
University of HelsinkiDepartment of Computer ScienceSeries of Publications C, No. C-1997-36
TranSID: An SGML Tree Transformation LanguageJani Jaakkola, Pekka Kilpeläinen, and Greger Lindén
Helsinki, May 1997Report C�1997�36University of HelsinkiDepartment of Computer ScienceP.O.Box 26 (Teollisuuskatu 23)FIN-00014 University of Helsinki, Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14921587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TranSID: An SGML Tree Transformation LanguageJani Jaakkola, Pekka Kilpeläinen, Greger Lindén,Department of Computer Science, University of HelsinkiReport C-1997-36May 199714 pagesAbstractWe present a powerful document transformation language called TranSID, which is tar-geted at structured (SGML) documents. The language is based on a powerful modelwhere the entire input document tree may be referenced during the transformation pro-cess. The evaluation is performed in a bottom-up manner. A language evaluator has beenimplemented which runs in Unix environments.CR Categories and Subject Descriptors:I.7.2 [Text processing]: Document Preparation.J.7 [Computers in other systems]: Publishing.General Terms: DesignKeywords: structured document transformations, SGML, tree transformation languages

Contents1 Introduction 12 Overall control and data model 23 Semi-formal semantics 34 Transformation rules 45 TranSID operators 66 An example transformation 97 Implementation 128 Conclusion and future work 13References 13

i

1 IntroductionIn the world of document preparation, text transformation is an everyday issue. Docu-ments need to be produced and presented in di�erent media such as paper, CD-ROM,and screen. Documents also need to be transformed between di�erent text preparationsystems depending on the needs of the users. The transformation needs have causedthe creation of a plethora of more or less ad hoc transformation tools for transforming adocument from one representation into another.On the other hand, the idea of a data-centered information pool is well acknowledged. Itwould be su�cient to update only one particular master document and then propagate thechanges to all other representations of the same document. Such a processing frameworkis supported by the Standard Generalized Markup Language (SGML) [ISO86]. The ideaof SGML is to mark the structure of documents explicitly. Main recognizable componentscalled elements impose a hierarchical (or tree-like) structure on documents. The contentsof elements, which may contain further elements, are surrounded in the document textby a start tag and an end tag. Start tags may contain additional data items calledattributes, which pertain to the corresponding element. Document instances may alsocontain entities and processing instructions. Entities are used as place holders for furtherdocument contents, e.g., external graphic �les. Processing instructions are used for passinginformation, e.g., explicit formatting commands to a processing application. The overallstructure of a set of documents is described in a document type de�nition (DTD) whichde�nes what kinds of tags may be used and how they may relate to each other.There are several translation engines targeted speci�cally at SGML applications on themarket today. We distinguish between conversion tools for transforming documents intoSGML documents (aka up-translation), and transformation tools for transforming SGMLdocuments into SGML or other formats (aka cross-translation and down-translation).Transformation tools, such as Balise [AIS96], MetaMorphosis [MID95], OmniMark [Exo93],and CoST [Har93], use as their front end an SGML parser that reads and checks the SGMLdocument before it is transformed.We divide transformation tools into two categories. Event-based transformers (e.g., Om-niMark) use a sequential evaluation strategy. They transform the SGML document atthe same time when it is entered and parsed. This strategy is usually e�cient, at leastmemory-wise, as the document never has to be entirely read into main memory. Event-based transformers use the ESIS [Gol90] output of an SGML parser as their input. TheESIS output consists of all `events' or structural parts in the document, such as the startand end tags as well as the content between tags.Tree-based transformers (e.g., MetaMorphosis) construct an internal representation, usu-ally a tree, of the SGML document. A tree-based transformation (see, e.g., [KPPM84])lets the user refer to any part of the document (tree) at any time during the transforma-tion. This strategy is more powerful than the event-based one, e.g., it is easier to reorderdocument parts or to handle forward and backward references. Some transformers (e.g.,Balise) combine the event-based and the tree-based strategies and let the user choosewhich one is appropriate at a certain moment during the transformation.The TranSID language is a tree-based transformation language. The language is targeted1

at SGML transformations, but the underlying technique is independent of the represen-tation format. The transformation has full access to the entire parse tree of the inputdocument. Design goals of the language include declarativeness, simpleness and imple-mentability with reasonable e�ort. Special features include a bottom-up evaluation pro-cess. Bottom-up evaluation is a declarative way of de�ning some transformations thatwould be awkward to de�ne in a top-down manner. (See the example in Section 6.) TheTranSID language also includes high level declarative commands that free the user fromlow-level programming. We have implemented an interpreter and an evaluator for Tran-SID which are fully operational in Unix environments [JKL96a, JKL96b]. TranSID hasbeen developed in a research project called Strcutured and Intelligent Documents (SID)1.The Document Style Semantics and Speci�cation Language Standard (DSSSL, [ISO96])de�nes a related transformation language. DSSSL is, however, in its entirety quite com-plex as it covers both tree transformation and document formatting. TranSID is mainlyconcerned with tree transformation even if some simple formatting is possible. Also, nocomplete implementations of DSSSL exist yet � only a partial implementation of theDSSSL style language has been developed [Cla96a].In the rest of this paper we present the TranSID language and its implementation. Westart by giving a short explanation of the data model and by de�ning the semantics ofthe transformation language. We then go on to show some extensive examples of its use.We conclude by giving an overview of the implementation and planned extensions to thelanguage.2 Overall control and data modelA transformation engine for the TranSID language has been implemented. The trans-formation process is similar to the grove transformation process of the DSSSL standard[ISO96]. The basic environment consists of an SGML parser, a TranSID parser, a trans-former and a linearizer (Figure 1).A TranSID transformation starts by parsing an SGML document and constructing aninternal document tree. We use the SP parser [Cla96b] for parsing the document. Thetree transformation is speci�ed in a TranSID program that is parsed by its own parser.An internal rule base is formed of the TranSID program. It may contain rules for trans-formation and linearization as well as some import declarations. The import declarationsguide the SGML parser in building the source tree. For example, the declarations statewhere entities should be expanded. The transformation is performed by the transformerprocess which traverses the constructed parse tree and applies the transformation rulesto build a corresponding target tree. The linearizer may still perform minor conversionsto the target tree. It may output the target tree as an SGML document, or some otherspeci�ed output, e.g., a stripped (of tags) ASCII version or a HTML document. Theremay also be several input and output documents.1The project is funded by the Finnish Technology Development Center (TEKES) and seven Finnishenterprises (The Aamulehti Group, Oy Edita Ab, the National Board of Education, WSOY, HelsinkiMedia, Lingsoft, Inc., and MTV3). 2

SGMLsourcedoc(s) SGMLparser sourcetree(s) trans-former targettree(s) linearizer targetdoc(s)Internalrule baseTranSIDparserimportdeclarations transformationrules linearizationrulesTranSID programFigure 1: The TranSID transformation process3 Semi-formal semanticsWe present a semi-formal semantics for TranSID transformations. These de�nitions de-scribe the overall semantics of TranSID, i.e., how a TranSID program speci�es a mappingfrom source trees (or forests) to target trees (or forests). Detailed examples of trans-formation rules and expressions that can be used in them are given in the subsequentsections.During a TranSID execution there is always a current node at the focus of control. Intu-itively, the current node is the node that is being transformed. The evaluation proceedsbottom-up: the descendants of the current node belong to the result forest, but its siblingsand ancestors are in the source tree (Figure 2).
source forest target forest

sourcecurrent.origin: : : ... : : : targetcurrent: : : ... : : :
Figure 2: Source and target forests of a transformation process. Structures reachable fromthe current node are marked with solid lines, unreachable or yet uncreated ones withdashed lines. 3

A TranSID program P is a sequence of transformation rules (R1; : : : ;Rk), where each ruleRi is a pair (Si; T i) consisting of a source clause Si and a target clause T i. The sourceclause is a predicate on the subtree rooted by the current node. If source clause Si issatis�ed by the node, we say that the corresponding rule Ri matches the subtree rootedby the current node. The result of a rule Ri on a tree T is denoted by Ri(T), and it meansthe forest resulting by applying the target clause Ti on T . This application may involveinsertions of new structures and selection and combination of tree components relative tothe root of T . Again, we refer to the rest of the article for concrete examples.Let P = (R1; : : : ;Rm) be a TranSID program. We denote the result of applying P on atree or a forest T by P(T), and de�ne it as follows:1. If T is a tree that matches no rule in P, then P(T) = T .2. If T is a forest (T1; : : : ; Tn), then P(T) = (P(T1); : : : ;P(Tn)), i.e., the result isobtained by concatenating the result of applying the same program P on each ofthe trees in the forest. If T is an empty forest, then P(T) is also an empty forest.3. Otherwise, if T = a(T1; : : : ; Tn) is a tree with the root element labeled a and witha forest of immediate subtrees (T1; : : : ; Tn), and if Ri is the �rst rule in P thatmatches a(P(T1; : : : ; Tn)) ; (1)then P(T) = Ri(a(P(T1; : : : ; Tn))) : (2)Equations (1) and (2) mean that the current subtree is transformed after its subtreeshave been transformed, i.e., the evaluation proceeds bottom-up. The rules are chosen inthe order they appear. We refer to the remaining sections for practical examples of thisevaluation order. We want to stress that there is no evaluation order de�ned betweennodes at the same level in the tree. For example, the leaves (i.e., data) could be visitedin an arbitrary order or even in parallel.4 Transformation rulesIn this section, we present the basic components of the TranSID language through smallexamples. In the following sections, we will present more TranSID operators and studysome more advanced transformation examples. By a TranSID transformation we denotethe process described in the previous section consisting of parsing, transforming and lin-earizing one or several input SGML documents.A transformation program consists of transformation rules. A transformation rule has thefollowing format.Node type Node name or *WHEN conditionBECOMES set of new subtrees ; 4

Any node in the source tree, such as an element or an attribute is �rst recognized by anode clause and further tested for a condition. The type of the node can be quali�edby the reserved words ELEMENT, ENTITY, PI, ATTRIBUTE, DATA, and NODE. Here, ELEMENTlocates elements, ENTITY entities, etc. NODE accepts nodes of any type. All these reservedwords must be succeeded by a node name or the asterisk * which stands for any name.The node clause and an optional condition (WHEN : : :) constitute the source clause. If thecondition holds, the node is replaced in the result tree by a forest of trees (actually a listof nodes) speci�ed in the target clause beginning with BECOMES.For example, the following TranSID program consisting of two rules prunes an SGMLdocument retaining only those sections that in their title contain the string TranSID.transformation beginELEMENT "SECTION"WHEN current.children.having(this.name == "TITLE").children.find("TranSID")BECOMES <"TRANSID_SEC">{current.children} ;ELEMENT "SECTION"WHEN not current.children.having(this.name == "TITLE").children.find("TranSID")BECOMES null ;endThe source clause of the �rst rule locates SECTION elements but only when its conditionholds. The condition is stated as an orientation expression which consists of locatorsseparated by dots (`.'). In the above expression, the locator current points to the nodethat is being transformed and the relative locator children locates the subelements of thecurrent node. The evaluation of the expression �ows from left to right. Every locatorproduces a list of nodes that is used as input for the next locator in the expression.The relative locator having selects the nodes that satisfy the condition expressed as aparameter of the having locator. In this case, its formal parameter this refers to eachchild of the current node at a time. The property operator name locates the name ofthe elements and the entire condition checks whether the found name equals the constantstring TITLE. Only the nodes that satisfy this condition will be passed for the next locator,which locates the children of the TITLE elements. In this case, we assume them to be textstrings. If the string matching operator find succeeds in locating text elements thatcontain the string TranSID, the entire expression evaluates to true.The source clause of the rule above will match sections like<SECTION><TITLE>TranSID transformations</TITLE>...<SECTION>So the �rst rule matches SECTION elements that contain the string TranSID in their TITLEelement. The second rule will do exactly the opposite because its source clause containsthe same condition negated.The target clause of the �rst rule constructs new elements named TRANSID_SEC. The nameof the new element is stated in SGML style between angle brackets < and >. The contents5

of the new element is stated in a list between braces. The contents is deduced by theorientation expression current.children that locates and copies all the subelements ofthe current node as the contents for the new TRANSID_SEC element. The second rule willremove all SECTION elements that do not satisfy the condition of the �rst rule. This isachieved by replacing those elements by the empty list null.All TranSID examples including the example above are based on the DTD and the SGMLdocument shown in Figure 3 in Section 6.The transformation may not only modify elements but also their attributes. The followingrule shows an example of removing an attribute and inserting its value as part of the textstring of an element.ELEMENT "BIBITEM"BECOMES <"BIBITEM">{"[", current.attribute("BID").value.match_replace("-" -> "+";".$" -> this.tolower), "] ",current.children };The rule locates BIBITEM elements and replaces them with corresponding elements wherethe value of the BID attribute (bibitem identi�er) is written slightly modi�ed inside brack-ets at the beginning of the actual bibliography item. The rule will replace the element<BIBITEM BID="AHH-96A">Helena Ahonen, ...</BIBITEM>with the corresponding element<BIBITEM>[AHH+96a] Helena Ahonen, ...</BIBITEM>The rule replaces the BIBITEM elements with new BIBITEM elements without attributes,but where the contents have been changed compared to the old element. The new contentsis a string beginning with [, and followed by the BID attribute value where all - charactershave been changed to + characters and where the last character of the attribute value hasbeen changed to lower case if it is a letter. After the modi�ed attribute value follows a]and then the original contents of the element.5 TranSID operatorsTranSID manipulates all data in the form of polymorphic lists. The only data type of theTranSID language is a list of nodes. A list can also be empty. A node can be an SGMLelement, an entity, a processing instruction, an attribute, or a data content node (i.e., astring). A node is equivalent to a singleton list. An element node can have both attributesand children. The attributes of an element have the element node as their parent, but noordering between them is de�ned. Strings, integers and Boolean values are special cases6

of lists. In a conditional expression, an empty list is interpreted as false, and a non-emptylist is interpreted as true.An orientation expression has to start from a constant list or a variable. Variables areeither built-in or user-de�ned. A built-in variable has a �xed meaning in a given context.For example, the built-in variable source locates the root of all the source trees, andcurrent the node that is being transformed. User-de�ned variables are initiated withthe operator set(Variable), and they are local to a transformation rule. An orientationexpression can contain additional locators and modi�ers as discussed below. There is alsoa special list expression null which evaluates to an empty list.TranSID programs may use a variety of tree transformation operators, string operators,regular expressions, etc. Our design objective was to have a declarative and complete setof tree transformation operators which are appropriate for modifying document trees.Each TranSID expression returns a list. A comma is used simultaneously as a separatorof expressions and as a list catenation operator. (We used them already in the previousexample to build the content of the BIBITEM elements.) For example, ("word", 2, 3+4)is a TranSID list consisting of a string and two integers.Relative locators locate a new set of nodes from a node list. There are positional locatorslike children and attributes that locate the various subcomponents of an element.The positional locator children will locate the content (elements, entities, data nodesand processing instructions) of elements, whereas descendants locates all nodes in thesubtree rooted at element nodes of its input list. Locator parent returns a list consistingof the parents of its input nodes, and ancestors returns a list of all the ancestors of theinput nodes up to the root of the tree. Other positional locators are left, right, andsiblings, which locate the left, the right, or all the siblings of nodes.Relative locators also include �ltering locators which select some of the nodes in theirinput list. Examples of these are first, first(Integer), having(Condition), last,last(Integer), and sublist(Integer;Integer). The locators first and first(n) locatethe �rst one or the �rst n nodes of a list; last and last(n) the last one or the last n ofthem. The locator having(Condition) will test nodes in a list for a condition and returnonly those that satisfy the condition. The condition is a Boolean-valued expression whichmay use the formal variable this to refer to each of the tested nodes at a time. The loca-tor sublist(n;m) returns a speci�ed subset of nodes from a node list. The parameters ofsublist are interpreted similarly to the dimension speci�cations in the HyTime standard[ISO92], which allows nodes to be located relative to either end of the list.TranSID includes also powerful list modi�cation operators. The operator map(Condition;Replacement) replaces each node that satis�es expression Condition by the value of theexpression Replacement. The map operator may use the formal variable similarly tothe having locator. (For an example see the example in next section.) The operatorglue(Condition; Condition; Replacement) is a generalization of map, which is especiallysuitable for manipulating sub-sequences of lists as groups. It gathers consecutive nodestogether if the nodes satisfy the �rst condition but not the second, and replaces them bythe value of the expression Replacement. The list of located nodes may be referenced bythe formal variable these. 7

For example, if we want to modify an SGML document by wrapping all consecutiveAUTHOR elements in a single AUTHORS element we may use the glue operator to do this.The following ruleELEMENT "HEAD"BECOMES<"HEAD">{ current.children.glue(this.name == "AUTHOR";this.name != "AUTHOR";<"AUTHORS">{these})} ;produces on the document in Figure 3 the output<HEAD><TITLE LABEL="DOC">TranSID: an SGML tree transformation language</TITLE><AUTHORS><AUTHOR>Jani Jaakkola</AUTHOR><AUTHOR>Pekka Kilpeläinen</AUTHOR><AUTHOR>Greger Lindén</AUTHOR></AUTHORS><AFFILIAT>Department of Computer Science, P.O.Box 26, ...</AFFILIAT><ABSTRACT>We present a powerful ...</ABSTRACT></HEAD>There are also operators for accessing properties of nodes. The operator name returnsthe name of an element, attribute or entity, while attribute(Attribute name) locates acertain attribute of an element. The operator siblingnum returns the ordinal number ofthe node among its siblings, and samenum returns the ordinal number of the node amongsiblings with the same name. The operator count returns the length of a list.Several other operations have been included into the TranSID language. String operationsand regular expressions were implemented as a student project work [MPP+97]. Theseoperations include ordinary string operations such as comparison, catenation and search,as well as more sophisticated operations for string matching and replacement based onregular expressions. As an example consider the following rule.DATA *WHERE current.matches(" defini[a-z]+")BECOMES matches_replace("%a=(S[A-Z][A-Z]L)" -> "the standard ", %a) ;The rule modi�es data elements containing a word beginning with defini, like definitionand defining. The rule will replace four-letter upper-case strings beginning with the letterS and ending with L by the string preceded by the standard, e.g., the strings SGML andSMDL will be replaced with the standard SGML and the standard SMDL, respectively.Regular expressions use local variables of the form %name. In this case, the variable %ais set to the matched string and later used in the replacing expression.TranSID uses dynamical type conversions. Every operator expects lists of some speci�ctype for their parameters. The required type depends on the operator: arithmetic opera-tors expect integers as their operands, �nd(String) requires string type, having(Condition)8

requires an expression returning a Boolean type. Operators initiate automatic type con-version, which transforms the parameters into the required type. If the type conversionfails, a warning is issued.6 An example transformationIn this section we show a more advanced transformation. The SGML document we use isa simpli�ed version of this paper (Figure 3). It consists of a DTD followed by a documentinstance. Both the DTD and the document instance follow common SGML practice. TheDTD shows that a DOC element contains a HEAD and a BODY element. The HEAD elementcontains a title, one or several authors, a�liation, and an abstract as well as zero ormore keywords. An asterisk * stands in the DTD for zero or more repetitions, while theplus sign + stands for at least one repetition. Consecutive elements are connected with acomma while alternative components are connected with a bar. Text content is denotedby the keyword #PCDATA.Some elements also have attributes. The element TITLE has a required attribute namedLABEL of domain ID. The empty element CITEREF has a required attribute RID of domainIDREF. An empty element may have no contents and the end tag must be omitted, denotedhere by the letter O. All other elements, when marked in the instance must have both astart tag and an end tag, which is implied by the string - -. The BID attribute is anoptional attribute denoted by #IMPLIED and may be omitted in the SGML instance. Theidea of these attributes is to provide a possibility to refer to references in the article text.ID and IDREF are two attribute domain types that are used for identi�ers and identi�erreferences, respectively.In our example transformation, we show a way of producing HTML from an SGMLdocument. The transformation constructs a table of contents containing links to thecorresponding sections of the article (Figure 4). The program constructs anchors of thesections locally when processing the TITLE elements, while the table of contents is con-structed when processing the root of the instance.The transformation is speci�ed by the following TranSID program.ELEMENT "HEAD"BECOMES <"H1">{current.origin.children.first.children} ;ELEMENT "TITLE"WHEN current.parent.name == "SECTION"BECOMES<("H", current.ancestors.having(this.name == "SECTION").count+1)>{<"A" "NAME" = current.attribute("LABEL").value.set(v) "HREF" = ("#TOC_",v)>{current.children}} ;ELEMENT "DOC"BECOMES<"HTML">{ 9

<!DOCTYPE DOC [<!ELEMENT DOC - - (HEAD, BODY)><!ELEMENT HEAD - - (TITLE, AUTHOR+, AFFILIAT, ABSTRACT, KEYWORD*)><!ELEMENT (TITLE | AUTHOR | AFFILIAT | ABSTRACT | KEYWORD | P | BIBITEM)- - (#PCDATA)><!ATTLIST TITLE LABEL ID #REQUIRED><!ELEMENT BODY - - (SECTION+, BIBLIO)><!ELEMENT SECTION - - (TITLE, (P|SECTION|CITEREF)*)><!ELEMENT CITEREF - O EMPTY><!ATTLIST CITEREF RID IDREF #REQUIRED><!ELEMENT BIBLIO - - (BIBITEM+)><!ATTLIST BIBITEM BID ID #IMPLIED>]><DOC><HEAD><TITLE LABEL="DOC">TranSID: an SGML tree transformation language</TITLE><AUTHOR>Jani Jaakkola</AUTHOR><AUTHOR>Pekka Kilpeläinen</AUTHOR><AUTHOR>Greger Lindén</AUTHOR><AFFILIAT>Department of Computer Science, P.O.Box 26, ...</AFFILIAT><ABSTRACT>We present a powerful ...</ABSTRACT></HEAD><BODY><SECTION><TITLE LABEL="INTRO">Introduction</TITLE><P>In the world of ...</P><P>On the other hand ...</P><CITEREF RID="AHH-96A"></SECTION><SECTION><TITLE LABEL="MODEL">Overall control and data model</TITLE><P>A transformation engine ...</P></SECTION><SECTION><TITLE LABEL="SEMANTIC">Semi-formal semantics</TITLE><P>...</P></SECTION><BIBLIO><BIBITEM BID="AHH-96A">Helena Ahonen, ...</BIBITEM></BIBLIO></BODY></DOC> Figure 3: An SGML document.10

<HTML><BODY> Introduction Overall control and data model Semi-formal semantics <H1>TranSID: an SGML tree transformation language</H1><P><P><H2> Introduction </H2><P>In the world of ...<P>On the other hand ...<P><H2>Overall control and data model</H2><P>A transformation engine ...<P><H2>Semi-formal semantics</H2><P>...<P><P>Helena Ahonen, ...</BODY></HTML> Figure 4: The result of the example transformation.<"BODY">{<"UL">{current.descendants.having(this.name == "A").map(1;<"LI">{<"A" "NAME" = ("TOC_", this.attribute("NAME").value.set(v))"HREF" = ("#", v)>{this.children}})}, // end of ULcurrent.children} // end of BODY} ;ELEMENT *BECOMES "<P>", current.children, "\n" ;The �rst rule substitutes the HEAD element of the input document for an HTML H1 element.The expression current.origin.children.first.children retrieves the contents of the�rst child of the original HEAD element in the source tree, which e�ectively inserts thecontents of the original document TITLE element as the contents of the new H1 title.The second rule transforms section titles into Hn elements, where n stands for the levelor depth of the title element. Sections will be denoted by H2 elements, subsections byH3 elements, etc. The new tag is computed by catenating after H the value of a TranSIDexpression which computes the nesting depth of the title in SECTION elements.The content of the new Hn elements consists of an A element which contains the attributesNAME and HREF. The attribute NAME is assigned the value of the attribute LABEL in thesource document, which is also stored in a variable v. The attribute HREF is set to the11

string #TOC_ succeeded by the value of the variable. This attribute will serve as a backreference to the corresponding item in the table of contents. The content of the elementA consists of the title text.The third rule constructs the table of contents from the new A elements. As the transfor-mation is executed bottom-up, the TITLE elements are processed before the DOC elementis modi�ed. The last rule creates an HTML element containing a BODY element which beginswith the table of contents represented as an unordered list UL. Finally, the each list itemconsists of an A element that is computed in the following way. The orientation expressioncurrent.descendants.having(this.name == "A") locates all A elements in the modi-�ed document. The list of elements is transformed into a list of anchors (A) in list item(LI) using the map operator. Because the condition of the operator is always true, mapwill modify all elements in the list.The last rule speci�es that all other elements are formatted simply as their contents,preceded by an HTML paragraph tag P and followed by a line feed.When the result is shown in an HTML browser the user can jump to the sections byclicking the titles in the table of contents. He can also jump back to the table of contentsby clicking the titles in the sections.7 ImplementationThe TranSID evaluation environment has been implemented in C and C++ and it hasbeen tested to run in the Linux, Solaris, and AIX environments. The environment consistsof the SP SGML parser [Cla96b], a TranSID parser implemented with yacc and lex, andan evaluator and a linearizer both implemented in C.TranSID uses lazy type conversions. Type conversions are performed implicitly when acertain type is needed. TranSID maintains an internal tree database for managing SGMLtrees. Unused nodes are automatically reclaimed using reference counters. The datastructures in the database cannot contain cycles. This guarantees that the process cannotconstruct in�nite trees with TranSID- expressions and that reference counters can be usedfor memory management.Evaluation of expressions is implemented using lighter data structures than the treedatabase. Variables and lists are implemented using these data structures (thus variablesand lists contain pointers to the real nodes, not trees of their own).Memory management seems to be the bottle neck of the current implementation. Thesource and parse trees are constructed and maintained in main memory until the trans-formation is done. Therefore, memory usage may be high. Almost all transformationsbuild their target trees from the source trees. The internal tree database is based on datastructures that try to utilize this by sharing structures, i.e., by representing nodes of thetarget tree originating from the source tree as references to the nodes instead of copyingthem. This solution seems to be especially e�cient in the execution model of TranSID.12

8 Conclusion and future workWe have presented TranSID, a powerful tree-based transformation language, especiallytargeted at SGML applications. TranSID is a declarative language that lets the userspecify SGML tree transformations in an easy and declarative manner. The tree-basedstrategy is a powerful but somewhat ine�cient way of handling transformation. Wetherefore look for ways to minimize the tree structure kept in main memory during thetransformation. We have also designed an event-based top-down strategy for performingsimpler conversion tasks that may be included in the linearization phase. Additionally,we have designed and implemented a variation of the evaluation semantics where multiplerules can be applied to a single node, which simpli�es the specifying of some complextransformations.TranSID has been successfully used for transforming its own documentation from anSGML form into LATEX and HTML. We are developing and experimenting TranSID fur-ther in a project dealing with intelligent document assembly [AHH+96a, AHH+96b]. Indocument assembly, new documents are constructed from a pool of documents. For thispurpose, we have developed a server version of TranSID, which is able to respond toqueries on a collection of structured documents. Used in this way TranSID will allow auser to assemble new valid SGML documents by locating, modifying and streamliningdocument fragments.References[AHH+96a] Helena Ahonen, Barbara Heikkinen, Oskari Heinonen, Jani Jaakkola, PekkaKilpeläinen, Greger Lindén, and Heikki Mannila. Intelligent assembly ofstructured documents. Technical Report C-1996-40, Department of Com-puter Science, University of Helsinki, June 1996.[AHH+96b] Helena Ahonen, Barbara Heikkinen, Oskari Heinonen, Jani Jaakkola, PekkaKilpeläinen, Greger Lindén, and Heikki Mannila. Constructing tailoredSGML documents. In Janne Saarela, editor, Proceedings of SGML Finland1996, pages 106�116, October 1996.[AIS96] AIS Berger-Levrault. Balise Reference Manual, Release 3, 1996.[Cla96a] James Clark. Jade � James' DSSSL engine, November 1996.http://www.jclark.com/jade/.[Cla96b] James Clark. An SGML System con�ning to International Stan-dard ISO 8879 � Standard Generalized Markup Language, 1996. url:http//www.jclark.com/sp/.[Exo93] Exoterica Corporation. OmniMark Programmer's Guide, 1993.[Gol90] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.[Har93] Klaus Harbo. CoST version 0.2 � Copenhagen SGML Tool. Technicalreport, Department of Computer Science & Euromath Center, University ofCopenhagen, 1993. 13

[ISO86] ISO. Information Processing � Text and O�ce Systems � Standard Gen-eralized Markup Language (SGML), ISO 8879, 1986.[ISO92] ISO and IEC. Information technology � Hypermedia � Time-based Struc-turing Language (HyTime), ISO/IEC 10744, 1992.[ISO96] ISO and IEC. Information technology � Processing Languages � DocumentStyle Semantics and Speci�cation Language (DSSSL) ISO/IEC 10179, 1996.[JKL96a] Jani Jaakkola, Pekka Kilpeläinen, and Greger Lindén. TranSID: A languagefor transforming SGML documents. Technical report, Department of Com-puter Science, University of Helsinki, June 1996.[JKL96b] Jani Jaakkola, Pekka Kilpeläinen, and Greger Lindén. TranSID referencemanual. Technical report, Department of Computer Science, University ofHelsinki, September 1996.[KPPM84] S. E. Keller, John A. Perkins, Teri F. Payton, and Susan P. Mardinly. Treetransformation techniques and experiences. In Proceedings of the ACM SIG-PLAN '84 Symposium on Compiler Construction, SIGPLAN Notices 19(6),Montreal, Canada, pages 190�201, New York, June 1984. ACM, ACM.[MID95] MID/Information Logistics Group GmbH. MetaMorphosis Refence Manual,1995.[MPP+97] Olli-Pekka Mahlamäki, Kimmo Paasiala, Santeri Pienimäki, Tomi Sarajisto,and Juha Sievänen. Implementation of an SGML transformation language (inFinnish). Project work report, Department of Computer Science, Universityof Helsinki, February 1997.

14

