
Nordic Journal of Computing 10(2003), 185–205.

TRANSPOSITION INVARIANT PATTERN MATCHING
FOR MULTI-TRACK STRINGS

KJELL LEMSTRÖM
University of Helsinki, Department of Computer Science

P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki, Finland
Kjell.Lemstrom@cs.Helsinki.Fi

JORMA TARHIO
Helsinki University of Technology, Dept. of Computer Science and Engineering

P.O. Box 5400, FIN-02015 HUT, Finland
Jorma.Tarhio@hut.Fi

Abstract. We consider the problem ofmulti-track string matching. The task is to find the
occurrences of a pattern across parallel strings. Given an alphabetΣ of natural numbers
and a setS overΣ of h stringssi = si

1 · · · s
i
n for i = 1, . . . , h, a patternp = p1 · · · pm has

such an occurrence at positionj of S if p1 = si1
j , p2 = si2

j+1, . . . , pm = sim
j+m−1 holds for

i1, . . . , im ∈ {1, . . . , h}. An application of the problem is music retrieval where occurrences
of a monophonic query pattern are searched in a polyphonic music database. In music
retrieval it is even more pertinent to allow invariance for pitch level transpositions, i.e.,
the task is to find whether there are occurrences ofp in S such that the formulation above
becomesp1 = si1

j + c, p2 = si2
j+1 + c, . . . , pm = sim

j+m−1 + c for some constantc. We present
several algorithms solving the problem. Our main contribution, the MP algorithm,
is a transposition-invariant bit-parallel filtering algorithm for static databases. After an
O(nhe) time preprocessing, it finds candidates for transpositioninvariant occurrences in
timeO(n⌈m/w⌉+m+ d) wherew, e, andd denote the size of the machine word in bits and
two factors dependent on the size of the alphabet, respectively. A straightforward algorithm
is used to check whether the candidates are proper occurrences. The algorithm needs time
O(hm) per candidate.

ACM CCS Categories and Subject Descriptors: H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems –pattern matching; J.5 [Computer
Applications]: Arts and Humanities –music

Key words: string algorithms, combinatorial pattern matching, bit parallelism, music
retrieval

1. Introduction

String matching is a fundamental problem in many application areas, such as in in-
formation retrieval. The most conventional form of the problem is to find exact oc-
currences of a given query stringp = p1 · · · pm within another strings = s1 · · · sn,
where each ofpi (1 ≤ i ≤ m) and sj (1 ≤ j ≤ n) belongs to an alphabetΣ.

Received December 19, 2001; revised January 3, 2003; accepted April 16, 2003.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14921576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

186 K. LEMSTRÖM, J. TARHIO

The famous and practical solution for this problem was presented by Boyer and
Moore [1977] with a worst-case time complexity ofO(nm), which was subse-
quently refined toO(n + rm) wherer denotes the number of occurrences [Guibas
and Odlyzko 1980]. Later, Baeza-Yates and Gonnet [1992] introduced the SO
algorithm, an inspiring and efficient solution which uses the word-level bitwise op-
erations of computer hardware. Their bit-parallel algorithm achieves a time com-
plexity of O(n⌈mw⌉), wherew is the size of the machine word (e.g. 32 or 64 bits, in
practice).

In this paper, we consider some extensions of the exact string matching problem
and present several algorithms solving them. Let us supposethat the underlying
alphabet is a subset of natural numbers with standard arithmetic. In multi-track
string matching(also called distributed string matching in [Holubet al. 2001])
the text S is composed ofh parallel strings,si = si

1 · · · s
i
n for i = 1, . . . , h, called

tracks, and thepattern p is said to have anoccurrence across the tracks hat j,
if p1 = si1

j , p2 = si2
j+1, . . . , pm = sim

j+m−1 holds for i1, . . . , im ∈ {1, . . . , h}. Note our
distinction betweensandS corresponding to a plain string and a multi-track string,
respectively.

As it turns out, transposition invariance is a natural and useful property in our
application area. To this end, we update the formulation of the problem as follows:
given the patternp and the textS comprisingh trackss1, . . . , sh, each tracksi of
length|si | = n, the task is to find alljs such thatp1 = si1

j +c, p2 = si2
j+1+c, . . . , pm =

sim
j+m−1 + c holds, for some constantc and for i1, . . . , im ∈ {1, . . . , h}. We call this

transposition invariant multi-track string matching.
In the next section we present some background for our study:First we briefly

describe our application domain and show how music is represented by using
strings. Then we give a brief summary of related work. Section 3 reviews the
SO algorithm and shows how it is modified to be applicable for multi-track
string matching. This modification, called SOA, works in timeO(nh⌈mw⌉).
In Section 4, we will introduce the three novel algorithms for transposition in-
variant multi-track string matching. First we describe a straightforwardO(nhm)
solution called DC. It is based on a naı̈ve string matching algorithm (see,
e.g., [Crochemore and Rytter 1994, p. 34]). Then we show how the problem can
be solved more efficiently in practice, by executing a filtering algorithm before
DC (or some other algorithm capable of checking). Having introduced
the IM on-line filter working in timeO(nh2⌈mw⌉), we will devote
more time in a detailed description and careful analyses on our main contribution,
i.e., the MP filtering algorithm. MP is used withstatic databases, i.e.
the database is not updated between consecutive queries. The algorithm consists
of anO(nhc) preprocessing and anO(n⌈mw⌉ +m+ d) filtering phase, wherec andd
denote factors dependent on the size of the alphabet.

Above we assume that tracks are ordered so that track #i contains theith lowest
note at any pointj ∈ {1, . . . , n}. Otherwise an extraO(nhlogh) time is needed for
sorting. Before concluding the paper in Section 6, we will show the results of our
extensive experiments on MP in Section 5.

A preliminary version of the paper appeared in [Lemström and Tarhio 2000].

MULTI-TRACK STRING MATCHING 187

2. Background

Multi-track string matching has an application area in content-based music retrieval
(see, e.g., [Lemström 2000]). Combinatorial string matching methods become ap-
plicable to music retrieval, when music is presented symbolically. For instance,
the elements of a string may be integers representing thepitch of a note (i.e. the
perceived height of the played note). In terms of our specification above, music is
said to bemonophonicif h = 1, and it is calledpolyphonicif h > 1. In homophonic
musicthere is a pitch for everysi

j . Typically polyphonic music is not homophonic.
We use an additional special characterλ to denote a missing pitch.

The motivation for the problem under consideration is a typical music retrieval
query case, where a monophonic pattern (that may be given, e.g. by humming, by
playing an instrument, or just by typing) is searched for in amulti-track text rep-
resenting a polyphonic music database1. Moreover, transposition invariance plays
a central role in western music perception, for musical melodies are recognized
rather based on theintervalsbetween the consecutive pitches than on the absolute
pitch sequences constituting the melodies.

2.1 Representing music

In a rudimentary representation of polyphonic music, symbols of a string represent
pitch (or interval) values of notes in one track, and the order of symbols within
the string are in accordance with the note order of the represented track. A com-
mon underlying alphabet is based on the MIDI pitch values [MIDI Manufactur-
ers Association 1996]:Σ128 = {0, . . . , 127}

⋃

{λ} where 60 corresponds to the
middle-C. For example, the excerpt given in Fig. 2.1 can be represented as follows:
s1 = 65, 64, 62, 60; s2 = 69, 67, 65, 64; ands3 = 72, λ, λ, 72.G ��� ������ �� �

Fig. 2.1: A musical excerpt.

Note that when moving from absolute values to intervals, thesize of the under-
lying alphabet is doubled. Henceforth we make a distinctionbetween interval and
absolute alphabets: an interval alphabet, denoted byΣ′, corresponds to an absolute
alphabetΣ. Furthermore, we use a subscript (as inΣ128) to denote the size of the
alphabet.

1 Indeed, a musical melody may occur distributed across several tracks (voices), as it is the case in
Elgar’sCockaigne, for instance. However, in general a more pertinent case would be to try minimize
the number of track shifts within an occurrence (see e.g. [Lemström and Mäkinen 2003]). Although
this matter falls out of the scope of the current paper, the reader should note that the checking algo-
rithm could be modified to consider the case, for it has the tracking information available.

188 K. LEMSTRÖM, J. TARHIO

Due to a pragmatic problem — an alphabet as large asΣ′255 (the MIDI interval al-
phabet) would make our principal algorithm impractical — weneed a smaller but
musically relevant alphabet. Another, musically relevantalphabet distinguishes
only 12 pitches (or intervals). By musical terms, two pitches separated by 12 semi-
tones is calledoctave. Among all the intervals the octave is very special: it is the
only interval whose arbitrary combinations areconsonant[Parncutt 1989].Octave
equivalence, “one of the most fundamental axioms of tonal music” [Forte 1962],
means that intervals are reduced to (semitonic) scale 0, 1, . . . , 11. Technically this
is achieved by using alphabetΣ′12 = {0, 1, . . . , 11} and replacing the original in-
terval h by valueh mod 12 (remember that our alphabets are subsets of natural
numbers). Thus, an interval of 7 semitones upwards equals the interval of 5 semi-
tones downwards, for instance. Using the alphabetΣ12 (absolute pitches reduced
according to octave equivalence), the example in Fig. 2.1 would become as follows:
s1 = 5, 4, 2, 0; s2 = 9, 7, 5, 4; ands3 = 0, λ, λ, 0.

LetΣℓ be the alphabet. BySj we denote an ordered vertical section of the text atj,
i.e.,Sj = s1

j , s
2
j , . . . , s

h
j wheresi

j ≤ si+1
j for 1 ≤ i ≤ h− 1, i.e. the pitches ofSj are in

the nondecreasing order. We call such a vertical section achord. The chords can be
represented by bitvectorsS[j], where eachS[j] is a chord bitvector (cbv) ofℓ bits.
To be precise, each cbv is formally a symbol of a cbv alphabetΣ of size |Σ| = 2ℓ.
Nevertheless, as the connection betweenΣ andΣ is straightforward, we will mostly
avoid the explicit exposition of cbv alphabets to improve the readability. A zero in
a cbv corresponds to a present pitch in the chord, while an on-bit indicates absence
of the corresponding pitch. For instance, if the underlyingalphabet isΣ12, the cbv
stringS = 〈S[1]〉 · · · 〈S[n]〉 corresponding to Fig. 2.1 would be:

〈0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1〉,

〈1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1〉,

〈1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1〉,

〈0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1〉.

By S[j].i we denote theith bit of the cbvS[j]; e.g. aboveS[3].2 = S[4].0 = 0.
In Section 5, we will show that the musically relevant alphabet Σ′12 is practical

and effective for our application.

2.2 Related work

Independently of us, Holubet al.[2001] presented bit-parallel algorithms for multi-
track string matching. They did not, however, consider transposition invariance.
They presented algorithms to find occurrences of (i) multi-track patterns within
plain texts (effectively, the original SO algorithm); (ii) plain patterns within
multi-track texts (effectively same as our SOA); and (iii) multi-track pat-
terns within multi-track texts. The algorithm (iii) requiresO((rm + |Σ̂|)⌈mw⌉) time
for the preprocessing, wherer, Σ̂, andw are the number of the patterns, the set of
symbols used in the pattern and the size of the machine word, respectively. Then it
works inO(nh⌈mw⌉) time and requiresO(|Σ̂|⌈mw⌉) space.

MULTI-TRACK STRING MATCHING 189

Dovey [2001] has considered a modification of the multi-track string matching
problem, where the consecutive matching elements of an occurrence may contain
gaps. Given a gapping parametert, at-gap-occurrenceis as follows:p1 = si1

j1
, p2 =

si2
j2
, . . . , pm = sim

jm
, wherej l+1− j l ≤ t+1 for 1≤ l ≤ m−1 andi1, . . . , im ∈ {1, . . . , h}.

By settingt = n, the gaps become unrestricted. Dovey represents music by chord
vectors over alphabetΣ88 (88 is the common amount of keys in a piano). His
algorithm works in timeO(nm⌈88

w ⌉) based on the following dynamic programming
recurrence:

d00, di0, d0 j = 0;

di j =



















t + 1, if ((pi ∈ Sj) and (i = 1 ordi−1, j−1 , 0));
di, j−1 − 1, if ((pi < Sj) and (di, j−1 , 0));

0, otherwise,

where 1 ≤ j ≤ n and 1 ≤ i ≤ m. As usually, the query result is read from
the elementdm j; an occurrence of valuet + 1 in a bottom row element indicates
an t-gap-occurrence, and the actual occurrence can be uncovered by a backtrack-
ing procedure. The algorithm requires 87 reiterations for transposition invariant
matching.

Recently, Wigginset al. [2003] has adapted the idea of our DC algo-
rithm (introduced in Section 4) to point pattern matching inD-dimensional data-
sets. Their S(M) algorithm would represent our case as follows. The pattern
p and the textS are represented as pairs (u, v), whereu andv denote the pitch and
its onset time, respectively. Letv = (a, b) be a translation vector that transfers a
pair (u, v) to v[(u, v)] = (u + a, v + b). Now the task becomes to find a translation
vectorv such that it transfers all pointsx ∈ p to some pointsv[x] wherev[x] ∈ S
must hold.

By basing the matching process on the translation vectors, the method becomes
transposition invariant and allows unrestricted gaps, butbecomes more sensitive to
timing errors than DC. Denoting byn′ andm′ the number of elements
in the text and pattern, respectively, S(M) works in timeO(n′m′) and space
O(m′), in the worst case2.

3. SO algorithm

Let us consider the SO algorithm by Baeza-Yates and Gonnet [1992]. In
describing their algorithm (and henceforth) we will use thesymbols∨ and∧ rep-
resenting the bitwiseor andand operators, respectively. The SO algorithm
searching occurrences ofp in s is given in Fig. 3.1.

Lines 1–2 and 3–6 of SO form two phases, which we call pattern processing
and core phases, respectively. First, for each symbol appearing in the pattern,
the pattern processing phase creates a bit-mask appearing as a column of tableT.

2 This is equivalent to that of our DC in the case of monophonic pattern and homophonic
text: m′ = m andn′ = hn.

190 K. LEMSTRÖM, J. TARHIO

SO(s, p, n,m,Σ)
1 for each a ∈ Σ do T[a] ← 2m − 1
2 for i ← 1 to m do T[pi] ← T[pi] − 2i−1

3 E← 2m − 1
4 for j ← 1 to n do
5 E← shiftleft(E)∨ T[sj]
6 if E.m= 0 then W(j)

Fig. 3.1: The SO algorithm.

In the core phase, a zero bit is released (by the binaryshiftleft operator) to
level 1 at every point of time. Then, the released zero bits either survive to the next
level, or die, depending on the bit-mask used with the∨ operator. Whenever a zero
bit reaches the levelm, an occurrence of the pattern has been found; this is reported
on line 6. Fig. 3.2 simulates SO in an example case.

SO’s pattern processing takesO(⌈mw⌉|Σ| + m), while the core runs in time
O(⌈mw⌉n). The overall space requirement isO(⌈mw⌉|Σ|).

T:

sh
ift

le
ft(

E
)

T
[a

]

sh
ift

le
ft(

E
)

T
[b

]

sh
ift

le
ft(

E
)

T
[c

]

sh
ift

le
ft(

E
)

sh
ift

le
ft(

E
)

sh
ift

le
ft(

E
)

sh
ift

le
ft(

E
)

T
[a

]

T
[a

]

T
[a

]

T
[b

]

b 1 0 1 b 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0

a 0 1 1 a 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

a 0 1 1 a 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1

 a b c E E E E E E E E

Fig. 3.2: An example of SO for p = aabands = abcaaab. The table T (on the left) is created
first. The execution of the core phase of the algorithm is illustrated on the right. In the illustration,
shifting is done downwards and the found occurrence is shownwith a white circle.

3.1 SOA— algorithm for multi-track string matching

The SO algorithm can be adapted with a minor modification to multi-track
string matching. Actually, this is a dual of the string matching problem presented
by Baeza-Yates and Gonnet [1992]. They considered cases where elements of a
pattern may contain a set of symbols instead of one symbol. Intheir case they
modified the pattern processing phase, while in our case eachtext position is al-
lowed to contain a set of characters and the modified phase is the core phase. This
is done by adding a bitwiseand operation, which operates over all the pitches
within a chord; see the SOA algorithm in Fig. 3.3, below.

The main loop on lines 4–6 takesO(nh⌈mw⌉) time, and an extra space of⌈mw⌉
words is required. The extra space is used for a temporary storage, where the
bitwiseand operation can bring all the required zero bits. Actually, the algorithm

MULTI-TRACK STRING MATCHING 191

SOA(S, p, n,m,Σ)
1 for each a ∈ Σ do T[a] ← 2m− 1
2 for i ← 1 to m do T[pi] ← T[pi] − 2i−1

3 E← 2m− 1
4 for j ← 1 to n do
5 E← shiftleft(E)∨ (

∧

({T[a] | a ∈ Sj}))
6 if E.m= 0 then W(j)

Fig. 3.3: The SOA algorithm for multi-track string matching.

can be modified so that the core runs in timeO(n⌈mw⌉). In that case, tableT contains
a column for each chordSj (instead of each character inΣ). Naturally, both the
time complexity of pattern processing and the overall spacecomplexity increase
noticeably from that of the version given in Fig. 3.3.

4. Transposition invariant multi-track string matching

The problem of multi-track string matching becomes trickier when taking into ac-
count transposition invariance. In this section we presenttwo fast filtering meth-
ods to solve the problem, one works on-line and the other off-line. In the on-line
method all computation is done during a query execution, while the off-line method
is tailored to deal with static databases. In the latter case, as much as possible is
done in a separate preprocessing phase to enable faster responses to queries.

We start by introducing a straightforward algorithm that serves for two different
needs. On one hand, it may be used as atotal algorithm, i.e., it works on its own
to search for occurrences. On the other hand, with a slight modification, it may be
used as achecking algorithm. In the latter case it only checks whether there is an
occurrence at a given position. The algorithm is based on thenaı̈ve string matching
algorithm, see e.g. [Crochemore and Rytter 1994, p. 34].

4.1 DC— straightforward algorithm

For the sake of simplicity, let us consider the case where DC is used as a
total method (see Fig. 4.1), where E is a routine that halts the execution of the
innermost loop. At first, the algorithm computesS, the cbv representation of the
input S. Then the algorithm checks for each positionj, 1≤ j ≤ n−m+ 1, and for
each pitcha ∈ Sj , whether there is a match starting froma at position j.

Because each chordSj holds at mosth pitches, the time complexity of formingS
is T1 = O(nh) +O(n⌈|Σ|/w⌉), where the latter time is needed for initializing chord
bitvectors with ones. If a circular buffer of m chords is used and the computa-
tion is merged with the matching phase, the initialization takes onlyO(m⌈|Σ|/w⌉).

192 K. LEMSTRÖM, J. TARHIO

DC(S, p, n,m,Σ)
1 C S(S)
2 for j ← 1 to n−m+ 1 do
3 for each a ∈ Sj do
4 f ound← true; b← a
5 for i ← 2 to m do
6 x← b+ pi − pi−1

7 if ((0 ≤ x < |Σ|) and (S[j + i − 1].x = 0))
8 then b← x
9 else f ound← false; E()
10 if f ound
11 then P(occurrence atSj · · ·Sj+m−1); E()

Fig. 4.1: DC for transposition invariant multi-track string matching.

A column of the buffer can then be updated inO(h) time by replacingh zeros by
ones according to the previous chord and then replacingh ones by zeros according
to the new chord.

The time complexity of the rest of the algorithm isT2 = O(nhm), because there
are (n−m+ 1) · h · (m− 1) comparisons in the worst case. Becausenh≫ ⌈|Σ|/w⌉
holds in practice,T2 dominates overT1. Therefore we considerO(nhm) as the total
time of DC in the following3. The space requirement of the algorithm is
O(m⌈|Σ|/w⌉) with the circular buffer andO(n⌈|Σ|/w⌉) without it.

Note that in Fig. 4.1, a substringSj · · ·Sj+m−1 is reported as an occurrence only
once in a case where it actually contains several occurrences. If all the parallel
occurrences have to be reported, the time complexity does not change, but the
algorithm will be slightly slower in pathological cases.

In the checking version of DC, j is given as a parameter to the algo-
rithm and the outermost loop (line 2) is absent.

4.2 IM— on-line filtering algorithm

Let us now introduce a basic on-line filter for transpositioninvariant multi-track
string matching. The IM algorithm (Fig. 4.2) uses an interval alpha-
bet. By comparing it with SOA (Fig. 3.3), one can notice two differences.
Firstly, in IM we introduce a bitvectorD which collects all the in-
tervals between two consecutive chords (line 6). These intervals are then used in
the shifting similarly as in SOA. The other difference can be noticed on
line 8: IM is a filtering method, because it only makes sure that

3 The expected running time, however, isO(nh). This is a characteristic property of the naı̈ve match-
ing algorithm.

MULTI-TRACK STRING MATCHING 193

IM(S, p, n,m,Σ′)
1 for each d ∈ Σ′ do T[d] ← 2m−1 − 1
2 for i ← 2 to m do T[pi − pi−1] ← T[pi − pi−1] − 2i−2

3 E← 2m−1 − 1
4 for j ← 2 to n do
5 D← 2m−1 − 1
6 for each a ∈ Sj−1 andb ∈ Sj do D← D ∧ T[b− a]
7 E← shiftleft(E)∨ D
8 if E.m= 0 then C(j)

Fig. 4.2: The IM on-line filter for transposition invariant multi-track string matching.

a candidate contains the intervals of the pattern in the correct order but does not
necessarily ‘bind’ the corresponding elements of the chords (see Fig. 4.3 for an il-
lustration). Hence, IM has to call the checking algorithm for every
found candidate.

Clearly, the core of the algorithm runs in timeO(nh2⌈mw⌉). However, the worst
case time complexity is that of the checking algorithm, because there might be a
candidate at each position, in the worst case. As in SOA, the required extra
space is⌈mw⌉. Thus, the total space requirement of IM is O(⌈mw⌉|Σ|).

4.3 MP— off-line filtering algorithm

When the text (corresponding to a music database) is static,it can be preprocessed
in order to speed up the retrieving. The benefit of the preprocessing is considerable
when the text is subject to several consecutive queries. Besides, if the result of
preprocessing is stored, it is possible to incrementally preprocess new pieces of
music, when they are added to the database.

The operation of MP is divided intopreprocessingandfiltering phases.
The preprocessing is necessary only before the first query. The key idea of the
algorithm is to store intervals of two consecutive chords asa bit-vector in the pre-
processing phase. An arrayS

′
of these interval combinations represented as bit-

vectors is used as a text for the SO algorithm while searching for the interval
sequence of the original pattern. An arrayT’ corresponds to the arrayT of the orig-
inal SO. The bitT′[l].i is zero, when thekth bit of l is zero (i.e., the interval
k belongs to the interval combinationl) such thatk is the interval in the pattern be-
tweenpi andpi−1). MP has been designed for moderate interval alphabets,
smaller thanΣ′20.

194 K. LEMSTRÖM, J. TARHIO

Fig. 4.3: The query pattern, given on the left, has a proper occurrence in the first chord string (the
corresponding elements are bound), but only a spurious occurrence in the second (the corresponding
elements are not bound). Both are considered as candidates.

4.3.1 Preprocessing phase

This phase given in Fig. 4.4 forms a stringS
′
[1] · · · S

′
[n− 1], where eachS

′
[j] is a

bit-vector of|Σ′| bits storing the intervals between chordsSj andSj+1. Formally,

S
′
[j].i =



















0, if i = (x− y) mod |Σ′|
for somex ∈ Sj andy ∈ Sj+1 (1 ≤ j ≤ n− 1);

1, otherwise.

We avoid the apparentO(h2⌈
|Σ′|

w ⌉) time requirement for processing a pair of
chords by using bitwise operations and the fact that only a certain subset of the
possibleh2 intervals can appear between two consecutive chords: When the inter-
vals from an elementx of some chordSj to the elements of the following chord
Sj+1 have been calculated, the intervals for another elementy in the chordSj can
be uncovered just by shifting those calculated intervals bythe difference between
y andx.

In the algorithmB(Sj) = s1
j denotes the lowest pitch value, thebass, of a chord

Sj. Zeros inS
′
[j] before line 6 give the intervals between the elements ofSj+1

and the bass of the chordSj (see the bitvector in the topleft corner of the example
given in Fig. 4.6). Then the zeros are shifted according to the remaining elements
of Sj, one-by-one, to obtain the rest of the intervals occurring between chordsSj

andSj+1 (see the next two bitvectors in the topleft corner in Fig. 4.6). Finally,S
′
[j]

collects all the zeros that appeared in any of the (shifted) bitvectors (the fourth
bitvector in the topleft corner in Fig. 4.6). This can be implemented efficiently by
using a right circularshift bitwise operator, denotedrcs(a, b), which shifts a bit-
vectora by b bits to the right in a circular manner. For instance, ifa = 01010 then
rcs(a, 1) = 00101 andrcs(a, 2) = 10010. Since at most (n − 1) · (h − 1) such
copying are needed,S

′
[1] · · · S

′
[n− 1] can be formed inO(nh⌈ |Σ

′ |

w ⌉) time.

4.3.2 Filtering phase

The filtering phaseis divided into two subphases:pattern processingand core.
These subphases correspond to the phases of the SO algorithm.

The pattern processing subphase constructs a bit-arrayT’ of (m−1) × 2|Σ
′ | bits

corresponding to the bit-arrayT of SO. Instead of having a column for every
symbol appearing in the text,T’ has a column for every possible value ofS

′
[j].

MULTI-TRACK STRING MATCHING 195

MP:PP(S, p, n,m,Σ′)
1 for j ← 1 to n− 1 do
2 S

′
[j] ← 2|Σ

′ | − 1
3 for each a ∈ Sj+1 do
4 b← (a− B(Sj)) mod |Σ′|
5 if S

′
[j].b = 1 then S

′
[j] ← S

′
[j] − 2b

6 S
′
[j] ← (S

′
[j] ∧ (

∧

a∈(Sj\B(Sj)) rcs(S
′
[j], (a− B(Sj)) mod |Σ′|)))

Fig. 4.4: The preprocessing phase of MP.

For efficient computation, two extra arrays are used while composing T’. A bit-
arrayI of |Σ′| × |Σ′| bits has a column for every possible interval inΣ′, while a
bit-arrayL of |Σ′| × (m− 1) bits stores the positions of each interval in the query
pattern. Their bits are set as follows (here 1≤ i ≤ m− 1; 1≤ j, k ≤ |Σ′|)

I[j].k =

{

0, if j = k,
1, otherwise,

L[j].i =

{

0, if (pi+1 − pi) mod |Σ′| = j,
1, otherwise.

Remember that formallyS
′
[j] ∈ Σ

′
and|Σ

′
| = 2|Σ

′ |. Thus,S
′
[j] can be interpreted

as an integerl, l ∈ [0, 2|Σ
′ | − 1]. These values are used as indices to the tableT’.

Moreover, we use bit-vectorsI[j] to locate intervals withinS
′
, by ‘sliding’ them

one-by-one over all the valuesl. This forms the tableT’:

T′[l].i =

{

0, if I[k]. j = 0 andl. j = 0 andL[k].i = 0,
1, otherwise,

wherel. j denotes thejth bit of l. In this way, constructing the arrayT’ takes time
O(⌈mw⌉|Σ

′| · 2|Σ
′ |).

The core phase is analogous to that of SO algorithm, but in this case the pat-
tern will be matched against the stringS

′
[1] · · · S

′
[n−1] instead ofs. The algorithm

in Fig. 4.5 implements the whole filtering phase, i.e., both the pattern processing
and core subphases. Fig. 4.6 illustrates the data structures of MP in an ex-
ample case.

4.4 Correctness and analysis ofMP

We prove first thatS
′

is correctly formed. Letx ∈ S j and y ∈ S j+1. In the
following, the interval between the bass of the chordS j and a pitchy is denoted by
r(y); r(y) = y − B(S j). The distance from the bass pitch within the same chord is
denoted byr0(x), i.e. r0(x) = x− B(S j).

L 1. Let x∈ Sj and y∈ Sj+1 for some j,1 ≤ j ≤ n− 1. If i = (y− x) mod |Σ′|
holds, thenS

′
[j].i is a zero bit.

196 K. LEMSTRÖM, J. TARHIO

MP(S
′
, p, n,m,Σ′)

1 for k← 1 to |Σ′| do
2 I[k] ← 2|Σ

′ | − 1
3 I[k] ← I[k] − 2k−1

4 L[k] ← 2m−1 − 1
5 for i ← 2 to m do
6 b← (pi − pi−1) mod |Σ′|
7 L[b] ← L[b] − 2i−2

8 for l ← 0 to 2|Σ
′ | − 1 do

9 T′[l] ← 2m−1 − 1
10 for k← 1 to |Σ′| do
11 ivect← I[k]
12 if ivect ∨ l = ivect then T′[l] ← (T′[l] ∧ L[k])
13 E← 2m−1 − 1
14 for j ← 1 to n− 1 do
15 E← shiftleft(E)∨ T′[S

′
[j]]

16 if E.m= 0 then C(j)

Fig. 4.5: The MP filter for transposition invariant multi-track string matching.

P. The arrayS
′
is computed during the preprocessing phase given in Fig. 4.4.

There are two cases to be considered: (i)x = B(Sj) and (ii) x , B(Sj).
(i) The index i for the zero bit isr(y) mod |Σ′| (line 4). Then the zero bit is

assigned toS
′
[j].i (line 5). Since after that, the only remaining operation that

updatesS
′
[j] (line 6) preserves that zero bit (∧ preserves zeros),S

′
[j].i = 0

holds.

(ii) According to case (i),S
′
[j].i = 0 holds for all the intervalsi betweenB(Sj)

andSj+1 before line 6 is executed. Lety be an arbitrary pitch withinSj+1,
d = y − B(Sj), ande = y − x. Now the difference ofe andd is B(Sj) − x,
which by definition equals to−r0(x). Therefore, sinced has already been
stored inS

′
[j], e = d − r0(x) can be stored by assigning a zero bit at the

location i = e mod |Σ′|. This is done on line 6 by theand operation with
rcs(S

′
[j], r0(x)). AgainS

′
[j].i = 0 holds. �

L 2. If i , (y − x) mod |Σ′| holds for every pair x∈ Sj and y ∈ Sj+1, then

S
′
[j].i is one.

P. After the execution of line 2 in Fig. 4.4,S
′
[j].i = 1 holds. The exe-

cution of the for loop on lines 3–5 assigns a zero toS
′
[j], corresponding to an

interval y − B(Sj) for eachy ∈ Sj+1. Let A be the value ofS
′
[j] after the loop.

MULTI-TRACK STRING MATCHING 197

S’:

I: T’:

L:

Fig 4.5, lines 1−12Fig 4.4

Core: Fig. 4.5,
lines 13−16

E shiftleft(E) T’[S’[2]]	

3 0 1 1 0 0...0...1...1...1
4 0 1 1 0 0...0...1...1...1
5 1 1 1 0 0...1...1...1...1

7 0 0 0 0 0...0...0...0...1

9 1 1 1 0 0...1...1...1...1

2 0 1 0 0 0...0...0...1...1

10 0 0 0 0 0...0...0...0...1

6 1 1 1 0 0...1...1...1...1

1 1 0 1 0 0...1...1...0...1

−5 1 1...0...0...0...1
 1 1 1...1...1...0...1

 7 1 1...0...0...0...1

0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1

0 1 1 1 0 1...1...1...1...1

 1 1 1 0 1

 7 1 1 1 0

 −5 1 0 0 0
 E

11 0 1 0 0 0...0...0...1...1in
te

rv
a

l c
o

m
b

in
a

tio
n

s

8 1 1 1 0 0...1...1...1...1a
ll

p
o

ss
ib

le

1 1 1 1
1 1 1 1

1 1 1 1
1 1 0 0

1 1 1 1
1 1 1 1

0 1 1 0

 1 0 1 0
 0 1 1 0

1 0 0 0
1 1 1 = 1
1 1 1 1

Pattern processing:Preprocessing:

Fig. 4.5, line 12

E shiftleft(E) T’[S’[3]]	

E shiftleft(E) T’[S’[4]]	

Fig. 4.6: MP on an example case:|Σ′| = 12, p = 69, 64,65, 72 (p′ = −5,1,7) andS is
as Fig. 2.1 (S1 = {65,69, 72},S2 = {64,67},S3 = {62, 65}, andS4 = {60,64, 72}).

On line 6, first|Sj | − 1 shifted copies out ofA are formed, then they are combined
with A by using the∧ operation. Each copy holds all the intervals betweenSj+1 and
somex that differs fromB(Sj). Clearly the algorithm does not assign superfluous
zeros toS

′
[j]. �

As a consequence of the lemmas, the following theorem holds.

T 1. S
′
is correctly formed.

Let us continue by proving that the pattern processing phaseworks correctly,
and thus that tableT′ is correctly formed. In the following, ifl is an integer, thenlb
denotes that the integer is interpreted as a bitvector.

L 3. Let i be an integer,2 ≤ i ≤ m. T′[l].i = 0 holds, if and only if lb.k is zero
and k= (pi − pi−1) mod |Σ′| holds for some k.

198 K. LEMSTRÖM, J. TARHIO

P. It is sufficient to consider only the processing of the pattern (lines 1–12 in
Fig. 4.5). Let us assume thatlb.k is zero andk = (pi − pi−1) mod |Σ′| holds. In lines
5–7 the intervals of the pattern are stored in the tableL at the location corresponding
to (pi − pi−1) mod |Σ′|, for 2 ≤ i ≤ m. Clearly there is exactly one zero bit on each
row of L, and the zero bits are assigned to the correct positions according to the
construction. The only zero bit inI[k] is thek th bit. Thus,I[k] ∨ lb = I[k] holds,
and the condition on line 12 is met. Then the zero-preservingoperation∧ is used
to assign a zero toT′[l].i.

Let us then assume thatT′[l].i = 0 holds. By inspecting line 12 we conclude that
there is ak such thatL[k].i = 0 holds. According to the construction,l.k must be
zero andk = (pi − pi−1) mod |Σ′|must hold. �

Considering MPwithout the checking phase, the original problem of find-
ing every transposed occurrence of a music pattern has been transformed to a fil-
tration problem of finding candidate occurrencesH of p. Such anH is an interval
string of lengthm− 1 in S

′
, which contains the intervals ofp in the correct order

(recall Fig. 4.3). However, the condition that there is ac such that (pi + c) ∈ Sj+i−1

for eachi does not necessarily hold any longer. An example of a candidate that is
not a spurious occurrence is when the excerpt in Fig. 4.7 represents the pattern and
Fig. 2.1 the text. The following theorem shows that filtration works correctly, i.e.
MP does not skip any proper occurrence.G � � ��� 2�

Fig. 4.7: This excerpt has a spurious occurrence in Fig. 2.1.

T 2. Let p be the pattern to be searched within the text S . If there is a
transposition invariant occurrence starting at Sj, thenMP finds a potential
occurrence of p starting atS

′
[j].

P. The tableS
′

is correctly constructed according to Theorem 1. The core
phase works analogously to that of SO. An interval in our setting corresponds
to a character. As a conjunction of the vectorsL[k], T′[j] has got the corresponding
intervals belonging toS

′
[j]. The tableT′ is correctly constructed according to

Lemma 3. The fact that each potential occurrence is identified follows from the
characteristics of the SO algorithm. �

MP’s space complexity isO(n⌈ |Σ
′|

w ⌉ + |Σ
′|⌈
|Σ′|

w ⌉ + (2|Σ
′ | + |Σ′|)⌈mw⌉) which

can be written asO(n⌈ |Σ
′|

w ⌉ + 2|Σ
′ |⌈mw⌉) by assumingn ≥ |Σ′|. For the preprocessing,

O(nh⌈ |Σ
′ |

w ⌉) time is needed. At the beginning of the filtering phase the locations of
intervals are gathered in timeO(m). After that, each interval maskI is slid over
the valueslb, which takesO(⌈mw⌉|Σ

′| · 2|Σ
′|). Therefore, by denotingd = ⌈mw⌉|Σ

′| ·

2|Σ
′ |, the filtering takes timeO(n⌈mw⌉ + m+ d), which is linear inn whenm ≤ w.

MULTI-TRACK STRING MATCHING 199

Again, the worst case time complexity is that of the checkingalgorithm; there
might be a candidate at each position, in the worst case.

MP becomes impractical if unlimited interval alphabet, or even Σ′255, is
used. The octave equivalence assumption, for instance, keeps the tableT’ reason-
ably sized, and thus, MP practical.

4.5 ImprovingMP’s performance

Navarro and Raffinot [1998] introduced a crossing of SO and the Boyer and
Moore [1977] algorithm. Their bit-parallel BNDM (BackwardNondeterministic
Dawg Matching) algorithm emulates the BDM algorithm [Czumaj et al. 1994]
based on a nondeterministic suffix automaton.

BNDM follows the Boyer-Moore principle: the pattern matching starts at the
positionm of p and s. Then the pattern and text characters are compared in the
right-to-left order until the whole pattern is recognized or a mismatch occurs. In
each step, bit parallelism is used in a clever way to emulate anondeterministic
suffix automaton, in order to know whether the current suffix of s is a prefix ofp.
If such a prefix is found, the value of the next shift is updated.

In order to make MP filter faster, the core phase (lines 13–16 in Fig. 4.5)
could be replaced by BNDM. Although the BNDM algorithm has a worst-case
complexity of O(nm), it is faster than SO, in practice. As with all Boyer-
Moore type algorithms, BNDM becomes faster as pattern gets longer. According
Navarro and Raffinot’s experiment, BNDM is up to 7 times faster than SO,
whenm = 32. Nevertheless, since our problem is different and the patterns are
typically rather short, we expect a smaller speed-up in our case.

5. Experiments

In experimenting the practical performance of MP, we compared its ef-
ficiency against that of DC. We used the modification, discussed in
Subsection 4.1, of DC as the subroutine for checking. We did not test
IM. However, it may be expected that its performance lies some-
where between the two tested approaches.

We made an extensive study on altering the values of the interesting parameters,
and observed their effects on the performance. In every piece of experiment, we
measured the running times, and both the numbers of the candidates and proper
occurrences. The parameters under consideration werem, n, h, and|Σ′|. The impact
of the four parameters was measured by letting only one parameter vary at a time,
meanwhile the values of the other parameters were fixed. The experiments were
run in a PC with Intel Pentium III of 700 MHz and 768 MB of RAM under the
Linux operating system. The lengthw of a machine word was 32 bits.

The database for the experiments was collected from the Internet. It comprised
7,667 MIDI files, out of which 6,190 were originally monophonic. In the database,
the maximum degree of polyphony was 8, but typically there were several mono-
phonic chords between any two polyphonic chords. Although we believe that this
is a rather common phenomenon (which makes MPmore efficient due to the

200 K. LEMSTRÖM, J. TARHIO

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35 40

fr
eq

ue
nc

y

Semitones from base

’distribution.dat’

Fig. 5.1: A distribution of intervals within chords in Sibelius’ Finlandia.

fewer false positive hits found), we wanted to bound the degree of polyphony (as
it is described in the problem specification). In other words, we forced each piece
of music in our database to be homophonic. In order to do that,we first computed
the distribution of intervals within chords (as semitones from the bass) in a MIDI
file of Jean Sibelius’ Finlandia (see Fig. 5.1 for the distribution). Then, for each
chordSj, we inserted random pitches following the measured interval distribution
until each|Sj | became equal toh.

The series of experiments was started by building up the textresiding in the main
memory. All the homophonic pieces of music in our MIDI database were concate-
nated into a single string, resulting inn = 1, 484, 940. Observing one parameter
at a time, each setting (e.g.h = 8, other fixed to default values) was repeated 100
times. At the beginning of each repetition, a new pattern wasrandomly picked
up from the text. Thus, it was guaranteed that at least one occurrence was to be
found in each repetition. As results of the experiments, we report the averages of
repetitions for each setting.

The default values for the experimented parameters were:h = 3; m = 12; n =
1, 484, 940; and|Σ′| = 12.

Fig. 5.2 illustrates the typical behaviour of MP. In the two graphs, we
have given the average times spent by the different phases of the algorithm, varying
the value ofh. Firstly, the preprocessing time grows noticeably ash increases
(see the graph on the left). In the graph on the right, we give the times spent
by the pattern processing (the lowest curve), the core, and by the whole filtering
phase (recall Subsection 4.3.2). Note the interesting peakin the latter two: As the
value ofh is increased the number of distinctS

′
[i]s becomes larger. This causes

the execution to get slower because of fewer correspondingT′ values present in
the cache. Moreover, when the increasing ofh is continued, after some threshold
point, hereh = 6, the number of distinctS

′
[i]s starts to decrease. This speeds-up

the execution due to increased number of cache hits forT′ values.

MULTI-TRACK STRING MATCHING 201

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

tim
e

in
 m

se
cs

h

preprocessing

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

tim
e

in
 m

se
cs

h

pattern processing
core

filtering

Fig. 5.2: The performance of MP when varyingh (m = 12;n = 1, 484, 940;|Σ′ | = 12). The
preprocessing time is given in the graph on the left, patternprocessing, core, and whole filtering
(=pattern processing+core) times in the graph on the right.

Henceforth, we will consider two running times for MP. The first one
represents the running time of a single (or first) query (denoted bytotal time); hence
it includes the times spent by all the phases of MP (including checking). The
other one (denoted byfiltering+checking) represents the running time of a re-query
on the same database (including checking but excluding textpreprocessing).

5.1 Varying the number of tracks

We started our comparison by measuring the effect of the parameterh, that is, the
number of tracks in the text. Fig. 5.3 shows that the number ofcandidates grows
much more rapidly than the number of proper occurrences, ash increases (note the
logarithmic scale). From around 350 ath = 3, the number of candidates grows
to around 11,000 ath = 4. However, for MP the first query is faster than
for DC, until h becomes larger than 7. Re-queries with MP are
clearly faster than with DC for h < 9.

1

10

100

1000

10000

100000

1e+06

1 2 3 4 5 6 7 8 9 10
h

candidates
occurrences

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10

tim
e

in
 m

se
cs

h

DirectCheck
total time

filtering+checking

Fig. 5.3: The average effect of h (m= 12;n = 1, 484, 940;|Σ′ | = 12). Numbers of candidates and
proper occurrences (on the left, log scale). Times for a firstquery (total time) and for re-queries
(filtering+checking) of MP and for DC (on the right).

202 K. LEMSTRÖM, J. TARHIO

1

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25
m

candidates
occurrences

0

5000

10000

15000

20000

25000

2 4 6 8 10 12 14 16 18

tim
e

in
 m

se
cs

m

DirectCheck
total time

filtering+checking

Fig. 5.4: The average effect of m (h = 3;n = 1,484, 940;|Σ′ | = 12). Numbers of candidates and
proper occurrences (on the left, log scale). Times for a firstquery (total time) and re-queries (filter-
ing+checking) of MP and for DC (on the right).

5.2 Varying the length of the pattern

Next we experimented on the influence of the length of the pattern (see Fig. 5.4).
As the pattern becomes longer, the number of occurrences decreases notably faster
than the number of candidates. However, MP is considerably faster than
DC with these parameter settings. The right graph illustratestwo in-
teresting phenomena. Firstly, the weak discriminating power of short patterns has
a clear consequence to the performance of MP; the shorter the pattern is the
more often the slow checking routine has to be called. Secondly, as mentioned in
Subsection 4.1, the running time of DC does not depend on the pattern
length.

5.3 Varying the length of the text

Of all our experiments, the most significant difference between the performances
of MP and DC was found when varying the size of the database
(see Fig. 5.5). Again, the number of candidates grows fasterthan the number of
occurrences, but there is a significant difference in running times. Although the
first query of MP takes more time than the re-queries, it is faster than the
same query with DC. Because DC’s running time seems to
grow linearly as the database grows (note the log scale), thelonger the text is the
larger the difference between the performances of the two approaches will be.

5.4 Varying the size of the alphabet

Finally, we made experiments on the parameter|Σ′|. Note that, so far in the ex-
periments, we have usedΣ′12 with MP, while DC always uses the
alphabetΣ128. It can be seen in Fig. 5.6, thatΣ′12 works well with MP.
When observing the number of candidates, the setting|Σ′| = 12 meets a salient
local minimum. Moreover, increasing the size of the alphabet from 12, the number

MULTI-TRACK STRING MATCHING 203

1

10

100

1000

10000

100000

1e+06

200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06
n

candidates
occurrences

1

10

100

1000

10000

100000

200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

tim
e

in
 m

se
cs

n

DirectCheck
total time

filtering+checking

Fig. 5.5: The average effect ofn (h= 3;m= 12;|Σ′ |= 12). Numbers of candidates and proper occur-
rences (on the left, log scale). Times for a first query (totaltime) and re-queries (filtering+checking)
of MP and for DC (on the right, log scale).

1

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25
alphabet size

candidates
occurrences

0

5000

10000

15000

20000

25000

5 10 15 20

tim
e

in
 m

se
cs

alphabet size

DirectCheck
total time

filtering+checking

Fig. 5.6: The average effect of |Σ′ | (h = 3;m = 12;n = 1, 484, 940). Numbers of candidates and
proper occurrences (on the left, log scale). Times for a firstquery (total time) and re-queries (filter-
ing+checking) of MP, and for DC (on the right).

of candidates does not become lower than that before|Σ′| ≥ 18. Naturally this
curve of candidates depends on the interval distribution within the chords, but we
believe that the distribution we used is typical enough. However, when|Σ′| be-
comes greater than 20, MP’s performance starts to get slower due to the
O(|Σ′| · 2|Σ

′ |) factor in the time complexity of the pattern processing phase (in a 600
MHz Pentium III the speed started to decrease at|Σ′| = 18, already).

6. Concluding remarks

We have adapted the SO algorithm to music retrieval by introducing three
modifications for two distinct variations of the multi-track string matching prob-
lem. A summary of the algorithms is given in Table I.

204 K. LEMSTRÖM, J. TARHIO

T I: A summary of the requirements of the presented algorithms.

TIME SPACE
preproc. running

Multi-track string matching
SOA - O(nhµ) O(|Σ|µ)

Transposition invariant
multi-track string matching

DC - O(nhm) O(m⌈|Σ|/w⌉)
IM (filter) - O(nh2µ) O(|Σ|µ)
MP (filter) O(nh⌈|Σ′|/w⌉) O(nµ+m+d) O(n⌈|Σ′|/w⌉+c)

m= |p|, n = |S|, µ = ⌈m/w⌉
h: number of parallel tracks, w: size of machine word in bits,
Σ: underlying (absolute) alphabet, Σ′: underlying (relative) alphabet,
c = 2|Σ

′ |µ, d = µ|Σ′| · 2|Σ
′ |.

First, we suggested the SOA algorithm for the original multi-track string
matching problem. Then, we presented two SO modifications for transpo-
sition invariant multi-track string matching. The IM filter works
on-line, while our main contribution, the MP filter, has been optimized to
work with static music databases. The results of these filters should be checked in
order to find the proper occurrences among the candidates. This can be done, for
instance, by using DC.

We made extensive experiments with MP on studying the effect of param-
etersm, n, |Σ′|, andh to its performance. In the experiments, a particular alphabet
Σ′12 (of size 12) corresponding to a musical octave equivalence was found to work
very well with MP. It was also interesting to observe the consequence of
varying the value ofh. Although it does not have a direct consequence to the per-
formance of the filtering phase, it has an effect to the efficiency of the filtration,
and therefore, to the performance of the checking phase; thelarger theh the more
false positive hits. Due to our experiments, MP clearly outperforms the
straightforward DC wheneverh is reasonably low.

There are several possibilities to refine our algorithms. For IM
we could have used the octave equivalence, as well. Moreover, to compute the set
D, one could use a method similar to that that we used in MP to compute
the chord bitvectors in timeO(nh⌈mw⌉). For MP the core can be replaced by
the BNDM algorithm of Navarro and Raffinot [1998].

In the both filtering algorithms, a further, practical improvement for the perfor-
mance may be obtained by observing the distribution of the symbols (intervals)
and by searching first for the least frequent substring of thepattern. In the case of
static database, the distribution may be calculated in advance, while in the on-line
case an approximation of the distribution may be used. A similar trick may be used
also with long patterns (for whichm> w); the filter is used for locating substrings
of the pattern of lengths at mostw, whose sums over the interval probabilities are
the smallest possible. Naturally, this trick may be used forsearching polyphonic
patterns with our algorithms, as well.

MULTI-TRACK STRING MATCHING 205

Acknowledgements

The authors are indebted to the insightful and valuable comments of the referees.

References

B-Y, R.  G, G. H. 1992. A New Approach to Text Searching.Communications of
the ACM 35, 10, 74–82.

B, R.  M, S. 1977. A Fast String Searching Algorithm.Communications of the ACM
20, 10, 762–772.

C, M.  R, W. 1994.Text Algorithms. Oxford University Press.
C, A., C, M., G, L., J, S., L, T., P, W.,  R-

, W. 1994. Speeding up Two String-Matching Algorithms.Algorithmica 12, 4/5, 247–267.
D, M. J. 2001. A Technique for “Regular Expression” Style Searching in Polyphonic Music. In

Proceedings of International Symposium on Music Information Retrieval. Bloomington, IND,
179–185.

F, A., Editor. 1962. Tonal Harmony in Concept and Practice. Holt, Rinehardt and Winston,
New York.

G, L. J.  O, A. M. 1980. A New Proof of the Linearity of the Boyer-Moore String
Searching Algorithm.SIAM Journal of Computing 9, 4, 672–682.

H, J., I, C. S., M, L. 2001. Distributed String Matching Using Finite
Automata.Journal of Automata, Languages and Combinatorics 6, 2, 191–204.

L̈, K. 2000. String Matching Techniques for Music Retrieval. PhD thesis, University of
Helsinki, Department of Computer Science.

L̈, K. M̈ V. 2003. On Finding Minimum Splitting of Pattern in Multi-Track String
Matching. InProceedings of Combinatorial Pattern Matching. Morelia, Mexico, 237–253.

L̈, K.  T, J. 2000. Detecting Monophonic Patterns within PolyphonicSources. In
Content-Based Multimedia Information Access Conference Proceedings. Paris, 1261–1279.

MIDI M  A. 1996. The Complete Detailed MIDI 1.0 Specification. Los
Angeles, California.

N, G.  R, M. 1998. A Bit-Parallel Approach to Suffix Automata: Fast Extended
String Matching. InProceedings of Combinatorial Pattern Matching. Piscataway, N.J., 14–33.

P, R. 1989.Harmony: A Psychoacoustical Approach. Springer-Verlag.
W, G. A., L̈, K.,  M, D. 2003. S(M): A Family of Efficient Algorithms

for Translation-Invariant Pattern Matching in Multidimensional Datasets (submitted).

