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Abstract

In this thesis the current status and some open problems of noncommutative

quantum field theory are reviewed. The introduction aims to put these theories

in their proper context as a part of the larger program to model the properties of

quantized space-time. Throughout the thesis, special focus is put on the role of

noncommutative time and how its nonlocal nature presents us with problems.

Applications in scalar field theories as well as in gauge field theories are pre-

sented. The infinite nonlocality of space-time introduced by the noncommutative

coordinate operators leads to interesting structure and new physics. High energy

and low energy scales are mixed, causality and unitarity are threatened and in gauge

theory the tools for model building are drastically reduced. As a case study in non-

commutative gauge theory, the Dirac quantization condition of magnetic monopoles

is examined with the conclusion that, at least in perturbation theory, it cannot be

fulfilled in noncommutative space.
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Chapter 1

Introduction

Noncommutative quantum field theory is an approach to describe physics in

quantum space-time. It is a part of the larger program to combine quantum me-

chanics with general relativity that has so far been unsuccessful in leading to a

consistent theory. The object of this chapter is to give on overview of the program

of quantum gravity and to fit noncommutative quantum field theory in the appro-

priate context. As the problems connected with the special role of time constitute

a major part of this thesis, the problem of time in quantum gravity in general is

briefly commented on.

1.1 The need for quantum gravity

We live in quantum space-time. To believe this we only need to accept the

basic principles of general relativity and quantum mechanics. Combined with the

standard model of particle physics these two theories constitute the simplest and

most accurate description we have of the world around us. They seem to be able to

explain all of the experiments done to date, with the exception of the dark matter

observations by a particle theory1.

Yet most physicists share the view that a more fundamental theory is needed

– a theory that in appropriate limits would give both general relativity and quan-

tum mechanics, and would provide us with a consistent description of physics in

1Of course the mechanism for the accelerated expansion of the universe is still much debated,
but at least in principle the dark energy explanation given by the cosmological constant in general
relativity is able to account for it.
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2 Introduction

the regime where neither theory can be neglected, a theory of quantum gravity.

An intuitive way to understand the discrepancy of the two theories is to consider

Einstein’s equations2

Gµν + Λgµν = 8πGT µν . (1.1)

The essential meaning of (1.1) is that the form of the gravitational field, i.e. that

of the curved space-time, is given by the energy-momentum content of that space-

time. Quantum mechanics tells us that the energy-momentum content is quantized,

so then must be the left hand side of the equation. Hence, we live in quantum space-

time.

The scale on which the quantum effects of gravity become important is extremely

small. Combining the fundamental constants in a meaningful way to give a unit of

length we have

λPl =

√
G~
c3
≈ 10−33cm . (1.2)

λPl is called the Planck length, and the corresponding energy scale the Planck scale.

It is the small value of the Planck length that has allowed us to explain so much of

nature without the need for a theory of quantum gravity – it has not so far been

possible to probe such scales by experiment. Intuitively, as further explained in

section 2.1, it can be thought of as the radius of the smallest volume of space-time

we can observe. In some models it is thus the scale of “chunks of space”, the building

blocks space-time is made of. Similar intuitive explanations why the Planck length

is thought to give a fundamental length scale can be found in [1].

1.2 Theories of quantum gravity

Schematically, the idea of noncommutative field theory3 is to introduce fuzziness

of space-time in terms of space-time uncertainty relations of the form

∆x∆y ∼ θ ∼ λ2
Pl . (1.3)

This is done by imposing commutation relations for coordinates just as is done in

the quantization of phase space in quantum mechanics. This uncertainty can be

2The speed of light c and the Planck constant ~ will be, as usual, set to 1 for the entire thesis.
Factors of c and ~ will be reinserted if needed.

3The structure and motivation of noncommutative field theories is presented in detail in chapter
2.



1.2 Theories of quantum gravity 3

interpreted as a minimum measurable quantum of area. There does not appear

a minimum length scale as such, just as there is no minimum scale in quantum

mechanics. One direction can be infinitely well localized as long as the conjugate

coordinate in infinitely nonlocal.

The clearest, in principle testable, experimental signature of these models is the

breaking of Lorentz invariance. Using astrophysical as well as accelerator experi-

ments one can place constraints on the scale of Lorentz invariance violation, thus

constraining the value of the parameter θ in (1.3). Noncommutative field theories

fit integrally in the grander scheme of quantizing gravity and have been connected

with many other approaches including string theory and loop quantum gravity. The

approaches to quantum gravity are numerous; an overview of the achievements and

problems of current models can be found in [2].

String theory. By far the most effort in quantum gravity research to date has

been put to the study of string theory [3]. By replacing points as the basic build-

ing blocks of space-time by one-dimensional strings, these theories aim to regulate

the divergences in quantum field theory, as well as to describe a much fuller phe-

nomenology with the help of the added degrees of freedom. String theory implies

the existence of some exotic new physics such as supersymmetry and extra dimen-

sions, which we hold the hope of finding already with the large hadron collider

(LHC).

Apart from being the most studied field in quantum gravity, string theory is

most important to the study of noncommutative field theory since it was shown

in [4] (see also [5]) that in the low-energy limit of type IIB string theory with

an antisymmetric Bij background one recovers a field theory in noncommutative

space. As it further differentiates the theories with noncommutative time from

those with the usual commutative time variable, it is to be considered the main

motivation for the latter part of this thesis, which is concentrated on applications

with commutative time. String theory as a motivation for noncommutative field

theories will be further discussed in section 2.2.

As string theory is based mainly on the lessons learned from particle physics,

it is often claimed that it fails to incorporate the insights of general relativity.

Since it is based on perturbation theory, a fixed background is required to do those

perturbations on. The perturbations then allow the background to change but

the general covariance requirement of general relativity still fails to be fulfilled –
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string theory is background dependent. To circumvent the problem of background

dependence, various non-perturbative approaches are being developed.

Loop quantum gravity. Much of the activity in constructing a non-perturbative

theory of quantum gravity has concentrated on loop quantum gravity, or LQG for

short [6, 7]. Unlike the particle-physics inspired approach of string theory, it uses

the principles of general relativity as a starting point. The name derives from the

generally covariant loop states, which were found to be solutions to the Wheeler-

DeWitt equation, the “wave-equation of the universe”.

In three dimensions LQG has provided a consistent quantization of general rel-

ativity with quantized area and volume operators. There is much progress also in

the four-dimensional theory, but a consistent treatment, especially of the Lorentzian

version, is lacking. A major attraction of LQG models are the big bounce scenarios

of loop quantum cosmology, that allow for a workaround for the problems of the

big bang singularity.

Three-dimensional loop quantum gravity has been shown to be equivalent to

certain types of noncommutative theories [8], again highlighting the connection of

different approaches to quantum gravity. Being generally covariant however, it is

to be expected that LQG can only be connected to Lorentz invariant formulations

of noncommutative space-time. These models, as discussed in chapter 3, have

problems with unitarity, causality and energy-momentum conservation and thus

for the more mathematically consistent noncommutative models string theory is to

be considered as the main motivation.

Other models. The phenomenology of noncommutative quantum field theory is

sometimes probed through its connection with doubly special relativity (DSR) [9]

(and vice versa), as the structure of DSR has been shown to arise naturally in some

noncommutative models [10]4. By continuity, DSR and LQG have been shown to

be related in 2+1 dimensions. In DSR quantum mechanics is extended by simply

adding, in addition to the maximum velocity of special relativity, a fundamental

observer-independent length scale, usually l ∼ λPl. Conceptually, DSR starts with

4Both 2+1 -dimensional LQG and DSR are connected to the so-called κ-Poincaré models,
and not to the simpler canonical noncommutativity considered in this thesis. The connections
therefore point merely to qualitative similarities.
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the assumption of unbroken Lorentz invariance familiar from special relativity. Con-

sequently, as with LQG, it is connected to the Lorentz invariant noncommutative

models with all of their problems.

Another similar construction is the very special relativity (VSR) of Glashow and

Cohen [11], again shown to be related to noncommutative quantum field theory [12],

giving further possibilities for phenomenological predictions. The connection with

VSR also provides insights for the mechanisms by which the Lorentz group could

be broken at high energies.

1.3 Problem of time

One of the standing problems in quantum gravity theories that has sparked its

fair share of philosophical and conceptual discussion is the problem of time [6,13,14].

The problem typically arises in the canonical approaches to quantum gravity, since

a specific “time coordinate” is needed to perform the quantization. As we are then

quantizing the generally covariant field equations of general relativity, invariant

under the group of diffeomorphisms Diff(M) of the space-time manifold M, a

notion of time needs to be introduced in some consistent manner.

There are various ways to introduce time – theories are commonly grouped into

those where time is introduced before quantization, after quantization and those

where it is not introduced at all at the fundamental level, the so-called timeless

approach. In the timeless approach time emerges from the fundamental degrees of

freedom in the theory as a phenomenological parameter. The motivation behind

the timeless constructions is manifest in the Wheeler-DeWitt equation [15]

Ĥ Ψ = 0 , (1.4)

where Ψ is a functional of field configurations on all of space-time, the “wave-

function of the universe” and Ĥ is the Hamiltonian constraint arising in the canon-

ical quantization of general relativity. In the simplest interpretation this leads to a

static universe, far removed from our everyday experience. As one of the proponents

of the timeless approach, Julian Barbour, puts it:

“Unlike the Emperor dressed in nothing, time is nothing dressed in

clothes.”
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We are used to working with Poincaré invariant quantum field theories, com-

monly taking Lorentz invariance to be a prerequisite for a physically sensible theory.

Due to this one often conjectures that also space is emergent, giving rise to emergent

space-time. However, there are also approaches where time is taken to be different

from the spatial directions as the only emergent coordinate [14], thus renouncing

the generally covariant space-time picture at the Planck scale.

As the low-energy limit of string theory, noncommutative quantum field theory

lives in a fixed, flat background space-time with a noncommutative algebra for the

position operators. Thus there appear no problems related to general covariance –

we are not performing a quantization of general relativity. However, as the differ-

ences between models with a noncommutative time coordinate and those with only

spatial noncommutativity are introduced in chapter 3, it is not hard to convince

oneself that also in the models of canonically noncommutative space-time time truly

is special. In this sense the role of time on these deformed space-times is reminiscent

of the problem of time in quantum gravity in general.

1.4 Experimental searches

Since physics is ultimately about experiments, the test that any theory of quan-

tum gravity should face is to make predictions that are, at least in principle, mea-

surable. Apart from the black hole entropy law and a few other constraints equally

far from any possible measurements with current methods, today’s theories are not

doing too well when it comes to predictions.

As the Planck scale (1.2) is extremely low due to the weakness of the gravi-

tational interaction, any direct experimental tests of quantum gravity are difficult

to conceive. However, there are quantum gravitational effects susceptible to mea-

surement even on the scales of current experiments, and especially in some of the

projects currently in construction or planning. As this section is only intended to

serve as context, it will certainly lack detail and depth. For more information see

the recent review [16] and references therein.

The main arenas for quantum gravity experiments are astrophysical observa-

tions, collider searches and cosmology. As quantum gravitational effects are ex-

pected to be most important in areas of high curvature, black holes and the early

universe provide the most interesting testing grounds.
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Astrophysical observations are the most important in detecting violations of

Lorentz invariance, a particularly important effect in noncommutative quantum

field theory. A review of the experimental signatures connected with noncommu-

tative field theory can be found in [17]. Using the bounds on Lorentz invariance

violation from experiments an upper limit on the noncommutativity parameter θ

can be deduced, usually clearly higher than the square of the Planck length leaving

room for speculation. For example, in [18] the bound

θ ∼ (∆x)2 .
(
10−24cm

)2
, (1.5)

is presented and is much higher than λ2
Pl. Similar limits have been obtained also in

different contexts; for example by consider the Lamb shift in the hydrogen atom [19]

a limit slightly weaker than (1.5) was derived.

As the LHC has begun operations at CERN late last year, theorists are eagerly

waiting for any clues on physics beyond currently tested energies. However, as the

LHC will only access distance scales down to about 10−19m, the focus for quantum

gravity is mainly on ideas where the Planck scale is lowered for one reason or

another, and on features of string theory required for mathematical consistency,

such as supersymmetry. A lowered Plank scale typically appears in theories with

extra dimensions. If gravity is allowed to access the hidden dimensions it could

on lower energies appear to be weaker, thus leading to the “hierarchy problem” of

the fundamental interactions. If these dimensions were probed by the LHC, effects

of gravity could be directly observed. The creation of tiny black holes would be

a particularly intriguing prospect, as it would allow us to study the theoretically

already well-mapped black hole phenomenology.

In cosmological experiments the focus has for long been on the analysis of the

cosmic microwave background (CMB). Any preferred direction in the CMB would

be direct evidence for the breaking of Lorentz invariance, but no such effect has so

far been observed. It seems that the CMB fails to give us any hints to the nature of

quantum gravity, but there is hope that it will confirm the existence of primordial

gravitational waves that would certainly do just that. There are currently many

projects aiming to measure the polarization of the CMB to higher accuracy in the

search for tensorial modes, so-called B-modes, in the polarization pattern – a direct

proof for the existence of these waves. In the upcoming gravity wave experiments

(LIGO, VIRGO, LISA and others) it is hoped that the spectrum of these waves

could be accessed. As they probe the earliest moments of our universe, the data

would certainly shed light on the Planck scale properties of nature.



Chapter 2

Noncommutative space-time

In this chapter the structure and motivation of noncommutative quantum field

theory are reviewed. The deformation quantization of space-time is the framework

that will be used in the rest of the thesis and thus, in a way, defines everything that

is to follow. The two main motivations given for different types of noncommuta-

tivity should be understood fully and kept in mind whenever studying theories of

noncommutative space-time.

2.1 Quantum space and quantum time

The study of noncommutative quantum field theory originated already in the

1940’s by Heisenberg, Snyder and Yang [20–22] with the hope of regulating the

ultraviolet divergences that plague quantum field theory. By the success of the

renormalization program these works were soon forgotten. However, with the works

of Connes, Drinfel’d and Woronowicz [23], the idea re-emerged in the 1980’s as a

way to model the quantum structure of space-time. For a rigorous treatment of

the mathematical structure of noncommutative geometries see [24]. For reviews on

noncommutative quantum field theory see [25,26].

The simplest and best-known way to introduce uncertainty into the Riemannian

picture of space-time is to promote coordinates to operators of a suitable Hilbert

space-time and impose the commutator

[x̂µ, x̂ν ] = iθµν , (2.1)

8



2.2 Different motivations for different models 9

where the entries of θµν do not depend on the coordinates. In this thesis the focus

is on this simplest choice, i.e. (2.1), where θµν will either be a constant or a tensor.

The study of these two types of theories is motivated below in section 2.2.

Much of this thesis concentrates on the problems connected with noncommuta-

tive time and thus implicitly on the problems of all models where θµν is a tensor.

This is because Lorentz invariance always allows us to shift the noncommutativity

to be in the timelike directions. Thus, for generality, let us consider models where

all coordinates are noncommutative. In four dimensions we can always choose a

frame where the θ-matrix is in the block-diagonal form

θµν =


0 θ 0 0

−θ 0 0 0

0 0 0 θ′

0 0 −θ′ 0

 . (2.2)

With this form of θµν it is useful to classify different types of noncommutativity to

clarify the causal structure

• Space-space θ = 0.

• Lightlike θµνθµν = θ 2 − θ′ 2 = 0.

• Time-space θ 6= 0.

Lightlike noncommutativity shares most of the properties of space-space non-

commutativity, as the former when written in terms of light cone coordinates will

only exhibit noncommutativity of the spacelike directions. The major differences

in noncommutative models are thus associated with the noncommutativity of the

timelike coordinate. As we will see in chapter 3, the theories with noncommutative

time exhibit serious problems that are yet to be resolved. Space-space and light-

like models however, although they violate Lorentz invariance, can be defined in a

consistent manner.

2.2 Different motivations for different models

In this section the motivations for the different classes of noncommutative mod-

els classified in the previous section are briefly reviewed. It is ironic that the two

major motivations used in the literature [4, 27] imply different types of noncom-

mutativity. In the Doplicher-Fredenhagen-Roberts (DFR) type models [27, 28] all
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coordinates are noncommutative, whereas the low-energy limit of string theory con-

sidered by Seiberg and Witten in [4] only allows for space-space noncommutativity.

Doplicher-Fredenhagen-Roberts models

Perhaps the most intuitive way of motivating noncommutative models was pre-

sented by Doplicher, Fredenhagen and Roberts in [27,28], using only basic principles

from quantum mechanics and classical general relativity to obtain a quantum space-

time. Imagine performing a measurement near the Planck scale, λPl ≈ 10−33cm.

According to quantum mechanics, in a measurement confined to a volume of the

order of λ3
Pl there is an intrinsic energy uncertainty of the order of the Planck en-

ergy. Then, according to general relativity, the energy density of the space is high

enough to create a black hole in the space you perform your measurement. Thus

it will be quite impossible to observe anything smaller than λ3
Pl. Ontologically it is

tempting to say that nothing smaller can exist.

Now, since space-time can no longer be considered a manifold made of points1,

some form of fuzziness must be introduced to model this uncertainty of space-

time. The simplest way is already familiar from the quantization of the phase space

operators in quantum mechanics. Hence it is natural to promote coordinates to

operators and impose a nonzero commutator for the coordinates as in (2.2). This,

in turn, leads to uncertainty relations for the coordinates of the form

∆x0 · (∆x1 + ∆x2 + ∆x3) ≥ λ2
Pl ,

∆x1∆x2 + ∆x1∆x3 + ∆x2∆x3 ≥ λ2
Pl . (2.3)

As the approach is based on general relativity it is naturally Lorentz covariant,

and θµν is a Lorentz tensor. As such, theories of the DFR type will have to deal

with all the peculiarities that stem from noncommutative time further discussed in

chapter 3.

String theory motivation

The interest in noncommutative field theories surged after Seiberg and Witten

showed [4], that by studying the dynamics of D-branes with a constant Neveu-

Schwartz “magnetic” Bij background field a noncommutative field theory is found

1Von Neumann coined this “pointless geometry”.
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in the low-energy limit. To see how this comes about, it is instructive to have a look

at one of the oldest examples of the appearance of noncommutativity of coordinates:

the Landau problem [4,26,29,30].

Consider electrons moving in the plane x = (x2, x3) in a constant, perpendicular

magnetic field of magnitude B. The Lagrangian for each electron is given by

L =
m

2
ẋ 2 − ẋ ·A , (2.4)

where Ai = −B
2
εij x

j is the corresponding vector potential in the symmetric gauge.

One can map the Hamiltonian of this model onto that of a harmonic oscillator,

whose spectrum yields the so-called Landau levels. In the limit m → 0 with B

fixed, or equivalently B →∞ with m fixed, the system is projected onto the lowest

Landau level, i.e the ground state of the oscillator. The Lagrangian in this limit

becomes

L0 = −B
2
ẋi εij x

j . (2.5)

This reduced Lagrangian is of first order in time derivatives. The phase space

therefore becomes degenerate and collapses onto the configuration space. Thus

canonical quantization gives a noncommutative space with the commutator[
x̂i , x̂j

]
= iθij , with θij =

~ c
eB

. (2.6)

This simple example has a direct analog in string theory [4]. Consider bosonic

strings moving in flat Euclidean space with metric gij, in the presence of a constant

Neveu-Schwarz two-form B-field and with Dp-branes. The B-field is equivalent to a

constant magnetic field on the branes, and it can be gauged away in the directions

transverse to the Dp-brane worldvolume. The (Euclidean) worldsheet action is

SΣ =
1

4πα′

∫
Σ

(
gij ∂ax

i ∂ax
j − 2πiα′Bij ε

ab ∂ax
i ∂bx

j
)
, (2.7)

where α′ = `2
s, Σ is the string worldsheet and xi is the embedding function of the

strings into flat space.

In the low-energy limit gij ∼ (α′)2 ∼ ε → 0, with Bij fixed, the stringy effects

decouple and the bulk kinetic terms for the xi in (2.7) vanish. All that remains are

the boundary degrees of freedom of the open strings, which are governed by the

action

S∂Σ = − i
2

∮
∂Σ

Bij x
i ∂tx

j . (2.8)
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This action coincides with the Landau action describing the motion of electrons in

a strong magnetic field (2.5). From this we may infer the noncommutativity

[x̂i, x̂j] = (i/B)ij ≡ iθij , (2.9)

of the coordinates of the endpoints of the open strings which live in the Dp-brane

worldvolume.

The correlated low-energy limit α′ → 0 taken above effectively decouples the

closed string dynamics from the open string dynamics. It also decouples the massive

open string states, so that the string theory reduces to a field theory describing

massless open strings. Only the endpoint degrees of freedom remain and describe

a noncommutative geometry.

2.3 Weyl quantization of space-time

The commutation relations of the quantum position operators

[x̂µ, x̂ν ] = iθµν , (2.10)

are commonly implemented in field theory by the equivalent procedure of deforming

the product of functions called Weyl quantization [31–33] (for a more pedagogical

treatment see [34]).

Weyl quantization provides a nice way to avoid the use of Hilbert-space operators

and allows computations to be done using classical smooth functions. The quantum

effects are then encoded in the modified product of functions, the Moyal ?-product.

For two Schwartz functions f, g, i.e. functions on C∞(RD) that decrease sufficiently

fast at infinity, the ?-product is given by

(f ? g) (x) ≡ f(x)e
i
2

←−
∂ µθµν

−→
∂ νg(y) |y=x . (2.11)

Using this it is immediately noticed that for the usual coordinate functions xµ and

xν we get

[xµ, xν ]? = xµ ? xν − xν ? xµ = iθµν , (2.12)

since only the first derivatives contribute in the expansion of the exponent. The

commutator (2.12) is called the Moyal bracket.

Due to the small value of θ, the usual product of functions is only slightly de-

formed and as a correspondence principle the ?-product reduces to usual multipli-

cation in the limit θµν → 0. Hence the method is more generally called deformation

quantization.
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Derivation of the Moyal ?-product. As we are working with Schwartz func-

tions, we can consider their Fourier transforms

f̃(k) =

∫
dDx e−ikµx

µ

f(x) . (2.13)

The corresponding Weyl operator is defined as

Ŵ [f ] ≡
∫

dDk

(2π)D
f̃(k)eikµx̂

µ

. (2.14)

This provides us with a mapping between Schwartz functions and the corresponding

Hilbert space operators. In this context the function f(x) is called the Weyl symbol

of the corresponding operator Ŵ [f ]. The power series expansion of the exponential

automatically gives a symmetric ordering of the operators, i.e. the Weyl ordering.

From its definition (2.14), we see that by taking the adjoint we have

Ŵ [f ]† = Ŵ [f †] , (2.15)

and in particular, the Weyl operator is a self-adjoint operator whenever the function

f(x) is real-valued.

If we further require that at the level of the symbols f and g of the corresponding

Weyl operators Ŵ [f ] and Ŵ [g] the usual product of operators is reproduced

Ŵ [f ]Ŵ [g] = Ŵ [f ? g] , (2.16)

we recover the integral representation of the ?-product

(f ? g) (x) =

∫
dDk

(2π)D
dDk′

(2π)D
f̃(k)g̃(k′ − k) e−

i
2
θµνkµk′νeik

′
σx
σ

. (2.17)

Proof: Using (2.14) we have

Ŵ [f ]Ŵ [g] =
∫

dDk

(2π)D
dDk′

(2π)D
f̃(k)g̃(k′)eikµx̂

µ
eik
′
ν x̂
ν
. (2.18)

With the help of the Baker-Campbell-Hausdorff formula

eikµx̂
µ
eik
′
ν x̂
ν

= e−
i
2
θµνkµk′νei(k+k′)σx̂σ , (2.19)

and by shifting the integration variable k′µ → k′µ − kµ, we get (2.17) with xσ

replaced by x̂σ. This is exactly the operator Ŵ [f ? g] corresponding to the
symbol (2.17).
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The integral (2.17) and the differential representations (2.11) of the ?-product

are identical whenever the entries of θ are constants. In Fourier space, starting from

the differential representation, we obtain the expression

(f ? g) (x) =

∫
dDk

(2π)D
dDk′

(2π)D
f̃(k)eikσx

σ

e
i
2

←−
∂ µθµν

−→
∂ ν g̃(k′)eik

′
αy
α|y=x

=

∫
dDk

(2π)D
dDk′

(2π)D
f̃(k)eikσx

σ

e
i
2
kµθµνk′ν g̃(k′)eik

′
αy
α|y=x

=

∫
dDk

(2π)D
dDk′

(2π)D
f̃(k)g̃(k′ − k)e

i
2
kµθµν(k′ν−kν)eikσx

σ

ei(k
′
α−kα)yα|y=x

=

∫
dDk

(2π)D
dDk′

(2π)D
f̃(k)g̃(k′ − k) e−

i
2
θµνkµk′νeik

′
σx
σ

, (2.20)

where k′ν → k′ν − kν has again been used on the third line.

In coordinate space the integral representation of the ?-product (2.17) can be

written as

(f ? g)(x) =

∫
dDy dDz K(x; y, z)f(y)g(z) , (2.21)

where the kernel is given by

K(x; y, z) =
1

πD det θ
exp[−2i(xθ−1y + yθ−1z + zθ−1x)] . (2.22)

Here det θ denotes the determinant of the θ-matrix and xθ−1y = xµ(θ−1)µνy
ν . Equa-

tion (2.21) can also be expressed in a form which is insensitive to the singularity of

the θ-matrix, as follows:

(f ? g)(x) =
1

(2π)4

∫
d4y d4z f

(
x− 1

2
θy

)
g (x+ z) e−iyz , (2.23)

with the obvious notation (θy)µ = θµνyν . The calculations in this thesis are not

sensitive to the choice of representation of the ?-product; both (2.11) and (2.21)

will be used where they are most practical.

The ?-product, although noncommutative, is still associative: (a?b)?c = a?(b?c),

a most useful property in all perturbative calculations as we shall see. Further, by

integration by parts one ?-product disappears under an integral over the whole

space ∫
dDx f(x) ? g(x) =

∫
dDx f(x) g(x) . (2.24)
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Also, due to the correspondence between the operator trace and space-time inte-

gration, the integral of ?-products,∫
dDx f1(x) ? · · · ? fn(x) = Tr

(
Ŵ [f1] · · · Ŵ [fn]

)
, (2.25)

is invariant under cyclic permutations of the functions fi.

As most clearly seen from (2.21), the ?-product introduces infinite nonlocality

in the theory in all the noncommutative directions (the coordinates are integration

variables). A nice example of this induced nonlocality was noted in [26], where two

Dirac delta functions multiplied with the ?-product were shown to give

δD(x) ? δD(x) =
1

πD|detθ|
. (2.26)

Since θµν is constant over the whole space-time, the initially infinitely localized

distribution is spread out to cover the entire space-time2. This nonlocality can be

considered as the source of all the peculiarities of noncommutative quantum field

theories that will be discussed in the rest of the thesis.

2.4 Twisted symmetry

For particle physics there is an apparent problem with the particle content of

theories with [x̂µ, x̂ν ] = θµν , where

θµν =


0 θ 0 0

−θ 0 0 0

0 0 0 θ′

0 0 −θ′ 0

 (2.27)

is a constant matrix. Although translational invariance is preserved, by fixing the

coordinates in order to have θµν in the form (2.27) we have broken the Lorentz

group SO(1, 3) down to its subgroup SO(1, 1)×SO(2)3. Both SO(1, 1) and SO(2)

are Abelian groups and thus have only one-dimensional irreducible representations.

Thus, when assigning particles to representations of SO(1, 1) × SO(2), we would

2Naturally, if some coordinates are commutative the spreading only occurs in the noncommu-
tative directions.

3Although Lorentz invariance is violated in these models, this does not lead to CPT or spin-
statistics violations as in usual quantum field theory [35,36].
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have no higher order representations, including spinors, vectors or tensors. We

would only be allowed to consider scalar field theory, which of course would make

these theories uninteresting.

Luckily however, there is a way around this apparent handicap. In [37, 38] it

was found that these theories respect another, quantum symmetry4. By twisting

the Poincaré algebra it was found that the higher-dimensional representations can

indeed be included in the theory.

The twisted Poincaré algebra is obtained by a twist element F in the universal

enveloping of the commutative Poincaré algebra U(P), i.e. F ∈ U(P)⊗U(P). The

useful feature of the twist is that it does not affect the multiplication in U(P) and

thus the Lie algebra

[Pµ, Pν ] = 0 ,

[Mµν , Pα] = −i(ηµαPν − ηναPµ) ,

[Mµν ,Mαβ] = −i(ηµαMνβ − ηµβMνα − ηναMµβ + ηνβMµα) , (2.28)

remains unmodified. The essential implication of this is that the representation

content of the new theory is identical to that of the usual Poincaré algebra.

Obviously, we are still working in quantum space-time and this needs to be

reflected in the calculations. The price we need to pay for the unchanged Lie

algebra is a change in the action of the Poincaré generators in the tensor product

of representations, the coproduct, given in the standard case by

∆0 : U(P)→ U(P)⊗ U(P) ,

∆0(Y ) = Y ⊗ 1 + 1⊗ Y, ∀Y ∈ P . (2.29)

When twisting, this coproduct is deformed into the twisted coproduct

∆0(Y ) 7−→ ∆t(Y ) = F∆0(Y )F−1 . (2.30)

The form of the twist element F is constrained by the need to satisfy the following

twist equation:

(F ⊗ 1)(∆0 ⊗ id)F = (1⊗F)(id⊗∆0)F . (2.31)

4When discussing twisted algebras one needs to be familiar with the language of Hopf algebras
and quantum groups [39].
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Considering the simplest choice for the twist5, an Abelian twist element written

as

F = e−
i
2
θµνPµ⊗Pν , (2.32)

one can check that (2.31) is indeed satisfied.

The twisted coproducts of the generators of Poincaré algebra corresponding to

the Abelian twist are given by

∆t(Pµ) = ∆0(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ, (2.33)

∆t(Mµν) = Mµν ⊗ 1 + 1⊗Mµν

− 1

2
θαβ [(ηαµPν − ηανPµ)⊗ Pβ + Pα ⊗ (ηβµPν − ηβνPµ)] . (2.34)

The unmodified coproduct of the momentum generators signals the preservation of

translational invariance in the theory, while the nontriviality of the twisted coprod-

uct of the Lorentz algebra generators, equation (2.34), is a signature of the broken

Lorentz symmetry.

The twisted coproduct ∆t further requires a redefinition of the multiplication.

When twisting U(P), in addition to obtaining the twisted coproduct ∆t, one has

to redefine the multiplication, while retaining the usual action of the generators of

the Poincaré algebra on coordinates as

Pµxρ = i∂µxρ = iηµρ ,

Mµνxρ = i(xµ∂ν − xν∂µ)xρ = i(xµηνρ − xνηµρ) . (2.35)

The required deformation of the commutative multiplication,

m0(f(x)⊗ g(x)) := f(x)g(x) , (2.36)

is given by the twist (2.32) as

mt(f(x)⊗ g(x)) = m ◦
(
e−

i
2
θµνPµ⊗Pνf(x)⊗ g(x)

)
= m ◦

(
e
i
2
θµν∂µ∂νf(x)⊗ g(x)

)
(2.37)

= (f ? g)(x) .

As the deformed multiplication coincides with the Moyal ?-product (2.11), the

twisted approach is consistent with the Weyl quantization procedure discussed in

section 2.3. It should be noted that the condition (2.31) ensures the associativity

of the twisted multiplication (2.37).

5Different twists satisfying (2.31) have been studied in the literature. In section 4.2 the
quadratic twist will be considered with symmetry considerations similar to the ones below.
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2.5 Dual algebra and noncommutative fields

There are many intriguing proposals that have arisen from the breaking of the

Lorentz group SO(1, 3) down to its subgroup O(1, 1)× SO(2). One such corollary

was proposed in I for the definition of fields in noncommutative space-time. The

proposal in I is to restrict the Lorentz structure of usual field definitions to be

applicable in a space-time with broken Lorentz symmetry. To motivate the proposal

let us first have a look at finite Poincaré transformations.

Dual algebra. To discuss finite translations (aµ) and Lorentz transformations

(Λµ
ν ) we need to introduce the dual language of Hopf algebras. The algebra F (G) on

the ordinary Poincaré group G, generated by the elements aµ(g) and Λµ
ν (g), g ∈ G,

is dual to the universal enveloping algebra U(P). The elements aµ(g) and Λµ
ν (g)

are complex valued functions that, when acting on the elements of the Poincaré

group, return the familiar real-valued entries of the matrices of finite Lorentz trans-

formations Λµ
ν , or the real-valued parameters of finite translations aµ, as follows (no

summation over repeated indices):

Λµ
ν

(
eiω

αβMαβ

)
= (Λαβ(ω))µν , Λµ

ν

(
eia

αPα
)

= 0 ,

aµ
(
eiω

αβMαβ

)
= 0, aµ

(
eia

αPα
)

= aµ . (2.38)

The duality is preserved after twisting the Poincaré algebra, but with a deformed

multiplication in the dual algebra6. The deformed coproduct (2.29) of the twisted

Poincaré algebra Ut(P) turns into noncommutativity of translation parameters in

the dual Fθ(G) [40–42]

[aµ, aν ] = iθµν − iΛµ
αΛ

ν
βθ

αβ , (2.39)

[Λµ
ν , a

α] = [Λµ
α,Λ

ν
β] = 0, Λµ

α, a
µ ∈ Fθ(G) . (2.40)

It was shown in I that whenever a Lorentz transformation is considered by which

the noncommutative directions are mixed with the commutative directions, there

necessarily appear accompanying translation parameters, i.e. the commutator in

6A basic property of the duality is that the coproduct and multiplication of the deformed Hopf
algebra directly influence the multiplication and coproduct, respectively, of the deformed dual
Hopf algebra [39].
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(2.39) is nonzero. This is to be interpreted as the internal mechanism by which the

commutator

[x̂µ, x̂ν ] = iθµν , (2.41)

remains invariant in these transformations, as required from the beginning.

Fields in noncommutative space-time. Since the quantum structure of space-

time is introduced via Weyl quantization as discussed above, one would be tempted

to say that in the construction of noncommutative quantum field theory this would

be equivalent to redefining the multiplication of functions so that it is consistent

with the twisted coproduct of the Poincaré generators (2.30). However, the defini-

tion of noncommutative fields and the action of the twisted Poincaré transforma-

tions on them is not this simple.

In commutative space-time, Minkowski space is realized as the quotient G/L of

the Poincaré group G by the Lorentz group L. A classical field is a section of a

vector bundle induced by a representation of the Lorentz group, that is an element

of C∞(R1,3)⊗V , where C∞(R1,3) is the set of smooth functions on Minkowski space

and V is a Lorentz module. In noncommutative space-time this construction has

no analogue, since Minkowski space cannot be similarly defined as a quotient of

groups. This can intuitively be understood by the following:

In noncommutative space-time when acting on the field with a Lorentz generator

we need to use the twisted coproduct as discussed in 2.4. This introduces momentum

generators that would act on the Lorentz module V . Such action is not defined,

however, and it seems we have reached an inconsistency.

The problem has been considered already earlier in [43], where it was proposed

that the momentum generators would act trivially on V , i.e to change the properties

of the Lorentz module. In I a simpler, but more dramatic solution was proposed.

The idea is to retain V as a Lorentz module, but to discard the actions of all the

generators not in the stability group O(1, 1)×SO(2). This can be implemented by

defining the fields to be elements of C∞(R1,1 × R2)⊗ V , i.e. to replace Minkowski

space-time with the subspace R1,1 × R2 as the essential background of the fields.

For quantization this poses no problems and we recover the same Hilbert space of

states as in ordinary QFT (see I for details). Minkowski space-time would then

only be the low-energy (θµν → 0) manifestation of this deeper structure.

It should be emphasized that the differences between ordinary and noncommu-

tative quantum fields are drastic and there is no way to justify, based on the twisted
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Poincaré symmetry, the claim [44] that the noncommutative fields transform under

all Lorentz transformations as ordinary relativistic fields.



Chapter 3

Causality, unitarity and

noncommutative time

In this chapter the problems that arise when time is a noncommutative coordi-

nate are reviewed. Two fundamental aspects where problems appear are causality

and unitarity. It is concluded that in the interaction picture and the Heisenberg

picture of canonical quantization, as well as in the path integral formalism, there

does not exist a unitary description that would be causal at the same time. The

discussion is based mainly on I and II, concentrating however more on the general

picture in the literature.

3.1 Causality

Shortly after the Seiberg-Witten paper [4] the general features of space-space,

lightlike and time-space noncommutative theories were taken under study by sev-

eral groups. The UV/IR mixing problem [45], to be discussed in section 4.1, was

the first problem to emerge, followed shortly after by studies on causality [46] and

unitarity [47]. Causality of noncommutative space-time in different contexts has

been considered for example in [48–52]. In I and II we considered the space of

solutions of the Tomonaga-Schwinger equation to show how in space-space non-

commutative theories the so-called light wedge causality condition arises naturally,

while the introduction of noncommutative time leads to causality violation.

21
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Displaced wave-packets

In [46] a 2-particle scattering was considered in a 2 + 1 -dimensional noncom-

mutative φ4 theory given by the action

S =

∫
d4x

(
1

2
∂µφ∂µφ−

1

2
m2φ2 +

λ

4!
φ ? φ ? φ ? φ

)
. (3.1)

In (3.1) the stars in the quadratic terms have been dropped since in the action

integral one star vanishes according to (2.24). The nonlocal effects of space-space

noncommutativity show up as the displacement of the initial wave-packets in the

direction of noncommutativity. The displacement is proportional to the incoming

momentum, e.g. for initial momentum Px the incoming wave splits into two parts

displaced by

∆y =
θPx
2

(3.2)

on each side perpendicular to the original direction of motion. This can be intu-

itively interpreted [46] as the incoming point-like particles being replaced by rigid

rods of length θP , extended perpendicular to their momentum, that only inter-

act when their ends touch. This appears as instantaneous signal propagation in

the noncommutative directions, but causality is preserved, as in Galilean causality,

since effect never precedes cause.

In the case of time-space noncommutativity effectively the same thing happens,

but now the rods are aligned with the momentum. Thus there is an advanced and a

delayed wave at a distance θP
2

from the center of momentum. The advancement of

the wave in itself does not violate causality, it is only when used in connection with

Lorentz invariance that things start to go wrong. For example, when boosting the

particle increasing its velocity, the expectation would be that the “rod” shortens,

but now it will expand with the momentum. Thus the nonlocality of time conflicts

with the efforts of constructing a Lorentz invariant model of noncommutative space-

time. Still, by this argument alone, causality in this picture is not shown to be

violated.

Two ways to time-order

For causality, as well as for unitarity (see section 3.2), the time-ordering pro-

cedure plays a key role [50, 53]. In [50] this was considered in the time-ordered
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perturbation theory (TOPT) approach introduced in [54] for the direct application

of the Gell-Man-Low formula for Green’s functions

Gn(x1, . . . , xk) =
in

n!

∫
d4z1 . . . d

4zn

〈
0
∣∣∣Tφ(x1) . . . φ(xk)LI(z1) · · · LI(zn)

∣∣∣0〉con ,
(3.3)

where LI is the interaction Lagrangian and the superscript con means projection

onto the connected part. To match the notation of [50], the ?-product (2.23) is

written in the form

(f ? g)(x) =

∫
d4s

∫
d4l

(2π)4
f(x− 1

2
l̃) g(x+ s) eils , l̃ν = lµθ

µν . (3.4)

As an example, let us consider the φ4 scalar field theory in four-dimensional

Minkowski space given by the action (3.1). In the Green’s function

G(x, y) =
g

4!

∫
d4z
〈

0
∣∣∣T(φ(x)φ(y)

(
φ ? φ ? φ ? φ

)
(z)
)∣∣∣0〉 , (3.5)

one has two natural choices for the time-ordering of the fields. Using the time-

ordering with respect to the time coordinates that are integration variables as

G(x, y) =

∫
d4z

∫ 3∏
i=1

(
d4si

d4li
(2π)4

eilisi
)

Θ(s0
1+s0

2+s0
3+1

2
l̃01)Θ(z0−1

2
l̃01−x0)

×Θ(x0−z0−s0
1+1

2
l̃02)Θ(z0+s0

1−1
2
l̃02−y0)Θ(y0−z0−s0

1−s0
2+1

2
l̃03) (3.6)

×
〈

0
∣∣∣φ(z+s1+s2+s3)φ(z−1

2
l̃1)φ(x)φ(z+s1−1

2
l̃2)φ(y)φ(z+s1+s2−1

2
l̃3)
∣∣∣0〉 ,

where Θ(x) is the Heaviside step function, one recovers the results of the “naive

Feynman rules” [47], leading to the loss of unitarity as discussed below in section 3.2.

If, on the other hand, one uses the time-ordering with respect to the “interaction

points”

G′(x, y) =

∫
d4z

∫ 3∏
i=1

(
d4si

d4li
(2π)4

eilisi
)

Θ(x0−z0)Θ(z0−y0) (3.7)

×
〈

0
∣∣∣φ(x)φ(z−1

2
l̃1)φ(z+s1−1

2
l̃2)φ(z+s1+s2−1

2
l̃3)φ(z+s1+s2+s3)φ(y)

∣∣∣0〉 ,
one is faced with the loss of causality, already clear from the acausal time-ordering

under the integral. This latter time-ordering leads to a unitary theory [55,56], but

results in the the loss of the positive energy condition as well as the violation of

causality [50,53].
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Time-ordering in path integral formalism. The same results for the different

time-orderings were arrived at in the path integral formalism in [53].

Considering scalar field theory as an example, it is assumed, as usual, that the

vacuum-to-vacuum transition amplitude from infinitely distant past to infinitely

distant future is given by the path integral

〈0,+∞|0,−∞〉J =

∫
Dφ exp

[
i

∫
d4xLJ

]
, (3.8)

where |0,±∞〉J are the asymptotic vacuum states at the times t = ±∞ and the

Lagrangian with the local source function J(x) is given by

LJ(x) =
1

2
∂µφ(x)?∂µφ(x)+

1

2
m2φ(x)?φ(x)− λ

3!
φ(x)?φ(x)?φ(x)+φ(x)?J(x) . (3.9)

Green’s functions and hence all physics are given through Schwinger’s action prin-

ciple by functional derivatives of the path integral as, for example,

〈0,+∞|T ?φ̂(x)φ̂(y)|0,−∞〉 =
δ

iδJ(x)

δ

iδJ(y)
〈0,+∞|0,−∞〉J

∣∣∣∣
J=0

. (3.10)

In the construction of Green’s functions space-time is sliced with Heisenberg picture

states and this choosing of the “path” automatically selects the time-ordering as

the time-ordering with respect to the “times of the fields”, denoted here by T ?.

Using these Green’s functions one obtains the “naive Feynman rules” used in [47],

and consequently the violation of unitarity.

In the path integral the time-ordering is thus inherently taken with respect to the

times of the fields and not the times of the Hamiltonians (the “interaction points”

in [50]), but one can formally check whether the different time-ordering could lead

to a consistent theory. The main conclusion in [53], similarly as in [50], is that while

the time-ordering with respect to the times of the interaction Hamiltonians indeed

leads to a unitary theory, the positive energy condition is lost, i.e. negative energy

particles are allowed to propagate in the forward time direction. This also leads to

the well-known fact that the Wick rotation from Minkowski space to an Euclidean

theory does not work as in commutative theories [55].

A further, and more detailed analysis of causality, with direct applicability to

unitarity and energy-momentum conservation was presented in I and further elab-

orated on in II by analyzing the integrability condition of the Tomonaga-Schwinger

equation.
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3.1.1 Solutions of Tomonaga-Schwinger equation

The Tomonaga-Schwinger equation [57, 58] (see also [59, 60]) is the Lorentz co-

variant generalization of the single-time Schrödinger equation to include arbitrary

Cauchy surfaces. It turns out that, as in commutative space-time, also in noncom-

mutative space-time the integrability condition equals the microcausality condition.

Further, it is a necessary requirement for energy-momentum conservation.

Commutative space-time. We consider the interaction picture, where operators

evolve with the free Hamiltonian, while the states evolve with the Hamiltonian

of interaction. In commutative theory the Tomonaga-Schwinger equation in the

interaction picture reads

i
δ

δσ(x)
Ψ[σ] = Hint(x)Ψ[σ] . (3.11)

When the hypersurface σ is a surface of constant time, the Tomonaga-Schwinger

equation reduces to the single-time Schrödinger equation.

The existence of a unique solution to the Tomonaga-Schwinger equation is en-

sured if the integrability condition

δ2Ψ[σ]

δσ(x)δσ(x′)
− δ2Ψ[σ]

δσ(x′)δσ(x)
= 0, (3.12)

with x and x′ on the hypersurface σ, is satisfied. This integrability condition (3.12),

plugged into (3.11), implies

[Hint(x),Hint(x
′)] = 0 . (3.13)

Since in the interaction picture the field operators satisfy free-field equations, they

automatically satisfy Lorentz invariant commutation rules. The Lorentz invariant

commutation relations are such that (3.13) is fulfilled only when x and x′ are space-

like separated,

(x− y)2 < 0 , (3.14)

i.e. when σ is a space-like surface. As a result, the integrability condition (3.13) is

equivalent to the microcausality condition for local relativistic QFT.
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Noncommutative space-time. The use of the interaction picture has the ad-

vantage that the free-field equations for the noncommutative fields are identical to

the corresponding free-field equations of the commutative case. Here our interest

lies in what replaces the space-like surface σ in Weyl-Moyal space-time, i.e. for

which type of separation of the coordinates x and y is the integrability condition

satisfied. The Tomonaga-Schwinger equation in the noncommutative case reads

i
δ

δσ′
Ψ[σ′] = Hint(x)?Ψ[σ′] , (3.15)

where σ′ is to be determined and we make a simple choice for Hint(x)? as

Hint(x)? = λ[φ(x)]n? = λφ(x) ? φ(x) ? . . . ? φ(x) . (3.16)

The corresponding integrability condition for (3.15) is

[Hint(x)?,Hint(y)?] = 0 , for x, y ∈ σ′ . (3.17)

Using the integral representation of the ?-product (2.17), we can write (3.17) as

λ2
[
(φ ? . . . ? φ)(x), (φ ? . . . ? φ)(y)

]
= λ2

∫ n∏
i=1

daiK(x; a1, · · · , an)

×
∫ n∏

j=1

dbj K(y; b1, · · · , bn)
[
φ(a1) . . . φ(an), φ(b1) . . . φ(bn)

]
. (3.18)

Using the fact that in the interaction picture the field φ satisfies the same free-

field equations and commutation relations as in the commutative case, it was shown

in I and II that the necessary condition for the expression (3.18) to vanish is given

by [
φ(ai), φ(bj)

]
= ∆(ai − bj) = 0 . (3.19)

Here, ∆(ai − bj) is the causal ∆-function of ordinary QFT. The condition (3.19) is

satisfied outside of the mutual light cone

(a0
i − b0

j)
2 − (a1

i − b1
j)

2 − (a2
i − b2

j)
2 − (a3

i − b3
j)

2 < 0 . (3.20)

In order to satisfy (3.18), it is necessary that (3.20) holds for all values of ai
k and

bj
k. However, since the coordinates are integration variables in the range

0 ≤ (aki − bkj )2 <∞ , (3.21)
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the requirement (3.20) is clearly not satisfied for the whole space of aki and bkj . This

in turn means that the integrability condition (3.18) is not satisfied for any x and

y. Thus, the Tomonaga-Schwinger equation does not have a uniquely determined

solution in a time-space noncommutative quantum field theory.

The fact that the condition (3.17) is not satisfied in general is a special case of

the fact that the commutator of “local” observables composed with the ?-product,

[O?(x),O?(y)], does not vanish for any x and y. This clearly shows the violation of

microcausality, which complements nicely the macroscopic analysis of [46].

When considering space-space noncommutativity, we would clearly end up in-

tegrating only over the spatial directions in (3.20). As an example, when only

θ23 = −θ32 6= 0 we would integrate over the second and third coordinate and end

up with

(x0 − y0)2 − (x1 − y1)2 < 0 , (3.22)

which is the light wedge causality condition. The light wedge was first introduced

in [48] purely on symmetry grounds as it is the natural modification of the light

cone1 symmetric under O(1, 1)× SO(2), the stability group of θµν .

Figure 3.1: The light wedge symmetric under the group O(1, 1) × SO(2). Figure

adapted from [49].

1The light cone is symmetric under the full Lorentz group SO(1, 3).
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3.2 Unitarity

The problem of unitarity violation in time-space noncommutative theories [47]

appeared soon after the work of Seiberg and Witten [4]. As [47] used the covariant

formalism in the interaction picture, it was natural to check whether these problems

could be cured by using the Hamiltonian formalism or by using the Heisenberg

picture. It turns out that in the Hamiltonian approach unitarity can indeed be

kept intact [55, 56], but only at the expense of introducing other problems [48, 50,

53, 61, 62]. In II we used old results from nonlocal field theory to show that also

in the Heisenberg picture unitarity violation appears as expected. For space-space

noncommutativity no problems appear, as can be seen also from the string theory

analysis.

3.2.1 String theory and unitarity

The unitarity of both space-space and lightlike noncommutative theories is clear

from the string perspective. As space-space noncommutative theories are effectively

unitary string theories in the limit where massive open strings and closed strings

decouple rendering these theories to describe the dynamics of massless open strings,

it is natural that they too are unitary.

For lightlike noncommutativity the decoupling limit was shown to exist for sev-

eral D-brane configurations in [63]. Intuitively this is easy to understand when

working in light cone coordinates x± = 1√
2

(x0 ± x1). Performing a light cone quan-

tization with x+ as the time coordinate one has θ0+ = 0; the theory is local in the

(light cone) time direction and thus acts like space-space noncommutative theories

in this respect.

Using S-duality one can go from the string theory with a constant magnetic

Bij background to a dual theory with an electric Eij background. Thus one might

expect that by taking the decoupling limit of this perfectly unitary string theory a

unitary noncommutative quantum field theory could be reached. In this case the

noncommutativity would be of time-space type due to the electric field background.

However, as shown in [64] (see also [65]), when taking the limit it is impossible to

decouple the massive open strings while keeping θ0i finite. In the decoupling limit

a noncommutative quantum field theory is not reached and the limit describes a

noncommutative open string theory. In [48] the nonunitarity of time-space non-
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commutative theories was interpreted in the string context as the production of

extra propagating particles that are necessarily tachyonic. As propagating degrees

of freedom these particles cannot be considered as formal devices and must be in-

cluded in any attempt to construct a theory with noncommutative time. As we will

see below, the string perspective agrees nicely with the general analysis of unitarity

violation.

3.2.2 Unitarity in covariant formalism

The first results on unitarity in [47] are based on the modified (sometimes called

“naive”) Feynman rules first formulated in [66] and use the generalized unitarity

rules, or cutting rules, of noncommutative scalar field theories. The noncommu-

tative effects appear from the nonplanar diagrams that are further discussed in

section 4.1 (see also figure 4.1). The modified Feynman rules introduce oscillatory

factors at the vertices that depend on the external as well as loop momenta. As an

example, the one loop diagram in φ3 theory was shown to be proportional to

a a����p
p− k

k

p
> >

>

>

∝
∫
d4k

1 + cos (pµ θ
µνkν)

((p− k)2 −m2 + iε)(k2 −m2 + iε)
, (3.23)

where the term with cos (pµ θ
µνkν) is the nonplanar contribution.

The unitarity analysis of [47] boils down to the sign of the term (θµν is given by

(2.2))

p ◦ q ≡ −pµθµαθανqν = θ(p2
0 − p2

1)− θ′(p2
2 + p2

3) . (3.24)

It was shown, assuming energy-momentum conservation, that whenever p◦q is neg-

ative definite perturbative unitarity is recovered. With the Minkowskian signature

of the metric this only holds true for space-space noncommutative theories. Thus

in theories with noncommutative time based on the modified, or “naive”, Feynman

rules perturbative unitarity in lost. The above treatment was extended to lightlike

noncommutativity in [63], where the unitarity relation was shown to hold using

string theory considerations.

3.2.3 Unitarity in Hamiltonian formalism

An alternative way for the quantization of field theories in noncommutative

space-time was proposed in [27], further considered in [55] and reviewed in [61]. It
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is based on the introduction of the interaction Hamiltonian

Hint(t) =

∫
x0=t

d3x(φ ? φ ? . . . ? φ)(x) (3.25)

and, assuming that the S-matrix exists, the time-ordering is taken with respect to

the overall times of the Hamiltonians of interactions (and not with respect to the

“times of the fields”), as

S =
∞∑
n=0

(−i)n

n!

∫ +∞

−∞
dt1 . . .

∫ +∞

−∞
dtnΘ(t1 − t2) . . .Θ(tn−1 − tn)Hint(t1) . . . Hint(tn) .

(3.26)

Since Hint(t) is formally self-adjoint, the resulting S-matrix is formally unitary.

This seems to lead to a contradiction with the results from the modified Feyn-

man rules discussed above. If, as in commutative theories, the Lagrangian and

Hamiltonian formalisms described the same physics, unitarity would be violated

also in the Hamiltonian approach. This is not the case, and the discrepancy can be

traced back to the different time-ordering used, as already discussed in section 3.1

in connection with causality. When one uses the time-ordering with respect to the

times of the fields and not the times of the Hamiltonians one is faced with unitarity

violation, whereas in the latter case one finds violations of causality along with the

failure of the positive-energy condition [50,53].

In addition to the above, in [61] it was noted that in the Hamiltonian formalism

with noncommutative time the interacting fields do not satisfy the usual equations

of motion, raising doubt on the physical nature of these fields. In noncommutative

QED it has further been shown [62] to lead to the violation of Ward identities. Thus

it seems that by introducing a different time-ordering one merely shifts the problem

from unitarity to other features of the theory. The problems introduced are severe

and we are still missing a consistent approach to include the noncommutativity of

time.

In II we explained the time-ordering ambiguity as a consequence of the failure

of Matthew’s theorem [67] discussed below. This in turn is a consequence of the

non-existence of a unique solution to the Tomonaga-Schwinger equation discussed

in section 3.1.1. Before examining Matthew’s theorem, let us have a look at one

more problem in the Hamiltonian formalism, the non-conservation of energy.

Non-conservation of energy. When time is noncommutative, the Lagrangian

and Hamiltonian formulations of quantum field theory do not lead to the same
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predictions. This is hinted at already by the fact that the conjugate momentum

π(x) = ∂L?
∂(∂0φ(x))

cannot be uniquely defined as the Lagrangian contains an infinite

amount of time derivatives. Taking π(x) to be formally defined and using formally

the Hamiltonian as in [55,56]

H?(x) =
1

2
π2(x) +

1

2
(∂iφ(x))2 +

1

2
m2φ2(x) +

λ

3!
φ3
?(x) , π(x) = ∂tφ(x) , (3.27)

we can make this difference more transparent.

The time evolution of an operator in the interaction picture is given by

i
dAI(t)

dt
= [AI(t), H0] + iU †0

∂AS

∂t
U0, U0 = e−iH0t, (3.28)

where AI = U †0A
SU0 is the operator in the interaction picture, AS is the same

operator in the Schrödinger picture and H0 is the free Hamiltonian. In II we

calculated the time evolution of (3.27) in a time-space noncommutative theory. The

final result can be written with the help of the causal ∆-function of commutative

quantum field theory [
φ(ai), φ(bj)

]
= ∆(ai − bj) , (3.29)

already used in section 3.1.1, as

i
∂

∂t
H?
int(t) = [H?

int(t), H0]

=
λ

3!

∫
d3x d3y

∫
d4a1 d

4a2 d
4a3

1

π4 det θ
K(y; a1, a2, a3)×[(

∂0∆(a1 − x)∂0φ(x)−∆(a1 − x)∂2
0φ(x)

)
φ(a2)φ(a3)

+ φ(a1)
(
∂0∆(a2 − x)∂0φ(x)−∆(a2 − x)∂2

0φ(x)
)
φ(a3)

+ φ(a1)φ(a2)
(
∂0∆(a3 − x)∂0φ(x)−∆(a3 − x)∂2

0φ(x)
)]
. (3.30)

The terms proportional to ∆(ai−x) vanish only when a0
i coincides with t and we get

contributions from all other times, including the distant future. Thus the evolution

of the interaction Hamiltonian at the time t is influenced by field configurations in

its future, signalling the lack of causality. The non-trivial time-dependence can be

interpreted as the non-conservation of the energy associated with the interacting

system.

In section 3.1.1 we saw that in these theories the integrability condition of the

Tomonaga-Schwinger equation cannot be fulfilled. The integrability condition has
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been shown to be a requirement for energy-momentum conservation in the interac-

tion picture in [68] and thus these two results agree nicely. It is further connected

to the fact that the equation of motion for the interacting scalar field differs from

the one in commutative theory [55,61].

Matthew’s theorem. The source of all the inconsistencies can be understood as

the failure of Matthew’s theorem [67] in time-space noncommutative theories. The

theorem in commutative space-time states that the S-matrix given in the Hamilto-

nian formalism agrees with the one in the Lagrangian formalism

S = 1 +
∞∑
n=1

(−i)n

n!

∫ ∞
−∞

. . .

∫ ∞
−∞

d4x1 . . . d
4xn T [Hint(x1) . . .Hint(xn)] (3.31)

= 1 +
∞∑
n=1

(−i)n

n!

∫ ∞
−∞

. . .

∫ ∞
−∞

d4x1 . . . d
4xn T

?[Lint(x1) . . .Lint(xn)] , (3.32)

where T ? is the covariant modification of the usual time-ordering

T ?
[
∂φ(x)

∂xµ
∂φ(y)

∂yν

]
=

∂

∂xµ
∂

∂yν
T [φ(x)φ(y)] 6= T

[
∂φ(x)

∂xµ
∂φ(y)

∂yν

]
. (3.33)

It should be noted that for theories with higher-derivative interactions we have

Hint(x) 6= −Lint(x) (3.34)

and thus care must be taken when comparing the dynamics of the two formulations.

If Matthew’s theorem would hold also in time-space noncommutative theories,

there would be no ambiguity between the two formalisms; the predictions of both

the Hamiltonian and the Lagrangian approaches would coincide. However, a crucial

requirement for the proof of the theorem is the uniqueness of the solutions of the

Tomonaga-Schwinger equation. This can always be achieved in a theory with a

finite number of time derivatives in the interaction term, but not when the number

of such derivatives is infinite as in the ?-product in the case of a noncommutative

time, as explicitly shown in section 3.1.1.

Thus the two “S-matrices” (3.31) and (3.32) are inequivalent, leading to different

predictions. In the covariant formalism unitarity is violated, while in the Hamil-

tonian approach with the time-ordering T there appear violations of causality and

energy-momentum conservation.
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3.2.4 Unitarity in Heisenberg picture

As the interaction picture shows inconsistencies in the Hamiltonian as well as

the covariant approach when time is noncommutative, the Heisenberg picture has

sometimes been used instead [61,69–71]. Historically, for the study of nonlocal field

theories the approach of Yang, Feldman and Källén [72, 73] has customarily been

used [74–78]. The advantage of this approach is that the elements of the S-matrix

are calculated directly in terms of Heisenberg picture n-point correlation functions

(Green’s functions), avoiding the use of the interaction picture entirely.

As noncommutative field theories are infinitely nonlocal field theories with the

nonlocal kernel given by (2.22), the results of nonlocal field theories from the 1950’s

to the 1970’s can be used in studying their properties. In II we reviewed the careful

analysis of Marnelius [77,78] on the nonlocal Kristensen-Møller model [75] to show

the expected failure of unitarity of time-space noncommutative theories also in the

Heisenberg picture [79].

The possible violation of unitarity was recognized already in [61] in connection

with the non-trivial asymptotics of the fields. As a possible resolution to the uni-

tarity problem, and to help with renormalizability, the quasiplanar Wick products

were introduced (see also [80]) leading to changes in the dispersion relations. This

affects the asymptotics and, it is claimed, could lead to a unitary description. This

modification of the dispersion relations as a manifestation of Lorentz invariance vio-

lation was noted in [70] to imply that the “conceptual basis of the present approach

is rather shaky”. In [71] it is further noted that the modified dispersion relations

give rise to acausal effects that, however small, raise doubt on the consistency of

the Heisenberg picture.

One technical issue to be noted in the discussion of [61] is the use of usual test-

functions. As argued in [81], in noncommutative space-time the proper test-function

space is a Gel’fand-Shilov space that takes into account the nonlocality of space-

time. Thus, whenever using test-functions in noncommutative space-time, proper

care should be taken in order not to lose information of the inherent nonlocality.

Unitarity of nonlocal field theories

The work of Marnelius on the nonlocal Kristensen-Møller model is a general-

ization of [82] to include q-number variations in addition to the previously used
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c-number variations. This was done with the hope of restoring asymptotic com-

pleteness in the theory in order to define a unitary S-matrix. As it turns out,

including q-number variations does not help, and a unitary S-matrix cannot be

derived.

The Kristensen-Møller model is described by the Lagrangian

L(x) =
1

2
(∂µφ(x)∂µφ(x)− µ2φ2(x)) + i

1

2
ψ̄(x)/∂ψ(x)−mψ̄(x)ψ(x) + Lint(x) ,

Lint(x) = −g
∫
d4a1d

4a2d
4a3K(x; a1, a2, a3)iψ̄(a1)γ5φ(a2)ψ(a3) , (3.35)

from which the following equations of motion follow:

(∂µ∂
µ + µ2)φ(x) =− g

∫
d4ξd4η K(ξ, η)ψ̄(x+ η)iγ5ψ(x+ ξ) = −gρ(x) , (3.36)

i(/∂ −m)ψ(x) = g

∫
d4ξd4η K(ξ, η)iγ5φ(x− η)ψ(x− η + ξ) = gf(x) , (3.37)

where ξ = a3 − a2, η = a1 − a2 and x = a2.

In the Yang-Feldman-Källén procedure the solutions of (3.36) and (3.37) are

written in terms of either the in or out fields, as

φ(x) = φin(x)− g
∫
d4y∆R(x− y)ρ(x) ; φ(x) = φout(x)− g

∫
d4y∆A(x− y)ρ(x) ,

ψ(x) = ψin(x) + g

∫
d4ySR(x− y)f(x) ; ψ(x) = ψout(x) + g

∫
d4ySA(x− y)f(x) .

(3.38)

Here ∆R, ∆A, SR and SA are the usual retarded and advanced Green’s functions for

bosonic and fermionic fields. The asymptotic in or out fields defined at t → ∓∞
satisfy free-field equations. The lack of causality is manifest in (3.38), since the

behaviour of an interacting quantum field at a given space-time point is determined

by its entire past and future history. There seems to be a conflict between the

equations of motion and the boundary conditions, but the above formal solutions

are assumed.

Marnelius looked for solutions that can be expressed iteratively as a series ex-

pansion in the in fields or alternatively in the out fields as

φ(x) = φin/out(x) +
∞∑
n=1

gnφ(n)(x; in/out) ,

ψ(x) = ψin/out(x) +
∞∑
n=1

gnψ(n)(x; in/out) , (3.39)
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where the φ(n)(x; in/out) and ψ(n)(x; in/out) are functionals of the in or out fields,

respectively. For the theory to be consistent the same interacting fields φ(x) and

ψ(x) should be obtained by using either expansion. This turns out not to be the

case.

By looking at the in and out representations of generators, given by the limits

F0(t; in) = lim
t0→−∞

Ft0(t) ,

F0(t; out) = lim
t0→+∞

Ft0(t) . (3.40)

we get the difference of the in and out representations as

F (t; out)− F (t; in) =
g

2

∫ +∞

−∞
d4x δ0A(x) , (3.41)

where δ0A(x) in the Kristensen-Møller model is given by

δ0A(x) =

∫
d4η d4ξF (ξ, η)

(
[δ0φ(x), ψ̄(x+ η)]iγ5ψ(x+ ξ)

− ψ̄(x+ η)]iγ5[δ0φ(x), ψ(x+ ξ)]
)
. (3.42)

The main result2 is that when considering the momentum generators there is a

difference in the in and out representations in fourth order of the coupling constant

g, i.e.

P ν(t; out)− P ν(t, in) = g4 F [ψin; ψ̄in] +O(g5) , (3.43)

where F [ψin; ψ̄in] is a functional of ψin and ψ̄in given in [78] and in II. The nonva-

nishing of (3.43) will result in the expansions (3.39) in terms of in and out fields

giving different expressions for the interacting quantum fields φ(x) and ψ(x). This

follows from the requirement that the momentum generators perform the transfor-

mations that they are assumed to perform

[P ν , φ(x)] = −i∂νφ(x) ,

[P ν , ψ(x)] = −i∂νψ(x) , (3.44)

irrespective of the representation. If the fields in the two representations coincided,

we would have for example

[P ν(t; out)− P ν(t; in), ψ(x)] = 0 . (3.45)

2See [78] for details.
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Since the difference of the momentum generators (3.43) is proportional to the fields

ψin and ψ̄in at different times, the commutator (3.45) is nonzero in fourth order in

g. It follows that the interacting fields derived from the in fields can not be the

same as those derived from the out fields.

The nonuniqueness of solutions, in turn, leads to the nonstationarity of the ac-

tion for both sets of solutions. This is because the variation of the total action turns

out to be equal to the difference of the generators in the in and out representations∫
δ
(
d4xL(x)

)
= F (t; out)− F (t; in) =

g

2

∫ +∞

−∞
δ0A(x).

From the lack of asymptotic completeness it is concluded that there does not

exist a unitary S-operator that would relate the in and out fields by a similarity

transformation

φout(x) = S−1φin(x)S ,

ψout(x) = S−1ψin(x)S . (3.46)

Rather, as was shown in [78,82], from

ψout(x) = ψin(x)− g
∫
d4yS(x− y)f(y) , (3.47)

a direct calculation in fourth order g gives

S†ψin(x)S = ψout(x) + g4(· · · ) 6= ψout(x) , (3.48)

i.e. there is no unitary S-operator satisfying (3.46) in this picture.

In conclusion, if we consider that quantum fields satisfy the equations of motion

in the Yang-Feldman-Källén approach, the infinitesimal generators will be modified

and the field expressions in the in or out representations will not coincide. This

discrepancy further leads to the nonexistence of a unitary S-matrix in the Heisen-

berg picture. Thus in the Heisenberg picture, as in the interaction picture, there

are unresolved problems in constructing theories with noncommutative time that

would be both unitary and causal.
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Effects of quantization of space

In the previous chapter the problems of theories with noncommutative time were

examined, showing violations of unitarity and causality in various approaches. The

remainder of the thesis is concentrated on applications with non-trivial commutators

in spatial directions only, i.e. θ0i = 0. The infinite nonlocality introduced by the

?-product leads to the mixing of ultraviolet and infrared divergences as well as

technical problems in the use of different coordinate systems.

4.1 UV/IR mixing

The original hope in introducing the uncertainty of space-time to quantum field

theories was to rid them of short scale (UV) singularities and renormalization prob-

lems as a consequence [20, 21]. This hope was not to be realized. Although much

of this thesis is concentrared on highlighting the problems associated with noncom-

mutative time, there is a standing problem in all noncommutative quantum field

theories, the mixing of low-energy (IR) and high-energy (UV) divergences [45] (see

also [83]).

As in [45], let us consider the simplest example, the φ4 scalar field theory in

four-dimensional Euclidean space given by the action

S =

∫
d4x

(
1

2
∂µφ∂µφ+

1

2
m2φ2 +

λ

4!
φ ? φ ? φ ? φ

)
. (4.1)

The free theory is identical to the commutative free theory and thus the 1-particle

irreducible two point function in lowest order is, as usual, the inverse propagator

Γ
(2)
0 = p2 +m2 . (4.2)

37
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The noncommutative corrections arise in 1-loop order and are given by the

following diagrams:

p
k k

p

Figure 4.1: Planar and nonplanar one loop corrections to Γ(2) in φ4 theory. Figure

adapted from [45].

The one loop corrections from these planar and nonplanar graphs are given

respectively by

Γ
(2)
1 planar =

λ

3(2π)4

∫
d4k

k2 +m2
,

Γ
(2)
1 nonplanar =

λ

6(2π)4

∫
d4k

k2 +m2
eikµθ

µνpν . (4.3)

Regularizing the momentum integrals at the energy scale Λ, these expressions are

expanded as

Γ
(2)
1 planar =

λ

48π2

[
Λ2 −m2ln

(
Λ2

m2

)
+O(1)

]
,

Γ
(2)
1 nonplanar =

λ

96π2

[
Λ2
eff −m2ln

(
Λ2
eff

m2

)
+O(1)

]
, (4.4)

where

Λ2
eff =

1

1/Λ2 + p ◦ p
, p ◦ q ≡ −pµθµαθαν qν . (4.5)

The planar contribution is proportional to the expression in the commutative the-

ory, which diverges quadratically in the limit Λ → ∞. Thus the novelty due to

noncommutativity is given by the nonplanar graphs that introduce the term p ◦ q.

When Λ→∞, Λeff → 1
p◦q , which is finite as long as θµνpν is nonzero. Thus θµν

introduces a regularization in the UV limit. In particular, for the full expression of

the nonplanar part we have

Γ
(2)
1 nonplanar

Λ→∞−→ λ

96π2

[(
1

p ◦ q

)2

−m2ln

(
1

m2 (p ◦ q)2

)
+O(1)

]
. (4.6)
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This expression diverges in the low-energy limit p→ 0 of the external momentum,

or in general when θµνpν → 0. Taking the limits in the other order the divergence

structure is different – the high-energy and low-energy limits do not commute. This

mixing of the high-energy and low-energy scales is called UV/IR mixing. Considered

here only in the simplest case of a scalar field theory, the effect has also been

confirmed in gauge field theories [83,84]. As an example, in [83] it was shown that

noncommutativity induces linear and quadratic divergences absent in commutative

gauge theories. Including supersymmetry removes these extra poles at one loop

level, but logarithmic divergences persist at small values of θµνpν .

The mixing of divergences can be considered a consequence of the inherent non-

locality of the theory discussed in section 2.3. In [45] the effect was qualitatively

explained as follows: Let φ be a free field spread in the x, y-plane with the (approx-

imate) widths ∆x and ∆y in the x and y directions respectively. Then φ?φ has the

corresponding widths δx ≈ max
(

∆x,
θ

∆x

)
and δy ≈ max

(
∆y,

θ
∆y

)
. Thus when φ is

very well localized, i.e. when ∆ is very small (UV), the corresponding spread θ
∆

in

φ ? φ becomes large (IR).

In interacting quantum theory the effect will be more pronounced due to high-

energy virtual particles that contribute even to low-energy processes. In the non-

planar graphs, a virtual particle of energy ω will, upon interacting, spread and

thus contribute to events at energies ∼ 1
θω

. Thus placing a UV cutoff Λ effectively

induces an IR cutoff 1
Λ

and again, the high-energy and low-energy limits do not com-

mute. This effectively spoils the hope for improved renormalization behaviour [85]

for which the noncommutativity was originally introduced.

Naturally, there are attempts to construct a noncommutative theory without

UV/IR mixing in order to restore renormalizability. Most notably, there have been

significant advances in the Grosse-Wulkenhaar model [86,87] defined by the action

SGW [φ] =

∫
d4x
(1

2
∂µφ ? ∂

µφ+
Ω2

2
(x̃µφ) ? (x̃µφ) +

1

2
µ2

0 φ ? φ+
λ

4!
φ ? φ ? φ ? φ

)
(x) ,

(4.7)

where x̃µ = 2(θ−1)µνx
ν and the Euclidean metric is used. The inclusion of the

harmonic potential term has been shown to make the theory renormalizable to all

orders along with other nice features such as a vanishing β-function.

However, the inclusion of the explicitly translational invariance breaking term

leads to non-conservation of energy-momentum. To obtain similar renormalizabil-
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ity, but still retain translational invariance, modified models have since been put

forward. As an example, the model of Gurau et al [88] is given by the action

S[φ] =

∫
d4x
(1

2
∂µφ ? ∂

µφ− 1

2
φ
a2

∂̃2
φ+

1

2
µ2

0 φ ? φ+
λ

4!
φ ? φ ? φ ? φ

)
(x) , (4.8)

where ∂̃µ = θµν∂ν . The effect of the extra term is to modify the propagator as

1

p2 +m2 + a2

θ2p2

, a > 0 . (4.9)

This modification counter-acts the IR divergent contributions and indeed makes the

φ4 theory renormalizable.

There has been much effort to extend these results to gauge theories, with no

success to date. As the UV/IR mixing is in the end due to the infinite nonlocality

induced by the commutator (2.1), apparent in the ?-product (2.21), one would (at

least naively) expect that for a consistent removal of all divergences in the theory

the structure (2.1) should be modified to tame the nonlocality.

4.2 Spherical coordinates in quantum space

The direct generalization of the commutation relations of quantum mechanics

leads to the commutator (2.1), explicitly written in terms of cartesian coordinates.

When dealing with systems where the commutative theory is spherically symmetric,

such as black holes or magnetic monopoles1, one is faced with the question whether

to stay in the cartesian basis to use (2.1) straightforwardly, or to switch to spher-

ical coordinates in order to exploit the spherical symmetry of the corresponding

commutative theory? A further question is whether it would be justified, in order

to simplify the calculations, to replace (2.1) by a similar, but clearly inequivalent,

commutator among the spherical coordinates such as

[xµ, xν ]? = iθµν xµ = t, r, φ, θ . (4.10)

Just such questions have been considered explicitly in [89] and implicitly for

example in [90–92]. However, as there has been some confusion on the equivalence

1As the next chapter focuses on noncommutative magnetic monopoles, this question is espe-
cially relevant.



4.2 Spherical coordinates in quantum space 41

of the different choices of commutator, it is appropriate to consider the matter more

fully.

The commutator (4.10) is different from (2.1) already by dimensional count and

thus clearly describes different physics. The main idea in [89], further used in [90],

is to look at the difference of the physics one gets when using the commutator[
r̂2

2
, φ̂

]
= iθ , (4.11)

instead of (2.1) in 2+1 dimensions. The program is to calculate noncommutative

quantities directly in polar coordinates using (4.11) and then compare the results

to the expression one gets by the correct method

1. Performing the change of variables from polar coordinates to rectangular co-

ordinates.

2. Calculating the deformation expansion with the cartesian noncommutativity

(2.1).

3. Changing variables back to polar coordinates.

In [89] it was found that the results of the two calculations are different already

in first order in θ. This was not expected, as it was argued, directly in the operator

formalism, that the two commutators are equivalent in first order in the deformation

parameter.

In order to investigate the difference in the deformed structures given by the

two commutators (4.11) and (2.1), we will next do an explicit comparison up to

third order in θ using the twist approach. It is further shown that this discussion

is only sensible in 2 + 1 dimensions, since in 3 + 1 dimensions it is clear already in

first order that the two structures cannot be claimed to be equal. Finally, in section

4.2.1 the use of the more complicated quadratic twist element is considered with

the hope of simplifying the results.

Difference in polar coordinates

To compare the symplectic structures described by the two commutators (2.1)

and (4.11), let us calculate the commutators

[x, y]?/?′ ;

[
r2

2
, φ

]
?/?′

, (4.12)
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using both the usual ?-product induced by (2.1) and the ?′-product given by the

twist element corresponding to (4.11)

F ′∗ = exp

[
−iθ

(
∂

∂r2
⊗ ∂

∂φ
− ∂

∂φ
⊗ ∂

∂r2

)]
. (4.13)

The reason why this turns out to be interesting is that for [ r
2

2
, φ]?/?′ both ?-products

give the same result.

To begin with, it is good to note that in any ?-commutator all even order terms

vanish due to the antisymmetry of θµν . Further, as r2 = x2 + y2, it turns out that

all the terms in [ r
2

2
, φ]? that are higher than second order in θ vanish. This follows,

since in each term there is a total of more than two derivatives with respect to x

and y, acting on r2 and

∂nx∂
m
y (x2 + y2) = 0 , (4.14)

whenever n,m > 2 or when both n and m are nonzero. Thus the only contribution

comes in first order and is given by[
r2

2
, φ

]
?

= iθ

[
∂x

(
x2 + y2

2

)
∂y arctan

(y
x

)
−∂y

(
x2 + y2

2

)
∂x arctan

(y
x

)]
= iθ . (4.15)

Since using the ?′-product corresponding to (4.13) obviously gives the same

result, one might hastily conclude that the two commutators describe the same

deformation of space-time. This would be premature however, as can be seen by

considering the other non-trivial combination, [x, y]?′ , up to third order in θ (with

the notation R ≡ r2

2
)

[x, y]?′ =[x, y] + iθ (∂Rx∂φy)

+

(
i

2

)3
1

3!
θ3
(
2∂3

Rx∂
3
φy − 6∂2

R∂φx∂
2
φ∂Ry + 6∂R∂

2
φx∂φ∂

2
Ry − 2∂3

φx∂Rφ
3y
)

+O(θ5)

=2iθ − iθ
3

r4
+O(θ5) . (4.16)

Thus the two structures given by (2.1) and (4.11) are different and describe different

deformations. In first order there is a numerical factor of 2 difference, and in higher

orders one can see that also the functional form is different.
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To give a flavour of how the different structures affect calculations we can, as

an example, note the difference in a simple commutator calculated with ? and ?′

[r, φ]?′ = i
θ

r
,

[r, φ]? = i
θ

r
− 1

3!

(
i

2

)3

θ3 12

r5
+O(θ5) , (4.17)

where the result on the first line is exact. Thus it is not justified to use (4.11) in

calculations that aim to describe physics in the Moyal-deformed space-time corre-

sponding to (2.1). As shown in the following, in 3 + 1 dimensions this is evident

already in first order of perturbation.

Noncommutative spherical coordinates. To look at the more relevant 3+1

-dimensional space-times, let us consider the commutator (2.1), where the θ-matrix

in the most general form is given by

θµν =


0 0 0 0

0 0 θ3 −θ2

0 −θ3 0 θ1

0 θ2 −θ1 0

 , (4.18)

in four-dimensional spherical coordinates (t, r, φ, θ) parametrized as usual

x = r cosφ sin θ; y = r sinφ sin θ; z = r cos θ . (4.19)

The commutators of coordinates in first order are readily calculated to give

[r, φ]? = i[θ1(∂yr∂zφ− ∂zr∂yφ)

− θ2(∂xr∂zφ− ∂zr∂xφ)

+ θ3(∂xr∂yφ− ∂yr∂xφ)] +O(θ2)

=
i

r

[
−θ1

cosφ cos θ

sin θ
− θ2

sinφ cos θ

sin θ
+ θ3

]
+O(θ2) ,

[r, θ]? =
i

r
[−θ1 sinφ+ θ2 cosφ] +O(θ2) ,

[φ, θ]? =− i

r2

[
θ1 cosφ+ θ2 sinφ+ θ3

cos θ

sin θ

]
+O(θ2) . (4.20)

Thus in 3+1 dimensions the noncommutativity of spherical coordinates has a more

complicated functional form than (2.1) already in first order of perturbation. From

this one can directly conclude that these deformations describe different physics

and no confusion, as in 2 + 1 dimensions, should arise.
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4.2.1 Using a quadratic twist element

Using the Abelian deformation (2.32) helps us retain the translational invari-

ance of the corresponding commutative theory, as can be seen from the undeformed

coproduct (2.33). Thus it is worthwhile to check whether using a different twist

could help us retain at least a part of the rotational symmetry of the correspond-

ing commutative theory. To investigate this, we consider quadratic deformations,

considered with rectangular coordinates in [93].

The quadratic deformation is given by the twist element

F(2) = e
i
2
θαβγδ
(2)

Mαβ⊗Mγδ , (4.21)

where from the antisymmetry of Mαβ directly follows: θαβγδ(2) = −θβαγδ(2) = −θαβδγ(2) =

−θγδαβ(2) . In order to satisfy the twist condition (2.31) we further require that all the

indices of θ(2) are different and fixed, i.e. we fix the frame of reference so that there

is only one nonzero parameter in the object θ(2).

Symmetries. The preservation or breaking of any symmetry under twisting can

be seen from the deformed coproduct (2.29) of the corresponding generator. For

example, using the Abelian twist results in preserved translation invariance since the

coproduct of translation generators (2.33) remains trivial. On the other hand, the

breaking of Lorentz symmetry is apparent from the deformed coproduct of Lorentz

generators (2.34).

To follow this line of thought let us have a look at the deformations of coproducts

for Poincaré generators using the quadratic twist (4.21). Using the Campbell-Baker-

Hausdorff formula (2.19) we get for the Lorentz generators

∆(2)(Mµν) = ∆0(Mµν) +
i

2
θβαγδ(2) [Mαβ ⊗Mγδ,Mµν ]

+
1

2!

(
i

2

)2

θijkl(2) θ
βαγδ
(2) [Mij ⊗Mkl, [Mαβ ⊗Mγδ,Mµν ]] +O(θ3)

= ∆0(Mµν) +
1

2
θβαγδ(2)

[
(ηαµMβν − ηανMβµ − ηβµMαν + ηβνMαµ)⊗Mγδ

+Mαβ ⊗ (ηγµMδν − ηγνMδµ − ηδµMγν + ηδνMγµ)
]

+O(θ2) , (4.22)

with nonvanishing contributions in all orders of θ, and different from ∆0 for all Mµν .
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Similarly, for the translation generators we have

∆(2)(Pµ) = ∆0(Pµ) +
i

2
θβαγδ(2) [Mαβ ⊗Mγδ, Pµ]

+
1

2!

(
i

2

)2

θijkl(2) θ
βαγδ
(2) [Mij ⊗Mkl, [Mαβ ⊗Mγδ, Pµ]] +O(θ3) (4.23)

= ∆0(Pµ) +
1

2
θβαγδ(2) [(ηαµPβ − ηβµPα)⊗Mγδ +Mαβ ⊗ (ηγµPδ − ηδµPγ)] +O(θ2) ,

which is nonzero in all orders of θ and for all components of Pµ.

Unlike the Abelian case, the infinite series expansions (4.22) and (4.23) make

the coproducts intractable for anything but perturbative calculations. Nevertheless

we can deduce symmetries of the theory from the form of these coproducts: as the

coproducts of all Poincaré generators are non-trivial, we are led to conclude that the

original symmetry is broken completely. The residual symmetries that were present

when using the Abelian twist do not appear when considering the quadratic twist.

Example calculation using the quadratic twist. To compare the expressions

one gets when using the quadratic twist with those derived with the Abelian twist,

let us calculate [r, φ]? to third order in θ in a quadratically deformed Minkowski

space and compare with (4.17). We choose the frame of reference such that only

θ0123
(2) 6= 0 and for the Lorentz generators we use the usual realization Mµν = i(xµ∂ν−
xν∂µ). In first order we have

[r, φ]? = re
i
2
θαβγδ
(2)

Mαβ⊗Mγδφ− φe
i
2
θαβγδ
(2)

Mαβ⊗Mγδr

=
i

2
θαβγδ(2) (MαβrMγδφ−MγδrMαβφ) +O(θ2)

= iθαβγδ(2) MαβrMγδφ+O(θ2)

= 4iθ0123
(2) M01rM23φ+O(θ2)

= − 4itθ0123
(2) cos θ cos2 φ+O(θ2) . (4.24)

In second order we once again have a vanishing contribution and by including the

third order correction we get

[r, φ]? =− 4itθ0123
(2) cos θ cos2 φ+ 2

(
i

2

)3
1

3!
θαβγδ(2) θabcd(2) θ

ijkl
(2) MαβMabMijrMγδMcdMklφ+O(θ5)

=− 4itθ0123
(2) cos θ cos2 φ+ 8

(
i

2

)3
1

3!
θαβγδ(2) θabcd(2) θ

0124
(2) MαβMabM01rMγδMcdM23φ+O(θ5)

=− 4itθ0123
(2) cos θ cos2 φ− i8

3

(
θ0124

(2)

)3
M3

01rM
3
23φ+O(θ5) . (4.25)
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This expression is significantly more complicated than (4.17), agreeing nicely with

the expectations from the symmetry considerations above.

Thus it is concluded that using the more complicated quadratic twist (4.21) does

not help us to obtain simpler results and only leads to the breaking of the entire

Poincaré group. In describing the usual Weyl-Moyal space-time given by (2.11),

the use of the commutator (4.11) is unfounded and it is clear that the two describe

different structures, both in 2+1 and in 3+1 dimensions. Nothing prevents one from

using different deformations of space-time, but as most studies are concentrated on

using the Moyal deformation (2.11), motivated in section 2.2, care must be taken

in order not to cause undue confusion.



Chapter 5

Noncommutative gauge theory

and magnetic monopoles

The infinite nonlocality induced by the noncommutativity makes gauge theories

particularly difficult subjects to handle. In addition to the already discussed UV/IR

mixing effect that persists, one implication of the ?-product structure is that there

are no Abelian noncommutative gauge theories. Further, as discussed in the follow-

ing, there appears a natural charge quantization as well as the subsequent problem

of charging fields under more than two groups. We used this deformed structure

in III and IV to study magnetic monopoles in noncommutative space with results

clearly different from the commutative case.

5.1 Gauge theory in quantum space

5.1.1 Charge quantization and no-go theorems

To highlight the novelties introduced by the noncommutativity into gauge theory

let us look at the U?(1) Yang-Mills theory [84] (see also [94]), given by the action

SYM =

∫
ddx

(
− 1

4g2

)
Fµν ? F

µν . (5.1)

The main difference compared with ordinary U(1) is that the U?(1) group is non-

Abelian, leading to a self-coupling of the gauge field, clearly seen from the field-

strength tensor

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]? . (5.2)

47



48 Noncommutative gauge theory and magnetic monopoles

The corresponding gauge transformations of the field Aµ in the adjoint represen-

tation are given by the usual formula for non-Abelian theories, only now with ?-

products inserted between the factors

Aµ(x)→ U(x) ? Aµ(x) ? U−1(x)− iU(x) ? ∂µU
−1(x) , (5.3)

where the gauge group elements are given by

U−1(x) = eiλ(x)
? = 1 + iλ(x) +

i2

2!
λ(x) ? λ(x) + . . . . (5.4)

Equation (5.3) is used below in (5.32)-(5.34) as an expansion up to second order in

θ.

When fermions are added we can consider noncommutative QED, with the ac-

tion

SQED =

∫
ddx

(
− 1

4g2
Fµν ? F

µν + ψ̄ ? γµiDµψ −mψ̄ ? ψ
)
, (5.5)

where gauge fields are coupled to matter fields through the covariant derivative

Dµψ = ∂µψ − iAµ ? ψ . (5.6)

This behaves covariantly, as can be seen by using (5.3) and the transformation of

the matter fields charged under the fundamental representation of the gauge group

ψ(x)→ ψ′(x) = U(x) ? ψ(x) . (5.7)

Plugging (5.7) into (5.6) we get, as required,

Dµψ(x)→ D′µψ
′(x) = U(x) ? Dµψ(x) . (5.8)

Similarly, for ψ̄(x) in the antifundamental representation, we have

ψ̄(x)→ ψ̄′(x) = ψ̄(x) ? U−1(x) , (5.9)

and the covariant derivative

Dµψ̄ = ∂µψ̄ + iψ̄ ? Aµ . (5.10)

Considering the commutative limit θµν → 0 indicates that the fields are charged

under the U?(1) group with opposite charges, ±1 in the appropriate units. The

extension of the covariant derivative (5.6) to higher charges is given by

Dµψ
(n) = ∂µψ

(n) − inAµ ? ψ(n) , (5.11)
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with integral multiple n of the unit charge. However, equation (5.11) fails to trans-

form covariantly meaning that higher charges cannot be consistently introduced,

thus reducing the space of possible charges to 0,±1. This is to be expected from the

analogy with commutative non-Abelian gauge theory, where similar charge quanti-

zation occurs.

A corollary of charge quantization was noticed in [95], where it was pointed out

that in noncommutative gauge theories it is impossible to charge a field under more

than two groups. This follows from the fact that the ?-products in the group algebra

prevent one from charging a field under more than one group in the fundamental

representation as in (5.7), let us call this group U?(n). As it is further possible to

charge the same field under a different group, say V?(n), in the antifundamental

representation, as in (5.9), one has

ψ → ψ
′
= U ? ψ ? V −1 , (5.12)

U ∈ U?(x) , V ∈ V?(x) .

No further charges can be added, as can be seen from an analysis similar to that

in equation (5.11). This obviously poses problems in the efforts of constructing

a noncommutative standard model, as one would like to charge the quarks under

three groups, which is not allowed by the above argument.

The ?-product further spoils the closure condition of SU?(n) groups, thus lim-

iting the group structure of noncommutative gauge theories even more. Consider

two traceless hermitian n × n matrices g1 and g2, i.e. elements of the usual su(n)

algebra. The commutator [g1, g2]? fails to give a traceless matrix and consequently

the group does not close. For this reason, when constructing the noncommutative

standard model for example, one is lead to the use of U?(n) groups (that close),

along with their extensions.

Attempts have been made to by-pass all of these restrictions by the use of

enveloping algebra methods [96]. Whether this can be done consistently has been

debated [97] and a detailed analysis is in preparation.

5.1.2 Seiberg-Witten map

The parallel between commutative and noncommutative gauge theories was con-

sidered at length in [4], where noncommutative Yang-Mills theory was shown to arise
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as a low-energy limit of string theory, as discussed above in section 2.2. There is a

corollary to this, as using a different regularization method1 leads to a commutative

Yang-Mills theory instead of a noncommutative one. It turns out that one can then

introduce a mapping from the noncommutative fields and gauge parameters to the

corresponding quantities in the commutative theory by requiring the gauge equiv-

alence of fields derived by the two different regularization methods. One cannot

require a simple mapping of the form{
Â = Â(A, ∂A, ∂2A, . . . ) ,

λ̂ = λ̂(λ, ∂λ, ∂2λ, . . . ) ,
(5.13)

as from this would follow that the two gauge groups, U(1) and U?(1), are isomorphic

– an untrue statement.

Instead, a weaker condition is required, that of gauge equivalence of the two

fields A and Â, given by the expression

Â(A) + δ̂λ̂Â(A) = Â(A+ δλA) . (5.14)

The different variations in (5.14) are given by

δλAi = ∂iλ+ i[λ,Ai] , (5.15)

δ̂λ̂Âi = ∂iλ̂+ iλ̂ ? Âi − iÂi ? λ̂ . (5.16)

Expanding (5.14) up to first order in θ, one gets the following mapping between

the fields and gauge parameters{
Âi = Ai − 1

4
θkl{Ak, ∂lAi + Fli}+O(θ2) ,

λ̂ = λ+ 1
4
θij{∂iλ,Aj}+O(θ2) .

(5.17)

Equation (5.17) is referred to as the Seiberg-Witten map and is often used in pertur-

bative studies of noncommutative gauge theories. However, the gauge equivalence

principle is an extra structure coming from the regularization procedure and it

is not always clear a priori whether the mapping holds. This is especially true

for topologically non-trivial space-times, as is discussed below in connection with

noncommutative magnetic monopoles.

1Pauli-Villars instead of point splitting regularization.
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5.1.3 Gauge invariant observables

In usual gauge field theory one is often interested in the correlation functions

of gauge invariant local observables such as Tr[F 2(x)]. In noncommutative space

these operators are not gauge invariant but rather transform non-trivially. This

raises the question of how to define gauge invariant observables, for example the

electric and magnetic fields. This can be achieved by using the IIKK construction

[98]2. The starting point is that if we can find gauge invariant combinations of the

noncommutative potential that reduce to the electric and magnetic fields in the

θ → 0 limit, it is justified to call these combinations the noncommutative electric

and magnetic field, respectively.

The gauge invariant operators are given in momentum space, but they can

be transformed back to coordinate space by a usual, commutative inverse Fourier

transformation. Using this, one may define a gauge invariant object constructed

from the U?(1) field strength tensor F µν as

Gµν =

∫
d4ke−ikx

[ ∫
d4xF µν ? W (x,C) ? eikx

]
, (5.18)

where W (x,C) is the noncommutative U?(1) generalization of the Wilson line

W (x,C) = P? exp

(
ig

∫ 1

0

dσ
dζµ

dσ
Aµ(x+ ζ(σ))

)
, (5.19)

and where C is the curve which is parameterized by ζµ(σ) with 0 ≤ σ ≤ 1, ζ(0) = 0,

ζ(1) = l and satisfies the condition lν = kµθ
µν , l being the length of the curve. P?

denotes path ordering with respect to the star product

W (x,C) =
∞∑
n=0

(ig)n
∫ 1

0

dσ1

∫ 1

σ1

dσ2...

∫ 1

σn−1

dσn

× ζ ′µ1
(σ1)...ζ

′

µn(σn)Aµ1(x+ ζ(σ1)) ? ... ? Aµn(x+ ζ(σn)). (5.20)

Equation (5.18) is a gauge invariant combination of the noncommutative potential,

that reduces to the commutative field strength in the limit θ → 0. Therefore the

F 0i and F ij parts of the noncommutative field strength may be attributed to the

noncommutative electric and magnetic fields, such that G0i is the noncommutative

electric field and εijkG
jk is the noncommutative magnetic field.

2The IIKK construction was further analyzed and extended in [99].



52 Noncommutative gauge theory and magnetic monopoles

Different choices for the shape of the curve C give rise to different gauge invariant

objects, and therefore the definition of the magnetic and electric fields in (5.18) is

ambiguous. It may be that straight Wilson lines are the best choices as then the

point of attachment of F µν to the Wilson line does not matter as argued in [99].

However, the definitions of the gauge invariant fields are only given here for a better

understanding of the noncommutative Maxwell’s equations of section 5.2.3 and thus

a qualitative understanding is sufficient.

5.2 Magnetic monopoles

Magnetic monopoles have been under continuous study for decades even though

not a single one has been observed to date3. In 1931 Dirac showed that the existence

of a magnetic monopole would imply the quantization of electric charge [101]. This

and the duality-like symmetry of Maxwell’s equations are the two major motivations

for the study of monopoles. The Dirac quantization condition (DQC)

2ge

~c
= integer = N, (5.21)

is a topological property of space, i.e. independent of the local structure of the

theory. In 1975 the singular potentials that Dirac’s derivation results in were better

understood when Wu and Yang rederived the DQC by a new method based on

singularity-free gauge transformations [102].

In III and IV we applied the method of Wu and Yang to study the DQC in

Moyal space using the deformed Maxwell’s equations and gauge structure that the

noncommutativity of space-time brings with it. The final result is that, at least

within the perturbative framework we used, it is not possible to have a consistent

noncommutative gauge theory while retaining the DQC.

5.2.1 Wu-Yang approach

When describing a magnetic monopole in the Dirac approach [101], one is led to

a singularity in the gauge potential Aµ for the magnetic field – the Dirac string. The

string is rotatable by a gauge transformation and thus cannot be observed, but the

gauge transformations used for the rotation are also singular. In the approach of

3For a review on the experimental searches, see [100].
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Wu and Yang [102], the singularity problem is circumvented by dividing the whole

space into two overlapping hemispheres and by defining a singularity-free potential

in each hemisphere. In the original paper the space R is divided as

RN : 0 ≤ θ < π/2 + δ, r > 0, 0 ≤ φ < 2π, t ∈ (−∞,∞) ,

RS : π/2− δ < θ ≤ π, r > 0, 0 ≤ φ < 2π, t ∈ (−∞,∞) (5.22)

and the two gauge fields ANµ and ASµ are taken to be

ANt = ANr = ANθ = 0, ANφ = g
r sin θ

(1− cos θ),

ASt = ASr = ASθ = 0, ASφ = − g
r sin θ

(1 + cos θ). (5.23)

Figure 5.1: Schematic illustration of the potentials ANµ and ASµ defined in the two

hemispheres enclosing the monopole ρ.

The conditions the potentials need to satisfy are the following:

1. In the overlapping region they are gauge transformable to each other.

2. Their curls give the magnetic field.

3. Both potentials are singularity-free in their respective regions of validity.

For the potentials (5.23), the gauge transformation from one hemisphere to the

other is given by

S = Sab = e−iα = e
2ige
~c φ. (5.24)
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The main result in [102] was that this gauge transformation remains single-valued

only if the condition
2ige

~c
= integer = N , (5.25)

is satisfied. Equation (5.25) is exactly (5.21), the quantization condition due to

Dirac.

5.2.2 Wu-Yang procedure in noncommutative space

To check the validity of the DQC in noncommutative space, we will use a slightly

modified version of the original Wu-Yang procedure. In commutative space-time,

Wu and Yang looked for a gauge transformation from one hemisphere to the other

and required that the potentials in each hemisphere give the magnetic field. In

noncommutative space-time the situation is modified since the U?(1) group is non-

Abelian and the gauge invariant magnetic field needs to be constructed via the

IIKK construction as discussed in section 5.1.3.

The procedure we used in noncommutative space is the following: we look for a

potential in each hemisphere, ANµ (x) and ASµ(x), such that

1. The potentials are gauge transformable to each other in the overlapping region

of the potentials. For the non-Abelian group U?(1) this means that we require

AN/Sµ (x)→ U(x) ? AN/Sµ (x) ? U−1(x)− iU(x) ? ∂µU
−1(x) = AS/Nµ (x) . (5.26)

2. Both potentials satisfy Maxwell’s equations with an appropriate source for

the magnetic charge.

3. The potentials remain singularity free in their respective regions of validity.

That is, Maxwell’s equations are solved in such a way that noncommutativity

does not produce new singularities into the potentials.

In III and IV we treated the problem as a perturbation series up to second

order in θ. In the notation used, the noncommutative gauge field Aµ is expanded

as Aµ = A0
µ + A1

µ + A2
µ + O(θ3). Here the upper index corresponds to the order

in θ for each correction. In this notation the gauge transformation parameter is

(symbolically) expanded as λ = λ0 + λ1 + λ2 + O(θ3). To preserve the DQC

we required that the θ-corrections to λ can be put to zero (or a constant), i.e.

λ = λ0 + C, while satisfying the three above requirements. This is because the
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higher order corrections λ1, λ2 . . . necessarily bring about a dependence on space-

time points to the DQC, as is clear already from dimensional arguments. This

will lead to observer-dependence and thus make the DQC uninteresting. The main

result of IV is that it is not possible to find solutions when λ1 = 0, and thus the

DQC will need to be modified and its topological nature will be lost.

5.2.3 Deformed gauge transformations and Maxwell’s equa-

tions

Gauge transformations. As already mentioned above, the noncommutative

gauge transformations for the gauge field of the U?(1) theory are given by

Aµ(x)→ U(x) ? Aµ(x) ? U−1(x)− iU(x) ? ∂µU
−1(x) . (5.27)

The gauge group element U−1(x) = e
iλ(x)
? up to second order in θ was calculated in

IV and is given by

eiλ? = eiλ +
θijθkl

8
eiλ∂j∂lλ

(
1

2
∂i∂kλ+

i

3
∂iλ∂kλ

)
+O(θ3) . (5.28)

Using (5.28), we further derived the full expression for the gauge transformation

(5.27) up to second order. Order by order, these are

A0
i (x) → A0

i (x) + ∂iλ , (5.29)

A1
i (x) → A1

i (x) + θkl∂kλ∂lA
0
i (x) +

θkl

2
∂kλ∂l∂iλ , (5.30)

A2
i (x) → A2

i (x) + θkl∂kλ∂lA
1
i −

1

2
θklθpq

(
∂kA

0
i∂pλ∂q∂lλ−

∂k∂pA
0
i∂qλ∂lλ+

1

3
(∂k∂pλ∂lλ∂q∂iλ− ∂kλ∂pλ∂l∂q∂iλ)

)
. (5.31)

As we want the two gauge potentials to be gauge transformable to each other,

we require that the following equations hold in order to satisfy the first requirement

of section 5.2.2:

AN0
i (x) = AS0

i (x) + ∂iλ , (5.32)

AN1
i (x) = AS1

i (x) + θkl∂kλ∂lA
S0
i (x) +

θkl

2
∂kλ∂l∂iλ , (5.33)

AN2
i (x) = AS2

i (x) + θkl∂kλ∂lA
S1
i −

1

2
θklθpq

(
∂kA

S0
i ∂pλ∂q∂lλ−

∂k∂pA
S0
i ∂qλ∂lλ+

1

3
(∂k∂pλ∂lλ∂q∂iλ− ∂kλ∂pλ∂l∂q∂iλ)

)
. (5.34)
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Maxwell’s equations. In noncommutative space Maxwell’s equations for a static

monopole are

εµνγδDν ? Fγδ = 0 , (5.35)

Dµ ? Fµν = Jν , (5.36)

where Fµν = 1
2
εµνγδFγδ is the dual field strength tensor, while the noncommutative

U?(1) field strength tensor and the covariant derivative are given by

Fµν = ∂µAν − ∂νAµ − ie[Aµ, Aν ]? , (5.37)

Dν = ∂ν − ie[Aν , ·]? . (5.38)

In III and IV we expanded equations (5.35) and (5.36) perturbatively, using

the ?-product (2.11), up to second order in θ. The resulting equations need to be

solved order by order. For “Ampère’s law” (5.35), the deformed equations are given

by
(∇×B0)i = 0 ,

(∇×B1)i = −θγδ
[
∂j(∂γA

i
0∂δA

j
0) + ∂γA

0
jε
ijk∂δB

0
k

]
,

(∇×B2)i = −θpq{∂j(∂pAi1∂qA
j
0 + ∂pA

i
0∂qA

j
1) + ∂pA

0
j∂q(∂

iAj1 − ∂jAi1)

+∂pA
1
j∂q(∂

iAj0 − ∂jAi0) + θkl∂pA
0
j∂q(∂kA

i
0∂lA

j
0)} ,

(5.39)

where we have denoted (∂iAk2 − ∂kAi2) by εikpB2
p . The corresponding equations for

“Gauss’s law” (5.36) have the simpler form
∇ ·B0 = −4πδ3(r) ,

∇ ·B1 = −ρ1(x) ,

∇ ·B2 = −ρ2(x) ,

(5.40)

where ρ = −4πδ3(r)− ρ1(x)− ρ2(x) +O(θ3) is the perturbative source.

Using the well-known identity from vector calculus, ∇2 ~B = ∇(∇ · ~B) + ∇ ×
(∇× ~B), the first order equations combine to give

(∇2B1(A1))i = −∂iρ1 − θpq{εijk∂l(∂pAk0∂j∂qAl0)

−2∂m(∂pAm0 ∂
qBi

0)− ∂m(∂pBm
0 ∂

qAi0)} , (5.41)

while in second order we get the expansion

(∇2B2)m =∂m(∇ ·B2) + (∇× (∇×B2))m

=− ∂mρ2 − εmni∂nθpq
(
∂j(∂pA

i
1∂qA

j
0 + ∂pA

i
0∂qA

j
1)

+ ∂pA
0
j∂qε

ijlBl
1 + ∂pA

1
j∂qε

ijlBl
0 + θkl∂pA

0
j∂q(∂kA

i
0∂lA

j
0)

)
. (5.42)
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5.2.4 The Dirac quantization condition in quantum space

The aim is to compare the deformed gauge transformations and Maxwell’s equa-

tions given above and see whether we can consistently retain the DQC. In order

for the DQC to remain unmodified we require that λ = λ0 + λ1 + · · · = λ0 = 2ge
~c φ,

where φ = arctan
(
x
y

)
.

In the following we shall choose the noncommutative plane as θ = θ12 = −θ21,

while other components are set to zero. With this choice the solutions to the first

order Maxwell’s equations (5.41) for the potential differences AN1−AS1 were derived

in III and are given by

AN1
1 − AS1

1 =
2θyz(2(x2 + y2) + z2)

(x2 + y2)2r3
, (5.43)

AN1
2 − AS1

2 = −2θxz(2(x2 + y2) + z2)

(x2 + y2)2r3
, (5.44)

AN1
3 − AS1

3 = 0 . (5.45)

In first order in θ, the two sets of equations (5.41) and the corresponding ones

derived from (5.43)-(5.45) agree perfectly, component by component, as shown in

III. That is, by taking the curl and then operating with the Laplace operator on the

separation of the potentials (5.43)-(5.45) one gets exactly (5.41). In second order

this turn out not to be the case.

To make a comparison between Maxwell’s equations (5.42) and the gauge trans-

formation (5.34) in second order we need to solve for the potentials AN1 and AS1

(not just their difference) in first order, because this quantity appears in (5.34).

These were derived in III and are given by

AN1
1 = θ

(−2x arctan(x
y
)

(x2 + y2)2
+
y

4

[ 7

r4
− 2

(x2 + y2)r2
+

4z(x2 + y2 + r2)

(x2 + y2)2r3

])
, (5.46)

AN1
2 = −θ

(2y arctan(x
y
)

(x2 + y2)2
+
x

4

[ 7

r4
− 2

(x2 + y2)r2
+

4z(x2 + y2 + r2)

(x2 + y2)2r3

])
, (5.47)

AN1
3 = 0. (5.48)

This is of course just one choice of AN1 , but it is a singularity-free choice, thus sat-

isfying the third requirement of section 5.2.2. From these potentials it is straight-

forward to obtain the expression for AS1
i , using (5.43), (5.44) and (5.45).
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In second order we can write down Maxwell’s equations for the difference BN2−
BS2 from (5.42) as

∇2(BN2 −BS2)1 =
4θ2xz

(x2 + y2)3r10

[
− 375(x2 + y2)3 + 131z2(x2 + y2)2 (5.49)

− 2z4(x2 + y2)− 4z6
]
− ∂x

(
ρN2 + ρS2

)
,

∇2(BN2 −BS2)2 =
4θ2yz

(x2 + y2)3r10

[
− 375(x2 + y2)3 + 131z2(x2 + y2)2 (5.50)

− 2z4(x2 + y2)− 4z6
]
− ∂y

(
ρN2 + ρS2

)
,

∇2(BN2 −BS2)3 =
4θ2

(x2 + y2)4r10

[
120(x2 + y2)5 − 900(x2 + y2)4z2 − 1285(x2 + y2)3z4

−1289(x2 + y2)2z6 − 652(x2 + y2)z8 − 132z10
]
− ∂z

(
ρN2 + ρS2

)
. (5.51)

These equations are difficult to solve analytically. Fortunately this is not needed

however, since we only want to compare these equations to the ones coming from

the gauge transformation in the overlap of the potentials (5.27). Taking the curl and

then the Laplace operator of the transformations (5.34), component by component,

we get the following equations:

∇2(BN2 −BS2)GT1 =
4θ2xz

(x2 + y2)3r10

(
− 321(x2 + y2)3 + 205(x2 + y2)2z2

+ 26(x2 + y2)z4 + 4z6
)
, (5.52)

∇2(BN2 −BS2)GT2 =
4θ2yz

(x2 + y2)3r10

(
− 321(x2 + y2)3 + 205(x2 + y2)2z2

+ 26(x2 + y2)z4 + 4z6
)
, (5.53)

∇2(BN2 −BS2)GT3 =
4θ2

(x2 + y2)4r10

(
144(x2 + y2)5 − 564(x2 + y2)4z2

−455(x2 + y2)3z4 − 403(x2+y2)2z6 − 188(x2 + y2)z8 − 36z10
)
. (5.54)

In order to satisfy criteria 1 and 2 of section 5.2.2 for the DQC, the equations

(5.49)-(5.51) and (5.52)-(5.54) need to be satisfied simultaneously. We may simplify
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this system of equations by subtracting one set from the other to get

−∂x(ρN2 − ρS2) =
8θ2xz

(x2 + y2)3r8

(
27(x2 + y2)2 + 10(x2 + y2)z2 + 4z4

)
, (5.55)

−∂y(ρN2 − ρS2) =
8θ2yz

(x2 + y2)3r8

(
27(x2 + y2)2 + 10(x2 + y2)z2 + 4z4

)
, (5.56)

−∂z(ρN2 − ρS2) =
2θ2

(x2 + y2)3r8

(
48(x2 + y2)4 + 624(x2 + y2)3z2 + 1036(x2 + y2)2z4

+ 736(x2 + y2)z6 + 192z8
)
. (5.57)

We can then differentiate equation (5.55) with respect to y and equation (5.56) with

respect to x and perform a subtraction between the two. The derivatives commute4

and the resulting function needs to vanish. This is true for this first combination

(∂x∂y − ∂y∂x)(ρN2 − ρS2) = 0 . (5.58)

We get the following two additional equations in a similar manner, this time with

non-vanishing functions

0 = (∂x∂z − ∂z∂x)(ρN2−ρS2) =
24θ2x

(x2 + y2)5r8

(
41(x2 + y2)4 + 426(x2 + y2)3z2

+ 704(x2 + y2)2z4 + 496(x2 + y2)z6 + 128z8
)
, (5.59)

0 = (∂y∂z − ∂z∂y)(ρN2−ρS2) =
24θ2y

(x2 + y2)5r8

(
41(x2 + y2)4 + 426(x2 + y2)3z2

+ 704(x2 + y2)2z4 + 496(x2 + y2)z6 + 128z8
)
. (5.60)

The equations (5.59) and (5.60) have no solution (except when x = y = 0). Thus

we can conclude that there do not exist potentials ANµ and ASµ that would simulta-

neously satisfy Maxwell’s equations and be gauge transformable to each other by

(5.27). In our case, the inclusion of the source does not change the contradiction in

equations (5.59) and (5.60). This is more fully explained in III, here in short: The

only contribution that the source (5.63) or (5.64) has on the function B2
i is at the

origin r = 0, where the noncommutativity of space makes the theory more singular.

As this point is not included in the zeroth order potentials (5.23), it follows that it

is not included in the full expressions ANi and ASi . Thus we do not need to consider

the second order source contribution in the calculation of B2
i .

4The derivatives of (ρN2 − ρS2) are given by (5.55)-(5.56) and are continous functions outside
the origin, thus (ρN2 − ρS2) itself must also be continuous in this region.
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Therefore we have our final result: The DQC cannot hold topologically in this

model, even by considering the possibility of having an arbitrary perturbative non-

commutative source. This does not mean that we could not introduce a perturbative

source for the monopole, it only states that one could maximally retain the DQC

to first order in θ. In higher orders it receives corrections that depend on space-

time points and therefore the DQC would no longer be a topological property of

noncommutative space-time.

5.2.5 Discussion and comparison to earlier results

In hindsight, it is not surprising that the failure of the DQC is only apparent

in the second order of perturbation, as it is there that the first order correction λ1

influences the gauge transformations (5.29)-(5.31). In fact, the breaking is a first

order effect that only shows up in the second order calculation.

The most intuitive explanation for our result would be the breaking of rota-

tional invariance. Since rotational invariance is directly related to the fibre bundle

construction of the Wu-Yang potentials in commutative space-time, it may indeed

be that the breaking of it leads to a nontopological DQC in noncommutative space-

time.

In IV we also proposed the following related possible explanation: NCQED

is CP -violating [103] and it is known that in flat commutative space-time [104]

and even in curved space-time [105], a CP -violating theory necessarily leads to the

monopole aquiring an electric charge and the failure of the DQC. One could be led

to believe that this phenomenon, also called charge dequantization, is what we have

observed. It should be pointed out however, that the noncommutative Maxwell’s

equations are manifestly CP -violating whereas the CP -violation observed in the

charge dequantization phenomenon of commutative electrodynamics only occurs if

one adds extra terms to the free Lagrangian of electrodynamics. This does indicate

some difference in the two approaches.

Comparison with the Seiberg-Witten map (5.17) shows that our potentials are

not the same as those derived from the map. We checked explicitly that the first

order potentials derived from (5.17) do not satisfy the equations of motion (5.41).

This could be due to the physical singularity at the origin, but irrespective of the

reason for this failure it should be noted that any similar construction based on the

Seiberg-Witten map would immediately conclude that the DQC cannot be satisfied,
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since it necessarily produces a λ̂ that depends on the potential A0
µ. If it did not,

the gauge groups U(1) and U?(1) in the ordinary and noncommutative theories

respectively, would be identical, a point already mentioned in section 5.1.2.

Although a direct generalization of the Wu-Yang formulation of the Dirac

monopole, such as here, has not been considered previously, there have been many

studies of noncommutative BPS-monopoles. The works include perturbative stud-

ies of the U?(2) [106] and U?(1) [107] BPS-monopoles, as well as non-perturbative

studies of the U?(1) [108] BPS-monopoles, generalized to other groups in [109,110].

These constructions share the assumption that the definition of magnetic charge

in the BPS-limit may be taken over, without change, to the noncommutative case.

Our result shows that this assumption fails in the perturbative case. Therefore it

is to be expected that the definition of noncommutative magnetic charge in the

non-perturbative treatment is also subject to problems.

Finally, the failure of the DQC could be due to the perturbative approach used,

as the infinite non-locality induced by the ?-product is only apparent in the non-

perturbative approach5. It seems clear that the DQC cannot be recovered with

the inclusion of any finite number of θ-corrections, but a final verdict for the DQC

cannot be given before a non-perturbative treatment of this problem has been ac-

complished. A full non-perturbative calculation with the method considered here

would thus be an interesting continuation of our work.

Assuming that a non-perturbative treatment leads to the same conclusion, it is

interesting to speculate over the implications this result might have. First of all,

since the charge of the matter fields is quantized in noncommutative theories [84], we

are not in need of another explanation for the quantization of charge. Furthermore,

since the Aharonov-Bohm effect can be formulated in a gauge invariant manner in

noncommutative quantum mechanics [112], the noncommutative theories seem to

make a difference of outcome between the experimentally observed Aharonov-Bohm

effect and the DQC. Thus these two results, closely related in commutative space-

time, seem to be unrelated in the noncommutative theory. As a consequence, one

might argue that the lack of observations of magnetic monopoles is related to the

deformed structure of space-time at very small scales.

5A similar perturbative modification of quantization has been noticed for the magnetic flux of
vortex solutions in 2+1 -dimensional Chern-Simons theory coupled to a scalar field in the BPS
setting [111].
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5.3 A noncommutative particle source

The above calculation shows that, at least in perturbation theory, we cannot

force the DQC to hold topologically by choosing a source term with the zeroth

order contribution given by the Dirac delta function. However, we might still ask

what a possible noncommutative particle source might look like, whether it is a

monopole, an electrically charged particle or something else. Naturally, even if we

cannot find a DQC supportive source for the monopole, it should be possible to find

a source term e.g. for an electrically charged particle, as they must be described

somehow in this theory if it is to have any connection with commutative Maxwellian

electrodynamics.

To determine a possible noncommutative particle source, we need to discuss the

symmetry of the equations. Firstly, equation (5.36) transforms as U(x) ?Dµ ?Fµ0 ?

U−1(x) under gauge transformations on the left-hand side. Namely, it is gauge

covariant. Therefore, the source must also transform this way. Secondly, the left-

hand side is O(1, 1)× SO(2) symmetric and consequently, the source must also be

that. Thirdly, as a correspondence principle when θ → 0, we want to recover the

Dirac delta function for the source.

To begin with, any realistic generalization of a particle-source must in the non-

commutative Maxwell’s equations transform covariantly under gauge transforma-

tions. Therefore extensions of the delta function, such as

δ3
NC(r) =

1√
(4πθ)3

exp
(−r2

4θ

)
, (5.61)

must be discarded. They do not contain the gauge potential and therefore do not

transform under gauge transformations.

Two covariant sources. For the consistency of the deformed Maxwell’s equa-

tions (5.36) we need to find a source that is covariant up to second order of pertur-

bation. We have indeed found two such expansions, which surprisingly have all of

their coefficients uniquely fixed. The form of the possible sources is thus strongly

constrained by gauge covariance.

If we suppose we have a source that transforms gauge covariantly in the second

order in θ and we call it ρ2, where ρNC = ρ0 + ρ1 + ρ2 + ..., one can calculate the

gauge transformation it must satisfy using the gauge group element (5.28). It is
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given by

ρ2 → ρ2 + θij∂iλ∂jρ1 +
θijθkl

2

(
∂kλ∂iλ∂j∂lρ0 − ∂jλ∂lρ0∂i∂kλ

)
, (5.62)

where λ is the local gauge group parameter. Equation (5.62) is the gauge covariance

requirement for the source in second order in θ.

If we start with a first order source of the form ρ1 = θkl∂k (Alδ
3(r)) we find6 a

gauge covariant source up to second order in θ, satisfying all our symmetry require-

ments, as

ρ =ρ0 + ρ1 + ρ2 +O(θ3) = 4πg

(
δ3(r)− θkl∂k

(
Alδ

3(r)
)

(5.63)

+θijA1
j∂iδ

3(r) + θijθkl
[
A0
j∂k
(
∂iA

0
l δ

3(r) + A0
l ∂iδ

3(r)
)

+
1

2
A0
iA

0
k∂j∂lδ

3(r)

])
+O(θ3) .

Due to the requirement of gauge covariance, the first order contribution to the source

is unique up to the position of the partial derivative and the numerical coefficient

in front. The second order contribution was found by using the most general ansatz

possible, performing the transformation according to (5.29) and (5.30) and finally

comparing with the gauge covariance condition (5.62). An interesting point is that

the second order coefficients as well as the coefficient for the first order term are all

uniquely determined merely by specifying the form of the first order contribution

θkl∂k (Alδ
3(r)).

The other first order source term leading to a gauge covariant expansion in

second order in θ is ρ′1 = θklAl∂kδ
3(r). The corresponding expansion is given by

ρ′ = 4πg

(
δ3(r)− θijA0

j∂iδ
3(r)− θijA1

j∂iδ
3(r) +

1

2
θijθklA0

iA
0
k∂j∂lδ

3(r) +O(θ3)

)
.

(5.64)

The two second order sources (5.63) and (5.64) are the only gauge covariant expan-

sions consistent with the noncommutative Maxwell’s equations (5.36).

Of course, there remains the possibility to construct a non-perturbative source

similar to (5.61) that is also gauge covariant. This would allow for a full non-

perturbative study and is currently under investigation.

6The first order contribution, up to a sign change, was found in [113] and was also considered
in III.



Chapter 6

Conclusions

In this thesis the structure of noncommutative field theory has been examined

placing special focus on the role of time as a noncommutative coordinate. There

remain unsolved problems in all the approaches where noncommutative time has

been introduced. We still lack the means to construct a consistent, infinitely non-

local, Lorentz invariant quantum field theory.

There is interesting physics in theories where only spatial coordinates are non-

commutative, such as the UV/IR mixing problem and the deformed gauge theory

structure. The problems connected with charge quantization and restrictions on

group structure need to be solved in order to build a working noncommutative

standard model. For the magnetic monopoles, it seems that at least in the per-

turbative setting there is not much hope to accommodate the Dirac quantization

condition. In a full non-perturbative treatment the situation might be different as

it would allow us to probe the global effects of noncommutativity in full.

We live in quantum space-time. We are still missing a consistent theory to

describe it, but significant progress has been made and there is no reason to think

that such a theory would be completely beyond our reach, or even hopelessly far in

the future. Noncommutative quantum field theory is sure to give us some hints on

the structure of quantum space-time, especially on its possible nonlocal nature.
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