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Ct   cycle treshold 

D-MEM  Dulbecco’s modified Eagle’s medium 

DNA   deoxyribonucleic acid 

EGF   epidermal growth factor 

EMT   epithelial-mesenchymal transition 

ERM   Ezrin-Radixin-Moesin 

FAK   focal adhesion kinase 

FCS   foetal calf serum 

GO   gene ontology 

HLA   human leukocyte antigen 

HPV   human papillomavirus 

IF   immunofluorescence 

IHC   immunohistochemistry 

kDa   kilodalton 

mAb   monoclonal antibody 

MAPK  mitogen-activated protein kinase 

MHC   major histocompatibility complex 

MEM   minimum essential medium 

miRNA  microRNA 

MMP   matrix metalloproteinase 

mRNA  messenger RNA 

pAb   polyclonal antibody 

PBS   phosphate-buffered saline 

qPCR   quantitative polymerase chain reaction 

PI3K   phosphatidylinositol-3-kinase 

pRb   retinoblastoma protein 

RNA   ribonucleic acid 

SIL   squamous intraepithelial lesion 

SDS-PAGE  sodium dodecyl sulphate polyacrylamide gel electrophoresis 



 

8 

 

Abstract 

 

Human papillomaviruses (HPVs) are the causal agents of cervical cancer, 

which is the second most common cancer among women worldwide. Cellular 

transformation and carcinogenesis depend on the activities of viral E5, E6 and 

E7 proteins. Alterations in cell-cell contacts and in communication between 

epithelial cells take place during cervical carcinogenesis, leading to changes in 

cell morphology, increased cell motility and finally invasion. The aim of this 

thesis was to study genome-wide effects of the HPV type 16 (HPV-16) E5 

protein on the expression of host cell messenger RNAs (mRNAs) and 

microRNAs by applying microarray technology. The results showed that the 

HPV-16 E5 protein alters several cellular pathways involved in cellular 

adhesion, motility and proliferation as well as in the extracellular matrix. The 

E5 protein was observed to enhance wound healing of epithelial cell 

monolayers by increasing cell motility in vivo. HPV-16 E5-induced alterations 

in the expression of cellular microRNAs and their target genes seem to favour 

increased proliferation and tumorigenesis. E5 was also shown to affect the 

expression of adherens junction proteins in HaCaT epithelial keratinocytes. In 

addition, a study of a membrane cytoskeletal cross-linker protein, ezrin, 

revealed that when activated, it localizes to adherens junctions. The results 

suggest that ezrin distribution to forming adherens junctions is due to Rac1 

activity in epithelial cells.  

 

These studies reveal for the first time the holistic effects of HPV-16 E5 protein 

in promoting precancerous events in epithelial cells. The results contribute to 

identifyinging novel markers for cervical precancerous stages and to 

predicting disease behaviour. 
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Tiivistelmä (Summary in Finnish) 

 

Papilloomaviruksen aiheuttama kohdunkaulan syöpä on maailman-laajuisesti 

naisten toiseksi yleisin syöpä. Papilloomaviruksella on kolme proteiinia, E5, 

E6 ja E7, joiden vuorovaikutus solun proteiinien kanssa ovat merkittäviä 

syövän syntyyn vaikuttavia tekijöitä. Keskeisiä tapahtumia syövän ja 

epiteelimuutosten kehittymisessä ovat epiteelin erilaistumisen, solujen 

välisen kommunikaation ja solujen tarttumiskyvyn häiriintyminen. Nämä 

johtavat solumorfologian muutoksiin, soluliikkuvuuden lisääntymiseen ja 

yhdessä muiden tapahtumien kanssa lopulta invaasioon.  

 

Tämän väitöskirjatutkimuksen tavoitteena oli tutkia laaja-alaisesti 

mikrosirujen avulla ihmisen papilloomavirus tyyppi 16:n (HPV-16) E5-

proteiinin vaikutuksia isäntäsolun lähetti-RNA:iden sekä mikro-RNA:iden 

ilmentymiseen. Tutkimuksen tavoitteena oli tarkastella solu- ja kudostasolla 

niiden proteiinien ilmentymistä ja sijoittumista solussa, joiden ilmentymisen 

havaittiin muuttuneen HPV-16 E5-proteiinin vaikutuksesta sekä tutkia 

tarkemmin eri soluproteiinien ilmentymisen muutoksia ajan funktiona. 

Tutkimuksessa selvitettiin myös E5-onkogeenin merkitystä epiteelisolujen 

kiinnittymiseen ja liikkuvuuteen. Tulokset osoittivat, että E5-proteiini 

muuttaa mm. useiden solukiinnittymiseen ja solunsisäiseen 

signaalinkuljetukseen osallistuvien geenien ilmentymistä sekä RNA- että 

proteiinitasolla. Näitä geenejä pystyttiin ryhmittelemään ja yhdistämään 

tiettyihin solunsisäisiin signalointireitteihin. E5-proteiinin vaikutus solujen 

liikkuvuuden lisääntymiseen havaittiin myös eläviä soluja kuvantamalla. 

Tulokset osoittavat myös, että E5-proteiini pääasiassa vähentää isäntäsolun 

mikro-RNA:iden ilmentymistä. Havaitut muutokset mikro-RNA:iden ja 

näiden kohdeproteiinien ilmentymisessä näyttävät edistävän syöpään johtavia 

tapahtumia solussa. Väitöskirjatyössä selvitettiin myös pieniin GTPaaseihin 

kuuluvien Rho-proteiinien merkitystä epiteelisolun tukirangan 

säätelyproteiinin, esriinin, säätelyssä. Rac1-aktiivisuuden osoitettiin olevan 

tarpeen esriinin sijoittumiseksi vyöliitoksiin.  
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Työssä pyrittiin myös mallintamaan HPV-16 E5-proteiinin kokonaisvaltaisia 

vaikutuksia pahanlaatuisten muutosten käynnistämisessä epiteelisolussa. 

Tutkimus antaa uusia mahdollisuuksia löytää muun muassa merkkiaineita 

kohdunkaulan syövän esiasteiden toteamiseen ja taudin käyttäytymisen 

ennustamiseen.  



 

11 

 

1. Introduction 

 

Human papillomaviruses (HPVs) are small, double-stranded DNA viruses 

that infect epithelial cells. To date, more than 120 HPV genotypes have been 

identified (Bernard et al., 2010), and these are divided into low- and high-risk 

types according to their association with malignant tumours. Strong evidence 

for decades has shown that persistent HPV infection plays a critical role in the 

pathogenesis of cervical cancer, which is one of the most common 

malignancies in women worldwide. High-risk HPVs have been detected in up 

to 50% of all anogenital cancers. HPV also plays a role in squamous cell 

carcinomas of the head and neck (25-30 %), and the involvement of HPV in 

skin cancers has been under extensive investigation in recent years (Karagas 

et al., 2006; Leemans et al., 2011). 

 

Oncogenic high-risk HPV types induce malignant transformation in cervical 

mucosal epithelia by expressing E5, E6 and E7 oncogenes. The maintenance 

of the malignant phenotype in the cells requires continued expression of E6 

and E7 proteins (Banks et al., 1987; Butz et al., 2003; Goodwin and DiMaio, 

2000). Both low- and high-risk HPVs infect and replicate in the same tissues, 

but considerable differences are present in their pathogenesis and cellular 

targets. E6 and E7 oncoproteins of the high-risk HPVs are able to transform 

infected cells, but the same proteins of the low-risk HPVs have no detectable 

transforming activity (Storey et al., 1988). The role of the E5 oncoprotein in 

the transformation process is less well understood. HPV E5 localizes to 

endosomal membranes and the Golgi apparatus, but is also found at the 

plasma membrane (Conrad et al., 1993; Oetke et al., 2000). The E5 protein is 

expressed at early stages of infection; however, the gene is occasionally 

deleted when the HPV genome is integrated into the host genome (Pater and 

Pater, 1985). Therefore, the E5 protein is unnecessary for the maintenance of 

malignancy, but it might contribute to early-stage neoplastic proliferation. 

Expression of HPV oncogenes alters expression of cellular genes as well as the 

expression of recently discovered microRNAs, resulting in malignancy and 

cancer.  
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Loss of epithelial differentiation, cell-cell communication and disturbance of 

cell adhesion are the key events leading to changes in cell morphology, 

enhancement of cell motility and, together with other cellular events, finally 

inducing cancer invasion. Ezrin is a plasma membrane-cytoskeleton cross-

linker protein with multiple functions, such as involvement in cell adhesion 

and motility (Crepaldi et al., 1997; Hiscox and Jiang, 1999). Ezrin has a key 

role also in tumour metastasis (Endo et al., 2009; Federici et al., 2009; 

Khanna et al., 2004), and therefore, the effect of HPV-16 E5 protein on ezrin 

expression was evaluated here. HPVs are known to alter the expression of 

cadherins and catenins, which are important in cell-cell adhesion and in 

establishing proper cellular differentiation (Hubert et al., 2005; Wilding et 

al., 1996; Yasmeen et al., 2010). Investigation of the alterations in cellular 

gene expression as well as in cell adhesion and motility elucidates these early 

events of transformation. Among these altered genes, it is possible to find 

markers for better detection of precancerous lesions and improved prediction 

of disease behaviour. 
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2. Review of the literature 

 

2.1. Human Papillomaviruses (HPVs) 
 

2.1.1. Genome and life cycle of HPVs 

 

Human papillomaviruses (HPVs) are small, double-stranded, non-enveloped 

DNA viruses that belong to the Papillomaviridae family. Papillomaviruses are 

highly host, and tissue-specific, and they are rarely transmitted between 

species (Mistry et al., 2008). Papillomaviruses typically infect the basal layer 

of  skin or mucosal epithelium of the genital tract, anus, mouth or airways 

(Doorbar, 2005). Papillomaviruses do not elicit antibody responses due to the 

infection site within the epithelium being situated away from dermal immune 

cells (Stanley et al., 2007). Therefore, the classification of HPV types is based 

on their degree of nucleotide sequence homology within the L1 open reading 

frame (ORF) (de Villiers, 1997). To date, nearly 120 HPV types have been 

identified (Bernard et al., 2010), and these are divided into low- and high-risk 

types. Both high-risk and low-risk types can cause the growth of abnormal 

cells, but only the high-risk types are able to cause precancerous lesions. In 

low-grade lesions, the high-risk HPV genomes are present as episomes, while 

during progression to high-grade lesions or carcinomas, the genome is often 

integrated into the host cell genome (Jeon et al., 1995). 

 

The papillomavirus genome is a double-stranded circular DNA molecule 

approximately 8000 base pairs in length. It is packaged within a 60 

nanometer capsid composed of viral L1 and L2 late proteins with 72 star-

shaped capsomers presenting icosahedral symmetry. Most papillomaviruses 

contain six early and two late ORFs, and all coding sequences are located on 

one DNA strand only. The genetic organization of papillomaviruses is 

presented in Figure 1. 
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Figure 1. Linear representation of the HPV genome. E1, E2, E4, and E5 are 

involved in viral replication and transcriptional control. E5, E6 and E7 are the 

main oncogenes, and L1 and L2 are the capsid proteins. 

 

 

A productive HPV life cycle is closely linked to epithelial differentiation 

(Howley and Lowy, 2001), as presented in Figure 2. Basal epithelial cells 

become exposed to the virus via wounds of the stratified epithelium (Howley 

and Lowy, 2001). Viral DNA replication occurs in the differentiating 

epithelium during the S-phase of the cell cycle in cooperation with cellular 

replication proteins (Lambert, 1991).  
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2.1.2. Role of HPV proteins 

 

2.1.2.1. HPV proteins involved in replication and transcription 
 

The main functions of the early proteins are in regulating transcription and 

replication (E1 and E2) and causing transformation (E5, E6 and E7). Most of 

these proteins are expressed throughout the infectious cycle, with reduced 

expression at late stages. E2 ORF encodes two or three different proteins, 

which all act as transcription factors and regulate viral transcription (Baker et 

al., 1987; Bouvard et al., 1994b; Cripe et al., 1987). E1 origin-binding protein 

and the E1 replicative DNA helicase are encoded to support viral DNA 

replication (Stenlund, 2003). The E2 proteins bind to E1 and stimulate 

replication of viral DNA (Chow and Broker, 1994), and E1 is required 

throughout initiation of replication and elongation. High levels of E2 protein 

repress the expression of E6 and E7 proteins, and this function is disturbed by 

HPV genome integration into the host cell genome due to disruption of the 

viral genome within the E2 ORF. E4 protein is the first viral protein expressed 

in the late stage of the infection (Doorbar et al., 1997). The function of E4 is 

unknown, although it is associated with keratin intermediate filaments 

(Doorbar et al., 1997; Roberts et al., 1997) and induces keratin reorganization 

(McIntosh et al., 2010). 

 

Late structural capsid proteins, L1 and L2, are expressed when infected host 

cells become terminally differentiated. Synthesis of the HPV capsid and 

production of progeny virus are induced in the uppermost layers of the 

epithelium. The late phase requires differentiation of the stratified 

epithelium.  
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Figure 2. Human papillomavirus (HPV) life cycle. HPV infects the basal layer of 

the epithelium. The viral genome is established in the nucleus, and early viral genes 

are expressed. The viral genome replicates with the assistance of cellular DNA 

replication machinery. Differentiation of HPV-infected cells triggers the productive 

phase of the viral life cycle. Arrows indicate the expression of the different HPV 

genes (adapted from Doorbar, 2006 and Moody and Laimins, 2010). 

 

 

2.1.2.2. HPV oncogenes 

 
E5 protein 
 

The E5 protein of high-risk HPV-16 is a small hydrophobic peptide with weak 

transforming activity (Pim et al., 1992). The lack of antibody against E5 has 

raised difficulties in characterization of the E5 protein, and therefore, E5 

mRNA expression has been used in numerous studies as a measure of E5 gene 

expression, assuming a correlation between mRNA and protein expression. 

E5 is expressed both in the early and late stages of the viral life cycle. The E5 

protein is associated with cellular membranes (Auvinen et al., 2004; Conrad 

et al., 1993; Oetke et al., 2000; Suprynowicz et al., 2008). The ORF of E5 is 

occasionally disrupted in cervical cancer upon integration, but it is potentially 
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important for the initiation of transformation (Chang et al., 2001; Schwarz et 

al., 1985). The first evidence of the transforming activity of HPV E5 was 

discovered in a study where the HPV type 6 E5 protein assisted anchorage-

independent growth in murine fibroblasts (Chen and Mounts, 1990). Soon 

after this, the HPV type 16 E5 protein was reported to cause anchorage 

independence and tumorigenic transformation of murine fibroblasts and 

epidermal keratinocytes (Leptak et al., 1991; Leechanachai et al., 1992; Pim et 

al., 1992). HPV E5 has been suggested to have its primary activity in 

differentiated cells since the loss of HPV 31 E5 resulted in impaired activation 

of late viral functions (Fehrmann et al., 2003). HPV 16 E5 has been observed 

also to have a role during the productive stage because loss of E5 reduced 

DNA synthesis in human keratinocyte raft cultures (Genther et al., 2003). 

 

E5 protein functions contribute substantially to the transformation process by 

increasing epidermal growth factor receptor (EGFR) -mediated signalling 

(DiMaio and Mattoon, 2001) and cell proliferation by activating  this pathway 

(Pim et al., 1992). One major signalling route of the EGFR is the Ras/MAPK 

(mitogen-activated protein kinases) pathway (Klapper et al., 2000). 

Activation of the Ras oncogene leads to activation of the MAPKs, ERK1/2 of 

which is strongly associated with human cancer. Expression of the HPV-16 E5 

protein suppresses degradation of EGF-EGFR complexes in endosomes, as 

was shown in human keratinocytes expressing E5 (Straight et al., 1993; 1995). 

An increase in EGFR recycling to the cell surface has also been detected 

(Crusius et al., 1997; Straight et al., 1993). Tomakidi et al. (2000) observed 

increased EGFR expression and activation due to HPV-16 E5 in keratinocyte 

raft cultures. On the other hand, EGFR-independent pathways have also been 

suggested in the E5-activated signalling cascade. Crusius et al. (2000) 

observed modulation of the sorbitol-dependent activation of MAPK p38 and 

ERK1/2 in human keratinocytes through an EGF-independent mechanism. 

The E5 protein sensitizes human keratinocytes to apoptosis-induced osmotic 

stress (Kabsch and Alonso, 2002), but it is also able to protect human 

foreskin keratinocytes from ultraviolet B-irradiation-induced apoptosis 
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(Zhang et al., 2002) as well as FasL- or TRAIL-induced apoptosis in HaCaT 

keratinocyte raft cultures (Kabsch et al., 2004).  

 

HPV E5 has been suggested to affect endocytic trafficking (Thomsen et al., 

2000) and to inhibit gap-junction-mediated cell-cell communication in 

keratinocytes (Oelze et al., 1995). The E5 protein is associated with the 16 kDa 

subunit of the vacuolar ATPase (v-ATPase) (Conrad et al., 1993), a component 

of gap junctions at the plasma membrane. v-ATPase participates in 

acidification of cytoplasmic vesicles, leading to a state where receptor-ligand 

complexes are targeted for degradation and recycling to the cell surface, 

enabling communication between cells (Clague et al., 1994; Finbow and 

Harrison, 1997). The interaction between E5 protein and v-ATPase may be 

responsible for the observed impaired cell-cell communication, although 

conversely, yeast studies suggest disruption of the v-ATPase complex due to 

E5 expression (Adam et al., 2000; Briggs et al., 2001).  

 

The papillomavirus life cycle takes place away from dermal immune cells, and 

the virus does not cause cell lysis to activate an inflammatory response 

(Stanley et al., 2007). The HPV-16 E5 protein is able to assist persistent 

infection by modulating immune response of the host. HPV-16 E5 has been 

observed to reduce major histocompatibility complex (MHC) class I 

expression on the cell surface (Ashrafi et al., 2005; Campo et al., 2010). 

Campo et al. (2010) discovered a functional impact of the E5-induced 

reduction of HLA-A2 in decreasing the recognition of E5-expressing cells by 

HPV-specific CD8+ T-cells. Recent data also reveal the function of HPV E5 in 

helping HPV-infected cells to evade protective immunological surveillance by 

decreasing CD1d expression (Miura et al., 2010). Downregulation of CD1d is 

utilized also by herpesviruses in immune evasion (Raftery et al., 2006; 

Sanchez et al., 2005).  

 

The E5 protein enhances the immortalization potential of E6 and E7 proteins 

(Stöppler et al., 1996), and its potency to cause cervical cancer is similar to 

that of E6 (Maufort et al., 2010). Maufort et al. (2010) suggested a role for E5 
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in increasing the dysplastic environment either alone or cooperatively with 

other viral oncogenes. Cooperation with E7 to induce proliferation, enhance 

mortalization and promote anchorage-independent growth has been reported 

earlier (Bouvard et al., 1994a; Valle and Banks, 1995). Similar roles in 

supporting DNA synthesis in differentiated cells have been demonstrated for 

E5 and E7 proteins (Flores et al., 2000; Fehrmann et al., 2003; Genther et al., 

2003). Furthermore, E5 and E6 proteins cooperate to induce koilocytosis, 

structural changes in a cell as a result of HPV infection, in the differentiated 

squamous epithelium (Krawczyk et al., 2008).  

 

 

E6 and E7 proteins 
 

E6 and E7 proteins of the high-risk HPV types play important roles as 

oncogenes in carcinogenesis as well as in the maintenance of the transformed 

phenotype. The E6 protein binds to a cellular ubiquitin-ligase to form a 

complex that binds the p53 tumour suppressor protein, resulting in p53 

degradation (Scheffner et al., 1990; 1993; Werness et al., 1990). Cells without 

functional p53 display genomic instability (Werness et al., 1990), which is an 

important component of carcinogenesis in general. The high-risk HPV E6 

proteins also destabilize PDZ domain-containing host proteins that regulate 

cell polarity and signal transduction (Thomas et al., 2008), degrade GAP 

proteins involved in G protein signalling (Singh et al., 2003) and transactivate 

the catalytic subunit of the telomerase gene (hTert) (Klingelhutz et al., 1996). 

 

Normal, uninfected cells exit the cell cycle as they leave the basal layer during 

differentiation, but in HPV infected cells persist in the cell cycle due to E7 

protein actions (Cheng et al., 1995). The E7 protein binds to the 

retinoblastoma protein (pRb), resulting in activation of genes that regulate 

cell proliferation (Dyson et al., 1989). The binding of pRb is mediated 

througha a conserved region present in all high-risk E7 proteins (Phelps et al., 

1998). Low-risk E7 proteins are also associated with pRb, but with a much 

lower affinity (Ciccolini et al., 1994; Oh et al., 2004).  
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Besides the inactivation of p53 and pRb, the E6 and E7 proteins interact and 

interfere with various cellular proteins (Balsitis et al., 2006; Shai et al., 2007), 

and both proteins play a role in cell transformation and immortalization. E6 

and E7 together can immortalize human epithelial cells cooperatively 

(Hawley-Nelson et al., 1989; Munger et al., 1989). The E7 protein causes 

tumour promotion, whereas E6 acts more strongly during tumour 

progression and accelerates malignant conversion of benign tumours as 

shown in E6- and E7-transgenic mice experiments (Song et al., 2000). 

Functions of all three oncogenes (E5, E6 and E7) are to ensure viral 

replication and to promote the spread of progeny by regulating cell survival 

throughout the normal viral life cycle.  

 

 

2.2. HPVs and disease mechanisms 
 

2.2.1. HPV-related diseases 

 

The majority of HPV infections cause no symptoms, whereas some types 

cause benign warts, papillomas. Cutaneous HPV types cause common skin 

warts, in which HPV infection causes rapid growth on the outer layer of the 

skin. Common warts are most often found on the hands and feet. Mucosal 

HPV types infect the mucosal surfaces found in, for instance the nose, mouth, 

anus and genital areas. Multiple infections with several different types are 

also common. Mucosal HPV types are divided into low- and high-risk 

categories according to their oncogenicity. Persistent infection with high-risk 

HPV can lead to premalignant lesions and invasive cancers of the cervix, 

vulva, vagina and anus in women or cancers of the anus and penis in men 

(Schiffman and Castle, 2003). The most common HPV-associated diseases 

are presented in Table 1. 
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Table 1. HPV-associated diseases and their predominant HPV types. Adapted from 

the ‘Health Professional’s HPV Handbook’ (Prendiville and Davies, 2004). 

 

Disease HPV type 

Genital warts 6, 11, 42-44 

Skin warts 1-4, 26, 27 

Mild genital dysplasia 6, 11, 16, 31, 45 

Severe genital dysplasias and 
cancer 

the high-risk HPVs (16, 18, 31, 33, 35, 
39, 45, 51, 52, 56, 58, 59, 68, 73) 

Laryngeal papillomas 6, 11 

Head and neck carcinomas 16, 33 

Epidermodysplasia verruciformis 5, 8, 12, 15, 20, 24, 38 

Skin cancer 20, 38 

 

 

 

HPV prevalence in Finland among young women is remarkably high. Auvinen 

et al. (2005) observed a 33% prevalence among first-year university students. 

Diagnostic laboratory methods are available for the detection and genotyping 

of HPV. Papillomavirus testing is primarily used as an adjunct to Papanicolau 

screening to detect cervical premalignant lesions. Most HPV infections clear 

spontaneously within 6-24 months, especially in young women. Currently, no 

medication against HPV infection exists. Premalignant lesions can be 

removed surgically. 

 

 

2.2.2. Cellular transformation by HPV 

 

In rare cases (approximately 0.1% of all HPV infections), high-risk HPV 

infection can lead to premalignant lesions and invasive cancer. High-risk HPV 

types can induce malignant transformation in epithelial cells mainly due to 

the expression of E6 and E7 oncogenes, which promote tumour growth 

(Hampson et al., 2001). HPV-induced cancers often involve integration of 

viral sequences into the genomic DNA. In cooperation, as well as individually, 

high-risk E6 and E7 proteins immortalize cells and have transforming 
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activity, contrary to low-risk types (Hawley-Nelson et al., 1989; Pim and 

Banks, 2010). High-risk E6 and E7 proteins have numerous cellular target 

proteins and interactions, but concerning transformation, the interaction with 

cellular tumour suppressors, p53 and pRb, is crucial (Dyson et al., 1989; 

Scheffner et al., 1990; 1993; Werness et al., 1990). Both p53 and pRb 

mutations are common in many types of cancers, although they occur very 

rarely in cervical cancers, suggesting that E6 and E7 oncogene-induced 

functional inactivation of these proteins has an equally strong effect as 

mutated p53 and pRb proteins.  

 

The E7 protein is suggested to act primarily in promoting carcinogenesis, 

while E6 potently accelerates disease progression (Song et al., 2000). 

Although inactivation of p53 is crucial for immortalization of keratinocytes, 

some p53-independent functions of E6 may also contribute to this event. HPV 

E6 protein is known to activate the catalytic subunit of telomerase, hTERT 

(Klingelhutz et al., 1996). E7 protein has been suggested to induce activation 

of alternative lengthening of telomeres, which is important in reducing 

genomic instability and promoting tumour progression in early stages of 

cancer development (Moody and Laimins, 2010). Furthermore, E7 protein 

has been reported to be associated with cyclins A and E, as well as with cyclin-

dependent kinase inhibitors p21 and p27, disrupting the cell cycle (Longworth 

and Laimins, 2004).  

 

The transformation process requires additional oncogenic events besides E6 

and E7 expression, as suggested by the long latency period between HPV 

infection and cancer development (Schiffman et al., 2007). HPV-associated 

cancers usually involve genomic instability and chromosomal imbalance and 

rearrangements (Koopman et al., 1999; Korzeniewski et al., 2010; Yangling et 

al., 2007). E6 and E7 oncogenes are able to induce genomic instability 

independently when studied in normal human fibroblasts (White et al., 1994). 

E7 alone has been reported to induce centrosome amplification, which 

correlates with cell division errors (Duensing et al., 2001). Usually cells with 

abnormal mitoses undergo apoptosis, but during HPV infection, E6 and E7 
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assist in accumulation of abnormal centrosomes (Patel et al., 2004). E6 and 

E7 proteins affect several cellular events leading to cancer, e.g. interference of 

cell differentiation (Alfandari et al., 1999), DNA synthesis (Cheng et al., 

1995), cell cycle and inhibition of apoptosis (Woodworth et al., 1992) and 

mitotic checkpoints (Thomas and Laimins, 1998; Thompson et al., 1997).   

 

 

2.2.3. HPV and cellular microRNAs 
 

MicroRNAs are post-transcriptional regulators of cellular gene expression 

expressed in all multicellular eukaryotes (Bartel, 2004). Lee et al. (1993) 

discovered the first miRNA, lin-4, already in 1993, and to date, over 1200 

mature human miRNA species are known (miRBase release 16, 2010 

http://www.mirbase.org/; Reinhart et al., 2000; Pasquinelli et al., 2000; 

Kozomara and Griffiths-Jones, 2011). MiRNAs bind to complementary 

sequences in the 3’ UTR of target mRNA transcripts, resulting in 

destabilization of their target mRNA and/or blockage of its translation. 

MiRNAs and their target mRNA expression usually correlate inversely, 

although a direct correlation has also been noted (Huntzinger and Izaurralde, 

2011). MiRNAs protect cells from apoptosis, affect the cell-matrix adhesion 

and interfere with epithelial differentiation, among other functions. 

Computational predictions suggest that a single miRNA can regulate the 

expression of more than 200 different target mRNAs (Krek et al., 2005). 

Therefore, involvement of miRNAs in various diseases has been widely 

reported, and, indeed, aberrant expression of miRNAs has been observed in 

many human malignancies (Visone and Croce, 2009; Zimmerman and Wu, 

2011). Furthermore, miRNAs seem to have a role in many viral infections in 

regulating cellular gene expression (Roberts and Jopling, 2010). Among DNA 

viruses, herpesviruses and polyomaviruses are known to express miRNAs to 

autoregulate viral mRNA expression (Pfeffer et al., 2005; Seo et al., 2009). 

Viral miRNAs may help to ensure the accurate expression of the viral genome 

and to downregulate the expression of host cell transcripts (Seo et al., 2008); 

however, very little evidence currently exists to support this. Host cell-
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encoded miRNAs also play a role in viral infection processes, such as 

apoptosis as well as adaptive and innate immune responses (Umbach and 

Cullen, 2009).  

 

Although HPV-encoded miRNAs have not been discovered (Cai et al., 2006), 

HPV is known to cause alterations in cellular miRNA expression, and these 

modifications may play a crucial role in HPV pathogenesis. Lui et al. (2007) 

reported downregulation of miR-143 and upregulation of miR-21 in cervical 

cancer tissue. Similar expression alterations of these microRNAs have been 

reported in many cancers. High-risk HPV E6 protein causes downregulation 

of miR-218 (Martinez et al., 2008) and tumour-suppressive miR-34a (Wang 

et al., 2010). The target protein of miR-218, LAMB3, is known to increase cell 

migration and motility (Calaluce et al., 2004). These are important events in 

cancer invasion and metastasis, and HPV would thus enhance these functions 

by downregulating miR-218. In addition, the HPV E7 protein suppresses the 

expression of miR-203 (Melar-New and Laimins, 2010), which has a role in 

decreasing the proliferative capacity of epithelial cells upon differentiation. 

Thus, the E7 protein contributes to the disturbance of epithelial 

differentiation. 

  

 

2.2.4. HPV and cancer 

 

Cervical cancer 

 

Cervical cancer is the third most common cancer in women, with over 500 

000 new cases each year worldwide (Jemal et al., 2011). In Finland, 

approximately 150 cervical cancer cases are diagnosed annually. Cervical 

cancer is a major cause of cancer-related mortality, especially in developing 

countries. Persistent infection by one of the high-risk HPV types causes 

practically all cervical cancers and their immediate precursors (Schiffman et 

al., 2007; Walboomers et al., 1999). The most frequently encountered types 
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are HPV 16 and 18, which together cover 60-70% of cervical cancers. 

Variation in overall HPV DNA detection is minor between continents (Bosch 

et al., 1995; Clifford et al., 2003), although the proportions of high-risk HPV 

16 and 18 infections may vary by region, being highest in Europe and lowest 

in sub-Saharan Africa (Clifford et al., 2005).  The majority of cervical HPV 

infections are subclinical or resolve spontaneously due to activation of the 

host immune system, and only a small subset of HPV-induced lesions 

eventually progress to cancer. In invasive cancers, viral capsids are not 

formed, but the viral genome can still replicate actively (Doorbar, 2005).  

 

Cervical cancer proceeds from premalignant cervical intraepithelial lesions. 

These lesions are histologically classified on the basis of abnormal epithelial 

cells that progressively extend from the lower parabasal layers of the 

squamous epithelium through the entire thickness of the epithelium, 

depending on the grade (Thomison et al., 2008). The levels of severity are 

CIN (cervical intraepithelial neoplasia) 1, in which the non-differentiated cells 

infiltrate only the first layer of tissue, CIN 2, in which the non-differentiated 

cells penetrate to the second or third layer of tissue, CIN3 or carcinoma in 

situ, in which the non-differentiatied cells penetrate all epithelial layers. 

Diagnosis of CIN 1 is not always reliable (Stoler and Schiffman, 2001), and 

CIN 1 lesions often regress spontaneously, especially among women under 30 

years of age (Moscicki et al., 2004). The Finnish Current Care guidelines 

recommend treatment of CIN 1 after persistence of 24 months and immediate 

treatment of CIN 2 and CIN 3 lesions because of their high probability of 

progression (Cervical cancer screening: Finnish Current Care guidelines, 

2010). An organized nationwide screening programme was launched in 

Finland in the early 1970s (Anttila et al., 1999; Hakama and Räsänen-

Virtanen, 1976), and mortality rates have subsequently been reduced by 80%. 
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Other HPV-related cancers 

 

Some cancers of the vulva, vagina, penis, anus, and head and neck (oral cavity 

and oropharynx) are also associated with HPV infection. HPV involvement 

has been observed in approximately 25% of oral and 35% of laryngeal cancers 

(reviewed in Kreimer et al., 2005). HPV infection also plays a role in 85% of 

anal cancers (Ryan and Mayer, 2000), 60-80% of vaginal cancers (Daling et 

al., 2002) and 40% of vulvar and penile cancers (Daling et al., 2005; Jones et 

al., 2005).  

 

 

2.2.5. Cervical cancer screening 

 

Papanicolaou (Pap) screening is the primary screening method for cervical 

cancer and its precursors worldwide, and a marked decrease in cervical 

carcinoma incidence and mortality in developed countries has been achieved 

due to screening programmes (Hakama et al., 1985). High-risk HPV types are 

present in more than 99% of cervical cancers and the majority of CIN 2 and 

CIN 3 cases (Walboomers et al., 1999), whereas CIN 1 is typically associated 

with low-risk HPV. The progression rate of CIN 3 to invasive carcinoma is 

approximately 12%, whereas the corresponding rate for CIN 1 is only 1% 

(Ostör, 1993). Screening for high-risk HPV types has been considered an 

additional or alternative tool for cytology-based cervical cancer screening 

(Cox and Cuzick, 2006). Multiple studies have shown higher sensitivity in 

HPV testing than in cytology for high-grade CIN (Dillner et al., 2008; 

Kulasingam, et al., 2002; Leinonen et al., 2009). Earlier detection of invasive 

premalignant lesions and cancer has been reported, thus improving survival. 

A disadvantage of HPV testing is its low specificity, i.e. it detects all HPV 

infections rather than existing disease, which results in a high false-positive 

rate, particularly in young women. In light of this, HPV testing has been 

suggested for use in primary screening in women aged over 35 years, with 

cytology reserved for the triage of women positive for high-risk HPV. This 



 

27 

 

scheme has also been presented in Finland (Nieminen et al., 2010; Tarkkanen 

et al., 2007), and the recently updated Current Care Guidelines include this 

option.   

 

 

2.2.6. Vaccines against HPV infection 

 

Worldwide, several approaches have been applied for the prevention of 

cervical cancer. Two prophylactic vaccines against two or four HPV types have 

been commercialized in recent years, and these vaccines are already in use in 

some countries. Both vaccines are composed of virus-like particles, which 

resemble a virus without any viral genetic material. Cervarix 

(GlaxoSmithKline) has been shown to have high efficacy against both HPV 16 

and 18, and it also provides some protection against the other three most 

common cancer-causing types (HPV 31, 33 and 45) (Paavonen J et al., 2009). 

Cross-protection against HPV 45 has been observed, which may be important 

in the prevention of cervical adenocarcinoma (Szarewski, 2010). Gardasil 

(Merck & Co.) HPV vaccine is effective against common squamous cell 

cancer-causing HPV types 16, 18 and 31 (Future I/II Study Group et al., 

2010). In addition, Gardasil protects from HPV 6 and 11 infections, which 

cause genital warts. The efficacy of Cervarix has been proven for 

approximately 6 and a half years and that of Gardasil for 5 years (Paavonen et 

al., 2009; Villa et al., 2006). Neither vaccine is therapeutic, and they do not 

cure existing infections. The best protection is obtained when women are 

vaccinated before sexual activity commences. Both vaccines prevent up to 

90% of new persistent HPV infections and cervical precancerous lesions 

(Future II Study Group, 2007; Garland et al., 2007; Paavonen et al., 2007).  
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2.3. Alterations in cell adhesion and cell motility in cancer 

 

Disruption of cell adhesion and breakdown of normal communication 

between adjacent cells are frequent in cancer. Reduced cell adhesion is critical 

for cancer invasion and metastasis. Especially E-cadherin and catenins are 

key components of adherens junctions of epithelial cells (Harris and Tepass, 

2010). In cancer cells, the adhesion involving E-cadherin is usually 

inactivated by various mechanisms, and this event plays a significant role 

during multistage human carcinogenesis (Makrilia et al., 2009). Formation 

and disassembly of adhesions facilitate the migration process by activating 

Rho GTPases, which regulate actin polymerization and myosin II activity 

(Ridley et al., 2003). Epithelial tissue is the site of more than 80% of human 

cancers, and epithelial-to-mesenchymal transition (EMT) is an important 

event during tumour progression and metastasis where epithelial cells lose 

polarization (Lee et al., 2006; Thiery and Sleeman, 2006). EMT is 

characterized by reduced expression of E-cadherin and increased N-cadherin.  

 

Migration of cancer cells is regulated by adhesion of cells to the extracellular 

matrix. Interactions of the cell and matrix as well as epithelial cell polarity are 

mediated by integrins and other cell surface adhesion receptors (Miranti and 

Brugge, 2002). Integrin trafficking is known to be important for directional 

cell motility of transformed cells (Hynes, 2002). Integrins not only mediate 

adhesion but also participate in regulating cell survival and proliferation 

(Juliano and Haskill, 1993). Integrins also activate paxillin and focal adhesion 

kinase (FAK) (Parsons, 2003; Brown and Turner, 2004), leading to enhanced 

signalling to Rho GTPases, such as Rac, Rho and Cdc42 proteins, involved in 

regulation of the cytoskeleton (Ridley et al., 2003).  
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Figure 3. Epithelial cell adhesion. In all cell junctions, unique adhesion receptors 

interact either with similar proteins on adjacent cells or with the components of the 

extracellular matrix through their extracellular domain. Tight junctions are formed 

by occludins and claudins, which are linked to the actin cytoskeleton through ZO 

proteins. Tight junctions seal adjacent cells together and function as selective 

permeability barriers. Adherens junctions are formed by cadherins, which are 

linked to the actin cytoskeleton through catenins and vinculin. Focal adhesions are 

formed by integrins.  

 

 

In motile cells, early focal adhesions contain integrins, vinculin, talin, �-actin, 

paxillin and FAK, among other proteins, and, as the leading edge of a 

migrating cell moves forward, these adhesions disassemble or elongate and 

grow, depending on the cell type. Paxillin phosphorylation is observed to be a 

key regulator of adhesion maturation by recruiting vinculin (Pasapera et al., 

2010). Rac, RhoA and Cdc42 are activated at the front of migrating cells, and 

RhoA also at the cell rear (Kurokawa et al., 2005; Machacek et al., 2009). 

Activation of Rho kinases has been suggested as a factor predicting invasive 

potential of cancer cells (Parsons et al., 2010). 

 



 

30 

 

In cervical cancer, many cell adhesion proteins are degraded or 

downregulated. The HPV E6 protein disrupts adherens junctions by 

inhibiting the APC/hScrib interaction, which consequently reduces the 

negative regulation of entry into the S-phase of the cell cycle (Ishidate et al., 

2000; Takizawa et al., 2006). The E-cadherin protein is an important 

component of cellular adherens and tight junctions, and the gene is most 

often methylated in cervical cancer. Downregulation of E-cadherin releases �-

catenin from the cell membrane into the nucleus, further activating the Wnt 

signalling pathway (Wang et al., 2010). A decrement of E-cadherin expression 

has been observed in cervical preneoplastic lesions (Hubert et al., 2005), and 

increased invasiveness and downregulation of E-cadherin in HPV E6 and E7-

transfected keratinocytes in vitro have also been noted (Wilding et al., 1996). 

The exact roles of HPV oncogenes in these events remain to be determined.  

 

 

2.4. Role of Ezrin in cell adhesion, cell motility and 

carcinogenesis 

 

Ezrin (also called cytovillin) is a membrane cytoskeletal cross-linker often 

observed as a key molecule during onset and progression of the metastatic 

cascade (Elliott et al., 2004; Endo et al., 2009; Federici et al., 2009; Gould et 

al., 1989; Sarriò et al., 2006; Turunen et al., 1989). Ezrin is a member of the 

ezrin, radixin, moesin (ERM) family and has been reported to be involved in 

tumour progression (Gautreau et al., 2002). ERM proteins are membrane-

cytoskeleton linking proteins and are involved in numerous cellular events, 

including cell motility, signal transduction, cell-cell and cell-matrix 

interactions, cell growth and apoptosis (Poullet et al., 2001). ERM proteins 

are regulated by small GTPases, which control actin cytoskeleton remodelling 

and many cellular activities (Etienne-Manneville and Hall, 2002). An 

interaction between Rho proteins and ERM family proteins in cell motility 

and mitogenic signalling in epithelial cells has been suggested based on their 
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functional similarities (Mackay et al., 1997; Matsui et al., 1998).  Rho is 

known to control cell adhesion and motility through its effects on the actin 

cytoskeleton and cell morphology. Ezrin is linked to the plasma membrane 

and cytosolic organelles, resulting in a close relation with such cellular 

functions as cell adhesion, motility, apoptosis and phagosytosis (Lugini et al., 

2003; Luciani et al., 2004; Killock et al., 2009). Brambilla and Fais (2009) 

suggested that in tumour cells ezrin may act as a mediator and a linker for 

metastasis-associated cell-surface proteins and other intracellular molecules. 

Ezrin has been reported to be involved in the metastatic phenotype of 

osteosarcoma, melanoma and ovarian carcinoma (Federici et al., 2009; 

Khanna et al., 2004; Köbel et al., 2006). Ezrin involvement in breast cancer 

metastasis has been observed as well (Elliot et al., 2005; Li et al., 2008).  

 

In breast cancer cells, ezrin was shown to function as an organizer of cellular 

adherens junctions, and ezrin silencing was observed to induce E-cadherin 

increment, leading to inhibition of cell migration and invasion (Li et al., 

2008). Ezrin has also been demonstrated to contribute to EGF-stimulated 

migration of cervical cancer cells (Chiang et al., 2008). Yu et al. (2004) and 

Khanna et al. (2004) suggested that ezrin likely functions at the intersection 

of multiple signalling pathways. In summary, ezrin has both structural and 

regulatory interactions in the cellular cytoskeleton as well as a significant role 

in cancer development and progression. 

 

 

2.5. Molecular profiling by array technologies 

 

Now that the sequencing of the human genome has been completed and all 

genes have been identified, microarray technology has provided much new 

information about gene expression and function. Microarrays have a wide 

range of applications in biomedical research and diagnostics, especially in 

cancer research (Ewis et al., 2005). The technology for DNA microarray was 

developed in the early 1990s (Fodor et al., 1991; Schena et al., 1995). The 
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advantage of the methodology is the ability to measure changes in the levels of 

multiple biomolecules simultaneously. DNA microarrays may contain 

thousands of DNA fragments, e.g. oligonucleotides or cDNA clones 

synthesized onto a solid support. Microarrays can be used to measure RNA, 

DNA or protein levels from cells or tissues on a genome-wide scale, providing 

an excellent tool for measuring relative differences in RNA levels between 

samples. The challenge of the microarray experiments is that they are highly 

capable of generating long lists of genes with altered expression, but they 

provide little clue as to which of the changes are important in a given 

phenotype. It is tempting to look for genes that confirm pre-existing 

knowledge, so careful experimental design is critical. 

 

DNA microarray technology is based on the complementary base pairing 

property of nucleic acids. The labelled sample RNA is hybridized with the 

probe onto the surface. Gene expression microarrays can be categorized as 

cDNA and oligonucleotide arrays according to probe type (Fodor et al 1991; 

Schena et al., 1995). Depending on the platform, comparison of the 

expression of two samples on the same array or only one sample per array can 

be made. The result is then presented either as a ratio between the expression 

levels of two samples or as an estimate of transcript levels in one sample 

(Hardiman, 2004). The results can be further analysed by different softwares. 

To obtain cDNA microarrays, a collection of characterized and well-annotated 

cDNA clones is amplified by polymerase chain reaction (PCR) and spotted 

onto a coated glass slide. Oligonucleotide arrays can be manufactured in a 

similar fashion, or probes can be synthesized in situ nucleotide by nucleotide 

on a solid support (Southern et al., 1999). In the direct two-colour labelling 

method, extracted RNA is reverse-transcribed into cDNA and labelled with 

fluorochrome dyes, such as cyanine 3 (Cy3) and cyanine 5 (Cy5). The use of 

different dyes allows mRNAs from two different cell populations or tissues to 

be labelled in different colours, mixed and hybridized to the same array, 

which results in competitive binding of the target to the sequences in the 

array. To remove non-biological variation, such as dye bias or experimental 

conditions, from the microarray data, mathematical normalization is 
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performed. Many of the normalization methods assume that some subset of 

housekeeping genes or a set of exogenous controls have constant expression 

values. The normalization factor is then calculated to adjust the data 

(Hariharan, 2003; Quackenbush, 2002; Yang et al., 2002). The normalized 

data is analysed to identify differentially expressed genes between samples 

using fold change. Microarray results always need additional validation, such 

as real-time RT-PCR or protein analysis, to rule out false-positive results 

(Canales et al., 2006; Huang L et al., 2011; Martin et al., 2009). To validate 

the functional relevance of the gene expression microarray results, protein-

level studies using Western blotting, immunohistochemistry or RNAi 

experiments can be performed (Choi et al., 2005; Liao et al., 2011; Martin et 

al., 2009).   

 

cDNA and oligonucleotide microarrays are two leading types of arrays used to 

quantify gene expression. In oligonucleotide microarray (such as those 

produced by Agilent, used and described in detail in Study III), the 

quantitation value is based on the difference in fluorescence between the 

match and mismatch probe sets, whereas the cDNA microarray technology 

uses the hybridization signal from a single clone spotted in duplicate. cDNA 

microarrays are less sensitive to single base pairs changes in the probe 

sequence, but they are more open to cross-hybridization since the clones are 

usually not completely sequenced. cDNA probes may also be affected by 

printing effects and PCR amplification efficiency, whereas oligonucleotide 

arrays are directly synthesized on glass under controlled reaction conditions 

(McGall et al., 1996). Overall, oligonucleotide microarray platform has clearly 

better specificity, reproducibility and statistical significance than the cDNA 

microarray platform (Hughes et al., 2001). When validating the microarray 

results by quantitative RT-PCR, the concordance between qRT-PCR and 

oligonucleotide microarray results is approximately 70-80% (Morey et al., 

2006), whereas it is approximately 50-60% between qRT-PCR and cDNA 

microarray (Chuaqui et al., 2002; Rajeevan et al., 2001).  
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One of the best applications for microarrays is in analysing cellular functions 

as global gene expression patterns, rather than in identifying a single critical 

gene. In large-scale analyses of changes in gene expression, genes with similar 

patterns are clustered. Several software tools for cluster analysis have been 

developed and are also available from public sources.  

 

Microarrays hold much promise for the analysis of diseases. Numerous 

individual gene products that are expressed in tumour cells but not in normal 

tissue have been identified with the help of microarrays, opening the 

possibility of finding new tumour biomarkers. Tissue microarrays provide a 

tool for identification of tumor markers from whole solid tumours (Kononen 

et al., 1998). Gene expression profiling has also been used to reveal altered 

signalling pathways in specific diseases or tumours, such as in the metastatic 

potential of melanoma cells or in HIV infection (Clark et al., 2000; Geiss et 

al., 2000). Gene expression is regulated at many levels and the regulation of 

mRNA stability contributes significantly to the measured gene expression 

changes in microarrays (Cheadle et al., 2005). Despite its limitations, the 

DNA microarray is a powerful tool to gain genome-wide understanding of 

gene expression changes and to identify target candidates for diagnosis and 

treatment of many different types of diseases. 
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3. Aims of the study 

 

Human papillomavirus (HPV) has three oncogenes: E5, E6 and E7. HPV 

oncogene-encoded proteins are known to interact with many cellular proteins, 

causing events leading to carcinogenesis. The aim of this study was to model 

the holistic effects of the E5 protein in triggering malignant changes in 

epithelial cells, thereby contributing to earlier and more exact recognition of 

the events of papillomavirus carcinogenesis. 

 

 

Detailed aims where as follows: 

 

•  to examine the effects of the HPV-16 E5 oncogene on cellular gene 

expression in a genome-wide gene expression microarray 

 

• to further analyse cellular level alterations in gene and protein 

expression due to expression of HPV E5 in epithelial cells 

 

• to evaluate the role of cellular microRNAs in mediating the effects of 

E5 on changes in gene expression  

 

• to investigate the mechanisms of cell adhesion and cell motility of 

epithelial cells in relation to carcinogenesis 
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4. Materials and methods 
 

4.1. Cell culture (I-III) 
 

An immortalized HaCaT human keratinocyte cell line stably transfected with 

HPV 16 E5 (HaCaT-E5) gene expressed from a dexamethasone-inducible 

promoter, as well as a control cell line transfected with the empty vector 

(HaCaT-pMSG) were provided by Professor Angel Alonso and are described 

in Oelze et al. (1995). HaCaT-E5 cells and HaCaT-pMSG control cells were 

used in microarray analyses (I and II), three-dimensional raft cultures (II) 

and cell motility assays (I). An HPV 18-positive HeLa human epithelial cell 

line was obtained from the ATCC (Manassas, VA) and used in ezrin 

localization studies (III). 

 

HaCaT cell lines were cultured at 37°C in 5% CO2 atmosphere in Dulbecco’s 

modified Eagle´s medium (D-MEM) supplemented with 10% foetal bovine 

serum (FBS), 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml 

penicillin. The HeLa cell line was grown in similar conditions in minimum 

essential medium (MEM). 

 

HaCaT-E5 and –pMSG cells were serum-starved for 24 h and induced with 1 

μM dexamethasone (Sigma-Aldrich Inc., Saint Louis, MO) for different times 

for analysis. Comparisons were performed between E5 and control cells 

treated in a similar manner. 

 

Three-dimensional cell cultures mimicking layered epithelium were prepared 

using HaCaT-E5 and -pMSG cell lines in collagen raft cultures (modified from 

Lambert et al., 2005). Raft cultures were fixed embedded in paraffin, and 4- 

to 5-μm sections were used in immunohistochemical stainings (II). 
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4.2. RNA extraction (I, II) 

 

Total RNA was isolated from confluent HaCaT-E5 and –pMSG cell cultures 

that had been serum-starved and induced with dexamethasone (Sigma-

Aldrich Inc.) using TriPure reagent (Roche Applied Science, Indianapolis, IN) 

(I) or mirVanaTM miRNA Isolation Kit (Ambion) (II) after different induction 

times. RNA was quantitated and quality confirmed for microarray 

experiments using an Agilent 2100 Bioanalyzer (Agilent Technologies, 

Rockville, MD). For quantitative RT-PCR of cellular mRNA, total RNA (I) or 

the large RNA fraction of the mirVanaTM isolation product (II) was used. In 

Taqman microRNA assays, total RNA extracted with mirVanaTM miRNA 

Isolation Kit (Ambion) was used.  

 

 

4.3. Microarrays (I, II) 

 

The RNA samples were indirectly labelled using the T7 amplification method 

(Amino Allyl MessageAmpTM II aRNA Amplification Kit; Ambion, Austin, TX) 

according to the manufacturer’s instructions. Purified antisense RNA was 

labelled using monoreactive Cy3 and Cy5 dyes (GE Healthcare, 

Buckinghamshire, UK) (I and II) or monoreactive Alexa 488 (Invitrogen, 

Gaithersburg, MD) (II) followed by purification according to the 

manufacturer’s instructions. Labelled aRNAs were hybridized either onto 

Agilent Whole Human Genome 4x44K human slides according to the 

manufacturer’s recommendations (II) or onto cDNA microarrays from the 

Finnish DNA-Microarray Centre (Turku, Finland) (I). RNA samples for 

miRNA microarray were labelled using Agilent miRNA labeling kit (Agilent 

Technologies, Rockville, MD). Labelled samples were hybridized onto Agilent 

Human miRNA Microarray V1 slides according to the manufacturer’s 

instructions. All slides were scanned using an Axon GenePix 4200AL scanner 

(Molecular Devices Corporation, Sunnyvale, CA).  
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4.4. Quantitative RT-PCR (I, II) 

 

Quantitative RT-PCR (qRT-PCR) was performed in triplicate PCR reactions 

using RNA extracted from HaCaT-E5 and -pMSG cells. For RT-PCR, SYBR® 

Green PCR Master Mix and RT-PCR kit (Applied Biosystems, Foster City, CA) 

and a sequence detector ABI PRISM® 7700 (Applied Biosystems) were used. 

Gene specific primers were designed using PrimerExpress program (Applied 

Biosystems) and specificity of the PCR amplification was confirmed in both 

agarose gel and dissociation curve analysis of the amplification plot. For 

microRNA Taqman assays, total RNA was reverse-transcribed using 

Taqman� MicroRNA Reverse Transcription Kit (Applied Biosystems), and 

the cDNA was amplified using Taqman� MicroRNA assays (Applied 

Biosystems) for selected miRNAs. The comparative threshold cycle (CT) 

method was used in relative quantification of transcript fold-changes in E5-

expressing cells as compared with control cells. �-actin transcript expression 

level was used to normalize for the abundance of the tested transcripts. 

 

 

4.5. Western blotting (I, II) 

 

Total protein lysates were obtained from pretreated HaCaT-E5 and -pMSG 

cells using lysis buffer (150mM NaCl; 50mM N-2-hydroxyethylpiperazine-

N0-2-ethanesulphonic acid, pH 7.4; 0.1% Igepal; 5mM EDTA) containing 

proteinase inhibitors (cOmplete Proteinase Inhibitor Cocktail Tablets; Roche 

Applied Science). Total protein was quantitated using the Bio-Rad protein 

assay (Bio-Rad Laboratories, Hercules, CA, USA). Equivalent amounts (40 

μg) of total protein were separated in 7.5% or 10% sodium dodecyl sulphate-

polyacrylamide (SDS-PAGE) gel electrophoresis and transferred to Protran 

nitrocellulose membranes (Schleicher & Schuell, Dassel, Germany).  The 

membranes were blocked with 5% non-fat milk in phosphate-buffered saline, 
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followed by incubation with primary antibodies in 5% nonfat milk in PBST 

overnight at 4°C. Two-colour Western detection was performed by blotting 

each membrane simultaneously for the protein of interest and for �-actin 

(Sigma-Aldrich) to control for loading. Similarly treated E5 and control cells 

were compared. The expression of each protein was normalized against the 

expression of �-actin (loading control). 

 

Proteins were detected with the following antibodies:  PI3KR3 (Abgent, San 

Diego, CA, USA), Akt (Cell Signaling Technology, Beverly, MA, USA), P-Akt 

(Ser473; Cell Signaling Technology), paxillin (Cell Signaling Technology), P-

paxillin (Tyr118; Cell Signaling Technology), PKC-d (BD Biosciences, San 

Jose, CA), lamin A/C (BD Biosciences), E-Cadherin (BD Biosciences), N-

Cadherin (Zymed Laboratories, San Francisco, CA), �-Catenin (BD 

Biosciences), Claudin-1 (Zymed Laboratories), Integrin �V (BD Biosciences) 

and p63 (Labvision). Subsequently, the membrane was incubated with 

fluorescent secondary antibodies: IRDye 800CW goat anti-mouse (LICOR 

Biosciences, Lincoln, NE, USA) and IRDye 680 goat anti-rabbit (LI-COR 

Biosciences). �-actin (Sigma-Aldrich Inc.) was used as a loading control and 

all quantitations were normalized against �-actin in each lane. Images were 

acquired with the Odyssey infrared imaging system (LI-COR Biosciences) and 

analysed using the software programme provided by the manufacturer. 

 

 

4.6. Wound healing assay (I) 

 

HaCaT-E5 and –pMSG cells were grown to 90% confluency on a 24-well plate 

and pretreated as described previously. Epithelial cell monolayers were 

scratch-wounded with a pipette tip. Wound closure was followed with real-

time microscopy, using a Cell-IQ cell culturing platform (Chipman 

Technologies, Tampere, Finland) equipped with a phase-contrast microscope 

and a camera. Images were captured at one-hour intervals for 48 h. Images 

were analysed with Imagen software (Chipman Technologies). Cell counting 
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from images and analysis of variance test were performed to determine 

whether the observed cell movement was due to cell migration and/or cell 

proliferation. 

 

 

4.7. Immunohistochemistry (II) 

 

Tissue sections from HPV-associated cervical dysplasia and collagen raft 

cultures were stained using the automated Ventana Discovery tissue staining 

instrument (Ventana Medical Systems, Tucson, AZ). Tissue sections of 

precancerous lesions were obtained from HUSLAB, Department of Pathology. 

Monoclonal antibodies for p16 (CINtec Histology Kit, MTM Laboratories AG, 

Heidelberg, Germany), E-Cadherin (BD Transduction Laboratories), N-

Cadherin (Sigma-Aldrich Inc.), �-Catenin (BD Biosciences), Ezrin (clone 

3C12; Böhling et al., 1996) and p63 (Thermo Scientific) proteins were used. 

Ventana DAB Map kit was used for detection, and the sections were 

counterstained with haematoxylin and post-counterstained with Bluing 

Reagent (Ventana Medical Systems). Finally, the slides were rinsed and 

dehydrated before mounting.  

 

 

4.8. Plasmids and transfections (III) 

 

Full-length human ezrin cDNA as well as deleted and truncated ezrin cDNA 

sequences were cloned into the pEGFP-C1 expression vector (Clontech, Palo 

Alto, CA). All constructs were verified by nucleotide sequencing. Constructs 

for wild-type, constitutively activated Q61L, and dominant negative T17N 

Rac1 were kindly provided by Dr. Alan Hall (Memorial Sloan-Kettering 

Cancer Center, New York, NY), GFP-C3 from Dr. Johan Peränen (University 

of Helsinki, Finland) and wild-type phosphatidylinositol-4-phosphate 5-

kinase-alpha (PIPK�) and lipid-kinase negative mutant K138A-PIPK� from 
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Dr. Petri Auvinen (University of Helsinki, Finland) and kinase-deficient 

D227A-PIPK� from Dr. Christopher Carpenter (Harvard Medical School, 

Boston, MA). 

 

HeLa cells were grown on sterile glass coverslips to 30-50% confluency and 

transfected using the FuGENE transfection reagent (Roche, Mannheim, 

Germany) (III). For activation of Rac1, cells were also serum-starved for 24 h 

and stimulated with 40 ng/ml PDGF (R&D Systems, Minneapolis, MN). 

 

 

4.9. Immunofluorescence (III) 

 

HeLa cells grown and transfected on sterile glass coverslips were fixed with a 

cytoskeleton-preserving fixative (4% paraformaldehyde, 0.32 mol/l sucrose, 

10 mmol/l MES, 138 mmol/l KCl, 3 mmol/l MgCl2, 2 mmol/l EGTA). 

Coverslips were then incubated with NH4Cl, permeabilized with 0.5% Triton 

X-100 in PBS, blocked with 0.2% BSA in Dulbecco’s PBS, incubated with 

primary and secondary antibody diluted in blocking solution, stained for F-

Actin (Rhodamine-labelled phalloidin; Molecular Probes, Eugene, OR) 

and/or nuclei using Hoechst 33342 (Molecular Probes), and mounted.  

 

Antibodies used were to ezrin (clone 3C12, produced in the group of Professor 

Antti Vaheri and described in Böhling et al. (1996), threonine-phosphorylated 

ERM proteins (Santa Cruz Biotechnology, Santa Cruz, CA), �-tubulin (Sigma-

Aldrich, Saint Louis, MO), paxillin (Zymed, San Franscisco, CA), N-Cadherin 

(Sigma-Aldrich), E-Cadherin (Transduction Laboratories, Franklin Lakes, 

NJ), �-catenin (Transduction Laboratories), Rac1 (Santa Cruz Biotechnology), 

VSVG epitope (Roche Molecular Biochemicals), HA epitope (Roche Molecular 

Biochemicals) and a polyclonal (Upstate Biotechnology, Lake Placid, NY) or 

monoclonal antibody (provided by Dr. Petri Auvinen and described in Evan et 

al., 1985) to the myc epitope. 
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The stained cells were examined with an Axioplan 2 microscope (Zeiss, 

Oberkochen, Germany) and the fluorescent images were acquired with an 

Orca digital camera and the software provided. 

 

 

4.10. Statistical methods (I, II) 

 

All qRT-PCR and microarray analyses were done in triplicate and miRNA 

qRT-PCR analyses in quadruplicate. In quantitative RT-PCR analyses, 

Student’s t-test was employed to statistically evaluate the results, using a P-

value cut-off of <0.05.  

 

In all microarray analyses, computational segmentation of the absolute 

foreground intensities and local background estimation from the scanned 

images were performed with the softwares GenePix Pro v.5.0 (II) or v.6.0 (I) 

(Axon). The data were then imported into the R software for further statistical 

analyses (http://cran.r-project.org/). Background correction and quality 

assessment of the data set were carried out using the BioConductor packages 

Limma (I and II) (Smyth, 2004) and arrayMagic (I) (Buness et al., 2005). The 

background-corrected log ratios were then normalized using the LOWESS 

regression method. Differentially expressed transcripts and micro-RNAs 

between E5-expressing and control cells at each time-point were studied with 

a linear model and a moderated t-test (I and II).  

 

Analysis of variance was utilized to find expression patterns with significant 

alterations throughout the time-points analysed (II). Analysis of variance was 

also used to detect overall changes in wound healing assay (I).  
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4.11. MicroRNA target prediction (II) 

 

To analyse altered microRNAs and their potential effect on their target genes, 

putative targets for each miRNA studied were defined by combining the 

computational predictions of eight popular algorithms, described in detail in 

Study II. The predicted target gene mRNA expression levels were then 

compared with their related miRNA expression to confirm congruency. 
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5. Results and discussion 
 

5.1. Effect of HPV-16 E5 protein on cellular gene expression (I, 
II) 
 

E5 is the least studied of the papillomavirus oncogenes; its roles in viral 

replication and pathogenesis of HPV are not fully understood. The effects of 

E5 in epithelial cells were evaluated by genome-wide gene expression 

microarray analyses first using cDNA microarrays (I) and later using 

oligonucleotide microarrays to obtain better quality data (II). Large-scale 

screening studies about the effects of E5 on cell membranes have been 

previously reported (Leykauf et al., 2004; Bravo et al., 2005). To date, only 

one other microarray gene expression study has been performed on 

keratinocytes expressing HPV 16 E5. Sudarshan et al. (2010) reported that 

approximately 25 genes were affected due to E5 expression when using 

primary keratinocytes stably expressing HPV 16 E5. In our studies, a fold-

change cut-off was not used under the assumption that even a small 

difference in gene expression level might be relevant (I, II). By contrast, 

Sudarshan et al. (2010) considered genes significant, that had a fold-change 

difference higher than 1.5. Study settings differed also concerning E5 

expression, cell status and cell type.  

 

HaCaT keratinocyte cell line expressing the E5 protein from an inducible 

promoter was used as a study model, together with a control cell line without 

the E5 gene (I, II). First, the focus was on the events at 24 h after induction, 

when the transcription of E5 RNA was highest (I). Microarray analysis was 

performed in triplicate and P-value of <0.01 was used for statistical 

significance. Further, a detailed time-scale analysis was performed at 0, 2, 4, 

24, 48, 72 and 96 h after induction (II). All time points were studied in 

triplicate and P-value of <0.001 was used to depict statistical significance (II). 

The microarray studies presented here are the largest studies to date on the 

effects of HPV E5 on cellular gene expression.  
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The E5 protein was shown to affect several cellular pathways involved in cell 

adhesion, cell motility and mitogenic signalling, in agreement with earlier 

studies reporting changes in cell adhesion and motility due to expression of 

HPV 16 E5 together with E6 and E7 (Boulenouar et al., 2010). Altogether 117 

upregulated and 62 downregulated genes were identified in cDNA microarray 

analysis in E5-expressing cells as compared with control cells. The identified 

genes were grouped according to their Gene Ontologies (I: Figure 1). Altered 

genes from the microarray clustered mainly in the following biological process 

categories: metabolism, responses to different stimuli and immune and 

defence responses. Twenty-seven altered genes were selected for qRT-PCR 

validation (P-value <0.05), and in 15/27 (56%) the microarray result was 

confirmed. To deepen the analysis of the effect of E5 expression on host cell 

pathways, 34 additional genes from the same Gene Ontology families, or 

downstream target genes of interest were selected for qRT-PCR validation. A 

time scale of 0 to 72 h was utilized in qRT-PCR and Western blotting, and E5 

expression was shown to affect transcription of cellular genes studied already 

at time-points earlier than the 24-h time-point used in the microarray 

analysis.  

 

On the basis of the first observation that E5 expression affects cellular gene 

expression already in small quantities, Study II was carried out using time-

scale analysis up to 96 h after E5 induction. Importantly, for gene expression 

analysis oligonucleotide microarrays were used, which have better 

annotation, specificity and reproducibility than the cDNA array. Also in this 

analysis, genes involved in cell motility, cell adhesion and extracellular matrix 

were over-represented. In addition, a number of genes of the immune and 

inflammatory response were found significantly changed at all time-points, 

confirming the previous microarray results. The E5 protein, together with 

other HPV oncoproteins, has been reported to modify the host cell immune 

response against HPV infection (O’Brien and Campo, 2003). qRT-PCR 

validation of 32 genes selected according to their biological relevance was 

carried out, and for 72% the alterations could be confirmed. Better 
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performance of the oligonucleotide arrays contributes to a higher proportion 

of validated genes. True alterations in gene expression are likely to explain at 

least partially the oscillation of the transcript levels of several genes over time 

(I, II).  

 

Despite major differences between these two different microarray platforms, 

similar patterns in alterations of gene expression were observed. However, 

data sets from cDNA and oligonucleotide microarrays have substantial 

variation and poor concordance, and, therefore, they cannot be directly 

compared (Järvinen et al., 2004; Woo et al., 2004; Zhu et al., 2005).    

 

 

5.1.1. HPV E5 alters expression of extracellular matrix genes 

  

Interaction of cells with the surrounding extracellular matrix (ECM) affects 

cell differentiation, proliferation, adhesion and migration (Adams and Watt, 

1993). The ECM consists of a number of molecules, including collagens, 

laminins, fibronectins, vitronectin, tenascins, fibrillins, proteoglycans and 

elastins (Merker, 1994; Yurchenco and O´Rear, 1994). In this work, 

alterations in the expression of fibronectin-1, laminin-�1, laminin-�4, laminin 

receptor 1, collagen type 16 and cytokeratin-8 were observed (I, II). The 

integrins �V, -�2 and -�-like 1 were also altered (II). Integrins serve as cell 

surface receptors and are important in cell adhesion, migration and 

signalling. The laminin-5 component of the ECM has been suggested to be a 

transient receptor for HPVs (Broutian et al., 2010; Culp et al., 2006). We did 

not observe significant alterations in laminin-5 expression. However, upon 

infection of basal epithelial cells, differences in ECM binding between HPV 

types have been recently reported (Broutian et al., 2010). Further, an 

increment of the 67-kDa laminin receptor transcript was detected in E5-

expressing cells (I). In agreement with this, an upregulation this transcript 

has previously been reported in HPV-associated cervical neoplasia (Demeter 
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et al., 1992). Laminin receptor has also been shown to be involved in tumour 

invasion and metastasis (Castronovo, 1993). 

 

Here, a modest upregulation of PKC-� was observed. The PKC family proteins 

regulate numerous cellular functions such as cell proliferation and survival. 

The E5 protein has been suggested to have a role in several cellular pathways 

involving PKC (Brodie and Blumberg, 2003; Chen et al., 1996; Ueda et al., 

1996). Furthermore, PKC is also known to phosphorylate matrix 

metalloproteinases (MMPs), which play a role in tumour invasion and have 

been demonstrated to degrade ECM. Interestingly, alterations in the mRNA 

expression of several MMPs were observed in both microarray studies, and 

downregulation of MMP-2, MMP-7, MMP-12, MMP-13 and MMP-16 was 

validated by qRT-PCR (I, II). Our unpublished results have also shown 

expression differences in MMP-7 and MMP-16 between cervical dysplasia and 

normal tissue. In a larger tumour tissue material, MMP-7 was found to be 

slightly upregulated in cervical dysplasia, and MMP-16 expression was 

detected throughout the dysplastic epithelium, while the protein was 

expressed only in the basal cell layer of normal tissue (unpublished results). 

These findings are in concordance with the previously reported roles of MMP-

7 and MMP-16 in tumour invasion and cancer (Kessenbrock et al., 2010).  

 

 

5.1.2. HPV E5-induced modifications in the PI3K/Akt pathway and 

immune response 

 

Several genes of the phosphatidylinositol phosphate kinase (PIPK) pathway 

appeared altered in the microarray, and they were also validated by 

quantitative RT-PCR (I). The phosphoinositide-3-kinase (PI3K) pathway is 

important in diverse cellular mechanisms such as cell proliferation, motility 

and survival and intracellular trafficking. In the present work, slightly 

increased expression of phosphoinositide-3-kinase receptor 3 (PI3KR3) was 

found in E5-expressing cells. Also, transcription of both phosphatidylinositol 
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transfer protein and inositol polyphosphate-4-phosphatase was upregulated. 

An increment of class II PI3-kinase transcripts was observed as well (I, II). 

Increased expression and slightly enhanced activation of Akt, a downstream 

effector of PI3K, were observed in E5 cells. Akt activation plays an important 

role in cell proliferation and survival by phosphorylating a variety of 

substrates (Song et al., 2005). PI3K/Akt signalling has been shown to be 

frequently disrupted in human cancers. Interestingly, HPV E5 has been 

reported to protect cells from ultraviolet-B-induced apoptosis and promote 

survival by activating the PI3K/Akt pathway (Zhang et al., 2002), in 

agreement with our results. PI3Ks also have important functions in the 

immune system such as activation of T-lymphocytes (Ward and Cantrell, 

2001). Cytokines activate PI3K in immune cells, and, indeed, we found 

several interleukins to be upregulated in E5-expressing cells. Our microarray 

data as well as the qRT-PCR results indicate a role for the E5 protein in 

promoting cell survival by enhancing the activity of the PI3K/Akt pathway. 

 

Genes involved in the immune and inflammatory response were altered in E5-

expressing cells throughout the time-frame studied (II). Microarray analysis 

revealed several interleukins and integrins to be upregulated in E5-expressing 

cells. From these genes, quantitative RT-PCR validation was performed for 

integrin-�V, -�2 and -�-like 1 and major histocompatibility complex (MHC) 

IA, and strong upregulation of integrin-�2 was confirmed. MHC IA mRNA 

levels oscillated over time, although downregulation was noted at most time-

points. Downregulation of MHC I and II has been observed due to HPV E5 

oncogene expression, with a subsequent reduction in immune recognition 

(Ashrafi et al., 2005;  Zhang et al., 2003). Strong induction of microRNA-

146a (MiR-146a) by the E5 protein was seen in the miRNA microarray (II; 

Section 5.3.). MiR-146a has been shown to be involved in negative regulation 

of immune responses and cytokine signalling (Curtale et al., 2010; Taganov et 

al., 2006). In addition, a slight decrement occured in genes related to TNF� 

signalling, which may be partially explained by miR-146a upregulation. This 

was confirmed in E5-expressing cells by TNF� stimulation and miR-146a 

inhibition, which resulted in significant activation of the downstream protein, 
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p38 kinase, as well as in ERK1/2 (II). Downregulation of miR-203 was also 

noted in the miRNA microarray (II; Section 5.3.1.), and with the miR-203 

overexpression experiment along with INF� stimulation, stronger 

enhancement in p38 kinase in E5-expressing cells than in control cells was 

seen (II). HPV persistence and cancer development require inactivation of 

host cell immune defences, and our data thus suggest an important role for 

HPV E5 in interfering with the innate immune response during infection.  

 

 

5.2. Epithelial cell adhesion and cell motility (I - III) 
 

5.2.1. Alterations in expression of cell adhesion and motility-related 
genes due to HPV 16 E5 expression 
 

Cell adhesion molecules, including integrins and cadherins, facilitate cell 

binding to the ECM and to each other. Epithelial cells adhere to each other via 

adherens junctions, which require interaction of cadherins with actin 

filaments by means of �- and �-catenins. Cell motility involves both 

disintegration and establishment of cellular junctions, when the cells move on 

the surface of or attach to other cells. We found downregulation of E-cadherin 

transcription, but protein expression was enhanced in both Western blot and 

collagen raft staining. Stronger staining of E-cadherin was seen in E5 three-

dimensional collagen raft cultures than in control raft cultures (II). 

Upregulation of N-cadherin and �-catenin proteins was also observed in E5-

expressing cells as seen in Western blotting (II). In collagen raft cultures, 

stronger staining for �-catenin was detected in E5 cultures than in control 

cultures, whereas no differences were noted when staining N-cadherin (II). In 

cervical dysplasia, expression of E-cadherin, N-cadherin and ezrin was 

localized to cellular junctions throughout the epithelia in contrast to normal 

epithelia, where staining was restricted to the bottom layers (II). The result is 

hardly surprising since cell-cell adhesion is known to be reduced in human 

cancers. Carcinogenesis involves downregulation of E-cadherin and 
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disruption of E-cadherin – �-catenin complexes in adherens junctions, the 

stability of which is regulated by ezrin (Hiscox and Jiang, 1999). The 

epithelial-to-mesenchymal transition, an important event during tumour 

invasion and metastasis, is characterized by reduced levels of E-cadherin and 

enhancement in N-cadherin expression (Hazan et al., 2004). On a post-

translational level, degradation of E-cadherin is mediated by MMPs (Munshi 

and Stack, 2006), which are generally downregulated in E5-expressing cells. 

The E5 protein seems to have effects at cellular junctions, and the alterations 

observed in our study suggest functions in cell motility rather than in 

carcinogenesis directly. The strong downregulation of MMPs due to E5 

expression cannot be fully explained, but E5 may reduce MMP expression 

indirectly by inhibiting signal-transduction pathways that induce MMP 

transcription. The E5 protein alone may be insufficient to trigger carcinogenic 

changes in the host, but instead it functions together with the E6 and E7 

oncoproteins. The effects that the HPV-16 E5 protein has on these key 

adhesion molecules confirm its important role in the initiation of the 

carcinogenic process. 

 

Epithelial tight junctions seal the cells to each other, preventing the passage of 

molecules and ions through the space between the cells. In this work, modest 

upregulation of the tight-junction component claudin-1 was found on an 

mRNA level, whereas little effect was seen in claudin-1 protein expression 

(II). Furthermore, several integrins were enhanced in the oligonucleotide 

microarray, and the increment in integrin-�2 expression in E5-expressing 

cells was confirmed by qRT-PCR (II). Integrin-�2 is an important protein 

involved in cell adhesion and cell-surface-mediated signalling. Cell adhesion 

and signal transduction-associated integrin-�V mRNA and protein levels 

were also altered in E5 cells, although oscillation over time occurred. The 

HPV E5 protein has been reported to reduce the adhesiveness of trophoblastic 

cells to the tissue culture plastic and to endometrial cells (Boulenouar et al., 

2010). The E5 protein seems to be involved in reduction of cell adhesion, 

which is an important phenomenon in cell motility and also in cancer. This is 

further supported by the observed upregulation of miR-146a, which targets 
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several genes involved in cell adhesion (see Section 5.3.). In addition, we 

observed downregulation of miR-203, which could lead to enhancement of its 

targets, to be involved in cell migration and motility.  

 

Data from the microarray analyses suggest that cell adhesion and motility are 

among the major cellular events affected by the E5 protein. To study this 

phenomenon further, we analysed the expression of focal adhesion proteins 

FAK and paxillin by Western blotting (I). Indeed, increases in both total and 

phosphorylated paxillin were detected in E5-expressing cells, whereas FAK 

protein levels remained unaffected. Paxillin localizes to focal adhesions, and 

when activated by phosphorylation, it enhances cell adhesion and motility 

(Petit et al., 2000). Increased activity of FAK and paxillin has been implicated 

in cervical carcinogenesis by HPV E6 and E7 oncogenes (McCormack et al., 

1997). Our results suggest that E5 also contributes to the pathogenesis of HPV 

by enhancing cell motility.  

 

The stability of E-cadherin – �-catenin complexes in adherens junctions 

between epithelial cells is regulated by ezrin. Ezrin is a protein linking the 

actin cytoskeleton to the plasma membrane, and it has an important role in 

regulating cell morphology and motility. We used HeLa cells to investigate 

epithelial cell adhesion, particularly the role of ezrin. HeLa cells originate 

from a human cervical adenocarcinoma, and they naturally contain parts of 

the HPV-18 genome. We found co-localization of ezrin and N-cadherin in 

adherens junctions, but no expression of E-cadherin (III), confirming the 

switch from E-cadherin to N-cadherin in cancer cells. Ezrin may possess a 

role in HPV-associated carcinogenesis, and, indeed, our study revealed an 

increase in N-cadherin protein expression and a slight decrease in ezrin 

mRNA levels in the HPV E5-expressing epithelial cells, although no 

differences were detected in ezrin expression levels between E5 and control 

cells using collagen raft cultures (II). These phenomena contribute to 

decreased cell adhesion and enhanced cell motility; we did not, however, 

study their consequences on cell adhesion or motility in vivo. 
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5.2.2. Regulation of ezrin localization and function in epithelial cells (III) 
 

Ezrin, along with other ERM-protein family proteins, regulates cell 

morphology and motility. Inactivation of ezrin has been reported to alter cell-

cell and cell-matrix adhesion and increase cell motility (Hiscox and Jiang, 

1999; Takeuchi et al., 1994), or depending on the tumour cell type, suppress 

migration and metastasis (Rossy et al., 2007). In cancers, the role of ezrin is 

complicated. In ovarian carcinomas, the loss of ezrin expression is associated 

with poor survival (Moilanen et al., 2003), conversely in uveal malignant 

melanoma (Mäkitie et al., 2001) and pancreatic adenocarcinoma (Akisawa et 

al., 1999) the presence of ezrin is a poor prognostic indicator. 

 

Ezrin expression and localization were investigated in HeLa epithelial cells by 

co-expression experiments (III). Endogenous ezrin was found in the 

cytoplasm and microvilli. We evaluated the effect of a small GTPase Rac1 on 

ezrin localization. In the presence of constitutively activated Rac1, ezrin was 

redistributed to intercellular adherens junctions and colocalized with N-

cadherin. However, ezrin localization at adherens junctions was reduced by 

expression of dominant negative Rac1. The role of Rac was further studied by 

overexpressing Rac1 or stimulating the cells with platelet-derived growth 

factor (PDGF). In both experiments, endogenous ezrin was relocalized to cell-

cell adhesions, confirming the role of Rac1 in ezrin redistribution.  

 

We also studied the role of other GTPases. Participation of RhoA either 

upstream or downstream of Rac1 in the same pathway has previously been 

reported (Kaverina et al., 2002; Rolli-Derkinderen et al., 2010). In this 

system, we showed that RhoA is crucial for the role of Rac1 in ezrin 

relocalization, as inhibition of RhoA by C3 exoenzyme abolished ezrin 

localization at cell junctions (III). Phosphoinositide kinase (PIPK) was also 

found to be involved in this process when using transient cell transfections. 

Further, co-transfection experiments using wild-type phosphoinositide kinase 

alpha (PIPK�) and dominant negative Rac1 placed Rac1 downstream of 
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PIPK� in the pathway leading to ezrin relocalization. This was further 

substantiated by the finding that constitutively activated Rac1 restored ezrin 

localization at adherens junctions when co-transfected with kinase-deficient 

PIPK�. Cells expressing the pseudoactivated form of ezrin have also been 

shown to possess activated Rac, but not activated Rho (Pujuguet et al., 2003). 

These results confirm the function of ezrin as an organizer of adherens 

junctions in epithelial cells.  

 

 

5.2.3. HPV 16 E5 enhances cell motility in vivo (I) 

 

Cell migration and motility are critical in tumour invasion and metastasis. 

Essential for cell migration is actin reorganization, which is regulated by Rho 

family small GTPases. In microarray analysis, several genes involved in cell 

motility were found to be altered in the E5-expressing cells, and increased 

protein expression levels of activated paxillin and Akt were also detected (I). 

These findings strongly suggest enhanced cell motility and reduced cell 

adhesion. A wound healing assay was therefore performed using confluent 

monolayers of HaCaT-E5 and control cells to study directional movement of a 

population of epithelial cells with the help of intracellular junctions in vivo. 

Wound closure in E5-expressing cells was monitored by live-cell imaging, and 

a higher rate of wound closure was observed relative to controls. Wound 

closure was shown to occur due to enhanced cell movement rather than to 

increased proliferation, as statistical analysis revealed no temporal differences 

in cell number in the wounded area. The major pathways activated during 

cellular motility and metastasis are the PI3K/Akt pathway and the FAK/Src 

signalling pathway, which operates via paxillin. These pathways are in close 

relation with each other; Scr activation seems to be required for PI3K 

activation, which is in turn required for the activation of FAK and Akt 

(Thamilselvan et al., 2007). The E5 protein level increased and activated Akt 

and paxillin protein expression in both pathways. Regulation of cancer cell 

adhesiveness appears to involve Src and PI3K interaction to activate FAK in a 
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complex manner that also requires Akt and paxillin activation (Basson, 

2008). Previous studies have implicated HPV E5 in cell movement. Thomsen 

et al. (1999) reported reduced cell motility in individual cells due to E5 

expression in mouse embryonic fibroblasts. On the other hand, Boulenouar et 

al. (2010) recently observed increased cell migration and invasion due to HPV 

E5 in trophoblastic cells. Regulation of these pathways, including alterations 

in adhesion-related proteins, suggests an important role for the E5 protein in 

the early stage of carcinogenic progression.  

 

 

5.3. MicroRNA profiling in epithelial cells expressing HPV-16 

E5 oncogene (II) 

 

The importance of cellular microRNAs (miRNAs) in cancer as well as in viral 

infections has been stressed in numerous studies. Therefore, the effect of 

HPV-16 E5 expression on cellular miRNAs was investigated here using large-

scale microarray analysis. MiRNA expression in HaCaT-E5 and control cells 

was profiled in uninduced cells as well as after induction for 24, 48, 72 and 96 

h. The number of differentially expressed miRNAs varied from eight to 18 

depending on the time-point of E5 expression (P-value <0.01). For all 13 

miRNAs for which a Taqman miRNA assay was available at the time of the 

study, alterations were validated by quantitative RT-PCR (III: Table 2). 

Evidence shows that miRNAs influence gene expression by causing the 

degradation of their target mRNA (Cheng et al., 2008; Lim et al., 2005), 

although it has recently been observed that also a positive correlation between 

miRNAs and mRNA exists (Nunez-Iglesias et al., 2010; Tsang et al., 2007; 

Wang et al., 2009). The data from the mRNA and miRNA microarrays were 

integrated, following the assumption that gene expression is inversely 

correlated. After the integration, known targets of validated microRNAs were 

sought among the validated mRNA microarray transcripts (Table 2). 

Observed alterations in the expression of several miRNA target genes, such as 
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N-cadherin, integrin �V, claudin-1 and �-catenin, were in agreement with 

miRNA alterations. 

 

Table 2. Integration of microRNA and mRNA data revealed alterations in several 

microRNA targets studied by qRT-PCR.  

 

Regulator miRNAs Target gene 

Gene 

Symbol 

Gene 

ID 

hsa-miR-146a, hsa-miR-214 
 cadherin 2, type 1, N-cadherin 
(neuronal)  CDH2 1000 

hsa-miR-146a, hsa-miR-200c  fibronectin 1  FN1 2335 

hsa-miR-203, hsa-miR-30a-5p, 

hsa-miR-23b 

 PDZ domain containing 2  
PDZD2 

2303

7 

hsa-miR-30a-5p, hsa-miR-

106a 

 junB proto-oncogene  
JUNB 3726 

hsa-miR-19a  tumour protein p53  TP53 7157 

hsa-miR-200c, hsa-miR-433, 

hsa-miR-624 

 integrin, alpha V (vitronectin 
receptor, alpha polypeptide, 
antigen CD51)  ITGAV 3685 

hsa-miR-539  claudin 1  CLDN1 9076 

hsa-miR-624, hsa-miR-214 
 catenin (cadherin-associated 
protein), beta 1, 88 kDa  CTNNB1 1499 

hsa-miR-107 
 BCL2/adenovirus E1B 19 kDa 
interacting protein 3  BNIP3 664 

 

 

All validated microRNAs, excluding miR-146a and miR-324_5p, followed a 

similar expression trend in qRT-PCR. For the microRNAs studied, the 

expression was enhanced during the first 48 h and finally at the 72-h time-

point the expression was reduced. MiR-146a was found to be constantly 

upregulated and miR-324_5p downregulated at all time-points evaluated. 

MiR-203 downregulation was observed at late time-points in the microarray 

analysis. For these three selected miRNAs, putative target genes, in addition 

to confirmed targets, were predicted using eight distinct algorithms. Genes 

involved in cell migration, cell motility and cell junctions were enriched in the 

miR-203 targets, while targets of miR-146a were involved in cell adhesion and 

cell cycle. Several cell adhesion and cell death-associated genes were found 

among the predicted targets of miR-324_5p.  
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Interestingly, both miR-146a and miR-203 are implicated in a number of 

cancers. Wang et al. (2008) have earlier reported that miR-146a expression is 

increased in cervical cancer tissues, and it promotes cell proliferation in cell 

lines, suggesting a role in cervical carcinogenesis. Enhanced miR-146a 

expression has been detected also in many other cancers (He et al., 2005; 

Volinia et al., 2006). We found decreased mRNA expression but increased 

protein expression of E-cadherin, a putative target of miR-146a. Increased 

half-life due to catenins or other components of cellular junctions may explain 

this observation (Ireton et al., 2002; Lozano and Cano, 1998). A significant 

increase was observed in gene as well as in protein expression levels of N-

cadherin, another putative target of miR-146a. This is contrary to the classical 

concept of decreased target expression in the presence of upregulated miRNA.  

Possibly, miR-146a downregulates an unknown target upstream of these 

cadherins in the same pathway, resulting in upregulation of protein 

expression. 

 

Expression of a less studied miRNA species, miR-324_5p, was downregulated 

throughout the experiment. Downregulation of miR-324_5p has been 

reported to contribute to tumour cell proliferation and carcinogenesis 

(Ferretti et al., 2008), which suggests a potential role in the oncogenic 

functions of the E5 protein. 

 

The E5 protein of HPV-16 induced alterations in the host cell gene. Protein 

expression may take place through several different mechanisms; in some of 

cases, E5 may directly affect cellular gene and protein expression, but it may 

also alter microRNAs. Although almost all human cancers display a certain 

level of aberrant miRNA expression, very little is known about the cause of the 

aberrant expression and its role in cancer. 
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5.3.1. HPV E5 is involved in pathogenesis of HPV infection by 

repressing miR-203 (II) 

 

We observed downregulation of miR-203 and also a slight increase in its 

target protein, p63, in E5-expressing cells. p63 is rarely mutated in cancers, 

although overexpression of the isoform �Np63 has been observed in 

squamous cell carcinomas (Nylander et al., 2000). No clear difference in the 

intensity of p63 expression was detected in E5 raft cultures compared with 

control cultures. However, cell nuclei in the differentiated cell layers of E5-

expressing cultures lacked p63, while differentiated control cell nuclei stained 

for p63. MiR-203 is known to promote proliferation and Lena et al. (2008) 

reported miR-203 to repress stem cell-like properties of epithelial cells by 

downregulating p63. Mir-203 downregulation has been observed in many 

tumours (Craig et al., 2011; Furuta et al., 2010). The p63 transcription factors 

are important in maintaining the proliferation of basal epithelial cells (Truong 

et al., 2006). A recent report stated that another HPV oncogene, the E7 

protein, also downregulates miR-203, which causes an increment in p63 

expression in HPV-infected cells (Melar-New & Laimins, 2010). This suggests 

that both E7 and E5 proteins contribute to the pathogenesis of HPV infection 

through miR-203 by maintaining high levels of p63 proteins, which uphold an 

active cell cycle. Reduced levels of p63 are critical for normal epithelial 

differentiation, which is disturbed during HPV infection. We observed 

abolishment of p63 when miR-203 was overexpressed in HaCaT 

keratinocytes. Thus, HPV-mediated miR-203 downregulation seems to have a 

crucial role in interfering with epithelial cell differentiation and subsequently 

contributing  to carcinogenesis. 
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6. Concluding remarks 

 

Genome-wide effects of the HPV-16 E5 oncogene were studied as reflected in 

cellular gene expression as well as in microRNA expression in human 

keratinocytes. A number of altered genes were identified using two different 

microarray platforms, and these alterations were concentrated in genes 

affecting cellular adhesion and motility as well as the stucture of the 

extracellular matrix. The E5 protein was observed to modulate the expression 

of numerous cellular microRNAs likely to contribute to viral pathogenesis. 

Alterations in microRNA target proteins were also observed. To date, only a 

few reports have emerged on the regulation of cellular miRNA expression by 

virus infection. Elucidation of the roles of the miRNAs as well as functional 

studies of their targets in the HPV life cycle will be important in future 

analyses.  

 

Enhancement of cell motility was detected in live-cell imaging studies. In 

addition, regulation of ezrin localization by Rac1, PIPK� and RhoA in 

epithelial adherens junctions was observed. Disruption of cell adhesion and 

increased cell motility are involved in carcinogenesis. Ezrin is one of the 

regulators of E-cadherin - �-catenin complexes in adherens junctions. In this 

study, alterations in several junction components were detected, possibly 

contributing to decreased cell adhesion and increased cell motility. Indeed, 

enhanced cell motility was observed in HPV E5-expressing cells. Further 

studies of the HPV E5 protein are likely to reveal its functions in viral 

replication, cellular signal transduction, cellular transformation and, finally, 

carcinogenesis.  
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