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1. Introduction

The exploration of the phase diagram of QCD and its thermodynamics are challenging prob-
lems and central goals of lattice simulations at finite temperature and density. See [1] for a review.
In this work we present Monte Carlo results for the thermodynamics ofSU(N) gauge theories with
number of colors,N = 2, ...,6, in 2+1 dimensions. These theories are closely related with thosein
3+1 dimensions and are more numerically feasible. We focus on the confined phaseT < Tc and
study thermodynamic variables such as the trace of the energy-momentum tensor, pressure, energy
and entropy density using the integral method. We also investigate scaling properties withN of
the different observables and compare our results with the predictions obtained assuming that the
thermodynamics of the system could be described as a gas of free glueballs. We shall show that
a relevant improvement in the comparison near the critical point is obtained including also higher
orders in the glueball spectrum and assuming for these termsa bosonic string description.

2. Thermodynamics on the lattice

Before discussing the thermodynamics ofSU(N) lattice gauge theories in 2+ 1 dimensions,
we sketch some basic thermodynamics relations in the continuum. From the partition function
Z(T,V) we get the free energy density as,

f =−T
V

logZ(T,V) , (2.1)

whereT is the temperature andV is the spatial volume. In the thermodynamic limit the pressure is
related to the free energy density as,

p=− lim
V→∞

f . (2.2)

In the following we will assume to have a large, homogeneous system, so that the pressure can be
identified as minus the free energy. Once the pressure is calculated as a function of the tempera-
ture p(T), the other thermodynamics variable are derived. For example, the trace of the energy-
momentum tensorε −2p is,

ε −2p
T3 = T

∂
∂T

( p
T3

)

. (2.3)

The energy densityε = T2 ∂
∂T (p/T) is then obtained by adding 2p/T3 to this result while the

entropy is given by,

s=
ε + p

T
=

∂ p
∂T

. (2.4)

On the lattice the temperature and volume of the thermodynamic system are determined by the
lattice sizeNτ ×N2

s and the lattice spacinga,

V = (aNs)
2 , T =

1
aNτ

. (2.5)

In this work, we perform a non-perturbative study ofSU(N) Yang-Mills theories withN =

2,3,4,5,6 colors regularized on a finite lattice, with lattice spacing a, with Ns points along the two
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space-like directions andNτ points along the time-like direction. We use the Wilson action for a
genericSU(N) gauge group,

SW(Uµ(x)) =∑
P

S(UP) , S(UP) = β
(

1− 1
N

ReTrUP

)

, (2.6)

whereP denotes one of the 3Nτ ×N2
s plaquettes on the lattice andUP is the product of theUµ -

matrices (withµ = 0,1,2) around each 1× 1 plaquette. On the lattice the partition function is
given by,

Z =

∫

∏
x,µ

dUµ(x)exp(−SW(Uµ(x))) . (2.7)

In the continuum limit eq. (2.6) becomes the standard Yang-Mills action provided that,

β =
2N
ag2 . (2.8)

In 2+1 dimensionsg2 has dimensions of mass and sets the scale.

Although in principle all thermodynamics variables can be calculated from the free energy
density, in practice, a direct computation of the partitionfunction on the lattice is not possible.
Here we use the integral method of Refs. [2, 3], as in Ref. [4].We first calculate the action, i.e.,
the derivative of the partition function with respect to thebare couplingβ . Up to an integration
constant, resulting from the lower integration limitβ0, the pressure is then obtained by integrating,

p(β ,Nτ ,Ns)

T3 = N3
τ

∫ β

β0

dβ ′∆S(β ′,Nτ ,Ns) (2.9)

where in 2+1 dimensions

∆S(β ′,Nτ ,Ns) = 3〈P0〉β −〈Ps+2Pτ〉β . (2.10)

HerePs,τ denote the expectation values of space-space, space-time plaquettes, respectively andP0

is the plaquette value on symmetric latticesN3
s . Using eqs. (2.9) and (2.10) we can write the trace

of the energy-momentum tensor (2.3) as,

ε −2p
T3 = T

∂
∂T

( p
T3

)

= N3
τ ∆S

(

β
(

T
Tc

)

,Nτ ,NS

)

T
dβ
dT

. (2.11)

In order to obtain eq. (2.11) as a function ofT/Tc, whereTc is the critical temperature of the
continuum theory, we need to relateT/Tc to β , for any value ofN,

β = β (T/Tc) . (2.12)

In practice,T dβ
dT is determined through a parametric fit (similar to the one performed in [5] for

SU(3)) but for genericN. A good choice forβ0 [5] is β0 = β (T/Tc = 0.6), after checking from the
measurements thatN3

τ times the integrand in (2.11) is negligible at this temperature.
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3. SU(N) gauge theories at large N: scaling properties

Let us investigate the large-N limit of eq. (2.12) inSU(N) gauge theories in 2+1 dimensions.
To do so we need to relate some dimensionless ratios that in this limit become constant [6, 7, 8],
say,

m0√
σ

= 4.108(20)+
c

N2 + ... ,
Tc√
σ

= 0.903(3)+
0.88
N2 + ... , (3.1)

wherec is a constant. Here
√

σ is the square root of the string tension at zero temperature in the
continuum theory.

Considering also that, if we keepg2N fixed,β scales asN2 (2.8) and from [6, 7]
√

σ
g2N

= 0.1975− 0.12
N2 + ... , (3.2)

we get
√

σ =
0.395N2

aβ
− 0.24

aβ
+ ... . (3.3)

Combining these expressions we obtain the dependence ofβ in terms of the temperatureT. To get
β (T), it is particularly convenient to set the temperature scaleusing the

√
σ/Tc ratio. To the first

order inβ we have

T
Tc

=
T√
σ

√
σ

Tc
= T

aβ
(0.395N2−0.24)

(

0.903+ 0.88
N2

) (3.4)

and using eq. (2.5) gives,

β = Nτ
T
Tc

(

0.357N2+0.13−0.211/N2) , (3.5)

which for N = 3 givesβ = 0.34 (to be compared with the expression given in Bialas et al. [5],
β = 3.3Nτ

T
Tc
+1.5+O(1/Nτ), which givesβ = 0.33). Combining Eq. (3.5) with the data from [8]

to get the correction to the scaling in the large-N limit we obtain,

β = Nτ
T
Tc
(0.357N2+0.13−0.211/N2)+ (0.22N2−0.5) , (3.6)

which gives the dependence ofβ on the temperatureT up to a first order correction to be used in
eq. (2.11).

4. Numerical results and discussions

We are now ready to evaluate the trace energy-momentum tensor in eq. (2.11) and check the
validity of the scaling dependence in eq. (3.6) by plotting the right hand side of eq. (2.11) vs.
t ≡ T

Tc
. This plot is expected not to be dependent onN (and also onNτ).

The numerical simulations were performed using the Chroma library [10] plus our own pro-
grams (forSU(2) andSU(4)). We evaluated∆S for Nτ = 6 (and for SU(2) and SU(3) also for
Nτ = 8) and spatial volumesN2

S such that the aspect ratio was alwaysNs/Nτ ≥ 8. In agreement
with Ref. [5], we may safely assume that, in this temperaturerange, this condition is enough to
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Figure 1: Left:The trace of the energy-momentum tensor vs.t = T/Tc for SU(N = 2,3,4,5,6). Right:
Magnified view, of the same, in the low temperature region.
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Figure 2: The trace of the energy-momentum tensor normalized to the lattice Stefan-Boltzmann (SB) limit
vs. t = T/Tc.

eliminate finite size effects in the spatial directions. A detailed description of our results and of the
algorithms we used will be reported elsewhere [13].

We report in fig. 1 our estimates for the trace of the energy-momentum tensor. TheSU(3) data
are in perfect agreement with the one in Ref. [5]. Below the critical temperatureTc there is a good
scaling withN. AboveTc, the different curves split up and they appear to be ordered according to
the high temperature scaling law for the value ofN. See fig. 2 for the gauge groupsSU(3,4,5,6).

As mentioned in the introduction our main goal was to comparetheT < Tc data with a glueball
gas model. We performed this comparison in three steps. First we assumed the gas to be dominated
by the lowest glueball state, then we included all the glueballs below the two-particle threshold (for
which very precise numerical estimates exist) and finally, following the suggestion of [11], we try
to compare our data with the whole glueball spectrum, assuming for the glueballs an ansatz inspired
by the effective bosonic string model. Details on the calculations can be found in [13].

The pressure associated with a single non-interacting, relativistic particle species of massm
reads,

p=
mT2

2π ∑ 1
k2 exp

(

−k
m
T

)

(

1+
T
km

)

(4.1)

From Eq. (4.1) we can reconstruct all thermodynamics quantities as explained earlier. In particular,
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the trace of the energy-momentum tensor (2.3) can be writtenas

ε −2p
T3 =

m2

2πT2 ∑ 1
k

exp
(

−k
m
T

)

. (4.2)

This observable is particularly suited for this comparisonsince it can be calculated by numer-
ical simulations without being integrated overβ (see Eq. (2.11)). From the above equation we
obtain:

∆S=
m2a2

2πβNτ
∑ 1

k
exp

(

−k
m
T

)

. (4.3)

For the first two stages of the comparison we used the numerical values of the glueball masses
reported in [9]. Given the precision of the data it is mandatory to keep into account scaling correc-
tions in this comparison. The most effective way to do this isto rewritem/T as

m
T

=
m√
σ

√
σ

T
=

m√
σ
(aNτ

√
σ) , (4.4)

and then use the scaling functions reported in [9]. We write here these corrections explicitly in the
SU(3) case, for the lowest massm in the case of a lattice sizeNτ = 8 (the generalization to any
value ofN is straightforward). Using,

a
√

σ =
3.367(50)

β
+

4.1(1.7)
β 2 +

46.5(11.0)
β 3 , (4.5)

and m√
σ = 4.329(41) we obtain,

m
T

= 8×4.329×
(

3.367
β

+
4.1
β 2 +

46.5
β 3

)

. (4.6)

Higher masses can be treated in the same way, using the data for the ratiosmi/
√

σ reported in [9].
We compare the results of this analysis with the data for the trace of the energy-momentum tensor
in fig. 3 for N = 2 andN ≥ 3. The blue and red lines correspond to the inclusion of the lightest
mass and the first eight masses, respectively. It is easy to see that these fits fail to reproduce the data
and suggest the necessity of taking into account the full spectrum of glueballs using for instance a
string inspired ansatz.

To compare our results with the bosonic string predictions for the Hagedorn spectrum (in the
same spirit as in Ref. [11] in 4d) we extended to arbitrary dimensions the computation of the
density of states of the closed bosonic string (following [12]).

We found the following expression,

ρ̃d−2(M) =
(π

3

)d−1 1
TH

(d−2)
d
2−1

(

TH

M

)d

eM/TH . (4.7)

Inserting this expression in eq. (4.2) we found a remarkableagreement with the data, even in the
region near the critical transition [13]. This comparison is reported in fig.3-left forSU(2) and in
fig. 3-right forN ≥ 3.

We think that this type of analysis (which we plan to further improve in the future) will give
us the opportunity to test the string inspired glueball models (like for instance the Isgur-Paton one
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Figure 3: Comparison between contribution of the glueballs spectrum, the string predictions with respect to
the trace energy-momentum tensor ofSU(2) (Left) andSU(N ≥ 3) (Right).

[14]) and also to better understand the many non trivial features of effective string models which
have been up to now addressed only looking at observables related to the interquark potential or to
the width of the flux tube.
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