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Abstract

Gene mapping is a systematic search for genes that affect observable character-
istics of an organism. In this thesis we offer computational tools to improve the
efficiency of (disease) gene-mapping efforts. In the first part of the thesis we
propose an efficient simulation procedure for generating realistic genetical data
from isolated populations. Simulated data is useful for evaluating hypothesised
gene-mapping study designs and computational analysis tools. As an example
of such evaluation, we demonstrate how a population-based study design can be a
powerful alternative to traditional family-based designs in association-based gene-
mapping projects.

In the second part of the thesis we consider a prioritisation of a (typically large)
set of putative disease-associated genes acquired from an initial gene-mapping
analysis. Prioritisation is necessary to be able to focus on the most promising
candidates. We show how to harness the current biomedical knowledge for the
prioritisation task by integrating various publicly available biological databases
into a weighted biological graph. We then demonstrate how to find and evaluate
connections between entities, such as genes and diseases, from this unified schema
by graph mining techniques.

Finally, in the last part of the thesis, we define the concept of reliable subgraph
and the corresponding subgraph extraction problem. Reliable subgraphs concisely
describe strong and independent connections between two given vertices in a ran-
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dom graph, and hence they are especially useful for visualising such connections.
We propose novel algorithms for extracting reliable subgraphs from large random
graphs.

The efficiency and scalability of the proposed graph mining methods are backed
by extensive experiments on real data. While our application focus is in genet-
ics, the concepts and algorithms can be applied to other domains as well. We
demonstrate this generality by considering coauthor graphs in addition to biolog-
ical graphs in the experiments.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.2.2 Graph algorithms
G.3 Probabilistic algorithms
H.2.5 Data translation
H.2.8 Data mining
J.3 Life and medical sciences

General Terms:
Algorithms, Experimentation

Additional Key Words and Phrases:
Bioinformatics, Databases, Data mining, Graphs, Simulation
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Chapter 1

Introduction

The aim of this thesis is to offer computational tools to improve the efficiency of
(disease) gene-mapping efforts. Gene mapping is a systematic search for genes
that affect observable characteristics of an organism (phenotype). A well-known
example is disease gene mapping where the objective is to find a gene or genes
that put an individual into greater risk to develop a certain disease. Knowledge of
disease gene locations and variants is useful, for instance, in diagnostics, screen-
ing and drug development. From the reader we assume an elementary knowledge
of genetics; a short introduction is given in Section 1.1 and a summary of genetics
terms can be found in the glossary.

The biomedical role of the contributions of this dissertation are best charac-
terised by viewing a gene-mapping project as a somewhat abstract and streamlined
“pipeline” with two major phases: an initial analysis phase and a refined analysis
phase. Both phases have multiple steps as illustrated in Figure 1.1. The objective
of the initial analysis phase is to find a set of regions from the genome that are
statistically linked to the phenotype. Known genes in these regions form the set
of putative disease susceptibility (DS) genes. In the refined analysis phase the pu-
tative genes are prioritised and their connections to each other and possibly other
DS genes are evaluated. In this thesis we propose simulation and graph mining
tools to improve the efficiency of some of these steps.

During the study design the investigators have to decide between family-based
or population-based study. This choice affects sampling and applicable computa-
tional tools. Furthermore, one must perform power analysis to decide sufficient
sample sizes so that the possible discovered associations will be statistically sig-
nificant. In Chapter 2 we propose a novel simulation procedure to assist in making
these choices. With simulated data sets researchers can assess the potential of the
hypothesised study designs and computational analysis tools before embarking on
the actual and expensive sampling. Simulated data sets with controlled parameters
are also useful in the development and evaluation of novel gene-mapping tools.

1
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Figure 1.1: Overview of a simplified disease gene-mapping project. Boxes denote
processes and actions that manipulate input data and produce output (arrows).
The left column depicts the initial analysis phase where statistically significant
candidate markers are sought. These markers are identified with known gene
locations and further analysed in the refined analysis phase on the right.
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Our proposed approach solves both computational and conceptual issues in simu-
lation by combining two unrelated but complementary simulation paradigms into
a novel two-phase procedure.

In Chapter 3 we argue, based on extensive experimental evaluation using the
simulator of Chapter 2, that a population-based association study design combined
with a population-based haplotyping can be more powerful than a family-based
one. This is an interesting result because it can save a considerable amount of
effort in sampling and genotyping (“Laboratory experiments” in Figure 1.1) which
are probably among the most expensive steps in the whole gene-mapping pipeline.

The initial analysis phase typically produces a large set of putative genes that
have a statistically significant link to the phenotype under study. These putative
genes are likely to include false positives due to the large number of initially
tested genes. It is beneficial to exclude as many false positives as possible before
proceeding with the refined analysis. Of course, this requires more information
about the putative genes than the genetical data which was used in the first place.

In Chapter 4 we present Biomine: a framework for expressing different inter-
linked biological databases as a large graph that allows analysis and ranking of pu-
tative genes. Public biological databases such as PubMed [112] and OMIM [100]
contain vast amounts of useful background information for assessing the strengths
of the links between putative genes and phenotypes (or other biological entities).
Many of these databases are interlinked and form a network of current biological,
genetical and medical knowledge. Accessing this network can be cumbersome
as models and automated methods for network analysis have been proposed only
recently.

We show how to weigh edges (relations between biological concepts) as a
function of their reliability, relevance and rarity (informativeness). Another dis-
tinguishing feature of Biomine is the probabilistic interpretation of edge weights:
a given edge is considered to “exist” with a certain probability and to “not exist”
otherwise. This interpretation lets us apply random graph techniques, in addition
to conventional weighted graph techniques, for mining the graphs. One applica-
tion of Biomine is the detection of gene–phenotype and other kinds of links [116].
The framework also admits ranking of putative genes so that further efforts can
be targeted to the most promising candidates. We will show how to discover links
efficiently and assess their strength and statistical significance.

In Chapter 5 we consider reliable subgraphs. Reliable subgraphs can be help-
ful when assessing the current knowledge about the putative genes and their re-
lations to the phenotype, as they display in a concise form the most probable
and relatively independent connections between a putative DS gene and the phe-
notype. Reliable subgraph extraction is closely related to information search or
discovery: given a large graph and two or more concepts of interest, we would like
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to obtain a small number of other concepts that connect the interesting objects as
well as possible in the graph. Such subgraphs contain the most relevant objects
from the original (large) graph for the user to focus on. Small subgraphs are also
viable for visual inspection.

We give a definition of a reliable subgraph and the corresponding reliable
subgraph extraction problem in Chapter 5. We also propose efficient and scalable
algorithms for extracting subgraphs from random graphs [54, 56, 57]. Most of
the algorithms are based on heuristics due to the computational complexity of the
subgraph extraction problem. The validity of the algorithms is established with
extensive experimentation.

This introductory chapter is intentionally short. Since the chapters of this
dissertation address separate problems of a gene-mapping project, each chapter
begins with a substantial introductory section. We will next give an overview of
the genetic concepts used and the contributions of this dissertation.

1.1 Genetic concepts

(This section is directly based on previous work [125] and included here with
permission1. The material has been revised for this thesis.)

Genome is a collection of an organism’s hereditary information. The human
genome is organised into 23 different chromosomes present in every cell as two
homologous copies (Figure 1.2A): one from the mother and another from the
father. A chromosome is a single, giant DNA molecule consisting of millions
of consecutive pairs of nitrogenous bases, A-T (adenine and thymine) and C-G
(cytosine and guanine), which form the well-known double helix structure with a
four-letter alphabet. Most of the DNA has no known functional relevance; only a
minority of DNA is estimated to be genes or their regulatory factors (Figure 1.2B).

The order of the bases and genes is the same from individual to individual with
only minimal variation: one recent study estimated a 99.5 % similarity between
two human genomes [84]. This variation inside the genome is utilised as genetic
markers (Figure 1.2C). The alternative forms of markers, alleles, can be readily
distinguished from each other using standard laboratory methods (genotyping).
Alleles can be used to compare individuals or populations and to estimate the co-
occurrence of a disease with a certain combination of marker alleles. Haplotype is
a string of alleles in an individual chromosome. Haplotypes are sparse, economic
representations of chromosomes whose focus and density is set by the marker
map used in the study. In genome scans the marker map covers the whole genome
or a full chromosome, while in fine mapping studies the markers are more densely
located in a candidate area for a disease-susceptibility gene.

1Courtesy of Päivi Onkamo, Department of Biosciences, University of Helsinki.
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Figure 1.2: (A) A homologous pair of human chromosome 18. (B) Enlargement of
a chromosome view from NCBI GenBank: the annotated human chromosome 18.
Cytogenetic locations are given on the left, and the known and predicted genes
are shown with dots along the vertical line on the right. In the upper right corner
are examples of names of the genes as they appear in the NCBI site. (C) A small
section of chromosome showing some marker locations, or loci (denoted by M1–
M7). The alleles at M1–M7 constitute a haplotype. (D) Enlargement from (C): a
stretch of DNA sequence including an 11-repeat allele of locus M5 flanked by a
unique DNA sequence.
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Figure 1.3: An example of crossing-over. Left: Two homologous chromosomes
have been duplicated in meiosis. Here only two of the four are shown for simplic-
ity. Middle: The lower ends of the chromosomal arms are exchanged (crossing-
over). Right: The resulting daughter chromosomes (recombinants) are transmit-
ted to different gametes.

Recombination is an elementary phenomenon in genetics: a pair of homol-
ogous chromosomes (represented by haplotypes in a gene mapping study) ex-
change genetic material in the gamete production process. As a result, the chro-
mosome transmitted from a parent to an offspring is not an exact copy of either
parental chromosomes but a mosaic of them. See Figure 1.3 for a simple example
of a recombination event with one crossing-over. Consequently, recombination
maintains variation between individuals in each generation. At large scales, such
as those typically used in gene mapping, the probability of recombination is ap-
proximately constant along the chromosome and the number of recombinations
between two locations, or loci, correlates well with the physical distance between
the loci. Recombination is the key factor in gene mapping: since it fragments
haplotypes, the genealogies of different loci in the genome are different, and this
helps to localise genes.

In association mapping correlations between the disease or trait (phenotype)
and marker alleles are sought from a sample of affected and healthy individuals
(Figure 1.4). It is assumed that disease mutations derive from one ancestral chro-
mosome where a single mutation occurred a long time ago. Such mutations are
said to be identical by descent, or IBD, while alleles that are chemically iden-
tical but cannot be traced to a common ancestor are identical by state, or IBS.
As generations have passed the disease mutation has been transmitted onward
and recurrent recombinations have narrowed the ancestral DNA segment around
the mutation. The length of the preserved segment is proportional to the amount
of time elapsed since the introduction of the mutation. With sufficiently dense
marker map around the mutation we can observe a statistically overrepresented
haplotype segment in affected individuals compared to the unaffected in the cur-
rent population. Formally, there is linkage disequilibrium (LD) between the actual
disease gene and the surrounding markers, and this LD can be used to infer the
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Figure 1.4: Gene mapping by association analysis. The disease mutation has
originated in a common ancestor, marked by a horizontal line in the rightmost
ancestral chromosome. In the course of generations, consecutive recombinations
narrow down the segments of conserved ancestral DNA around the disease muta-
tion (shaded in light grey). Only short conserved segments are remaining in the
current population, but genotyping a dense map of markers along the chromosome
from affected and unaffected individuals and comparing the resulting haplotypes
would reveal the area of increased sharing in the disease-associated haplotypes.

possible disease-susceptibility loci.

1.2 Contributions

We summarise the main contributions of this thesis below. Most of the text is
based on original research articles and manuscripts by the author and other con-
tributors. All material has been thoroughly revised to be self-contained with more
details and related work. The author of this thesis (later simply the author) as-
sumes all responsibility for the correctness of the revised material. We also de-
scribe the author’s contributions to the research.

In Chapter 2 we propose a novel and efficient two-phase simulation proce-
dure and its implementation. The new procedure is useful for simulating realistic
case–control haplotype data from isolated populations. Chapter 2 is based on a
cooperative work with Petteri Sevon: the approximated coalescent model and the
concept of two-phase simulator were originally introduced by him [114]. The au-
thor implemented a complete two-phase simulator by extending the Populus sim-
ulator [101] and combining it with the approximated coalescent simulator. The
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author also wrote a manuscript that forms the basis of Chapter 2. The manuscript
itself has not been published.

In Chapter 3 we present the results of extensive experimental comparisons
between two study designs and associated haplotyping and gene-mapping tech-
niques. Based on these results, we argue that certain population-based study de-
signs are superior to family-based (trio) designs. Chapter 3 is based on a research
article by the author and others [55]. The author simulated the data sets using
the simulation tools from Chapter 2 and ran all experiments. The author also
contributed substantially to the writing of the article.

In Chapter 4 we show how multiple biological databases can be integrated to
form a large biological graph representing current biomedical knowledge. We also
demonstrate how to weigh the edges of the graph and give a novel probabilistic
interpretation for the weights. The usefulness of the graph model is established
by experiments on Alzheimer genes and protein interactions. Chapter 4 is based
on a research article by Sevon and others [116]. The author contributed to the
design and implementation of the graph database Biomine, and to the writing of
the article.

In Chapter 5 we formulate a novel subgraph extraction problem for random
graphs. We briefly discuss the complexity of the problem and give several al-
gorithms for solving the problem. We establish the validity of the algorithms by
extensive experiments. The chapter is based on three research papers by the author
and contributors [54, 56, 57]. The first article was compiled solely by the author,
while the second is a joint work with Hannu Toivonen. Petteri Sevon invented
the idea of the Monte Carlo algorithm (Section 5.5) of the third article; the author
collaborated with Hannu Toivonen to design a complete algorithm and improved
the idea by adding the cut sampling algorithm and lookahead optimisation. Oth-
erwise, the author is mostly responsible for the algorithms, implementations, test
setups and experiments of Chapter 5. The author also wrote the majority of the
articles.



Chapter 2

Simulation techniques for marker data

Although larger amounts of marker data are becoming publicly available, re-
searchers searching genes for complex traits face difficult problems with both
amount and structure of data. In the study design phase of our simplified gene-
mapping pipeline (Figure 1.1), assessing the statistical power to localise disease-
susceptibility (DS) genes in a given study setting usually requires a large number
of independent case–control sets or families depending on the type of the planned
study. Developing or testing new methods or statistics for localisation requires
data sets with known properties such as DS mutation loci and allele frequencies.
Evaluating the behaviour of a certain method benefits from controlled experiments
where few parameters of the test data are varied and others held constant.

Real data sets with known genetic effects and population models are limited
both in availability and quantity for large-scale experiments. Simulated data ad-
dresses all of the issues above: with a simulator arbitrary amounts of data with
specified properties can be easily generated. It is crucial that the simulated data
resembles real-world data sets as faithfully as possible to ensure the validity of the
obtained results.

In this chapter we present a two-phase simulation procedure for generating
realistic haplotype data in isolated populations. The procedure is a combination
of a coalescent-based simulation and a forward-time simulation. These methods
are discussed in Sections 2.1 and 2.2. Briefly stated, coalescent models are es-
tablished tools for generating recombination and mutation history for a sample
of random chromosomes. Since case–control samples and trio pedigrees are not
random samples from a population, but conditioned on the phenotype, the mod-
els are generally unsuitable for generating such data. In contrast, a forward-time
simulator generates a complete pedigree and recombination history for the entire
population. After specifying the founder haplotypes and a disease model, hap-
lotypes and phenotypes for all individuals (including ancestors) can be deduced
and acquiring case–control samples or trio pedigrees is straightforward. However,

9
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the generation of founder haplotypes with realistic genealogical history remains
a problem in the forward-time simulation paradigm. We solve the drawbacks of
both paradigms by combining them into a two-phase procedure as described in
Section 2.3.

2.1 Coalescent simulation

The stochastic process known as the coalescent is a well established, versatile tool
for analysing DNA sequence polymorphism data [73, 121, 122]. In addition to
rich inference potential [120], the coalescent is also useful for simulating artificial
genetical data [59, 139].

Coalescent simulation is about generating a possible genealogy or genetical
history for a sample of sequences (chromosomes, for example). It turns out that,
under a few assumptions about the population, all sequences in the sample are
descendants of a single, ancient ancestral sequence. The output of the simulation
is a possible history for the sampled sequences, represented as a tree or graph
depending on the specific model. Next, we briefly outline the general theory of
the process following a treatise given by Nordborg [99].

2.1.1 Model overview

We begin with the simplest possible case: a constant-sized population of N hap-
loid organisms that reproduce according to the Wright–Fisher model of neutral
evolution [38]. Haploid organisms reproduce by cloning themselves so that each
organism has only one parent and recombination cannot occur. Model neutrality
means that genetic variation does not interfere with reproductive success; that is,
all organisms are equally likely to reproduce. Generations are assumed to be dis-
crete and, because the population size does not change, each generation consists
of exactly N organisms. We can think that in each generation a parent is randomly
and independently chosen with replacement for each N offspring, and the possible
genetic variation (mutations) can be handled separately.

Let us suppose that we have a sample of sequences from this population. To
construct a genealogical history for these sequences we trace ancestral lineages
for each sequence back in time starting from the present generation. During back-
tracking the lineages coalesce together whenever two or more separate lineages
have the same ancestor. Eventually the number of lineages reaches one when the
most recent common ancestor (MRCA) for the sample has been found. The result
is a genealogical tree for the sample: sampled sequences are in the leaves and the
inner vertices are ancestral sequences. The root of the tree contains the MRCA
of the sample. Figure 2.1 depicts a partial genealogical tree for a small sample of
sequences.



2.1 Coalescent simulation 11

T
im

e

Figure 2.1: A part of a genealogical tree for a sample of 10 sequences (filled cir-
cles in the bottom row) showing coalescence events in the last five generations.
The MRCA (black box) for six sample sequences has been already found. De-
scendants of that MRCA are coloured black; these descendants form a subtree of
the complete genealogical tree for the 10 sampled sequences.

To determine coalescence times consider two lineages from a given gener-
ation. The probability that the lineages coalesce (that is, they choose the same
parent) when going one generation back in time is 1/N, and the probability that
they remain distinct is 1− (1/N). Since generations are independent, the coales-
cence time follows the geometric distribution with parameter 1/N. Consequently,
the probability that two lineages are separate more than t generations into the past
is 1− (1/N)t , and the expected coalescence time is N generations. This probabil-
ity can be approximated with a continuous-time diffusion approximation [96]. In
the approximation we measure time in units of N generations: one time unit τ cor-
responds to N generations. Let T denote the time when the two lineages coalesce.
Then the probability that the two lineages remain distinct for τ units, τ > 0, is

Pr(T > τ) =

(
1− 1

N

)Nτ

−→
N→∞

e−τ.

The limit obtained is known as diffusion limit, and we see that in this limit Pr(T≤
τ) = 1− e−λτ where λ = 1. Thus T is exponentially distributed with parameter 1,
and with relatively large values of N we can approximate coalescence times by
generating exponential variates.

Consider now k ancestral lineages. The probability that the lineages do not
coalesce when going one generation back in time is

k−1

∏
i=1

(
N− i

N

)
=

k−1

∏
i=1

(
1− i

N

)
= 1−

k−1

∑
i=1

i
2N

+O
(

1
N2

)
= 1−

(k
2

)
N

+O
(

1
N2

)
where O(1/N2) represents all terms which are divided by N2 or any higher power
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T(4)

T(3)

T(5)

T(6)

T(2)

Figure 2.2: A genealogy tree for a sample of six sequences. Each waiting time Tk
(marked in the figure as T(k)) between two coalescence events is an exponentially
distributed random variable with parameter

(k
2

)
. The topmost coalescence event

(black box) represents the MRCA of the sample.

of N. Denote the time between the coalescing events where the size of the geneal-
ogy goes from k to k−1 by Tk. As above, for any τ > 0, we have

Pr(Tk > τ) =

(
k−1

∏
i=1

(
1− i

N

))Nτ

=

(
1−

(k
2

)
N

+O
(

1
N2

))Nτ

−→
N→∞

exp
[
−
(

k
2

)
τ

]
.

Again, we see that Tk ∼ Exp(
(k

2

)
) in the diffusion limit. These approximations,

which basically define the stochastic process known as “the coalescent”, make a
very efficient simulation tool. To generate a genealogy for a sample of n sequences
under the Wright–Fisher model one just needs to generate n exponential random
variates and a random bifurcating topology instead of simulating lineages on a
discrete time scale. See Figure 2.2 for an example of a complete coalescent tree
for a sample of six sequences.

Probably the most significant aspect of the coalescent is its versatility. For
now we have assumed the Wright–Fisher model and clonal haploid organisms.
However, the coalescent approximates or, more precisely, is a limiting process
for a wide range of neutral models [92]. For example, varying population sizes,
diploid organisms, separate sexes and overlapping generations can all be handled
by simply rescaling time appropriately.

Recombination cannot be handled with the (standard) coalescent, since under
recombination different parts of a sequence can originate from different ancestors
and the genealogy can no longer be represented with a simple bifurcating tree.
Fortunately it is relatively straightforward to incorporate recombination into the
coalescent as described below.
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2.1.2 Coalescent with recombination

Coalescent with recombination should be used if the population is diploid and the
simulated sequences are not extremely short [59]. Compared to the standard coa-
lescent, where each sequence has a single ancestral lineage towards its ancestors,
a recombination event in a lineage effectively breaks it into two distinct lineages
when going backward in time [49, 50]. One of these lineages carries ancestral ma-
terial to the left of the recombination point X ∼ U(0,1) and the other one to the
right of X. (Here we assume that the sequences have unit length and the recombi-
nations are uniformly distributed along the sequence.) These two lineages are then
treated as separate ancestral lineages that recombine and coalesce independently.

To model recombinations within the coalescent we assume a diploid popula-
tion of size N with 2N sequences and measure time in units of 2N generations. Let
r be the recombination rate per generation (i.e. the expected number of recombi-
nations in one sequence per generation), and set ρ = 4Nr as the scaled recombi-
nation rate. In this model, k distinct lineages coalesce with rate

(k
2

)
, as before,

and recombine with rate kρ/2 [59, 139]. Recombination event splits a random
lineage into two, and the new lineages coalescence and recombine independently
when going back in time. Simultaneous recombination and coalesce events have
negligible probabilities and are ignored.

We can think coalescent with recombination as a birth-death process, where
lineages “born” (recombine) with rate kρ/2 and “die” (coalesce) with rate

(k
2

)
when there are k lineages [50]. Since the coalescence rate is Θ(k2) and the recom-
bination rate is Θ(k), the number of distinct lineages will eventually reach one
when going back in time. We call this “ultimate ancestor” the grand most recent
common ancestor or GMRCA. The result of the process is no longer a genealogy
tree but a graph known as the ancestral recombination graph (ARG). Figure 2.3
gives an example of a simple ARG for two sequences.

For each fixed point in a sequence (a base pair, for instance) the ARG contains
an embedded genealogical tree of the sample with its own “local” MRCA. In
general, each recombination-free interval on the sampled sequences has a single
genealogy tree in the ARG. This property is useful when simulating allele data
(see Section 2.1.3). We can extract such tree for a fixed point p ∈ [0,1] in the
sequence simply by following lineages back in time in the ARG starting from
the sample sequences. When we encounter a recombination vertex we choose
the lineage which traces ancestral material on the side of the recombination point
where p resides. Coalescence vertices are extracted as such. When the number
of lineages hits one we have found the MRCA and the complete genealogy tree.
Note that this MRCA is not necessarily the same as the GMRCA (see Figure 2.3).

Simulating ARGs with the coalescent with recombination is analogous to sim-
ulating a genealogy with the standard coalescent: we trace lineages back in time,
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M(0,R2), M(R1,R3)

M(R3,1)

Figure 2.3: Ancestral recombination graph for two sequences (bottom row).
Solid black segments denote ancestral material and dark grey segments denote
non-ancestral material. Four recombinations have occurred. They are marked
with crosses and Rx ∈ [0,1] denotes the location of the corresponding crossover.
Most recent common ancestor for a (recombination-free) segment [a,b] is denoted
by M(a,b). The topmost sequence is the grand most recent ancestor: it contains
all ancestral material for both sequences in the bottom row. R4 creates a lineage
with only non-ancestral material which can be ignored.

generate exponential variates according to the (independent) coalescence and re-
combination processes, and update the ARG accordingly until we find the GM-
RCA. There are a few possible optimisations. First, we do not need to trace lin-
eages containing only non-ancestral material (such lineages can occur as depicted
in Figure 2.3). Second, if we are simulating allele data it is sufficient to find
all local MRCAs for each marker locus instead of the whole ARG including the
GMRCA [59].

2.1.3 Simulation of neutral mutations

Given a genealogical tree of a sample, the simulation of selectively neutral al-
leles (mutations) for the sample is relatively straightforward using “mutation-
dropping”. First, fixed alleles are assigned to the MRCA by deciding that each
allele is wild-type, for instance. Next, starting from the MRCA, we follow each
lineage forward in time and assign the same alleles to each offspring unless a
mutation occurs in the lineage.

Mutations are assigned according to a chosen (neutral) mutation model. For
example, in the infinite sites model of Kimura [72] mutation events within a single
lineage occur independently with rate u in each generation. Each mutation event
introduces a new allele into a random locus on a sequence. This model can be
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simulated with a Poisson process with rate θ/2, where θ = 4Nu is the scaled
mutation rate (cf. scaled recombination rate) [49]. For a branch with length τ the
number of mutations X is distributed as X ∼ Poisson(τθ/2), and their locations
are uniformly distributed along the branch. All sequences below the mutation
point carry the mutated allele at the (random) mutation locus while others share
the same allele with the MRCA.

Mutations in ARGs can be handled in a similar manner by simulating muta-
tions on the branches of the ARG. Since ARGs contain embedded genealogical
trees with their respective MRCAs we can use similar “mutation-dropping” strat-
egy as above by assigning fixed alleles to the MRCAs and following lineages to
the sample sequences. However, only those mutations affect the alleles of the
MRCA that occur in the recombination-free segment represented by the current
tree.

2.1.4 Limitations

Despite its flexibility the coalescent is not ideally suitable for simulating realistic
samples of (human) genotype data with complex diseases. This is due to sev-
eral reasons. One is that the coalescent is based on estimating genealogies for
sequences of a random sample from a population. Case–control and trio samples
are not random: they have an ascertainment bias towards affected individuals with
the disease-susceptibility mutation(s). Wang and Rannala have recently proposed
coalescent models with recombination and ascertainment, but their models are
restricted to one dominant DS mutation [134, 135].

Another problem is that variable and unknown selection pressures are difficult
to handle with the coalescent [141, 102]. (Recall that the genealogical and muta-
tion processes were handled separately.) Although weak selection with single or
multiple loci can be incorporated into the coalescent [97, 77], selection based on
multiple, linked DS loci (as is the case with complex human diseases) is compli-
cated [40]. However, this is an area of active research [41, 23].

As demonstrated in Section 2.1.1, simulation with the standard coalescent is
computationally extremely efficient. But simulations with the coalescent with
recombination become increasingly demanding when the sequence length (which
is proportional to the recombination rate) grows. For human chromosome-wide
sequences the exact model becomes intractable and approximations have to be
used [114, 91, 89]. These approximations may limit the usefulness of the model
to directly simulate case–control or trio data.

Finally, coalescent models often make some delicate assumptions about the
population parameters [102, 132]. For example, the assumption that the effec-
tive population size N is significantly larger than the sample size might not be
warranted in case–control studies where sample sizes can be in thousands. The
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practical significance of these failed assumptions may be limited, though [43].

2.2 Forward-time simulation

Forward-time simulation paradigm is conceptually simple. As its name suggests,
the simulation starts from some initial population and proceeds forward in time
generation by generation until the present generation, or current population, has
been reached. In each generation the whole population is subjected to the speci-
fied genetical and demographical changes such as mating, recombination, selec-
tion and migration to produce a new generation. Some implementations allow
overlapping generations as well, but the basic principle is the same.

Essentially the complete population history is simulated, and along the way
as much information as needed can be carried along. For example, a complete
pedigree can be constructed as well as complete genotypes for the simulated indi-
viduals. Based on this information the individuals can be divided into cases (“af-
fected”) or controls (“healthy”) according to the specified disease model. Samples
can be drawn from arbitrary generations, though usually we are interested in sam-
ples from the last few generations or the current population.

In contrast to the mathematically rigorous coalescent process and its variants
the forward-time simulation paradigm does not have any specific theoretical base
or constraints. Almost arbitrarily complex demographical, genealogical and en-
vironmental processes and sampling scenarios can be simulated. The downside
is that only relatively young and small populations can be simulated as the mem-
ory and computation time requirements are proportional to the complexity of the
simulated phenomena.

This freedom of discipline means also that there are no established standards
for forward-time simulations. Most of the existing forward-time simulation meth-
ods can be seen as independent solutions for varying scenarios with no com-
mon theoretical base. Forward-time simulators SIMLINK [9], SLINK [137] and
SIMLA [8] can be used to simulate pedigree data commonly utilised in paramet-
ric linkage analysis. Population genotype data simulators include POPSIM [51],
EASYPOP [7], Populus [101], simuPOP [103] and genomeSIM [28]. All of these
simulators have their own assumptions about population and disease models and
their respective parametrisation. Some are also more general than others. For ex-
ample, Populus is designed for simulating isolated populations, while simuPOP is
probably the most flexible simulator environment currently available.

Peng and others note the following difficulties when designing forward-time
simulations [102]:

1. Population initialisation. How to determine the specific alleles for the indi-
viduals in the initial population?
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2. Introduction of the disease-susceptibility mutation. It is non-trivial to de-
cide which ancestor(s) should introduce a DS mutation into the genealogy.
With multiple, interlinked mutations the problem is even more difficult.

3. Parameter control. How to control population parameters in the present
population? Disease prevalence and mutation frequencies, for example,
should be close to the specified values to enable fair comparison of the
simulated samples, but genetic drift makes it difficult to accurately control
these parameters.

Because of these difficulties, forward-time simulated populations tend to have
high variances in linkage disequilibrium and disease outcomes [141, 15].

The forward-time paradigm offers, however, solutions to many problems with
coalescent-based methods. It seems intriguing to combine the two approaches
to get the benefits of both. We next describe a two-phase simulation procedure
implementing that idea.

2.3 Two-phase simulation

In this section we describe an efficient two-phase procedure for simulating realis-
tic case–control or trio samples from isolated populations. The simulation outline
has been given by Sevon [114]. We present a somewhat more detailed and ex-
tended description here.

The target population is a relatively small population isolate (105–106 indi-
viduals) that has gone through a genetic bottleneck in recent history (15–20 gen-
erations ago) and rapidly expanded since the bottleneck to its present size. Before
the bottleneck we assume a static population with an effective size of 103–104 in-
dividuals. One or more individuals in the bottleneck, or founder population, carry
a DS mutation or mutations. The size of the founder population is assumed to
be small (100–1,000 individuals). We focus on a genome-wide setting where
chromosome-wide sequences are used.

Isolated populations are useful in association studies since they are expected
to exhibit more linkage disequilibrium than admixed and outbred populations, and
they have other favourable properties as well [140, 71, 118, 107, 30]. Examples
of small isolates include Kainuu [80] and Sardinian [123] subpopulations.

Sample sizes in association studies are generally large [109]: from tens to
hundreds or even thousands of individuals [119]. Coalescent-based methods are
clearly infeasible for simulating chromosome-wide sequences of such samples. In
contrast, forward-time simulation is appropriate especially for the population ex-
pansion phase. Even though the population grows exponentially, the small number
of founders and the short expansion time should pose no significant difficulties for
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Figure 2.4: Outline of the simulation procedure. Solid arrows denote data flow and
dotted arrows parameters given by the user. The two major simulation phases and
their corresponding parameters (see Table 2.1) are enclosed in dotted rectangles.

the simulation. But simulating the complete population history forward in time
(including the history of the founder population) suffers from increasing complex-
ity and the simulation parameters may be difficult to specify when simulating long
histories. The initialisation of the founder sequences remains an open question as
well.

To maximise the correctness of the simulation, we combine the coalescent and
forward-time simulation to a two-phase simulation procedure. Figure 2.4 gives an
outline of the process and data flow in the simulation.

In the first phase the founder sequences are simulated using any feasible co-
alescent method and mutation model. The coalescent process ensures that the
founder sequences are connected by a genealogy and their marker alleles reflect
natural patterns of linkage disequilibrium. The mutation model produces a set of
all possible polymorphic markers and DS mutations. Using coalescent process
becomes tractable since the sizes of the founder and static populations are rela-
tively small. We also give an approximated variant of the coalescent suitable for
simulating chromosome-wide sequences.

In the second phase the target population isolate is simulated with a forward-
time simulator. We simplify the process by assuming that the simulation is not
influenced by individual genotypes. Although this makes simulation of selection
impossible, the assumption allows us to choose disease-susceptibility mutation
loci after the whole population has been simulated. Furthermore, as the allele
frequencies are known for all simulated individuals, we can choose DS mutations
such that the mutated allele frequencies are as close as possible to the desired val-
ues. Fixing the mutation loci also fixes the ancestors that introduce the respective
mutations into the population.



2.3 Two-phase simulation 19

Chromosomal parameters
Recombination rate per generation r
Mutation rate per generation u
Population parameters
Static population size in individuals N
Founder population size in individuals n f
Current population size in individuals nc
Number of generations g
Disease model
Disease-susceptibility mutation frequency fdm
Disease-susceptibility mutation penetrance Pr(D+|M+)
Disease prevalence Pr(D+)
Marker map
Number of markers m̄
Minimum marker allele frequency fmin

Table 2.1: Simulation parameters mentioned in the text. The grouping of the
parameters corresponds to the grouping in Figure 2.4.

After the population has been simulated we divide the simulated individuals
into cases and controls according to the given disease model and observed allele
frequencies. A suitable marker map is chosen from the set of mutations simulated
in the first phase. Finally, we perform sampling and generate haplotype data for
the sampled individuals.

We discuss the simulation process in detail below. For simplicity, we focus on
exponentially growing isolates with random mating and no population substruc-
ture, a single dominant mutation disease model, and a marker map with a fixed
number of equidistant markers. The simulation parameters for this restricted case
are given in Table 2.1.

2.3.1 Phase I: Coalescent simulation

We begin the first phase of the simulation by simulating a genealogy for the
founder population with a suitable coalescent model such as Hudson’s coales-
cent [59, 60]. We denote the founder population size by n f and the static pop-
ulation size before the genetic bottleneck by N, both in individuals. To simu-
late a genealogy we fix the coalescent parameters as follows: the sample size is
2n f sequences, the effective population size is 2N, the scaled recombination rate
is ρ = 4Nr and time is measured in 2N generations to compensate for the diploid
setting (see Section 2.1.2). Different coalescent models can be used to simulate
subpopulations, migration or expanding founder populations. We denote the set
of 2n f founder sequences by F . The founder sequences are randomly paired to
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form diploid founder individuals.

Exact simulation of the coalescent with recombination becomes computation-
ally demanding if the length of the simulated sequence is in tens of millions of
base pairs or more. To allow reasonably fast simulation of chromosome-wide se-
quences we use an approximate form, originally proposed by Sevon [114], of the
spatial algorithm by Wiuf and Hein [139].

The spatial algorithm simulates the sequences from left to right instead of
simulating the genealogy backward in time. It works roughly as follows. First,
a genealogical tree is simulated for the left endpoint of the sequences according
to the standard coalescent model. Next, the distance to the next recombination
event (locus) to the right is drawn from the exponential distribution with param-
eter λρ, where λ is the total length of all branches in the current genealogy and
ρ is the scaled recombination rate (see Section 2.1.2). A corresponding recom-
bination vertex is created at a random position in the current genealogy, and the
new lineage is then coalesced back to the genealogy; the waiting time to the coa-
lescence is exponentially distributed with rate k in the epoch of k lineages. New
recombination loci and vertices are generated until the entire sequence is covered.

In the approximated version of the spatial algorithm we assume a first de-
gree Markov property for the ARG as we move across the sequence: when a
new recombination vertex is created we discard the lineage carrying ancestral
material to the left of the recombination point and coalesce the right lineage as
usual [114]. This reduces the ancestral recombination graph to a current local
genealogy tree at all times. A similar strategy for approximating the coalescent
has been independently proposed by McVean and Cardin [91] and slightly im-
proved by Marjoram and Wall [89]. According to our empirical comparisons with
the Hudson’s implementation [60] of the exact model, the approximation is very
close to correct in terms of linkage disequilibrium (r2 statistic), allele frequencies
and inter-marker distances (Figure 2.5). Independent experiments suggest simi-
lar behaviour [91, 89]. The approximation is significantly faster: our prototype
implementation has O(2n f r) time complexity where r is the number of recombi-
nations occurred during the simulation.

After the genealogy has been formed any desired neutral mutation model can
be applied to the ARG produced by the coalescent (see Section 2.1.3). These
mutations form the set of available polymorphisms (markers and DS mutations)
for the simulation. For simplicity, we consider here only the infinite-sites model of
Kimura [72] for simulating single nucleotide polymorphisms (SNPs), and we set
the scaled mutation rate to θ= 4Nu (see Section 2.1.3). We denote the set of SNPs
by M = {(l1,F1), . . . ,(lk,Fk)} where li ∈ [0,1] is the locus of the polymorphism i
and Fi⊂F is the set of founder sequences which carry the mutated allele. A subset
of these SNPs are used later as markers and DS mutations.
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Figure 2.5: Statistics between coalescence models. In all tests a single 1 Mb
sequence was simulated (effective population size 10,000, sample size 100, mu-
tation and recombination rate 10−8 per base pair per generation). Left: Mean
r2 values between markers at most 50 kb apart from each other. First pair of bars
shows values for markers which are 0–5 kb apart from each other, second pair for
markers 5–10 kb apart and so on. Mean values have been calculated from 10 inde-
pendent replicate data sets. Middle: Allele frequencies for each marker, sorted by
frequency. Right: Inter-marker distances, sorted by distance. Allele frequencies
and distances have been calculated from 50 independent replicate data sets.

2.3.2 Phase II: Forward-time simulation

In the second phase a rapidly growing population isolate with nc individuals in the
current population is simulated forward in time. This simulation process is similar
to that of Populus simulator by Ollikainen [101]: we first generate a pedigree tree
for the isolate and then simulate recombinations in the tree.

In the pedigree tree generation we sequentially simulate g distinct genera-
tions Gi, 0≤ i≤ g, starting from the founder generation G0 simulated in the first
phase. Each generation Gi consists of a fixed number of individuals, where |Gi|
depends on the chosen population growth model such that |G0|= n f and |Gg|= nc.
Arbitrary population growth and migration models can be used as long as they do
not depend on the genotypes.

Algorithm 1 implements an exponential growth model with random mating.
The individuals in the founder generation G0 are first divided into males ♂ and
females ♀ uniformly at random. A new generation Gi+1 is simulated from gen-
eration Gi as follows. First we generate |Gi| · (nc/n f )

1/g new individuals that
form Gi+1. Next we form couples C by randomly sampling a male and a fe-
male from sets ♂ and ♀ without replacement until either ♂ or ♀ becomes empty.
Then we choose parents for each individual in the generation i+ 1 uniformly at
random from C. This is equivalent of drawing the number of offspring for each
couple from the binomial distribution Bin(|Gi+1|,1/|Gi|). Finally, each individ-
ual in generation i+1 is assigned a gender uniformly at random, thereby forming
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new sets ♂ and ♀. Algorithm 1 can be straightforwardly implemented to run in
O(ncg) time.

Algorithm 1 Pedigree generator
Input: Number of generations g, current population size nc, founder population size n f
Output: A tuple (generation, id number, father id, mother id, gender) for each individual

popsize← f
grrate← (nc/n f )

1/g {calculate growth rate}
for i← 1 to n f do {simulate founders}

gender← random({0,1})
if gender = 0 then

append(♂, i) {♂ is an array of male ids}
else

append(♀, i) {♀ is an array of female ids}
print 0, i,0,0,gender

id← f +1
for i← 1 to g do {simulate generation i}

C← /0

shuffle(♂), shuffle(♀) {shuffle arrays ♂ and ♀ in random}
for j← 1 to min{|♂|, |♀|} do {generate couples C (parents)}

C←C∪{(♂[ j],♀[ j])}
♂← /0, ♀← /0

popsize← popsize ·grrate
for j← 1 to round(popsize) do {choose parents}

(father,mother)← random(C) {pick a random couple from C with replacement}
gender← random({0,1})
if gender = 0 then

append(♂, id)
else

append(♀, id)
print i, id, father, mother, gender
id← id+1

Chromosome simulation concludes the population simulation phase by simu-
lating meioses in the generated pedigree. We keep track of sequence fragments
for each simulated (non-founder) individual i. A sequence fragment is a tu-
ple (i, p, ls, le, f ) where i is an individual and p is the phase of the fragment; that
is, whether the fragment is a part of paternal or maternal chromosome. Each frag-
ment represents a contiguous ancestral chromosomal segment, where no cross-
overs have occurred between loci ls and le, that has been inherited identical by
descent from the founder sequence f ∈ F . Each individual has several fragments
that completely describe the ancestral sources for the chromosomes of that par-
ticular individual. In other words, all chromosomes in the isolate are “mosaics”:
compositions of sequence fragments ultimately inherited from the founder se-
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quences [128]. We denote the set of all segment fragments for the current popu-
lation by S.

Whenever two individuals mate and produce an offspring, the sequences of
the offspring are formed from their parents’ sequences by mendelian inheritance.
In meiosis, each crossover splits into two the sequence fragment where it oc-
curs. (See Ollikainen [101] for details.) Any meaningful recombination model
can be used—for example, a hotspot model if haplotype blocks [44, 133] are to
be simulated. We have adopted the chromosome simulator implementation from
Populus [101]. This component has O(ncg) time complexity.

2.3.3 Diagnosing and sampling

Here we combine outputs from the coalescent and forward-time simulators. The
marker map M = {m1, . . . ,mm̄} ⊂ M is selected from the set of SNPs such that
each marker m ∈ M has a minimum allele frequency fm ≥ fmin in the current
population. We choose the mutation d = argminm∈M\M | fm− fdm| as the disease-
susceptibility (DS) mutation. After M and d have been chosen, all individuals
in the population are diagnosed based on their genotypes at the DS locus and the
specified disease model. Finally, a sample is ascertained and the haplotypes for
the sampled individuals are produced.

The allele frequencies fm are calculated using sequence fragments S. A trivial
algorithm for counting the allele frequencies requires Ω(nc|M|+ |S|) time. This is
inefficient, since typically we have nc≈ 105–106 and |M| ≈ 104–105. We utilise an
improved algorithm by Sevon [114] with time complexity O(|S| log |S|+m logm),
where m = ∑m∈M |m2| is the (random) number of mutated alleles in founder se-
quences. The improved algorithm (Algorithm 2) operates on a sequence of the
segments sorted by their endpoints.

Markers M and DS mutation d are selected during the allele frequency count-
ing. Algorithms 2–4 try to pick m̄ approximately equidistant markers with mini-
mum allele frequency fmin. The first and last SNPs satisfying the frequency con-
straint are chosen to be the first and last markers. Remaining markers are chosen
with the following scheme. The length of the sequence is divided by m̄− 1 to
get equidistant marker sites. SNPs from the coalescence simulator are mapped
to these sites by choosing for each marker site the closest SNPs satisfying the
frequency constraint. All SNPs that are not used as markers are considered as
possible candidates for the disease mutation. Out of these, the candidate which
has the closest (mutated) allele frequency to fdm is chosen. If there are several
such candidates, one of those is randomly chosen. The marker selection does
not increase the asymptotic time complexity of the frequency counting algorithm
(Algorithm 2).

After marker selection individuals are divided into affected and healthy by
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Algorithm 2 Marker map and disease mutation selection
Input: Founder sequences F , sequence fragments S, mutations M, minimum marker al-

lele frequency fmin, number of markers m̄, disease mutation frequency fdm
Output: Marker map M , disease mutation d

site← 0 {site is the next equidistant marker site (locus)}
prev← /0, d← /0 {create dummy markers prev and d}
Construct min-heap HS from all segments s ∈ S with segment endpoints s4 as keys
Construct min-heap HM from M with mutation loci as keys
Set count[ f ]← 0 for all f ∈ F
for all {s ∈ S : s3 = 0} do {populate founder sequence counters}

count[s5]← count[s5]+1
prev← /0, mut← pop(HM), s← pop(HS)
while s 6= /0 do

while mut 6= /0 and mut1 < s4 do {mut1 is the locus of mut}
fmut← ∑ f∈mut2 count[ f ]/|S| {calculate the frequency of mut in the population}
if fmin ≤ fmut ≤ 1− fmin then {mut is a feasible marker}

if mut1 ≥ site then {site has been reached}
choose mut or prev {see Algorithm 3}

else {replace prev by mut}
check if prev is a suitable disease mutation {see Algorithm 4}
prev← mut

else {mut can be a feasible disease mutation}
check if mut is a suitable disease mutation {see Algorithm 4}

mut← pop(HM)
count[s5]← count[s5]−1
s← pop(HS)

return M , d

Algorithm 3 Choose marker
Input: Potential marker mutations prev and mut (prev can be null)
Output: M contains a new marker (either prev or mut), prev and site are updated

if prev = /0 or |site−mut1|< |site−prev1| then {choose mut}
M ←M ∪{mut}
check if prev is a suitable disease mutation {see Algorithm 4}
prev← /0

else {choose prev}
M ←M ∪{prev}
prev← mut

site← site+1/(|m̄|−1) {calculate the next marker site (locus)}
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Algorithm 4 Check if a mutation is suitable DS mutation
Input: Potential disease mutation mut
Output: DS mutation d and counter n are updated

if mut 6= /0 and | fmut− fdm| ≤ | fd− fdm| then
if fmut = fd then {mut and d are equally good candidates}

n← n+1 {n is the number of equally good candidates seen}
Choose random r ∈ [0,1)
if r < 1/n then

d← mut
else

n← 1
d← mut

looking at their genotypes in the disease mutation locus. Consider a dominant
mutation disease model with two parameters: penetrance Pr(D+|M+) and preva-
lence Pr(D+). If an individual carries the disease allele (notation M+), the prob-
ability of being affected (notation D+) is the penetrance Pr(D+|M+). The preva-
lence Pr(D+) is the probability of being affected regardless of the genotype at the
DS locus. Phenocopy probability Pr(D+|M−) is the probability of being affected
without carrying the DS mutation (notation M−). In this case

Pr(D+|M−) = Pr(D+)−Pr(D+,M+)

1− fdm

where Pr(D+,M+) is the frequency of affected DS mutation carriers. Classifying
the simulated individuals as affected or healthy is straightforward by applying the
penetrance and phenocopy probabilities.

Various kinds of samples can be ascertained after diagnosing. Our prototype
sampler supports four sample types: (1) pure random sample without respect to
the phenotype, (2) sample containing only affected individuals, (3) sample with
affected and healthy individuals and (4) sample with affected and random indi-
viduals. Mode (1) is useful when phenotype data is not needed, for example
when testing haplotyping accuracy. Mode (2) is suitable for generating trio pedi-
grees with affected offspring which are useful for testing linkage-based locali-
sation methods and trio haplotyping (see Chapter 3). The sampler treats each
affected offspring equally likely to be sampled, so families with several affected
children will be overrepresented (the classical ascertainment bias [16]). This is de-
sirable as then the expected frequency of the disease mutation allele in the cases
is higher. Finally, modes (3) and (4) can be used to simulate case–control data for
population-based studies.

In the last step, haplotypes are generated for the sampled individuals using a
similar procedure as in the allele frequency counting: instead of counting frequen-



26 2 SIMULATION TECHNIQUES FOR MARKER DATA

cies we output alleles for the selected markers by referring to the founder alleles.
This can be done in O(|S| log |S|+nm̄) time where n is the sample size.

The total time complexity of the simulation depends heavily on the simulation
parameters and is subject to random variation. With our prototype implementa-
tion, a complete simulation of a medium-sized isolate (500 founders expand to
100,000 individuals in 20 generations) with 450 markers over a 100 Mbp sequence
takes about 45 seconds on a 3.16 GHz Intel Core 2 Duo PC.

2.4 Conclusions

We have introduced a new two-phase simulation procedure for generating realistic
haplotype data in isolated populations. The procedure combines the most expedi-
ent features of two simulation paradigms and allows realistic and efficient simula-
tions of reasonably large populations and long marker maps. Our implementation
has been tested and applied in algorithm development, method comparison and
study design [114, 55].

The raised interest in association studies in recent years has introduced new
simulation approaches for simulating case–control data [82, 86, 134, 103, 141].
Some of these are feature-wise on par with our two-phase procedure. The combi-
nation of coalescent and forward-time simulation is, to the best of our knowledge,
still unique. It is an interesting future work to compare these new approaches with
our simulator.

We have also discussed an approximate coalescence model with recombina-
tion. A similar model has been independently proposed recently [91, 89]. The
approximation is computationally much less demanding than the exact model:
it enables an efficient simulation of sequences spanning several millions of base-
pairs. The model and our implementation are not restricted to isolated populations
and can be useful in other applications.

The simulation procedure is extensible as well. For example, immigration
can be incorporated into the procedure as follows: in each generation a certain
amount of immigrants enter the population and pair up with resident individu-
als. Haplotypes for the immigrants can be simulated with the coalescent: either
by using a variant of the model supporting subpopulations (for residents and im-
migrants) or by performing an independent simulation for the immigrants. It is
possible to simulate pedigrees with various demographical parameters such as
non-exponential growth, overlapping generations, varying death risk and popu-
lation substructures [101]. Known pedigrees and alleles can be used instead of
generated pedigrees and founders. The chromosome simulator can be extended to
support recombination hotspots or more complex interference models.

Our prototype implementation does not have the aforementioned extensions,
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but the modular design of the simulator makes it relatively easy to implement
them. It is also fairly straightforward to implement more complex disease models,
marker selection and sampling. We leave these improvements for future work.
Our prototype implementation and the supporting documentation are available on
request.
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Chapter 3

Study designs in association analysis

Gene mapping studies can be based on case–control groups or families (Fig-
ure 1.1). This choice has a profound effect on the study: besides fixing possi-
ble sampling strategies it defines the range of suitable (or even required) com-
putational analysis tools. In this chapter we apply the simulation techniques
from Chapter 2 to generate data sets that mimic two common study designs for
association-based gene mapping: a traditional family-based setting and a more
recent population-based setting. We then empirically compare the gene-mapping
power and accuracy on these data sets.

The motivation for our study stems from the fact that gene-mapping efforts
have been criticised for their modest success at finding and replicating findings of
disease-susceptibility genes [138]. While linkage methods are popular in trying to
elucidate the genetic basis of complex traits, they have inherent limitations in de-
tecting genes of modest-to-moderate effect [109]. Association analysis is a good
alternative: it has a better resolution and, consequently, capability to utilise high
density genotype data produced by high-throughput genotyping techniques [18].
Further, gene-mapping studies that only use triad or case–control data from epi-
demiological cohorts greatly reduce the sampling effort compared to linkage anal-
yses based on large families.

The objective in association analysis is simple: detect statistical association
between one or more genetic polymorphisms and a trait (phenotype) that might
be some quantitative characteristic, a discrete attribute or disease [24]. However,
association analysis is not panacea by being sensitive to the chosen study design,
implementation and interpretation [52]. With inadequate design, false positives
are likely and such “positive” associations are not replicable [138]. In terms of the
gene-mapping pipeline (Figure 1.1), false positives inflate the number of putative
DS genes and consequently turn the refined analysis phase cumbersome. Study
design pitfalls include too small sample sizes, population stratification, poorly
matched control group, multiple testing and over-interpretation of results [17, 63,

29
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52].

Association studies can be based on either haplotypes or genotypes (Fig-
ure 1.1). Haplotype-based analysis is an area of increasing interest [2, 95, 142]
with a growing number of computational methods [90, 124, 86, 116, 136]. Using
haplotypes instead of single loci for measuring association has been observed to
be more powerful in some cases [2], or even required to map rare variants [86].
Parental genotypes have been traditionally used to infer haplotypes from geno-
types (trio-based haplotyping) and thus adding a considerable burden of recruit-
ing and genotyping parents as well. With late-onset diseases this requirement
can be critical as parents may not be available for genotyping at all. Trio-based
haplotyping is also susceptible for errors as haplotypes cannot be inferred un-
ambiguously in general. As an alternative approach, population-based haplotyp-
ing provides a possibility for haplotype-based studies where parental genotypes
are not needed. Population-based haplotyping has recently received a consider-
able research attention, and many novel haplotyping algorithms have been intro-
duced [35, 113, 14, 108].

Association studies are typically built around case–control groups or families
(Figure 1.1). By case–control study we mean a design where both cases and con-
trols are sampled independently from a population. By family study we mean a
design where families with affected offspring are sampled, and these offspring
are used as cases. Control genotypes are formed by deducing the non-transmitted
parental haplotypes using trio haplotyping; these are called pseudo-controls. (Un-
affected siblings can also be utilised.) The major difference between the designs
is the formation of the control group: in case–control studies controls are separate
individuals, while in family studies pseudo-controls are used.

The use of pseudo-controls or siblings makes family-based studies robust
against population stratification [37]. By contrast, case–control studies are sen-
sitive to population stratification and other confounding effects if controls are
not carefully matched against cases. But case–control studies combined with
population-based haplotyping can present an advantage since parental genotypes
of sampled individuals are not required. The spared genotyping resources can be
used to recruit more cases and controls. This increases sample sizes and conse-
quently adds more power to the study.

We present a simulation study [55] where we compared experimentally the
two aforementioned strategies for study design and haplotyping in association
analysis: (1) a traditional family-based setting where trios are ascertained using
affected children as probands, and the non-transmitted haplotypes of the parents
are used as controls or additional cases depending on the phenotype of the par-
ent; and (2) a pure population-based case–control setting where cases are ascer-
tained as above, but independent healthy control individuals are sampled from
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the population, and where the haplotypes are estimated for all individuals with a
population-based statistical method. We compared the power to detect a presence
of a disease-susceptibility gene and the accuracy to locate the gene. The methods
we used are computationally efficient and therefore valid alternatives for analysis
of large data sets. The population model is an exponentially and rapidly growing
founder population similar to ones successfully used in gene mapping studies.

3.1 Methods

We used simulated data sets since they allow power analysis using a large number
of replicate data sets with controlled parameter values. Different sampling and
haplotyping methods (Section 3.1.2) and eventually a haplotype association map-
ping algorithm (Section 3.1.3) were applied to each of these replicates in turn. The
power to detect the disease-susceptibility gene was then analysed as well as the
mapping accuracy. By controlling each of the parameters separately we were able
to analyse their effects in isolation. A recent asthma data set was used to confirm
the results with real data (Section 3.2.4).

The compared settings differ in three major aspects (Table 3.1):

1. Sample ascertainment: An affected child was used as a proband in all sam-
pling designs. In the trio design the non-transmitted (pseudo) haplotypes
of parents were used as controls or additional cases depending on the phe-
notype of the parent. In the case–control design healthy individuals were
sampled from the population as controls, while in the case–random design
random individuals were sampled regardless of their disease status.

2. Haplotyping: Haplotypes can be partially deduced when trios are avail-
able. In trio-based designs we considered two extreme options: (1) a simple
method where all ambiguous alleles are marked unknown, and (2) the true
haplotypes (known from the simulations) as the best possible case where
all ambiguous alleles are successfully estimated. In the case–control and
case–random designs a statistical or combinatorial estimation method must
be used. We also considered randomly phased haplotypes and maximally
wrongly phased haplotypes for comparison.

3. Sample size: The default sample size was 500 individuals. In the case–
control and case–random designs we used 250 cases and 250 control or ran-
dom individuals whose haplotypes were then estimated. In the trio design
we could afford, assuming equal genotyping costs, 500/3≈ 167 trios. From
these trios we obtained haplotypes for the 167 probands plus 167 pseudo-
individuals from the non-transmitted haplotypes giving 334 individuals in
total.
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Sample ascertainment and effective sample sizes
Case–control Case–random Trios

Haplotyping 500 334 500 334 500∗ 334∗

Population-based + − − − N/A N/A
Trio-based − − − − − +
True haplotypes − − − − − +
Randomly phased − − − − − −
Maximally wrong − − − − − −

Legend: ∗ = numbers of genotyped individuals were 750 and 500; + = primary alternatives to be
compared; − = settings used to analyse effects of different factors some of them unrealistic; N/A =
not available

Table 3.1: Tested alternatives of sample ascertainment, haplotyping methods and
sample sizes.

For association analysis we used haplotype association with all haplotypes
between 1 and 10 markers of length. This simplicity was a deliberate choice: the
method easily scales up to very large data sets, and it is also relatively powerful
as will be shown by comparisons to exhaustive allelic transmission disequilibrium
test (EATDT) [86].

3.1.1 Simulation

We used a two-phase simulation procedure to mimic a founder population (see
Section 2.3). In the first phase we simulated the founder haplotypes using a coa-
lescent model with recombination and infinite sites mutation model. This ensured
a realistic polymorphism structure and realistic allele frequency distributions for
the founder chromosomes. In the second phase the final population was simu-
lated forward in time to obtain a larger population with a realistic recombination
history.

The population model is an exponentially and rapidly growing founder pop-
ulation starting from 100 founder individuals randomly chosen from the coales-
cence simulation. The final size, 100,000 individuals, is reached in 15 genera-
tions. This approximately corresponds to a recently founded subpopulation living
in isolation, such as Kainuu region in North-Eastern Finland [79].

The marker map consists of SNPs separated by approximately 33 kb from
each other corresponding to the average density of a genome-wide 100k microar-
ray SNP chip. We simulated 451 markers which is equivalent to a sequence of
15,000 kb (15 cM). The SNPs were chosen to have minor allele frequency at
least 0.05. As a result of picking markers based on these two criteria, the mean mi-
nor allele frequency was 0.21 and the mean distance between markers was 33 kb
(with 2.63 kb standard deviation on average).
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Disease model
Parameter Common Intermediate Rare
Susceptibility allele frequency Pr(M) .2000 .1000 .0100
Carrier frequency in population Pr(M+) .3600 .1900 .0199
Penetrance Pr(D+|M+) .2000 .3000 .4000
Prevalence Pr(D+) .1000 .1400 .0500
Phenocopies Pr(M−|D+) .2800 .5929 .8408
Penetrance for non-carriers Pr(D+|M−) .0438 .1025 .0429

Legend: D = affected; M = disease-susceptibility allele; M+ = susceptibility allele carrier (genotype
MM or MW, where W is a wild type allele); M− = susceptibility allele non-carrier (genotype WW)

Table 3.2: Disease model parameters.

Three disease models were designed to resemble interesting and challenging
cases (Table 3.2). Common is a common disease variant with susceptibility allele
frequency of 20 % in the population and low penetrance (20 %). It corresponds
to a typical common complex disease, such as asthma or diabetes, in human pop-
ulations. Rare is a model with low susceptibility allele frequency (1 %) and low
prevalence (5 %) in the population with 40 % penetrance, in accordance to the
“rare variant, rare disease” hypothesis. This corresponds to a typical inherited
disease studied since the late 1990’s. Finally, we created an intermediate disease
model with medium penetrance (30 %) and susceptibility allele frequency (10 %)
between those of the rare and common. All these models result in relatively dif-
ficult mapping problems where differences between methods and approaches can
be more easily observed than with easier models.

After diagnosing the simulated individuals using the disease model, we ascer-
tained samples of cases, random individuals and healthy controls (corresponding
to the columns of Table 3.1). Siblings were not allowed in samples. To min-
imise the random effects caused by random sampling of individuals, the overlap
of the samples for different strategies was maximised for a given replicate: the
set of cases was identical in all strategies, and the healthy individuals of the case–
random design were a subset of the controls of the case–control design. This
held for both sample sizes. Further, the smaller sample was a subset of the larger
one. Since we report results over 100 independent simulations in each setting,
we believe the random effects are well controlled. We do not handle population
stratification issues in this study so we did not simulate any population substruc-
ture or other confounding effects. Trio designs are generally robust to stratifica-
tion effects, while in case–control studies false positives resulting from population
substructure can be reduced by genomic control [25].
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3.1.2 Haplotyping

Trio-based inference of haplotypes was done simply by deducing the phase of
each marker from the genotypes of the child and the parents. If all members
of the trio were heterozygous at a marker, the respective alleles of the child and
the pseudo-haplotype were denoted unknown. This caused a part of the data to
be missing. More complex methods for haplotype inference would estimate the
phases of these markers and eventually improve the quality of the haplotypes. We
also used the best possible case, true haplotypes, to approximate an upper limit
for trio-based haplotyping.

For population-based statistical reconstruction of haplotypes we used Hap-
loRec [34, 35] that is targeted especially for large numbers of relatively sparsely
spaced markers. HaploRec assumes Hardy–Weinberg equilibrium: the probabil-
ity of a haplotype pair is modelled as the product of the probabilities of the two
individual haplotypes. The probability of a haplotype is broken into a product
of conditional probabilities of individual alleles with each allele conditional on a
varying number of its immediate neighbours. When computing the probability of
haplotype H with length l, the distribution of alleles at marker i is estimated by
conditioning on the longest observed haplotype fragment that (1) matches haplo-
type H and ends at marker i−1, and (2) has an estimated relative frequency of at
least 0.2 %:

Pr(H) = Pr
(
H(1)

)
∏

i=2,...,l
Pr
(
H(i)|H(si, i−1)

)
(3.1)

where H(i) is the allele at marker i, H(i, j) is the haplotype fragment covering
markers i, . . . , j, and si = min{s|Pr

(
H(s, i− 1)

)
≥ 0.002}. Using a frequency

threshold is motivated by the fact that a long haplotype fragment is likely to be
shared by several individuals only if it is inherited from the same ancestor, and
thus is useful in estimating haplotypes.

Given parameter estimates for the variable-order Markov model, the haplo-
types are reconstructed by choosing the phases such that the resulting pair of
haplotypes has the maximal product of probabilities. As in practise neither the
model parameters or the haplotypes are known in advance, the original HaploRec
algorithm was adapted to apply an EM-like algorithm for simultaneously learn-
ing the model and reconstructing the haplotypes. The algorithm starts with an
uniform model and alternates between steps of reconstructing the haplotypes and
estimating the model parameters.

3.1.3 Association analysis

Allelic association was estimated by predicting the disease-susceptibility locus to
be at the marker that has the highest value for the χ2 test statistic. For haplo-
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type association each haplotype of length 1 to 10 markers was evaluated with the
χ2 test. The disease-susceptibility gene was predicted to reside in the middle point
of the best haplotype. In case of a draw one of the best markers or haplotypes was
chosen at random.

The p-value of the best allele or haplotype was computed for each data set by
a permutation test: the disease-association statuses of the original haplotypes were
randomly shuffled 9,000 times, the χ2 values were recalculated each time and the
best χ2 value of each permutation was used as the test statistic. The procedure
calculates a corrected p-value against multiple testing of haplotypes [117].

We estimated the statistical power to detect the disease-susceptibility gene
at significance level α = 0.05. Because the simulated chromosomes were only
15 cM long—approximately 1/187 of the human genome—we adjusted the p-
values for genome-wide analysis by Šidák-correction, essentially assuming that
the genome consists of 187 independent 15 cM blocks. The genome-wide p-
value p∗ was estimated by p∗ = 1− (1− p)187, where p is the p-value obtained
for the simulated 15 cM region by permutation tests.

In addition to the statistical power to detect the disease-susceptibility gene,
the haplotype association gives a point estimate for the DS locus. The results over
100 simulation replicates form a sample of prediction errors. The accuracy of
association analysis can be then visualised as a cumulative distribution function
of absolute prediction error.

Throughout the results the maximum prediction error shown will be 1,000 kb
(1 cM in the simulated data), as prediction errors over 1 cM to either side of the
true disease-susceptibility gene location are not particularly interesting for fine
resolution mapping. With the population and disease models used the methods are
reasonably accurate so that most of the interesting differences lie within this range.
With our disease models, detecting the presence of a gene is more difficult than
locating it and, correspondingly, the powers are much less than one. However,
this design is intended to bring out differences between the methods.

3.2 Results

A direct comparison of the case–control and trio designs, under the assumption of
equal genotyping costs, shows that the case–control design is more accurate for
association analysis by a large margin across the three different disease models
(Figures 3.1a and 3.1b). Even in the best possible case, with true haplotypes, the
accuracy of the trio design was inferior to the case–control designs. The differ-
ences in the statistical power to detect the gene are even more striking (Table 3.3):
the powers are 0.72 vs. 0.07 (rare), 0.48 vs. 0.08 (intermediate) and 0.76 vs. 0.30
(common) for the case–control and trio designs, respectively. Using the true hap-
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Figure 3.1: Prediction errors. We assume equal genotyping costs, so the case–
control sample contains 500 individuals and the trio-based sample has 167 trios.
Case–control samples were haplotyped with HaploRec. “Best case” refers to true
haplotypes and “simple” refers to simple trio-based haplotyping.

lotypes did not significantly improve powers in the trio designs.
To validate the use of the simple haplotype association mapping method in

this study we compared the results to those obtained with allelic association and
EATDT (Exhaustive Allelic Transmission Disequilibrium Test, applicable to trio-
based data only) [86]. The haplotype association method used in this study is on
par or even outperforms allelic association, EATDT (Figure 3.2a and Table 3.3,
last two lines), HPM [124] and TreeDT [117] (results not shown) indicating that it
is powerful and accurate enough for measuring the differences between different
study designs and haplotyping approaches.

We next perform a detailed experimental analysis of the differences between
the case–control and trio-based approaches. The effects caused by sample size,
sample ascertainment and haplotyping method are isolated by studying each of
them separately. For illustration, we only show prediction accuracy curves for
the intermediate disease model (the most difficult one). The power and prediction
results for all three disease models are summarised in Table 3.3.

3.2.1 Sample size

The most obvious cause for the performance differences above is the sample size:
with equal genotyping costs the effective sample size in the trio-based approach is
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Figure 3.2: Effect of methods on prediction error. Disease model is intermedi-
ate with case–control sample of size 500 except for EATDT which operated on
500 trios. HaploRec was used for haplotyping in (a).

only two thirds of that in the population-based approach. In the case of power this
is expected, as the sample size is usually the most critical single factor affecting
study power. However, the difference in sample size only explains a part of the
difference (Figure 3.3a, Table 3.3).

3.2.2 Sample ascertainment

In the trio-based approach the non-transmitted chromosomes of the parents are
used as additional data: as a pseudo-control if the parent is healthy, or as a pseudo-
case if the parent is diseased. This procedure often results in somewhat unbal-
anced numbers of cases and controls, but this does not seem to have much effect
on the mapping accuracy (results not shown).

To test the effect of sample ascertainment we conducted experiments where
the sample size and haplotyping method were fixed, and only the origin of con-
trols varied. In particular, population-based controls were haplotyped using their
parents (trio-based haplotyping) in some experiments. According to the results,
there is virtually no difference in the prediction accuracies between the two ma-
jor sample ascertainment methods (Figure 3.3b). In terms of the power to detect
a gene population-based controls tend to be more powerful than trio-based data
(Table 3.3).

Sampling random individuals instead of healthy ones has a clear negative ef-
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Figure 3.3: Effect of sampling on prediction error. Case–control samples were
haplotyped with HaploRec in (a) and known haplotypes were used in (b).

fect. For the most difficult disease model, the intermediate one, the effect is com-
parable to the effect of sample size. For easier models the effect is smaller. A trio-
based strategy where all non-transmitted haplotypes are labelled as controls yields
similar results compared to sampling random individuals (results not shown).

3.2.3 Haplotyping method

The final aspect in which the case–control and trio-based approaches differ is
the haplotyping method. Population-based reconstruction is based on estimated
phases which can contain errors, especially with the long maps used in this study
(451 markers, 15 cM). The simple trio-based approach we used cannot always
resolve the phase of a marker; in such cases we marked the alleles as unknown.
The true haplotypes used in our experiments represent the best case scenario for
haplotyping, and they can be viewed as an upper bound for the performance of
any trio-haplotyping method.

Controlled experiments, where other factors (sample size and sample ascer-
tainment in particular) are constant, show that the mapping results obtained with
population-based haplotyping are virtually identical to those obtained with the
true haplotypes across all tests (Figure 3.2b, Table 3.3). In other words the (few)
phasing errors did not affect mapping power or accuracy. The simple trio-based
haplotyping is clearly inferior. This is explained by the amount of missing data
since all inferred phases have to be correct. Trio-based haplotyping resulted in
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Rare Sample ascertainment and effective sample sizes
Case–control Case–random Trios

Haplotyping 500 334 500 334 500∗ 334∗

Estimated .72 (.81) .22 (.68) .56 (.78) .16 (.57) N/A N/A
Trio-based .37 (.69) .05 (.55) .31 (.64) .05 (.48) .33 (.62) .07 (.53)
Known .74 (.79) .17 (.68) .56 (.75) .11 (.59) .62 (.74) .10 (.66)
Random .07 (.53) .01 (.44) .07 (.45) .02 (.40) .05 (.52) .01 (.39)
Worst case .08 (.45) .01 (.29) .05 (.37) .01 (.27) .03 (.48) .00 (.30)
Allelic assoc. .06 (.47) .01 (.38) .05 (.48) .02 (.39) .04 (.51) .01 (.33)
EATDT N/A N/A N/A N/A .49 (.84) .13 (.62)

Intermediate Sample ascertainment and effective sample sizes
Case–control Case–random Trios

Haplotyping 500 334 500 334 500 334
Estimated .48 (.85) .21 (.74) .20 (.68) .08 (.52) N/A N/A
Trio-based .39 (.74) .13 (.56) .17 (.61) .06 (.43) .25 (.75) .08 (.62)
Known .46 (.85) .21 (.70) .19 (.68) .07 (.53) .34 (.85) .11 (.68)
Random .22 (.65) .06 (.52) .13 (.57) .04 (.38) .06 (.48) .02 (.35)
Worst case .20 (.60) .09 (.45) .08 (.50) .04 (.29) .10 (.47) .02 (.39)
Allelic assoc. .24 (.69) .07 (.55) .08 (.56) .06 (.38) .06 (.62) .04 (.47)
EATDT N/A N/A N/A N/A .15 (.70) .07 (.47)

Common Sample ascertainment and effective sample sizes
Case–control Case–random Trios

Haplotyping 500 334 500 334 500∗ 334∗

Estimated .76 (.94) .47 (.87) .59 (.95) .25 (.84) N/A N/A
Trio-based .72 (.94) .46 (.82) .54 (.91) .30 (.75) .61 (.95) .30 (.80)
Known .77 (.95) .47 (.88) .60 (.97) .27 (.83) .62 (.94) .29 (.83)
Random .61 (.85) .35 (.73) .39 (.80) .20 (.69) .34 (.83) .19 (.68)
Worst case .50 (.79) .30 (.67) .35 (.75) .20 (.67) .35 (.77) .08 (.64)
Allelic assoc. .57 (.90) .33 (.83) .42 (.87) .27 (.73) .36 (.82) .19 (.70)
EATDT N/A N/A N/A N/A .47 (.86) .23 (.79)

Legend: * = numbers of genotyped individuals were 750 and 500; N/A = not available
Haplotyping methods: “Estimated” = population-based estimation with HaploRec [35]; “Trio-
based” = trio-based haplotype inference; “Known” = Known (true) haplotypes; “Random” = Ran-
domly phased haplotypes; “Worst case” = Maximally wrongly phased haplotypes

Table 3.3: The power to detect the disease-susceptibility gene using different sam-
ple ascertainment methods, haplotyping methods and sample sizes for rare, inter-
mediate and common mutation models. Numbers in parenthesis are fractions of
predictions for which prediction error was less than 1 cM. Results from allelic as-
sociation and EATDT [86] are included for comparison; their primary alternatives
are printed in italics.
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5.4 % missing alleles in our simulated data sets on average. In the best case a
sophisticated trio-based haplotyping method would give mapping accuracy equal
to the true and the estimated haplotypes (Figure 3.3a). However, the power of the
trio design to detect a gene remains inferior to the case–control design even in this
case (Table 3.3).

3.2.4 Asthma data

We demonstrate the power of the case–control design and population-based hap-
lotyping on real asthma data consisting of 194 small families [80]. Our goal is
to compare different approaches with this real data, not to reproduce the original
results of Laitinen et al. The subjects were genotyped at 91 microsatellite and
64 SNP markers spanning a 20 cM region in chromosome 7. The original geno-
typing process had been iterative: new markers were genotyped from the regions
where the intermediate analyses showed strongest associations. In the final stage
a 133 kb risk-conferring haplotype was identified [80].

To mimic the case–control study design we used families with an affected and
a healthy parent constituting an effectively independent case–control pair. For
the trio-based approaches we randomly sampled one child from each family. We
sampled at most one such trio per family; at the end, we got 93 trios from the
available 194 families.

All markers with at least 20 % of genotypes missing were rejected. The re-
maining marker map consisted of 73 microsatellite and 15 SNP markers. We hap-
lotyped the case–control data set of affected and healthy parents using HaploRec.
For comparison we inferred the haplotypes of a random subsample of 62 trios (two
thirds of 93) utilising the genotypes of the children. Additionally, we subsampled
the haplotypes of the parents in these 62 trios from the set of 93 case–control
pairs haplotyped using HaploRec. This data set represents our best estimate of the
haplotypes in the trios.

With the case–control sample there is a strong association peak within the cor-
rect 133-kb region, but also a false positive about 500 kb to the right (Figure 3.4a).
The trio-based setting does not show any associations within the correct region,
but two false positives instead. Increasing the sample size to include all 93 trios
did not produce different results (data not shown). The results suggest that the
case–control approach is feasible even with relatively small samples in fine map-
ping.

3.3 Conclusions

We reported on simulation experiments where we compared sample ascertainment
strategies and related haplotyping approaches in association mapping studies. We
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Figure 3.4: Haplotype association in asthma data with the population-based and
trio-based approaches. (a) Entire 20 cM region. (b) 500 kb region containing
the identified 133-kb haplotype (7733–7865 kb). The curves show the highest
χ2 value for each marker from the set of all haplotypes with 1–10 markers span-
ning over the marker. The locations are reported relative to an arbitrarily chosen
origin. The bars at the bottom show the locations of the markers.

considered two main alternatives: ascertainment of family trios with an affected
child from which it is easy to partially infer the haplotypes, and ascertainment
of a case–control sample of unrelated individuals for which the haplotypes were
estimated statistically. We conducted the mapping step using haplotype associa-
tion analysis, a simple but powerful and efficient method. Case–control samples
were haplotyped with HaploRec [35]. Both haplotype association and HaploRec
scale up to large amounts of markers and individuals and are suitable for high-
throughput association studies. Finally, we isolated and experimentally analysed
the effects of three separate factors: sample size, sample ascertainment method
and accuracy of haplotyping.

For an equal number of genotyped individuals the effective sample size in the
trio-based approach is only two thirds of that of the case–control design. Ac-
cording to our experiments, this difference has a major effect on the mapping
power and accuracy as expected. With equal sample sizes the case–control set-
ting is more powerful than the trio-based design, but they are roughly equally
accurate. The case–random design was clearly inferior, but this depends on the
disease model and, in particular, the susceptibility allele frequency. Trios have the
benefit that they produce controls that are well paired with cases for population
substructure and other factors that are not uniform over the population. Ascer-
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tainment of matching controls from the population is more difficult, but genomic
control can be used to correct for stratification [25].

Our experiments suggest that controls should be ascertained from unaffected
individuals to maximise the power and accuracy of the study. In a population-
based study it can be possible to ascertain healthy controls for this purpose. How-
ever, random population controls are often used since their ascertainment is easier
especially if they are stratified to match the cases. In our experiments using ran-
dom population controls led to weaker power, but the mapping accuracy was less
affected.

Surprisingly, haplotypes inferred with a population-based statistical method
were found out to be as powerful as the corresponding true haplotypes. This
is in contrast to the result of Morris and others who concluded that statistically
inferred haplotypes are inferior to the true haplotypes and genotype-based ap-
proaches should be preferred instead [94]. There are several differences between
our studies that can partially explain the results. First, the results of Morris et
al. are based on a shorter map (950 kb interval and 20 SNPs vs. 15,000 kb and
451 SNPs in our study). Second, Morris et al. used their own COLDMAP soft-
ware for mapping. We could not evaluate the effect of this choice since, according
to Morris et al. themselves, COLDMAP is not feasible for data sets of the size in
our study. Third, they used SNPHAP1 by David Clayton to estimate haplotypes.
SNPHAP is not well suited for long maps with recombinations and is likely a sub-
optimal choice here (we could not evaluate it in our study since it often stopped
without haplotyping all individuals). Finally, Morris et al. applied different simu-
lation techniques.

Despite some contrasts with the conclusions of Morris et al. [94] we do agree
with many of their points. In particular, mapping results based on inferred haplo-
types are likely to be optimistic in terms of confidence or credibility intervals due
to exaggeration of linkage disequilibrium.

With the trio-based haplotyping the only source of uncertainty are similar het-
erozygotes whose alleles were marked unknown by our simple method. This re-
sulted in a poorer mapping performance compared to the population-based esti-
mates. An obvious recommendation is to use population-based techniques to aug-
ment trio-based inference when trios are available to avoid missing alleles. How-
ever, our experiments with the true haplotypes suggest that even the best possible
haplotyping method would give the same mapping accuracy than the population-
based haplotyping, and the power to detect the gene would remain inferior to the
case–control design due to the smaller effective sample size.

It is important to test the utility of the case–control study design in real life

1http://www-gene.cimr.cam.ac.uk/clayton/software/snphap.txt
(referred on 25 February 2011)
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experiments to verify that it does not suffer from unexpected effects from genotyp-
ing errors, missing data or varying disease models. The effect of more elaborate
association methods (e.g. those proposed by Purcell et al. [105]) to the power and
mapping accuracy should be investigated, although our comparisons to EATDT
suggest that the simple haplotype association with a population-based haplotyp-
ing is a powerful option. We leave these issues for future research.

In summary we suggest that case–control study designs, preferably with fa-
milial cases and reliably trait-excluded controls, with efficient population-based
haplotyping method may serve as powerful starting points for genetic association
analyses. With case–control study there is no obligatory need to genotype fami-
lies. This is beneficial as the total cost of the gene mapping pipeline (Figure 1.1)
can be significantly reduced, assuming equal genotyping costs. Also, the refined
analysis of putative DS genes becomes easier as the number of false positives is
reduced. Finally, it seems that a relatively simple but efficient haplotype associa-
tion can be sufficiently powerful in high-throughput analysis.

HaploRec software for population-based reconstruction of haplotypes and the
simulated data sets are available on the WWW2.

2http://www.cs.helsinki.fi/group/genetics (referred on 25 February 2011)
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Chapter 4

Link discovery in biological graphs

In this chapter we focus on the refined analysis phase of the gene mapping pipeline
(Figure 1.1). We consider specifically the first step of the refined analysis: how
to prioritise putative disease-susceptibility (DS) genes so that further efforts can
be focused on the most promising candidates? One approach is to look at what is
already known about the putative DS genes and see how they relate to each other
and to the phenotype under study. This might reveal evidence for the hypothesised
association or facilitate a more detailed hypothesis about the mechanisms of the
relationship.

More generally, many domains in contemporary data mining—such as so-
cial networking, collaboration (or affiliation) networks and World Wide Web—
involve relational data. Such data is usually heterogeneous: entities and relations
between them have different types and attributes. Graphs are natural and useful
models for representing relational and heterogeneous data. We focus on biologi-
cal graphs whose entities (vertices) come from the biological or biomedical do-
main [11, 116, 48]. Entities in biological graphs can include concrete biological
concepts such as genes, proteins and tissues, but also abstract concepts such as bi-
ological processes, phenotypes and scientific articles. Relations (edges) between
these entities correspond to real-world phenomena such as “a gene codes for a
protein” or “an article refers to a phenotype”.

We investigate link discovery in biological graphs with the primary aim of
prioritising putative DS genes. We use term link loosely to refer to any (direct or
indirect) connection between two vertices in a graph. Recall that the initial anal-
ysis phase may have produced a large set of putative genes linked to the (disease)
phenotype. Before moving on with the refined analysis the investigators compare
the putative genes based on what is known about them in the public databases and
literature. This way false positives can be detected and the efforts and resources
can be concentrated on the most promising candidates. Due to the lack of auto-
mated methods the work is mostly done by manually browsing the databases. This

45
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is a slow and laborious process which necessarily limits the extent and coverage
of the search. In this chapter we describe methods for (partial) automation of the
prioritising task by focusing on gene–phenotype links and their relative strengths.
Methods for automated discovery and analysis of connections between a putative
gene and a phenotype have only recently started to emerge [127, 58, 104, 74].

Biological graphs can be built from publicly available biological databases.
Converting (relational) biomedical knowledge to a graph form is conceptually
simple though not straightforward. For instance, how to map different biological
concepts and their attributes into the graph and how to weight edges is nontrivial.
In Sections 4.1 and 4.2 we consider these issues in the context of Biomine, a rel-
atively large biological graph. In Sections 4.3 and 4.4 we review some proposed
link goodness measures and consider the evaluation of link significance. We con-
clude the chapter in Section 4.5 by re-enacting experimental results by Sevon et
al. [116] that demonstrate the effectiveness of the chosen graph model and two
link goodness measures that are suitable for Biomine graphs.

4.1 Biomine database

As a concrete example of modelling relational biological data we use Biomine:
a large index of various interlinked public biological databases. Biomine offers
a uniform view to these databases by representing their contents as a large, het-
erogeneous random graph. Vertices in this graph represent entities (records) in
the original databases, and edges represent their annotated relationships (cross-
references between records). Edges have weights that are interpreted as probabil-
ities. Preliminary version of Biomine has been described by Sevon et al [116]. In
this section we take a brief look at the core components of Biomine: its data model
and source databases. Edge weighting is considered separately in Section 4.2.

4.1.1 Data model

The choice of data representation, or data model, is important in link mining [47].
Consider, for instance, a simple bibliography database which indexes authors, ar-
ticles and journals. One natural representation would map entities as separate ver-
tex types by creating a vertex for each author, article and journal. These vertices
would be then connected by edges according to the authorship and containment
relations. This representation emphasises journal-centric view on data as journal
vertices would likely be major large-degree hubs in the resulting graph. A more
condensed representation could include only author vertices connected by edges
(or hyperedges) if the corresponding authors have coauthored at least one arti-
cle. Article and journal information could be included as edge attributes. This
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representation resembles social network, and it might be useful if we are mostly
interested in coauthor relations.

With multiple heterogeneous biological databases the number of possible data
models becomes immense. To facilitate wide applicability, the core Biomine data
model is deliberately simple: all source database records are represented as ver-
tices in an undirected, labelled and weighted multigraph G= (V,E). The elements
of the vertex set V are biological entities such as genes, proteins and biological
processes as well as more general objects like article abstracts. They are labelled
by a type, such as gene or protein, from set Tv. We denote the vertex type mapping
by tv : V 7→ Tv.

Edge multiset E ⊂ [V ]2 consists of unordered vertex pairs {u,v}. As with
vertices, edges have labels from edge type set Te, and we denote this mapping
by te : E 7→ Te. Edge types depict annotated relations between vertices, such as
codes for (e.g., gene codes for protein) or refers to (e.g., article refers to gene).
Each edge has a source database where the corresponding relation resides. We
denote this source database mapping by s : E 7→ D where D is the set of source
databases.

For a given graph G = (V,E), we refer to its vertex set V by V (G) and its
edge set E by E(G). We define a path in a slightly non-standard manner as a
sequence of consecutive edges (instead of vertices). Finally, we denote the set of
neighbouring vertices of v by N(v) = {u ∈V : {v,u} ∈ E}.

Table 4.1 lists the vertex types used in Biomine; similarly, Table 4.2 lists the
edge types. Some representative examples of typed edges are given in Table 4.3.
All tables refer to the Biomine database built on 4 June 2010.

4.1.2 Source databases

Biomine consists of several interlinked, publicly available source databases. Each
database provides different kinds of entities and relations to Biomine, some over-
lapping. We briefly review the main features of the source databases below.

NCBI’s Entrez Gene [87, 112] provides gene entries for different organisms.
Currently, Biomine contains five model organisms: human, mouse, rat, fruit fly
and nematode (Caenorhabditis elegans). Genes are connected to their protein
products and other homologous genes (similar genes in different organisms). Ho-
mology relations come from an another Entrez database HomoloGene [112].

UniProt [22] is the main source of protein-related information. Its core el-
ements are proteins, pathways and tissues. These elements form vertices in the
graph. Manually annotated and reviewed proteins are in Swiss-Prot subdatabase,
while TrEBML subdatabase contains automatically annotated and nonreviewed
proteins. UniProt contains many relations, such as protein interactions and ex-
pressions, and classifications into protein families and pathways.
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Type Primary source database Amount Mean degree
Active site InterPro 89 95.82
Allelic variant OMIM 19,455 1.44
Article PubMed 532,675 3.98
Binding site InterPro 62 111.18
Biological process GO 19,539 32.47
Cellular component GO 2,856 122.18
Compound KEGG 15,879 0.55
Conserved site InterPro 575 58.29
Domain InterPro 5,515 69.55
Drug KEGG 8,846 0.69
Enzyme KEGG 5,095 10.15
Family InterPro 12,718 10.61
Gene Entrez Gene 192,893 18.60
Gene/Phenotype OMIM 343 82.35
Genomic context Entrez Gene 11,825 18.68
Glycan KEGG 2,519 0.92
Homolog group HomoloGene 25,780 3.18
Molecular function GO 9,529 49.07
Ortholog group KEGG 13,067 3.81
Pathway UniProt 1,875 37.10
Phenotype OMIM 6,559 16.95
PTM InterPro 16 82.88
Protein UniProt 275,292 29.58
Region InterPro 1,441 20.14
Repeat InterPro 255 94.84
Tissue UniProt 1,317 189.10

total 1,166,020 14.84

Table 4.1: Biomine vertex types Tv, primary source database for each type, and
the total amount and mean degrees of corresponding vertices.
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Type Source databases Amount
affects Entrez Gene 5,077
belongs to Entrez Gene, HomoloGene,

KEGG, STRING, Swiss-Prot,
TrEMBL

689,026

codes for Entrez Gene, KEGG, STRING 174,480
contains Swiss-Prot, TrEMBL 454,553
functionally
associated to

STRING 2,916,286

has Entrez Gene, InterPro, KEGG,
OMIM, Swiss-Prot, TrEMBL

464,369

has synonym Entrez Gene 1,666
interacts with Entrez Gene, Swiss-Prot, TrEMBL 97,361
is a GO, InterPro, KEGG 51,483
is expressed in Swiss-Prot, TrEMBL 234,153
is found in Entrez Gene, InterPro, KEGG,

Swiss-Prot, TrEMBL
337,542

is homologous to HomoloGene 259,390
is located in Entrez Gene, OMIM 144,495
is part of GO, InterPro, OMIM 54,196
is related to GO, HomoloGene, KEGG, OMIM,

Swiss-Prot, TrEMBL
25,414

overlaps OMIM 8,199
participates in Entrez Gene, InterPro, KEGG,

Swiss-Prot, TrEMBL, UniProt
605,237

refers to Entrez Gene, KEGG, OMIM,
Swiss-Prot, TrEMBL

2,216,614

subsumes Entrez Gene, KEGG, STRING,
Swiss-Prot, TrEMBL

140,555

targets KEGG 4,885
total 8,884,981

Table 4.2: Biomine edge types Te and amount of edges of each type.

Edge Source database Amount
Gene codes for Protein STRING 5,948
Protein belongs to Family Swiss-Prot 30,651
Family participates in Biological process InterPro 5,274
Biological process is related to Tissue GO 13,103
Protein is expressed in Tissue Swiss-Prot 176,034
Enzyme subsumes Protein TrEMBL 7,907
Gene codes for Enzyme KEGG 14,195

Table 4.3: Some examples of Biomine edge types, their source databases and the
amount of corresponding edges. Observe that a sequence of such edges would
constitute a gene–gene-path in the graph.
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InterPro [62] is another protein-related database. It indexes protein families
and structural elements (domains, regions, sites, etc.), and it has hierarchies for
these elements. The third protein database, STRING [65], contains known and
predicted protein–protein interactions. The interactions include direct (physical)
and indirect (functional) associations. STRING also contains clusters of ortholo-
gous groups (COGs) and their interactions, with mappings between proteins and
COGs.

Gene Ontology (GO) aims to provide a controlled vocabulary for genes and
gene products [21]. Its core domains are cellular components, biological pro-
cesses and molecular functions. The ontology is structured as a directed acyclic
graph, and each term has defined relationships to one or more other terms in
the same domain and sometimes to other domains. This graph is a subgraph of
Biomine, and the term vertices are referred to by other databases such as Entrez
Gene and UniProt.

Online Mendelian Inheritance in Man (OMIM) is a catalogue of human genes
and genetic disorders [100]. It is the main source of phenotype information in
Biomine: most of the OMIM entries are Phenotype vertices. The database also
contains descriptions of allelic variants, gene locations and a large number of
references to biomedical literature.

PubMed [112] is a freely accessible online database of biomedical journal
citations and abstracts with approximately 20 million entries. Many biological
databases (such as UniProt and OMIM) contain references to PubMed entries, for
example to index articles where a particular gene or phenotype is mentioned. In
Biomine these cross-referenced PubMed entries are Article vertices.

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a large, integrated
database resource consisting of 16 main databases broadly categorised into sys-
tems information, genomic information and chemical information [66]. Biomine
uses a subset of KEGG: its pathway, gene, drug, orthology, compound and glycan
databases.

Each source database has its own schema for arranging and formatting data.
Schemata are generally mutually incompatible and contain more information than
we are interested in. Raw data files are therefore preprocessed into a simpler,
uniform “intermediate” schema by dedicated database-specific parser programs
before the actual integration. The resulting files are essentially lists of typed edges,
vertex attributes and synonym mappings. These files are then imported into a
relational database to form a large graph. During the importing process synonyms,
invalid references and other anomalies are resolved. The complete conversion and
importing process is complicated and out of the scope of this thesis.
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4.2 Edge goodness in Biomine

One of the goals of Biomine is to allow discovery and evaluation of links be-
tween vertices specified by the user. To rank paths or assess the significance of
a connection between two vertices we need a measure for edge goodness. Edges
sometimes have natural weights in the source databases. For example, a homol-
ogy between two proteins could have a value denoting the degree of sequence
similarity. Biomine extends such domain-specific static weighting by considering
edge weight, or goodness, as a function of three factors:

1. Reliability. How confident are we that the relation (and consequently the
edge) really exists? How reliable is the data source, how reliable is the
method used to produce or predict the edge and how strong or probable is
the connection estimated to be in the data source?

2. Relevance. How relevant is the edge with respect to the query? We assume
that the investigator can give query-specific weights for vertex and/or edge
types according to his or her subjective opinions of the importance of each
type for the query at hand.

3. Rarity. How rare and informative is the edge? As an extreme example, an
article [46] that refers to over 18,000 human and mouse genes is not likely
to be relevant for a specific gene whereas an article that only refers to few
genes is much more likely to be informative. In Biomine edge rarity is
directly related to the degrees of its incident vertices.

A distinguishing feature of Biomine is the probabilistic interpretation of the above
factors: an edge e ∈ E is considered to be reliable with probability r(e), relevant
with probability q(e) and rare (or informative) with probability d(e). These factors
are combined to a single probability g(e) so that e is an existing and potentially
useful relation if e is at the same time reliable, relevant and informative. In other
words, edges are random: e “exists” or “is true” with probability g(e), or “does
not exist” or “is not true” with probability 1− g(e). With the probabilistic inter-
pretation G is a random graph that naturally models the uncertainty in the source
data and the query-specific relevance. We next give definitions for r, q and d, and
we combine them into one goodness g.

Reliability r(e) of an edge e ∈ E is defined as a product of two (independent)
reliabilities: a database reliability rd : D 7→ [0,1] and a relation (edge) reliabil-
ity rr : E 7→ [0,1]. The database reliability rd is given by the user, and the inter-
pretation of rd is the degree of belief the user has for a relation being correctly
annotated in the corresponding database. For example, manually curated Swiss-
Prot database could be given a perfect reliability by letting rd(Swiss-Prot) = 1.0,



52 4 LINK DISCOVERY IN BIOLOGICAL GRAPHS

while computer-annotated TrEMBL database could be assumed to be less pre-
cise by letting rd(TrEMBL) = 0.75. Relation reliability rr comes from the source
database instead: if there is a separate confidence value c associated to e (that
reflects similarity or homology score, for example), we let rr(e) = c, where c is
scaled between 0 and 1 if needed. Otherwise we let rr(e) = 1. The interpretation
of rr(e) is the confidence of the data source itself on the relation represented by e.

We define the edge reliability r : E 7→ [0,1] by treating the reliabilities rd and rr

as probabilities of independent events:

r(e) = rd
(
s(e)

)
· rr(e) (4.1)

where s(e) is the source database of e. The interpretation of r(e) is that e is reliable
if both the database (as a whole) and the annotation are considered reliable.

Relevance q(e) of an edge e = {u,v} ∈ E is the degree of belief that e repre-
sents a relevant connection between vertices u and v with respect to the current
query. Edge relevance is analogous to edge reliability r but, in contrary to the
static database-related reliability, relevance is query-specific.

Relevance values may be sometimes easier to give in terms of vertex types
instead of edge types. Hence Biomine uses two relevance functions: qv : Tv 7→
[0,1] for vertex types and qe : Te 7→ [0,1] for edge types. Both qv and qe are given
by the user. A practical implementation could have a default configuration for
both qv and qe, so only few adjustments would be needed for a typical query.

As in (4.1), relevance values qv and qe are treated as probabilities of indepen-
dent events. The edge relevance q : E 7→ [0,1] is

q(e) = qe
(
te(e)

)
·
√

qv
(
tv(u)

)
·
√

qv
(
tv(v)

)
(4.2)

where e = {u,v} ∈ E, and te and tv are the edge and vertex type mappings as

above. Vertex relevance coefficient
√

qv
(
tv(x)

)
in (4.2) decomposes the vertex

type specific relevance qv
(
tv(x)

)
of vertex x for each of its adjacent edges. As

path relevance will be later defined as a product of edge relevance values this
gives the desired outcome: the relevance of any path visiting a vertex of type τ is
multiplied by q(τ).

We want to give lower scores for paths that visit vertices with high degrees: the
higher the degree of vertex v ∈V the less likely it is that any two neighbours of v
actually have an interesting (non-random) connection through v. For example,
the aforementioned article [46] that refers to 18,000 genes is likely to connect
trivially every gene vertex to every other gene vertex. Hence we define rarity dv :
V 7→ [0,1] first for vertices. Rarity dv(v) represents the probability that any two
edges incident on v are related to each other and represent a meaningful path; the
higher the rarity, the more informative v is.
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Figure 4.1: Rarity function dv for various values of α.

The following ad hoc formula is used as a basis for rarity:

dv(v) =
1

(deg(v)+1)α
(4.3)

where 0 ≤ α ≤ 1 is a penalising parameter. It determines how steeply dv de-
creases as a function of vertex degree. Figure 4.1 illustrates dv for some values of
α and deg(v). With α = 0 we have dv(v) ≡ 1 so that all vertices are considered
equally informative. With α = 1 we have dv(v) = (deg(v)+ 1)−1 and dv(v) has
the following probabilistic interpretation. Consider a random walker who, at any
vertex, is equally likely to follow any edge or stop at the vertex. Given a path
with vertices v1,v2, . . . ,vk, vi ∈ V , rarity dv(vi) is the probability that the walker
who has so far traversed vertices v1, . . . ,vi will next stay on the path and visit
vertex vi+1.

The simple formula (4.3) can be too inflexible in practise. Take for exam-
ple PLA2G7: a widely studied asthma gene that has been referred in 97 arti-
cles. Because of these article links (4.3) would penalise PLA2G7 vertex severely.
However, it has only one interaction link and it participates in three biological
processes, so PLA2G7 could be informative when the investigator is mostly inter-
ested in gene–gene interactions or biological processes. Another issue is that (4.3)
does not consider varying vertex degree distributions: some graphs may have a rel-
atively large fraction of vertices with high degrees (“scale-free” or “power law”
graphs for instance). In Biomine, vertex degrees vary wildly between different
vertex types (see Table 4.1) but α is independent of vertex types. This causes
unreasonable penalisation for some large-degree vertex types such as GO terms.

To allow more flexibility in degree penalising we replace the single con-
stant α and vertex degree function deg with vertex-type and edge-type specific
functions α : Tv 7→ [0,1] and deg : V ×Te 7→ N (that is, deg(v,τ) denotes the num-
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ber of edges of type τ adjacent to v). Now the vertex rarity dv : V ×Te 7→ [0,1] for
vertex v ∈V is

dv(v,τ) =
1

(deg(v,τ)+1)α(tv(v))
. (4.4)

As with relevance (4.2), the rarity values are decomposed into edge-specific coef-
ficients. The edge rarity d : E 7→ [0,1] becomes

d(e) =
√

dv
(
u, te(e)

)
·
√

dv
(
v, te(e)

)
=
[
dv
(
u, t(e)

)
·dv
(
v, t(e)

)]−1/2 (4.5)

where e = {u,v} ∈ E.
Now that we have defined all the components of edge goodness, the good-

ness g : E 7→ [0,1] itself is simply a product of those factors:

g(e) = r(e) ·q(e) ·d(e)

where r(e), q(e) and d(e) are the reliability (4.1), relevance (4.2) and rarity (4.5)
of an edge e ∈ E. Under the assumptions that r(e), q(e) and d(e) are probabilities
for mutually independent necessary conditions for the edge and that edges are
independent of each other, the goodness g(e) is the probability that e exists. We
remark that these assumptions of independence are strong, and in some cases they
are arguably unrealistic. However, independence allows us to calculate path and
subgraph probabilities easily—we return to these in Section 4.3 and Chapter 5.

4.3 Link goodness measures

Link is a more general concept of connection than a simple relation (edge) be-
tween two vertices s and t. Links are useful since they can be used to model
indirect, weak or otherwise non-trivial connections. Simple paths are intuitive
and useful links, but shared neighbourhoods, connected subgraphs and random
walks can also be used to represent links. To discover or predict links, assess their
strengths or analyse statistical significances of links we need a measure for link
goodness in addition to edge goodness.

We next give a short review of some link goodness measures proposed in the
literature. They are presented in the order of increasing generality; more general
measures utilise more information for determining the strength of a link. The
discussion is not restricted to Biomine graphs, so G = (V,E) refers to an arbitrary
directed or undirected graph below. See Liben-Nowell and Kleinberg [85] for an
experimental evaluation of many of these measures for link prediction.
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4.3.1 Path and neighbourhood level

The shortest s–t-path P is a simple but efficient link type. Its length w(P) is a
natural measure for link strength:

gs(s, t) = min
P∈P

w(P) = min
P∈P ∑

e∈P
w(e) (4.6)

where w(e) is the length (weight) of an edge e ∈ E, and P is the set of all s–t-
paths in G. This measure is easy and efficient to calculate by any shortest path
algorithm.

For random graphs, where edge “lengths” are probabilities, (4.6) does not
make much sense. However, if edges are independent of each other, like in
Biomine graphs, path “length” or goodness follows in a natural way. Let P =
(e1, . . . ,ek), ei ∈ E, be a path in G. The path goodness gp : P 7→ [0,1] is

gp(P) = ∏
e∈P

g(e). (4.7)

With the interpretation that g(e) is the probability that edge e exists (Section 4.2)
the path goodness gp(P) is the probability that the whole path P exists in a re-
alisation H of G. A realisation of G is a non-random subgraph H ⊂ G where
each edge of G has been randomly and independently decided according to the
corresponding edge probabilities (see Section 5.1.1).

With path goodness gp the shortest path corresponds to the most probable, or
best path. By combining (4.6) and (4.7) we get

gb(s, t) = max
P∈P

gp(P) = max
P∈P ∏

e∈P
g(e). (4.8)

Again, any shortest path algorithm can be applied to find most probable paths by
using edge weights w(e) = − log

(
g(e)

)
. Let P be the shortest path found with

weight w(P). Then

w(P) = ∑
e∈P
− log

(
g(e)

)
=− log

(
∏
e∈P

g(e)
)
=− log

(
gp(P)

)
and since the logarithm function is strictly increasing and w(P) is minimised,
gp(P) is maximised.

Overlapping vertex neighbourhoods may indicate indirect similarity or prox-
imity (consider, for instance, shared friends in social networks or shared col-
leagues in collaboration networks). The number of overlapping neighbours is
the simplest measure in this context:

gn(s, t) = |N(s)∩N(t)|, (4.9)
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where N(v) is the set of neighbours of v. This measure has been observed to pos-
itively correlate with future collaboration probability in coauthor networks [98].
The normalised form of (4.9)

gJ(s, t) =
|N(s)∩N(t)|
|N(s)∪N(t)|

(4.10)

is the well-known Jaccard index. Adamic and Adar have proposed [1] a modifi-
cation of (4.10) that rewards vertex pairs that share neighbours with low degrees:

gA(s, t) = ∑
u∈N(s)∩N(t)

1
log |N(u)|

.

This measure gives more weight for pairs in small and independent cliques.
All neighbourhood level measures are based on the intersection of neighbour

sets between two vertices s and t. More shared neighbours result in greater prox-
imity. Direct (s, t) edges and links between neighbours do not contribute to the
proximity. Neighbourhood level measures are thus probably more useful as com-
plementary than standalone proximity measures.

4.3.2 Subgraph level

The goodness of a single s–t-path, as in (4.6) and (4.8), is not necessarily a good
measure of the strength of the link between vertices s and t. For example, a link
consisting of several parallel paths could be considered to be stronger than a single
path even if all of the parallel paths are weak. Connection subgraphs take this into
account by evaluating connected subgraphs, which can be thought to be a set of
paths, containing s and t. Specifically, a connection subgraph between s and t is a
connected subgraph H ⊂G, of a given size, such that {s, t} ⊂V (H). Subgraph H
can be, for example, a set of k shortest paths for some fixed k or it can be chosen
to maximise a given connection subgraph goodness function [39].

Faloutsos et al. view G as an electrical network of resistors [39]. They pro-
pose an algorithm that extracts a fixed size subgraph H which maximises total
delivered current over the subnetwork from s to t when s is assigned a potential
of +1 volt and t is grounded (0 volts). Total delivered current has a random walk
interpretation [75]. At first, let us define transition probabilities

p(u,v) =
g(u,v)

∑w∈N(u) g(u,w)
(4.11)

for each (u,v)∈E. Next, let pesc denote the escape probability according to (4.11)
from s to t; i.e. the probability that a random walker starting from s will reach t
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before returning to s. The effective conductance between s and t is now

gEC(s, t) = ∑
u∈N(s)

g(s,u) · pesc (4.12)

which is the expected number of “successful escapes” when the number of escape
attempts is ∑u∈N(s) g(s,u) [27].

Effective conductance is an appealing link goodness measure, and it has been
used to measure centrality in networks [12]. However, it does not penalise un-
informative vertices that have large degrees (cf. (4.4)). Faloutsos et al. dodge
this by introducing a global grounded “sink” vertex that is connected to all ver-
tices v ∈ V with conductance proportional to ∑u∈N(v) g(v,u). As pointed out by
Koren et al. [75], this introduces a counterintuitive size bias where the link good-
ness can decrease if the connection subgraph is enlarged. They propose a modified
version of (4.12) titled cycle-free effective conductance (CFEC):

gCFEC(s, t) = ∑
u∈N(s)

g(s,u) · pcf-esc(s, t) = ∑
u∈N(s)

g(s,u) · ∑
P∈P

Pr(P) (4.13)

where pcf-esc is the escape probability restricted to cycle-free random walks (walks
that are simple s–t-paths), P is the set of all simple s–t-paths in G, and Pr(P) is
the random walk probability along a path P. CFEC has two desirable properties:
it is monotonically increasing as a function of graph size, and a relatively small
connection subgraph consisting of the most probable simple s–t-paths is usually
enough to approximate gCFEC(s, t) [75].

4.3.3 Graph level

A link goodness measure can utilise the topology of the whole graph G. Most
measures on this scale are based on random walks like (4.12) and (4.13), although
a measure proposed by Katz [70] considers sets of s–t-paths such that

gK(s, t) =
∞

∑
l=1

β
l|Pl|

where Pl is the set of all s–t-paths of length l. Parameter β > 0 controls the effect
of longer paths to the goodness.

Random walk models typically consider a single walker w starting from s or
two walkers w1 and w2 with one starting from s and the other from t. Walkers
traverse G randomly with transition probabilities (4.11). Hitting time H(s, t) con-
siders the expected number of steps w has to take to reach t [19]. Its symmetric
variant is commute time C(s, t) =H(s, t)+H(t,s). Both can be readily used as dis-
tance measures, and they have been used as link goodness (proximity) measures
as well [85].
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SimRank by Jeh and Widow [64] is based on a recursive definition

gSR(s, t) =


0 if N(s) = /0 or N(t) = /0,

1 if s = t,
C/
(
|N(s)||N(t)|

)
·∑u∈N(s)

v∈N(t)
s(u,v) otherwise

where C ∈ [0,1] is a constant, and N(v) is the set of neighbours of vertex v as
before. SimRank also has a random walk interpretation: gSR(s, t) corresponds
to the expected value of Ct where t is the time (number of steps) when walkers
w1 and w2 first meet [64].

Liben-Nowell and Kleinberg [85] proposed a rooted PageRank measure for
link goodness based on well-known PageRank measure [13]. In rooted PageRank
the random walker w returns to s with probability α in every step, or it contin-
ues the walk with probability 1−α. The measure is the steady state (stationary)
probability of t.

With random graphs gb(s, t) is the probability that the best path exists in a
realisation of G. A more appropriate measure could be the probability that at least
one path exists between s and t. This measure is closely related to the theory of
network reliability [20], and the desired measure

gR(s, t) = Pr(H : H ⊂ G,H contains an s–t-path) (4.14)

is the two-terminal network reliability of G with terminals s and t. (The connected
parties are called terminals in the reliability literature.) We will return to the
network reliability in Chapter 5, but for now it is sufficient to note that it can be
readily used as a link goodness measure on random graphs.

4.4 Estimation of link significance

We eventually want to measure how strongly two given vertices s and t are related
in graph G. Link goodness measures, such as those discussed in Section 4.3,
allow ranking of links but their values may be difficult to put into perspective.
For example, assume we have f (s, t) = 0.4 for some goodness measure f . Is this
particular value of f high or low? This obviously depends on the data and the
specific instances of s and t.

We can estimate the statistical significance of the link by using the goodness
value f (s, t) as a test statistic. Returning to the previous example this tells us
how likely it is to obtain a link with goodness 0.4 or better by chance. There are
multiple meaningful null hypotheses:

N1. Vertices s and t of types τs ∈ Tv and τt ∈ Tv are not more strongly connected
than randomly chosen vertices s′ and t ′ of types τs and τt .
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N2. Vertex s of type τ ∈ Tv is not more strongly connected to vertex t than a
randomly chosen vertex s′ of type τ.

N3. Vertices s and t are not more strongly connected in the given graph G than in
random graph H with edge weights w′ : E(H) 7→ R generated by model H
similar to the (unknown) model which generated G and w.

The last null hypothesis N3 is clearly the most complicated one: it is not easy
to come up with a model H that generates random graphs which are sufficiently
similar to the observed graph. The choice from the first two null hypotheses de-
pends on what we are testing. In a symmetrical case, for example when testing
the significance of connection between two candidate genes, N1 is appropriate. If
the roles of the vertices are asymmetric, as in testing for the connection from a set
of candidate genes to a single phenotype, N2 should be used. In the experiments
(Section 4.5) we apply N1 to assessment of gene–gene links and N2 to assessment
of gene–phenotype links.

Under null hypothesis N1 we can estimate p-value for the test statistic f (s, t)
by randomly sampling N pairs of vertices (s′, t ′) from V . Let us denote the sample
by S = {(s1, t1), . . . ,(sN , tN)}. To obtain an empirical null distribution we compute
the value of test statistic f (si, ti) for each (si, ti) ∈ S, and let S+ = {(si, ti) ∈ S :
f (si, ti)≥ f (s, t)}. Then the estimated p-value p̃ is simply

p̃ =
|S+|
N

. (4.15)

The same procedure can be used under null hypothesis N2 by sampling single
vertices S = {t1, . . . , tn} and letting S+ = {ti ∈ S : f (s, ti)≥ f (s, t)}.

Because vertices of the same type may have wildly varying degrees one should
sample vertices s′ and t ′ that have degrees similar to s and t, respectively. If
several hypotheses are tested (several candidate genes, for example), the resulting
p-values should be adjusted accordingly to account for multiple testing.

4.5 Experiments

We demonstrate the use of link goodness on Biomine graphs with two examples by
Sevon and others [116]. We focus on two measures that are specifically targeted
for random graphs: the probability gb (4.8) of the best (or the most probable) path
between vertices and the two-terminal reliability gR (4.14) computed from the
connection subgraph induced by k best paths. As discussed above, gb is a simple
choice for link goodness on random graphs, and gR generalises gb to consider a
set of paths simultaneously.

In the first experiment we selected a handful of known Alzheimer disease
genes and estimated the significance of the gene–phenotype link for each gene.
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In the second experiment we evaluated the significance of links between genes
whose protein products are known to interact. Both experiments were performed
using a preliminary version of Biomine consisting of NCBI’s Entrez databases1

and a similar edge weighting scheme to the one described in Section 4.2. See
Sevon et al. [116] for details.

Test design is not straightforward: for all classified genes there are trivial
links in the graph. For example, the OMIM entry for the disease refers directly
to the candidate gene. We considered s–t-paths with three edges or less “trivial”,
and we did not take such short paths into account when measuring link goodness
values gb(s, t) and gR(s, t). The ideal solution would be to use only edges that
are annotated prior to publication of the gene–disease association and the addition
of respective edges into the graph, but it can be difficult to obtain the state of all
databases at an earlier date. See Langohr [81] and Eronen et al. [36] on exploiting
temporally different versions of Biomine.

To simplify the experimental setting and to avoid introducing subjective bias
we assumed that all edges have the same product r(e) ·q(e) of reliability and rele-
vance. We also used a single α value for each vertex type as in (4.3). Consequently
the goodness of a path or subgraph depends only on the topology of the graph and
parameters α and rq.

4.5.1 Gene–phenotype link

We chose a set S of ten known human susceptibility genes for Alzheimer disease:

S = {APP,PSEN1,AD5,AD6,AD9,AD7,COL25A1,APOE,PSEN2,AD6}.

These identifiers were queried from Entrez Gene database2 with query term Alz-
heimer. For the phenotype vertex t we chose AD from the OMIM database [100].
AD is a phenotype description of Alzheimer disease: it contains trivial links to all
known Alzheimer genes as well as a large number of references to literature on
the disease. To assess the statistical significance of s–t-link for each susceptibility
gene s ∈ S, we randomly sampled 100 genes Rs from the set of all human genes
that had similar degrees to s. The goodness values gb(s′, t) and gR(s′, t), s′ ∈ Rs,
constitute our empirical null distributions for each s.

To calculate link goodness values we enumerated the best 100 acyclic paths P
with at most 6 edges from each gene vertex s ∈ S∪ S′ to the phenotype vertex t.
For two candidate genes, COL25A1 and AD9, no paths to Alzheimer disease
were found. Next we removed paths all paths shorter than three edges from P
(recall that paths with three or fewer edges were considered “trivial”). We used the

1http://www.ncbi.nlm.nih.gov/sites/gquery (referred on 25 February 2011)
2http://www.ncbi.nlm.nih.gov/gene/ (referred on 25 February 2011)
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Best path Reliability
s p̃ gb(s, t) p̃ gR(s, t)
AD7 < .01 .024 .01 .153
APOE < .01 .184 .01 .876
APP .02 .123 .01 .719
AD8 < .01 .119 < .01 .262
PSEN1 .04 .103 .01 .963
PSEN2 < .01 .153 < .01 .993
AD6 < .01 .033 < .01 .336
AD5 .01 .040 .01 .238

Table 4.4: Link strengths and p-values for Alzheimer disease with parameters
α = 0.25 and rq = 0.8.

goodness value of the best of the remaining paths and the two-terminal network
reliability of the graph induced by the remaining paths as test statistics. Two-
terminal network reliability was estimated using crude Monte Carlo algorithm
with 100,000 iterations (see Algorithm 5 in Chapter 5). We then estimated two p-
values using (4.15), one for the best path goodness and another for the connection
subgraph goodness, for each s ∈ S.

We experimented with parameter values

(α,rq) ∈ {0.125,0.25,0.5,1.0}×{0.2,0.4,0.6,0.8,1.0}.

The estimated p-values p̃ and values of the test statistics for each gene s ∈ S with
α = 0.25 and rq = 0.8 are given in Table 4.4. The probabilities of best paths
and connection subgraphs vary across genes, as expected, and they are not alone
sufficient indicators of the strength of a link as discussed in Section 4.4. The
estimated p-values p̃ are more useful here. In this test they are consistently small,
and in many cases none of the 100 randomised data sets produced equally high
goodness values so that p̃ < 0.01. It is also difficult to claim that connection
subgraphs are more powerful link indicators than best paths.

The goodness values also vary with the values of the two parameters of our
test. However, comparable p-values were obtained for all combinations of pa-
rameter values except for α = 1. Mean estimated p-values for all combinations
are given in Table 4.5. This can be seen as an indication of the stability of the
measures with respect to the parameters, but it also shows that the links are very
strong and rather obvious even though all short paths were removed.

4.5.2 Protein interactions

In the second and more challenging experiment we evaluated the strength of link
between APP gene and five genes whose protein products interact with the APP
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α = .125 α = .250 α = .500 α = 1.000
rq BP Rel BP Rel BP Rel BP Rel
.2 .0100 .0075 .0175 .0063 .0200 .1325 .0438 .3813
.4 .0088 .0075 .0150 .0075 .0163 .0075 .0300 .3813
.6 .0088 .0063 .0088 .0075 .0263 .0100 .0063 .1338
.8 .0088 .0063 .0088 .0063 .0075 .0075 .0138 .0075
1.0 .0088 .0200 .0088 .0063 .0088 .0075 .0238 .0088

Table 4.5: Mean p-values for all combinations of parameter values. BP and Rel
denote the test statistics: in BP (best path) gb(s, t) was used, and in Rel (reliability)
gR(s, t) was used.

Best path Reliability
Gene p̃ gb(s, t) p̃ gR(s, t)
HADH7 < .01 .159 .01 .917
APBA1 < .01 .137 < .01 .998
CHRNA7 .17 .058 .52 .359
APOA1 .56 .041 .51 .530
SHC1 .15 .118 .07 .937

Table 4.6: Interactions with APP (α = 0.25,rq = 0.8)

protein: HADH2, APBA1, CHRNA7, APOA1 and SHC1. The interactions were
obtained from the IntAct-database [4]. The experiments were carried out the same
way as with Alzheimer disease except that we used the symmetric null hypothe-
sis N1 (that is, both s and t were randomised). In the results two genes show
significant linkage to APP (Table 4.6). The other three genes do not get sig-
nificant p-values despite relatively high values of the test statistics compared to
the Alzheimer experiment. This result suggests that pairs of genes are generally
strongly connected. A possible remedy is to give higher relevance coefficients
for interaction-related edge types. It is also possible that the simple edge weight-
ing we used is not sufficient to distinguish the potential interaction-related paths
between the pairs of genes in these cases.

4.6 Conclusions

We described a simple data model for representing relational biological data as
labelled graphs. Such graphs can be constructed from many biological databases
as demonstrated by our biological graph database Biomine. We also introduced
the idea of assigning probabilities to the edges. The probabilities are derived
from three factors: reliability, relevance, and rarity (informativeness). Due to the
simplicity of the data model, integration of data is relatively straightforward and
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the only essential requirement is referential integrity between the data sources. We
believe that the probabilistic interpretation for edge and link strength is natural and
intuitive for investigators, especially when the data is intrinsically unreliable.

We discussed measures and methods for assessing the strength and signifi-
cance of a link between a pair of vertices in a graph. The probabilistic interpre-
tation of edge goodness enables us to harness random graph techniques, such as
most probable path and reliability, for measuring link goodness.

We demonstrated the use of two link goodness measures for evaluating the
strength of gene–phenotype link on Biomine graphs using a set of known Alzhei-
mer genes and Alzheimer phenotype. Both measures gave low p-values for the
known genes. This indicates that the measures would have successfully identified
the correct candidate genes for Alzheimer disease among a random set of genes,
except for two genes for which no link was found.

In the second experiment we evaluated the strength of the link between APP
and five other genes whose protein products are known to interact with the APP
protein, again on Biomine graphs. The results suggest that, although two of the
genes showed significant linkage to APP, the simplistic experimental setup using
a single relevance value for all edge types is not optimal. See Eronen et al. [36]
for an evaluation of relevance coefficients specified by an expert.

Our results indicate that link discovery with multiple integrated data sources
can be feasible approach for prioritising putative disease-susceptibility genes as
envisioned in Chapter 1 (Figure 1.1). The use of abstract, labelled graphs as data
representation has a number of tradeoffs though. On one side, it is a generic for-
mat, it is easy to convert data into it and there is a large body of known results
and algorithms for graphs. The downside is that information may be lost in trans-
formation, the vertex or edge types may be too different to be really used in the
same graph, and without built-in knowledge about particular biological concepts,
mechanisms and phenomena, specific discoveries about them cannot be made. It
seems that several different approaches on different levels of detail and integration
are needed, and that they complement rather than compete with each other.

The data model combined with source databases and edge weighting define
the core Biomine database. In the refined analysis phase (Figure 1.1) the inves-
tigator is probably interested to see what is known about the putative DS genes
(how they relate to the phenotype and each other, for instance) in addition to rank-
ing them. To actually query the database for such information we need a query
language that lets the investigator specify interesting connection types. Earlier
suggestions for query languages include regular expressions [78] and context-
free grammars (CFGs) [93]. Biomine provides a query engine which currently
supports three query types for extracting subgraphs: a neighbourhood query, a
best-path based connection subgraph query, and a CFG-based connection sub-
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graph query [115]. Reliable subgraphs provide another, well-founded approach
for extracting small subgraphs that contain strong and independent connections
between vertices of interest and which are suitable for information retrieval and
visualisation. We will focus on reliable subgraphs in Chapter 5.



Chapter 5

Reliable subgraphs

In this chapter we focus on the last step of our gene mapping pipeline (Figure 1.1).
The investigator has a prioritised set of putative disease-susceptibility genes, and
she wants to discover how they are related to the disease phenotype to find possi-
ble evidence for the hypothesis, or to discover more detailed hypotheses about the
mechanisms of the relationship. The existing biological knowledge can be conve-
niently represented as a random graph of biological concepts and their relations as
described in Chapter 4, and this graph can be then used to assess the relationships
between putative DS genes and the phenotype. The problem can be formulated
as a task of finding a small connected subgraph that contains the most relevant
connections between the prioritised DS genes and the phenotype [39].

Another application example is the problem of identifying a subnetwork (or
community) that connects two given persons of a large network, for example so-
cial or collaboration network. Figure 5.1 gives an example of such collaboration
subnetwork between two researchers extracted from DBLP computer science au-
thorship network. Applications of subnetworks include analysis and description
of potential collaborations, discovery of hidden relationships for instance in crim-
inology, and description of possible viral effects between given individuals.

The search task can be also seen as information retrieval: given some concepts
(“search terms”) return other concepts and relations that are maximally relevant
to connecting the given pair of individuals. For random graphs a natural choice
for the relevance of a subgraph is the probability (reliability) that the search terms
are connected in the subgraph [54, 106]. Relevant subgraphs are then more likely
to contain strong edges, shorter paths, and independent paths, but edges or paths
that add little to the connectivity of the search terms are not likely to be included,
reflecting the notion of relevance. Since the definition favours robust subgraphs
and thus alternative paths, the results have an implicit bias towards graphs with
more variety and less redundancy; this is also a desirable feature for information
search and data mining. Small, reliable subgraphs can be visualised, and they can
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Figure 5.1: An excerpt from a reliable connection subgraph between Rakesh
Agrawal and Jiawei Han. The original subgraph has 61 vertices (14 authors and
47 articles) connected by 100 edges. Here we show only the author vertices of that
graph; they are connected by an edge if the corresponding authors have at least
one common article neighbour (that is, they have coauthored at least one article)
in the original graph. Edge labels denote the number of coauthored articles.

be used as compact representations of large graphs for network analysis methods
that do not scale well.

In this chapter we discuss the aforementioned search problem on random
graphs formalised as the most reliable subgraph problem [54]. We first give the
problem definition and explain some associated concepts in Section 5.1. Efficient
polynomial-time algorithms are unlikely to exist for the problem, but it can be
solved efficiently on restricted cases as described in Section 5.2. For the general
case we review few heuristic algorithms in Sections 5.3, 5.4 and 5.5 following our
previous work [54, 56, 57]. Experimental evaluation of these heuristics is given
in Section 5.6.

5.1 Basic concepts

In this section we formally define the problem of finding the most reliable sub-
graph from a given random graph. We begin by introducing our random graph
model, the concept of network reliability and finally the subgraph extraction prob-
lem. We also describe a simple Monte Carlo approximation algorithm for estimat-
ing network reliability which is used extensively in later sections.

5.1.1 Random graph model

Let G = (V,E) be a graph with a vertex set V and an edge set E. A graph can be
either directed or undirected. If G is directed, the edge set E ⊂V ×V consists of
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ordered vertex pairs. Otherwise G is undirected and the edges are 2-subsets of E:
E ⊂ [V ]2. However, we make a distinction between them only when necessary as
most of the following applies equally to directed and undirected graphs.

We denote the set of vertices of a graph G by V (G) and the set of edges
by E(G). The number of vertices is denoted by |G| and the number of edges
by ‖G‖. The union between two graphs G1 = (V1,E1) and G2 = (V2,E2) is a
new graph H = G1 ∪G2 = (V1 ∪V2,E1 ∪ E2). Other set operations for graphs
are defined analogously. For notational convenience we treat paths and edges as
graphs in set operations. This makes it notationally easy to, for instance, add a
path P to a graph G by writing simply G∪P.

To consider reliability, or any probabilities on graphs in general, we need to
define a random graph model. In this chapter we use a standard Erdős–Rényi-like
random graph model where edges are considered random. Given a graph G =
(V,E) and probabilities pe for each e ∈ E, we assume that each edge e ∈ E exists
with probability pe or does not exist with probability 1− pe. Edges are assumed to
be independent. The random outcomes, or realisations, of G are subgraphs H =
(V,F)⊂ G, F ⊂ E, that can be generated by deciding each edge e ∈ E in turn by
flipping a suitably biased coin. The probability of obtaining a fixed subgraph H =
(V,F) is then

Pr(H) = ∏
e∈F

pe ∏
e∈E\F

(1− pe).

In addition to fixed subgraphs it is meaningful to speak about the probability
of observing a subset of edges. For instance, let P ⊂ E be a path (a sequence
of edges) in G. The probability that P exists in a realisation of G is simply the
product of the probabilities of its edges (cf. (4.7)):

Pr(P) = Pr(H : P ∈ H) = ∏
e∈P

pe ∏
e6∈P

(
pe +(1− pe)

)
= ∏

e∈P
pe. (5.1)

The existence of edges e 6∈ P is irrelevant here so their probabilities do not af-
fect Pr(P).

Our model differs from the classical Erdős–Rényi model by allowing varying
edge probabilities. In Erdős–Rényi model edges “appear” between any pair of
vertices with a fixed probability p. In our model probabilities pe depend on e, and
pe = 0 for all e 6∈ E. Diestel [26], among others, gives a rigorous treatment of
random graphs.

5.1.2 Network reliability

Now that we have defined our random graph model we can move on to reliability.
Let G be an undirected random graph with n vertices and m edges, and let U ⊂V
be a set of k terminal vertices. We review the six classical reliability measures
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as given by Colbourn [20]. First, k-terminal reliability Rk(G) is defined as the
probability that each of the k terminals in U can communicate in G; equivalently,
Rk(G) is the probability that there exists a path between all pairs of terminals.
When k = 2 this measure is referred to as two-terminal network reliability R2(G),
while the case k = n is known as all-terminal network reliability RA(G). We omit
explicit references to U as they are clear from the context.

These measures have natural counterparts for directed random graphs. One
vertex s ∈ U is chosen as the source vertex and the rest of the vertices U \ {s}
are target vertices. The directed version of Rk(G) is s,T -connectedness Ck(G);
it is the probability that there exists a directed path from s to all target vertices.
When k = 2 this measure is called s,t-connectedness C2(G). Finally, the directed
analogue of RA is known as reachability CA(G).

Reliability R(G) of a random graph G can be generally defined as the proba-
bility

R(G) = ∑
F⊂E

φ(F) ·
(
∏
e∈F

pe ∏
e∈E\F

(1− pe)
)

(5.2)

where φ : P (E) 7→ {0,1} is an indicator function defined for subsets F ⊂ E. Func-
tion φ, or reliability function, distinguishes working network states from failed
network states, and its definition depends on the chosen reliability measure. Equa-
tion (5.2) sums the probabilities of all network states that are considered functional
(or operational) according to φ. For example, by letting φ(F) = 1 if and only if
s and t are connected by at least one path in graph H = (V,F), (5.2) sums the prob-
abilities of all states where s and t are connected in G and we have R(G) = R2(G).

Exact computation of R(G) for general random graphs is difficult. A triv-
ial brute-force application of (5.2) would need Ω(2m) time. Graph simplifica-
tion and specialised combinatorial algorithms can cut the required time signifi-
cantly [20, 10], but no polynomial-time algorithm is known for computing the
reliability in general case. The existence of such algorithm is unlikely since re-
liability problems are #P-complete [131]. The complexity class #P corresponds
to counting problems where the output is the number of accepting computation
paths of a non-deterministic polynomial-time (NP) Turing machine [130]. For ex-
ample, consider NP-complete SATISFIABILITY (SAT) decision problem that asks
whether a given boolean formula has a satisfying truth assignment or not. Its cor-
responding #P-complete counting problem is #SAT that asks how many satisfying
truth assignments the given boolean formula has. Since counting is obviously at
least as difficult as deciding we have NP⊂ #P.

5.1.3 Crude Monte Carlo method

Monte Carlo sampling is an efficient approximation method for many computa-
tionally complex problems [68] including network reliability [42]. Since we use
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Monte Carlo sampling extensively we briefly review its basic principle here. In
the crude Monte Carlo method (CMC) for estimating network reliability we draw
N independent samples (realisations) Gi, 1 ≤ i ≤ N, from the random graph G.
Each realisation is generated by simulating the existence of each edge of G ran-
domly and independently. To estimate reliability R = R(G) according to (5.2)
we count the amount NC of those realisations Gi for which φ

(
E(Gi)

)
= 1. Then

R̃ = NC/N is an unbiased estimator for R with variance R · (1−R)/N [32]. See
Algorithm 5 for a pseudo-code description of a basic CMC. The algorithm can be
straightforwardly implemented to run in O(Nm) time.

Algorithm 5 Crude Monte Carlo (CMC)
Input: Random graph G = (V,E), reliability function φ : P (E) 7→ {0,1}, integer N
Output: Estimate R̃ for R(G) according to (5.2)

1: NC← 0
2: for i = 1 to N do {generate realisations Gi}
3: F = /0 {F is the edge set of Gi}
4: for all e = (u,v) ∈ E do
5: Choose random p ∈ [0,1)
6: if p < pe then
7: F ← F ∪{e}
8: if φ(F) = 1 then
9: NC← NC +1

10: return R̃ = NC/N

The method is called “crude” because the estimator’s relative standard error

reR̃ =

√
Var(R̃)
E(R̃)

=

√
R(1−R)/N

R
=

√
R(1−R)

R2N
=

√
1−R

R
· 1√

N

grows without bound when R→ 0. The same result holds for estimating fail-
ure probability 1−R in very reliable networks. Many sophisticated Monte Carlo
methods have been proposed to reduce the variance of the estimator [42, 32, 61]
including a FPRAS [67]. Since our primary purpose is not to estimate reliability
as accurately as possible but rather to extract a “reliable enough” subgraph, we
confine ourselves to the simple CMC.

5.1.4 The most reliable subgraph problem

The objective in the most reliable subgraph problem (MRSP) is to find the most
reliable subgraph of G with at most K edges [54]. As before, let G = (V,E) be a
random graph with n vertices and m edges, and let U ⊂ V be a set of k terminal
vertices where 2 ≤ k ≤ n. Let R ∈ {R2,Rk,RA,C2,Ck,CA} be the corresponding
reliability measure with respect to G and U , and let K ∈ N with 0 ≤ K ≤ m. The
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objective is to find a subgraph H∗ ⊂ G with at most K edges such that R(H∗) ≥
R(H) for all subgraphs H ⊂ G with ‖H‖ ≤ K:

H∗ = argmax
H⊂G
‖H‖≤K

R(H). (5.3)

Note that in the previous work on the MRSP [54, 56], the objective was to remove
K edges from G to get a subgraph H. Obviously this does not change the problem,
but is simply a matter of parametrisation.

We introduced the problem itself recently [54] and as such it has not been
researched a lot. However, the MRSP is closely related to the connection sub-
graph problem of Faloutsos and others [39] (see Section 4.3). The connection
subgraph problem has been since extended to handle multiple terminals, or query
nodes, by Tong and Faloutsos (center-piece subgraphs [126]), and Koren and oth-
ers (proximity graphs [75], Section 4.3). The underlying models and optimisation
problems in these settings are based on random walks and hence different from
the MRSP.

Kroese and others have independently considered a very similar and slightly
more general network planning problem [76]. In their graph model the edge
set E =V×V consists of all possible edges between vertices V , and each edge e∈
E has an associated cost ce in addition to probability pe. Given a set of termi-
nals U ⊂V the objective is to choose a reliable subnetwork H∗ ⊂G that connects
the vertices in U and is restricted to a given budget B:

H∗ = argmax
H⊂G

c(H)≤B

R(H), where c(H) = ∑
e∈E(H)

ce. (5.4)

By comparing (5.3) and (5.4) it is easy to see that the MRSP on a given random
graph G = (V,E) is a special case of this network planning problem. Let each
edge e ∈ E have a unit cost ce = 1, and let other edges e ∈ (V ×V ) \E have an
arbitrary large cost ce > K. Then the MRSP is equivalent to the network planning
problem with budget K.

Given the fact that exact calculations of R2,Rk,RA and C2,Ck,CA are #P-
complete problems, it is not surprising that the MRSP is likely to be computa-
tionally hard as well. The problem does not ask for the value of R(H) for the
chosen R and an optimal subgraph H. Despite this, the k-terminal undirected
MRSP is NP-hard.

Theorem 1. MRSP with R = Rk is NP-hard.

Proof. We give a polynomial time reduction from the NP-complete STEINER

TREE problem [45] to the MRSP. Let (G,U,B) be an instance of the STEINER
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TREE where G = (V,E) is a graph with positive edge weights, U ⊂ V is a set of
terminals and B ∈ N is a bound for the size of the tree.

Without a loss of generality we assume that all edge weights are equal to 1. We
transform G into a probabilistic graph H = (V,E) by letting pe = 1/2 for each e ∈
E. Next we find the smallest (that is, having the least number of vertices and
edges) optimal subgraph H∗ ⊂ H connecting the terminals, by solving the MRSP
for K = k−1, . . . ,m and checking the results in polynomial time. Obviously H∗ is
a tree; it is also a minimal Steiner tree. Assume to the contrary that there exists a
minimal Steiner tree T such that ‖T‖< ‖H∗‖. By construction, we have Rk(T ) =
1/2‖T‖> 1/2‖H

∗‖=Rk(H∗) which contradicts the optimality of H∗ since T is also
a subgraph of H connecting the vertices in U .

To complete the reduction we simply check if ‖H∗‖ ≤ B holds.

The complexity of cases where R ∈ {R2,RA} remains open, but we conjecture
that they are also NP-hard. The directed variants of the problem are probably
hard too, since the directed reliability problems are as hard as the corresponding
undirected problems [6].

The inherent difficulty of the problem is mostly due to two factors. First is the
combinatorial factor: there number of possible paths (subgraphs H) is exponen-
tial. In this respect the problem is similar to classical combinatorial problems like
TRAVELLING SALESMAN [45]. Another factor is the hardness of the reliability
calculation: it is difficult to even evaluate the reliability R(H) of a given solution
subgraph H yet to optimise it. Brute force approaches are therefore inefficient
even for relatively small input graphs.

In the following sections we review few algorithms for solving the MRSP. We
limit the discussion to two-terminal case, that is U = {s, t}, although some of the
algorithms have natural extensions to the k-terminal case as well. We give guide-
lines for such extensions where available. First we consider a special case where
the input graph is restricted and hence an efficient algorithm can be constructed
(Section 5.2). Then we proceed to the general case (Sections 5.3, 5.4 and 5.5)
where we use iterative and greedy approaches to limit the search space of pos-
sible solutions. We simplify the reliability calculations by MC approximation or
restricting the set of possible solutions to graphs for which the reliability can be
easily calculated. Most of the algorithms are computationally efficient and scal-
able for large scale graph mining—see Section 5.6 for experimental evaluation.

5.2 Algorithm for series-parallel graphs

It is most likely that there is no efficient algorithm for solving the MRSP in a
general case. However, we can construct a polynomial-time algorithm for solving
the two-terminal MRSP in an important special case where the input graph is
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series-parallel. The original algorithm was proposed by Hintsanen [54] and it
works by removing edges from the original graph (thus being in line with the
original definition of the MRSP). We give here a slightly modified variant that
builds a subgraph with at most K edges according to (5.3).

The class of series-parallel graphs is usually defined using series and parallel
composition rules [129]. For our purposes the following equivalent definition is
better. An undirected random graph G with specified terminals s and t is series-
parallel if it can be reduced into a single edge {s, t} by repeatedly applying the
following reductions:

• Series reduction: If G has a vertex v 6∈ {s, t} of degree two, v and its adjacent
edges e = {u,v} and f = {v,w} can be replaced with a single edge g =
{u,w} with pg = pe p f .

• Parallel reduction: If G has two parallel edges e = {u,v} and f = {u,v},
they can be replaced with a single edge g = {u,v} with pg = 1− (1−
pe)(1− p f ).

The specific sequence of reductions is irrelevant: if reductions are applied in any
order until no reduction is possible, the result is the single edge {s, t} [129]. Di-
rected series-parallel graphs can be defined analogously: series reduction can be
applied when both in-degree and out-degree of v is one, and parallel reduction can
be applied when both of the parallel edges have the same direction.

Let us introduce some terminology and notation before we describe the algo-
rithm. For an arbitrary edge set F ⊂ E let G[F ] be the subgraph edge-induced
by F . We denote the set of original edges (that is, edges in E) reduced into an
edge e by S(e); specifically f ∈ S(e), f ∈ E, if f occurs in the sequence of series-
parallel reductions that produced e. Initially we let S(e) = {e} for each e ∈ E.

Let e = {u,v} be an edge, either from E or obtained by a sequence of reduc-
tions. An i-edge subset S(e, i)⊂ S(e) is said to be an optimal solution for G[S(e)]
if G[S(e, i)] is the most reliable subgraph of G[S(e)] with i edges and terminals
u and v. In other words G[S(e, i)] is a solution to the MRSP for G[S(e)] with K = i
and U = {u,v}. Let RS(e, i) = R2(G[S(e, i)]) be the reliability of an optimal solu-
tion S(e, i).

The iterative definition of series-parallel graphs suggests an iterative, dynamic
programming algorithm for solving the MRSP given that an optimal solution can
be constructed from optimal solutions to smaller subgraphs. The following lemma
states that this is indeed the case:

Lemma 1. Let e and f be two edges in series or parallel, and let g be the edge
produced by the reduction of e and f . If S(e, i) and S( f , i) are the optimal solutions
for G[S(e)] and G[S( f )], where 0 ≤ i ≤ K, then optimal solutions S(g, i) can be
formed in O(K2) time for all i.



5.2 Algorithm for series-parallel graphs 73

Proof. Let i be fixed. Since S(g) = S(e)∪ S( f ) and S(e)∩ S( f ) = /0, an optimal
solution S(g, i) has j edges in S(e) and i− j edges in S( f ) for some 0 ≤ j ≤
i. If e and f are in series, we have RS(g, i) = RS(e, j) ·RS( f , i− j). Otherwise
e and f are parallel and we have RS(g, i) = 1−

(
1−RS(e, j)

)
·
(
1−RS( f , i− j)

)
.

An optimal solution S(g, i) can be found by simply enumerating all i possible
combinations of edge assignments and choosing one which maximises RS(g, i):

k = argmax
0≤ j≤i

{
RS(e, j) ·RS( f , i− j) if e and f are in series
1−
(
1−RS(e, j)

)
·
(
1−RS( f , i− j)

)
if e and f are parallel

S(g, i) = S(e,k)∪S( f , i− k) .

The solution can be found in O(i) time. By repeating the procedure for all i,
0≤ i≤ K, we obtain the solutions S(g, i) in O(K2) time.

To solve the MRSP for a series-parallel graph G, we repeatedly apply series
and parallel reductions until the graph is reduced into a single edge. At first we
let S(e,0) = /0, RS(e,0) = 0, S(e,1) = {e}, and RS(e,1) = pe for each e ∈ E.
This establishes an invariant: each e has optimal solutions S(e, i) for G[S(e)]
where i = 0, . . . ,min{|S(e)|,K}. We maintain the invariant by keeping track of
optimal solutions S(e, i) and their reliabilities for each edge e. The invariant, with
the definition of series-parallel graphs, guarantees that in the end we have an op-
timal solution to the MRSP for G. See Algorithm 6 for a concise pseudo-code
description.

At every iteration we identify a pair {e, f} of reducible edges. This can be
done in constant time by suitably augmenting the graph data structure. These
edges are replaced with a new edge g. By Lemma 1 it is straightforward to form
optimal solutions S(g, i) and maintain the invariant. Since each reduction effec-
tively removes one edge from G, after m−1 iterations only a single edge e remains
and S(e,K) contains an optimal solution for G. We have established the following
theorem:

Theorem 2. Let G = (V,E) be a series-parallel random graph with m edges. The
MRSP on G with R ∈ {R2,C2} can be solved in O(K2m) time, where 1≤ K ≤ m.

Note that the time complexity of the algorithm depends on K. In practical
applications K is usually significantly smaller than m so this is favourable. How-
ever, if K > m/2 it is beneficial to use the original algorithm [54] which works in
a top-down fashion by removing edges one by one, but it has a decreasing time
complexity O

(
(m−K)2m

)
with respect to K.
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Algorithm 6 Algorithm for series-parallel graphs with two terminals
Input: Random series-parallel graph G = (V,E), terminals {s, t} ⊂V , integer K
Output: Subgraph H ⊂ G such that ‖H‖ ≤ K and R2(H) is maximal

1: for all e ∈ E do {initialisation}
2: S(e,0)← /0, S(e,1)←{e}
3: RS(e,0)← 0, RS(e,1)← pe
4: for all i ∈ {2, . . . ,K} do
5: S(e, i)← /0, RS(e, i)← /0

6: while |E|> 1 do
7: Find two reducible edges e and f from G
8: Reduce e and f into g (and add g to E)
9: for all i ∈ {0, . . . ,K} do {see Lemma 1}

10: M←−∞

11: for all j ∈ {0, . . . , i} do
12: if e and f are in series then
13: r← RS(e, i) ·RS( f , i− j)
14: else
15: r← 1−

(
(1−RS(e, i)

)
·
(
1−RS( f , i− j)

)
16: if r > M then
17: k← j, M← r
18: RS(g, i)← r
19: S(g, i) = S(e,k)∪S( f , i− k)
20: return G[S(E,K)] {E has only one edge at this point}
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5.3 Simple algorithms for general graphs

The set of series-parallel graphs is a very restricted class of graphs, and in general
graphs are lot more complex. Unfortunately, as suggested in Section 5.1, the
computational effort required for an exact solution quickly becomes excessive. It
is most likely that one must content with approximate or heuristic solutions.

In this section we introduce two algorithms for solving the MRSP on general
graphs. Both algorithms are based on simple greedy strategies. The first one
prunes the graph one edge at a time until the graph has shrunk enough. The
second one incrementally adds paths one at a time to an initially empty graph.

5.3.1 Removing less critical edges

Recall from Section 5.1 that the reliability R ∈ {R2,Rk,RA,C2,Ck,CA} of a given
random graph G can be efficiently estimated by a Monte Carlo simulation (CMC,
Algorithm 5). Hence, in theory, one could solve the MRSP in a brute-force man-
ner by considering all possible K-edge subgraphs of G, estimating the reliabil-
ity of each such subgraph and choosing the best one. The algorithm would run
in Θ(

(m
K

)
Nm) time which is clearly intractable even for modestly sized graphs.

However, we can use CMC to estimate R(G−e), for each e ∈ E, where G−e
denotes G with an edge e removed. Edges with large values of R(G−e) are likely
less critical, so we use those values to guide a greedy heuristic. Algorithm 7
gives a pseudo-code description of the heuristic entitled Monte Carlo Pruning
(MCP) as it removes edges one by one from the input graph G. The algorithm
first estimates R(G−e) for all e ∈ E. It then iteratively removes m−K edges with
the highest R(G− e) values. If there are edges with a non-terminal endpoint of
degree one at the beginning of an iteration, we remove those edges first. Such
edges can be safely removed since they do not occur on any acyclic path between
the terminals.

MCP can be implemented in a straightforward manner to run in O(Nm2+m+
(m−K) logm) = O(Nm2) time where N is the amount of MC iterations. MCP
works on directed and undirected graphs with two or more terminals since any
valid reliability function can be used in the Monte Carlo estimation (Algorithm 5).

Although MCP is feasible for small graphs with up to hundreds of edges, the
dominating Nm2 factor in the asymptotic running time is unacceptable for large
graphs with thousands of edges or more. Another problem in MCP is its sensitivity
to small differences between R(G−e) values for different edges e. In large graphs
most of the true R(G−e) values tend to be close to R(G), and the accuracy of the
corresponding estimates is not sufficient to separate edges. In such cases MCP
removes edges almost by random. This deficiency can be avoided to some extent
by re-estimating R(G−e) values at each iteration or some intervals [56, 106]. We
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Algorithm 7 Monte Carlo Pruning (MCP)
Input: Random graph G = (V,E), terminals {s, t} ⊂V , integers K and N
Output: Subgraph H ⊂ G such that ‖H‖ ≤ K

1: for all e ∈ E do
2: C[e]←MC-estimate of R(G− e) with N iterations {See Algorithm 5}
3: Sort table C into descending order
4: H← G
5: while ‖H‖> K do
6: while there exists a vertex v ∈ H, v 6∈ {s, t} with degree 1 do
7: Remove v and its adjacent edge from H and C
8: if ‖H‖ ≤ K then
9: return H

10: Remove the first element (edge) e from C
11: Remove e from H
12: return H

e ∈ Gi e 6∈ Gi
φ(Gi) = 1 C11 C12
φ(Gi) = 0 C21 C22

Table 5.1: Monte Carlo contingency table. Different C values are the numbers of
realisations Gi where the corresponding event has been observed.

will return to this issue in our experiments.
The efficiency of Algorithm 7 can be improved to O(Nm) by modifying the

Monte Carlo sampling algorithm (Algorithm 5) to check the existence of each e ∈
E in each Monte Carlo realisation. Then a contingency table like Table 5.1
can be formed in O(Nm) time, from which we can readily estimate R(G− e) ≈
C12/(C12 +C22). This optimisation comes with a cost as the effective number of
MC iterations for estimating R(G− e) depends on pe. The accuracy of the es-
timation is the same as with Algorithm 5 using N · (1− pe) iterations. Another
problem is that if pe = 1 (or very close to 1), C12 and C22 are both zero and the
estimator is undefined. One possible solution is to separately estimate R(G− e)
for each such edge with Algorithm 5.

5.3.2 Collecting most probable paths

The next algorithm, Best Paths Incremental (BPI, Algorithm 8), is based on a
simple idea: find a set of the most probable, or best, paths between the terminal
vertices s and t, and let them span a subgraph. BPI adds best paths to an initially
empty solution subgraph until it has at least K edges. To have exactly K edges BPI
calls MCP to remove the possible excess edges. This is a somewhat arbitrary deci-
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sion: MCP might affect the subgraph adversely, especially for larger values of K,
due to the aforementioned problems. Optionally one can accept a slightly larger
subgraph or modify the algorithm to stop until all suitable candidate paths (up to
some limit) have been considered. We used MCP to make the results comparable
in our experiments.

Algorithm 8 Best Paths Incremental (BPI)
Input: Random graph G = (V,E), terminals {s, t} ⊂V , integers K, k0, and k1
Output: Subgraph H ⊂ G such that ‖H‖ ≤ K

1: H← /0

2: k← k0 {the initial number of best paths looked for}
3: while ‖H‖< K do
4: Let P be the set of k most probable s–t-paths sorted in descending order of proba-

bility
5: while ‖H‖< K and P 6= /0 do
6: Remove the first element (path) P from P
7: Add P to H
8: k← k · k1
9: return MCP(H, K)

The number of paths needed to span a subgraph of the desired size depends
on G. We used initially k0 = 2 ·K best paths. This number was chosen experimen-
tally and it usually gave a sufficient number of paths. If there are not enough paths
to span a subgraph, the algorithm restarts with a larger number k · k1 of paths. We
set k1 = 2 in our experiments.

Best paths can be found by any k shortest paths algorithm (see Section 4.3).
A multitude of polynomial-time algorithms for finding k shortest paths have been
proposed in the literature [33, 53, 111]. For our experiments we implemented
a straightforward extension to Dijkstra’s algorithm for finding k shortest sim-
ple paths between two vertices s and t. Instead of maintaining a single shortest
s–v-path for each vertex v ∈ V we keep a record of k shortest s–v-paths. The
time complexity of our implementation is O

(
(k2n2 + knm) log(kn)

)
. This could

be improved to O
(
kn(m+ n logn)

)
by Lawler’s algorithm [83]. The total time

complexity of the BPI (excluding the last MCP call) is bounded by O
(
K(k2n2 +

knm) log(kn)
)
, assuming that the chosen number of paths k is sufficient to span a

subgraph of desired size.
Note that the algorithm adds paths blindly in the sense that their effect on

the reliability is not evaluated. We show how to implement a greedy variant in
Section 5.6.6. The greedy variant produces more reliable subgraphs but has some
additional performance cost.

BPI can handle directed and undirected graphs without modification. Of
course the shortest path finding algorithm must be chosen accordingly. The situa-
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tion is trickier with more than two terminals as the notion of shortest path becomes
complicated. With RA (that is, all vertices are terminals) one could look for a se-
quence of spanning trees, or rooted arborescences in directed cases, ordered by
decreasing probability. These could be then substituted for the best paths in the
algorithm. With Rk the equivalent of best paths are Steiner trees. Finding optimal
Steiner trees is generally NP-hard, though by heuristics or approximations [110]
the problem may become tractable.

5.4 Constructing series-parallel subgraphs

As mentioned in Section 5.1.4, part of the difficulty of the MRSP is due to the
hardness of reliability calculation. But the cost of evaluating reliability can be
greatly reduced by considering series-parallel graphs. The next algorithm does
exactly that: it constructs a series-parallel subgraph H in a greedy and iterative
manner. Here, in contrary to the definition of series-parallel graphs in Section 5.2,
we use the following recursive definition using composition rules [129]:

1. An undirected random graph with two vertices s and t joined by a single
edge is series-parallel with terminals s and t.

2. If G1 and G2 are undirected series-parallel graphs with terminals {s1, t1}
and {s2, t2}, then so is multigraph H = G1 ∪G2 constructed by one of the
following operations:

(a) Identify t1 with s2, and let {s1, t2} be the terminals of H (series com-
position).

(b) Identify s1 with s2 and t1 with t2, and let {s1, t1} be the terminals of H
(parallel composition).

As with reduction rules in Section 5.2, directed series-parallel graphs can be de-
fined analogously. Series composition can be used if and only if t1 = s2, and
parallel composition can be used if and only if s1 = s2 and t1 = t2.

5.4.1 Algorithm overview

The subgraph H is first initialised to a single s–t-path. It can be, for example, the
most probable path according to (5.1). Then H is trivially series-parallel. Next,
we expand H by adding augmenting paths. We say that a u–v-path P in G is an
augmenting path if and only if H ∩P = {u,v}. In other words, augmenting paths
are paths between two vertices of H that visit vertices only in G \H except for
their endpoints.
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Since we restrict H to be series-parallel, we cannot use every possible aug-
menting path but only those paths P for which H ∪P is series-parallel. We call
such paths valid and their endpoints connectable. Let P be a set of valid augment-
ing paths of H. As H∪P is series-parallel we can efficiently decide which path P∗

gives the maximum increase in reliability:

P∗ = argmax
P∈P

R(H ∪P).

We will show later in Sections 5.4.2 and 5.4.3 how to find valid augmenting paths.
The basic Series-Parallel Augmentation algorithm (SPA, Algorithm 9) greed-

ily adds the best valid augmenting path P∗ to H until the required number of edges
has been reached or there are no valid paths available. Finally it calls MCP to re-
move the possible excess edges. As with the BPI algorithm, the same reservations
about the necessity of MCP apply here. We used MCP to keep results comparable
in our experiments, but this is not necessarily needed in practical applications.

Algorithm 9 Series-Parallel Augmentation (SPA)
Input: Random graph G = (V,E), terminals {s, t} ⊂V , integer K
Output: Subgraph H ⊂ G such that ‖H‖ ≤ K

1: Let H be the most probable s–t-path in G
2: while ‖H‖< K do
3: Let C be the set of connectable vertex pairs
4: if C = /0 then
5: return H
6: rmax← 0
7: for all (u,v) ∈ C do
8: Let P be the most probable valid augmenting path between u and v
9: r← R(H ∪P)

10: if r > rmax then
11: rmax← r
12: P∗← P
13: Add P∗ to H
14: return MCP(H, K)

A problem with series-parallel graphs is that they can be too restricted to pro-
duce good subgraphs. To alleviate this problem we can produce several differ-
ent smaller series-parallel graphs and output their union which is not necessarily
series-parallel. For example, consider a case where the first few iterations in Algo-
rithm 9 quickly grow the reliability of the subgraph H1 but the rest of the iterations
give only a marginal increase to the reliability of H1. In such case it could be ben-
eficial to stop the algorithm and start over using a different initial solution P 6⊂H1
to produce another subgraph H2. Finally, we simply combine the solutions to get
the final result H = H1∪H2.
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We next modify Algorithm 9 to implement these ideas (Algorithm 10). First,
building a series-parallel graph H is stopped as soon as R(H∪P∗)<C ·R(H) for a
given constant C ≥ 1 where H is the result subgraph under construction and P∗ is
the optimal augmenting path. Second, a new initial solution P 6⊂ H is chosen and
a new series-parallel subgraph H ′ is grown. The choice P 6⊂ H guarantees that
the new subgraph is not included in the current partial solution. This ensures an
increase in the size of the result, introduces variance and likely leads to a non-
series-parallel solution. We always choose the most probable such path P from
the set P of the k most probable s–t-paths in G.

Algorithm 10 Series-Parallel Augmentation with multiple initial solutions
Input: Random graph G = (V,E), terminals {s, t} ⊂V , integers K, ko and k1, real num-

ber C ≥ 1
Output: Subgraph H ⊂ G such that ‖H‖ ≤ K

1: H← /0

2: k← k0 {the initial number of most probable paths used as initial solutions}
3: Let P be the set of k most probable s–t-paths
4: while ‖H‖< K do
5: Let P ∈ P be the most probable path such that P 6⊂ H
6: if P = /0 then {increase k and restart}
7: k← k · k1
8: Let P be the set of k most probable s–t-paths
9: go to 4

10: H ′← P
11: while ‖H ′‖< K do
12: Let C be the set of connectable vertex pairs in H ′

13: if C = /0 then
14: go to 25 {break from loop}
15: rmax← 0
16: for all (u,v) ∈ C do
17: Let P be the most probable valid augmenting path between u and v
18: r← R(H ′∪P)
19: if r > rmax then
20: rmax← r
21: P∗← P
22: if rmax <C ·R(H ′) then
23: go to 25 {break from loop}
24: Add P∗ to H ′

25: Add H ′ to H
26: return MCP(H, K)

Algorithm 10 can be also used with C = 1. This ensures that H will eventually
have K edges. Algorithm 9 does not warrant that: for example, when K is close
to n a single (although as large as possible) series-parallel graph is likely to have
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less than K edges. We used Algorithm 10 with C = 1 as default SPA in our
experiments.

The number of initial solutions needed to construct a subgraph of the desired
size depends on the structure of G and the chosen constant C. More initial solu-
tions are needed with larger values of C. We used initially k0 = K most probable
(or best) paths. This value was chosen experimentally as with BPI. Algorithm 10
is restarted with a larger number k · k1 of initial solution paths if there are not
enough paths to construct a subgraph with the desired size. In our experiments,
we set k1 = 2.

There are a few non-trivial implementation issues in Algorithms 9 and 10.
Next, we will show how connectable vertex pairs can be found efficiently (line 3
or 12), how to find the most probable valid augmenting path (line 8 or 17) and
how to calculate the reliability of a series-parallel graph (line 9 or 18). We also
discuss the total time complexity of the SPA algorithms.

5.4.2 Finding connectable vertex pairs

Following the recursive definition of series-parallel graphs, a series-parallel sub-
graph H can be conveniently represented with a decomposition tree [129]. A de-
composition tree T of G is a binary tree where each leaf vertex represents an edge
of G. Inner vertices represent composition operations (series or parallel) and have
always two children. If an inner vertex represents a series composition we call it
S-vertex, otherwise it is P-vertex. For each vertex v∈ T the subtree rooted at v rep-
resents a series-parallel subgraph G(v) ⊂ G with two terminals denoted by τ(v).
If v is a leaf vertex, the subgraph is simply the edge stored at v and its terminals
are the endpoints of the edge. At each inner vertex u with children v and w the
associated composition operation joins the two subgraphs G(v) and G(w), and
the terminals of G(u) = G(v)∪G(w) are determined by the composition opera-
tion from the terminals of G(v) and G(w). See Figure 5.2 for an example of a
decomposition tree.

To quickly discover connectable vertex pairs we use a compressed decompo-
sition tree Tc that differs from a regular decomposition tree in two ways:

1. An inner vertex v∈ Tc has two or more children. The composition operation
of v is applied to all subgraphs G(ci) in succession where ci are the children
of v enumerated in order from left to right.

2. If a non-root vertex u ∈ Tc is S-vertex (or P-vertex), then π(u) is P-vertex
(S-vertex) where π(u) is the parent vertex of u.

We can easily convert a regular decomposition tree T to a compressed decom-
position tree Tc by recursively combining {u,π(u)} pairs of inner vertices having
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S

1 5

2 3

64

T

(a)

P [S, T]

S [S, T] S [S, T]

P [1, 4]

S [1, 4] S [1, 4]

S [S, 6] (6, T)

(S, 5) (5, 6)

S [1, T](S, 1)

(4, T)

(1, 2) (2, 4) (1, 3) (3, 4)

(b)

P [S, T]

S [S, T] S [S, T]

P [1, 4]

S [1, 4] S [1, 4]

(S, 5) (5, 6) (6, T) (S, 1) (4, T)

(1, 2) (2, 4) (1, 3) (3, 4)

(c)

Figure 5.2: A series-parallel graph (a), its decomposition tree (b) and its com-
pressed decomposition tree (c). Leaf vertices represent single edges, and inner
vertices represent series decompositions (S) or parallel decompositions (P). Ter-
minals of subgraphs rooted at inner vertices are enclosed in brackets.
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S1

S2 S3

(3, 4) (4, 9) P1 P2

(a)

S

S3(3, 4) (4, 9)

P1 P2

(b)

S

(3, 4) (4, 9) P1 P2

(c)

Figure 5.3: Compression of a (partial) decomposition tree. Root S-vertex S1 has
two children of type S (a). We compress the tree by replacing S2 with its child
edges (3, 4) and (4, 9) in (b), and S3 with its child compositions P1 and P2 in (c).

the same composition operation. Let us denote the children of a vertex u by λ(u).
Let u ∈ T be an inner vertex and suppose that a non-leaf child v ∈ λ(u) has the
same type (S or P) as u. We replace v with its children and repeat this for all
children of u having the same type. After repeating this procedure for all inner
vertices u ∈ T we have a compressed decomposition tree Tc. See Figures 5.2
and 5.3 for examples.

The relationship between the terminals in a compressed decomposition tree
and connectable vertex pairs is characterised by the following lemma:

Lemma 2. Let G be a probabilistic graph, T be a compressed decomposition tree
of G and {u,v} ⊂V be two connectable vertices. Then there exists a vertex x ∈ T
such that

{u,v}= τ(x) (5.5)

or
{u,v} ⊂

⋃
c∈λ(x)

τ(c). (5.6)

Proof. If (u,v) ∈ E, (5.5) holds trivially. Thus we assume (u,v) 6∈ E. Conse-
quently x is an inner vertex. Now assume the contrary of (5.6):

∀x ∈ T : {u,v} 6⊂
⋃

c∈λ(x)

τ(c). (5.7)

Let y be the highest vertex in T such that u∈ τ(y). Similarly let z be the highest
vertex in T such that v ∈ τ(z). Finally, let x ∈ T be the most recent common
ancestor of y and z. We separate two cases.

First suppose that x 6= y and x 6= z. Since T is compressed and y and z are as
high in T as possible, y and z are P-vertices. Furthermore, they lie in different
subtrees rooted at two children of x. Denote these children by c1 and c2. If x is
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P-vertex, then connecting u and v connects G(c1) and G(c2) so that G(x) con-
tains an embedded Wheatstone bridge. Thus G(x) is no longer series-parallel [29]
which is a contradiction. Conversely, if x is S-vertex, then c1 and c2 are P-vertices
connecting subgraphs formed by series compositions. If u and v are connected by
an augmenting path, it does not pass through any vertex in τ(c1). In such case
G(x) is not series-parallel, which is again a contradiction.

In the second case we have x = y or x = z. Let us assume x = y (the case x = z
is identical). Since T is compressed, z is P-vertex and π(z) is S-vertex connecting
two or more parallel compositions. Furthermore, τ(π(z)) = {a,b} does not con-
tain v, because z is as high as possible in T , so all s–v-paths go through a or b.
By (5.7), a 6= u and b 6= u. Hence if we connect u and v by an augmenting path,
we bypass a or b. Then G(y) is no longer series-parallel: a contradiction.

The significance of Lemma 2 is that the search for connectable vertex pairs in
a graph reduces to a simple recursion in the corresponding compressed decompo-
sition tree. This is summarised in Theorem 3.

Theorem 3. Let G be a series-parallel graph, and let T be a compressed decom-
position tree of G. Then the vertex pair collection

C =
{
{u,v} ⊂

⋃
c∈λ(x)

τ(c)∪ τ(x) : x ∈ T
}

(5.8)

is the set of all connectable vertex pairs of G.

Proof. By Lemma 2, all connectable vertex pairs of G are contained in C . We
now claim that C contains only connectable vertex pairs. To see this consider an
arbitrary vertex pair {u,v} ∈ C , and let x ∈ T be the corresponding vertex in (5.8).

Suppose first that x is a leaf vertex representing a single edge e ∈ E. The
endpoints of e can be connected with an augmenting path P. Clearly P forms a
new series composition which, in turn, forms a new parallel composition with e,
and G∪P is series-parallel. Hence u and v are connectable.

Now assume that x is an internal vertex. Since T is compressed there exist
child vertices y and z such that u ∈ τ(y) and v ∈ τ(z). Let P be an augmenting
path connecting u and v. Again, P forms a new series composition S. Assume first
that x is P-vertex. Then τ(c) are identical for all c ∈ λ(x), and S is a new series
component to the existing parallel composition of x. Conversely, if x is S-vertex,
we have a new parallel composition consisting of S together with a new series
composition of y,c1, . . . ,ck,z where ci are the children of x between y and z. In
both cases G∪P is series-parallel, and thus u and v are connectable.

We can implement line 3 of Algorithm 9 efficiently by maintaining a separate
compressed decomposition tree T for the solution subgraph H. Then all possible
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connectable vertex pairs can be found by recursively traversing T and forming the
vertex pairs according to (5.8). This can be done in O(‖H‖2) time: although the
size of T is O(‖H‖), in the worst case almost every vertex pair is connectable (for
instance when H consists of a single s–t-path). Finally, after expanding H with
the optimal augmenting path we need to update the compressed decomposition
tree. This can be done in constant time.

5.4.3 Finding the most probable augmenting path

After forming the collection of connectable vertex pairs we need to find the most
probable augmenting path for each connectable vertex pair. Let {u,v} ⊂ H be
such a pair and denote G\H by GS. A straightforward way to proceed is to attach
u and v into GS using only edges from a set F = {(x,y) : (x,y) ∈ E,x = u∨ x =
v,y ∈ GS}. The set F contains edges with one endpoint at u or v and another
in GS. The attachment can be done in O(m) time, and the most probable aug-
menting path connecting u and v can be then sought from the resulting graph. The
running time is O(m)+O

(
(‖GS‖+ |GS|) log |GS|

)
with a standard implementa-

tion of Dijkstra’s algorithm using priority queues. After repeating the procedure
for every connectable vertex pair the total running time is O

(
‖H‖2(m+(‖GS‖+

|GS|) log |GS|)
)
.

A few optimisations can be readily done to speed up the implementation. First,
the set of neighbour vertices of v, for each v ∈ H in GS, can be separately main-
tained to facilitate rapid attachment of v to GS. To minimise relatively expensive
shortest path computations we can cache all connectable vertex pairs for which
there was no augmenting path found. Such pairs can be skipped in later iterations
since successive graphs GS are strictly decreasing. Finally, if we use a single-
source shortest paths algorithm (such as Dijkstra’s algorithm), we can also cache
the shortest paths from u ∈H to all w ∈GS and consult these caches when finding
the most probable augmenting paths between u and v during the same iteration.
This effectively halves the number of shortest path computations per iteration.

5.4.4 Reliability calculation and overall complexity

The reliability of a series-parallel graph G is easy to calculate with the corre-
sponding (regular or compressed) decomposition tree T . We perform a post-order
traversal in T and in each vertex v ∈ T the reliability of the corresponding sub-
graph is calculated from the reliabilities of its children:

R
(
G(v)

)
=


pe if v is leaf
∏c∈λ(v) R

(
G(c)

)
if v is S-vertex

1−∏c∈λ(v)
[
1−R

(
G(c)

)]
if v is P-vertex

(5.9)
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Since the size of the decomposition tree is O(‖H‖) we can implement line 9 of
Algorithm 9 to work in O(‖H∪P‖) time. As an additional optimisation, reliability
calculation can be combined to the recursive search of connectable vertex pairs
(Section 5.4.2).

By substituting upper bounds O(‖H‖) =O(K) and O(‖H∪P‖) =O(m) to the
observations made in the previous sections we can formulate a very rough upper
bound O

(
K3(m+(n+m) logn)

)
for the total time complexity of the “basic” SPA

(Algorithm 9). This bound is not tight, but it demonstrates the significant effect
of K on the running time. In typical applications K is small and thus also the cubic
factor is small.

5.5 Monte Carlo algorithm

Our last algorithm for solving the MRSP is based on Monte Carlo sampling. The
algorithm, called Path Covering (PC), builds the result subgraph H incrementally
by adding s–t-paths one by one to an initially empty subgraph. In this respect
the approach is similar to the aforementioned SPA and BPI. PC uses two separate
phases, a path sampling phase and a subgraph construction phase, to limit the
search space of possible solutions and to ease the evaluation of subgraph reliabil-
ities.

In the path sampling phase PC gathers a relatively small set C of candidate
paths from the set of all s–t-paths in G. Then, in the subgraph construction phase,
PC aims to choose an optimal subset P of the candidate paths in C , according to
the edge budget K, and returns the subgraph G(P ) induced by paths in P . We say
that a set of paths P induces a graph G(P ) = (V,E), where V = {V (P) : P ∈ P}
and E = {e ∈ P : P ∈ P}. Here V (P) denotes the vertices of a path P.

Both phases address the same general problem: choose a subset P of avail-
able s–t-paths to induce a reliable subgraph. Furthermore, both phases use a sim-
ilar strategy to achieve this goal by iteratively and greedily maximising Pr(P ) =
Pr(

∨
P∈P P). Here Pr(P1∨ ·· ·∨Pk) denotes the probability that at least one of the

random events “path Pi exists” occurs, and Pr(P1 ∧ ·· · ∧Pk) denotes the proba-
bility that all of the random events “path Pi exists” occur. The main difference
between the phases is that the path sampling phase scales to large inputs with
exponentially many paths, while the subgraph construction phase produces a bet-
ter optimised subgraph G(P ) with a larger computational cost per path. We give
detailed descriptions of the two phases below.

5.5.1 Path sampling phase

In the first phase of Path Covering we use an iterative strategy to construct the
set C of candidate paths efficiently. The most probable (according to (5.1)) s–t-
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path is used as the initial candidate path. Then we augment C in each iteration
with a path P such that Pr(C ∨P) is approximately maximised. Let C denote an
event where none of the paths in C exists. Since

Pr(C ∨P) = Pr
(
C ∨ (C ∧P)

)
= Pr(C )+Pr(C ∧P)

we are looking for the most probable s–t-path P under the condition that all current
paths in C fail. Observe that finding P which maximises Pr(C ∧P) would require
evaluation of all cut events C , or sets of graph realisations where none of the
paths in C do exist. Since this is generally infeasible we use a crude but efficient
Monte Carlo procedure to simulate a single realisation where a cut event C occurs,
and then we find the most probable path P from this realisation. As before, we
randomly realise edges in each iteration according to their probabilities: an edge e
is decided to exist with probability pe and to not exist otherwise. A cut event C has
occurred if every candidate path has at least one edge that does not exist. Then we
search and add a new s–t-path to C , if one exists, and proceed to the next iteration.

Algorithm 11 Path sampling algorithm
Input: Random graph G = (V,E), terminals {s, t} ⊂V , number of candidate paths N
Output: Set C of s–t-paths

1: C ← the most probable s–t-path from G
2: while |C |< N do
3: Set all e ∈ E as “undecided”
4: for all P ∈ C do
5: for all e ∈ P do
6: if e has not been decided then
7: Decide e as successful with probability pe, failed otherwise
8: if e has failed then
9: continue from line 4 with next P

10: go to 3 {P exists}
11: Find the most probable acyclic s–t-path P from G (decide edges as necessary)
12: if P 6= /0 then
13: C ← C ∪{P}
14: return C

Algorithm 11 implements the path sampling phase. It is mostly looking for a
cut event C in each of its iterations. It realises edges during the process only when
needed and applies the following two rules to avoid unnecessary work. (1) When
checking if a path exists the rest of the path can be ignored as soon as a failed
edge is encountered (line 9). (2) When an existing path has been found the re-
maining paths can be ignored (line 10). When a cut C does occur we find a new
candidate path among the non-failed edges (line 11). Any shortest path algorithm
can be used (see Section 4.3). As an additional optimisation, edge decisions can
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be integrated into the path search and carried out whenever an undecided edge is
encountered. The algorithm stops when it has sampled N candidate paths where N
is given by the user. The choice of N is nontrivial. We will return to this issue in
Section 5.6.

A possible problem in the path sampling algorithm is that cut events C are
rarely found when Pr(C ) is high. In such cases the algorithm could require un-
acceptably many iterations before stopping. A more effective approach would be
to draw random realisations of G directly under the condition that no path in C
exists. Unfortunately, given the potential dependencies between paths in C it is
difficult to do this exactly.

As an alternative algorithmic variant consider the following approximation
where we deliberately “fail” edges of candidate paths until all candidate paths
have been broken. First, edges are realised until all paths in C have been decided,
even if some paths are found to exist. Then, if some paths exist, we iteratively and
greedily fail the edge e which intersects the largest number of existing paths in C
until no paths in C exist. If there are more than one such edge, we choose the one
with the smallest probability pe. This modification is implemented by removing
line 10 of the path sampling algorithm (Algorithm 11) and adding the cut sampler
(Algorithm 12) just before line 11 after the for loops.

Algorithm 12 Cut sampler
1: F ←{P ∈ C : P exists}
2: while F 6= /0 do
3: E(F )←{e ∈ P : P ∈ F }
4: e∗← argmaxe∈E(F ) |{P ∈ F : e ∈ P}|
5: Re-decide e∗ as failed
6: F ←{P ∈ F : e∗ 6∈ P}

5.5.2 Subgraph construction phase

In the second phase of Path Covering we take the set C of candidate paths gen-
erated in the first phase, choose a subset P ⊂ C having at most K unique edges
in total and return the subgraph G(P ) ⊂ G induced by them. The objective is to
choose a set P of paths that maximises the reliability R

(
G(P )

)
.

Exhaustive search and evaluation of all feasible subsets is intractable even
though the number of candidate paths C is assumed to be relatively small. We
relax the problem by maximising the probability Pr(P )= Pr(

∨
P∈P P) instead. It is

a lower bound of R(G
(
P )
)

and is easier to evaluate, but it still requires exponential
time in the worst case. Therefore we resort to Monte Carlo approximation of
probabilities. This choice also allows us to cast the path selection task as a set
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cover problem. We first describe a basic algorithm and then an improved version
with a special lookahead optimisation.

Basic path selection algorithm

In the basic path selection algorithm (Algorithm 13) we first draw N random real-
isations Gi of the whole graph G(C ) induced by the candidate paths (line 3). Let
C(P) = {i : P ∈ Gi} be the cover set of each path P ∈ C . Each cover set C(P)
contains the indexes of those Monte Carlo realisations where P did exist (line 5).
Given P = {P1, . . . ,Pk} the cover sets can be used to estimate Pr(P ) ≈ |C(P1)∪
·· ·∪C(Pk)|/N in O(kN) time. This is a substantial improvement over Θ(2k) time
required for exact computation.

Algorithm 13 Basic path selection algorithm
Input: Set C of s–t-paths, integer K
Output: A reliable subgraph H ⊂ G(C ) with at most K edges

1: P ← /0

2: Remove all paths with more than K edges from C
3: Generate N realisations Gi of G(C )
4: for all P ∈ C do
5: C(P)←{i : P ∈ Gi}
6: while K > 0 and C 6= /0 do
7: P∗← argmaxP∈C ŝ(P) {see (5.11)}
8: if ŝ(P∗) = 0 then
9: go to 5

10: K← K−w(P∗)
11: Add P∗ to P and remove it from C
12: Remove all paths P from C for which w(P)> K
13: return H← G(P )

With cover sets the path selection problem reduces to an instance of a spe-
cialised SET COVER problem—hence the name Path Covering—where the goal
is to choose a set of paths P such that |

⋃
P∈P C(P)| is maximised and ‖G(P )‖≤K.

This problem differs from the ordinary SET COVER in three ways: it does not re-
quire the entire universe (the set of all positive realisations) to be covered, it is
weighted (via budget K) and the weights are dynamic (different choices of paths
affect the cost of individual paths).

To solve the path selection problem we use a greedy approach where we add
one path at a time to an initially empty P (lines 6–12). We always choose the
best possible addition from C until the budget K has been exhausted. Here “best
possible” means the one adding most Monte Carlo realisations to the cover per
edge added to P . Formally, the cost w(P) of a path P is the number of new edges
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added to the solution subgraph G(P ):

w(P) = ‖P\G(P )‖.

The score s(P) of a path is defined as the ratio of the improvement in probability
over its cost:

s(P) =
Pr(P ∪{P})−Pr(P )

w(P)
. (5.10)

Note that both s and w can vary in each iteration. With cover sets the score func-
tion (5.10) has an estimate

ŝ(P) =
|C(P)\C(P )|

w(P)
, where C(P ) =

⋃
P∈P

C(P). (5.11)

Algorithm 13 uses (5.11) to choose the best possible addition (line 7) and calcu-
lates it for each P ∈ C in every iteration.

During successive iterations the enumerator in (5.11) approaches zero as the
proportion of realisations covered by paths in P increases. Eventually, though
rarely, all realisations may become covered so that ŝ(P) = 0 and the choice of
the remaining paths becomes arbitrary. In these situations our implementation
“restarts” by considering all realisations uncovered (line 9) and tries to recover
them with additional paths from C as before. We also remove paths that are too
expensive to be added to P (line 12).

Improved path selection algorithm

In an extreme case the cost w(P) of a path P becomes zero if all of its edges
have already been included in the solution. As an additional optimisation to Al-
gorithm 13 we implement a lookahead to take advantage of such situations: if the
addition of path P would make another path Q ∈ C completely included in G(P ),
the cover set C(P) is extended with the cover set C(Q). More formally, we say
that P dominates Q if an inclusion of P into P implies Q ∈ G(P ), and we denote
this relation by P�Q. Relation� is clearly reflexive and transitive. An improved
estimate of (5.11) with dominating paths is thus

ŝ(P) =
|CE(P)\C(P )|

w(P)
, where CE(P) =

⋃
Q∈C
P�Q

C(Q). (5.12)

In (5.12) we assume that all paths dominated by a path P are removed from C
after adding P to P .

Algorithm 14 describes the improved path selection algorithm. The basic prin-
ciple is the same as in Algorithm 13, but the score estimate is based on (5.12)
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instead of (5.11). Again we choose the best possible addition P∗ by calculat-
ing (5.12) for each P ∈ C in every iteration and add P∗ to the solution path set P .
Hence it is important to efficiently find out path dominance relations that con-
tribute to (5.12).

We implement efficient score calculation by explicitly storing dominance re-
lations between paths including transitively dominated paths. This makes it easy
to remove dominated paths and estimate scores for candidate paths. Initially there
are no dominance relations since all paths in C are acyclic. A path P can dominate
or become dominated by another path Q if and only if E(P)∩E(Q) 6= /0. Therefore
we update dominance relations in every iteration for all paths that edge-intersect
the selected path P∗. Note also that if some path becomes dominated by another
path, this relation will hold until the end of the algorithm.

Algorithm 14 uses several mappings for each P ∈ C . First, d(P) contains
all paths that are dominated by P, and initially we let d(P) = /0 for all P. Next,
n(P) denotes the set of new edges introduced by P to the solution subgraph G(P );
consequently |n(P)|= w(P). Initially we have n(P) = E(P) for all P∈ C . Finally,
edge-path mapping p(e) denotes the set of paths that contain e. Score calcula-
tion works in three passes (lines 21–40). It begins by updating all cover sets for
the remaining paths and checks for too expensive paths. Dominance relations are
updated in the second pass for all paths that edge-intersect P∗. In the final stage,
after cover and dominance relations are correct, path scores are re-estimated for
the remaining paths. Mappings d, n and p are updated during the score calcula-
tion.

5.6 Experiments

In this section we present an experimental evaluation of the heuristics MCP, BPI,
SPA and PC on general random graphs. Our primary objective is to establish scal-
ability and quality of the results. SPA and especially PC have many parameters
whose effects are also evaluated. We also consider MCPre, a variant of MCP,
which periodically re-estimates relevance values R(G−e) during the execution of
the algorithm to improve the accuracy of the estimates (see Section 5.3.1).

We use two data sources: Biomine from Section 4.1 and DBLP1 bibliography
database. All of our test data sets have been used in previous work [56, 57],
although we do a bit more data preprocessing in this study. Biomine data sets
represent a biological application domain, while DBLP data sets model a social
network. The data sets are discussed in detail below.

The algorithms have been implemented in a mixture of Python and C. Input

1http://www.informatik.uni-trier.de/{\textasciitilde}ley/db/
(referred on 25 February 2011)



92 5 RELIABLE SUBGRAPHS

Algorithm 14 Improved path selection algorithm
Input: Set C of s–t-paths, integer K
Output: A reliable subgraph H ⊂ G(C ) with at most K edges

1: P ← /0

2: Remove all paths with more than K edges from C
3: Generate N realisations Gi of G(C )
4: for all e ∈ E do
5: p(e)← /0

6: for all P ∈ C do
7: C(P)←{i : P ∈ Gi}
8: d(P)← /0 {d(P) is the set of paths dominated by P}
9: n(P)← E(P) {at each iteration, n(P) = E(P)\E

(
G(P )

)
}

10: ŝ(P)← |C(P)|/|n(P)|
11: for all e ∈ P do
12: p(e)← p(e)∪{P}
13: while K > 0 and C 6= /0 do
14: P∗← argmaxP∈C ŝ(P) {see (5.12)}
15: if ŝ(P∗) = 0 then
16: for all P ∈ C do {reset cover sets}
17: C(P)←{i : P ∈ Gi}
18: go to 13
19: K← K−w(P∗)
20: Add P∗ to P
21: R ←{P∗}∪d(P∗) {R contains paths to be removed}
22: for all P ∈ C \R do {update cover sets and remove too expensive paths}
23: C(P)←C(P)\C(P∗)
24: if |n(P)|> K then
25: R ← R ∪{P}
26: C ← C \R
27: for all P ∈ {Q ∈ C : n(Q)∩n(P∗) 6= /0} do {update dominance relations}
28: n(P)← n(P)\n(P∗)
29: d(P)← d(P)\R
30: D← /0 {D is the set of paths that dominate P}
31: for all e ∈ n(P) do {construct D iteratively}
32: p(e)← p(e)\R
33: if D = /0 then
34: D← p(e)
35: else
36: D← D∩ p(e)
37: for all Q ∈ D do
38: d(Q)← d(Q)∪{P}
39: for all P ∈ C do {update score estimates}
40: ŝ(P)← (|C(P)|+ |

⋃
Q∈d(P)C(Q)|)/|n(P)|

41: return H← G(P )
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and output graphs were simple text files. For performance analysis we have mea-
sured the total elapsed (wall clock) time in seconds. All tests have been run on
Ukko computing cluster2 running GNU/Linux operating system, with no com-
peting processes during the tests. Each node in the cluster is equipped with a
four-core Intel Xeon E5540 CPU running at 2.53 GHz. We did not implement
any explicit parallelism, so only one CPU core was used in each run.

5.6.1 Data sets

All our data sets are subgraphs from the complete Biomine graph or the complete
DBLP graph. We use subgraphs because the methods can not, at their current
form, handle millions of vertices and edges that would be required if complete
graphs were to be used. Both Biomine and DBLP graphs are stored in a relational
database management system from which we query the input graphs.

The input graphs were retrieved with Crawler that is the subgraph query com-
ponent of Biomine. Crawler is currently undocumented. Given an input graph G,
terminals s and t, and a vertex budget N it works roughly as follows. First Crawler
finds a large set of best (most probable) s–t-paths from G, and it records for each
encountered vertex v the probability p(v) of the best path between the terminals s
and t that contains v:

p(v) = max{Pr(P) : v ∈ P,P is an s–t-path}.

Then Crawler sequentially picks vertices with the largest p(v) values. Crawler
can be parametrised to fetch a fixed number of vertices from G or all vertices with
p(v) ≥ p for a given p ∈ [0,1]. Finally, Crawler returns the subgraph induced by
the chosen vertices.

All graphs were preprocessed in two steps. First, if there were any parallel
edges ei = (u,v), 1≤ i≤ k (k≥ 2), they were reduced into a single edge (u,v) that
was assigned a probability

p(u,v) = 1− ∏
1≤i≤k

(
1− p(ei)

)
.

Second, any edges (u,v) with p(u,v) = 1 were removed by contracting them.
Such edges are common in Biomine graphs and they pose a problem for MCP
(see Section 5.3.1). Any parallel edges resulting from edge contractions were
removed in the same way as above. Both of these steps removed about 10 % of
edges, but they did not alter the reliability of the graphs.

2The cluster is located at the Department of Computer Science, University of Helsinki.
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Biological graphs

Our biological data source is Biomine (Section 4.1). For the experiments we
designed three different scenarios, and then we extracted a few data sets for each
scenario (Table 5.2):

• Scenario 1 (Dys): The user is interested in a known relationship between
entities. The test case is built around a dyslexia gene vertex (Entrez gene
id 6091) and a dyslexia phenotype vertex (OMIM id 127700). We extracted
graphs of different sizes for this pair of vertices to test the methods on
graphs with different sizes.

• Scenario 2 (Conn): The user is interested in a putative relationship between
entities. For each data set in this scenario we selected two random vertices
with a shortest connecting path of exactly three edges, and then we extracted
a subgraph using these two vertices as query vertices.

• Scenario 3 (Gene): The user is interested in entities with no known connec-
tion. For each data set in this scenario we selected two random gene vertices
both having degree 10, and then we extracted a subgraph using these two
vertices as query vertices.

With Dys graphs we used Crawler probability threshold p = 0.01. The whole
Biomine graph was used as the input graph G for Crawler. For the scalability
test sets (Dys1–7) we used different strategies. Dys1 and Dys2 were queried with
different search radii (probability threshold p) to get graphs with different sizes.
Dys3–7 graphs were extracted from a large graph of 13,828 edges by randomly
removing roughly 2,000 edges at a time, so that every new smaller graph is a
subgraph of the previous one, i.e. DYS3⊂ DYS4⊂ DYS5⊂ DYS6⊂ DYS7.

Coauthor graphs

Our coauthorship data source is DBLP: a large computer science bibliography
index for publications from journals, conference proceedings, workshops and the
like. We view DBLP as a social network with authors and publications as vertices.
Each author is connected to articles that he or she has written. As a result we
got a bipartite graph with 2,076,911 author and publication vertices connected by
3,293,211 edges. Edge weights were assigned as in Biomine (see Section 4.2)
with parameters rq = 0.8 and α = 0.05. Crawler was used to extract subgraphs
from this bipartite graph.

As with Dys graphs we based DBLP graphs on three different scenarios each
with two terminal vertices. Rakesh Agrawal (177 links to publications in our
graph) and Jiawei Han (388 links) work on similar subfields of computer science
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Graph Terminals |V | |E| |EP| R
Dys1 Entrez gene 6091, OMIM 127700 64 146 121 .9180
Dys2 Entrez gene 6091, OMIM 127700 452 1,113 1,000 .9939
Dys3 Entrez gene 6091, OMIM 127700 1,775 3,818 3,391 .0809
Dys4 Entrez gene 6091, OMIM 127700 2,482 5,778 5,075 .3201
Dys5 Entrez gene 6091, OMIM 127700 3,142 7,835 6,926 .9197
Dys6 Entrez gene 6091, OMIM 127700 3,692 9,856 8,694 .9976
Dys7 Entrez gene 6091, OMIM 127700 4,163 11,861 10,412 .9998
Conn1 PubMed 11960552,

Entrez gene 2719
487 853 808 .9972

Conn2 GO 51605, Entrez gene 286971 989 2,727 2,496 1.0000
Conn3 Entrez gene 181788,

Entrez gene 169026
591 1,800 1,770 .9958

Conn4 UniProt P84751,
STRING ENSP297185

908 4,504 4,412 .6028

Conn5 UniProt Q8C3X4,
UniProt Q921W0

1,172 3,513 3,298 1.0000

Gene1 Entrez gene 284467,
Entrez gene 26231

16,811 51,672 47,813 .6819

Gene2 Entrez gene 389874,
Entrez gene 80067

3,274 10,655 8,799 .4800

Gene3 Entrez gene 54758,
Entrez gene 389874

13,875 41,377 37,961 .8118

Gene4 Entrez gene 55222,
Entrez gene 652968

3,815 10,082 9,170 .2452

Gene5 Entrez gene 728731,
Entrez gene 79645

3,781 10,922 9,999 .5258

Legend: |V | = number of vertices; |E| = number of edges in the unprocessed graph from Biomine
database; |EP| = number of edges in the corresponding preprocessed graph with no parallel edges
and edges with probability 1; R = reliability

Table 5.2: Biomine graphs used in the experiments.
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Graph Terminals |V | |E| R
DBLP1 Rakesh Agrawal, Jiawei Han 502 1,021 1.0000
DBLP2 Rakesh Agrawal, Jiawei Han 1,000 2,182 1.0000
DBLP3 Rakesh Agrawal, Jiawei Han 2,501 5,532 1.0000
DBLP4 Rakesh Agrawal, Jiawei Han 5,002 11,229 1.0000
DBLP5 Rakesh Agrawal, Jiawei Han 10,002 22,987 1.0000
DBLP6 Donald E. Knuth, Edsger W. Dijkstra 504 869 0.9868
DBLP7 Donald E. Knuth, Edsger W. Dijkstra 1,002 1,826 0.9959
DBLP8 Donald E. Knuth, Edsger W. Dijkstra 2,501 4,598 0.9990
DBLP9 Donald E. Knuth, Edsger W. Dijkstra 5,002 9,985 0.9991
DBLP10 Donald E. Knuth, Edsger W. Dijkstra 10,001 21,022 0.9997
DBLP11 Heikki Mannila, Mark de Berg 501 977 1.0000
DBLP12 Heikki Mannila, Mark de Berg 1,000 2,150 1.0000
DBLP13 Heikki Mannila, Mark de Berg 2,501 5,653 1.0000
DBLP14 Heikki Mannila, Mark de Berg 5,000 10,995 1.0000
DBLP15 Heikki Mannila, Mark de Berg 10,000 22,766 1.0000

Legend: |V | = number of vertices; |E| = number of edges; R = reliability

Table 5.3: DBLP coauthor graphs used in the experiments.

and represent strongly connected terminals. Heikki Mannila (171 links) and Mark
de Berg (157 links) in turn work on different subfields, and they likely are less
strongly connected in the graph than Agrawal and Han. Finally, Donald E. Knuth
(99 links) and Edsger W. Dijkstra (67 links) are prominent yet unrelated authors.

We extracted four graphs for each pair of authors (Table 5.3). The largest
graphs (DBLP5, DBLP10 and DBLP15) have approximately 10,000 vertices and
20,000 edges, and they were extracted with Crawler parametrised with the number
of vertices using the whole DBLP as an input graph. Smaller graphs (DBLP1–4,
DBLP5–9, and DBLP10–14) are sequentially extracted subgraphs from the larger
graphs with approximately 500, 1,000, 2,500 and 5,000 vertices. For example,
DBLP4 is a subgraph of DBLP5 extracted with Crawler using DBLP5 as the input
graph, DBLP3 is a subgraph of DBLP4, and so on.

One should note that this extraction strategy, while conceptually similar, pro-
duces very different graphs than the one used with Dys3–7 graphs. Dys graphs
were generated by randomly removing edges from larger graphs, whereas DBLP
graphs were extracted by Crawler. Since Crawler tries to preserve best paths be-
tween the query vertices we can expect DBLP graphs to have much larger sub-
graph reliabilities. This property will indeed become obvious in Section 5.6.3.
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5.6.2 Default parameters

The terminal vertices for each input graph are specified in Tables 5.2 and 5.3. Our
emphasis is on extracting small subgraphs ideally suitable for interactive explo-
ration, so the subgraphs should have at most dozens of edges. In most of our tests
we vary the result subgraph size from 10 to 250 edges to study the effect of the
subgraph size on reliability and running time. To study the effect of input graph
size and other parameters we extract a subgraph with a fixed size of 50 edges
(Biomine graphs) or 80 edges (DBLP graphs).

The last step of the BPI and SPA algorithms involves pruning the few excess
edges by the MCP algorithm. For this we used 1 million iterations, which should
be a safe choice without a significant computational overhead for an extracted
graph of at most 250 edges.

For SPA we used Algorithm 10 with C = 1: we did not use alternative initial
solutions except in the tests devoted to their effects. However, Algorithm 10 with
C = 1 does use more than one initial solution if required. (Recall that one initial
solution might not be enough to get a large enough subgraph.)

MCP was run with 1 million Monte Carlo iterations unless otherwise stated.
For MCPre we used different re-estimation strategies depending on the case. The
parameters are always specified with the results: the notation 10000/50 indicates
that 10,000 MC iterations were performed every 50 edge removals to re-estimate
the edge relevance values.

PC was run with the following parameters. In the first phase we produced
2 ·K candidate paths. In the second phase 10,000 iterations were done. The cut
sampling algorithm (Algorithm 12) turned out to work well and was used in all
tests. We justify these default choices in Section 5.6.6.

To control random variation we report averages over 50 independent test runs.
All reported reliability values (relative and absolute) are estimates calculated with
crude Monte Carlo method using 1 million iterations. For the sake of brevity most
of the results we show are representative samples.

5.6.3 Scalability

We first study the scalability of the methods in terms of the reliability of the pro-
duced subgraphs and the running times. For the experiments we used Dys3–Dys7
and all DBLP graphs (see Tables 5.2 and 5.3). Using BPI, SPA, MCP and MCPre
we extracted a subgraph of 50 edges from each Dys graph and a subgraph of
80 edges from each DBLP graph.

With Dys3–7 graphs BPI, SPA and PC produce similar reliabilities approxi-
mately in the range 0.04–0.75 (Figure 5.4a). Smaller input graphs result in smaller
reliabilities in the extracted subgraphs, since the original graphs have smaller reli-
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Figure 5.4: Reliabilities (a) and running times (b) on Dys3–7 graphs with a fixed
subgraph size (50 edges). Input graph sizes are given on x-axis.

abilities themselves due to random removal of edges while generating the graphs.
MCPre produces relatively poor results with reliabilities always below 0.25. MCP
without re-estimation fails completely, and in these tests it never returned a con-
nected subgraph (and thus does not appear in the figure). Actually, in all our tests
involving Dys graphs with over 1,000 edges all variants of MCP either failed to
connect the terminals or produced clearly inferior subgraphs compared to BPI and
SPA.

As mentioned in Section 5.3.1, the poor performance of MCP and to some ex-
tent of MCPre is because the true R(G−e) values approach zero when the number
of edges grows and the accuracy of the corresponding estimates is not sufficient
to separate edges. Consequently MCP removes edges almost by random. MCPre
partially avoids this deficiency by re-estimating R(G−e) values at some intervals,
but the effect seems to be weak.

The computational scalability of BPI, SPA and PC is good (Figure 5.4b). Run-
ning times are in the range 40–120 seconds. The Monte Carlo based alternatives
MCP and MCPre are clearly slower: their running times are between 110 and
1,300 seconds. These running times depend on the frequency of re-estimation and
the number of MC iterations used. However, even with these high computational
costs they were not able to produce reliable results.

DBLP graphs give similar results although there are couple of differences.
First, the subgraph reliability over all input graphs is almost constant as depicted
in Figures 5.5a, 5.5b and 5.5c. The result suggests that the sequential subgraph
extraction with Crawler preserves reliable subgraphs. Second, on DBLP11–15
graphs BPI is significantly weaker than other methods falling even below MCPre
on smaller input graphs. This is due to the fact that most of the best (most prob-
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able) paths form a small cut of three edges in these graphs. Consequently BPI
does not gather many independent connections between the terminals and the re-
liability stays low. PC, on the other hand, performs consistently well on all DBLP
graphs. MCPre fares again worse, and it is not robust as its performance tends to
decrease with larger input graphs.

Figure 5.5d is a representative depiction of running times for BPI, SPA and
PC on DBLP1–5 graphs. Elapsed times are reasonable, ranging from few seconds
on the smallest graphs to about 550 seconds on the largest graphs. As with Dys
graphs, MCPre becomes quickly infeasible when input graphs become larger.

Based on the results, BPI, SPA and especially PC clearly outperform the sim-
ple MCP and MCPre methods. This was the case in terms of the quality of the
results and the running time. The quality/time tradeoff can be adjusted by tun-
ing the parameters, but improving one will further degrade the other one. It does
not seem plausible that MCP methods could be useful in practise for large input
graphs. In contrast, BPI, SPA and PC are feasible when applied to input graphs
with thousands of edges. We emphasise that the reported running times are, for
the sake of comparability, from unoptimised implementations. With our opti-
mised implementation of the PC algorithm, for example, the largest input graphs
with 10,000 vertices and 20,000 edges can be handled in less than 10 seconds
(results not shown).

5.6.4 Performance on small data sets

While our emphasis is on scalability and large input graphs, it is also useful to test
the methods on a small data set. (1) For small data sets it is feasible for MCPre to
re-estimate edge relevance values after each edge removal. This is an interesting
reference for analysing the quality of the results of BPI, SPA and PC even if
the running time of MCPre may be too large for practical applications. (2) We
proposed to use MCP to fine tune the results of BPI and SPA to the requested
size, and we are interested in studying how well MCP works in this setting. From
now on we report relative reliabilities: how large the subgraph reliability is in
proportion to the (static) input graph reliability. This is useful for several reasons:
the input graph reliability is the absolute upper bound for the subgraph reliability,
thus giving an idea of the optimality of heuristics; normalised reliabilities lets us
compare results between different input graphs; and we can observe how relatively
small subgraphs can be used to capture a large proportion of reliability.

The performance of all methods is satisfactory when the task is to remove
edges from a small graph Dys1 (141 edges). The best reliabilities are obtained
by PC and MCPre where edge relevance values were re-estimated with 100,000
MC iterations after each edge removal (Figure 5.6a). However, this quality comes
at a substantial computational cost. The running times of MCPre 100000/1 (Fig-
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Figure 5.5: Subgraph reliabilities on DBLP1–5 (a) DBLP6–10 (b), and DBLP11–
15 (c) graphs with a fixed subgraph size of 80 edges. Running times on DBLP1–5
graphs are given in (d), results on other DBLP graphs were analogous. Input graph
sizes are given on x-axis.
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Figure 5.6: Reliabilities (a) and running times (b) for the small input graph Dys1
with 141 edges.

ure 5.6b) illustrate its dependence on the number of edges removed: a property
that makes the method unsuitable for large graphs.

BPI and PC have a consistent performance both in terms of reliability of the
result and computation time. SPA fares worse than BPI and PC, but it is still
able to produce relatively reliable subgraphs. The peculiar sharp rise on running
time with BPI and SPA depicted at the right end of Figure 5.6b is due to the
exponentially growing need for best paths: with BPI such paths span the solution
subgraph (Section 5.3.2), and with SPA they are used to initialise a (possibly
partial) solution (Section 5.4). This behaviour is especially likely to occur when
the subgraph size is close to the input graph size. Finally, the results indicate
that MCP is useful on small graphs when relatively few edges are removed. This
is good news for BPI and SPA that use MCP to adjust their initial result to the
required size.

5.6.5 Subgraph reliability

We now take a closer look at the performance of BPI, SPA and PC. The optimal
reliability is not known so we have to base the analysis mostly on comparisons of
the relative performances. We know, however, that the result has to be close to
optimal if the reliability is close to the (estimated) reliability of the input graph.
In such cases the relative subgraph reliability is close to 100 %. This is achieved
for very reliable graphs Dys2 (Figure 5.7a); Conn3 and Conn5 (Figures 5.8a and
5.8b); and DBLP2 (Figure 5.8e). In these cases the original graphs with over
1,000 edges can be reduced to circa 40 edges while maintaining a reliability of at
least 85 %.
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Figure 5.7: Subgraph reliabilities (a) and running times (b) for the medium-size
input graph Dys2 with 1,113 edges.

In all test cases PC gave consistently superior results. It attained approxi-
mately 90 % or better relative reliability in the largest subgraphs. BPI and SPA
were not as uniform in their performance. For the Conn and Dys2 graphs BPI
tends to give better results with a small but a clear margin (Figures 5.7a and 5.8b,
Figure 5.8a is an exceptional case). In these cases SPA with C = 1.1, 1.2 or 1.3
gives practically equal results to BPI (results not shown). With large values of C,
SPA reduces to BPI: the series-parallel components consist of a single path each.
This may happen already with the values of C we used, especially if there are very
strong connections between the query vertices.

For the random gene pairs (Gene1–Gene5) the situation is completely the op-
posite: in most cases SPA outperforms BPI by a large margin (Figure 5.8c gives
an example). The relatively poor performance of BPI is probably due to strong
correlation between the best paths with distantly connected vertices, and BPI fails
to acquire many independent connections in such cases.

In terms of running times, PC and BPI are the most efficient algorithms with
virtually the same running times (see Figures 5.9c and 5.9d for representative ex-
amples). There are exceptions, however. With some graphs BPI needs to gather
many paths when larger subgraphs are sought for (Figure 5.9a). Figure 5.9b rep-
resents a case where PC failed to rapidly sample paths on its first phase. In this
particular case the reason were small cuts in the input graph. Such situation is
difficult for Algorithm 11 even with cut sampler (Algorithm 12).

From Figure 5.8e we can see that a subgraph with 100 edges almost surely
connects Han and Agrawal. Interestingly, there are only 12 author vertices be-
tween them in the extracted subgraphs on average, and a total of 47 distinct in-
between authors over all 50 independent runs. Figure 5.1 is a simplified excerpt
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Figure 5.8: Subgraph reliabilities on Conn3 (a), Conn5 (b), Gene2 (c), Gene3 (d),
DBLP2 (e), and DBLP12 (f) graphs.
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graphs.
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of one such subgraph with 14 author vertices, where vertices are connected if
the corresponding authors have coauthored at least one article. On the contrary,
Mannila and de Berg (Figure 5.8f), and especially Knuth and Dijkstra (results not
shown), are less strongly connected.

PC is the most robust algorithm across the tests we performed. Its subgraphs
have consistently superior reliability and the running times are usually on par with
the fastest methods. Overall, PC can be regarded as a safe and the best choice for
most subgraph extraction tasks. The difference between SPA and BPI is not that
clear: with distantly connected vertex pairs BPI tends to give inferior results than
SPA, but with more strongly connected pairs BPI is usually clearly superior. SPA
seems to be slightly more robust though, but also noticeably slower than BPI.

5.6.6 Algorithmic variants and parameters

We next study variants of the SPA algorithm. It has the option of building several
different series-parallel graphs from different starting points and using their union
as the solution. By construction (Algorithm 10) this union is unlikely to be series-
parallel, and thus it is less restricted. Recall that the use of several initial solutions
is governed by parameter C > 1, although even in the case C = 1 Algorithm 10
may use more than one initial solution if the single series-parallel subgraph is not
large enough. As soon as the addition of any path fragment does not improve the
reliability of the solution by factor C at least the algorithm starts to build a new
series-parallel graph.

We experimented with values C ∈ {1.1,1.2,1.3} and compared them against
SPA with C = 1. The observation is that C > 1, especially C = 1.1, can signifi-
cantly improve the quality of the results (three out of five Conn graphs, one out
of five Gene graphs, DYS2 graph). However, the quality may also remain the
same (Conn4, DBLP7 graphs) or even decrease (all other 25 cases). See Figures
5.10a and 5.10b for two examples. In any case the use of several initial solutions
results in longer running times with C = 1.1 being the most expensive of the tested
variants (Figures 5.10c and 5.10d). The reason is that a lower value of C results
in fewer but longer constructions of series-parallel components than larger val-
ues. Our conclusion is that multiple starts with C = 1.1 may be useful to improve
the quality of the results, but since the results may also deteriorate and there is a
substantial increase in running time, SPA with C = 1 is a safer choice.

The PC algorithm has multiple parameters and algorithmic variants. We be-
gin by evaluating the cut sampling algorithm (Algorithm 12) which approximates
the basic crude Monte Carlo sampling (Algorithm 11). In all experiments the
approximation did not have a significant adverse effect on the reliability of the
result subgraph, regardless of the number of paths sampled (results not shown).
The cut sampler is useful when a large number of paths are sampled or when the
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Figure 5.10: Relative subgraph reliabilities and running times on Conn1 and
DBLP12 graphs with different values of C in SPA algorithm.
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Figure 5.11: Cut sampler (PC) against crude MC sampler on Conn4 and DBLP12
graphs.

input graph is difficult for the crude MC sampler. Two examples are given in Fig-
ure 5.11. Note that Conn4 is difficult even for cut sampler (cf. Figure 5.9b). On
DBLP12 graph the cut sampler has a linear time complexity, while the crude MC
sampler becomes infeasible when more than 750 paths are needed.

It should be noted that the basic sampler has a decent performance when the
number of sampled paths is less than a couple of hundred. This is usually enough
when small subgraphs are extracted, as we will see below. However, we found
that the cut sampler is in any case almost as fast as the crude sampler even when
the basic sampler performs well (results not shown). Thus it can be regarded as a
safe choice.

Both phases of PC try to choose an optimal set of paths, but the first phase
is constrained by the very large number of possible paths. The additional bene-
fit of using a second phase to fine tune the result on DBLP and Conn graphs is
consistent but not huge (Figure 5.12a). With Gene graphs the second phase adds
considerably to the result quality (Figure 5.12c). It seems that when the terminals
are less strongly connected, the effect of the second phase is larger. However,
this improvement comes with a clear additional cost in computation time (Figures
5.12b and 5.12d). Apparently the first phase can be used alone as an approximate
but extremely efficient algorithm when the terminal vertices are tightly connected.
This is especially evident in Figure 5.12b which shows that even the previously
problematic Conn4 graph can be easily handled with practically no loss in relia-
bility.

An alternative to the first phase would be to find the k best s–t-paths instead
of k sampled paths. With best paths the PC algorithm becomes a greedy variant
of BPI where the effect of each possible addition to the reliability is evaluated. In
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Figure 5.12: PC variants on Conn4 (a), (b) and Gene5 (c), (d) graphs.
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Figure 5.13: Estimated reliability means and 95 % confidence intervals with vary-
ing number of iterations in the second (path selection) phase of PC.

some cases using k best paths works equally well, but it can also perform signifi-
cantly worse. See Figures 5.12a and 5.12c for examples. Finding a large number
of best paths can become intractable without a specialised algorithm. For exam-
ple, our (arguably simple) implementation ran out of memory when more than
1,000 paths were sought.

Both phases of PC have a parameter with which to tune the reliability/time
trade-off: for the first phase, it is the number of sampled paths; for the second
phase, it is the number of Monte Carlo samples (realisations). According to our re-
sults, sampling 2 ·K paths seems a reasonable compromise between efficiency and
quality. Sampling 1,000 paths instead of 40–500 for subgraphs of 20–250 edges
produces only marginally better subgraphs (Figure 5.12c) with a significant in-
crease in running time (Figure 5.12d).

For the second phase of PC the default number of 10,000 MC iterations used
in our experiments seems to be large enough to produce accurate estimates for
path score calculations. Using smaller numbers of iterations can result in both
smaller reliabilities and larger variances, but the differences are relatively small
or negligible. Figure 5.13 gives two examples. The depicted mean reliabilities
and 95 % confidence intervals were estimated from a sample of 50 independent
PC runs with the same data and parameters. Subgraph size K was fixed to 80, and
the number of second phase iterations varied between 1000 and 100,000. Sample
means, sample standard deviations and the t-distribution were used to infer the
confidence intervals.
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5.7 Conclusions

As more and more domains of interest are best described as interlinked hetero-
geneous objects we can expect graphs to become data models of choice in many
situations involving multi-relational data [47]. Weighted and especially random
graphs can be used to naturally represent irregular, uncertain or probabilistic rela-
tionships.

Discovery of indirect links between vertices of a graph is a central task in
graph mining. Non-trivial, indirect links in random graphs can become partic-
ularly laborious to discover and analyse due to their potentially myriad depen-
dencies. Focusing on small, robust subgraphs with many independent and non-
redundant connections between the vertices of interest can greatly simplify the
situation. Reliable subgraphs can be expected to have these features.

We addressed the most reliable subgraph extraction problem (MRSP) [54].
It is a natural formulation of connection subgraph problem for random graphs,
where the objective is to extract a small subgraph that connects the given vertices
as strongly as possible. The MRSP is an inherently difficult problem: the search
space of possible solutions is large, and the evaluation of the objective function
(reliability) is difficult. It is unlikely that efficient exact algorithms for the MRSP
can be formulated so approximations must be used in practise.

We reviewed few recently proposed algorithms for the MRSP [54, 56, 57].
The algorithms are iterative and greedy: they start from some initial solution
and expand that (partial) solution towards a complete solution. The local search
strategies for choosing the best addition into the partial solution differ, and so do
the techniques for evaluating the quality of solutions. Table 5.4 summarises the
heuristics used in the algorithms.

Finally, we demonstrated the usefulness of the algorithms with experimental
results on graphs derived from a biological graph database Biomine and a com-
puter science bibliography database DBLP. The results suggest that the current
algorithms are able to efficiently find strong and independent connections using
only a fraction of edges from the original input graphs. These subgraphs are useful
for visualisation of large graphs, and they can be used as inputs for computation-
ally demanding network analysis methods that do not scale well. The visualisa-
tion aspect is important in the last step of the gene mapping pipeline (Figure 1.1).
With reliable subgraphs the investigator can find and evaluate the most relevant
connections between her DS genes and the phenotype, and consequently evaluate
possible hypotheses of functional relationship between them or even form new
hypotheses.

Efficient methods should be developed in the future to support multiple ter-
minal vertices—an important generalisation of the two-terminal problem we have
considered. We are in the process of extending the Monte Carlo framework to han-
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Algorithm Local search strategy Evaluation strategy
MCP Remove the least critical edge

at each iteration
MC estimation at the start
(MCP), or MC estimation at
specified intervals (MCPre)

BPI Choose the k-th best path at
k-th iteration

None

SPA Choose the best “valid” path at
each iteration

Explicit evaluation (solutions
are series-parallel graphs)

PC Choose the best path from a
subset of all s–t-paths

MC estimation, view the
problem as a variant of SET
COVER

Table 5.4: Comparison of heuristics used in the algorithms. “Local search strat-
egy” explains how the algorithm chooses the best possible addition at each itera-
tion. “Evaluation strategy” describes how the quality of an addition is evaluated.

dle multiple terminal vertices, and the necessary modifications have been sketched
by Kasari and others [69]. Future experiments include systematic tests to find out
robust parameter values that perform reliably over wide range of input graphs and
query nodes and extensive comparisons with related algorithms.

Another interesting research topic is the generalisation of connection sub-
graphs: how to define and find, in an unsupervised manner, strongly connected
subsets, or clusters of terminals? Although this question has gained some research
attention [126], the usefulness of reliability in this setting is an open question.
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Chapter 6

Conclusions

Researchers in life sciences, such as biology and medicine, are nowadays faced
with overwhelming amounts of raw data. Modern high-throughput technology
allows many magnitudes larger experiments than before resulting in larger and
more informative samples. Data analysis becomes more demanding as the size
of the data grows, and sophisticated analysis methods that are both scalable and
suitable for such multi-featured data are required.

On the other hand, investigators must gather vast amounts of data to tackle
genetics of complex diseases. A typical disease gene mapping project starts with
a genome-wide scan where several thousands of markers are genotyped from both
affected and healthy individuals. At first, an initial analysis is performed to find
a smaller set of candidate genes that show a statistical linkage to the disease. It
is likely that only a small subset of these genes has a real, functional effect on
the disease. As investigation of all candidate genes is infeasible due to limited
resources, further analysis has to be focused on the most promising candidate
genes.

In this thesis, we collected the aforementioned problems into a simplified
gene-mapping pipeline (Figure 1.1), and we proposed computational tools to im-
prove the efficiency of this pipeline. Our focus was on association studies, where
genes are mapped using samples from general population instead of utilising large
family pedigrees as in linkage studies. We argue that these tools and techniques
can bring more information (e.g. localisation power, accuracy, refined hypothe-
ses) for the same investment, thus improving the efficiency of the gene-mapping
effort.

In Chapter 2 we proposed a novel two-phase simulation procedure. It is use-
ful in the study design phase of the pipeline: with simulated data sets, one can
assess the power and localisation accuracy of a hypothesised study design and the
chosen computational tools. We demonstrated this in Chapter 3 by reviewing the
results of our empirical comparison between two study designs for association-

113



114 6 CONCLUSIONS

based gene mapping [55]. The results suggest that a population-based study
combined with statistical haplotyping can be much more powerful than the tra-
ditional family-based (trio) design, assuming equal genotyping costs. In other
words, increasing the sample sizes by genotyping more cases and controls instead
of parental genotypes, as would be required in a trio-based study, one can achieve
better statistical power to detect associations for the same genotyping cost.

Simulation tools are indispensable in method development as well. Our proto-
type simulator has been used in haplotyping and gene-mapping research [35, 88].
Although there are more recent simulators available which are feature-wise on a
par with or beyond our prototype implementation [102], the proposed two-phase
simulation model is still unique. It could be beneficial to implement the model
within some recent simulator.

For the refined analysis phase of the pipeline we introduced the Biomine graph
database (Chapter 4). Biomine is effectively a large index of publicly available
biological databases [116]. By representing the current biomedical knowledge
as a graph we can harness graph mining techniques to rank candidate disease-
susceptibility genes. Viewing biological concepts and their relations in a graph
form is not a new idea [11, 116, 48], but the probabilistic interpretation of edges in
Biomine is likely unique. This interpretation is intuitive as it reflects the implicitly
uncertain nature of the biomedical knowledge, and it lets us use random graph
concepts to model links and connections as we did in Chapters 4 and 5.

As demonstrated by the experiments in Chapter 4, the Biomine graph model
can be used to assess strengths and statistical significances of gene–gene and
gene–phenotype links. Further experiments suggest that Biomine can even be
used to predict gene–phenotype links [81, 36]. While these results are promising
they also show that the edge weighting should be adjusted to reflect the specific
needs of the applications. For example, when gene–phenotype links are sought,
the ranking and prediction accuracy can be improved by tuning the edge weight-
ing parameters [36]. These parameters could be learned automatically in a super-
vised manner for different applications. Another issue is how to choose the most
suitable definition for links and their strengths. Again, it might be that several
different approaches on different levels of detail and integration are needed, and
that they complement rather than compete with each other.

Finally, in Chapter 5, we focused on reliable subgraphs. Reliable subgraphs
are related to information search or discovery from graphs: the user initiates a
query by specifying some search terms, and she wishes to obtain a subgraph con-
taining concepts and relationships that are related to the search terms. Reliable
subgraphs are exploratory and useful in the very last steps in the gene-mapping
pipeline, where the investigator already has a small, ranked set of putative disease-
susceptibility genes or a novel hypothesis that a particular gene might have an
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effect on the phenotype she is studying. The “search engine” we envision would
now allow the scientist to search for relevant information connecting the gene and
the phenotype. The Biomine database combined with reliable subgraph extrac-
tion [57, 69], context-free grammar [115] or some other query engine forms one
such biological search engine.

We formulated the subgraph extraction problem as the most reliable subgraph
problem (MRSP), and we reviewed some recent algorithms for solving the prob-
lem [54, 56, 57]. The algorithms are restricted to two query vertices, or termi-
nals. In applications, such as gene mapping, connections between multiple ter-
minals are common [126]. We are currently focusing on algorithms to handle
such cases [69]. Another interesting future research direction is to modify the
MRSP to incorporate information about the connections into the problem. In its
current form, the reliability does not care about the “type” of the connection but
only about the probability of its existence. To emphasise certain kinds of connec-
tions it could be beneficial to limit the types of allowed connections, for exam-
ple by restricting the allowed paths to have only a certain length or certain types
of edges. Especially in k-terminal cases this is highly nontrivial. Possible so-
lutions include probabilistic context-free grammars [115] and probabilistic logic
programming [106].

The usefulness of the proposed tools in real-life gene-mapping projects is yet
to be established. Note that our abstract gene-mapping pipeline (Figure 1.1) is
idealised and each real gene-mapping project is unique. Thus it is probably not
useful to try to fit a particular project into this idealised form, but use the individual
tools separately where applicable instead. Especially the gene–phenotype link
mining and reliable subgraphs could be utilised in this manner.

Although we focused primarily on gene mapping in this thesis, the applicabil-
ity of link mining and reliable subgraph techniques (Chapters 4 and 5) is clearly
not limited to genetics. Indeed, exactly the same machinery and algorithms were
applied both to Biomine and DBLP bibliography databases in the experiments of
Chapter 5. This experience suggests that extending the proposed frameworks to
new domains is viable and the applications are yet emerging.
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Genetics glossary

This glossary is directly based on previous work [125] and included here with
permission1. The material has been revised and expanded for this thesis.

Allele An alternative form of a gene or a marker. See also
Mutation.

Association study Association studies try to find correlation of presence of a
disease or a trait with presence of certain marker alleles at
the population level. Compare with Linkage study.

Base pair (bp) A pair of complementary nitrogenous bases (adenine and
thymine or guanine and cytosine) in a DNA molecule.
Also, the unit of measurement for DNA sequences (for
example 200 bp).

Case–control study
(population study)

A study design where two unrelated samples are used.
Other sample consists of cases (e.g. individuals with a
disease phenotype) and another one consists of controls
(individuals without a disease phenotype). Compare with
Family-based study.

Chromosome A single DNA molecule containing genes (and markers)
in linear order. In humans 23 pairs of chromosomes, each
pair containing one chromosome from each parent, carry
the entire genetic code.

Coalescent A statistical model for a genealogy of a sample of
sequences (e.g. chromosomes).

Complex disease,
complex trait

A disease or trait whose phenotype is affected by many
genes and environmental factors. See also Disease model.

Crossing over,
crossover

The interchange of segments between pairing homologous
chromosomes during meiosis.

1Courtesy of Päivi Onkamo, Department of Biosciences, University of Helsinki.
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Diploid Diploid cells have two homologous copies of each
chromosome. One of the copies is inherited from the
mother and the another from the father. Diploid
organisms, such as humans, have diploid cells. Compare
with Haploid.

Disease gene
mapping
(localisation)

The act of mapping a disease-susceptibility gene to a
specific location on some chromosome. See also
Association study and Linkage study.

Disease model The number of genes, environmental factors and
interactions which affect the disease susceptibility for a
certain disease. Disease with genetic contribution may be
monogenic (Mendelian one-gene disease), oligogenic
where just a few genes are involved, or polygenic with
several genes with weak effects each, for example.

Disease-
susceptibility (DS)
gene

A gene which is suspected to be linked to a disease
phenotype. Carrying a certain allele or alleles of a
disease-susceptibility gene increases the statistical
probability to develop that disease. See also Genetic
association.

Family-based
study

A study design where samples consist of familial entities
(from trios to complete pedigrees). Linkage studies are
family-based. Compare with Association study.

Founder
population

A relatively small (100–1,000) set of individuals that
formed a new population in history.

Gene Basic element of heredity that determines traits by coding
for proteins.

Gene mapping The act of mapping genes to specific locations on
chromosomes. See also Disease gene mapping.

Genetic association Correlation of presence of a disease or a trait with
presence of certain marker allele(s) (or alleles at genes)
observed at the population level.

Genetic drift Change in the frequency of an allele in a population over
time due to random sampling.

Genome A complete collection of organism’s hereditary
information.
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Genotype The particular alleles present at a specified locus in an
individual.

Haploid Haploid cells have only a single copy of each
chromosome. Asexually reproducing organisms and the
gametes of sexually reproducing (diploid) organisms are
haploids. Compare with Diploid.

Haplotype A string of alleles from genes or markers which are
located closely together on the same chromosome and
which tend to be inherited together. See also Linkage.

Haplotyping The act of inferring parental origins (phase) of haplotypes.

Identity by descent
(IBD)

Two chemically identical alleles are identical by descent
when they have been inherited from a common ancestor.
See also Identity by state.

Identity by state
(IBS)

Any two copies of an allele which are chemically
identical. They are not necessarily inherited from the
same ancestor. See also Identity by descent.

Isolated population A relatively young, usually geographically distant
population formed by a set of founders in a recent history
which has not been significantly affected by immigration
from another population(s). Isolated population has
generally less genetic variation than the general
population from which it originated (founder effect). See
also Founder population.

Linkage The tendency of genes in proximity of each other to be
inherited together. The closer the loci, the greater the
probability that they will be inherited together.

Linkage
disequilibrium
(LD)

A non-random association between alleles at separate loci.
Alleles that occur together at population level more often
than can be accounted for by chance are said to be in
linkage disequilibrium. Linkage disequilibrium often
indicates that the loci are physically close to each other on
the chromosome.

Linkage study Linkage studies try to find correlation of presence of a
disease or a trait with presence of certain marker alleles at
the family (or pedigree) level. Compare with Association
study.
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Locus (plural loci) The specific site of a particular gene or marker on its
chromosome.

Marker A gene or a stretch of non-coding DNA sequence whose
alternative forms (alleles) can be reliably detected by
genotyping technologies.

Marker map The set of markers chosen for some particular mapping
study.

Meiosis Cell division that produces reproductive cells in sexually
reproducing organisms. The nucleus divides into four
nuclei each containing half the chromosome number
(leading to gametes in animals and spores in plants).

Mendelian trait A trait that is regulated by a single locus and shows a
simple Mendelian inheritance pattern. See also Disease
model.

Morgan (M),
centiMorgan (cM)

A length of a chromosomal segment in which an average
of 1 crossover occurs per generation. One centiMorgan
(cM) is 1/100 M. In humans 1 cM is equivalent, on
average, to 1 million base pairs of DNA.

Mutation A heritable change in DNA sequence. Possible changes
include single nucleotide polymorphisms (SNPs), short
tandem repeats (STRs), deletions and inversions.
A particular mutation is recognised as an allele.

Pedigree A family tree diagram which shows the genetic history of
a particular, often multigenerational, family.

Penetrance The probability of expressing a trait (e.g. a disease) when
carrying a particular variant of an associated gene (e.g. a
disease-predisposing mutation).

Phase The parental origin of a haplotype or chromosome.

Phenocopy An individual expressing a phenotype with environmental
instead of genetic basis.

Phenotype The observable and measurable characteristics of an
organism, e.g. presence of a disease, which may or may
not be genetic. See also Penetrance and Phenocopy.

Population A group of organisms of the same species relatively
isolated from other groups of the same species.
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Population model A mathematical model of population and its
characteristics that vary over time such as size, expansion
and/or decline rates, migration and substructures
(subpopulations).

Prevalence The proportion of affected individuals in the given
population at a given time.

Proband An individual with a genetic disorder or other specific
phenotype when this leads to the investigation of the
individual’s family.

Pseudo-control Hypothetical control individual whose genotype consists
of non-inherited parts of parental genotypes.

Recombination The process by which offspring derive a combination of
genes (or markers) different from that of either parent.
Occurs by crossing over during meiosis.

Selection A process in which individual organisms that possess
favourable traits are more likely to survive and reproduce.

Single nucleotide
polymorphism
(SNP)

An allele that differs only in a single base pair.

Trio, triplet An offspring and the parents (family trio).

Wild type allele A hypothetical “standard”, or “normal” allele at a given
locus. Contrast with a “non-standard”, or “mutant” allele.
See also Mutation.
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[78] Zoé Lacroix, Louiqa Raschid, and Maria-Esther Vidal. Efficient techniques
to explore and rank paths in life science data sources. In Erhard Rahm,
editor, Data Integration in the Life Sciences, First International Workshop,
DILS 2004, pages 187–202, Leipzig, Germany, 2004. Springer.

[79] Tarja Laitinen, Mark J. Daly, John D. Rioux, Paula Kauppi, Catherine
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