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approaches. This evidence is mainly based on a nonlinear feasible generalized least 
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1. Introduction 

 

In a series of articles Klump et al. (2007a, 2007b, 2008) and León-Ledesma et al. (2010a) asserted 

that the supply side system approach which models the normalized1 CES production function and 

profit maximizing conditions jointly is superior to other empirical approaches (see Chirinko, 2008, 

for  survey).  Their  evidence  indicates  that  the  success  of  the  system  approach  lies  in  its  ability  to  

jointly identify the substitution elasticity, ,  and  the  nonneutral  technical  change  parameters.  We  

argue that despite this advantage their estimation approach based on a nonlinear feasible 

generalized least squares (FGLS) method is inappropriate because it is internally inconsistent. 

Specifically, we show that if the errors of the supply side equations are correlated, then the system 

incorporates instantaneous feedback effects into these equations.2 The problem is that the FGLS 

estimator is particularly designed for accounting for possible correlations of these errors, but it is 

valid only when the estimated equations are exogenous. Thus we see that the estimation approach of 

Klump et al. (2007a, 2007b, 2008) and León-Ledesma et al. (2010a) conflicts with itself. We 

instead propose a Bayesian full information method for the system estimation, which, by 

construction, avoids such inconsistency.3 

 

Our  results,  based  on  a  Monte  Carlo  (MC)  simulation  study  borrowed  from  León-Ledesma  et  al.  

(2010a), show that the CES production function and the first-order conditions of profit 

maximization indeed form a (nonlinear) system of simultaneous equations. For plausible 

substitution elasticity values, our method corrects implied simultaneity bias and accurately 

identifies the substitution elasticity parameter and technical progress parameters. However, if the 

simultaneous equations problem is not solved, the estimates of the substitution elasticity parameter 

are systematically biased towards unity. 

 

                                                             
1 The necessity of normalizing the CES production function to obtain clear and unambiguous interpretations for its 
parameters was first pointed out by de La Grandville (1989) and further studied by Klump and de La Grandville (2000) 
and Klump and Preissler (2000) (see Klump et al., 2011; and references therein). Its usefulness in empirical analysis, 
especially in the system case, is shown by Klump et al. (2007a, 2007b, 2008) and León-Ledesma et al. (2010a, b). 
2 The authors also checked the performance of the system method by using a 3SLS estimator. The obvious problem 
with instrumental variables (IV) estimators in the case of CES production functions is the lack of good instruments 
(e.g., Chirinko, 2008, and León-Ledesma et al., 2010a), resulting in weak identification and strong dependence of 
results on the choice of instruments. 
3 Our proposal to estimate the CES production function from the Bayesian viewpoint has its roots in the literature of 
direct estimation of nonlinear CES production functions. The idea of estimating the parameters of a nonlinear CES 
function directly was introduced by Chetty and Sankar (1969). Since then, it has become a standard text book example 
in Bayesian econometrics (see, e.g., Zellner, 1971, Koop, 2003, and Lancaster, 2004). 
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In addition to the simultaneous equations problem, our simulation study reveals another empirically 

important issue hampering the estimation of the CES production function with nonneutral technical 

change. Namely, technical change parameters are not identifiable under Cobb-Douglas production. 

This local identification issue arises from the well-known fact that when  = 1, the technical 

parameters enter neither the CES production function nor the first-order conditions of profit 

maximization. As a result, the supply side system is non-informative in the dimensions of the 

technical parameters when  1, which tends to hamper the system estimation of the substitution 

elasticity and technical change parameters. 

 

The rest of the paper is structured as follows. In Section 2, we describe the normalized supply side 

system approach and discuss related issues. Section 3 provides a method for Bayesian estimation. 

Section 4 presents Monte Carlo results. Finally, Section 5 concludes. 

 

2. Normalized System Approach 

 

In this section, we first describe the normalized supply side system approach proposed by Klump et 

al. (2007a, 2007b, 2008) and León-Ledesma et al. (2010a), and then show that it is internally 

inconsistent when based on the nonlinear FGLS method. We further point out the local 

identification issue already discussed in Introduction. 

 

In recent years, there has been increasing interest toward the joint estimation of the elasticity of 

substitution between capital and labor and the direction of technical change parameters. In this 

context, the research often draws on the so called normalized CES production function in order to 

obtain a direct economic interpretation for its parameters. The form of the normalized CES 

production function which allows for biased technical change is 
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where Yt is  the  real  output,  Kt is the real capital stock, Lt is the labour input, and 0 is the capital 

income share at the point of normalization t = 0. The elasticity of substitution between capital and 

labour inputs can be expressed as 
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where Fi is the marginal product of factor i. The capital- and labour-augmenting technical progress 

is captured by K
t  and L

t . We follow the standard practice in assuming that technical progress is 

linear. In particular, its exact form is provided by 0ttK
t

Ke  and 0ttL
t

Le , where i is the 

growth rate of the technical change associated to factor i.4 

 

If the factors are paid according to their marginal products, then from (1) we obtain the standard 

first order conditions (FOC) of profit maximization: 
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where rt and wt are the real interest rate and real wage, respectively. The normalized supply side 

system proposed by Klump et al. (2007a, 2007b, 2008) and León-Ledesma et al. (2010a) can be 

obtained by taking logs from (3), (4) and (1), and using the sample averages (geometric for Y0, K0 

and L0, and arithmetic for 0 = r0K0/Y0 and t0) as the point of normalization. The system is given by 
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4 Alternative forms of technical progress may be considered. For example, Klump et al. (2007a,b) and León-Ledesma et 
al. (2010a), propose a more flexible functional form for t

i based on the Box-Cox transformation, in order to capture the 
potentially nonconstant rates of technical progress. We do not consider issues raised by induced innovations, and, thus, 
linear technical progress works well for our purpose. 
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where a bar refers to the sample average of the variable in question, ttt~ ,  is an extra term 

capturing the deviation of Y from the level of production at the sample averages of the right-hand 

side variables of (1), and 1t, 2t, and 3t are  stochastic  shocks  temporarily  deviating  rt, wt, and Yt 

from their equilibrium values. As already discussed, the nonlinear FGLS method, which assumes 

exogenous right hand side variables and allows for possible correlations between the shocks 1t, 2t, 

and 3t, has been the main estimation method applied for the system (5)-(7). In the following 

discussion,  we  will  show  that  these  two  assumptions  contradict,  implying  that  the  estimation  

approach of Klump et al. (2007a, 2007b, 2008) and León-Ledesma et al. (2010a) is inappropriate. 

  

We assume that the vectors t =  ( 1t, 2t, 3t)  are independent and identically distributed (i.i.d.) 

multivariate normal: 

 

 ,~ 0Nt , where 

333231

232221

131211

.   (8) 

 

A few comments about this assumption are in order. The normal distribution is quite reasonable for 

1t and 2t due to the log-linear form of (3) and (4). Of course, the i.i.d. assumption is based on fully 

flexible prices (that is, economic cycles are abstracted), whereas the real-world real interest rate and 

real wage series consist of strong permanent components. However, our results are not sensitive to 

the autocorrelation of the errors. As far as 3t is concerned, its distribution is not so clear-cut. To see 

this, notice that under flexible prices 3t should be interpreted as a measurement error arising from 

the (log) difference between the observed and the potential (equilibrium) output (given in the right 

hand side of (1)). In absence of the pure profit component the observed output is obtained from the 

accounting identity Yt  rtKt + wtLt.  It  can  be  shown,  using  this  identity  and  (5)  and  (6),  that  the  

exponential of 3t is a weighted average of two log-normally distributed random variables, namely, 

the exponentials of 1t and 2t (see León-Ledesma et al., 2010a). Thus, if rt and wt are as assumed in 

(5) and (6), then 3t is  not  Gaussian,  but could be adequately approximated by a Gaussian 

distribution. This shock structure also implies that the same shocks which drive rt and wt also drive 
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Yt,  which  appears  on  the  right  hand  side  of  the  system.  This,  in  turn,  implies  that  (5)-(7)  form  a  

system of  simultaneous  equations.  Therefore,  from now on,  it  is  referred  to  as  the  structural  form 

system. 

 

The reduced form supply side equations can be obtained from (5)-(8) in a standard fashion. They 

can be expressed as 
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where LKtY ,,*  is such that (7) and (11) are identical, and the new error vector et = (e1t, e2t, e3t)   

is given by 

 

et = –1
t ~ N(0 ),  = –1 –1) , where 

100
110
101

1 .  (12) 

 

Notice that the system of equations (9)-(12) determines the distribution of the data vector xt = 

(ln(rt), ln(wt), ln( YYt ))  for t = 1,…,T, giving rise to the likelihood function 

 

 12 '
2
1exp,,; EEtrLKXL T ,   (13) 

 

where tr denotes the trace of a matrix,  =  ( , , K, L, 11, 12, 13, 22, 23, 33)  is  a  vector  

containing all the parameters of the model, ij are the elements of , K = (K1,…, KT) , L = (L1,…, 
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LT) , and the matrices X and E are obtained by stacking the row vectors xt  and et , respectively, for t 

= 1,…T.  

 

Let us next consider the conditional distribution of x1t = (ln(rt), ln(wt))  given x2t = YYtln . From 

the system of equations (9)-(12), by using the properties of the multivariate normal distribution and 

the fact that 12 = ( 13+ 33/ , 23+ 33/ ) , where  is partitioned as 
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where 

 

1 = KYln +[( –1)/ –( 13/ 33)]ln( ),  

2 = LY1ln +[( –1)/ –( 23/ 33)]ln( ),  

 ,~
2

1 0N
t

t
t ,  

 = 11 – 12 12/ 33.  

 

Equations (14)-(15) together with (7) (or with (11)) provide an equivalent representation for the 

reduced form system in (9)-(11). Therefore, by working out with the basic rules of conditional 

probability, the likelihood function in (13) can be equivalently expressed as 

 

 LKXLLKXXLLKXL ,,;,,,;,,; 22211 ,    (16) 
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where 
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X2 = (x21,…, x2T) , and the tht rows of the matrices X1 and  are given by  x1t  and t , respectively. 

Thus, by comparing (5)-(7) to (14)-(16) it can be seen that the structural and reduced form systems 

coincide under the assumption 12 = 13 = 23 = 0. However, if the underlying economic system is 

consistent with national-accounting practice, then the shock 3t is driven by 1t and 2t (that is, 13  

0 and 23  0) and, as a result, the right hand side variable Yt in (5) and (6) is correlated with 1t and 

2t. In Equation (16) these contemporaneous relationships are captured by the second last terms on 

the right hand sides of (14) and (15). If we were to estimate the system of equations (5)-(7) using, 

for example, the nonlinear least squares method, we would neglect the information provided by 

these terms (i.e., we would impose the restriction 13 = 23 = 0 into the system). It is well-known 

from linear simultaneous equations models that this would lead to biased parameter estimates.  

 

As already discussed, Klump et al. (2007a, 2007b, 2008) and León-Ledesma et al. (2010a) estimate 

the structural form system (5)-(7) using the nonlinear FGLS method, which takes into account the 

potential correlations of shocks by estimating  but neglects the information provided by the second 

last  terms  of  (14)  and  (15).  The  problem  is  that  they  estimate   freely,  but  at  the  same  time  

implicitly set the elements 13 and 23 at zero (cf., (14) and (15)). This internal inconsistency casts 

serious doubts on the reliability of their estimation approach. From an econometric standpoint their 

method fails to distinguish between the distributions of the shocks and the data. From an economic 

point of view their system does not take into account the information provided by the accounting 

identity Yt  rtKt + wtLt,  which  links  the  factor  prices  and  output  as  a  (nonlinear)  system  of  

simultaneous equations. 

 

In order to avoid the inconsistency discussed above we propose estimating the system using a 

Bayesian method, based on the likelihood in (13). As can be seen from (9)-(11), the method treats 

the potential output LKtY ,,*  as an instrument for the observed output. Thus, it has the 
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advantage that no instrumental variables are needed. The obvious problem with instrumental 

variables (IV) estimators in our case is the lack of good instruments (see, e.g., Chirinko, 2008, and 

León-Ledesma et al., 2010a), resulting in weak identification and strong dependence of results on 

the choice of instruments.  

 

An important issue related to the empirical analysis of (13) is that of local non-identification. In 

particular, the technical change parameters K and L are not identified at   = 1 (i.e.,  in the Cobb-

Douglas case). The reason is that when  = 1, the parameters K and L do not enter the likelihood 

function, as can be seen from Equations (5)-(7) (cf., the fact that ( –1)/  =  0  at   = 1). Thus, the 

likelihood function is flat (and the system non-informative) in the dimensions of K and L when  

1.5 

 

3. Alternative Bayesian Approach 

 

We shall now consider the full conditional distributions of ,  = ln( ), K, L, and , which can be 

used to estimate these parameters. Furthermore, we describe the adopted joint prior distribution. 

 

For the Bayesian analysis we need to specify the prior distribution of the parameters, in addition to 

the likelihood (13). We shall assume that 

 
11,,,, pppppp LKLK  

         222 ,~,~,~ NNN LLLKKK  

             ,00
1 , IW ,   (19) 

 

where I(0, )( )  is  an  indicator  function  obtaining  value  one  for  positive   and zero otherwise, 

W( 0) refers to a Wishart distribution with inverse scale matrix 0 and degrees of freedom 

parameter , and 
~

, L
~ , K

~ , , K and L  are the remaining prior hyper parameters. Under this joint 

prior, the full conditional distributions of –1,  = ln( ), K, L, and  are given by 

                                                             
5  Notice that in the Bayesian approach we need to combine the likelihood function with a prior distribution of 
parameters in order to make inference. If the conditional prior distribution of K and L (at  = 1) is improper (i.e., does 
not integrate to one), then, as a result of the flat likelihood, the posterior distribution is also improper. As a potential 
solution for the same type of problem, existing in the Bayesian analysis of unrestricted simultaneous equations models, 
Kleibergen and van Dijk (1998) propose using informative priors. This solution is also adopted here, and we shall return 
to this issue in Section 3. The reader may also be interested to know that the same type of local non-identification issue 
also exists in Bayesian cointegration analysis (see Koop et al., 2005, for survey). 
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where S = E E, E being the same as in (13), and  can be calculated by mapping from  to , given 

.6 Equation (20) can be derived by combining the natural conjugate Wishart prior W( 0) with the 

likelihood in (13) and using standard calculations (e.g., Koop, 2003), while equations (21)-(24) 

follow directly from the definition of the full conditional distribution. 

 

Our sampler involves sequential drawings from the full conditional distributions (20)-(24).7 Our 

experience is that convergence occurs rapidly when  is not too close to unity, without further 

tuning of the sampler. The sampler may be inefficient if  is close to unity, producing highly 

correlated chains (because of the local non-identification problem discussed previously). This also 

indicates that the model is misspecified, since under the Cobb-Douglas case technological progress 

degenerates to the Hicks-neutral case ( K = L > 0). In practice, in near unitary substitution the 

                                                             
6 It can be seen from (12) that the one-to-one mapping between  and  is unique, given . Because  can be obtained 
independently of  (e.g., by analytically integrating  out from (13) and then using the resulting marginal distribution 
to obtain the rest of the parameters), this “conditional uniqueness” of the one-to-one mapping ensures that the model is 
globally identified. 
7 The full conditional posterior distribution given in (20) is standard and can be readily used to simulate random 
numbers. For the rest of the parameters ln( ), , K, and L, however, the situation is more intricate. Fortunately, 
suitable candidate-generating densities, which provide high acceptance rates for candidate draws, are available for these 
parameters. In particular, a univariate normal distribution, with mean at the mode of one of the conditional posteriors 
(21)-(24) and precision equal to the negative of the second derivative of the log posterior, evaluated at the mode, can 
successfully be used as a candidate distribution for each ln( ), , K, and L, and the acceptance-reception probability 
can be calculated in the standard way. 
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supply side model is over-parameterized and unable to capture the trend in Yt (cf., (7)). Thus, we 

recommend not using the system if the posterior distribution of  lies near unity. 

 

A natural default choice for the prior hyper parameters 0 and  would be such that the prior for  

is as noninformative as possible. Noninformativeness is achieved by setting 1
0 = 0 and  = 0. On 

the other hand, if ij = 0 for i  j, the model is over-parameterized and an informative prior might be 

a good choice. As a compromise, the degrees of freedom parameter  and the diagonal elements of 

the scale matrix 1
0  are set to be small, namely 5 and 0.01, respectively. In addition, the non-

diagonal elements of 1
0  are set at zero. As discussed by León-Ledesma et al. (2010a),  should 

be close to one, suggesting that the natural default choice for 
~

 is zero. We render the prior of  = 

ln( ) noninfluential by setting  = 100.  

 

Because of the local identification problem the prior variances of K and L cannot be too large. The 

basic idea is to choose K and L to be small enough in order to ensure that the technology 

parameters K and L cannot deviate too much from their true values under near unitary substitution. 

In practice, the choice of K and L should be such that it corresponds to a reasonable growth rate of 

technical progress. In this paper, the results are reported for K = L = {1/20, 1/10}. The value 1/10 

yields rather noninformative priors for the technical (growth rate) parameters, while the choice 1/20 

gives considerably more weight to the zero means ( L
~  = K

~ = 0).8 

 

4. Monte Carlo Analysis 

 

We use simulated numerical examples based on a variety of parameter values to demonstrate the 

endogeneity and local identification issues discussed previously. For each example, we simulate M 

= 1000 samples of size T = 509 for the capital Kt, labour Lt, and technology functions K
t  and L

t , 

and use these to calculate the potential and observed outputs and the real factor payments. For each 

sample, we then estimate the supply side system by simulating a Markov chain of N = 3000 cycles 

(abstracting 250 burn-in cycles) from the full conditional distributions explained in Section 3.10 The 

median  values  of  the  Markov  chains  are  used  as  point  estimates.  Two  types  of  Bayesian  system  
                                                             
8 We also considered flatter priors for these parameters in our simulation experiments (when setting the true value of  
to be far from unity) but this had virtually no effect on the results. 
9 Using T = 100 leads to very similar results. 
10 The results based on N = 10000 cycles (abstracting 2000 burn-in cycles) seem to be practically the same, which 
indicates rapid convergence of the Markov chains (this was checked with a range of parameter values). 
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approaches are compared: (i) the unrestricted reduced form system approach introduced in Section 

2;  (ii) the structural form system approach which is obtained from the former by imposing the 

restriction 12 = 13 = 32 = 0.11 For  both  estimation  methods  the  averages  of  the  point  estimates  

across the 1000 runs and the associated standard errors are reported. The distributions of these point 

estimates are further plotted, as they turned out to be quite informative. 

 

4.1. Experiment 

 

The simulation experiment is taken from León-Ledesma et al. (2010a). It includes draws from the 

stochastic labor L
ttt lLL exp1 , capital K

ttt kKK exp1 , and technical progress functions 

given by 

 

L

tLL

L
t tt 0
0

exp  , 
K

tKK

K
t tt 0
0

exp , for t = 1,…,T,  (25) 

 

where l and k refer to the mean growth rates of labour supply and capital accumulation, 

respectively. Thus, it is assumed that the log production factors are random walks with drift, while 

capital- and labour-augmenting technical progress is driven by a deterministic trend plus stochastic 

technology shocks. Shocks to Lt, Kt, L
t , and K

t  are assumed to be Gaussian, 2,0~ i
i
t N  and 

2,0~ i

i

Nt , for i = L, K, and the initial values are set at L0 = K0 = L
0  = K

0 = 1 for simplicity. 

 

Given the simulated paths of Lt, Kt, L
t , and K

t , the next step is to calculate the output from the 

CES production function 
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11 In this case case (20) reduces to three independent gamma distributions and the likelihood function in (16) (with the 
restriction 13 = 32 = 12 = 0) can be employed instead of (13). We use a standard gamma prior for ii with the shape 
and rate parameters set at 0.01 (thus, the priors are virtually noninfluential). For the rest of the parameters the priors 
explained in Section 3 are adopted. 
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where the star refers to the potential (equilibrium) output (cf., the reduced form system (9)-(11) in 

Section 2). 

 

The formulas for the real factor payments rt and wt can be obtained from (26) using the standard 

FOCs: 
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where the measurement errors are assumed to be distributed as 2,0~ r
r
t N  and 2,0~ w

w
t N . 

Thus, as in León-Ledesma et al. (2010a), shocks to the equilibrium real factor payments are 

assumed to be uncorrelated. We must notice, however, that the shocks 
L

t and 
K

t  appear in both 

(27) and (28) (through L, K, and Y*), which makes the correlation structure of the output and the 

real factor payments rather intricate. 

 

The final step is to use the accounting identity Yt  rtKt + wtLt, together with the drawn realizations 

of Kt, Lt, rt, and wt, to obtain the observed output Yt for t = 1,…,T. As discussed in León-Ledesma et 

al. (2010a), these steps ensure that the data are consistent with national-accounting practice, which, 

in turn, ensures that the shares of capital and labour sum to unity.12 

  

The parameter values used to obtain the simulated series are given in Table 1. Most parameter 

choices are borrowed from León-Ledesma et al. (2010a). We use a variety of values for  to learn 

how the local identification and endogeneity issues influence the estimation results. In particular, 

we start from a low 0.2 and proceed to 0.5, a value suggested by the weight of empirical evidence, 

surveyed by Chirinko (2008). We continue with the values 0.7, 0.8 and 0.9 to explore the behaviour 

                                                             
12 In short, the experiment takes the following steps, which are repeated M times: (i) Generate stochastic paths for the 
labour, capital and technology series. (ii) Use these paths and equations (26)-(28) to obtain the series for the potential 
output and the real factor payments. (iii) Calculate the observed output from the accounting identity using the capital, 
labour and real factor payments series. (iv) Simulate the Markov chain of the model parameters by applying the system 
approach, explained in Section 2, to the simulated series. (vi) Calculate the point estimates of the parameters from the 
Markov chain and return to step i. 
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of the parameter estimates in near Cobb-Douglass production, and, finally, use the value 1.3 

exceeding unity. We fix the sum of the technical progress parameters at 2% (per year) and 

experiment with a variety of values for K and L. The labour force is set to grow at 1.5% per year (l 

= 0.015), and, by following León-Ledesma et al. (2010a), the growth rate of capital is set at k = l + 

L. The distribution parameter  is set at 0.4.13 

  

4.2 Results 

 

Tables 2–3 report the Monte Carlo averages and standard errors of the point estimates ˆ , Lˆ , and 

Kˆ  obtained by the Bayesian system method, whereas Tables 4–5 provide the results under the 

restriction 12 = 13 = 32 = 0. The results based on the prior standard deviation K = L = 1/20 are 

given in Tables 2 and 4,  and the results based on K = L = 1/10 are given in Tables 3 and 5. The 

correlation coefficients 33111313  and 33222323  , also reported in Tables 2–3, 

are calculated from the posterior distribution of . The graphical summaries of the distributions of 

the point estimates are given in Figures 1–3 for the combinations L = 0.015 and K = 0.005, and L 

= 0.005 and K = 0.015 (based on K = L = 1/20).14 

 

The estimates of 13 and 23 show that the errors of the supply side equations are strongly 

correlated. Thus, (5)-(7) form a system of simultaneous equations, and we know that in such a case 

the FGLS estimator (linear or nonlinear) is biased. Estimates of 23 are large in absolute value with 

low elasticity values, and they decrease as  increases, whereas 23 tends  to  be  large  with  low or  

high values of . Notice, however, that in the extreme case  = 0.2 the Bayesian method has 

difficulties in obtaining accurate estimates of 13. We remark that the system approach is in this 

particular case strongly misspecified due to the terms 
L

t1 and 
K

t1 , which 

appear (partly non-log-linearly) on the right hand sides of (26)-(28).15  

 

                                                             
13 The standard deviations of shocks are borrowed from León-Ledesma et al. (2010a, b). For capital and labour shocks 
the value 0.1 is used, while the standard deviations of technology shocks are set at 0.01 when i = 0, and at 0.05 when i 
 0. For shocks to real wage and real interest rate (the user cost of capital) we use the standard deviations of their 

detrended and demeaned values, respectively, in the US economy over 1950–2000. These provide the values 0.05 and 
0.1, respectively. We also performed the experiments with different plausible values of the standard deviations. The 
conclusions remained intact irrespective of used values. 
14 The densities of the other combinations (and those based on K = L = 1/10) are available upon request. Nevertheless, 
the reported cases provide a fairly general picture of the behavior of the point estimates. 
15 Note that at  = 0.2 the “effective” standard deviations of these shocks are 4· L and 4· K, respectively. 
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Given these results, it is not surprising that the exogeneity restriction 12 = 13 = 32 = 0 corrupts the 

parameter  estimates.  In  particular,  Tables  3  and  5  show  that   ˆ  is systematically biased towards 

unity under 12 = 13 = 32 =  0.  Smaller  values  of   tend  to  stir  up  this  bias,  whereas  in  the  near  

Cobb-Douglass case bias is relatively small. Regarding Lˆ  and Kˆ , we observe that their 

distributions are much flatter, having very long tails, under the exogeneity restriction.  

 

The local identification problem is also well demonstrated in Figures 1–3 and Tables 2 and 4. 

Notably, the distributions of  Lˆ  and Kˆ have long fat tails in the near Cobb-Douglas case, which 

can clearly be seen by comparing the cases  = 0.5 and  = 0.9. Furthermore, the standard errors of 

Lˆ  and Kˆ  based on the tight prior parameterization K = L = 1/20 are considerably lower than 

their loose prior counterparts ( K = L = 1/10), although in both cases these parameters are 

accurately estimated on average. These results indicate that informative priors facilitate the joint 

identification of L and K, and increase estimation accuracy, especially in the near Cobb-Douglass 

case. The local identification problem also tends to appear in the slightly upward biased estimates of 

. This bias becomes negligible when the true value of  is 0.8, and it virtually disappears when  = 

0.7 (results are available on request). 

 

Finally, when the true value of  is in the range of 0.4–0.6, as suggested by the survey of Chirinko 

(2008), the Bayesian supply side method provides practically unbiased parameter estimates for all 

the combinations of L and K. The method also provides good parameter estimates for all the other 

combinations of , L, and K, although the estimates of  tend to be somewhat upward biased in the 

extreme case  = 0.2. As already discussed, the system approach is in this particular case strongly 

misspecified. The resulting increase in estimation uncertainty is revealed in the long right tail of the 

distribution of ˆ ,  and in the long tails  of the distributions of  Lˆ  and Kˆ , given in Figures (1)-(3) 

(solid lines). The medians of these estimates are nevertheless close to their true values. 

 

5. Conclusion 

 

This  paper  has  shown  that  the  CES  production  function  and  the  first-order  conditions  of  profit  

maximizing form a (nonlinear) system of simultaneous equations, and that the information about 

this endogeneity should, and can, be introduced into the employed econometric model. It has further 

pointed out that the estimation approach of Klump et al. (2007a, 2007b, 2008) and León-Ledesma et 



15 
 

al. (2010a) is invalid and contradictory because it fails to incorporate this knowledge into 

estimation. 
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Table 1. Parameter values for the data generating process 
 

__________________________________________________________________________________________________________________________ 

Parameter Values 
__________________________________________________________________________________________________________________________ 
Substitution elasticity,  0.2, 0.5, 0.7, 0.8, 0.9, 1.3 

Growth rate of capita-augmenting technical progress, K 0.00, 0.005, 0.01, 0.015, 0.02 

Growth rate of labour-augmenting technical progress, L 0.02, 0.015, 0.01, 0.005, 0.00 

Distribution parameter,  0.4 

Labour force growth rate, l 0.015 

Capital stock growth rate, k l + L 

Standard deviations of labour and capital shocks, K, L 0.1 

Std. of capital-augmenting technical progress shock, K 0.01 for K = 0; 0.05 for K  0  

Std. deviation of labour-augmenting technical progress shock, L 0.01 for L = 0; 0.05 for L  0 

Standard deviation of real interest rate shock, r 0.1 

Standard deviation of real wage shock, w 0.05 
__________________________________________________________________________________________________________________________ 

Notes: The number of the Monte Carlo replications is M = 1000, the sample sizes are 50 and 100, 
and K + L = 0.02. 
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Table 2. Monte Carlo results when  is unrestricted and the prior std. 1 = 2 = 1/20. 
 

____________________________________________________________________________________________________________________ 
   = 0.2  = 0.5  = 0.8  = 0.9  = 1.3 
 ___________________________________________________________________________________________________ 

                     The averages of the point estimates (and the associated standard errors) 
___________________________________________________________________________________________________ 

L =0.020 
K = 0.000 

ˆ  0.230 (0.040) 0.502 (0.017) 0.817 (0.046) 0.924 (0.053) 1.310 (0.126) 

Lˆ  0.018 (0.007) 0.020 (0.002) 0.020 (0.005) 0.019 (0.010) 0.020 (0.004) 

Kˆ  -0.001 (0.003) -0.000 (0.001) 0.000 (0.007) 0.002 (0.015) 0.000 (0.006) 

ˆ  1.056 (0.094) 1.020 (0.018) 1.005 (0.005) 1.002 (0.003) 0.994 (0.004) 

13
ˆ  -0.409 (0.651) -0.406 (0.197) 0.156 (0.149) 0.247 (0.138) 0.420 (0.131) 

23
ˆ  -0.884 (0.240) -0.905 (0.028) -0.636 (0.092) -0.509 (0.112) -0.083 (0.173) 

       

L = 0.015 
K = 0.005 

ˆ  0.237 (0.048) 0.502 (0.023) 0.813 (0.046) 0.924 (0.053) 1.304 (0.131) 

Lˆ  0.015 (0.003) 0.015 (0.001) 0.015 (0.004) 0.015 (0.009) 0.015 (0.004) 

Kˆ  0.005 (0.004) 0.005 (0.002) 0.006 (0.007) 0.006 (0.013)   0.005 (0.006) 

ˆ  1.069 (0.064) 1.020 (0.018) 1.005 (0.006) 1.002 (0.003)   0.994 (0.005) 

13
ˆ  -0.337 (0.642) -0.446 (0.187) 0.070 (0.151) 0.211 (0.141) 0.449 (0.127) 

23
ˆ  -0.792 (0.336) -0.861 (0.043) -0.593 (0.105) -0.479 (0.117) -0.095 (0.177) 

       

L = 0.010 
K = 0.010 

ˆ  0.238 (0.046) 0.504 (0.024) 0.814 (0.046) 0.922 (0.051) 1.313 (0.136) 

Lˆ  0.010 (0.004) 0.010 (0.001) 0.010 (0.004) 0.010 (0.008) 0.010 (0.004) 

Kˆ  0.009 (0.003) 0.010 (0.002) 0.011 (0.006) 0.010 (0.012) 0.010 (0.006) 

ˆ  1.076 (0.076) 1.020  (0.017) 1.006 (0.006) 1.002 (0.003) 0.994 (0.006) 

13
ˆ  -0.187 (0.664) -0.440 (0.183) 0.080 (0.147) 0.206 (0.142) 0.462 (0.130) 

23
ˆ  -0.842 (0.295) -0.861 (0.041) -0.599 (0.096) -0.479 (0.117) -0.111 (0.175) 

       

L = 0.005 
K = 0.015 

ˆ  0.246 (0.054) 0.506 (0.026) 0.813 (0.048) 0.922 (0.052) 1.305 (0.128) 

Lˆ  0.006 (0.003) 0.005 (0.001) 0.004 (0.004) 0.006 (0.009) 0.005 (0.005) 

Kˆ  0.014 (0.005) 0.015 (0.002) 0.016 (0.007) 0.014 (0.014) 0.016 (0.006) 

ˆ  1.084 (0.072) 1.023 (0.020) 1.007 (0.007) 1.003 (0.004) 0.993 (0.006) 

13
ˆ  -0.044 (0.679) -0.398 (0.203) 0.070 (0.147) 0.199 (0.142) 0.469 (0.124) 

23
ˆ  -0.875 (0.248) -0.864 (0.043) -0.592 (0.100) -0.473 (0.119) -0.119 (0.171) 

       

L = 0.000 
K = 0.020 

ˆ  0.254 (0.062) 0.505 (0.024) 0.812 (0.046) 0.917 (0.053) 1.310 (0.116) 

Lˆ  -0.001 (0.002) -0.001 (0.001) -0.001 (0.004) 0.001 (0.009) 0.000 (0.004) 

Kˆ  0.017 (0.009) 0.020 (0.003) 0.021 (0.007) 0.019 (0.015) 0.020 (0.006) 

ˆ  1.046 (0.067) 1.019 (0.016) 1.007 (0.008) 1.003 (0.004) 0.991 (0.008) 

13
ˆ  -0.286 (0.614) -0.496 (0.151) 0.055 (0.150) 0.212 (0.134) 0.541 (0.119) 

23
ˆ  -0.857 (0.234) -0.811 (0.056) -0.563 (0.102) -0.488 (0.109) -0.277 (0.158) 

____________________________________________________________________________________________________________________ 

Notes: Substitution elasticity, , growth rate of capita-augmenting technical progress, K, 
growth rate of labour-augmenting technical progress, L, normalization constant, , elements 
of structural form covariance matrix,  = ij, correlation coefficients, jjiiijij . 
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Table 3. Monte Carlo results when  is unrestricted and the prior std. 1 = 2 = 1/10. 
 

____________________________________________________________________________________________________________________ 
   = 0.2  = 0.5  = 0.8  = 0.9  = 1.3 
 ___________________________________________________________________________________________________ 

                     The averages of the point estimates (and the associated standard errors) 
___________________________________________________________________________________________________ 

L = 0.020 
K = 0.000 

ˆ  0.231 (0.041) 0.502 (0.018) 0.818 (0.050) 0.930 (0.052) 1.302 (0.129) 

Lˆ  0.019 (0.006) 0.020 (0.001) 0.020 (0.006) 0.019 (0.015) 0.020 (0.005) 

Kˆ  -0.001 (0.003) -0.000 (0.001) 0.000 (0.008) 0.002 (0.022) 0.000 (0.008) 

ˆ  1.053 (0.088) 1.016 (0.015) 1.005 (0.005) 1.002 (0.003) 0.994 (0.005) 

13
ˆ  -0.420 (0.651) -0.411 (0.191) 0.161 (0.143) 0.250 (0.134) 0.416 (0.130) 

23
ˆ  -0.884 (0.238) -0.904 (0.027) -0.638 (0.098) -0.499 (0.115) -0.087 (0.174) 

       

L = 0.015 
K = 0.005 

ˆ  0.234 (0.043) 0.503 (0.022) 0.819 (0.052) 0.926 (0.052) 1.312 (0.139) 

Lˆ  0.015 (0.004) 0.015 (0.001) 0.015 (0.006) 0.014 (0.014) 0.015 (0.006) 

Kˆ  0.004 (0.004) 0.005 (0.002) 0.006 (0.009) 0.006 (0.021) 0.005 (0.009) 

ˆ  1.071 (0.071) 1.019 (0.017) 1.005 (0.005) 1.002 (0.003) 0.994 (0.005) 

13
ˆ  -0.333 (0.646) -0.449 (0.185) 0.091 (0.150) 0.206 (0.139) 0.460 (0.131) 

23
ˆ  -0.783 (0.342) -0.859 (0.042) -0.597 (0.108) -0.470 (0.117) -0.107 (0.175) 

       

L = 0.010 
K = 0.010 

ˆ  0.239 (0.048) 0.504 (0.023) 0.820 (0.055) 0.930 (0.053) 1.301 (0.126) 

Lˆ  0.010 (0.003) 0.010 (0.001) 0.009 (0.007) 0.010 (0.016) 0.010 (0.005) 

Kˆ  0.009 (0.004) 0.010 (0.002) 0.011 (0.012) 0.010 (0.024) 0.010 (0.008) 

ˆ  1.074 (0.064) 1.022 (0.019) 1.006 (0.006) 1.002 (0.004) 0.994 (0.006) 

13
ˆ  -0.175 (0.656) -0.413 (0.206) 0.077 (0.150) 0.217 (0.139) 0.458 (0.125) 

23
ˆ  -0.849 (0.264) -0.865 (0.043) -0.587 (0.110) -0.473 (0.121) -0.117 (0.167) 

       

L = 0.005 
K = 0.015 

ˆ  0.247 (0.069) 0.506 (0.023) 0.815 (0.047) 0.928 (0.051) 1.302 (0.130) 

Lˆ  0.006 (0.003) 0.005 (0.001) 0.004 (0.005) 0.004 (0.014) 0.004 (0.006) 

Kˆ  0.013 (0.008) 0.015 (0.002) 0.016 (0.008) 0.016 (0.021) 0.016 (0.009) 

ˆ  1.084 (0.074) 1.023 (0.021) 1.007 (0.007) 1.003 (0.004) 0.993 (0.006) 

13
ˆ  -0.070 (0.682) -0.399 (0.203) 0.075 (0.148) 0.204 (0.144) 0.458 (0.129) 

23
ˆ  -0.873 (0.233) -0.864 (0.041) -0.592 (0.103) -0.467 (0.116) -0.118 (0.175) 

       

L = 0.000 
K = 0.020 

ˆ  0.258 (0.066) 0.506 (0.025) 0.815 (0.050) 0.923 (0.051) 1.313 (0.126) 

Lˆ  -0.001 (0.002) -0.001 (0.001) -0.001 (0.005) -0.001 (0.014) -0.001 (0.006) 

Kˆ  0.016 (0.010) 0.020 (0.003) 0.022 (0.009) 0.021 (0.021) 0.021 (0.008) 

ˆ  1.044 (0.068) 1.020 (0.016) 1.007 (0.007) 1.003 (0.004) 0.991 (0.008) 

13
ˆ  -0.283 (0.624) -0.486 (0.152) 0.073 (0.144) 0.211 (0.136) 0.540 (0.109) 

23
ˆ  -0.862 (0.219) -0.808 (0.055) -0.567 (0.103) -0.479 (0.114) -0.275 (0.156) 

____________________________________________________________________________________________________________________ 

Notes: Substitution elasticity, , growth rate of capita-augmenting technical progress, K, 
growth rate of labour-augmenting technical progress, L, normalization constant, , elements 
of structural form covariance matrix,  = ij, correlation coefficients, jjiiijij . 
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Table 4. Monte Carlo results when 12 = 13 = 32 = 0 and the prior std. 1 = 2 = 1/20. 
 

____________________________________________________________________________________________________________________ 
   = 0.2  = 0.5  = 0.8  = 0.9  = 1.3 
 ___________________________________________________________________________________________________ 

                     The averages of the point estimates (and the associated standard errors) 
___________________________________________________________________________________________________ 

L = 0.020 
K = 0.000 

ˆ  0.345 (0.145) 0.554 (0.036) 0.846 (0.047) 0.939 (0.045) 1.242 (0.087) 

Lˆ  0.023 (0.013) 0.020 (0.003) 0.020 (0.006) 0.019 (0.010) 0.020 (0.005) 

Kˆ  0.004 (0.018) 0.001 (0.005) 0.000 (0.009) 0.002 (0.015) -0.000 (0.007) 

ˆ  1.047 (0.032) 1.022 (0.016) 1.006 (0.005) 1.003 (0.003) 0.994 (0.005) 

       

L = 0.015 
K = 0.005 

ˆ  0.375 (0.160) 0.569 (0.042) 0.851 (0.046) 0.941 (0.044) 1.237 (0.087) 

Lˆ  0.017 (0.013) 0.015 (0.003) 0.014 (0.006) 0.014 (0.010) 0.015 (0.005) 

Kˆ  0.013 (0.021) 0.007 (0.006) 0.007 (0.009) 0.007 (0.014) 0.005 (0.007) 

ˆ  1.046 (0.031) 1.022 (0.017) 1.007 (0.007) 1.003 (0.003) 0.994 (0.005) 

       

L = 0.010 
K = 0.010 

ˆ  0.375 (0.151) 0.571 (0.043) 0.852 (0.044) 0.938 (0.045) 1.243 (0.088) 

Lˆ  0.010 (0.009) 0.009 (0.003) 0.008 (0.006) 0.009 (0.010) 0.009 (0.005) 

Kˆ  0.020 (0.021) 0.013 (0.006) 0.013 (0.010) 0.012 (0.015) 0.011 (0.008) 

ˆ  1.05 (0.030) 1.024 (0.018) 1.008 (0.007) 1.003 (0.004) 0.993 (0.006) 

       

L = 0.005 
K = 0.015 

ˆ  0.408 (0.192) 0.571 (0.041) 0.848 (0.044) 0.940 (0.043) 1.240 (0.085) 

Lˆ  0.004 (0.008) 0.004 (0.003) 0.003 (0.006) 0.004 (0.010) 0.003 (0.005) 

Kˆ  0.029 (0.027) 0.019 (0.007) 0.019 (0.010) 0.017 (0.015) 0.017 (0.007) 

ˆ  1.042 (0.030) 1.024 (0.018) 1.009 (0.008) 1.004 (0.004) 0.993 (0.006) 

       

L = 0.000 
K = 0.020 

ˆ  0.382 (0.147) 0.562 (0.035) 0.840 (0.042) 0.932 (0.045) 1.269 (0.093) 

Lˆ  -0.001 (0.007) -0.001 (0.002) -0.002 (0.006) -0.001 (0.010) -0.001 (0.005) 

Kˆ  0.030 (0.021) 0.024 (0.005) 0.024 (0.009) 0.021 (0.016) 0.021 (0.007) 

ˆ  1.036 (0.028) 1.025 (0.016) 1.009 (0.008) 1.004 (0.004) 0.991 (0.008) 
____________________________________________________________________________________________________________________ 

Notes: Substitution elasticity, , growth rate of capita-augmenting technical progress, K, 
growth rate of labour-augmenting technical progress, L, normalization constant, , elements 
of structural form covariance matrix,  = ij. 
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Table 5. Monte Carlo results when 12 = 13 = 32 = 0 and the prior std. 1 = 2 = 1/10. 
 

____________________________________________________________________________________________________________________ 
   = 0.2  = 0.5  = 0.8  = 0.9  = 1.3 
 ___________________________________________________________________________________________________ 

                     The averages of the point estimates (and the associated standard errors) 
___________________________________________________________________________________________________ 

L = 0.020 
K = 0.000 

ˆ  0.362 (0.165) 0.556 (0.038) 0.848 (0.051) 0.942 (0.048) 1.241 (0.090) 

Lˆ  0.023 (0.015) 0.020 (0.003) 0.020 (0.008) 0.019 (0.017) 0.020 (0.006) 

Kˆ  0.007 (0.026) 0.001 (0.005) 0.000 (0.012) 0.002 (0.025) -0.001 (0.009) 

ˆ  1.044 (0.029) 1.022 (0.017) 1.006 (0.005) 1.003 (0.004) 0.994 (0.006) 

       

L = 0.015 
K = 0.005 

ˆ  0.369 (0.166) 0.572 (0.043) 0.853 (0.048) 0.943 (0.045) 1.236 (0.084) 

Lˆ  0.017 (0.013) 0.015 (0.004) 0.014 (0.008) 0.014 (0.017) 0.014 (0.007) 

Kˆ  0.014 (0.028) 0.007 (0.006) 0.007 (0.012) 0.006 (0.025) 0.006 (0.010) 

ˆ  1.047 (0.032) 1.023 (0.017) 1.007 (0.006) 1.004 (0.004) 0.994 (0.005) 

       

L = 0.010 
K = 0.010 

ˆ  0.378 (0.162) 0.571 (0.042) 0.851 (0.047) 0.942 (0.044) 1.236 (0.089) 

Lˆ  0.010 (0.011) 0.009 (0.004) 0.009 (0.008) 0.009 (0.017) 0.009 (0.007) 

Kˆ  0.021 (0.029) 0.013 (0.007) 0.013 (0.013) 0.013 (0.026) 0.011 (0.011) 

ˆ  1.045 (0.033) 1.023 (0.017) 1.007 (0.007) 1.004 (0.005) 0.993 (0.006) 

       

L = 0.005 
K = 0.015 

ˆ  0.408 (0.179) 0.575 (0.047) 0.852 (0.046) 0.940 (0.042) 1.239 (0.088) 

Lˆ  0.004 (0.010) 0.004 (0.003) 0.002 (0.009) 0.003 (0.017) 0.004 (0.006) 

Kˆ  0.031 (0.033) 0.019 (0.008) 0.020 (0.014) 0.019 (0.026) 0.016 (0.009) 

ˆ  1.041 (0.028) 1.025 (0.017) 1.009 (0.008) 1.004 (0.005) 0.992 (0.007) 

       

L = 0.000; 
K = 0.020 

ˆ  0.378 (0.153) 0.562 (0.035) 0.843  (0.047) 0.937 (0.048) 1.265 (0.090) 

Lˆ  -0.001 (0.008) -0.001 (0.002) -0.003 (0.007) -0.003 (0.014) -0.001 (0.006) 

Kˆ  0.030 (0.027) 0.024 (0.005) 0.026 (0.011) 0.025 (0.022) 0.021 (0.008) 

ˆ  1.038 (0.029) 1.024 (0.016) 1.009  (0.008) 1.004  (0.005) 0.992 (0.007) 
____________________________________________________________________________________________________________________ 

Notes: Substitution elasticity, , growth rate of capita-augmenting technical progress, K, 
growth rate of labour-augmenting technical progress, L, normalization constant, , elements 
of structural form covariance matrix,  = ij. 
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Figure 1. The distributions of the point estimates of the substitution elasticity  (solid lines for the unrestricted structural 

form covariance matrix ; dotted lines for 12 = 13 = 32 = 0, where ij are the elements of ).   
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Figure 2. The distributions of the point estimates of the growth rate of labour-augmenting technical progress, L, (solid 

lines for the unrestricted structural form covariance matrix ; dotted lines for 12 = 13 = 32 =  0,  where  ij are the 

elements of ). 
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Figure 3. The distributions of the point estimates of the growth rate of capital-augmenting technical progress, K, (solid 

lines for the unrestricted structural form covariance matrix ; dotted lines for 12 = 13 = 32 =  0,  where  ij are the 

elements of ). 
 

 

 

 

 

 

 

 



24 
 

References 

 

Chetty, V. K. and Ulaganathan Sankar. 1969. ‘Bayesian estimation of the CES production function’ 

The Review of Economic Studies, 36(3) : 289–94. 

 

Chirinko, Robert S. 2008. ‘ : The long and short of it’, Journal of Macroeconomics, 30(2): 671–

686. 

 

de La Grandville, Oliver. 1989. ‘In quest of the slutsky diamond’, American Economic Review, 

79(3): 468–481. 

 

Kleibergen, Frank and Herman K. van Dijk. 1998. ‘Bayesian Simultaneous Equations Analysis 

Using Reduced Rank Structures’, Econometric Theory, 14: 701–743. 

 

Klump, Rainer and Oliver de La Grandville. 2000. ‘Economic growth and the elasticity of 

substitution: two theorems and some suggestions’, American Economic Review, 90(1): 282–291. 

 

Klump, Rainer and Harald Preissler. 2000. ‘CES production functions and economic growth’, 

Scandinavian Journal of Economics, 102(1): 41–56. 

 

Klump, Rainer, Peter McAdam, and Alpo Willman. 2007a. ‘Factor substitution and factor 

augmenting technical progress in the US: A normalized supply-side system approach’, The Review 

of Economics and Statistics, 89(1): 183–192. 

 

Klump, Rainer, Peter McAdam, and Alpo Willman. 2007b. The Long-Term SucCESs of the Neo-

Classical Growth Model. Oxford Review of Economic Policy, 23(1): 94–114. 

 

Klump, Rainer, Peter McAdam, and Alpo Willman. 2008. ‘Unwrapping some Euro Area Growth 

Puzzles: Factor Substitution, Productivity and Unemployment’, Journal of Macroeconomics, 30(2): 

645–666. 

 

Klump, Rainer, Peter McAdam, and Alpo Willman. 2011. ‘The Normalized CES Production 

Function, Theory and Empirics’, ECP Working Paper No. 1294. 

 



25 
 

Koop, Gary. 2003. Bayesian Econometrics, Chichester, UK: Wiley. 

 

Koop, Gary, Rodney W. Strachan, Herman K. van Dijk, and Mattias Villani. 2005. ‘Bayesian 

approaches to cointegratrion’, Erasmus University Rotterdam, Econometric Institute, Econometric 

Institute Report EI 2005-13. 

 

Lancaster, Tony. 2004. An Introduction to Modern Bayesian Econometrics, Oxford, UK: Blackwell. 

 

Leon-Ledesma, Miguel A., Peter McAdam, and Alpo Willman. 2010a. ‘Identifying the Elasticity of 

Substitution with Biased Technical Change’, American Economic Review, 100(4): 1330–1357. 

 

Leon-Ledesma, Miguel A., Peter McAdam, and Alpo Willman. 2010b. ‘In Dubio pro CES Supply 

Estimation with Mis-specified Technical Change’, European Central Bank, ECB Working Paper 

No. 1175. 

 

McAdam, Peter and Alpo Willman. 2011. ‘Technology, Utilization and Inflation: Re-assessing the 

New Keynesian Fundament’, European Central Bank, ECB Working Paper forthcoming. 

 

Zellner, Arnold 1971. An introduction to Bayesian inference in econometrics, New York: John 

Wiley and Sons. 


	DP336_cover_luoto
	DP336_body_luoto
	~WZ608


