
Distribution-aware compressed full-text indexes?

Paolo Ferragina1, Jouni Sirén2, and Rossano Venturini3

1 Dept. of Computer Science, Univ. of Pisa. ferragina@di.unipi.it
2 Dept. of Computer Science, Univ. of Helsinki. jltsiren@cs.helsinki.fi

3 ISTI-CNR, Pisa. rossano.venturini@isti.cnr.it

Abstract. In this paper we address the problem of building a com-
pressed self-index that, given a distribution for the pattern queries and
a bound on the space occupancy, minimizes the expected query-time
within that index-space bound. We solve this problem by exploiting a
reduction to the problem of finding a minimum weight K-link path in a
particular Directed Acyclic Graph. Interestingly enough, our solution is
independent of the underlying compressed index in use. Our experiments
compare this optimal strategy with several other standard approaches,
showing its effectiveness in practice.

1 Introduction

String processing and searching tasks are at the core of modern web search, IR,
data base and data mining applications. Most of text manipulations required by
these applications involve, sooner or later, searching those (long) texts for (short)
patterns or accessing portions of those texts for subsequent processing/mining
tasks. Despite the increase in processing speeds of current CPUs and memo-
ries/disks, sequential text searching long ago ceased to be a viable approach,
and indexed text searching has became mandatory.

Data compression and indexing seem “opposite approaches” because the for-
mer aims at removing data redundancies, whereas the latter introduces extra
data in the index to support faster operations. This dichotomy was successfully
addressed starting from the year 2000 [4, 7], due to various scientific achievements
that showed how to relate Information Theory with String-Matching concepts,
in a way that index regularities that show up when data is compressible are
discovered and exploited to reduce index occupancy without impairing query
efficiency (see the surveys [11, 3] and references therein). The net result has been
the design of compressed data structures for indexing texts (aka compressed in-
dexes, or compressed and searchable data formats) that take space close to the
kth order entropy of the input text, and support the powerful substring queries
and the extraction of arbitrary portions of data. Due to this latter feature, these
data structures are sometime called self-indexes.

? This work was partially supported by EU-PSP-BPN-250527 (ASSETS), POR-FESR
2007-2013 No 63748 (VISITO Tuscany) projects, MIUR of Italy under project
PRIN MadWeb 2008, the Finnish Doctoral Programme in Computational Sciences,
Academy of Finland (project 1140727), and the Nokia Foundation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14921643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

As experimentally shown in [3, 5], these self-indexes are very space-efficient
(close to best known compressors), and most of them are particularly fast in
counting the number of occurrences of the input pattern. Their bottleneck is in
the Locate queries, which are roughly between two and three order of magnitude
slower than what is achievable with the classic Suffix Array data structure. Also
the Extract operation is quite slow compared with other compression methods for
sufficiently long decompressed portions. In addition, for Locate and Extract, these
indexes need to store some extra information that induces a trade-off between
space and time efficiency: the larger is this extra space, the faster is the resulting
index. At high level, the extra information is obtained by sampling entries of
the suffix array at regular distance sSA. This parameter governs the space/time
trade-off, because on one hand, each occurrence of the searched pattern is located
in at most sSA steps; but on the other hand, the space required is O(n logn

sSA
) bits,

where n is the length of the indexed text.

Even though the last years have seen a proliferation of different compressed
full text indexes [11, 3], the above sampling strategy has remained almost un-
changed since the very first proposals. This strategy implicitly assumes all text
positions to have uniform probability of being located or extracted. But uniform
distributions are rare in practice, where we often observe (very) skewed distri-
butions. For example, it is well-known that requests in IR or database systems
are drawn accordingly to power law or Zipfian distributions (e.g. see [14] and
references therein).

Given these premises we address in this paper the following question: Is it
possible to build a distribution-aware compressed self-index that optimizes the
expected query-time by occupying a given space? Namely, given the distribution
of the subsequent queries and a bound on the space occupancy, the goal is to find
a sampling strategy that induces that space bound and minimizes the expected
time required for solving Locate/Extract queries drawn accordingly to the input
distribution. We solve this problem by exploiting a reduction to the problem of
finding a minimum weight K-link path in a particular Directed Acyclic Graph
(DAG) (Section 3). Interestingly enough, our solution provides a way to opti-
mally select a set of sampled positions that could be blindly used by mostly
known compressed indexes without changing their Locate/Extract algorithms.

In the experimental section (Section 4) we compare our optimal sampling
strategy against several other strategies over two large datasets of HTML pages
and XML documents. The experiments were performed by using RLCSA, which
is an implementation of Compressed Suffix Array (Csa). Although restricted to
this single index, our experiments quantify some measures that are independent
on the particular implementation of a compressed index, and thus can be adopted
to extrapolate conclusions for other indexes as well. Overall we show that our
optimal sampling is from 4 to 10 times faster than regular sampling. We also
compare our optimal strategy against two heuristic approaches, showing that
ours is up to a factor 2.5 faster. One of them is the immediate strategy that
”caches” the most probably accessed positions. This heuristic can be poor both in
theory and in practice due to the fact that it does not consider interdependencies

among sampled positions induced by Locate and Extract algorithms. Roughly
speaking, in many circumstances it is more convenient to sample a position
whose access probability is not among the top, provided that it is followed by
positions having sufficiently high access probabilities. Discovering all these cases
is a peculiarity of our optimal solution. These considerations are explained more
formally in Section 4, where we quantify also the impact of the various heuristics
by performing a significant set of experiments.

2 Background

The large space occupancy of (classical) full-text indexes, like Suffix Tree and
Suffix Array, has driven researchers to design the so-called compressed full-text
indexes. These indexes deploy algorithmic techniques and mathematical tools
that lie at the crossing point of three distinct fields: data compression, data struc-
tures and databases (see e.g. [4, 7, 11, 3]). Most of these indexes can be classified
into two families — namely, FM-indexes (Fmi) and Compressed Suffix Arrays (Csa)
— and achieve efficient query times and space close to the one achievable by the
best known compressors. In theory, these indexes require O(nHk(T))+o(n log σ)
bits of space, where Hk(T) is the kth order empirical entropy of text T of length
n, and σ is the alphabet size. This bound is appealing because it can be sub-
linear in n log σ for highly compressible texts. We recall that nHk(T) is the
classic Information-Theoretic lower bound to the storage complexity of T by
means of any k-th order compressor (see e.g. [10] for more details). In addition
to being compressed, the index is able to efficiently support the following three
operations:

– Count(P [1, p]) returns the number of occurrences of pattern P in the text;
– Locate(P [1, p]) returns the starting positions of all occurrences of pattern P

in the text;
– Extract(l, r) extracts the substring T [l, r].

2.1 The FM-index family

These compressed indexes were introduced by Ferragina and Manzini in [4], who
devised a way to utilize the relation between the suffix array data structure and
the Burrows-Wheeler Transform (shortly, Bwt [2]) in efficient time and space.
The Bwt is a reversible transformation that permutes the symbols of the input
string T into a new string L = Bwt(T) that is easier to compress. This permuta-
tion is the last column of a conceptual matrix M(T) whose rows are the cyclic
rotations of string T$ in lexicographic order.

It is well-known that the original text T can be obtained backwards from
L by resorting to a function LF that maps row indexes to row indexes, and is
defined as follows [4]: if the Bwt maps T [j − 1] to L[i′] and T [j] to L[i], then
LF (i) = i′ (so LF implements a sort of backward step over T). Now, since the
first row of M(T) is $T , it can be stated that T [n] = L[0] and, in general,
T [n− i] = L[LF i(0)], for i = 1, . . . , n− 1.

Ferragina and Manzini [4] proposed a way to combine the compressibility of
the Bwt with the indexing power of the suffix array. In particular, showed that
searching operations on T can be reduced to counting queries of single symbols
in L, now called rank operations. For any symbol c ∈ Σ and position i in L,
the query rankc(L, i) returns how many times the symbol c appears in L[1, i].
An FM-index then consists of three key tools: a compressed representation of
Bwt(T) that supports efficient rank queries, a small array C[c] that tells how
many symbols smaller than c appear in T (this takes O(σ log n) bits), and the so
called backward search algorithm that implements the Count query by using the
two structures. More precisely, Fmi searches the pattern P [1, p] backwards in p
steps, which eventually identify the interval of text suffixes that are prefixed by
P or, equivalently, the interval of rows of M(T) that are prefixed by P . This is
done by maintaining, inductively for i = p, p− 1, . . . , 1, the interval SA[spi, epi]
that stores all text suffixes that are prefixed by the pattern suffix P [i, p]. The
final interval SA[sp1, ep1], if any, corresponds to all the suffixes that are prefixed
by the pattern P [1, p]. Thus, Count(P) can be solved by returning the value
occ = ep1 − sp1 + 1. Since each of the above steps requires the computation of
two rank queries over the strings L, O(p) ranks suffice to count the number of
occurrences of any pattern P .

In practice, there are various implementations of Fmi, with their main dif-
ferences in the way the rank-data structure built on Bwt(T) is compressed. The
site Pizza&Chili4 has several implementations of Fmi that mainly boil down to
the following trick: Bwt(T) is split into blocks (of equal or variable length) and
values of rankc are precomputed for all block beginnings and all symbols c ∈ Σ.
A query rankc(L, i) is solved by summing up the answer available for the begin-
ning of the block that contains L[i], plus the rest of the occurrences of c in that
block — they are obtained either by sequentially decompressing the block or by
using a proper compressed data structure built on it (e.g. the Wavelet Tree of
[6]). The former approach favors compression, the latter favors query speed.

2.2 The CSA family

These compressed indexes were introduced by Grossi and Vitter [7], who showed
how to compactly represent the suffix array SA in O(n log σ) bits and still be
able to access any of its entries efficiently. Their solution is based on a function
Ψ , which is the inverse of the function LF introduced for Bwt:

Ψ(i) =

{
i′ such that SA[i′] = SA[i] + 1 (if SA[i] < n)
i′ such that SA[i′] = 1 (if SA[i] = n)

In other words, Ψ(i) refers to the position in the suffix array of the text suf-
fix that follows SA[i] in T , namely, the text suffix which is one symbol shorter.
Grossi and Vitter show how to hierarchically decompose the suffix array SA in
order to obtain its succinct representation that still permits to perform search-
ing operation on it. In their construction they exploit the piecewise increasing

4 http://pizzachili.dcc.uchile.cl/ or http://pizzachili.di.unipi.it/.

property of Ψ — namely that Ψ(i) < Ψ(i + 1) if T [SA[i]] = T [SA[i + 1]] — to
represent the suffix array within O(n log σ) bits. The index must keep the origi-
nal text in a non-compressed form to explicitly compare symbols of the text and
the pattern during the searches.

This drawback has been overcome by two subsequent improvements. The first
one, due to Sadakane [12], showed that the original text T can be replaced with
a binary vector F such that F [i] = 1 iff the first symbol of the suffixes SA[i− 1]
and SA[i] differs. Since the suffixes in SA are lexicographically sorted, one can
determine the first symbol of any suffix in constant time by just executing a
rank1 query on F . This fact, combined with the retrieval of Ψ ’s values in constant
time, allows to compare any suffix with the searched pattern P [1, p] in O(p) time.
Sadakane also provided an improved representation for Ψ achieving nH0(T) bits.
Theoretically, the best variant of Csa is due to Grossi, Gupta and Vitter [6] who
used some further structural properties of Ψ to get close to nHk(T) bits, still
preserving the previous time complexity.

In practice, one of the best implementation of the Csa is the one proposed
by Sadakane. It does not use the hierarchical decomposition, but orchestrates a
compact representation of the function Ψ together with the backward search of
the Fmi family.

2.3 Locate and Extract queries

Even though in the last years we have seen a proliferation of different compressed
full text indexes [11, 3], Locate and Extract strategies remain almost unchanged
since the very first proposals. At a high level, the idea consists in storing the
relation between text positions and indexes in the suffix array of some sampled
positions of the original text. Recall that Locate(P) requires to return the po-
sition pos(i) = SA[i] of any suffix i, while Extract(l, r) extracts the substring
T [l, r]. Locate is solved by starting from the ith suffix and by going backward
or forward in the text by means of LF or Ψ functions. The procedure stops
whenever a sampled position is found. Extract(l, r) is solved with a Fmi by start-
ing from the sampled position closest to r and extracting the substring T [l, r]
bacwards symbol by symbol. The same strategy is used in Csa, except that we
proceed forward starting from the sampled position closest to l.

Algorithm Fmi-Locate(i) Algorithm Csa-Locate(i)

i′ ← i, t← 0; i′ ← i, t← 0;
while SA[i′] is not explicitly stored do while SA[i′] is not explicitly stored do

i′ ← LF (i′); i′ ← Ψ(i′);
t← t+ 1; t← t+ 1;

return SA[i′] + t; return SA[i′] − t;

Fig. 1. Algorithms for locating the row with index i in Fmi and Csa.

The Locate algorithm of Fmi and (a practical implementation of) Csa is shown
in Fig. 1. This algorithm is used to obtain the position in the text of the suffix
that prefixes the ith row of M(T). As we said, the basic idea is to logically
mark a suitable set of rows of M(T), and keep for each of them their position
in T (that is, we store the corresponding SA values). Then, Locate(i) scans the
text T backward using the LF-mapping, until a sampled row i′ is found, and
reports SA[i′] + t, where t is the number of backward steps used to find such
i′. Csa works by going forward in the text by using Ψ function. To compute the
positions of all occurrences of a pattern P , it is thus enough to call Locate(i) for
all rows identified by the Count(P) operation.

The sampling rate of M(T)’s rows, hereafter denoted by sSA, is a crucial
parameter that trades space for query time. Most Fmi and Csa implementations
[3] sample all the SA[i] that are a multiple of sSA. This guarantees that at most
sSA steps of LF (or Ψ) suffice for locating the text position of any occurrence.
The extra space required to store these positions is O(n logn

sSA
) bits. In addition

to these positions, we need to store a data structure that is able to, given a
row, tell us if the row is sampled and, in that case, return its position in the
text. An immediate solution resorts to a bitmap B[1, n] whose ith entry is 1 iff
the ith row is sampled. Then, all the sampled SA[i]s are stored contiguously in
suffix array order, so that if B[i] = 1 then one finds the corresponding SA[i]
at position rank1(B, i) in that contiguous storage. In this case the extra space
becomes n logn

sSA
+n+o(n) bits. There exist other more space efficient, but probably

less practical, solutions. For example, one could resort to Minimal Perfect Hash
functions [8]: we create a perfect hash function for the set of marked rows having
their positions as satellite data. In this case the extra space is O(n logn

sSA
) bits.

For our discussion it is more convenient to sample text positions instead of
sampling rows of matrixM(T). Since there is one-to-one correspondence between
M(T)’s rows and text’s positions, the problem of sampling positions is exactly
the same as the problem of sampling rows.

The algorithm for Extract(l, r) resorts to a similar approach. Each query takes
no more than (r− l+sSA+1) rank queries: at most sSA rank queries are required
to reach r starting from the closest sampled position, and r − l + 1 queries are
required to extract the substring T [l, r] symbol by symbol.

The net result is that the space and time complexities of Fmi and Csa depend
on the value sSA and on the performance guaranteed by the data structure used
to compute rank queries on the Bwt-string. The extra space required by the best
(theoretical) data structures added to support Locate and Extract is bounded by
O((n log n)/sSA) bits, which is o(n) whenever sSA is large enough.

3 Optimal distribution-aware Locate and Extract

The problem we address in this paper is defined as follows. We assume that,
for any position j of the input text T , we know the probability Pr(j) that the
position j will be located (i.e., the probability that we search a pattern P which
is a prefix of the jth suffix of T). We have the user defined parameter sSA

that specifies the amount of the space that we can use to store information
regarding sampled positions. Our aim is that of identifying a optimal set of
sampled positions P∗ of size K = n/sA that allows us to minimize the expected
time required to solve Locate queries. The expected time is given by

E[P∗] =

n∑
j=1

Pr(j) · c(j,P∗)

where c(j,P∗) is the cost (e.g., time or number of backward steps) required to
reach the first sampled position in P∗, say i, that precedes j in T . We call this
problem the distribution-aware optimal sampling problem.

We observe that there are several different ways to define c(j,P). For exam-
ple, by setting c(j,P) = j − i, we are simply counting the number of backward
steps required to reach position i from j. This implies that we are implicitly
assuming that all the backward steps have the same cost (in terms of CPU us-
age). Or one could refine the measure by setting c(j,P) to be the sum of the real
cost of the backward steps required to reach position i from j. To simplify the
discussion we will use the first cost type.

We can address the problem of optimally sampling positions for Extract
queries by changing the cost function c(). In this case, Pr(j) is the probabil-
ity of extracting a substring that starts at position i and c(j,P) is the cost of
reaching position j starting from the first sampled position in P that follows j.

The discussion above implicitly assumes that we are dealing with a Fmi. As a
Csa scans the text forward in Locate, and starts from the closest sampled position
before the substring in Extract, the cost functions are used in the opposite way.

3.1 On finding a minimum weight K-link path over a DAG

The Distribution Optimal Sampling Problem can be reduced to the problem of
finding a minimum weight K-link path [1, 13] in a particular Directed Acyclic
Graph (DAG) GR. Given a weighted DAG GR and a parameter K, the problem
of finding a minimum weight K-link asks to identify a path from v1 to vn+1

consisting of exactly K edges, whose cost is the minimum among all such paths.
In our solution the graph GR has a vertex for each text position denoted

v1, v2, . . . , vn plus a dummy vertex vn+1 that marks the end of the text. For any
pair of positions i and j such that 1 ≤ i < j ≤ n + 1, we have an edge (vi, vj),

whose cost w(i, j) is equal to
∑j−1
l=i Pr(l) · (l− i). Intuitively, w(i, j) accounts the

part of expected cost for locating positions between i and j − 1, assuming that
i is the only sampled position among them.

Efficient solutions for the problem of computing a minimum weight K-link
path have been provided in literature [1, 13], if the DAG satisfies the so-called
concave Monge condition.

Definition 1. A weighted DAG G satisfies the concave Monge condition if

w(i, j) + w(i+ 1, j + 1) ≤ w(i, j + 1) + w(i+ 1, j)

holds for all 1 < i+ 1 < j < n.

Lemma 1. The DAG GR satisfies the concave Monge condition.

The best known solutions for the computation of a minimum weight K-link
path on a DAG satisfying the concave Monge condition are summarized in the
following Theorems (Proved in [1] and [13]).

Theorem 1. Given a DAG G satisfying the concave Monge condition and whose
weights are integers, a minimum weight K-link path in G, for any K, can be
computed in O(n logU) time, where U is the maximum absolute value of the
weights.

Theorem 1 provides a weakly polynomial algorithm for the problem, which
suffices for most of the interesting cases in practice. In fact, the probabilities
of locating positions are typically frequencies derived by observing queries in a
query-log of total length, say, m. Thus, we can label the edges of GR with integral
weights by appropriately multiplying each of these frequencies by m. In this way,
the factor logU in the time complexity of Theorem 1 is O(log n + logm). For
completeness, we notice that there exists also a solution whose time complexity
is independent of the weights.

Theorem 2. Given a DAG G satisfying the concave Monge condition, a mini-
mum weight K-link path in G can be computed in O(nKε) time for K = Ω(log n)
and any fixed ε.

4 Experiments

We implemented our Optimal sampling strategy by resorting to the algorithm
of Theorem 1. The algorithm uses binary search to find an adjustment Q, such
that GR has a minimum weight path from v1 to vn+1 with n/sSA edges, when
Q is added to all edge weights. That path is then a minimum-weight n/sSA-link
path in GR. For each candidate of Q, we search for the shortest and the longest
minimum-weight paths. If n/sSA falls between the extremes, then a n/sSA-link
path can be built by combining the shortest and the longest paths. As we use a
simple O(n log n)-time algorithm [9] for finding the minimum-weight paths, the
overall time bound is O(n log n logU). In practice, the bound is quite pessimistic.

In addition to our Optimal sampling strategy, we implemented three other
strategies. Regular sampling is the classical strategy that samples one out of every
sSA positions. Greedy sampling selects n/sSA text positions with the largest
access probabilities. HalfGreedy first uses regular sampling with rate 2sSA, and
then greedily selects n/(2sSA) of the remaining positions.

Before presenting experimental results about these approaches, it is worth to
compare the behavior of these strategies for their worst-case distribution with
respect to our Optimal strategy. We present these considerations just for Locate,
since similar bounds hold for Extract too.

The worst distribution for Regular is clearly the one in which there are n/sSA
positions with probability sSA/n, while the others have chance 0 of being located.

Each of these positions follows one of the positions that have been sampled by
Regular. Thus, the expected time to solve a locate is O(sSA). Clearly, Optimal
strategy achieves expected time equal to O(1) by simply sampling all the posi-
tions having a positive probability.

Greedy is much worse. Consider the following distribution: each of the first
n/sSA positions of the text has probability sSA

n−1 , while the last n/sSA positions
have probability sSA

n+1 . Greedy wrongly selects the first n/sSA positions, leaving
a large part of the text unsampled. Thus its expected time is at least Θ(n −
n/sSA).5 On this distribution Optimal performs much better by sampling every
other position with positive probability. In this way, it achieves an expected time
of O(1). As far as HalfGreedy is concerned, we observe that its worst expected
time is 2sSA, and this is obtained by using a distribution which is a mixture of
the ones used for Regular and Greedy.

The distributions above are specifically designed to highlight the drawbacks
of the other strategies. In the remaining part of the section we experimentally
compare these strategies on real datasets and with real query-distributions. As
we will see, even in this practical setting, Optimal provides a less impressive but
yet significant improvement. The different sampling strategies have been plugged
in the compressed index RLCSA6.

The implementation was written in C++ and compiled on g++ version 4.3.3.
Experiments were done on a system with 32 gigabytes of memory and two quad-
core Intel Xeon E5540 processors running at 2.53 GHz (we used only one core).
The system was running Ubuntu 10.04 with Linux kernel 2.6.32. As the optimal
sampling requires about 28n bytes of memory for a text of length n, we had to
use another system with more memory for constructing some of the indexes.

We use two large datasets in the experiments. Html Pages is a 1.24-gigabyte
set of web pages obtained by downloading the first 5 Yahoo! search results for
all query terms with at least 100 occurrences in a MSN query log. dblp contains
the DBLP Computer Science Bibliography7 in XML format, for a total size of
813 megabytes. Both datasets were downloaded in March 2011.

The set of patterns to be searched for Html Pages was constructed by se-
lecting all terms from the MSN query log and by removing stop words. Each
pattern was associated the number of its occurrences in the query log. For dblp,
we built a synthetic set of patterns obtained by selecting all author names and
all non-stop word terms appearing in paper titles. Each term has associated a
number of occurrences that is taken from the previous set of patterns. From the
two sets of patterns, we computed the access frequency of each position of the
text as follows. For position i, we set its frequency to be the sum of the number
of occurrences of those patterns that are prefixes of suffix T [i, n]. The frequen-
cies of all positions (suffixes) are plotted in Figure 2 after they have been sorted
decreasingly.

5 Notice that at least n− 2n/sSA steps are required to locate each of the last n/sSA

positions.
6 Available at http://www.cs.helsinki.fi/group/suds/rlcsa/.
7 http://dblp.uni-trier.de/db/

1e+01 1e+03 1e+05 1e+07 1e+09

0
50

00
0

10
00

00
15

00
00

20
00

00

Suffixes sorted by frequency

F
re

qu
en

cy

1e+01 1e+03 1e+05 1e+07 1e+09

0
50

00
0

10
00

00
15

00
00

20
00

00

Suffixes sorted by frequency

F
re

qu
en

cy

Fig. 2. Distributions of position access frequencies for Html Pages (left) and dblp

(right).

Html Pages dblp

sSA Regular HalfGreedy Greedy Optimal Regular HalfGreedy Greedy Optimal

16 7.5 0.7 0.2 0.1 7.5 0.15 0.005 0.004
32 15.5 4.7 3.0 0.9 15.5 1.2 0.6 0.3
64 31.5 13.9 42.5 4.2 31.5 7.2 4.4 1.9
128 63.5 43.0 104.2 14.7 63.5 26.0 31.4 8.9

Table 1. Average number of LF or Ψ steps required to locate pattern occurrences
depending on value of sSA and sampling strategy in use.

For our experiments, we built RLCSA with sSA = {16, 32, 64, 128} for both
datasets. We searched for 10, 000 patterns randomly selected accordingly to the
previously constructed query distributions for a total of about 187.3 million
located positions for Html Pages and about 276.6 million positions for dblp.
We also extracted snippets of length 16, 32, and 64 from 1, 000, 000 randomly
selected positions according to position frequencies. In addition to measuring the
number of located positions and extracted characters per second (Figure 3), we
also determined the average number of LF/Ψ steps required to find a sampled
position (see Table 1).

All distribution-aware strategies performed similarly in Locate with low val-
ues of sSA, being almost 8 times faster than Regular. This behavior is due to the
fact that, for small values of sSA, the distribution-aware strategies are able to
sample most of the positions with positive frequencies. With larger sSA, Optimal
retained its lead, while Greedy and HalfGreedy became worse. The highest gain
of Optimal w.r.t. to Regular is obtained for sSA = 32 (factors 8.4 and 10.1 for
Html Pages and dblp respectively) while the lowest is obtained for sSA = 128
(factors 5.6 and 4.4 respectively). In Extract, Optimal is roughly twice faster than
the other strategies. The gain is limited due to the fact that, in any case, Ex-

Html Pages dblp

●
● ● ●

Sample rate

M
ill

io
ns

 o
f o

cc
ur

re
nc

es
 /

se
co

nd

16 32 64 128

0.
0

0.
5

1.
0

1.
5

2.
0

● Regular
Optimal
Greedy
HalfGreedy

●
●

● ●

Sample rate

M
ill

io
ns

 o
f o

cc
ur

re
nc

es
 /

se
co

nd

16 32 64 128

0.
0

0.
5

1.
0

1.
5

2.
0

●

●

●

Extract length

M
ill

io
ns

 o
f c

ha
ra

ct
er

s
/ s

ec
on

d

16 32 64

0.
0

0.
5

1.
0

1.
5

2.
0

●

●

●

Extract length

M
ill

io
ns

 o
f c

ha
ra

ct
er

s
/ s

ec
on

d

16 32 64

0.
0

0.
5

1.
0

1.
5

2.
0

Fig. 3. Experimental results for Html Pages (left) and dblp (right). Locate performance
(top) and Extract performance with sSA = 128 (bottom).

tract requires c steps to extract c symbols after finding a sampled position. We
observed an odd result for sSA = 16 on dblp where HalfGreedy is slightly better
than Optimal. This is due to the last step of Locate algorithm that checks if the
current row index is sampled or not. Whenever the average number of LF/Ψ
steps is close to 0, the cost of this step becomes dominant. This step is usually
performed by resorting to rank/select queries over a bit vector. In the current
implementation of RLCSA, the time cost of this operation may slightly vary
depending on the underlying bit vector. In the final version of the paper, we will
investigate the possibility of designing more suitable solutions for this step as
well as compare other implementations of compressed indexes.

5 Future work

In this paper we addressed the problem of designing distribution-aware com-
pressed full-text indexes. We showed that an optimal selection of positions can
be computed efficiently in time and space when the distribution of subsequent
queries is known beforehand. The advantage at query time is between 4–10 times
better than the classical approach to Locate. In case of Extract the advantage is
reduced to 2.

An interesting open problem asks for designing distribution-aware compressed
indexes that are able to self-adapt themselves to the unknown distribution of
queries. We believe that the field of compressed data structures could benefit a
lot by following this line of research.

References

1. A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum-weight k-link
path graphs with the concae monge property and applications. Discrete & Com-
putational Geometry, 12:263–280, 1994.

2. M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

3. P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes:
From theory to practice. ACM Journal of Experimental Algorithmics, 13, 2008.

4. P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005.

5. P. Ferragina and G. Manzini. On compressing the textual web. In WSDM, pages
391–400, 2010.

6. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–
850, 2003.

7. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In Proc. of the 32nd ACM Symposium on
Theory of Computing, pages 397–406, 2000.

8. T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal
space. In STACS, pages 317–326, 2001.

9. D. S. Hirschberg and L. L. Larmore. The least weight subsequence problem. SIAM
Journal on Computing, 16(4):628–638, 1987.

10. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

11. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1), 2007.

12. K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J.
Algorithms, 48(2):294–313, 2003.

13. B. Schieber. Computing a minimum weight k-link path in graphs with the concave
monge property. J. Algorithms, 29(2):204–222, 1998.

14. F. Silvestri. Mining query logs: Turning search usage data into knowledge. Foun-
dations and Trends in Information Retrieval, 4(1-2):1–174, 2010.

