suggesting an 
impaired speed of maturation of the hippocampal network (unpublished results). Results 
using genetically modified mice must be interpreted with caution, however, since functional 
compensation can occur (Christensen et al., 2004). 
 
Gamma band oscillations in the newborn rat brain starts to emerge around P5, seen both in 
vivo (Lahtinen et al., 2002) and in vitro (Palva et al., 2000). The first detectable frequencies 
are in the gamma band and, around P8, in vivo theta band frequencies are also seen. Given 
the regulatory role of tKARs, these receptors are likely to participate in the developmental 
emergence of oscillations relevant to cognition.  It would be interesting to investigate 
putative roles and pharmacological potential of KARs in cognitive impairments such as 
learning disabilities and concentration difficulties. Remarkably recent studies have shown 
that  there  is  a  link  between  the  gene  coding  for  GluK2  (GRIK2)  and  autism (Jamain  et  al.,  
2002; Shuang et al., 2004 but see Dutta et al., 2007).  

8.8 Conclusions 
Our understanding of the physiological roles of KARs in the brain has only rececently started 
to emerge. The results obtained in the course of this study on KAR functions are of 
pioneering nature, highlighted by the discovery of tonically activated kainate receptors or 
tKARs. These receptors provide a novel, developmentally restricted mechanism involved in 
several pre- and postsynaptic functions concerned with neuronal maturation (fig. 9).  First, a 
completely novel mode of action of KARs was discovered. Namely, it was found that early in 
postnatal development certain GluK1-containing KARs are tonically activated by ambient 
glutamate, and that this type of activation recedes by the end of the second postnatal week. 
tKARs regulate glutamate release and dynamics of synaptic strength to pyramidal cells and 
inhibitory interneurons. The loss of this modulation coincides with a switch from high- to 
low affinity KARs. Second, another tKAR-linked regulatory mechanism was found in 
hippocampal CA3-CA1 circuitry; tKARs postsynaptically modulate afterhyperpolarizing K+ 
current and interneuron spiking. 



 

Third, tKARs have an instrumental role in regulating hippocampal 
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Figure 9. Function of tKARs in the neonatal hippocampus
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