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Abstract

Superfluidity is perhaps one of the most remarkable observed macroscopic
quantum effect. It appears when a macroscopic number of particles occu-
pies a single quantum state. Using modern experimental techniques one can
manipulate the wavefunction of the superfluid to create coherent structures
such as domain walls (often called dark solitons) and vortices. There is a large
literature on theoretical work studying the properties of such solitons using
semiclassical methods.

This thesis describes an alternative method for the study of superfluid soli-
tons. The method used here is a holographic duality between a class of quan-
tum field theories and gravitational theories. The classical limit of the gravi-
tational system maps into a strong coupling limit of the quantum field theory.
We use a holographic model of superfluidity to study solitons in these systems.
One particularly appealing feature of this technique is that it allows us to take
into account finite temperature effects in a large range of temperatures.
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Chapter 1

Introduction

Holography provides a highly non-trivial connection between theories of quan-
tum gravity in asymptotically anti-de Sitter (AAdS) spacetimes and conven-
tional quantum field theories [1]. One way of viewing holography is that it
gives a non-perturbative definition of quantum gravity in terms of a quantum
field theory. It is still unclear which quantum field theories have gravitational
duals and which do not. Thus, it is important to gain more understanding of
what kinds of quantum field theory phenomena can be seen in gravitational
theories and vice versa. One way of approaching the problem is to use weakly
coupled semi-classical gravitational theories and study the range of quantum
field theory phenomena that can be seen in such a description.

As a more practical motivation to the work we note that holography gives
a new method for studying strongly coupled quantum field theories. This way
it can provide us with new understanding of possible quantum field theory
phenomena. Such phenomena have applications wherever quantum field theory
can be used as a framework to describe a physical system. One such place
is condensed matter and atomic physics, where one can find many interesting
phenomena that are still not fully understood in terms of conventional quantum
field theory methods. A lot of recent work in holography has been in attempting
to apply it to understand high temperature superconductivity [2, 3] and non-
Fermi liquids [4]. Another interesting direction of applications is the unitary
regime of fermion gases in the BCS-BEC crossover [5]. So far there has been
less work in this direction.

It is difficult to study solitons in interacting quantum field theories at finite
temperature. Holography provides an alternative tool for such studies. From
studying the solitons one can also learn more about the holographic superfluids,
and possibly on the mechanism of symmetry breaking in these models. Indeed
by studying the solitons we have found hints of a crossover similar to that of
the BCS-BEC crossover as certain parameters of the gravitational theory are



2 Introduction

varied [6]. Currently the nature of this possible crossover is still unclear.
I have attempted to make the thesis a logical path from some simple well

known aspects of superfluids to the holographic models. The first section starts
with some well known features of superfluids, such as their ability to sustain
frictionless and irrotational flow, to arrive at the picture of a superfluid as a
quantum system which has undergone spontaneous symmetry breaking of a
certain kind of a symmetry. The second section presents two example theories
of superfluids and introduces the main ideas of the two fluid model of Landau
and Tisza [7, 8]. The third section introduces the main ideas behind hologra-
phy, and describes the best understood example of the duality, which is that
between N = 4 supersymmetric Yang-Mills theory and type IIB superstring
theory in AdS5×S5. Using this example and more general arguments we show
how global symmetries in the dual quantum field theory are realized in the
gravitational theory. This is important to model superfluidity which is identi-
fied as spontaneous symmetry breaking of a global symmetry. With all these
ingredients we construct the simplest possible gravitational theory that can
describe superfluidity holographically. Finally we study some basic features of
this theory and show how superfluidity arises in this model. The main subject,
solitons, is not touched in the introduction part as the articles are fairly self
contained with that respect.



Chapter 2

Superfluidity

A superfluid is a fluid which can exhibit frictionless flow. One can derive a
simple criterion for superfluidity [7] based on a quantum mechanical consider-
ation. Before we can derive the criterion, we need to introduce some effective
field theory concepts.

2.1 On effective field theory

A system made of local quantum mechanical degrees of freedom can be de-
scribed in terms of a quantum field theory. If one knows that the system is
made of particles with known properties, one can introduce quantum fields Φi

to create those particles. If the effects of interactions between the quantum
fields Φi are small enough, the system can be well described by weakly inter-
acting particles and corrections induced by the interactions can be calculated
using semiclassical methods.

If the interactions between the fields are too large, the above procedure
can break down. Sometimes one can still identify the lowest lying excited
states above the ground state of the system, for example by using symmetry
arguments. An excited state in a quantum field theory carries a 4-momentum1

quantum number kµ and internal quantum numbers σ. The quantum numbers
of such a state are those of a particle with internal degrees of freedom σ.

Thus, one can introduce effective quantum fields Φ
(σ)
eff to create the lowest

lying excitations. If there is a separation of energy scales to higher excited
states, the low energy dynamics of the system can be determined by writing

down a local action for Φ
(σ)
eff . This action is often sufficient in determining the

low energy behavior of the system. Successful examples of such a procedure

1Assuming translational invariance of the ground state and time independence of the
Hamiltonian.
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include the Landau-Fermi liquids [9, 10], meson effective actions in QCD [11]
and Seiberg duality [12, 13]. The description of the low lying excited states is
usually referred to as effective field theory.

The effect of ignoring the higher excited states is to dress the coupling
constants in the effective action for the lowest lying excited states. This follows
from general principles of local quantum field theory, and is at the heart of the
renormalization group [10].

In general, the excited states need not be infinitely long lived. If the life-
time of the state is longer than its inverse energy, we will call the state a
quasiparticle.

2.2 The Landau criterion

After introducing the concept of quasiparticles we are ready to introduce a
criterion for superfluidity [7]. In this section we consider relativistic fluids.
Consider a superfluid flowing with a velocity v with respect to a container.
We will start by looking at the fluid in the comoving frame. In this reference
frame, the fluid is in its ground state. Dissipation of the fluid flow occurs when
energy is exchanged between the fluid and the container. Let us consider a
quasiparticle with energy ϵp and spatial momentum p being excited due to the
interaction with the wall. From the rest frame of the container, the energy of
the quasiparticle is

ϵ′ =
ϵp + p · v√

1− v2
, (2.1)

where we have performed a Lorentz transformation. Dissipation occurs when
ϵ′ < 0, so that the energy of the fluid flow decreases. The energy of the excited
quasiparticle (2.1) is minimized when p and v are antiparallel. This gives us
the Landau critical velocity

vcrit = minp
ϵp
|p|

, (2.2)

where the minimum is taken over all possible quasiparticle excitations. So
whenever the fluid is moving with a velocity smaller than vcrit, no dissipation
can occur simply by these kinematical reasons.

At this point it is instructive to consider a few simple examples. Consider
a fluid made of particles with some mass m with finite particle number density
and no interactions. The dispersion relation of a particle in the fluid is ϵp =√
p2 +m2. This is not quite right since in order to excite finite momentum

states of an already existing particle we should subtract out the mass of the
particle to give ϵp =

√
p2 +m2 −m. This way we see that

vcrit = minp(
√
p2 +m2 −m)/|p| = 0. (2.3)
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Thus, a fluid made from free massive particles cannot be a superfluid. The
same argument goes through in the non-relativistic limit where v ≪ 1, so that√
p2 +m2 −m ≈ p2/2m, and again vcrit = 0.
Adding weak interactions between the particles causes the physical mass to

be renormalized by interactions of the particle with its surrounding medium.
This will change the specific value of m in (2.3) but again vcrit = 0, unless
there are more dramatic many-body effects that change the nature of the low
lying excited states to be different from the free massive particles.

Let us next figure out what kind of dispersion relations are allowed for a
superfluid. Clearly we need at least

lim
p→0

ϵp
|p|

̸= 0. (2.4)

So the excitation spectrum has to be of the form ϵp ∝ |p|ν for ν ≤ 1, when
|p| is small. When ν = 0 the excitations are gapped, while ν = 1 corresponds
to a linear dispersion relation. Then again ν could in principle be a fractional
number. We will not consider such situations further in this thesis.

To have superfluidity we need a many-body effect, that affects the disper-
sion relation of all the quasiparticles in a way that they all satisfy the Landau
criterion. In fact this is a bit too much to require in general. If the superfluid
flow carries a conserved current Jµ (we will later specify what this current
might be), then it is only necessary for the degrees of freedom that carry this
current to satisfy the Landau criterion.

2.3 Vorticity

A further property of a superfluid is that it exhibits stable potential flow [14].
We assume that the superfluid carries a conserved current Jµ. We interpret
potential flow as meaning that the expectation value of the spatial part of the
current ⟨J(x)⟩ has a vanishing vorticity

∇× ⟨J(x)⟩ = 0. (2.5)

This is easily satisfied in a low energy effective theory if

J = κJ∇ϕ, (2.6)

for some constant κJ and for some new effective field ϕ. One should note that
in the identification (2.6), there is a shift symmetry ϕ → ϕ+ a for a constant
a.

We would like to write down a low energy effective action for the new field
ϕ. For the effective field theory to be consistent, the mass (or energy gap) of
the ϕ field should be considerably smaller than the cut-off scale of the theory.
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Generically in a quantum field theory, the dimensionful coupling constants in
the low energy effective action are of the order of the cut-off scale [10]. So
in order to keep the ϕ excitation light, we will assume that there is a shift
symmetry ϕ → ϕ+ a that prevents the generation of a mass term. Because of
the shift symmetry, the effective action can only depend on derivatives of ϕ.
We will not assume Lorentz invariance from this effective theory. By locality
we assume that there are no fractional powers of spatial or time derivatives.
This leads to an effective action

Seff =

∫
ddx

(
ρ∂tϕ+

1

2
κt(∂tϕ)

2 − 1

2
κx(∇ϕ)2 + ...

)
, (2.7)

where the dots denote terms that are, by dimensional analysis, accompanied
with negative powers of the cut-off scale, and can be ignored at low energies.
The coefficients ρ, κt and κx are constants. The shift symmetry leads to a
conserved current, which can be seen from the action (2.7) to be

Ji = κx∂iϕ, J0 = κt∂tϕ+ ρ. (2.8)

So it seems that we can identify this current with (2.6), by setting κJ = κx.
Also the ground state has a non-vanishing charge density J0 = ρ.

Next we can work out the dispersion relation for the φ fluctuations

ϵp =

√
κx

κt
|p|. (2.9)

This dispersion relation is indeed consistent with the Landau criterion.
So we have arrived at a picture of a superfluid as a quantum mechanical

system which has a shift symmetry ϕ → ϕ+ a with a corresponding conserved
current.

2.4 Spontaneous symmetry breaking

One way to obtain scalar fields with shifting symmetries is by spontaneous
symmetry breaking which we will shortly review in this section. The only case
we will discuss in this thesis is when the broken symmetry is Abelian. Before
symmetry breaking there is a conserved charge Q that generates the symmetry
transformations in the Hilbert space of the quantum system. The symmetry
is linearly realized in the fields if under a symmetry transformation the field
transforms as Φ → eiαqΦ, where q is the charge of the field Φ.

The symmetry is said to be spontaneously broken if for some operator
(which we will take to have spin 0 in order to preserve rotational symmetry)
the vacuum expectation value is non-vanishing

⟨0|Φ|0⟩ ≡ Φ0 ̸= 0. (2.10)
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The operator Φ can be either a composite operator or a fundamental boson,
and indeed we will see both kind of cases.

As now Φ has a non-vanishing value in the ground state, it makes sense to
redefine the degrees of freedom in the field Φ into a modulus and a phase2 as

Φ = eiφ(x)(Φ0 + δΦ(x)). (2.11)

Finiteness of energy requires φ(x) to approach a constant value as |x| → ∞.
Now states with different values of φ at infinity are equally good ground states
of the system. Thus, there is a shifting symmetry φ → φ + a, for constant a.
Due to (2.10) this is not a symmetry of the ground state, but it is a symmetry
of the low energy effective action for φ [11].

Thus, we see that spontaneous symmetry breaking leads to a scalar field
φ with a shifting symmetry. We have not shown that the fluctuations of the
modulus or possible other degrees of freedom satisfy the Landau criterion.
This has to be checked case by case. If they do, then spontaneous symmetry
breaking at finite charge density leads to superfluidity.

What are the symmetries that get spontaneously broken in real world su-
perfluids? They are accidental global symmetries in the low energy physics.
For example in Helium II, the conserved charge in question is the number of
Helium atoms. This is a symmetry because the energy scales (and temper-
atures) of the experiment are low enough so that the helium atoms cannot
disintegrate into other matter. Also in trapped atomic gases the conserved
charge is the number of atoms, which is again conserved for the same reason.

2This is not sensible when expanding around Φ = 0 as the phase of the complex number
0 is ill defined.
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Chapter 3

Examples of Superfluids

In this section we review the simplest theories describing non-relativistic su-
perfluids that are relevant to the real world. Eventually we will want to study
a holographic model of superfluidity. That model is relativistic (at zero density
and temperature) and has two spatial dimensions. So it is certainly different
from the theories that we review in this section. The latter are the simplest
and most well studied, so it is useful to understand them first.

3.1 Bosonic superfluids

We start from the simplest case, a single massive spinless boson Φ carrying
a conserved U(1) charge. This simple model of a superfluid is relevant for
example in the description of Bose-Einstein condensates (BEC) of trapped
bosonic atoms. Thus, we will refer to the model as the BEC theory.

We assume that there are bosons with a weak repulsive interaction at finite
charge density1. We would like to set up an effective field theory to describe the
system. The finite charge density in the effective field theory is accomplished
by introducing a chemical potential µ coupled to the charge. The repulsive
interaction can be modeled by a pointlike interaction λ|Φ|4, where λ > 0. This
description is applicable as long as the energy scales and the density of bosons
are low enough compared to the internal structure of the atoms [15, 16].

The full action for the boson is

SBEC =

∫
dtd3x

(
Φ∗(i∂t + µ+

∇2

2m
)Φ− λ|Φ|4

)
. (3.1)

When studying scaling to low energies it is useful to use the non-relativistic
scalings where one counts momentum having dimension 1 and energy having

1By charge density, we mean the global U(1) charge corresponding to the conserved boson
number.
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dimension 2. In these units λ has dimension −1. This means that the system is
getting weakly coupled at low energies and can be studied semiclassically. We
can see this by forming a dimensionless coupling λ̃ = qλ, where q is a typical
momentum scale in the system, and seeing how the dimensionless coupling
changes as we change the typical momentum scale

βλ̃ = q
∂λ̃

∂q
= λ̃. (3.2)

This tells us that indeed the repulsive interactions (λ > 0) are getting weaker
at low energies and momenta.

To find the ground state of the system we look for the minimum of the
potential energy for a spacetime independent field Φ. The minimum is at

|⟨Φ⟩| =
√

µ

2λ
. (3.3)

The ground state is no longer invariant under the U(1) transformations gener-
ated by the charge

Q =

∫
d3x|Φ|2, (3.4)

and the symmetry is spontaneously broken. The ground state charge density
is given by

n̄ = |⟨Φ⟩|2 =
µ

2λ
. (3.5)

Next we would like to check that the excitation spectrum satisfies Landau’s
criterion. Rather than working with the action we will work directly with the
equations of motion as is conventional when discussing the so called superfluid
hydrodynamics. We parametrize the boson field in terms of polar coordinates
in field space

Φ =
√
neiϕ. (3.6)

Here it is assumed that the density n(x) is a function of space and time, and has
a non-vanishing value in the ground state. The equation of motion following
from (3.1) is

(i∂t + µ+
∇2

2m
+ λ|Φ|2)Φ = 0. (3.7)

Multiplying the above equation with Φ∗ and looking at the real and the imag-
inary part of the resulting equation one finds

∂tn+∇ · (nvs) = 0,

m∂tvs +∇
(
− µ+ λn− 1

2m
√
n
∇2

√
n+

1

2
mv2

s

)
= 0, (3.8)
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where we have operated on the lower equation with ∇ and defined vs = ∇ϕ/m.
The above equations look very similar to usual hydrodynamic equations of a
fluid with a fluid velocity vs. Here vs is an irrotational velocity field, which
is called superfluid velocity. To find the excitation spectrum we look at small
fluctuations around the vacuum n = n̄ + δn, vs = 0 + δv. Furthermore, by
Fourier transforming we find that there is a mode with dispersion relation

ϵ2p = c2sp
2 +O(p4), (3.9)

where the velocity of the Goldstone mode, which is often called the sound
velocity, is

cs =

√
µ

m
. (3.10)

3.2 Bardeen-Cooper-Schrieffer (BCS) superflu-
ids

In the last subsection we saw how bosons at finite density lead to superfluidity.
In this section we will see that having fermions at finite density also leads
fairly generically to superfluidity. In this case, superfluidity appears through
dimensional transmutation. We will consider the following action

SBCS =

∫
d3xdt

(
Ψ†

α(i∂t +
∇2

2m
+ µ)Ψα − λΨ†

+Ψ
†
−Ψ−Ψ+

)
. (3.11)

Here Ψα is a fermion field and λ|Ψ|4 is a local interaction, which is attractive for
λ < 0. The index α denotes the spin degree of freedom. Naively, it seems that
the coupling λ is irrelevant, since it again has dimension −1 and by a similar
argument as in the preceding section we would conclude that the interaction is
getting weak at low energies. This would mean that the system would behave
as a free Fermi gas at low energies. This is not quite right though. In the
case of fermions it is a bit more tricky to define what it means to scale to low
energies [10]. Let us first consider the case λ = 0. Then the ground state is the
Fermi sphere where all states with |k| < |kF | are occupied and the other states
are unoccupied. Here we defined the Fermi momentum through k2

F /2m = µ.
The lowest energy fermionic excitations thus are either particles or holes with
momenta close to the Fermi momentum.

Low energy thus means that the momenta are scaled towards the Fermi
momentum. Next we would like to turn on the interaction. To proceed it is
convenient to write the interaction term in momentum space as (note that time
is not Fourier transformed)

λ

∫
dt

4∏
i=1

d3ki

(2π)3
(2π)δ(k1+k2−k3−k4)Ψ

†
+(k4)Ψ

†
−(k3)Ψ−(k2)Ψ+(k1). (3.12)
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Next we write ki = qi+li, where qi is the projection of ki to the Fermi surface.
To get to low energies we should do the following scalings [10]

li → sli, t → s−1t, Ψα → s−1/2Ψα, qi → qi, (3.13)

where s < 1 and eventually will be taken to zero. Here the scaling of the field
Ψ was determined from the invariance of the kinetic term. This means that we
are assuming that the kinetic term determines the size of generic fluctuations at
low energies [10]. Also, near the Fermi surface, the kinetic energy of a particle
becomes ϵ(k)−µ ≈ lvF , where vF = ∂ϵ/∂k|k=kF . Using the dispersion relation
ϵ(k) = k2/2m gives vF = kF /m. Using the above scalings (3.13) we see that
the interaction term (3.12) for generic values of ki scales as s4−1−4/2 = s1.
Here we assumed that the delta function does not contribute to the scaling as

δ(k1 + k2 − k3 − k4) = δ(q1 + q2 − q3 − q4 + l1 + l2 − l3 − l4) →
δ(q1 + q2 − q3 − q4 + s(l1 + l2 − l3 − l4)) ≈ δ(q1 + q2 − q3 − q4) (3.14)

as s is taken to be small. By this reasoning it would seem that as we go to
low energies s → 0, the interaction term scales as s, so that it will become
irrelevant. This is still not quite right since the scaling (3.14) is not generally
right. Consider the case when k1 + k2 = 0. Then the delta function becomes

δ(−k3 − k4) = δ(−q3 − q4 − l3 − l4). (3.15)

But now the parts of the delta function perpendicular to q3 will constrain
q3+q4 = 0, there is a one dimensional delta function left of the form δ(−l3−l4)
which scales as

δ(−l3 − l4) → δ(−s(l3 + l4)) = s−1δ(−l3 − l4). (3.16)

So overall, the interaction term scales as s0 when the initial states are in
opposite sides of the Fermi sphere and thus, the interaction is marginal.

To determine whether the interaction is marginally irrelevant or relevant
one has to compute loop corrections to the 4-point amplitude. A computation
of the one loop correction [10] shows that there is a non-vanishing beta function

βλ = q
dλ

dq
= Nλ2, (3.17)

where N is the density of states at the Fermi surface

N =

∫
d2q

(2π)3
1

vF
. (3.18)

Integrating this, gives

λ(q) =
λ(q′)

1 +Nλ(q′) log(q′/q)
. (3.19)
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We see that the repulsive interactions λ > 0 are getting weak at low energies,
while attractive interactions λ < 0 get strong. The momentum scale Λs at
which the interaction becomes strong can be estimated by setting λ(Λs) = ∞
and solving for Λs in (3.19) to give the dynamically generated scale

Λs ∝ qe1/(Nλ(q)). (3.20)

Generally as a quantum field theory gets strongly coupled things get difficult
to calculate. In the case of BCS theory this is not the case. If we assume
that the fermions form pairs (called Cooper pairs) which condense, which is a
phenomenon that seems fairly generic in nature, things become nicely calcula-
ble. The reason for the simplicity is due to the kinematics of the Cooper pairs.
The fact that the fermion interactions are strong only when the fermions sit at
opposite sides of the Fermi sphere, allows one to neglect loops of Cooper pairs
since they cannot carry non-zero total momentum.

Next we can go to real calculations [17]. Consider doing a path integral
over the fermions

Z =

∫
[dΨα, dΨ

†
α]e

iSBCS . (3.21)

The problem with performing the integral is the quartic interaction. There is
a nice trick called the Hubbard-Stratanovich transformation [18, 19], that one
can use to get rid of the non-linearity. One can introduce a new field ∆ and
use the identity

e−i
∫
d3xdtλΨ†

+Ψ†
−Ψ−Ψ+ (3.22)

=

∫
[d∆, d∆∗] exp

[
− i

∫
d3xdt

(
∆∗Ψ−Ψ+ +∆Ψ†

+Ψ
†
− − 1

λ
|∆|2

)]
.

This allows us to write

Z =

∫
[dΨα, dΨ

†
α, d∆, d∆∗] exp

[
i

∫
d3xdt

(
Ψ†

α(i∂t +
∇2

2m
+ µ)Ψα

−∆∗Ψ−Ψ+ −∆Ψ†
+Ψ

†
− +

1

λ
|∆|2

)]
(3.23)

=

∫
[d∆, d∆∗]eiSeff . (3.24)

On the second line we have integrated out the fermion fields, which is now easy
since the action was quadratic in the fermion fields. To see what ∆ means we
can use the fact that the functional integral of a total derivative is zero

0 =

∫
[dΨα, dΨ

†
α, d∆, d∆∗]

δ

δ∆∗ e
iS[∆,Ψ], (3.25)

where S is the action appearing in (3.23). Taking the functional derivatives
leaves us with the relation

⟨(∆(x)− λΨ−(x)Ψ+(x))⟩ = 0. (3.26)



14 Examples of Superfluids

So the vacuum expectation value of ∆ is identical to the vacuum expectation
value of the fermion bilinear Ψ−Ψ+. Also we see that ∆ carries twice the charge
of the fermion under the global U(1) symmetry corresponding to conserved
fermion number. The effective action for ∆ in (3.24) has the form

Seff = Tr logK +
1

λ

∫
d3xdt|∆|2, (3.27)

where K is the fermion kernel which we will come back to in a moment. As
we discussed, the fermion interactions are marginally relevant only when the
total momentum of a fermion pair Ψ−Ψ+ is zero. This means that we are
allowed to neglect doing loops in the ∆ path integral, since they would involve
fermion pairs carrying non-zero momenta. This approximation is often called
the mean field approximation. This way the vacuum expectation value for ∆
is the classical saddle point of the effective action (3.27) given by

δ

δ∆∗Tr logK = − 1

λ
∆. (3.28)

One can easily work out the operator K in the Nambu basis Ψ = (Ψ+,Ψ
∗
−),

K =

(
i∂t − ϵ(−i∇) −∆

−∆∗ i∂t + ϵ(−i∇)

)
. (3.29)

In this way, (3.28) becomes

1

λ
= −i

∫
dpod

3k

(2π)4
1

p20 − ϵ2(k)− |∆|2 + iε
. (3.30)

Here we introduced an imaginary part iε to pick the vacuum state and to
make the path integral to converge [20, 21]. The p0 integration picks up a
single residue so we get

1

λ
= −1

2

∫
d2q

(2π)3

∫ Λ

0

dl
1√

v2F l
2 + |∆|2

. (3.31)

This is called the gap equation. The l integral is an elementary integral that
can be performed to give

1

λ
= −1

2
Narcsinh

(ΛvF
|∆|

)
, (3.32)

where N is again the density of states on the Fermi surface and we have used
the fact that our Fermi surface is spherical so that vF = kF /m is independent
of q. Assuming for the moment that the cutoff Λ may be taken a to be a lot
larger than |∆|/vF we can approximate

1

λ
≈ −N log

(ΛvF
|∆|

)
, (3.33)
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and we can solve for the vacuum expectation value

|∆| ≈ kFΛ

m
e1/λN . (3.34)

Here we see that the condensate is indeed proportional to the dynamically
generated scale obtained from the renormalization group considerations (3.20).
Also we see that the assumption Λ ≫ |∆|/vF is well justified as long as the
UV coupling λ is sufficiently small.

Indeed we see that the Cooper pairs condense and spontaneously break the
U(1) symmetry that rotates ∆ → e2iα∆. This inevitably leads to Goldstone
bosons from the phase fluctuations of ∆.

A simple way to see what happens to the fermionic excitations when the
condensate forms is to go back to (3.23) and substitute the vacuum expecta-
tion value for ∆ into the action. Clearly this will make the fermions gapped.
Classically the fermions satisfy

KΨ = 0, (3.35)

which upon Fourier transformation leads to the Fermion excitation spectrum

E(k) = ±
√

ϵ2(k) + |∆|2. (3.36)

So indeed the fermion excitations have a gap |∆|.
To obtain the Goldstone spectrum we can expand the fermions as Ψα =

eıϕχα. This changes the operator K into

K =

(
i∂t − ∂tϕ− ϵ(−i∇+∇ϕ) −∆

−∆∗ i∂t + ∂tϕ+ ϵ(−i∇−∇ϕ)

)
. (3.37)

Expanding (3.27) (with K given above) in powers of derivatives acting on ϕ
one obtains an effective action for ϕ. From that effective action one can read
off the sound velocity [17]

cs =
1√
3
vF . (3.38)

3.3 A crossover between BCS and BEC and
scale invariant superfluids

In the preceding section we concluded that fermions with weak attractive inter-
actions at finite density lead to a BCS superfluid. Since the fermion interactions
for fermions not at opposite points of the Fermi sphere were irrelevant it seems
like the BCS kind of superfluid is the only possibility for the long distance
physics.
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Up to this point we have been following the renormalization group to low
energies. Now we will give up renormalization group and discuss what happens
when one tunes the fermion interactions. This is also possible experimentally
since one can control the interactions of ultracold fermions using the Feshbach
resonance [23].

If one starts increasing the fermion interactions in a BCS superfluid, the
fermions will form bound states and eventually the bound state bosons con-
dense due to Bose-Einstein condensation. This way one can go from a BCS
superfluid to a BEC superfluid. An interesting question is what happens in
between the two superfluids. One finds that there is a continuous transition
between the two types of superfluids [23]. The most interesting physics is
found right at the point where a two fermion bound state appears at zero en-
ergy. The treshold boundstate makes the renormalized fermion interaction to
diverge λR → ∞, meaning that the scattering length grows larger than any
other scales in the problem. The only scales in the problem are the fermion
density and possibly the temperature (if it is non-vanishing). This system is
believed to be described by a non-relativistic conformal field theory [24]. The
fixed point describing the system is not infrared stable [25] so we would not
have seen it by considering the low energy limit of BCS theory.

As we will see in the following sections, the holographic duality is a promis-
ing approach to study strongly coupled and scale invariant systems. For this
reason one might hope to learn more about scale invariant superfluids in the
BCS-BEC crossover by using holographic methods.

3.4 The two-fluid model

So far we have been treating superfluids as fluids with vanishing viscosity.
However, real world superfluids usually consist of two components, a superfluid
with a vanishing viscosity and a normal fluid with a non-vanishing viscosity.
This view of a superfluid is called the two fluid model [7, 8]. In this section
we review some very basics of the two fluid model in the context of the BEC
theory, following [17].

First consider a superfluid moving with a velocity u with respect to the
laboratory frame. Next we perform a Galilean boost to the rest frame of the
superfluid. The overall effect of this is to replace ∂t → ∂t + u · ∇. Plugging
this to the BEC action gives

SBEC =

∫
d3xdt

(
Φ∗(i∂t − u · (−i∇) + µ+

∇2

2m
)Φ− λ|Φ|4

)
. (3.39)

In section (3.1) we saw that the velocity of the superfluid is given by the
gradient of the phase of the condensate wavefunction. To have a flow where
the superfluid velocity is different from u we replace Φ → eimvs·xΦ. Plugging
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this into (3.39) gives

SBEC(u,vs) =

∫
d3xdt

(
Φ∗(i∂t − u · (−i∇) + µeff +

∇2

2m
(3.40)

+ (u− vs) · (−i∇))Φ− λ|Φ|4
)
,

where

µeff = µ− 1

2
mvs · (vs − 2u). (3.41)

Next we would like to calculate the finite temperature effective potential

e−V3βVeff =

∫
[dϕ]e−S

(Euc)
BEC (u,vs). (3.42)

The one loop evaluation of the above path integral gives

Veff = −µeff

2λ
+

1

2V3β
Tr logK ′, (3.43)

where

K ′ =

(
∂τ − ϵ(i∇) + µeff − 4λ|ϕ0|2 −2λϕ2

0

−2λ(ϕ∗
0)

2 −∂τ − ϵ̃(i∇) + µeff − 4λ|ϕ0|2
)
.

(3.44)

Above we have defined ϵ(i∇) = −(u−vs) · (−i∇)− ∇2

2m and ϵ̃(i∇) = (u−vs) ·
(−i∇)− ∇2

2m . The determinant of K ′ can be calculated using standard methods
of finite temperature field theory [26]

Veff = −µeff

2λ
+

1

2

∫
d3k

(2π)3

(
E(k) + 2T log(1− e−(E(k)+(u−vs)·k)/T )

)
, (3.45)

where

E(k) =

√
(
k2

2m
+ 4λ|ϕ0|2 − µeff )2 − 4λ2|ϕ0|4. (3.46)

We can calculate the momentum density of the flow by taking a derivative of
the effective potential with respect to u. This follows from the fact that u
multiplies the total momentum operator in (3.39). Denoting the momentum
density as p we get

p =
∂Veff

∂u
=

∂µeff

∂u

∂Veff

∂µeff
−
∫

d3k

(2π)3
k

e(E(k)+(u−vs)·k)/T − 1

= mn̄vs −
∫

d3k

(2π)3
k

e(E(k)+(u−vs)·k)/T − 1
. (3.47)
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Here we used the identity n̄ = ∂Veff/∂µeff . Let us first consider the limit
T → 0. In this limit the second term, which is due to finite temperature
excitations, vanishes. This way we get

p = mn̄vs. (3.48)

So at zero temperature the superfluid part is the only thing flowing. Assuming
that |u−vs| ≪ 1, we can expand (3.47) in the velocity difference. To the first
order, we get

p = ρvs + ρn(u− vs), (3.49)

where we have defined the density of the finite temperature excitations as

ρn =
1

3T

∫
d3k

(2π)3
k2eE(k)/T

(eE(k)/T − 1)2
. (3.50)

We will call ρn as the ”normal” density. Identifying u = vn as the velocity of
the normal part of the fluid and defining a superfluid density as

ρs = ρ− ρn, (3.51)

we get the momentum density into the form

p = ρsvs + ρnvn. (3.52)

This way we are led to a version of the two fluid model pioneered by Lan-
dau where there is a superfluid and a normal fluid having their own densities
and independent velocities. The normal fluid part satisfies the hydrodynamic
equations of a normal viscous fluid, while the superfluid behaves like an ideal
irrotational fluid, as we saw in (3.8). Now after getting some taste of the sim-
plest models of superfluids we are ready to move on to the actual topic of the
thesis.



Chapter 4

Holography

4.1 Degrees of freedom in a quantum field the-
ory

For any quantum field theory which is supposed to make sense at short dis-
tances, there has to be a UV fixed point in the renormalization group, at least
according to the usual Wilsonian picture of quantum field theory [27]. This
means that the theory becomes scale invariant at high energies. As far as the
high energy states of such a system are concerned, it behaves as a conformal
field theory (CFT).

For a local quantum field theory, the Hamiltonian is an extensive operator.
This, together with dimensional analysis, implies that in a finite temperature
CFT the energy expectation value ⟨H⟩ = E scales with the temperature as

E ∝ V T d, (4.1)

where d is the number of spacetime dimensions and V is the spatial volume
of the system. For the conventional density matrix e−βH , the extensivity of
the Hamiltonian implies the extensivity of entropy. Thus, dimensional analysis
tells us that the entropy of a CFT behaves as

S ∝ V T d−1. (4.2)

This way we see that the entropy of a finite temperature CFT behaves as a
function of energy as

S ∝ E(d−1)/d. (4.3)

So for any UV complete quantum field theory the entropy at large energies
behaves as (4.3).
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4.2 Degrees of freedom in gravity

Next we would like to determine the high energy entropy of a theory of grav-
ity. In asymptotically flat space, the finite temperature collapses the whole
system into a single infinitely large black hole [28]. To make more sense of the
canonical ensemble we can work at a spacetime which is not asymptotically
flat, but has negative constant curvature at ”infinity”. Such a spacetime is
called Asymptotically-Anti-de-Sitter (AAdS). What saves AAdS spacetimes
from collapsing to an infinitely large black hole at finite temperature is that
AAdS acts as a gravitational confining potential to the matter.

The metric of the AdS spacetime is

ds2 =
dr2

1 + r2

L2

−
(
1 +

r2

L2

)
dt2 + r2dΩ2, (4.4)

where L is the curvature radius of the spacetime and dΩ2 is the metric on a
unit (d− 2)-sphere. The metric of an AAdS spacetime will approach the form
(4.4) as r → ∞. Due to the warp factor in front of dt2, the local temperature
in AAdS behaves as Tloc = T/

√
gtt ∝ T/r for large r and finite temperature

can be achieved with finite energy [28]. As one puts more and more energy
into AdS space (or increases temperature) eventually one will form black holes.
The entropy of a single black hole is given by the Bekenstein-Hawking formula
(we will come back to the derivation of this result in the next section)

SBH =
A

4GN
, (4.5)

where A is the area of the black hole horizon and GN is the Newton’s constant.
At temperatures larger than the critical temperature of the Hawking-Page
phase transition [28] the thermodynamically favored state is a single large
black hole with a metric [27]

ds2 =
dr2

f(r)
−f(r)dt2+r2dΩ2, f(r) = 1− 16πGNM

(d− 2)Vol(Sd−2)rd−3
+

r2

L2
, (4.6)

where Vol(Sd−2) denotes the volume of a d− 2 sphere with a unit radius. For
high energies (or equivalently large M), the position of the black hole horizon
is of the form

r0 ∝ (ML2GN )1/(d−1). (4.7)

Identifying the black hole mass with the total energy of the system, we obtain
the black hole entropy

SBH ∝ rd−2
0 ∝ M (d−2)/(d−1) ∝ E(d−2)/(d−1). (4.8)

By comparing (4.3) and (4.8), we see that the number of high energy states
of a gravitational theory seem to behave very differently from the behavior of
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a local quantum field theory. This is one argument to suggest that gravity
cannot be a renormalizable quantum field theory [27] since it does not have
the correct number of degrees of freedom to be a CFT in the UV.

By comparing (4.3) and (4.8), we see that the number of high energy degrees
of freedom in a gravitational theory behave as those of a CFT in spacetime
with one less dimension. This leads to the idea of holography, that gravitational
theories could be dual to local quantum field theories with one less spacetime
dimension [29, 30]. The first precise version of such a duality was conjectured
in the framework of string theory by Maldacena [1]. Since this is the best
understood case of the duality, we will review it to obtain some generic lessons.

4.3 Maldacena’s duality

In this section we review the duality between type IIB string theory on AdS5×
S5 and N = 4 supersymmetric Yang-Mills theory. Type IIB string theory has
as its low energy limit, the type IIB supergravity. Type IIB supergravity has
the following bosonic fields, the graviton gµν , the antisymmetric tensor Bµν ,
a scalar called dilaton Φ, and 3 independent Ramond-Ramond p-form fields
C0, C2, C4.

Type IIB supergravity has well known classical solutions that are charged
under the Ramond-Ramond fields. The relevant classical solution to us is the
D3-brane solution [31]

ds2 =
√

H(r)(dr2 + r2dω2
5) +

1√
H(r)

(−dt2 + dx2), eΦ = 1,

H(r) = 1 +
4πgsNl4s

r4
, (4.9)

and the C4 field satisfies
∫
dC4 = N . Other fields vanish for this solution. This

looks like a usual extremal black brane solution in supergravity. The amazing
thing in string theory is that in addition to being a classical black hole solution,
the D3-brane has an interpretation directly in string perturbation theory as an
object where open strings can end [32].

First we will consider the perturbative picture of D-branes and take the
low energy limit α′E2 → 0, where E is a typical energy scale in the problem.
The dynamics of a single D3-brane is given by a generalization of the Dirac-
Born-Infeld (DBI) action of a membrane. The bosonic part of the D3-brane
action is [33]

SD3 = − 1

gs(2π)3(α′)2

∫
d4σe−Φ

√
det|gab +Bab + 2πα′Fab|+ SCS , (4.10)

where gab and Bab are the pullbacks of the corresponding spacetime fields to
the D3-brane worldvolume. Fab is the field strength of a U(1) gauge field living
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on the D3-brane. SCS is a Chern-Simons like term involving the worldvolume
gauge field and the p-form gauge fields whose explicit form we will not specify
here, but refer to [33]. The embedding of the D3-brane into spacetime can
be parametrized with coordinates Xµ(σa), where σa are coordinates on the
brane worldvolume. In the above action we can choose a gauge, called the
static gauge, where σa = Xa ≡ xa, for a = 0, ..., 3 and XM = XM (xa) for
M = 4, 5, ..., 9. Thus XM (xa) denotes the position of the D3-brane in the
6 transverse directions. When the fields XM and Aµ are slowly varying we
can expand the action in powers of derivatives. Furthermore assuming a flat
backround with vanishing Bab and Φ fields, we get

SD3 = − 1

gs(2π)3(α′)2

∫
d4x

(
1 +

1

2
∂µX

M∂µXM +
(2πα′)2

4
FµνF

µν + ...− 1
)
,

(4.11)
where the dots denote terms with more than two derivatives. These terms are
to be dropped in the low energy limit. The last term −1 factor comes from a
Chern-Simons term of the form

µ3

∫
C4, (4.12)

where µ3 is the RR charge of the D3-brane, which due to a supersymmetric
BPS condition1 exactly cancels the first term which corresponds to the mass of
the D3-brane. Such a cancellation may be seen to follow from supersymmetry
since supersymmetry requires the vacuum energy to vanish. The dynamics of
the fermions is fixed by supersymmetry. The number of supersymmetries in
type IIB string theory is 32, which is broken by the presence of the D3 brane
into 16 supercharges. This is because the presence of D3-branes requires the
existence of open string states for which the total of 32 supercharges is reduced
to half because the left and right moving supersymmetries become dependent
for the open strings. 16 supercharges corresponds to N = 4 supersymmetry on
the 3+1 dimensional brane worldvolume. Thus, we can identify the low energy
dynamics of a single D3-brane as N = 4 supersymmetric QED with a gauge
coupling

g2QED = 2πgs. (4.13)

A single D3-brane carries a single unit of the 5-form charge. So the solution
(4.9) really describes N D3-branes on top of each other. The low energy
dynamics of a stack of N D3-branes is given by a non-Abelian version of (4.10),
which can be similarly expanded in powers of derivatives [35]. This time the
low energy dynamics is given by N = 4 supersymmetric Yang-Mills theory
with a gauge group U(N) with the gauge coupling

g2YM = 2πgs. (4.14)

1By a BPS condition we mean here that there is a specific linear relation between a gauge
charge and the mass of a state which follows from supersymmetry [34].
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The bosonic part of the action of this theory is [33]

Sbos =
1

g2YM

∫
d4xTr

(
− 1

4
FµνF

µν − 1

2
DµΦ

IDµΦI − 1

4
[ΦI ,ΦJ ]2

)
, (4.15)

where we have rescaled the scalar fields ΦI = (2πα′)−1XI . The important
points to us here are that there is a U(N) gauge symmetry with Aµ and Φ
in the adjoint representation, and there is a global symmetry that rotates
ΦI → RIJΦJ , where RIJ is an SO(6) matrix. Taking into account the
fermionic part of the action one sees that the fermions also transform un-
der this symmetry since there is a Yukawa coupling between the scalars and
the fermions. This global SO(6) symmetry is called an R-symmetry since it
is equivalent to rotating the 4 supersymmetry generators of N = 4 with an
SU(4) transformation (recalling that SU(4) ∼= SO(6)). This symmetry follows
simply from the rotational SO(6) symmetry in the directions orthogonal to the
D3-branes.

We have obtained a low energy description for a stack of D3-branes in terms
of a quantum field theory living on its worldvolume. Interestingly there is a
second way to take the low energy limit E2α′ → 0 [1]. Alternatively we can
start from the classical supergravity solution (4.9). Far away from the brane
the spacetime looks flat and the α′ → 0 leaves us with free supergravity in
flat space. More interesting things happen when we approach r = 0. Close to
r = 0 the metric in (4.9) becomes

ds2 = L2
(dr2
r2

+ dΩ2
5

)
+

r2

L2
(−dt2 + dx2), (4.16)

where

L2 =
√
4πgsNα′ =

√
2g2YMNα′. (4.17)

We can recognize the metric (4.16) as AdS5 × S5 where both factors have
a curvature radius of magnitude L. The AdS part of the metric (4.16) is a
different parametrization of anti-de Sitter space than that in (4.4). The metric
(4.16) covers the Poincare patch of the AdS5 spacetime. We are interested in
the physics of modes with energies E, that satisfy E2α′ → 0. In the backround
(4.16) the proper energy of such a mode is

Eproper =
(2g2YMN)1/4

√
α′

r
E. (4.18)

Thus, we see that the modes with E2α′ → 0 can have a non-zero proper energy
if we at the same time take r → 0. So we see that indeed there is non-trivial
physics left in this limit. Next we can see whether the modes near the r = 0
region are interacting or not. Since the curvature radius of the region near
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r = 0 is of the order of L the quantum gravitational corrections are controlled
by the dimensionless Newton’s constant

G
(11)
N

L8
∝ g2s(α

′)4

(gsN)2(α′)4
=

1

N2
. (4.19)

Thus, we see that as α′ → 0 we are left with a gravitational theory with a
finite gravitational coupling determined by N . Another quantity of interest is
the dimensionless string scale, which controls the string loop corrections and
is determined from the dimensionless ratio of α′ and L as

l2s
L2

=
α′

L2
∝ 1

g2YMN
. (4.20)

Also we see that the dimensionless string scale is finite as α′ → 0. We have
been assuming in our derivation that both, the stringy effects and the string
loop effects are small. Particularly this means that gs < 1. In the perturbative
description of D3-branes we also need λ = g2YMN < 1. On the other hand,
weak coupling in the supergravity description of the D3-branes meant that
λ ≫ 1 and N ≫ 1.

To summarize we have seen that the physics of D3 branes can be described
in two alternative ways in the low energy limit. It is fairly natural to assume
that these two descriptions of the system are equivalent to each other [1].
Maldacena suggested that these two descriptions might be equivalent to each
other for all values of λ and N .

To see how to make the duality more precise we take a few steps back
and look at what happens before we strictly take α′ → 0. Then it is more
convenient to use a dimensionless AdS coordinate u = r/

√
α′. The boundary

of AdS space would be at u → ∞. Now when α′ ̸= 0, the boundary gets
replaced by a transition to the flat space outside the D3-brane. If we send a
fluctuation of a supergravity field towards the D3-brane, there are two ways to
interpret what happens.

The first way is to use the perturbative picture of D-branes, in which case
the fluctuation couples to the quantum field theory on the D3-branes and
sources the quantum fields on the brane. So changing values of supergravity
fields outside the D3-brane can be interpreted as varying sources on the N = 4
SYM. The response of N = 4 SYM to supergravity fields can be formalized by
defining the generating functional

ZQFT [Ji] =

∫
[dAµ, ...]e

iSSY M+i
∫
JiOi , (4.21)

where Oi are operators in SYM to which the supergravity fields couple to and
Ji are the values of the supergravity fields near the D3-branes.
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Another way of interpreting what happens when we send fluctuations of
the supergravity fields towards the branes is to use the supergravity solution.
When α′ ̸= 0 the fluctuation propagates into the AdS5×S5 region and excites
the fields inside that region. Now as we take α′ → 0, the large u region,
corresponding to the region of space outside the branes, goes to u → ∞. So
we might identify the values of the supergravity fields ϕi at u = ∞ as the
supergravity fields near the D3-branes as seen from the asymptotically flat
region. This way we would make the identification ϕi(u = ∞) ∝ Ji.

We would like to identify an observable in supergravity (or string theory)
with the SYM generating functional (4.21). For this identification to make
sense, the gravitational observable should be a functional of Ji or equivalently
of ϕi(u = ∞). The simplest gravitational observable would be the gravitational
partition function with fixed boundary conditions at u = ∞

Zstring[Ji] =

∫
[dϕi]e

iSstring |ϕi|∂AdS∝Ji
. (4.22)

This seems like a good observable in full quantum gravity as it is gauge invari-
ant2.

The key equation in AdS/CFT duality is the identification of the two gen-
erating functionals [37, 38]

ZQFT [Ji] = Zstring[Ji]. (4.23)

This is the basic relation we will work with.
As an example of the ”dictionary” between bulk fields and SYM operators

we can take the metric gµν . If one expands the D3-brane action with a non-
trivial backround metric, one sees that the backround metric couples to the
energy momentum tensor of SYM. This also follows from symmetry, since a
spin 2-particle should couple to a conserved two component tensor current. The
energy momentum tensor is the only possible conserved two component tensor
current. Thus we learn that the boundary value of the metric can be identified
as the source for the energy momentum tensor in SYM. Correlation functions
of the SYM energy momentum tensor can be obtained by taking functional
derivatives of the string partition function with respect to the boundary value
of the metric.

String theory in AdS is complicated. A much more simplified situation
is obtained in the limit where N → ∞ and λ → ∞. Then the string loops
and the stringy α′ corrections become arbitrarily small so that one can hope
to approximate the string path integral with its saddle point value in the
supergravity approximation

Zstring[ϕi] ≈ eiSsugra , (4.24)

2The gauge invariance in question here is the diffeomorphism invariance.
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where the supergravity action is evaluated on the solutions of the corresponding
equations of motion satisfying the right boundary conditions at u → ∞. In this
way one can obtain correlation functions in strongly coupled SYM by solving
classical equations of motion in AdS space. In this approximation equation
(4.23) reduces to

ZQFT = ⟨ei
∫
ddxJiOi⟩ ≈ eiSsugra . (4.25)

The N → ∞ limit corresponds to a classical limit in the gravitational the-
ory. So the quantum fluctuations are suppressed by powers of N−1. Somehow
the quantum fluctuations in the SYM should be suppressed for the duality to
make sense. This is related to the properties of the operators Oi in (4.21), in
the large N limit. The operators Oi must be gauge invariant and involve a
trace over the colour indices. For example one might have Oi = Tr(Φ2)/N .
Such operators are called single trace operators, and they have an important
factorization property [22] when properly normalized

⟨OiOj⟩ = ⟨Oi⟩⟨Oj⟩+O(1/N2). (4.26)

So indeed the fluctuations in the expectation values of the single trace operators
satisfy

lim
N→∞

⟨O2 − ⟨O⟩2⟩ = 0. (4.27)

Thus, the large N limit seems like a classical limit [39]. Still, this is not a clas-
sical limit in the usual meaning of the word. This can be seen in perturbation
theory by noting that there is an infinite number of Feynman diagrams in SYM
that contribute in the leading order in the 1/N expansion as N → ∞ [40].

4.4 Realization of symmetries in the duality

Let us start from symmetries of the AdS5×S5 spacetime. There is an obvious
SO(6) symmetry rotating the S5 which comes from the rotational symmetry
on the directions orthogonal to the brane. This SO(6) symmetry is seen as
a global symmetry on SYM while it is a part of the local diffeomorphism
symmetry in the bulk3. The metric of AdS5 (4.16) has an SO(3, 2) symmetry.
We can see some parts of it very easily. The −dt2 + dx2 part has an obvious
Lorentz symmetry SO(3, 1). Then there is a scaling symmetry that acts as

(t,x, r−1) → λ(t,x, r−1), (4.28)

where λ is an arbitrary non-zero real number. As one combines the Lorentz
transformations and the scalings with a transformation that acts on the bound-
ary as a special conformal transformation [31], they together form the group

3We often refer to the dual gravitational description as the bulk description and the field
theory as the boundary theory.
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SO(3, 2). This is equivalent to the conformal group in 3 + 1 dimensions. This
would better be a symmetry of the SYM for the duality to make sense. The
SO(3, 1) part is simply the Lorentz symmetry of SYM. At the classical level
SYM in fact enjoys the full conformal symmetry. Field theories with classical
scale invariance may loose the symmetry because of quantum effects. In N = 4
SYM the beta function (which we recall as the measure of scale dependence
of a coupling constant) is known to vanish in all orders of perturbation theory
and probably also non-perturbatively [41]. Thus, the SO(3, 2) symmetry is
also present at quantum level in the SYM.

At this point we mention an important point regarding to the mapping
of parameters between the two sides of the duality. As one compactifies type
IIB supergravity on the S5 one obtains particles with non-vanishing masses in
the bulk. Since the boundary theory should be scale invariant, there can be
no mass scales involved in the theory. So what does the value of a mass of a
particle in the bulk mean in the boundary field theory? By studying how the
symmetries between the two sides of the duality map into each other one can
show that the mass m of a field is related to the scaling dimension ∆ of the
dual operator [37]. By the dual operator we mean the operator that is sourced
by the boundary value of the corresponding field. We will come back to the
precise relation between ∆ and m in the next section.

4.4.1 Global symmetries in the bulk

The real goal of this thesis is to study superfluids using holography. As we
argued earlier, superfluidity can appear if a global symmetry of a quantum
field theory gets spontaneously broken. To understand what this might mean
in the gravitational side we should understand in more detail how symmetries
are realized in the duality. We begin with considering global symmetries in the
gravitational side. There are several reasons why such symmetries should not
exist, and next we will review how this is seen in asymptotically flat spacetimes.
Later we will come back to the AAdS case.

It is a well known fact in string theory that there are no global spacetime
symmetries [42]. By spacetime symmetries we mean symmetries of the string
theory S-matrix. The S-matrix is calculated from correlation functions on
the worldsheet conformal field theory. Thus, the spacetime symmetries appear
from symmetries of worldsheet correlation functions. For every such symmetry
on the string worldsheet, unless completely accidental, one has a conserved
current, which is a dimension one primary field. The conserved current can be
used to construct a vertex operator which creates a corresponding gauge boson
for each symmetry. Thus, all the symmetries in string theory are really gauge
symmetries.

One can argue more generally that in a theory of quantum gravity there
should be no global symmetries [43, 44]. The argument is based on black hole
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physics and goes roughly as follows. If one had a global conserved charge,
one could form a black hole by colliding a large number of particles which
carry global charge quantum numbers. Due to black hole no-hair theorems,
the global charge is not visible outside the black hole, but the black hole
looks like a conventional Schwarzschild black hole. Due to the global charge,
the information content of the black hole has increased. As is well known, a
black hole in asymptotically flat spacetime is not stable, but it radiates out
energy in the form of thermal Hawking radiation [45]. Since the radiation is
thermal, it cannot carry out macroscopic amounts of the global charge. When
the mass of the black hole is of the order of the Planck’s mass, Hawking’s
calculation is expected to break down. Before this happens, one has a situation
where the black hole is quite small, but carries an arbitrarily large amount of
information content due to the global charges4. This is in contradiction with
the Bekenstein-Hawking entropy formula which tells us that the black hole
should carry an entropy proportional to the area of its horizon.

4.4.2 Local symmetries in the bulk

The next case to consider is local symmetries in the bulk. As an example we
can look at rotational symmetry around the S5. In a theory with dynamical
gravity rotational symmetry is a local symmetry. It is a small subgroup of
the diffeomorphism group. The conserved charge density from the rotational
symmetry is the angular momentum density L0

ab ∝ naT0b where na are 6
coordinates on the S5 that satisfy nana = 1. One can explicitly see that this
rotational symmetry is a gauge symmetry by defining an SO(6) gauge field
through the metric as

gµa ∝ Aµabn
b. (4.29)

The precise full form of the metric can be found in [46]. The field Aab
µ is a

massless vector field in AdS5 which carries two SO(6) indices ab, and trans-
forms in the adjoint representation under SO(6) rotations. Now we can see
that the angular momentum current Lµ

ab is a gauge current as it couples to the
SO(6) gauge field through the usual gravitational coupling5

gµνT
µν ∝ Aµabn

bTµa ∝ AµabL
µab. (4.30)

The SO(6) gauge field is dual to the global symmetry current in the boundary
field theory. This is because the boundary value of the field acts as a source
to an operator in the boundary field theory. For this to be possible the dual
operator must have the same Lorentz and SO(6) indices as the SO(6) gauge
field. And furthermore it must be a conserved current, since gauge fields need

4This is because the black hole could have been formed from an arbitrarily large number
of particles carrying the global charge.

5This coupling is correct really when gµν is a small fluctuation around a backround metric.
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to couple to conserved currents. Thus we see that indeed Aab
µ is dual to the

SO(6)R current operator in the boundary field theory.
Conversely, if we have a global symmetry current Jµ in the field theory,

there must be a corresponding field in the bulk with a single 4-vector index
µ. Let us denote this field by Bµ. On general grounds, a conserved current
in a conformal field theory in d spacetime dimensions has a scaling dimension
d− 1. As we mentioned before, scaling dimensions of operators are related to
masses of bulk fields. It turns out that scaling dimension d − 1 corresponds
to a massless field [31]. So we can conclude that a global symmetry current
in the boundary field theory necessarily leads to a massless particle Bµ in the
bulk. On general grounds, such a particle must couple to other fields in a gauge
invariant way. Thus, for each global symmetry in the boundary there must be
a local symmetry in the bulk.

A byproduct of the previous argument is another viewpoint to the absence
of global charges in quantum gravity. Since if there is a global symmetry acting
on the fields in the bulk, it produces a global symmetry acting on the operators
of the boundary theory. Such a symmetry should have a corresponding con-
served current, but now there is no gauge field in the bulk that could provide
the dual field in the bulk theory. Thus, there should be no global symmetries
in the bulk theory.
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Chapter 5

Holographic Superfluids

5.1 Specifying the model

After gathering all the ingredients to describe superfluidity using holography,
it is finally time to specify a model we will study. As we argued in the first
section, superfluidity arises from spontaneous symmetry breaking of a global
U(1) symmetry. In the context of holography, we argued in section 4.4.2 that
a global symmetry on the boundary theory must be dual to a local symmetry
in the bulk. Thus, a minimal model describing superfluidity must have at least
a U(1) gauge symmetry in the bulk. Spontaneous symmetry breaking happens
when a scalar operator that transforms under the global symmetry obtains a
non-vanishing vacuum expectation value. To have such a scalar operator in the
boundary field theory we must have a scalar field Ψ in the bulk, that transforms
under bulk U(1) gauge transformations. This is all the necessary ingredients
one needs to realize a holographic model of superfluidity. A minimal action
with these degrees of freedom is

S =

∫
ddx

√
−g

( 1

16πGN
(R−2Λ)− 1

q2
(
1

4
FµνF

µν + |DµΨ|2+V (|Ψ|2))
)
+Sbdy.

(5.1)
Here Sbdy is a boundary term whose form we will specify later. The holographic
duality we discussed in the last section was between two very specific theories.
So one can ask why we might be allowed to choose the gravitational action (5.1).
Another way to proceed would be to look for a string theory construction using
branes to find a holographic duality between two descriptions for the same
system, as Maldacena did for D3 branes. Such a route has been followed eg. in
[47–50]. Here we will take another route, which is less rigorous. We will choose
the simplest model (5.1) and study that in more detail. In this case there is
no guarantee that the gravitational theory will make any sense beyond the
classical approximation, and furthermore, the action for the dual field theory
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is not known. As long as we stick to the classical approximation, the first point
will not cause problems. Anyway one can embed the system to string theory
if one wants. The second point is not a problem either, in the sense that we
can take the gravitational theory to define the dual field theory in terms of the
relation (4.25) defining the field theory generating functional. By calculating
quantities one can see whether the results obtained this way make sense for a
sensible field theory. There have been some steps towards showing1 that every
bulk theory in the classical approximation corresponds to a sensible dual field
theory in a large N limit [51]. This makes the author optimistic that (5.1) can
indeed define a consistent dual quantum field theory.

In the classical approximation the phases of the dual field theory are deter-
mined by AAdS solutions to the equations of motion following from the action
(5.1). We will want to study the system at non-vanishing charge density and
temperature. The charge density can be obtained by turning on a a chemi-
cal potential in the dual field theory. The chemical potential is equivalent to
deforming the Hamiltonian of the system as

H → H − µQ, (5.2)

where Q is the charge operator. As we argued earlier, the boundary value of
Aµ couples to the conserved global U(1) current Jµ through the coupling∫

d3xJµAµ|∂AdS . (5.3)

Thus, by imposing the boundary conditions At = µ and Ai = 0 at the AdS
boundary introduces a chemical potential µ in the boundary field theory. This
is seen most clearly from (4.25) as

⟨e−β
∫
d2xµJ0

⟩ ≈ e−SE , (5.4)

where SE is the Euclidean version of the action (5.1) evaluated on a solution
where Aµ satisfies the above boundary conditions.

The finite temperature maps to having periodicity β = 1/T in the Euclidean
time at the boundary. This follows from the usual definition of the finite
temperature equilibrium partition function as a path integral with periodic
imaginary time[26]. Thus, we need to find solutions where the spacetime metric
is such that it has periodic imaginary time in the AdS boundary. We will
approach the problem by starting from high temperature and working our way
down to lower temperatures.

1This is in a very specific setting where the bulk theory has a single scalar field and the
dual CFT has a single scalar operator O and nothing else.
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5.2 High temperatures

When the temperature of the dual field theory is large compared to the chem-
ical potential, one can approximate the system with a vanishing chemical po-
tential.2 In this case, the solution corresponding to the thermal state is an
AdS-Schwarzschild black hole

ds2 =
L2

z2
(−f(z)dt2 +

dz2

f(z)
+ dx2), f(z) = 1− z3

z3H
, Aµ = 0 = Ψ, (5.5)

where we have introduced a new more convenient coordinate z related to the
earlier AdS coordinate in (4.16) through z = 1/r. In particular, the boundary
of AdS is at z = 0. In (5.5), zH is related to the Hawking temperature of the
black hole, which is identified with the temperature of the dual field theory. The
relation can be found in a quick way by requiring that the analytic continuation
of the metric to imaginary time is regular near the black hole horizon [28,
52]. We define imaginary time as τ = it and expand the coordinates as z =
zH − ρ2/2 where ρ is small near the black hole horizon and define an angular
coordinate θ = τ |f ′(zH)|/2. This way the metric becomes

ds2 ≈ 2L2

|f ′(zH)|2z2H
(dρ2 + ρ2dθ2). (5.6)

To avoid a conical singularity at ρ = 0, we have to make the periodic identifi-
cation θ ∼ θ + 2π. In terms of the imaginary time we get

τ ∼ τ +
4π

|f ′(zH)|
= τ +

4πzH
3

. (5.7)

We see that the AdS-Schwarzschild black hole has a period β = 4πzH/3 in
imaginary time. This corresponds to a temperature

T =
3

4πzH
, (5.8)

in the boundary field theory.
Up to this point we simply assumed that Ψ = 0 and did not justify it. The

basic reason for the vanishing of Ψ is that the coordinate distance from the
black hole horizon to the AdS boundary is zH ∝ 1/T , which is getting smaller
and smaller as the temperature is increased. The field Ψ has to vanish in a
power law fashion as z → 0. Since the field has to vary in a shorter z-region
the gradient energies grow larger than any potential energies can compensate,
so at large temperatures it becomes favorable for the scalar to vanish.

In the large temperature region, the system behaves as a conformal field
theory put into finite temperature T . First we can see that the thermodynamics

2We give more justification to this procedure later.
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of the system is consistent with a CFT. Thermodynamic properties can be
determined by going to Euclidean time. To obtain the free energy in the dual
field theory we need to evaluate the Euclidean on shell action. The relevant
part of the action is

S =
1

16πGN

∫
d4x

√
−g(R− 2Λ). (5.9)

The Einstein’s equations tell us that R = 4Λ. This way we get the on shell
action

S =
Λ

8πGN

∫
d3x

∫ zH

ϵ

√
−g =

ΛL4

24πGN

( 1

ϵ3
− 1

z3H

)∫
d3x. (5.10)

Also, we have to take into account two boundary terms. The first one is the
Gibbons-Hawking term3, which has the form

SGH = − 1

8πGN

∫
d3x

√
−hΘ, (5.11)

where hµν is the induced metric on the ”regularized boundary” at z = ϵ. Θ is
the extrinsic curvature of the boundary Θ = nzhµν∂zhµν , where nz is a unit
vector perpendicular to the boundary [54]. To cancel off the divergent terms
there is also a boundary counter term [55]

Sct = − 1

8πGN

∫
d3x

√
−h

2

L
. (5.12)

The regularized action now becomes

S + SGH + Sct =
4π2L2

33GN
T 3

∫
d3x. (5.13)

Using the basic relation (4.24) we can identify the field theory partition function
as

Z = ⟨1⟩CFT = e−Sgrav(Euclidean), (5.14)

where the Euclidean action is

SE = −4π2L2

33GN
T 2V2, (5.15)

and V2 denotes the field theory 2-volume (or area) V2 =
∫
d2x. The free-energy

is now simply F = −T logZ = TSE , which gives

F = −4π2L2

33GN
V2T

3. (5.16)

3This boundary term is required to have a well defined variational principle on a spacetime
with a boundary [53].
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The field theory energy expectation value is now

⟨E⟩ = − ∂

∂β
logZ =

8π2L2

33GN
V2T

3, (5.17)

and the entropy is given by

⟨S⟩ = −∂F

∂T
=

4π2L2

9GN
V2T

2. (5.18)

Using the horizon area of the black hole A = V2L
2/z2H = 16π2L2T 2V2/9, which

leads to the famous Bekenstein-Hawking entropy

⟨S⟩ = A

4GN
. (5.19)

We see the thermodynamic quantities are indeed those of a 2 + 1 dimensional
conformal field theory. Another important thing is that the free energy is
proportional to L2/GN , which is supposed to be very large for the classical
gravity approximation to be applicable. Usually when the free-energy of a
system is of the form

F = cT d, (5.20)

one can interpret c as being proportional to the degeneracy of states at a
given energy. Thus, we might want to identify L2/GN as the degeneracy of
states in the boundary field theory. In this sense it seems like there is a large
degeneracy of states in the boundary field theory. It is suggestive that there is a
large symmetry rotating the degenerate states to each other. Such a symmetry
ought to be accompanied with conserved currents. But as we do not have a
large number of gauge fields in the bulk, we would arrive in a contradiction.
This contradiction can be avoided by identifying the large symmetry as a gauge
symmetry. Then there is no need to have a corresponding dual field in the bulk,
since a gauge theory current operator is not gauge invariant and thus, not a
physical observable. This suggests that the boundary field theory is a large N
gauge theory even in our case.

If one is interested in the low energy dynamics of the finite temperature
system, one can perturb the AdS-Schwarzschild black hole slightly out of equi-
librium. Then one can solve Einstein’s equations in a derivative expansion in
the field theory directions [56]. This leads to equations that are equivalent to
relativistic hydrodynamics of a 2+1 dimensional fluid with a shear viscosity
η = s/4π, where s is the entropy density of the fluid [56]. The smallness of the
viscosity to entropy density ratio suggests that the dual field theory is strongly
interacting4.

4A rather naive argument for the strong interactions is that in a quasiparticle picture of
a fluid η ∝ 1/σ, where σ is a typical quasiparticle scattering cross-section [57].
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The viscosity of the dual field theory fluid may be shown to be equivalent
to a viscosity that can be assigned to the surface of a black hole through the
so called membrane paradigm [58]. Furthermore it can be shown that η/s
depends only on the form of the gravitational action, and not on the details of
the black hole solution. Thus, the viscosity associated with the total motion
of energy-momentum is independent of the phase of the system.

5.3 Intermediate temperatures

As we lower the temperature, µ/T is no longer negligible. The system starts
to look like it has an overall global charge. We will assume that Ψ has not yet
condensed. As the chemical potential is identified with the boundary value of
At, we will have a black hole solution with a non-vanishing electric field. This
black hole solution is the AdS-Reissner-Nordström (AdS-RN) black hole

ds2 =
L2

z2

(
− f(z)dt2 +

dz2

f(z)
+ dx2

)
, At(z) = µ(1− z/zH), (5.21)

f(z) = 1−
(
1 +

z2Hµ2

γ2

)( z

zH

)3

+
z2Hµ2

γ2

( z

zH

)4

, γ2 =
L2q2

4πGN
. (5.22)

Now we see that when T/µ is large, this reduces back to the AdS-Schwarzschild
black hole as z2Hµ2 → 0. Due to scaling symmetries of the equations of motion
following from the action (5.1) the only physically relevant parameter is the
dimensionless ratio T/µ, while T dependence can be worked out by using
dimensional analysis. Again we can work out the thermodynamic quantities of
the system as follows. The relevant part of the action is now

S =

∫
d4x

√
−g

( 1

16πGN
(R− 2Λ)− 1

4q2
FµνF

µν
)
. (5.23)

Using the equations of motion we again obtain R = 4Λ and using Fz0 = −µ/zH
we get

S =

∫
d4x

√
−g

( Λ

8πGN
− µ2

2q2z2H
gzzg00

)
. (5.24)

Again this is to be integrated over the z direction. After introducing the
boundary terms we used in the neutral black hole, we get

S + Sbdy =
( L2

16πGN

1

z3H
+

µ2

2q2zH

)∫
d3x. (5.25)

The identification of the temperature goes as before, except f ′(zH) is different
for the charged black hole, and we obtain the temperature

T =
|f ′(zH)|

4π
=

1

4πzH

(
3− z2Hµ2

γ2

)
. (5.26)
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Again we can analytically continue to Euclidean time to give the grand canon-
ical partition function [59]

Ω = − L2

16πGN
V2

1

z3H
− 1

2q2
V2µ

2 1

zH
. (5.27)

This time it is a bit trickier to write Ω as a function of the temperature. The
first part of the expression is identical to the high temperature result while
the second part is the contribution from degrees of freedom carrying the global
charge. The classical approximation requires that 1/q2 is large, which tells us
that the number of charged degrees of freedom is large, and proportional to
1/q2.

For small µ/T we can solve (5.26) in a power series and substitute the result
to the grand canonical partition function to give

Ω = −V2L
2

GN

(4π2

27
T 3 +

1

4γ2
Tµ2 +O(µ4/T )

)
. (5.28)

which is of the form Ω = −V2T
3g(T/µ), for some function g, as expected from

conformal symmetry.
Again one can study the system out of equilibrium. This leads to hydro-

dynamics with a conserved current. As emphasized earlier, the viscosity has a
universal value η = s/4π. There is a new response coefficient, which is the con-
ductivity in the field theory, that can be shown to take the value σ = 1/q2 [58].
So the horizon behaves as a fluid with finite charge density and temperature.

5.4 Low temperatures

As one further lowers the temperature of the system, the scalar field starts to
play an important role. Let us for a moment pretend that the scalar field is
not there in the theory. In this case, as one takes the temperature to zero,
the AdS-RN black hole becomes extremal. In this case, the two first order
poles in the metric function (5.22) approach each other as µ/T is increased
and eventually they collide to form a second order pole. This means that the
black hole temperature is zero, while it has a finite horizon radius zH . By the
Bekenstein-Hawking formula this means that it has a finite entropy, which can
be also calculated from (5.27) to be

⟨S⟩ = π

3q2
V2µ

2. (5.29)

This is problematic for the boundary field theory as it contradicts the third law
of thermodynamics, which states that a zero temperature system should have
a vanishing entropy. One might guess that even a slight disturbance of the
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system would destroy the degeneracy and pick a unique ground state5. Such
studies have indeed been performed by subjecting the system to an external
magnetic field [60] and the zero temperature limit seems to go to zero entropy.6

What saves the situation in our case is that the scalar field condenses and
completely changes the zero temperature limit. The physics of the system is
no longer as universal as it was for the high temperature systems. This is
because the high temperature properties only depended on the properties of
the black hole. As we will soon see, the scalar field will develop a non-vanishing
profile outside the black hole, whose properties will depend on the choice of
the potential V (Ψ). This forces us to give up the universality of the physics
and choose a form for V (Ψ). In the rest of this thesis we will work with the
minimal possible choice

V (Ψ) = m2|Ψ|2. (5.30)

Furthermore, we will choose m2 = −2/L2 for the explicit numerical calcu-
lations. At first sight it seems suprising that it is at all possible to have a
negative m2. What saves the situation is that the scalar field must vanish as
a power-law as one approaches the AdS boundary and unless m2 is below the
Breitenlohner-Freedman bound m2 ≥ −9/(4L2) [62], the gradient energies will
win over the negative potential energy that can be gained by rolling down the
potential to |Ψ| → ∞.

Now we can come back to the question what happens when the tempera-
ture is lowered. This is equivalent to increasing the chemical potential since, as
explained earlier, the only relevant parameter for the physics is the dimension-
less ratio µ/T . One can see from the action (5.1), that the backround value of
the gauge field At = µ(1− z/zH) acts as an effective mass term for the scalar
field

m2
eff = m2 + gttA2

t . (5.31)

So increasing the chemical potential makes the mass of the scalar field more
and more tachyonic since gtt ≤ 0. By studying fluctuations of the scalar field
around the AdS-RN black hole one finds that the solution with a vanishing
scalar field is unstable when m2 is sufficiently small and µ/T is increased [63].

To find the correct thermal state of the system, we look for other solutions
to the equations of motion following from the action (5.1). The solution which
has the lowest free energy determines the correct thermal state of the system.

As a final choice of parameters we will choose q2 to be large compared to
GN/L2. This choice is done purely for calculational reasons as it allows us
to neglect the backreaction of the scalar and the gauge field to the metric.

5Unless there is supersymmetry that protects the degeneracy.
6It has been also argued that the extremal black hole has zero entropy [61]. This would

mean that the Bekenstein-Hawking formula does not apply in that case and that the zero
temperature limit of the AdS-RN solution is discontinuous [61]. This does not solve our
problem since still the entropy at an arbitrarily small temperature is macroscopically non-
vanishing [59].
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This follows because the matter energy-momentum tensor sourcing Einstein’s
equation is proportional to GN/L2q2 ≪ 1, so we can approximate the matter
energy-momentum tensor as being zero. To see what such an approximation
means in terms of the boundary field theory we recall from (5.27) that 1/q2

is proportional to the number of charged degrees of freedom, while L2/GN

is proportional to the overall number of degrees of freedom. The choice of
parameters then means that we are setting the number of charged degrees of
freedom in the boundary field theory to be lot smaller than the number of
overall degrees of freedom.

In this approximation the relevant equations of motion we need to solve are

Rµν − 1

2
Rgµν + Λgµν = 0, (5.32)

1√
−g

Dµ(
√
−ggµνDνΨ) +m2Ψ = 0, (5.33)

1
√
g
∂µ(

√
−gFµν) = i(Ψ∗∂νΨ−Ψ∂νΨ∗ − 2iAν |Ψ|2). (5.34)

The solution to the Einstein’s equations (5.32) is simply the AdS-Schwarzschild
black hole. To solve rest of the equations (5.33) and (5.34) we need to make
some simplifying assumptions. We will assume that the solution minimizing
the Euclidean on-shell action is translationally invariant in the x-directions
and independent of time. Thus, we can set Ax = Ay = 0 up to pure gauge
configurations. As a gauge fixing condition we set Az = 0 [64]. Now the
Maxwell’s equations (5.34) force the phase of Ψ to be constant. Thus, we are
left with an ansatz Ψ(z) = R(z)/

√
2 and At(z) = A(z), where both R(z) and

A(z) are real. Substituting this ansatz into equations (5.33) and (5.34) we
obtain

z4∂z

(f(z)
z2

∂zR(z)
)
+
(
m2L2 − A(z)2z2

f(z)

)
R(z), (5.35)

f(z)∂2
zA(z) +

R(z)2

z2
A(z) = 0. (5.36)

Before we can solve these equations we have to specify boundary conditions.
At the black hole horizon we will require regularity. For the gauge field we
require that AµA

µ = gttA2
t = z2A(z)2/f(z) is finite at the horizon, which

leads to A(z = zH) = 0. Furthermore we assume that the scalar field is finite
at the horizon, which together with (5.35) leads to a regularity condition

f ′(zH)∂zR(zH) +
m2L2

z2H
R(zH) = 0. (5.37)

Next we need to impose boundary conditions at the AdS boundary z = 0.
Equation (5.35) implies that near z = 0, R(z) behaves as

R(z) = R−z
∆− +R+z

∆+ + ..., (5.38)
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where

∆± =
3

2
±
√

9

4
+ L2m2. (5.39)

This asymptotic behavior holds even more generally as

Ψ(x, z) = Ψ−(x)z
∆− +Ψ+(x)z

∆+ . (5.40)

First, let us identify Ψ− as the boundary value of Ψ which is to be interpreted
as a source for a scalar operator O− in the dual field theory. The expectation
value of the dual operator can be calculated by using equation (4.24) as

⟨O−(x)⟩ =
δS

δΨ∗
−(x)

=
1

q2
lim
z→0

∫
d3x′√−ggzz

δΨ∗(x′, z)

δΨ∗
−(x)

∂zΨ(x′, z), (5.41)

where have assumed Ψ satisfies its equations of motion, and integrated by
parts. Substituting in the expansion (5.40) gives

⟨O−(x)⟩ =
∆+

q2
Ψ+(x), (5.42)

where Ψ+ = R+/
√
2 for our solution. Thus, when interpreting R− as the

source, the operator expectation value will be given by the subleading term
R+. So to calculate the one point function we want to set the source R− to
zero. This gives us a second boundary condition to solve (5.35).

At this point we can obtain the advertised connection between operator
scaling dimensions and the masses of bulk fields, for scalar operators. We
recall that a scale transformation in the boundary field theory maps to the
transformation (t,x, z) → λ−1(t,x, z) in the bulk. This can be thought of
as a change of variables. The scalar field does not transform under such a
transformation (since it is a scalar). Thus, the coefficient Ψ+ must scale as
Ψ+ → λ∆+Ψ+. This means that the operator O must scale under a boundary
field theory scale transformation as

O → λ∆+O. (5.43)

This is what one requires for an operator with a scaling dimension ∆+. Thus,
we learn that the scaling dimension of the boundary theory operator is 3/2 +√
9/4 +m2L2.
It should be mentioned that it is also possible to treat Ψ+ as the source in

the range of the scalar field masses [65]

−9

4
≤ m2L2 <

5

4
. (5.44)

In this case the operator expectation value is proportional to Ψ− and the
corresponding operator has a scaling dimension ∆−. We refer to [65] for more
details.
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Figure 5.1: Scalar field profiles for different values of T/|µ|. From bottom to
up, the corresponding values are T/|µ| = (0.24607, 0.24601, 0.24583, 0.24508).

Now we are ready to solve the equations (5.35) and (5.36). Numerical
solutions with m2 = −2/L2 for different values of T/µ are shown in Figure 5.1.

When T/µ is below a certain critical value, one finds solutions with a non-
vanishing profile for the scalar field, or in other words, the scalar field con-
denses. To really see that the condensed state is thermodynamically preferred
one can calculate the value of the on-shell action

S =
1

q2

∫
d4x

√
−g

(
− 1

4
FµνF

µν − |DµΨ|2 −m2|Ψ|2
)

=− 1

2q2

∫
d4x

√
−g

( 1√
−g

∂z(
√
−gAνF

zν) +
1√
−g

∂z(
√
−ggzzR∂zR)−AµA

µR2
)
.

We would like to compare the action between the solutions with and without
the condensate in the same chemical potential and temperature. Substracting
the two actions7 gives the difference

∆S = − 1

2q2

∫
d3x

(
A(0)(A′(0) +A(0)) +

∫
dz

R(z)2A(z)2

z2f(z)

)
. (5.45)

Next we go to the Euclidean signature and identify the free-energy difference
as

∆Ω = −T∆SE =
1

2q2
V2

(
A(0)(A′(0) +A(0)) +

∫
dz

R(z)2A(z)2

z2f(z)

)
. (5.46)

7Using the fact that for the solution with vanishing scalar field A′(0) = −A(0).
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If ∆Ω < 0, the solution with a non-vanishing scalar profile is thermodynami-
cally favored. Again we can use a convenient parametrization of the free-energy

∆Ω = V2T
3 g(T/µ)

q2
. (5.47)

By numerically evaluating g(T/µ) for solutions at different temperatures we
obtain Figure 5.2. From Figure 5.2 we see that indeed when the temperature
is below a critical temperature Tc ≈ 4.065µ the solution with a non-vanishing
scalar profile is thermodynamically favored.
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Figure 5.2: The free-energy as a function of T/|µ|.

From Figure 5.2 one can also see that the phase transition to the condensed
phase is of second order. This provides an interesting example of how a second
order phase transition can be realized in holography.

From the solutions we can easily calculate the value of the condensate in
the dual field theory by using (5.42). The result of the numerical calculation
is shown in Figure 3. Near the phase transition we see a standard mean field
scaling

⟨O⟩ ∝
√
1− T

Tc
. (5.48)

In fact one finds the same mean field scaling for many values of the scalar mass
m2 studied in [66].

5.5 The Goldstone mode

What is the physical interpretation of the appearance of a non-vanishing profile
for the Ψ field? Since Ψ transforms under the local bulk U(1) symmetry
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Figure 5.3: The value of the condensate as a function of T/Tc.

Ψ → eiΛΨ, Aµ → Aµ − ∂µΛ, one can interpret the non-vanishing profile of
Ψ as spontaneous breaking of this symmetry. On the other hand there is a
non-vanishing expectation value ⟨O⟩ in the dual field theory, which transforms
under the global U(1) symmetry. Thus, the global symmetry is spontaneously
broken below Tc. For this picture to be consistent, the Higgs mechanism in the
bulk has to be dual to spontaneous symmetry breaking of a global symmetry
in the boundary field theory. So somehow there must exist a Goldstone mode
in the dual field theory.

Indeed one sees the Goldstone mode in correlation functions in the broken
phase [67, 68]. From the correlation functions one finds a pole with a linear
dispersion relation ϵk = ±cs|k|, which can be identified as the Goldstone mode.
Also one finds from the correlation functions of [67] that the other modes are
gapped, so that Landau’s criterion is satisfied.

We can construct a low energy effective action for the Goldstone mode in
the zero temperature limit by using symmetry arguments, similar to [69]. The
key point is that the Goldstone mode χ(x, z = 0) = ϕ(x) enters through gauge
symmetry in the combination Bµ = ∂µϕ + aµ, where aµ(x) = Aµ(x, z = 0)
is the dual field theory source. As in [69] one can define a quantum effective
action Γ for the Goldstone field ϕ, by integrating out the modulus of the order
parameter in the usual 1PI quantum effective action. Because of the above
gauge symmetry, Γ depends only on the combination Bµ. It can be expanded
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for small values of Bi and Bt − µ to give an effective action, as

Seff = Γ[Bµ] =

∫
d3x

(1
2
κt(Bt − µ)2 − 1

2
κxB

2
i + ...

)
. (5.49)

The reason the expansion starts from second order is that the first order terms
are either constants independent of ϕ or total derivatives of ϕ, which do not
affect the dynamics of that mode. We can determine κt and κx by looking at the
”vacuum” where ϕ = 0, a0 = µ and ai = 0. In this case the quantum effective
action reduces to the logarithm of the usual partition function Γ = −i logZ
and we can use the statistical physics identity −i logZ =

∫
d3xP , where P is

the pressure. This leads to

κt =
∂2P

∂µ2
, κx = −∂2P

∂a2x
|ax=0. (5.50)

These quantities may be calculated numerically from solutions with superfluid
flows as is described in [70, 71] and the resulting dispersion relation indeed
agrees with those extracted from the correlation function in [67, 68] even at
non-vanishing temperatures. The Goldstone effective action is thus

Seff =

∫
d3x

(1
2
κt(∂tϕ)

2 − 1

2
κx(∂xϕ)

2 + ...
)
. (5.51)

A reader familiar with the Coleman-Mermin-Wagner theorem [72, 73] might
be puzzled that there is a finite temperature spontaneous symmetry breaking
of a continuous symmetry in 2+1 dimensions. The reason we see spontaneous
symmetry breaking, is the small q2 limit we are studying. At one loop level in
the bulk, one finds that the phase of the condensate is indeed randomized [68]
and long range order is transformed into algebraic long range order.8 This is
what one anticipated from the dual field theory side and was confirmed in the
gravitational side in [68]. This phenomenon is more surprising in the gravita-
tional side, where one did not expect to see such strong infrared fluctuations
as the bulk theory is 3 + 1 dimensional. This was interpreted in [68] as being
due to the existence of a horizon. This is a highly non-trivial check that the
3+1 dimensional quantum gravitational system behaves as a 2+1 dimensional
quantum field theory.

8Meaning that the condensate two point function does not approach a constant, but
decays as a power law as the operators are separated.
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Discussion

The bulk description provides a nice picture of the two fluid model, which
we discussed earlier in section (3.4). There is a condensate of charged scalar
Ψ particles outside the black hole, with wavefunction R(z)/

√
2. This is the

superfluid part of the fluid. Then there is the horizon of the black hole, that
behaves as a charged normal fluid with its associated viscosities and conduc-
tivities [58]. This is the normal part of the fluid. This setup provides us with
a simple model where the interactions between the two fluids are described in
a simple unified way. In this model, the finite temperature fluctuations are all
encoded in the classical black hole solution.

Such a unified description of the two fluids becomes especially powerful
when compared to traditional condensed matter methods when one is studying
solitons. To study solitons at finite temperature T using traditional condensed
matter methods one should in principle solve for the energy eigenvalues of a
many-body Schrödinger equation (with possibly 106 particles to model trapped
atomic superfluids) up to energies E > T to obtain the thermal partition func-
tion. This is not a particularly easy task. In practice, one often uses a mean
field approximation of some kind to model the solitons [16]. So alternative
methods, such as holography, are certainly welcome in studying finite temper-
ature solitons. As an introduction, this sets the stage for the main subject of
this thesis, which is the study of superfluid solitons using holographic methods.
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