
The C-BRAHMS Project ∗

Kjell Lemstr öm, Veli Mäkinen, Anna Pienimäki, Mika Turkia, Esko Ukkonen
Department of Computer Science, University of Helsinki

PO Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland

{klemstro,vmakinen,apimmone,turkia,ukkonen }@cs.Helsinki.FI

Abstract

The C-BRAHMS project develops computational
methods for content-based retrieval and analysis of
music data. A summary of the recent algorithmic and
experimental developments of the project is given.
The search engine developed by the project is avail-
able athttp://www.cs.helsinki.fi/group/cbrahms.

1 Introduction

Content-Based Music Retrieval, or CBMR for short, is a re-
search topic studied rather extensively during the last half
decade. One of its famous instances is the so-called “query by
humming” or WYHIWYG (What You Hum Is What You Get)
application. Given a large database of music called thesource,
the task is to find excerpts in the database that resemble the most
(in a musical way) the hummedquery pattern.

This paper introduces our CBMR project called C-BRAHMS
(Content-Based Retrieval and Analysis of Harmony and other
Music Structures) and its output, the C-BRAHMS engine. The
project aims at designing and developing efficient methods for
computational problems arising from music comparison, analy-
sis, data mining and retrieval. Currently the project has a focus
on retrieving polyphonic music in large scale music databases
of symbolically encoded music.

The C-BRAHMS project was formally established in January,
2002. C-BRAHMS is part of the From Data to Knowledge
(FDK) research unit hosted by the Department of Computer
Science at University of Helsinki. FDK has been selected as
a centre of excellence funded by the Academy of Finland. The
group collaborates with several researchers and research groups
abroad.

2 Music retrieval algorithms

Symbolic music data can be seen as strings of symbols, and
string-matching-based methods have been applied to CBMR

∗Supported by the Academy of Finland (grant 201560).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. c©2003 Johns Hopkins University.

problems. These methods are designed for handling one-
dimensional data, and hence they do not apply on polyphonic
music without modifications.

The C-BRAHMS project has developed some generalized string
matching algorithms that can deal with polyphonic music. For
instance the algorithm by Lemström & Tarhio (2003) uses bit-
parallelism and precomputed offline data structure containing
pitch interval classes for each chord. This structure is then
scanned to filter out match candidates, which are checked with
another, slower, algorithm.

Our other string-matching-based algorithms allow efficient
transposition-invariant approximate searching (Mäkinen,
Navarro & Ukkonen, 2003; Lemström & Navarro, 2003); here
approximation means insertions and deletions of notes but not
small variations of pitch levels. The efficiency is achieved by
using sparse dynamic programming and bit-parallel techniques.
Similar techniques are used for finding the minimum splitting
of a pattern in a multi-track musical work (Lemström &
Mäkinen, 2003).

The project has put effort in developing a recent methodology
interpreting music data as geometric objects in an Euclidean
space (Wiggins, Lemström & Meredith, 2002; Ukkonen, Lem-
ström & Mäkinen, 2003). In geometric representation both the
query pattern and the source are represented by objects in a
multidimensional space. For instance, in a 2-dimensional time-
pitch space,point objectsgive the onset time and the pitch,
while line segment objects(the well-known piano-roll repre-
sentation) give the duration of the associated notes, as well.
To include additional note parameters the dimensionality can
be increased without the need to modify algorithms. The ap-
proach is inherently transposition-invariant, and dealing with
monophonic and polyphonic music is equally straightforward.
Moreover, musical decorations, such as ornamentations for in-
stance, do not deteriorate its working.

One of the basic ideas of the geometric approach is to calculate
difference vectors between each source point object and pattern
point object, sort the vectors, and calculate the frequencies of
all such difference vectors. There is a complete match if the
frequency of some difference vector equals the number of point
objects in the pattern. Then the onset times must match, which
means that rhythmic information is taken into account in the ge-
ometric approach; note that the string matching approach usu-
ally loses this because only the relative order of notes is taken
into account. A more efficient version sorts the difference vec-
tors online by using a hash table (Wiggins, Lemström & Mered-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14921585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ith, 2002), and a subsequent improvement uses a pointer array
and a priority queue (Ukkonen, Lemström & Mäkinen, 2003).

Small deviations of note onset times inherent in MIDI data
generated by playing with a MIDI keyboard confuse the basic
geometric approach described above. This problem is solved
by another algorithm working on line segment objects, which
finds the maximal overlap (common duration) between the line
segments of the pattern and the data (Ukkonen, Lemström &
Mäkinen, 2003).

3 C-BRAHMS engine

We have implemented a CBMR engine with a WWW interface1

for testing and illustrating the algorithms that have been and
will be developed in the project. The engine is divided into two
separate parts, i.e., a public demo engine and a private search
engine. The developed algorithms are straightforwardly em-
bedded in the private engine and, thus, the system serves as a
valuable tool and testbed for comparing various algorithms as
regards their performances and their results to similar queries
on a given database.

To the public demo engine, new algorithms are added after a
testing procedure conducted with the private engine. The public
demo engine contains most of the algorithms mentioned above.

We provide text-based and WWW based query interfaces. The
WWW interface includes a piano keyboard for recording, play-
ing back and refining the query pattern before executing the
query. It also allows for choosing the query algorithm, and tun-
ing the error threshold and the number of query results shown to
the user. Moreover, the user may select whether the engine gives
only the best match or all matches for one database document.
The query results are given in a decreasing order of similarity,
which may be based on e.g. the amount of transposition and the
number of errors in an approximate query task.

The query results include metadata, such as name of the com-
poser; title; opus number; date and genre of the music piece,
and content data, such as score files in PostScript and PDF for-
mats; approximate bar number of the match; pitch class names
(and octaves) of the matching notes; and the amount of trans-
position required. The interface allows the matched part or the
whole music piece to be played, and to view various histograms
of the note data.

The algorithms have been implemented as C language exten-
sions to a distributed server implemented in Ruby language.
The mixing of interpreted and compiled code allows for greater
productivity in implementing parts that are not essential as re-
gards the performance. In practice, the overhead of using inter-
preted language is negligible. A reduced number of code lines
allows for greater flexibility and better maintainability.

The demo engine uses MIDI files from the Mutopia project2.
Files are released either as public domain or under a Mutopi-
aBSD license. Each MIDI file is converted to a string contain-
ing variable-length chords which, subsequently, contain notes.
This string is included in a object representing the music piece,
and searches are performed separately for each piece. Accord-
ing to our experiments, this procedure minimizes the amount of
used working memory in contrast to the approach of merging

1http://www.cs.helsinki.fi/group/cbrahms
2http://www.mutopiaproject.org

all data into one large string and performing a single search on
it (the latter approach would also require removing matches that
go beyond music piece boundaries). This is an essential issue
with algorithms requiring a large amount of space, when work-
ing on large databases and large amounts of concurrent queries
are allowed.

According to our experiments, the former arrangement also im-
proves the performance of memory-allocation-intensive algo-
rithms over the latter approach. However, algorithms that do not
need memory allocation during search, such as our bit-parallel
algorithms, suffer minor performance degradation.

4 Future Directions

In every culture, music is an important part of human communi-
cation, and musicologists have been analyzing written music for
centuries. During the last decades some musical analysis tools
have been developed, which might be further formalized to de-
scribe them as computational problems. Thus, suitable com-
puter programs could be developed to replace the tedious man-
ual work. Moreover, some work on music psychology about
what makes a musical work pleasing to listen to have been de-
scribed precisely enough to be applicable in computerized mu-
sic analysis. In the future, the project will further attempt to use
findings in musicology and music psychology to achieve better
computational methods and results. Data mining methods such
as in Pienim̈aki (2002) will also be used.

References

Lemstr̈om, K. & Mäkinen, V. (2003). On finding minimum
splitting of pattern in multi-track string matching. InProceed-
ings of the 14th Annual Symposium on Combinatorial Pattern
Matching. Springer-Verlag LNCS 2676, (pp. 237-253).

Lemstr̈om, K. & Navarro, G. (2003). Flexible and efficient
bit-parallel techniques for transposition invariant approximate
matching in music retrieval. To appear inProceedings of the
10th International Symposium on String Processing and Infor-
mation Retrieval.

Lemstr̈om, K., Tarhio, J. (2003). Transposition invariant pattern
matching for multi-track strings. To appear inNordic Journal
of Computing.

Mäkinen, V., Navarro, G. & Ukkonen, E. (2003). Algorithms
for transposition invariant string matching. InProceedings of
the 20th International Symposium on Theoretical Aspects of
Computer Science. Springer-Verlag LNCS 2607, (pp. 191-202).

Pienim̈aki, A. (2002). Indexing music databases using au-
tomatic extraction of frequent phrases. InProceedings of
the Third International Conference on Music Information Re-
trieval, (pp. 25-30).

Ukkonen, E., Lemstr̈om, K. & and Mäkinen, V. (2003). Geo-
metric algorithms for transposition invariant content-based mu-
sic retrieval. To appear inProceedings of the 4th International
Symposium on Music Information Retrieval.

Wiggins, G. A., Lemstr̈om, K. & Meredith, D. (2002).
SIA(M)ESE: an algorithm for transposition invariant, poly-
phonic content-based music retrieval. InProceedings of the
Third International Conference on Music Information Re-
trieval, (pp. 283-284).


