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Abstract. We consider the problem afiulti-track string matchingThe task is to find the
occurrences of a pattern across parallel strings. Giverlprabet> of natural numbers
and a seS overX of hstringss = s, --- g, fori = 1,...?h, a patternp = py- - pm has

such an occurrence at positigrof S if p; = sfjl, P = §j2+1,..., Pm = sfjirml holds for
i1,...,im € {1,..., h}. An application of the problem is music retrieval where acences

of a monophonic query pattern are searched in a polyphongiondatabase. In music
retrieval it is even more pertinent to allow invariance faicp level transpositions, i.e.,
the task is to find whether there are occurrencgsiofS such that the formulation above
becomesp; = sfjl +C,p2 = 5',-2+1 4Gy Pm = §j1m_1 + ¢ for some constart. We present
several algorithms solving the problem. Our main contidntthe MonoPory algorithm,

is a transposition-invariant bit-parallel filtering al@gbhm for static databases. After an
O(nhg time preprocessing, it finds candidates for transpositiwariant occurrences in
time O(nfm/w] + m+ d) wherew, e, andd denote the size of the machine word in bits and
two factors dependent on the size of the alphabet, respécti straightforward algorithm
is used to check whether the candidates are proper occegenhe algorithm needs time
O(hm) per candidate.

ACM CCS Categories and Subject Descriptors. H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval; F.2.2 [Anadysf Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problempattern matchingJd.5 [Computer

Applications]: Arts and Humanitiesmusic

Key words. string algorithms, combinatorial pattern matching, bitg@lism, music

retrieval

1. Introduction

String matching is a fundamental problem in many applicaticeas, such as in in-
formation retrieval. The most conventional form of the peob is to find exact oc-
currences of a given query string= p; - - - pm Within another strings = s, - - - &,
where each ofy (1 < i < m)ands; (1 < j < n) belongs to an alphabét.
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The famous and practical solution for this problem was preseby Boyer and
Moore [1977] with a worst-case time complexity 6{nm), which was subse-
quently refined tdO(n + rm) wherer denotes the number of occurrences [Guibas
and Odlyzko 1980]. Later, Baeza-Yates and Gonnet [199&}dliced the &irrOr
algorithm, an inspiring andficient solution which uses the word-level bitwise op-
erations of computer hardware. Their bit-parallel aldoritachieves a time com-
plexity of O(n[{7), wherew is the size of the machine word (e.g. 32 or 64 bits, in
practice).

In this paper, we consider some extensions of the exacygmatching problem
and present several algorithms solving them. Let us supihagehe underlying
alphabet is a subset of natural numbers with standard attbmin multi-track
string matching(also called distributed string matching in [Holds al. 2001])
thetext Sis composed oh parallel stringss = s, --- 5, fori = 1,...,h, called
tracks and thepattern pis said to have awccurrence across the tracksdt j,
if pp = s'jl, P = §j2+l,..., Pm = §j'1wl holds foriy,...,im € {1,...,h}. Note our
distinction betweersandS corresponding to a plain string and a multi-track string,
respectively.

As it turns out, transposition invariance is a natural anefulsproperty in our
application area. To this end, we update the formulatiomeftroblem as follows:
given the patterrp and the textS comprisingh trackss, ..., s, each tracks of
length|s| = n, the task is to find alJs such thap; = §j1+c, P = §j2+1+c, ceesPm=

sij”;m_l + ¢ holds, for some constawtand foriq,...,im € {1,...,h}. We call this

transposition invariant multi-track string matching

In the next section we present some background for our stiiolgt we briefly
describe our application domain and show how music is repted by using
strings. Then we give a brief summary of related work. Sec8aeviews the
SurrTOr algorithm and shows how it is modified to be applicable for tivtahck
string matching. This modification, calleduBrOrA~D, works in timeO(nh[ J1).
In Section 4, we will introduce the three novel algorithms fi@nsposition in-
variant multi-track string matching. First we describe mightforwardO(nhm)
solution called kectCuEeck. It is based on a naive string matching algorithm (see,
e.g., [Crochemore and Rytter 1994, p. 34]). Then we show @ptoblem can
be solved more fciently in practice, by executing a filtering algorithm befo
DirectCrEck (Or some other algorithm capable of checking). Having thiieed
the INTErvALM aTcHING ON-line filter working in timeO(nhzrvﬂﬂ), we will devote
more time in a detailed description and careful analysesuomain contribution,
i.e., the MonoPory filtering algorithm. MonoPory is used withstatic databases.e.
the database is not updated between consecutive queriesalddrithm consists
of anO(nhg) preprocessing and &X(n &1 + m+ d) filtering phase, where andd
denote factors dependent on the size of the alphabet.

Above we assume that tracks are ordered so that triackrtains theéth lowest
note at any poinj € {1,...,n}. Otherwise an extr®(nhlogh) time is needed for
sorting. Before concluding the paper in Section 6, we withgtihe results of our
extensive experiments ondWoPoLy in Section 5.

A preliminary version of the paper appeared in [Lemstrom &arhio 2000].
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2. Background

Multi-track string matching has an application area in eatibased music retrieval
(see, e.g., [Lemstrom 2000]). Combinatorial string miatghmethods become ap-
plicable to music retrieval, when music is presented syioally. For instance,
the elements of a string may be integers representingitbk of a note (i.e. the
perceived height of the played note). In terms of our spextifiac above, music is
said to bemonophonidf h = 1, and it is callegolyphonicif h > 1. Inhomophonic
musicthere is a pitch for ever;fj. Typically polyphonic music is not homophonic.
We use an additional special charactdp denote a missing pitch.

The motivation for the problem under consideration is adgpmusic retrieval
guery case, where a monophonic pattern (that may be givgrhyhumming, by
playing an instrument, or just by typing) is searched for imualti-track text rep-
resenting a polyphonic music databaskloreover, transposition invariance plays
a central role in western music perception, for musical gliek® are recognized
rather based on thatervalsbetween the consecutive pitches than on the absolute
pitch sequences constituting the melodies.

2.1 Representing music

In a rudimentary representation of polyphonic music, syisibba string represent
pitch (or interval) values of notes in one track, and the oafesymbols within
the string are in accordance with the note order of the repted track. A com-
mon underlying alphabet is based on the MIDI pitch valuesDMWanufactur-
ers Association 1996]X1,8 = {0,...,127 [J {4} where 60 corresponds to the
middle-C For example, the excerpt given in Fig. 2.1 can be repredergéollows:
s! = 65,64,62 60; & = 69,67,65,64; ands® = 72 1,1, 72.

o)
7
Q) |

Fig. 2.1: A musical excerpt.

Note that when moving from absolute values to intervals sike of the under-
lying alphabet is doubled. Henceforth we make a distinctietween interval and
absolute alphabets: an interval alphabet, denoted! Jgorresponds to an absolute
alphabet. Furthermore, we use a subscript (aZing) to denote the size of the
alphabet.

! Indeed, a musical melody may occur distributed across aktracks (voices), as it is the case in
Elgar'sCockaignefor instance. However, in general a more pertinent casédamrito try minimize
the number of track shifts within an occurrence (see e.gngtedm and Makinen 2003]). Although
this matter falls out of the scope of the current paper, tadeeshould note that the checking algo-
rithm could be modified to consider the case, for it has theking information available.



188 K. LEMSTROM, J. TARHIO

Due to a pragmatic problem — an alphabet as largg agthe MIDI interval al-
phabet) would make our principal algorithm impractical —me=d a smaller but
musically relevant alphabet. Another, musically relevalphabet distinguishes
only 12 pitches (or intervals). By musical terms, two pitlseparated by 12 semi-
tones is calleabctave Among all the intervals the octave is very special: it is the
only interval whose arbitrary combinations a@nsonanfParncutt 1989]Octave
equivalence“one of the most fundamental axioms of tonal music” [Foré&2],
means that intervals are reduced to (semitonic) scdle O, 11. Technically this
is achieved by using alphabgf, = {0,1,...,11} and replacing the original in-
terval h by valueh mod 12 (remember that our alphabets are subsets of natural
numbers). Thus, an interval of 7 semitones upwards equalstérval of 5 semi-
tones downwards, for instance. Using the alphahet(absolute pitches reduced
according to octave equivalence), the example in Fig. 2 dldMeecome as follows:
st=5,4,20;5=9,7,54;ands’ = 0,1, 4,0.

LetX, be the alphabet. Bgj we denote an ordered vertical section of the text at
ie.,S =5, ,...,s wheres, < s+ for 1 <i <h-1,i.e. the pitches of; are in
the nondecreasmg order We calf such a vertical sectamed The chords can be
represented by bitvecto®§ j], where eacl$[ ] is a chord bitvector (cbv) of bits.
To be precise, each cbv is formally a symbol of a cbv alphabeftsize[Z| = 2¢.
Nevertheless, as the connection betwBemdz is straightforward, we will mostly
avoid the explicit exposition of cbv alphabets to improve thadability. A zero in
a chv corresponds to a present pitch in the chord, while ditdndicates absence
of the corresponding pitch. For instance, if the underhafghabet i<, the cbv
stringS = (S[1]) - - - (S[n]) corresponding to Fig. 2.1 would be:

0,1,1,1,1,0,1,1,1,0,1,1),
(1,1,1,1,0,1,1,0,1,1,1,1),
(1,1,0,1,1,0,1,1,1,1,1,1),
0,1,1,1,0,1,1,1,1,1,1,1).

By S[j].i we denote théth bit of the cbvs[j]; e.g. aboves[3].2 = S[4].0 = 0.
In Section 5, we will show that the musically relevant alp#ialy , is practical
and dfective for our application.

2.2 Related work

Independently of us, Holuét al.[2001] presented bit-parallel algorithms for multi-
track string matching. They did not, however, consider dpasition invariance.
They presented algorithms to find occurrences of (i) mudichk patterns within
plain texts (€ectively, the original 8rrOr algorithm); (ii) plain patterns within
multi-track texts (€ectively same as ourdsrOrAND); and (i) multi-track pat-
terns within multi-track texts. The algorithm (iii) reqaBO((rm + [Z)[ 1) time

for the preprocessing, wherei, andw are the number of the patterns, the set of
symbols used in the pattern and the size of the machine wesgectively. Then it
works inO(nh[ 1) time and require©(|I[ T 1) space.
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Dovey [2001] has considered a modification of the multikratring matching
problem, where the consecutive matching elements of arm@see may contain
gaps Given a gapping parametemlt-gap-occurrences as follows:p; = s'jl1 , P2 =

§j22, s Pm= s'j:],wherej|+1—j| <t+lforl<l<m-landi,...,inc€{1,...,h}.
By settingt = n, the gaps become unrestricted. Dovey represents musicdog ch
vectors over alphabéeigg (88 is the common amount of keys in a piano). His
algorithm works in time()(nrrfs—v\?}) based on the following dynamic programming

recurrence:

doo, dip, doj = O;
{ t+1, if ((peS)and{=1ordi_yj-1# 0));

dj dij-1 -1, if((p ¢S)and (-1 # 0));

0, otherwise

where 1< j < nand 1< i < m. As usually, the query result is read from
the element,j; an occurrence of value+ 1 in a bottom row element indicates
ant-gap-occurrence, and the actual occurrence can be undolrgra backtrack-
ing procedure. The algorithm requires 87 reiterations ifangposition invariant
matching.

Recently, Wigginset al.[2003] has adapted the idea of ourE:TChECck algo-
rithm (introduced in Section 4) to point pattern matchingdDirdimensional data-
sets. Their &(M)ex algorithm would represent our case as follows. The pattern
p and the texs are represented as paits \)), whereu andv denote the pitch and
its onset time, respectively. L&t= (a, b) be a translation vector that transfers a
pair (u,Vv) to V[(u,v)] = (u+ a,v+ b). Now the task becomes to find a translation
vectorV such that it transfers all pointse p to some point¥[x] whereV[x] € S
must hold.

By basing the matching process on the translation vectoesiethod becomes
transposition invariant and allows unrestricted gapspbeabmes more sensitive to
timing errors than kecrCueck. Denoting byn” andnY the number of elements
in the text and pattern, respectivelya@®1)ex works in timeO(n’'nt) and space
O(n), in the worst caseé.

3. SurrrOr algorithm

Let us consider the rTOR algorithm by Baeza-Yates and Gonnet [1992]. In
describing their algorithm (and henceforth) we will use sgenbolsv and A rep-
resenting the bitwiser andand operators, respectively. Than8rOr algorithm
searching occurrences pfin sis given in Fig. 3.1.

Lines 1-2 and 3-6 ofBrrOr form two phases, which we call pattern processing
and core phases, respectively. First, for each symbol aipgem the pattern,
the pattern processing phase creates a bit-mask appearmgaumn of tablq.

2 This is equivalent to that of ourRecTCrEck in the case of monophonic pattern and homophonic
text: m = mandn’ = hn.
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SuirtOR(S, p, N, M, X)
foreachae X doT[a] «2M-1
fori « 1tomdoT[p] « T[pi] - 21
E<—2"-1
for j « 1tondo

E « shiftleft(E) v T[sj]

if E.m= 0then WRrite(j)

OO, WN PR

Fig. 3.1: The SurrOr algorithm.

In the core phase, a zero bit is released (by the bishiyftleft operator) to
level 1 at every point of time. Then, the released zero hiteesurvive to the next
level, or die, depending on the bit-mask used with\tteperator. Whenever a zero
bit reaches the leveh, an occurrence of the pattern has been found,; this is reporte
on line 6. Fig. 3.2 simulatesa®TORr in an example case.

SurrTOR’s pattern processing take3([ J11Z| + m), while the core runs in time
O(T&1n). The overall space requirementQg[ 11/Z)).

shiftleft(E)
shiftleft(E)

T[a]
shiftleft(E)

Tla]
shiftleft(E)

Tla]
shiftleft(E)

T(b]

T E & E
a E E E*E E E
a 0

bc

011 al00QoOtr101100 0 0011
al011 al10101111110QpQ00000011
bl101 b111210111111111101/100(0

Fig. 3.2 An example of GirrOr for p = aabands = abcaaab The table T (on the left) is created
first. The execution of the core phase of the algorithm isitated on the right. In the illustration,
shifting is done downwards and the found occurrence is shaitima white circle.

rgunleﬂ(E)
Tlb]

O |rppittieft(€)
Tc]

3.1 SuirrOrRAND — algorithm for multi-track string matching

The SurrOr algorithm can be adapted with a minor modification to mulick
string matching. Actually, this is a dual of the string mamnchproblem presented
by Baeza-Yates and Gonnet [1992]. They considered case® whaments of a
pattern may contain a set of symbols instead of one symbothdin case they
modified the pattern processing phase, while in our case teatlposition is al-
lowed to contain a set of characters and the modified phake i=ore phase. This
is done by adding a bitwisend operation, which operates over all the pitches
within a chord; see thed®TOrRAND algorithm in Fig. 3.3, below.

The main loop on lines 4—6 takéd(nh 11) time, and an extra space pf]
words is required. The extra space is used for a temporarggep where the
bitwise and operation can bring all the required zero bits. Actuallg #gtgorithm
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SuirrORAND(S, p, N, M, X)

1 foreachaeXdoT[a] «2"-1
2 fori« ltomdoT[p] « T[p] - 21
3 E<2"-1

4 for j« 1tondo
5 E « shiftleft(E) v (A({T[a] | a€ Sj}))
6 if E.m = 0 then WRritg(j)

Fig. 3.3: The SurrOrAND algorithm for multi-track string matching.

can be modified so that the core runs in ti®@[ 7 1). In that case, tabl® contains
a column for each chor8; (instead of each character ¥). Naturally, both the
time complexity of pattern processing and the overall sgamaplexity increase
noticeably from that of the version given in Fig. 3.3.

4. Transposition invariant multi-track string matching

The problem of multi-track string matching becomes trickiden taking into ac-
count transposition invariance. In this section we pressotfast filtering meth-
ods to solve the problem, one works on-line and the otlfielire. In the on-line
method all computation is done during a query executionlexhé df-line method
is tailored to deal with static databases. In the latter,casenuch as possible is
done in a separate preprocessing phase to enable fastensesgo queries.

We start by introducing a straightforward algorithm thatwse for two diferent
needs. On one hand, it may be used &stal algorithm i.e., it works on its own
to search for occurrences. On the other hand, with a slighlifioation, it may be
used as &hecking algorithm In the latter case it only checks whether there is an
occurrence at a given position. The algorithm is based ondhee string matching
algorithm, see e.g. [Crochemore and Rytter 1994, p. 34].

4.1 DrectCueck — straightforward algorithm

For the sake of simplicity, let us consider the case whekeddCueck is used as a
total method (see Fig. 4.1), wheraike is a routine that halts the execution of the
innermost loop. At first, the algorithm computgsthe cbv representation of the
input S. Then the algorithm checks for each positipri < j <n—m+ 1, and for
each pitcha € Sj, whether there is a match starting fr@nat positionj.

Because each cho®] holds at mosh pitches, the time complexity of formirty
is T1 = O(nh) + O(N[|Z]|/w]1), where the latter time is needed for initializing chord
bitvectors with ones. If a circular ifier of m chords is used and the computa-
tion is merged with the matching phase, the initializatiakets onlyO(m[|Z|/w1).
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DrecTCHECK(S, p,n, m, X)
CompUTE S(S)
for j < 1ton-m+ 1do
for eachae Sy do
found« true;b « a
for i « 2tomdo
Xe—b+p—pia
if (0<x<|[Z)and (S[j+i-1].x=0))
then b « x
else found « false; Exir()
if found
then PrinT(OCcurrence as; - - - Sjym-1); Exir()

PP OO~NOUOA,WNPE

= O

Fig. 4.1: DrectCuEck for transposition invariant multi-track string matching.

A column of the bifer can then be updated @(h) time by replacingh zeros by
ones according to the previous chord and then repldtimges by zeros according
to the new chord.

The time complexity of the rest of the algorithmTis = O(hhn), because there
are h—m+1)-h-(m- 1) comparisons in the worst case. Becanise> [|Z|/w]
holds in practiceT, dominates ovef;. Therefore we considé€d(nhmm) as the total
time of DirectCrEeck in the following?. The space requirement of the algorithm is
O(nZ|/w1) with the circular btter andO(n[|Z|/w1) without it.

Note that in Fig. 4.1, a substrirf§ - - - Sj,m-1 is reported as an occurrence only
once in a case where it actually contains several occursenifeall the parallel
occurrences have to be reported, the time complexity doeshange, but the
algorithm will be slightly slower in pathological cases.

In the checking version of iRectCHEck, | IS given as a parameter to the algo-
rithm and the outermost loop (line 2) is absent.

4.2 IntervaLM atcHING — ON-line filtering algorithm

Let us now introduce a basic on-line filter for transpositiomariant multi-track
string matching. ThentrervaLM atcuiNG algorithm (Fig. 4.2) uses an interval alpha-
bet. By comparing it with SirrOrAND (Fig. 3.3), one can notice twoftierences.
Firstly, in INTeErvaALM aTcHING We introduce a bitvectob which collects all the in-
tervals between two consecutive chords (line 6). Thesevalteare then used in
the shifting similarly as in &rrOrANp. The other dference can be noticed on
line 8: INTErRvALMATCHING iS a filtering method, because it only makes sure that

3 The expected running time, howeverQ@h). This is a characteristic property of the naive match-
ing algorithm.
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INTERVALM aTcHING(S, p, h, M, X’)
1 foreachde doT[d] «2™1-1

2 fori«2tomdoT[p — pi-1] < T[pi — pi—1] — 212
3 Ee2mig

4 for j« 2tondo

5 De2m1_1

6 for eachae S_;andbe S doD « DA T[b-a]
7 E « shiftleft(E)VvD

8 if E.m= 0then Cueck(j)

Fig. 4.2: The INtervaLM arcHiNG ON-line filter for transposition invariant multi-track stg matching.

a candidate contains the intervals of the pattern in theecowrder but does not
necessarily ‘bind’ the corresponding elements of the ch¢de Fig. 4.3 for an il-
lustration). Hence NrervaLM arcHING has to call the checking algorithm for every
found candidate.

Clearly, the core of the algorithm runs in tin@(nhzr%). However, the worst
case time complexity is that of the checking algorithm, lbseathere might be a
candidate at each position, in the worst case. Asirf®rAND, the required extra
space i§ 1. Thus, the total space requirement ofervaLM atcHING is O( [ 11Z).

4.3 MonoPoLy — gf-line filtering algorithm

When the text (corresponding to a music database) is statem be preprocessed
in order to speed up the retrieving. The benefit of the pregssiag is considerable
when the text is subject to several consecutive queriesid@gsif the result of
preprocessing is stored, it is possible to incrementalgppycess new pieces of
music, when they are added to the database.

The operation of M~oPoLy is divided intopreprocessingandfiltering phases.
The preprocessing is necessary only before the first queing Key idea of the
algorithm is to store intervals of two consecutive chorda agt-vector in the pre-
processing phase. An arrﬁ'/ of these interval combinations represented as bit-
vectors is used as a text for ther&Or algorithm while searching for the interval
sequence of the original pattern. An aryorresponds to the arralyof the orig-
inal SurrOr. The bitT’[1].i is zero, when théth bit of | is zero (i.e., the interval
k belongs to the interval combinatidnsuch thak is the interval in the pattern be-
tweenp; andpi_1). MonoPoLy has been designed for moderate interval alphabets,
smaller tharky,..



194 K. LEMSTROM, J. TARHIO

et glE

Fig. 4.3: The query pattern, given on the left, has a proper occuerém¢he first chord string (the
corresponding elements are bound), but only a spurioug@stze in the second (the corresponding
elements are not bound). Both are considered as candidates.

4.3.1 Preprocessing phase

This phase given in Fig. 4.4 forms a strisd1] - - - S [n — 1], where eaci$ [j] is a
bit-vector of|X’| bits storing the intervals between cho®sandS;, ;. Formally,

_ 0, if i = (x—y) mod[%’|
S'Tjli = for somex e S;andy € Sj;1 (1< j<n-1);
1, otherwise.

We avoid the apparerﬁ)(hzr%b time requirement for processing a pair of
chords by using bitwise operations and the fact that onlyraicesubset of the
possibleh? intervals can appear between two consecutive chords: Wieeintier-
vals from an elemenx of some chordS; to the elements of the following chord
Sj+1 have been calculated, the intervals for another elempémthe chordS; can
be uncovered just by shifting those calculated intervalshieyditerence between
y andx.

In the algorithmB(S;) = sjl denotes the lowest pitch value, thass of a chord

Sj. Zeros in§'[j] before line 6 give the intervals between the element§;pf
and the bass of the choBj (see the bitvector in the topleft corner of the example
given in Fig. 4.6). Then the zeros are shifted according éorémaining elements
of §j, one-by-one, to obtain the rest of the intervals occurriapeen chords;

andSj, (see the next two bitvectors in the topleft corner in Fig) 4EGnally, §'[j]
collects all the zeros that appeared in any of the (shiftéettors (the fourth
bitvector in the topleft corner in Fig. 4.6). This can be isplented ficiently by
using a right circularshift bitwise operator, denotedks(a, b), which shifts a bit-
vectora by b bits to the right in a circular manner. For instances # 01010 then
rcs(a,1l) = 00101 andrcs(a,2) = 10010. Since at mosnh(- 1) - (h — 1) such
copying are neede@,[1] --- S [n - 1] can be formed iD(nh£17) time.

4.3.2 Filtering phase

Thefiltering phaseis divided into two subphasegattern processingnd core
These subphases correspond to the phases ofitheOg algorithm.

The pattern processing subphase constructs a bit-@trafy(m-1) x 2 bits
corresponding to the bit-arralyof SarrrOr. Instead of having a column for every
symbol appearing in the text; has a column for every possible value§5{j].
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MonoPoLy:PPE, p,n,m, ')

1 for j<1ton-1do

2 Sj] 2% -1

3 for each ae §j,1 do

4 b « (a—-B(S;)) mod ||

5 if STjl.o=1thenS'[j] « S'[j]-2°

6 ST« GTil AlAaes ey resG 1l (a—B(S)) mod|[s'])))

Fig. 4.4: The preprocessing phase obNbPoLy.

For dficient computation, two extra arrays are used while comoBinA bit-
array I of [X’| x [¥’| bits has a column for every possible intervaldf)y while a
bit-array L of |Z’| x (m — 1) bits stores the positions of each interval in the query
pattern. Their bits are set as follows (herei<m-1; 1< jk<[¥))

Lo [0ifj=k o [ O if (pe1— p) mod| = j,
I[J]'k_{ 1, otherwise, L[jli= { 1, otherwise.

Remember that formalig'[j] € £ andZ'| = 2&!. Thus,S'[j] can be interpreted
as an integel, | € [0,2*! — 1]. These values are used as indices to the table
Moreover, we use bit-vectorH j] to locate intervals withirs by ‘sliding’ them
one-by-one over all the valuésThis forms the tabla’:

i< { O i 10K.j = 0and! j=0andL{Ki =,
" 71 1, otherwise,

wherel.j denotes thgth bit of I. In this way, constructing the array takes time
O Z1I=’| - 2*1).

The core phase is analogous to that mf+80r algorithm, but in this case the pat-
tern will be matched against the strifig1] - - - S [n—1] instead ofs. The algorithm
in Fig. 4.5 implements the whole filtering phase, i.e., bk pattern processing
and core subphases. Fig. 4.6 illustrates the data strgctfifdonoPoLy in an ex-
ample case.

4.4 Correctness and analysis MfonoPory

We prove first thalS’ is correctly formed. Letx € Sj andy € Sj.1. In the
following, the interval between the bass of the ch8sdand a pitchy is denoted by
r(y); r(y) = y - B(S;j). The distance from the bass pitch within the same chord is
denoted byg(X), i.e. ro(x) = x - B(S;).

Lemma 1. Let xe Sjand ye Sj;q for some jl1 < j<n-1 Ifi = (y—x) mod[Z’|
holds, therS [j].i is a zero bit.
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MONOPOLY(gl, p,n,m, %)
for k — 1to 2’| do
I[K] « 2%¥1-1
I[K] « I[K] - 2K1
LK «2™1 -1
for i « 2tomdo
b« (pi — pi-1) mod|¥’|
L[b] « L[b] - 22
for | < 0to2*!-1do
9  T[]e2mion
10 for k — 1to 2’| do
11 ivect « I[K]
12 if ivect VI =ivectthen T'[l] « (T’[I] A L[K])
13 E«~2™1_1
14 for j« 1ton-1do
15  E e« shiftleft(E) Vv T'[S'[]]
16 if E.m = 0then Cueck(])

O~NO O~ WN PP

Fig. 4.5: The MonoPoLy filter for transposition invariant multi-track string matng.

Proor. The array§' is computed during the preprocessing phase given in Fig. 4.4
There are two cases to be consideredx @) B(S;) and (ii) X # B(S)).

(i) The indexi for the zero bit isr(y) mod|%¥’| (line 4). Then the zero bit is
assigned t&'[j].i (line 5). Since after that, the only remaining operatiort tha
updatesS [j] (line 6) preserves that zero bit (preserves zerosy, [j].i = 0
holds.

(i) According to case (i)§'[j].i = 0 holds for all the intervals betweerB(S;)
andS;j,1 before line 6 is executed. Lgtbe an arbitrary pitch withirg, 1,
d = y-B(Sj), ande = y — x. Now the diference ofe andd is B(Sj) - X,
which by definition equals te-rg(x). Therefore, sinca has already been
stored in§'[j], e = d - ro(X) can be stored by assigning a zero bit at the
locationi = emod|Y’|. This is done on line 6 by thend operation with
res(S[j], ro(x). AgainS’[j].i = 0 holds. O

Lemma 2. If i # (y — X) mod|X’| holds for every pair xc S; and y € Sj,4, then
S'[jl.iis one.

Proor.  After the execution of line 2 in Fig. 4.4§'[j].i = 1 holds. The exe-
cution of the for loop on lines 3-5 assigns a zerti'tpj], corresponding to an
interval y — B(S)) for eachy € Sj;. Let A be the value oﬁ'[j] after the loop.
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Preprocessing: Pattern processing:
Fig4.4 Fig 4.5, lines 1-12
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Fig. 4.6; MonoPoLy on an example casdX’'| = 12, p = 69,64,65,72 (p" = -5,1,7) andS is
asFig. 2.1§, = {6569 72, S, = {64,67},S; = {62 65}, andS, = {60, 64, 72}).

On line 6, first|Sj| — 1 shifted copies out of are formed, then they are combined
with A by using thea operation. Each copy holds all the intervals betw8gn and
somex that difers fromB(S;j). Clearly the algorithm does not assign superfluous

zeros toS [ j]. O

As a consequence of the lemmas, the following theorem holds.

Tueorem 1. S is correctly formed.

Let us continue by proving that the pattern processing phas&s correctly,
and thus that tabl& is correctly formed. In the following, ifis an integer, theh,
denotes that the integer is interpreted as a bitvector.

Lemma 3. Letibe aninteger? <i < m.T’[I].i = 0 holds, if and only if}.k is zero
and k= (p; — pi—1) mod|X’| holds for some k.
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Proor. It is suficient to consider only the processing of the pattern (linek2lin
Fig. 4.5). Let us assume thigtk is zero andk = (p; — pi—1) mod|X’| holds. In lines
5-7 the intervals of the pattern are stored in the talalethe location corresponding
to (pi — pi—1) Mmod|¥’|, for 2 < i < m. Clearly there is exactly one zero bit on each
row of L, and the zero bits are assigned to the correct positiongdingoto the
construction. The only zero bit if{K] is thekth bit. Thus,I[K] v Iy = I[K] holds,
and the condition on line 12 is met. Then the zero-presergpperationa is used
to assign a zero to'[l].i.

Let us then assume thef{l].i = 0 holds. By inspecting line 12 we conclude that
there is & such thafL[k].i = 0 holds. According to the constructiohk must be
zero andk = (pj — pi_1) mod|X’| must hold. O

Considering M~oPoLy without the checking phase, the original problem of find-
ing every transposed occurrence of a music pattern has baesfdrmed to a fil-
tration problem of finding candidate occurren¢¢®f p. Such arH is an interval
string of lengthm— 1 in S’, which contains the intervals @f in the correct order
(recall Fig. 4.3). However, the condition that there ssach that i +c) € Sjyi_1
for eachi does not necessarily hold any longer. An example of a cateditiat is
not a spurious occurrence is when the excerpt in Fig. 4. 2sents the pattern and
Fig. 2.1 the text. The following theorem shows that filtratiworks correctly, i.e.
MonoPoLy does not skip any proper occurrence.

CNS

Fig. 4.7: This excerpt has a spurious occurrence in Fig. 2.1.

THeoreM 2. Let p be the pattern to be searched within the text S. If ther i
transposition invariant occurrence starting ag, $nenMonoPoy finds a potential

occurrence of p starting eﬁ'[j].

Proor. The tableS is correctly constructed according to Theorem 1. The core
phase works analogously to that afisOr. An interval in our setting corresponds
to a character. As a conjunction of the vectbji], T’[ j] has got the corresponding
intervals belonging tc§'[j]. The tableT’ is correctly constructed according to
Lemma 3. The fact that each potential occurrence is idedtffilows from the
characteristics of thedsOr algorithm. O

MonoPory’s space complexity i©(nT =17 + /1217 + (2% + |2/)[ D7) which
can be written a@(nr%] + 2'2/'r{,‘—v“]) by assumingn > [¥’|. For the preprocessing,

O(nhr%']) time is needed. At the beginning of the filtering phase tlwations of
intervals are gathered in tinf@(m). After that, each interval maskis slid over
the valuedp, which takesO(f 2|z’| - 2%1). Therefore, by denoting = [2|%’| -
2%, the filtering takes tim®©(n[2] + m + d), which is linear inn whenm < w.
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Again, the worst case time complexity is that of the checlagprithm; there
might be a candidate at each position, in the worst case.

MonoPory becomes impractical if unlimited interval alphabet, orre¥g. ., is
used. The octave equivalence assumption, for instancpskbe table” reason-
ably sized, and thus, MoPoLy practical.

4.5 ImprovingMonoPoLy's performance

Navarro and Ré@inot [1998] introduced a crossing ofi8rOr and the Boyer and
Moore [1977] algorithm. Their bit-parallel BNDM (Backwatdondeterministic
Dawg Matching) algorithm emulates the BDM algorithm [Czynre# al. 1994]
based on a nondeterministicfBx automaton.

BNDM follows the Boyer-Moore principle: the pattern matoefistarts at the
positionm of p ands. Then the pattern and text characters are compared in the
right-to-left order until the whole pattern is recognizedaomismatch occurs. In
each step, bit parallelism is used in a clever way to emulateraeterministic
sufix automaton, in order to know whether the currerffigwof sis a prefix ofp.

If such a prefix is found, the value of the next shift is updated

In order to make MnoPory filter faster, the core phase (lines 13-16 in Fig. 4.5)
could be replaced by BNDM. Although the BNDM algorithm has arst-case
complexity of O(nm), it is faster than &rrOr, in practice. As with all Boyer-
Moore type algorithms, BNDM becomes faster as pattern geigdr. According
Navarro and Réinot's experiment, BNDM is up to 7 times faster thamsSOr,
whenm = 32. Nevertheless, since our problem iffelient and the patterns are
typically rather short, we expect a smaller speed-up in asec

5. Experiments

In experimenting the practical performance obMPory, we compared its ef-
ficiency against that of ectCueck. We used the maodification, discussed in
Subsection 4.1, of MectCueck as the subroutine for checking. We did not test
INTERVALM ATCHING. HOwever, it may be expected that its performance lies some-
where between the two tested approaches.

We made an extensive study on altering the values of theestiag parameters,
and observed theirfiects on the performance. In every piece of experiment, we
measured the running times, and both the numbers of thedztediand proper
occurrences. The parameters under considerationwerdn, and|X’|. The impact
of the four parameters was measured by letting only one petearaary at a time,
meanwhile the values of the other parameters were fixed. Xperiments were
run in a PC with Intel Pentium Il of 700 MHz and 768 MB of RAM uedthe
Linux operating system. The lengihof a machine word was 32 bits.

The database for the experiments was collected from thenkttelt comprised
7,667 MIDI files, out of which 6,190 were originally monophonin the database,
the maximum degree of polyphony was 8, but typically thereeveeveral mono-
phonic chords between any two polyphonic chords. Althoughbelieve that this
is a rather common phenomenon (which makesi®PorLy more dficient due to the
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Fig. 5.1: A distribution of intervals within chords in Sibelius’ Handia.

fewer false positive hits found), we wanted to bound the eegf polyphony (as
it is described in the problem specification). In other wokgls forced each piece
of music in our database to be homophonic. In order to do #afjrst computed
the distribution of intervals within chords (as semitonesf the bass) in a MIDI
file of Jean Sibelius’ Finlandia (see Fig. 5.1 for the disttibn). Then, for each
chordS;, we inserted random pitches following the measured intelgaribution
until each|S;j| became equal tb.

The series of experiments was started by building up theésiding in the main
memory. All the homophonic pieces of music in our MIDI datsdavere concate-
nated into a single string, resulting m= 1,484 940. Observing one parameter
at a time, each setting (e.ln.= 8, other fixed to default values) was repeated 100
times. At the beginning of each repetition, a new pattern maslomly picked
up from the text. Thus, it was guaranteed that at least onertwe was to be
found in each repetition. As results of the experiments, eport the averages of
repetitions for each setting.

The default values for the experimented parameters were:3; m = 12;n =
1,484 940; andX’| = 12

Fig. 5.2 illustrates the typical behaviour ofdMbPory. In the two graphs, we
have given the average times spent by thigedent phases of the algorithm, varying
the value ofh. Firstly, the preprocessing time grows noticeablyhaisicreases
(see the graph on the left). In the graph on the right, we dieetimes spent
by the pattern processing (the lowest curve), the core, grttidwhole filtering
phase (recall Subsection 4.3.2). Note the interesting jretide latter two: As the
value ofh is increased the number of distirf&'l[i]s becomes larger. This causes
the execution to get slower because of fewer corresponfinglues present in
the cache. Moreover, when the increasindidé continued, after some threshold
point, hereh = 6, the number of distimﬁ'[i]s starts to decrease. This speeds-up
the execution due to increased number of cache hits’'fealues.
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Fig. 5.2: The performance of MhoPoLy when varyingh (m = 12;n = 1,484 940;|%'| = 12). The
preprocessing time is given in the graph on the left, patpeatessing, core, and whole filtering
(=pattern processingeore) times in the graph on the right.

Henceforth, we will consider two running times forolbPory. The first one
represents the running time of a single (or first) query (tkshbytotal time); hence
itincludes the times spent by all the phases ofdPoLy (including checking). The
other one (denoted Hiltering+checking represents the running time of a re-query
on the same database (including checking but excludingotextrocessing).

5.1 Varying the number of tracks

We started our comparison by measuring tffea of the parametdr, that is, the
number of tracks in the text. Fig. 5.3 shows that the numbeaatlidates grows
much more rapidly than the number of proper occurrencdsjraseases (note the
logarithmic scale). From around 350 lat= 3, the number of candidates grows
to around 11,000 &t = 4. However, for M~oPoLy the first query is faster than
for DirectCHECK, until h becomes larger than 7. Re-queries withNdPoLy are
clearly faster than with RectCheck for h < 9.

40000

T T
candidates-=— 1 DirectCheck -=—
occurrences— 35000 | total time »— |
filtering+checking —

1e+06 |

100000 30000

10000 | 25000 [

20000 |
1000 -

time in msecs

15000 [
100
10000 [

10 4 5000 |

0

1

Fig. 5.3: The averageféect ofh (m= 12;n = 1,484 940;|¥'| = 12). Numbers of candidates and
proper occurrences (on the left, log scale). Times for a fjusry (total time) and for re-queries
(filtering+checking) of MonoPoLy and for DrecTChEck (on the right).
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Fig. 5.4: The averageféect of m (h = 3;n = 1,484 940;|X'| = 12). Numbers of candidates and
proper occurrences (on the left, log scale). Times for adjusty (total time) and re-queries (filter-
ing+checking) of MonoPoLy and for DrectCheck (on the right).

5.2 Varying the length of the pattern

Next we experimented on the influence of the length of theepatfsee Fig. 5.4).
As the pattern becomes longer, the number of occurrencesatess notably faster
than the number of candidates. HowevemNdPoLy is considerably faster than
DmectCheck with these parameter settings. The right graph illustrates in-
teresting phenomena. Firstly, the weak discriminating growf short patterns has
a clear consequence to the performance ofdPory; the shorter the pattern is the
more often the slow checking routine has to be called. Sdgoasl mentioned in
Subsection 4.1, the running time ofdBcTCreck does not depend on the pattern
length.

5.3 Varying the length of the text

Of all our experiments, the most significanffdrence between the performances
of MonoPoLy and DrectCreck was found when varying the size of the database
(see Fig. 5.5). Again, the number of candidates grows fakstar the number of
occurrences, but there is a significanffelience in running times. Although the
first query of MonoPoLy takes more time than the re-queries, it is faster than the
same query with kecrCueck. Because kecrCHeck’s running time seems to
grow linearly as the database grows (note the log scale)ptiger the text is the
larger the dterence between the performances of the two approachesewill b

5.4 Varying the size of the alphabet

Finally, we made experiments on the paramé¢Xér Note that, so far in the ex-
periments, we have usé, with MonoPory, while DirectCrEck always uses the
alphabetXizg. It can be seen in Fig. 5.6, thatf, works well with MonoPoLy.

When observing the number of candidates, the setlifig= 12 meets a salient
local minimum. Moreover, increasing the size of the alphdtoen 12, the number
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Fig. 5.6 The averageféect of |2’| (h = 3;m = 12;n = 1,484 940). Numbers of candidates and
proper occurrences (on the left, log scale). Times for adjusry (total time) and re-queries (filter-
ing+checking) of MoxoPory, and for DrectCueck (0n the right).

of candidates does not become lower than that bgiste> 18. Naturally this
curve of candidates depends on the interval distributichiwithe chords, but we
believe that the distribution we used is typical enough. E\mv, whenX’| be-
comes greater than 20, dMoPory’s performance starts to get slower due to the
O(1x’| - 2% factor in the time complexity of the pattern processinggeh@n a 600
MHz Pentium Ill the speed started to decreas@’at 18, already).

6. Concludingremarks

We have adapted theustOr algorithm to music retrieval by introducing three
modifications for two distinct variations of the multi-tkastring matching prob-
lem. A summary of the algorithms is given in Table I.
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TasLe |: A summary of the requirements of the presented algorithms

TIME SPACE
preproc. running

Multi-track string matching
SuiFTORAND - O(nhu) O(IZ|u)

Transposition invariant

multi-track string matching

DirecTCHECK - O(nhm) O(mM|Z|/w1)
INTERVALM ATcHING (filter) - O(nhPu) O(IZ|u)
MonoPory (filter) O(nh[IZ’|/w])  O(nu+m+d) O(n[Z’|/w1+c)
m=|pl, n =S|, H=Tm/w]
h: number of parallel tracks, w: size of machine word in bits,
¥: underlying (absolute) alphabet, 3’: underlying (relative) alphabet,
c= 2%y, d=px- 2%

First, we suggested theisrOrAND algorithm for the original multi-track string
matching problem. Then, we presented twar80r modifications for transpo-
sition invariant multi-track string matching. TheTkrvaLM arcHinG filter works
on-line, while our main contribution, the d&toPoLy filter, has been optimized to
work with static music databases. The results of theseditteould be checked in
order to find the proper occurrences among the candidatas.c&h be done, for
instance, by using IREcTCHECK.

We made extensive experiments witlodPory on studying the #ect of param-
etersm, n,|¥’|, andh to its performance. In the experiments, a particular alphab
X7, (of size 12) corresponding to a musical octave equivaleragfaund to work
very well with MonoPoLy. It was also interesting to observe the consequence of
varying the value oh. Although it does not have a direct consequence to the per-
formance of the filtering phase, it has affieet to the éiciency of the filtration,
and therefore, to the performance of the checking phaseatper theh the more
false positive hits. Due to our experimentspo®PoLy clearly outperforms the
straightforward DrecrCheck wWheneveth is reasonably low.

There are several possibilities to refine our algorithmst IkoervALM ATcHING
we could have used the octave equivalence, as well. Morgmveompute the set
D, one could use a method similar to that that we used éand®ory to compute
the chord bitvectors in tim@®(nh 7). For MonoPoLy the core can be replaced by
the BNDM algorithm of Navarro and Ranot [1998].

In the both filtering algorithms, a further, practical impement for the perfor-
mance may be obtained by observing the distribution of thebsys (intervals)
and by searching first for the least frequent substring optteern. In the case of
static database, the distribution may be calculated inrambsavhile in the on-line
case an approximation of the distribution may be used. Alairtrick may be used
also with long patterns (for whictm > w); the filter is used for locating substrings
of the pattern of lengths at moat whose sums over the interval probabilities are
the smallest possible. Naturally, this trick may be usedstmarching polyphonic
patterns with our algorithms, as well.
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