
Department of Computer Science
Series of Publications A

Report A-2011-2

Patterns in permuted binary matrices

Esa Junttila

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
13, University Main Building, on August 10th, 2011, at noon.

University of Helsinki
Finland

Supervisors
Prof. Heikki Mannila, Aalto University, Finland
Dr. Petteri Kaski, Aalto University & HIIT, Finland

Pre-examiners
Prof. Toon Calders, Eindhoven University of Technology, The
Netherlands
Prof. Dimitrios Gunopulos, National and Kapodistrian University of
Athens, Greece

Opponent
Prof. Matti Nykänen, University of Eastern Finland

Custos
Prof. Hannu Toivonen, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi
URL: http://www.cs.Helsinki.fi/
Telephone: +358 9 1911, telefax: +358 9 191 51120

Copyright c© 2011 Esa Junttila
ISSN 1238-8645
ISBN 978-952-10-7116-4 (paperback)
ISBN 978-952-10-7117-1 (PDF)
Computing Reviews (1998) Classification: F.2.2, G.2.1, I.2.6, I.5.2, I.5.1
Helsinki 2011
Helsinki University Print

Patterns in permuted binary matrices

Esa Junttila

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
Esa.Junttila@alumni.helsinki.fi
http://www.cs.helsinki.fi/esa.junttila/

PhD Thesis, Series of Publications A, Report A-2011-2
Helsinki, July 2011, 155 pages
ISSN 1238-8645
ISBN 978-952-10-7116-4 (paperback)
ISBN 978-952-10-7117-1 (PDF)

Abstract

Reorganizing a dataset so that its hidden structure can be observed is useful
in any data analysis task. For example, detecting a regularity in a dataset
helps us to interpret the data, compress the data, and explain the processes
behind the data. We study datasets that come in the form of binary matrices
(tables with 0s and 1s). Our goal is to develop automatic methods that bring
out certain patterns by permuting the rows and columns.

We concentrate on the following patterns in binary matrices: consecutive-
ones (C1P), simultaneous consecutive-ones (SC1P), nestedness, k-nestedness,
and bandedness. These patterns reflect specific types of interplay and vari-
ation between the rows and columns, such as continuity and hierarchies.
Furthermore, their combinatorial properties are interlinked, which helps us
to develop the theory of binary matrices and efficient algorithms. Indeed,
we can detect all these patterns in a binary matrix efficiently, that is, in
polynomial time in the size of the matrix.

Since real-world datasets often contain noise and errors, we rarely witness
perfect patterns. Therefore we also need to assess how far an input matrix
is from a pattern: we count the number of flips (from 0s to 1s or vice versa)
needed to bring out the perfect pattern in the matrix. Unfortunately, for
most patterns it is an NP-complete problem to find the minimum distance
to a matrix that has the perfect pattern, which means that the existence of
a polynomial-time algorithm is unlikely.

iii

iv

To find patterns in datasets with noise, we need methods that are noise-
tolerant and work in practical time with large datasets. The theory of
binary matrices gives rise to robust heuristics that have good performance
with synthetic data and discover easily interpretable structures in real-world
datasets: dialectical variation in the spoken Finnish language, division of
European locations by the hierarchies found in mammal occurrences, and
co-occuring groups in network data.

In addition to determining the distance from a dataset to a pattern, we need
to determine whether the pattern is significant or a mere occurrence of a
random chance. To this end, we use significance testing: we deem a dataset
significant if it appears exceptional when compared to datasets generated
from a certain null hypothesis. After detecting a significant pattern in a
dataset, it is up to domain experts to interpret the results in the terms of
the application.

Computing Reviews (1998) Categories and Subject
Descriptors:
F.2.2 Analysis of algorithms and problem complexity: Pattern matching
G.2.1 Discrete mathematics: Combinatorial algorithms, Permutations

and combinations
I.2.6 Artificial intelligence: Backtracking, Dynamic programming,

Heuristic methods
I.5.2 Pattern recognition: Pattern analysis
I.5.1 Pattern recognition: Statistical and Structural Models

General Terms:
algorithm, theory, experimentation

Additional Key Words and Phrases:
binary matrix, permutation, nestedness, bandedness, consecutive ones,
significance testing

Acknowledgements

In my past, people around me figured that I would start pursuing an aca-
demic degree. My short-term plans for life, however, did not allow me to
think about the future too much at that time. In hindsight, it must have
been seeking, gaining, and sharing knowledge that attracted me.

Pursuing a doctoral thesis turned out to be like nothing I had ever
done before. In a nutshell, the job involves several years’ worth of think-
ing, reading, writing, editorial work, presentations, graphical designs, slow-
paced planning, fast-paced deadlines, traveling, frustration, and thinking
it all over again. Being a doctoral student is the most versatile job I can
imagine.

In the following I break down the factors that contributed to my work.

Advisors. When I expressed my interest towards research, Dr. Marko
Salmenkivi recruited me as a research assistant in 2005. He introduced me
to the job and arranged a doctoral student position under the supervision
of Prof. Heikki Mannila in 2007. In late 2009, Dr. Petteri Kaski took charge
of my supervision and helped me to finish this thesis. Every advisor has
unique strenghts and weaknesses, and I was glad to have three advisors to
learn from. Watching their example taught me the way of working in this
scientific world.

Colleagues. I did not do all the work myself. In addition to the advisors,
the credit also goes to my co-authors Gemma C. Garriga and Evimaria
Terzi, who also taught me a great deal about research. As far as finishing
the text goes, I got useful comments from Marina Kurtén, Pauli Miettinen,
Pekka Parviainen, Teppo Niinimäki, Jarkko Toivonen, Jefrey Lijffijt, Katja
Junttila, Matti Järvisalo, and Markus Ojala. Thanks to Pauli and Pekka,
in particular, for taking their time to help me during all these years.

Funding. I received funding for my doctoral studies from the Department
of Computer Science, Helsinki Graduate School in Computer Science and

v

vi

Engineering (Hecse), Helsinki Institute for Information Technology (HIIT),
and Algoritmic Data Analysis Centre-of-Excellence (Algodan), to name a
few. I got everything a doctoral student could hope for: the Finnish political
climate promoted doctoral studies, Hecse granted me a four-year position,
the department provided money for traveling, top-class researchers around
supported me, and the competent staff at the department ensured a stable
working environment. An additional office at the Aalto University did not
hurt either.

Atmosphere. To make a working day meaningful, I felt that discussing
random topics with people was necessary. Thanks to the lunch group, mem-
bers past and present, for providing unrelated topics for discussion and al-
lowing me to think aloud. I also want to emphasize the roles of Jaana
Wessman, Niina Haiminen, and Pauli as pr̄ımı̄ motoris for arranging Per-
jantai events.

Helsinki, June 15th, 2011

Contents

1 Introduction 1
1.1 Organization . 4
1.2 Contributions . 5

2 Preliminaries 7
2.1 Binary matrices . 7
2.2 Matrix distance . 8
2.3 Reorderable patterns . 10
2.4 Patterns in graphs . 14
2.5 Error models . 16
2.6 Significance testing . 17
2.7 Patterns in submatrices . 18

3 Consecutive ones 21
3.1 Consecutivity . 22
3.2 Consecutive matrices . 24
3.3 Recognizing consecutive matrices 26
3.4 Distance to directly consecutive patterns 26
3.5 Distance to consecutive patterns 27
3.6 Heuristic algorithms for closest C1P 28

3.6.1 Spectral ordering . 29
3.6.2 Hamiltonian ordering 30

3.7 Exact algorithms for closest C1P 31
3.7.1 MAX-SAT algorithm 31
3.7.2 Branch and bound algorithm 33

3.8 C1P submatrices . 35

4 Nestedness 37
4.1 Theoretical results . 37
4.2 Recognition of nestedness 40
4.3 Distance to direct nestedness 42

vii

viii Contents

4.4 Distance to nestedness . 44
4.4.1 Lower bound algorithm 44
4.4.2 Approximation algorithm 46
4.4.3 Greedy upper bound algorithm 47

4.5 Exact algorithms for closest nested 49
4.6 Nested submatrices . 50

5 Significance testing for nestedness 53
5.1 Nestedness in ecology . 53
5.2 Methods and datasets . 55

5.2.1 Measures of nestedness 55
5.2.2 Null models . 57
5.2.3 Significance of nestedness 59
5.2.4 Data and error models 60

5.3 Results . 62
5.3.1 Results on Rasch data 62
5.3.2 Results on Rocky Mountain data 62
5.3.3 Results on synthetic data 63

5.4 Discussion . 69

6 Segmented nestedness 73
6.1 The concept of segmented nestedness 73
6.2 Recognition of k-nestedness 76
6.3 Distance to k-nestedness . 78
6.4 Heuristic algorithms for closest k-nested 84
6.5 Choosing k with MDL . 87
6.6 Experiments on synthetic data 89

6.6.1 Data generation . 89
6.6.2 Distance test . 89
6.6.3 Classification test . 91
6.6.4 MDL test . 92

6.7 Experiments on real-world data 93
6.7.1 Mammals data . 93
6.7.2 Paleontological data 95

6.8 Conclusions and further research 96

7 Bandedness 97
7.1 The concept of bandedness 97
7.2 Properties of bandedness . 101
7.3 Recognition of bandedness 104
7.4 Distance to direct bandedness 106

Contents ix

7.5 Distance to columns-bandedness 108
7.5.1 Augmentation algorithm 109
7.5.2 Sperner-conflicts algorithm 111
7.5.3 Forbidden submatrices algorithm 113

7.6 Distance to bandedness . 116
7.7 Heuristic algorithms for closest banded 118

7.7.1 Alternating . 119
7.7.2 Barycentric . 120
7.7.3 Simulated annealing 120

7.8 Exact algorithms for closest banded 122
7.9 Banded submatrices . 123
7.10 Experiments on synthetic data 124

7.10.1 Data generation . 124
7.10.2 Methods . 125
7.10.3 Results . 127

7.11 Experiments on real-world data 130
7.11.1 Mammals data . 130
7.11.2 Dialect data . 131
7.11.3 Paleontological data 134
7.11.4 DNA amplification data 134

7.12 Conclusions . 135

8 Discussion 137

References 141

Index 153

Notation 155

x Contents

Chapter 1

Introduction

Reorganizing a dataset so that its hidden structure can be observed is use-
ful in any data analysis task. Consider for example the dataset in Figure
1.1(a). It has 28 locations in the Rocky Mountains (rows) and 26 mammals
(columns), with presence/absence of a mammal at a location indicated by
black/white. We observe that the dataset appears to have some structure,
but its precise nature is perhaps not immediate. However, by permuting
the rows and columns of the dataset, we observe in Figure 1.1(b) a slightly
noisy pattern that describes a hierarchy of the occurrences of the mammals.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

(a) Original dataset

19 10 2 5 9 23 25 4 26 22 8 17 3 7 20 16 24 12 1 18 21 13 15 14 6 11

17
23
12
13
19
6
3

11
26
5

22
7

24
9
2
1

16
27
25
20
15
8

21
4

18
10
28
14

(b) Reordered dataset

Figure 1.1: Original dataset (a) and with reordered rows and columns (b).

By using automatic reorganization to discover a specific structure, we
can increase the interpretability of the data, compress the data, and better
understand the processes that generated the data. The challenge is to iden-
tify meaningful structures that occur in datasets and develop algorithms
that reveal these patterns automatically by reorganizing the datasets—also
if the data contains noise and errors.

1

2 1 Introduction

In this thesis we concentrate on datasets that come in the form of binary
matrices; that is, 2-dimensional tables that contain only 0s and 1s. We
use black squares in illustrations to indicate 1s. This type of data occurs
frequently in, for example, ecology, paleontology, graph theory, interaction
and social networks as well as in market basket analysis of retail companies.
Binary data is versatile enough for complex patterns to emerge as well as
simple enough to allow a combinatorial view that yields efficient algorithms.

We study patterns that arise by permuting the rows and the columns of
a binary matrix. Note that a permutation of a data matrix does not change
the contents of the data, but simply reorganizes it. Detecting these reorder-
able patterns in the matrices is foremost a type of permutation problem.

Patterns come in two varieties, global and local: global patterns span
the whole dataset, whereas local patterns can be observed only in some
parts of the data. We address both types of pattern, but the emphasis is
on global patterns.

As depicted in Figure 1.2, we concentrate on the following patterns and
their automatic detection in binary matrices: a consecutive-ones (C1P)
matrix (a) describes data in which a total order on the columns establishes
contiguous patterns; in a simultaneous consecutive-ones (SC1P) matrix (b)
the contiguous patterns occur on both rows and columns; in a nested matrix
(c) the rows and columns form a hierarchy while a k-nested matrix consists
of several independent nested patterns; in a banded matrix (d) the attributes
(rows or columns) show overlapping variation. These patterns have inter-
linked combinatorial properties and they allow a view on the general class
of reorderable patterns.

(a) C1P (b) SC1P (c) Nested (d) Banded

Figure 1.2: Example patterns in binary matrices

Developing an automatic process for finding useful hidden patterns in
large datasets falls within the realm of data mining . In data mining we
combine both statistics and computer science to ensure that extracted pat-
terns are relevant and that we can handle large datasets in practical time.
The need for new data mining methods is warranted, as the number of large
datasets that are electronically available keeps increasing. The concept of

3

reorderable patterns has so far been used in data mining mainly as a sim-
ple visualization method to explore multivariate or multidimensional data.
The basic principle is to transform a data set into a 2D interactive graphic
[Ber99, MS00], which allows a different view on the dataset.

The history of reorderable matrices in data analysis can be traced back
at least to the 19th century and the work of Petrie, who applied reordering
techniques to study archeological data [Lii10]. Since then, several reordering
methods have been introduced to study particular patterns in real-world
data matrices.

Real-world datasets often contain errors, and then the goal is to detect
whether the data is relatively close to a pattern. For example, in Figure
1.3(a) the matrix seems random, but after reordering its rows and columns,
we observe on the right (b) a pattern that is almost banded.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

(a) Original dataset

26 25 12 30 33 29 17 15 3 27 5 24 34 18 6 13 22 23 21 4 40 20 37 7 39 2 28 31 8 36 11 32 19 35 10 9 1 14 38 16

23
7

10
8

28
5

19
18

6
27
26

1
30
24
25
22
17
16
12
13

3
11
29
14
21
15
20

4
9
2

(b) Reordered dataset

Figure 1.3: Original dataset (a) and with reordered rows and columns (b).
We observe an almost banded pattern and noise.

When a dataset contains noise, the computational task of finding pat-
terns becomes harder, which means increased demands of time or memory.
The purpose of computational complexity analysis is to evaluate how much
time and memory an algorithm needs and how the algorithm scales with
larger problem instances. Roughly, an algorithm with a polynomial time
complexity is useful in practice, whereas exponential time is a hindrance.
Unfortunately, permutation problems are typically hard, and we need to
settle for heuristics and approximations to manage large datasets. Never-
theless, before we can develop practical algorithms we need to study the
combinatorial properties of the patterns.

For the majority of the patterns presented in this thesis, we can detect
a perfect reorderable pattern in polynomial time in the size of the input
matrix. If the data contains errors, then the problem becomes that of
finding a closest matrix that has a perfect pattern, which can be solved

4 1 Introduction

in polynomial time for some patterns. In many cases, however, finding a
closest matrix is an NP-hard problem, which means that the existence of a
polynomial-time algorithm is unlikely.

In summary, this thesis is a combination of data mining, theory on
structures in binary matrices, algorithm design and analysis, statistical sig-
nificance testing, and real-world applications. We study patterns in binary
matrices, formulate the patterns exactly, and conduct a theoretical study
on the combinatorial properties of the patterns. The combinatorial results
are then used to develop algorithms—both exact and heuristic—that are
able to find these patterns in real-world datasets automatically. We need
new statistical tools to assess whether these patterns are statistically signif-
icant, such as testing the data against a specific null model. If the methods
find a significant and strong pattern in a real-world dataset, it is up to do-
main experts to interpret the result and its meaning so that they can better
understand the data and the underlying processes that generated it.

The experiments in the further chapters demonstrate that these pat-
terns exist in a wide range of real-world datasets. For example, we used the
heuristic algorithms introduced in this thesis to detect variation in the di-
alects of the spoken Finnish language, multi-layered hierarchies of European
mammals, an ordering for excavation sites in a paleontological dataset by
age, and co-appearing groups of characters in the novel Les Misérables. The
experiments on synthetic data verify that the new data mining algorithms
extract patterns from synthetic binary matrices reliably. The methods tol-
erate high levels of noise and they handle matrices with thousands of rows
and columns in practical time.

1.1 Organization

We present the basic terminology and background of reorderable patterns
and related problems in Chapter 2, and introduce the error models and
statistical methods used throughout this text. Starting from the simplest
pattern, we introduce the concept of consecutiveness and its algorithms in
Chapter 3. Nested patterns, their properties and algorithms will be reviewed
in Chapter 4, and the statistical significance of nested patterns is discussed
in Chapter 5. Chapter 6 generalizes nestedness into a more general pattern,
segmented nestedness, and contains algorithms for finding a good partition
of data into k nested patterns. The pattern of bandedness, its applications
and several dedicated algorithms are introduced in Chapter 7 in the context
of data mining. Finally, the connections between these patterns and further
topics are gathered into Chapter 8.

1.2 Contributions 5

1.2 Contributions

The content of this thesis is based on published articles [GJM08, GJM11,
JK11], unpublished manuscript [JTM10], as well as other unpublished ma-
terials. None of the new results in these articles has been included in a PhD
thesis so far. In addition, a lot of related work by others has been included
in this thesis for completeness. We refer to the following people (me and the
co-authors) by their family name: Esa Junttila, Heikki Mannila, Gemma C.
Garriga, Petteri Kaski, and Evimaria Terzi. In the following we break down
the main contribution of each article and then review the new unpublished
results chapter by chapter.

Contributions in the articles. The articles on bandedness [GJM08,
GJM11] introduced the concept of banded patterns in binary matrices. New
combinatorial results led to a polynomial-time test for bandedness and to
the first set of heuristic algorithms for detecting almost banded patterns in
real-world datasets. Experimental results showed that the algorithms are
fast enough in practice, and almost banded patterns occur in a wide range
of real-world applications. Garriga, Junttila, and Mannila conceived the
main ideas together. Junttila conducted the experiments.

The article on segmented nestedness [JK11] built on the concept of
nestedness, and generalized it into k-nestedness: several nested patterns
in data. We extended the theoretical foundation of the concept and gave
a polynomial-time algorithm for recognizing k-nestedness. We showed that
the problem of finding a closest k-nested matrix is NP-hard, and gave several
heuristic algorithms for the problem. In addition, an MDL-based method
was developed to choose k automatically. Experimental results indicated
that the methods are noise-tolerant, in particular the one with SVD, and
they find k-nested patterns reliably. The results on real-world datasets
showed k-nested patterns that were easy to interpret. Junttila and Kaski
developed all new results together and Junttila conducted the experiments.

The unpublished manuscript [JTM10] analyzed the performance of nested-
ness measures in terms of significance testing and noise-tolerance. We stud-
ied the concept of nestedness from the viewpoint of ecological processes
and datasets. We introduced a new noise-tolerant method for measuring
nestedness in ecological datasets and conducted experiments that revealed
that popular nestedness methods have severe shortcomings in how they
handle noise. Mannila and Terzi conceived the idea of comparing nested-
ness methods, Junttila and Mannila studied the topic further and Junttila
conducted the experiments.

6 1 Introduction

New contributions in this thesis. The development of the knowledge
discovery process presented in this thesis is not a part of any particular
section, but a composite of general techniques for extracting interesting
patterns from data. Therefore describing the process counts as a contribu-
tion: from identifying an interesting pattern to using specific algorithms to
detect the pattern in data.

Chapter 2 provides the common theoretical background to the subse-
quent chapters. It has a general framework for reorderable patterns, an
error model for reliably testing the performance of data mining algorithms
on synthetic data, the relations between patterns in matrices and graphs,
and a general-purpose algorithm for finding submatrices that have a given
pattern. Junttila, Mannila, and Garriga conceived these ideas together.

Chapter 3 is essentially a survey of previous work on consecutiveness.
New material includes an algorithm for finding a closest matrix that has di-
rect C1P and two new algorithms that solve the minimum distance problem
exactly. Junttila developed the new materials.

Chapter 4 presents a survey of previous work on nestedness and new
unpublished results. It brings together the main results from both matrix
and graph theory that are related to nestedness. The new material consists
of polynomial-time algorithms for detecting nestedness, in particular a new
sublinear recognition algorithm and a new polynomial-time algorithm for
finding a closest directly nested matrix. For the problem of finding a closest
nested matrix this chapter includes new approximation and lower bound
algorithms, a minor generalization of an existing algorithm, and two new
exact algorithms. It also has a groundwork on the problem of finding almost
nested submatrices, including a correction of an NP-completeness proof.
Junttila developed the new results; the idea for Algorithm 10 is from Terzi.

Chapter 5 is based on the unpublished manuscript [JTM10] on nested-
ness analysis, with only minor changes to the original text.

Chapter 6 is essentially the published article [JK11] on segmented nested-
ness, with only minor changes to the original text.

Chapter 7 is based on the articles [GJM08, GJM11] on bandedness. In
addition the following unpublished material has been included: connections
from bandedness to other patterns in binary matrices; extended related work
and different characterizations of bandedness in terms of graph-theoretical
concepts; many proofs have been rewritten and extended for clarity; a new
NP-hardness result (Theorem 7.17) has been written down; a new heuristic
algorithm (Section 7.5.3) has been developed; Section 7.9 gives new exact
algorithms for finding a closest banded matrix. Junttila developed the new
results; the idea for the proof of Theorem 7.17 is from Garriga.

Chapter 2

Preliminaries

In the following we give the basic terminology used throughout this thesis.
We then introduce the concept of a reorderable pattern, and present the
problems related to recognizing the pattern and finding how far a matrix is
from the pattern. We examine the connection between patterns in graphs
and their counterparts in matrices. We provide tools for evaluating how
good algorithms are in finding patterns in data and how to assess the sig-
nificance of these patterns. Finally, we address the problem of finding from
data such submatrices that have a small distance to a reorderable pattern.

2.1 Binary matrices

We first introduce the notation and basic concepts used in this thesis. For
future reference, see the index and the table on pages 153–155.

We denote an n-dimensional vector by a = (a1, a2, . . . , an), and by the
zero vector (zero matrix) we refer to a vector (matrix) that is full of 0s. An
m × n matrix A has m rows and n columns, and the entry on the ith row
and jth column is denoted ai,j . A submatrix of A only includes subsets of
the rows and columns in A and may use a different ordering for included
rows and columns. We write {1, 2, . . . , k} as [k].

By a binary value, we mean that the value is either 0 or 1. If a vector or a
matrix is binary, we mean that it contains only binary values. We illustrate
(large) binary matrices by drawing the 1-entries as black and 0-entries as
white as in Figure 1.1.

In a binary dataset, the values can be interpreted in many ways. For
example, a binary value 1 can be interpreted as truth value true, as a directed
edge in a graph, as an indicator whether a mammal species occurs in a
location, or just as a plain number.

7

8 2 Preliminaries

Matrices with binary values occur in many different applications. A typ-
ical example is market-basket data gathered by retail companies [AIS93].
Also interactions and social networks can be represented as binary ma-
trices. Furthermore, binary matrices abound in a large variety of fields
ranging from information retrieval (documents and occurrences of words)
[BYRN99], to bioinformatics and computational biology (genes and probes)
[AKNW95, MHB+06], or ecology and paleontology (sites and occurrences
of species) [ABH98, PFM06].

Detecting patterns in a data matrix is essential for gaining an under-
standing of the underlying processes that generated the data. For binary
matrices in particular, it is the nature of relations between rows and columns
that must be understood. Detecting patterns in an error-free data is com-
putationally easier than searching in erroneous data, in which patterns are
incomplete.

It is often convenient to convert a binary matrix problem into a graph
problem, or vice versa. Given a directed graph G = (V,E) that is un-
weighted and has no duplicate edges, we can describe G by a |V | × |V |
binary adjacency matrix A as follows: ai,j = 1 if and only if (i, j) ∈ E.
For an undirected bipartite graph G = (R ∪ C,E), where R ∩ C = ∅ and
E ⊆ R × C, we can use a more compact representation for the adjacency
matrix A that has |R| rows and |C| columns: for vertices r ∈ R and c ∈ C,
we have ar,c = 1 if and only if {r, c} ∈ E.

In later sections, we use frequently the set interpretation of the rows
and columns in a binary matrix A. In these cases, we denote by Cj the
set of row indices where the column j has 1s, that is, Cj = {i | 1 6 i 6
m and ai,j = 1}. We use a similar notation for rows: Ri is the set of column
indices where row i has 1s.

For an exact definition of permutations of vectors and matrices, consider
the following. A permutation π on [k] is a bijection π : [k] → [k]. When
permuting a vector a = (a1, a2, . . . , ak) with π, we map the entry at position
i to position π(i) for all i ∈ [k]. For an m× n matrix, a row permutation σ
is a permutation on [m], and a column permutation τ is a permutation on
[n]. When permuting a matrix with σ and τ , we map the entry at position
(i, j) to the position (σ(i), τ(j)) for all entries.

2.2 Matrix distance

Real-world matrices are not expected to be error-free—consider for example
the noisy matrices in Figure 1.3. To be able to compare matrices in the
presence of noise, we need to define a distance measure. We are interested

2.2 Matrix distance 9

in (edit) distances between two binary matrices A and B that have the same
dimensions. A flip refers to changing the value of one entry: either from
0 to 1 (a 0-to-1 flip) or from 1 to 0 (a 1-to-0 flip). We want to know the
minimum number of flips needed to make A identical to B.

With the augmentation distance we refer to the minimum number of
0-to-1 flips so that A becomes B. Likewise, the deletion distance is the
minimum number of 1-to-0 flips needed. Note that sometimes there is no
way to convert A into B with only one type of flips. The Hamming distance
is a combination of the two: the minimum number of flips when both 0-to-1
and 1-to-0 flips are allowed. To transform a matrix A into a matrix B,
we need to flip all the entries that are nonzero in A − B; the Hamming
distance is the number of such nonzero entries. All matrices have a finite
Hamming distance (at most mn) to all other binary matrices with the same
dimensions.

We use a weighted distance to handle a variety of distance measures.
Assume that both matrices A and B have equal dimensions, and that a
nonnegative weight wi,j is associated with each entry ai,j . In general, the
weight matrix W defines the distance measure used.

Definition 2.1 (Distance) Let A and B be binary matrices and let W be
a nonnegative matrix of weights for the entries of A. The distance dW (A,B)
from A to B is

∑
i,j wi,j · |ai,j − bi,j |.

For weighted distances, the distance is no longer the number of some
type of flips, but the sum of weights on those flips. For example, the Ham-
ming distance is captured by the weighted distance with a weight matrix
full of 1s. On the other hand, the augmentation distance is captured by
setting weight 1 for 0-entries in A, while 1-entries have a weight larger than
mn. If such a distance from A to B is more than mn, then 0-to-1 flips alone
are insufficient for the conversion. We denote the augmentation distance by
dA, the deletion distance by dD, and the Hamming distance by dH.

A weight matrix W with arbitrary weights can be used to define a more
detailed entry-wise weighting scheme. For example, if a domain expert
knows that a real-world dataset contains entries that have uncertain values,
low weights should be set on these entries. The triangle inequality holds
for arbitrary nonnegative weights W , but the augmentation and deletion
distances are not symmetric.

The distance measure dW used in this thesis is an instance of a more
general edit distance: minimum number of elementary operations needed.
Similar edit distances have been used earlier in the context of graphs and
approximate string matching. In particular, many related edit problems for
graphs are NP-complete [BBD06].

10 2 Preliminaries

2.3 Reorderable patterns

Pattern recognition in binary matrices involves finding certain combinations
of 0s and 1s from data. In this thesis we concentrate on reorderable pat-
terns, which are patterns that may not necessarily be observable in the data
matrix, but reordering the rows and columns can reveal them. This can be
seen as a seriation problem [Lii10], which involves reordering data points in
an order that satisfies certain meaningful patterns.

We use rectangular patterns to illustrate the concept of reorderable pat-
terns. An m × n binary matrix A is directly rectangular if A is the zero
matrix or there exist indices i, k ∈ [m] and j, l ∈ [n] such that ar,c = 1 if
and only if r ∈ {i, i+ 1, . . . , k} and c ∈ {j, j+ 1, . . . , l}. In other words, the
1s in A form a rectangle. To illustrate this, the matrix in Figure 2.1(a) is
not directly rectangular but 2.1(b) is.

1 2 3 4 5 6 7 8

6
5
4
3
2
1

(a)

2 1 3 5 6 8 4 7

2
6
5
3
1
4

(b)

Figure 2.1: Original matrix (a) and with reordered rows and columns (b).
The matrix (a) is not directly rectangular but (b) is.

We next describe the general framework for reorderable patterns in ma-
trices. Consider a pattern P that describes a property that a binary matrix
may have. Given the familyM of all binary matrices, a pattern is formally
a subset P ⊆M, that is, a set of matrices that have the property. We say
that a matrix A has the pattern P if A ∈ P.

We concentrate on patterns that may emerge by reordering the rows,
columns, or both in a matrix. Given a pattern P, its associated reorderable
pattern R(P) consists of all the matrices obtained from the matrices in P
by permutation of the rows and columns. We say that a matrix A has
the reorderable pattern R(P) if A ∈ R(P). The framework of reorderable
patterns can also be applied to real-valued data. In the remainder of this
thesis, whenever we talk about the distance from a matrix A to a pattern
P, we mean the distance from A to a closest matrix B ∈ P.

As an example, consider the reorderable pattern that arises from di-
rectly rectangular matrices. A binary matrix A is rectangular if there exist
permutations of the rows and columns such that the permuted A is directly

2.3 Reorderable patterns 11

P
C

Bd(A,B)

A
d(A,C)

R(P)

Figure 2.2: Illustration of Problems 2.2, 2.3 and 2.4. Each dot represents
a matrix. From the perspective of A, a closest matrix that has pattern P
(inner circle) is B, while a closest matrix that can be permuted into a matrix
that has pattern P (outer circle) is C. In the Recognition problem, we
ask whether a given matrix A is in R(P), that is, inside the outer circle.

rectangular. We observe that both matrices in Figure 2.1 are rectangular—
their only difference comes from different permutations.

We study three types of problems on a matrix A, a pattern P, and the
associated reorderable patternR(P). They ask whether A has a reorderable
pattern and what the minimum distance from A to the pattern is, with or
without reordering. The problems are illustrated in Figure 2.2.

Problem 2.2 (Recognition Of Pattern P) Given a binary matrix A
determine whether A ∈ R(P).

Given our example pattern of directly rectangular matrices, we observe
that a matrix is rectangular if and only if it is a zero matrix or there exist
integers r ∈ [m] and c ∈ [n] such that (a) r rows have sum c, (b) c columns
have sum r, and (c) all other row and column sums are 0s. In the language of
bipartite graphs, the Recognition problem asks us to determine whether
a given graph is isomorphic to a graph that has pattern P.

Problem 2.3 (Closest Matrix With Direct Pattern P) Given a bi-
nary matrix A and a nonnegative weight matrix W , find a matrix B ∈ P
that minimizes the distance dW (A,B).

The word Direct in Problem 2.3 means that the pattern can be wit-
nessed in matrix B without reordering the rows or the columns. Observe
that B need not be unique, and if A already has P, we have A = B and
dW (A,B) = 0. As an example, consider the matrix in Figure 2.3(a); the
matrix in Figure 2.3(b) is the dH-closest matrix that is directly rectangular.

12 2 Preliminaries

2 1 3 5 6 8 4 7

2
6
5
3
1
4

(a)

2 1 3 5 6 8 4 7

2
6
5
3
1
4

(b)

Figure 2.3: The matrix (a) is not directly rectangular, but (b) is. The
matrix (b) is the dH-closest such matrix to (a), with dH-distance 6.

Problem 2.4 (Closest Matrix With Reorderable Pattern P)
Given a binary matrix A and a nonnegative weight matrix W , find a matrix
B ∈ R(P) that minimizes the distance dW (A,B).

Problem 2.4 extends Problem 2.3 so that all permutations of the rows
and columns are allowed to witness the pattern P. It is Problem 2.4 that
is more important from the viewpoint of data mining: ability to discover
patterns that cannot be easily seen. As an example, consider the matrix in
Figure 2.4(a); the matrix in Figure 2.4(b) is the dH-closest matrix that is
rectangular. When we use a specific distance measure, say W , we refer to
the problems as dW -Closest and likewise for dA, dD, and dH.

1 2 3 4 5 6 7 8

6
5
4
3
2
1

(a)

1 2 3 4 5 6 7 8

6
5
4
3
2
1

(b)

Figure 2.4: The matrix (a) is not rectangular, but (b) is. The matrix (b) is
the dH-closest such matrix to (a), with dH-distance 6.

By identifying a reorderable pattern in a data matrix, we can reveal this
structure in data by reordering the rows and columns, which only changes
the organization of the data, but does not change the values in any way.
Most patterns benefit from this reordering, as the pattern in question be-
comes easier to see by the human eye, and the permutation for the rows
(columns) may give a meaningful interpretation on the dependencies be-
tween the rows (columns). This is also related to data visualization: re-
ordering the data gives a way to describe the data from the viewpoint of
the pattern in question.

2.3 Reorderable patterns 13

Why are we interested in finding the distance from A to a closest matrix
that has a pattern P? The actual distance offers a way to estimate how
strong the underlying pattern P is in A. In addition, if the phenomenon
behind the data has the pattern P, we can identify entries that are likely
errors in the data A by checking the entries where A and B differ, where B
is a closest matrix that has P. In some cases, a closest matrix B may be a
more accurate representation of reality than the erroneous data A is.

In reordering problems we need to find permutations under which the
data matrix exhibits a pattern P. If both rows and columns can be re-
ordered, the number of permutations is m!n!. This makes brute-force algo-
rithms useless in practice except for the smallest of matrices. To deal with
larger matrices, we must develop an algorithm that exploits the structure
found in matrices that have P. Failing to do that, we settle for heuristics
and approximations that almost solve the problem: there is no guarantee
for optimality.

Considering Problems 2.3 and 2.4, the former is generally an easier prob-
lem, as it does not require reordering of the data. Given an algorithm Algo
for Problem 2.3, we can solve Problem 2.4 heuristically, for example by us-
ing local search. Indeed, if we interpret the minimum distances obtained
from Algo as energy values, we can use simulated annealing to find a per-
mutation that (almost) minimizes the energy, which solves Problem 2.4.
This approach is discussed in Section 7.7.3. If the reorderable pattern has a
particularly easy characterization, Problem 2.4 may be easier than Problem
2.3. Consider a pattern P where the columns occur in nondecreasing order
by their column sums: all matrices have R(P), but not all have P.

For some patterns P there exists a forbidden submatrix characterization:
a matrix A has a pattern P if and only if none of the submatrices of A
belongs to the collection of forbidden submatrices. It follows that a pattern
has such a characterization if and only if the pattern is closed under deletion
of rows and columns (for every matrix in P also its submatrices are in P),
but the collection may be infinite. For example, in Section 4 we state that
a matrix is nested if and only if none of its submatrices are switch boxes as
in (4.2) on page 39. In the setting of bipartite graphs, this closure property
is called hereditary and we will use it in the context of binary matrices. If
the forbidden submatrices have bounded sizes, we can use them to develop
recognition algorithms or heuristic algorithms for distance problems. Alas,
in many cases the number of forbidden submatrices increases with the input
size, or such a characterization does not exist in the first place.

In addition to searching for a global pattern that spans the whole dataset,
we can also seek local patterns that consist only of a subset of the rows or

14 2 Preliminaries

columns. For example, frequent itemsets [Goe03] refer to submatrices that
form rectangles full of 1s, overlapping submatrices [JXFD08] approximate
a dataset by a union of patterns, and maximally banded patterns [ABJ10]
identify banded submatrices in a dataset.

2.4 Patterns in graphs

Many patterns in graphs can be described as patterns in binary matrices
and vice versa. This allows combining results from both graph theory and
matrix theory, which is useful for analytical studies and for designing ef-
ficient algorithms. We next show how the matrix patterns studied in this
thesis translate into graph patterns, and how well-known graph patterns
can be described conveniently as matrix patterns. The details of the matrix
patterns (C1P, nestedness, bandedness) follow in the later chapters.

For example, the rectangular matrix in Figure 2.1 corresponds to the
bipartite graph (bigraph) in Figure 2.5. Indeed, rectangles translate into
bicliques; that is, complete bipartite subgraphs in bipartite graphs.

2 74

4 2

1 3 5 6 8

1 3 5 6

Figure 2.5: Rectangular matrices form bicliques in bipartite graphs.

Next we consider a well-known pattern in graphs, the recognition of
which is an NP-complete problem [GJ79, Prob. GT39].

Problem 2.5 (Hamiltonian Path) Given an undirected graph G = (V,E),
is there a path in which each vertex in V appears exactly once?

We can study the Hamiltonian Path problem also as a matrix re-
ordering problem. Given an undirected graph G = (V,E), we construct a
binary incidence matrix A, where the vertices correspond to the rows and
the edges to the columns. We have av,e = 1 if and only if the vertex v
is incident to the edge e. Each column in A contains exactly two 1s (the
number of vertices incident to an edge), and a path in the graph translates
into a path pattern of 1s, as seen below in (2.1). Now the graph G has a
Hamiltonian path if and only if there exist permutations of the rows and

2.4 Patterns in graphs 15

columns such that in the permuted A the first |V |−1 columns (edges) form
a submatrix that has the path pattern.

1 0 0 · · · 0
1 1 0 0
0 1 1 0
0 0 1 0
...

. . .
...

0 0 0 1
0 0 0 · · · 1

(2.1)

An interval graph [LSW97] has a collection of intervals on the real line
as its vertices; two vertices are joined by an edge if and only if the intervals
intersect. Given a graph G, it is convenient to use matrices to recognize
whether G is an interval graph [FG65]: we construct an incidence matrix of
vertices and dominant cliques, and check whether this matrix has the C1P
pattern, as described in Section 3.2.

Next we consider the pattern of zero-partitionable matrices [LSW97]
and state its connection to directed interval graphs.

Definition 2.6 (Zero-partitionable) A binary matrix A is said to be
zero-partitionable if there exist permutations for the rows and columns such
that each 0-entry in the permuted matrix can be labeled with R or C so that
(a) every position to the right of an R is a 0-entry labeled with R, and (b)
every position below a C is a 0-entry labeled with C.

A directed interval graph is a generalization of interval graphs to directed
graphs. Namely, a directed graph is a directed interval graph if and only if
its adjacency matrix is zero-partitionable [Wes98].

In unit interval graphs all the intervals have the same length on the
real line, and in proper interval graphs none of the intervals properly con-
tains another. The adjacency matrices of these graphs have the monotone
consecutive arrangement property [Wes98]. In fact, this graph-theoretical
concept is identical to the definition of bandedness in Chapter 7. The fol-
lowing result establishes the connection between bandedness and bipartite
interval graphs. Given a matrix A, the following three claims are equivalent
[Wes98]: (a) A is the bipartite adjacency matrix of a unit interval bigraph,
(b) A is the bipartite adjacency matrix of a proper interval bigraph, (c) A
is banded. Furthermore, symmetric banded matrices have an interpretation
as proper interval graphs [Rob69], and general banded matrices as proper
interval digraphs [SS94].

16 2 Preliminaries

Given a partially ordered set, a chain is a subset that describes a total
order. A bipartite graph G = (R ∪ C,E) is a chain graph if there exists a
permutation π of vertices in C such that for all vertices r ∈ R the following
holds: if r is adjacent to a vertex c ∈ C, then r is also adjacent to all vertices
in C that succeed c in π. In other words, the graph describes a total order
for its vertices. Nested matrices (Chapter 4) are equivalent to chain graphs
[MT07, Yan81a].

The problems that involve distances on matrices have a natural inter-
pretation on bipartite graphs. The Hamming distance on graphs is the min-
imum number of added and/or removed edges. Analogously, the augmenta-
tion (deletion) distance refers to the number of added (removed) edges, and
a weighted distance has weights on all possible edges. For example, edge
augmentation, deletion, and edit (Hamming) problems on interval graphs
are NP-complete [BBD06].

2.5 Error models

We next describe the error models that are used in synthetic experiments
that appear later in this thesis.

Since real-world datasets are rarely perfect, all algorithms developed to
seek patterns in such datasets have to take into account the possibility of
noise and errors that come from inaccuracies in measurements and human
mistakes. To measure how reliably these algorithms find a pattern P from
erroneous data, we create synthetic data generators that produce ground-
truth matrices B, all of which have the pattern P. We then obtain a data
matrix A by adding errors to B according to an error model, and random-
izing the row and column permutations. We conduct a set of experiments
where the algorithms get the erroneous data A as input and they produce a
matrix B̂ that approximates a closest matrix that has the reorderable pat-
tern P. Now we can compare B̂ to the ground-truth matrix B and evaluate
how well the algorithms are able to retrieve the underlying pattern P.

Real-world binary datasets often have two types of errors: missing data
and misclassifications. In the former, some true 1s appear in data as 0s
because of sampling bias, corrupted data, or insufficient research efforts, for
example. In the latter, some true 0s appear in data as 1s, which is caused
by, for example, faulty or inaccurate equipment and observational human
errors. We simulate these errors by parameters Pr(1-to-0) and Pr(0-to-1)
in the data generator, and obtain a dataset A by independently flipping the
entries in the ground-truth matrix B according to these probabilities.

It is common that ecological presence/absence datasets have lots of miss-

2.6 Significance testing 17

ing data [NB07], yet misclassifications are rare. To imitate this in synthetic
datasets, we use asymmetric noise, in which Pr(0-to-1) 6= Pr(1-to-0). An al-
ternative is to use symmetric noise, in which Pr(0-to-1) = Pr(1-to-0). Also
more specific tests are possible by fine-tuning the entry-based probabilities
according to additional data.

In later chapters we generate perfect data that has a pattern P. In
synthetic experiments we can use a benchmark method that uses the (orig-
inal) permutations under which the ground-truth matrix B and its directly
observable pattern were generated. Heuristic algorithms, of course, have no
such information available. When we add increasing levels of noise to the
data, however, the pattern vanishes. If this is the case, the original permu-
tations are no longer the best with respect to the distance to P, and other
algorithms may find permutations that produce smaller distances (they fit
better with the noisy data).

2.6 Significance testing

In significance testing the idea is to deem a value either significant or a
mere occurrence of random chance. To do so, we need a process that, in
our opinion, produces data that is realistic but non-significant with respect
to the phenomenon under study. From the process we obtain a distribution
of values against which we compare the observed value.

Consider an example of coin tossing where our null hypothesis asserts
that the coin is fair. Assuming that the hypothesis is true, we obtain a
probability distribution on flipping results. Given a result, such as 1 heads
out of 5 flips, we may view the position of the result in the distribution, and
consider the result ordinary. A less probable result, however, such as 100
heads out of 500 flips, suggests that the null hypothesis is likely incorrect.

We next describe the (one-sided) significance testing procedure in more
detail. Given a null hypothesis H0, it defines a probability distribution on
the values under consideration; let X be a random variable that has this
distribution. Given a value d, the (one-sided) p-value, denoted p, is the
probability Pr(X 6 d). Assume we have selected a significance level α,
for example α = 0.05. If p < α, we reject H0 and say that the value d is
statistically significant at level α under H0.

We want to know whether a pattern P is significant in a matrix A. Let
d be the distance from A to P and let H0 be a null hypothesis that assumes
that P does not exist in matrices. Then from H0 we obtain a distribution
of matrices and their distances to P. By comparing d to the distribution of
distances, we obtain a p-value, and we can assess the significance of P in A.

18 2 Preliminaries

Unfortunately the probability distribution in the null hypothesis H0 can
be too complex to be described explicitly. Instead, we may employ a null
model , that is, a method that produces random matrices for a given dataset
under H0—there is no need to describe the distribution explicitly. We lose
exact p-values, but we can approximate them with empirical p-values: we
sample random matrices R from the null model and count the proportion
of the matrices R that have distance at most d.

In significance testing two types of error may take place. Given a null
hypothesis H0, a Type I error occurs when H0 is rejected despite being true,
whereas a Type II error occurs whenH0 is not rejected despite it being false.
Typical null models are conservative in that they avoid Type I errors at the
expense of having more Type II errors, which makes their statistical power
weaker. A lenient method does the opposite: the hypothesis H0 is rejected
often, which risks detecting patterns that do not exist. The choice of a null
hypothesis (or model) is critical and requires a deep understanding of the
pattern and the application.

2.7 Patterns in submatrices

Sometimes a data matrix A does not have a pattern P, but a submatrix of A
does. Indeed, there may be several such local patterns in the data that are
interesting in their own right. In this case it makes sense to look at large
submatrices where the distance to the pattern P is small in some sense.
We first introduce the problem where we search a submatrix of maximum
size that has a perfect pattern, and then the problem that prefers large
submatrices at the expense of weaker patterns.

Problem 2.7 (Maximum-Size Submatrix With P) Given a binary ma-
trix A, find in A a submatrix that has pattern P and maximizes a+b, where
a is the number of rows in the submatrix and b that of columns.

In Problem 2.7 we want to remove from A as few rows and/or columns
as possible so that the resulting matrix has the pattern P. The measure
a+ b used for size is not perfect: a submatrix is not necessarily interesting
if it contains only a few rows, no matter how many columns it has.

The following result of Yannakakis addresses the computational com-
plexity of this class of submatrix problems, and we will use it in later sec-
tions to establish NP-hardness of submatrix problems on C1P, nestedness,
and bandedness. The result is based on the concept of hereditary graphs,
which was used to prove NP-hardness for a large family of node-deletion

2.7 Patterns in submatrices 19

problems on graphs [LY80]. We say that a collection M of binary matri-
ces is nontrivial ifM has infinite size and there are infinitely many binary
matrices not inM.

Theorem 2.8 (Submatrix problem complexity [Yan81b]) LetM be
a nontrivial collection of binary matrices closed under permutation and dele-
tion of rows and columns. Denote by S an a×b submatrix of a given matrix
A. Then finding a submatrix S ∈ M that maximizes a + b is solvable in
polynomial time if the matrices ofM have bounded rank, and NP-hard oth-
erwise.

We can characterize many local patterns as submatrices. For example,
frequent itemsets are submatrices that form rectangles full of 1s. On the
other hand, finding maximal tiles [Mie05, Ch. 4.4] is close to Problem 2.7.
When we apply Theorem 2.8 on a reorderable pattern P, the collectionM
consists of all the matrices in P and their submatrices.

If we search submatrices in real-world matrices and require the subma-
trix to have a perfect pattern P, we usually find only small matrices. It
may be more useful to find larger matrices that almost have P. For exam-
ple, given a fixed distance d, we accept submatrices that have distance at
most d to a matrix that has P. Assuming we have a utility function f that
measures the utility of submatrices with respect to P, finding a submatrix
can be formulated as follows.

Problem 2.9 (Submatrix With Pattern P) Given a binary matrix A,
a nonnegative weight matrix W , and a fixed distance d, find a submatrix S
of A that has the distance to P at most d and maximizes the utility f(S).

What constitutes a good submatrix depends on the application. For
example, a submatrix that has many rows and columns but is very sparse
is not necessarily as interesting as a small matrix with half of its values
1s. We included a utility function f in Problem 2.9 to take into account
various qualities the rows and columns in submatrices may have. We obtain
a simple heuristic method (Algorithm 1) that removes rows and/or columns
one by one until the distance to the pattern P is within the threshold d.

The exact definition of the utility function f depends, of course, on the
pattern P. Sometimes the most interesting matrices are those that have
the same number of 1s and 0s, and taking into account the information-
theoretical entropy helps to produce submatrices with this property. In
general, different utility functions produce different-looking matrices, and
it depends on the application which of them is the most useful. We return
to the generic algorithm and utility measures in later sections.

20 2 Preliminaries

Algorithm 1 FindSubmatrix
Input: binary matrix A, nonnegative weights W , maximum distance d,

pattern P, and utility measure f for submatrices
Output: submatrix S of A such that the dW -distance from S to P is at

most d and the utility f(S) is close to maximum.
1: S ← A
2: B ← argminX∈P dW (S,X) // closest matrix with P (size as S)
3: while dW (S,B) > d do
4: for all rows/columns i in S do
5: remove row/column i from matrix S
6: fi ← f(S) // compute utility value
7: insert row/column i back to S // cancel the latest removal
8: end for
9: r ← argmaxi fi
10: remove row/column r from S
11: recompute closest matrix B
12: end while
13: return S

One general-purpose utility function is as follows. Given a submatrix
S of the data, let B be a closest matrix to S that has a pattern P. We
consider B to be a ground-truth matrix and count the type of differences
between B and S: the number of false positives fp is the number of 0s in B
that are 1s in S (0-to-1 flips). Likewise, false negatives fn is the number of
1-to-0 flips. For completeness, true positives tp counts the number of shared
1s (that is, 1-to-1 entries) and true negatives tn the number of shared 0s
(0-to-0). The following metrics are frequently used in information retrieval
to measure correctness of pattern recognition [BYRN99].

recall = tp/(tp + fn)

precision = tp/(tp + fp) (2.2)
accuracy = (tp + tn)/(tp + tn + fp + fn)

In terms of distance to a pattern P, recall prefers a submatrix that
needs few 0-to-1 flips, precision avoids 1-to-0 flips, and accuracy seeks small
Hamming distance. In later sections, we use Algorithm 1 with one of the
three metrics to assess the quality of the submatrices. In more precise terms,
the utility f(S) of a matrix S is the minimum recall (or precision or accuracy)
of its rows and columns, each of which is computed on that row or column
separately. As a result, the worst row/column is removed in each step.

Chapter 3

Consecutive ones

The concept of consecutivity occurs naturally in some applications. For ex-
ample, consider a paleontological dataset that has binary records on species
(rows) and points in time (columns). Value 1 indicates that a species is
alive at a point in time. Now a lifespan of a species can be described as a
pattern of consecutive 1s on the corresponding row, such as in the matrices
in Figure 3.1.

In general, consecutive 1s reflect certain dependencies in data, such as
order and continuation of time. We will next provide the basic concepts
related to consecutive 1s in binary matrices, and review the complexity
results for the most common consecutive patterns. We concentrate on two
reorderable patterns, consecutive-ones and simultaneous consecutive-ones.
For example, the matrix in Figure 3.1(a) has consecutive 1s on rows, while
the matrix in (b) has consecutive 1s on both the rows and columns.

(a) (b)

Figure 3.1: An example of a consecutive-ones matrix (a) and a simultaneous
consecutive-ones matrix (b).

21

22 3 Consecutive ones

3.1 Consecutivity

We start with the basic definitions and results on a consecutive pattern in
vectors. Given a binary vector, we show how to find a closest consecutive
vector for any given vector efficiently; this will be useful in later sections
that deal with consecutive patterns in matrices.

Definition 3.1 (Consecutive vector) A binary vector a is consecutive
if all 1s in a occur at consecutive indices.

Notation 〈s, e〉 represents a consecutive vector that has 1s on indices
s, s+1, . . . , e−1 and 0s elsewhere. For example, we denote (0, 1, 1, 1, 0, 0) by
〈2, 5〉. We say that the index i is included in the vector 〈s, e〉, if s 6 i 6 e−1.
In particular, the zero vector 〈s, s〉 has no 1s, and therefore includes no
indices. We write down the exact length of the vector 〈s, e〉 only when the
length is not clear from the context.

Problem 3.2 (Closest Directly Consecutive Vector) Given a bi-
nary vector a and a nonnegative weight vector w, find a binary vector b that
is consecutive and minimizes the distance dw(a,b).

Next, we consider another problem and give an algorithm that will be
used as a subroutine in solving Problem 3.2.

Problem 3.3 (Maximum Subvector) Given a vector a, find a subvector
(as, as+1, . . . , ae−1) that maximizes the sum of the values in the subvector.

Problem 3.3 can be solved by applying Kadane’s algorithm [Ben84],
which uses dynamic programming to achieve time complexity O(n). Algo-
rithm 2 gives the details of this MaximumSubvector method.

We can now solve Problem 3.2 in linear time in the length of the vector.
As described in Algorithm 3, the idea is to reduce Problem 3.2 to the Max-
imum Subvector problem, and use the algorithm MaximumSubvector as
a subroutine.

In FindConsecutive (Algorithm 3) we seek a consecutive binary vector
to which the binary vector a has the smallest distance. Given a consecutive
vector b = 〈s, e〉, two types of differences contribute to the distance: 0-
entries in a that are included (1s) in b, and 1-entries in a that are not
included (0s) in b. Specifically, let Z be the distance from a to the zero
vector, that is, the sum of weights on the entries where a has 1s. Taking
the zero vector as a starting point, each included 1-entry in b decreases the
distance, whereas each included 0-entry increases it.

3.1 Consecutivity 23

Algorithm 2 MaximumSubvector
Input: vector a = (a1, a2, . . . , an)
Output: (max, s, e), such that subvector (as, as+1, . . . , ae−1) has maxi-

mum sum, max
1: sum← 0; s← 1; e← 1
2: start← 1; curr ← 0
3: for all end = 1, 2, . . . , n do
4: curr ← curr + aend // include position end to current subvector
5: if curr < 0 then
6: curr ← 0; start← end+ 1
7: else if curr > sum then
8: sum← curr; s← start; e← end+ 1 // update best subvector
9: end if
10: end for
11: return (sum, s, e)

Algorithm 3 FindConsecutive
Input: binary vector a = (a1, a2, . . . , an) and nonnegative weight vector w
Output: (d, b), where b is a consecutive binary vector that minimizes

dw(a,b) = d
1: N ← {i | ai = 1 and 1 6 i 6 n} // positions of 1s
2: Z ←∑

i∈N wi // distance from a to the zero vector

3: Construct n-dimensional vector c as ci =

{
+wi, if ai = 1,

−wi, if ai = 0.

4: (max, s, e)← MaximumSubvector(c)
5: return (Z −max, 〈s, e〉)

We construct a distance vector c from the binary values a and weights
w as on Line 3. Given a consecutive vector b = 〈s, e〉, each value ci refers
to the decrease in the distance should the index i be included. The distance
from a to b is therefore Z−(cs+cs+1+ · · ·+ce−1). Minimizing the distance
is now the same as maximizing

∑e−1
i=s ci, which is an instance of Maximum

Subvector. Running MaximumSubvector on the distance vector c solves
the problem. The returned maximum subvector, represented by the indices
from s to e− 1, is then interpreted as the consecutive binary vector 〈s, e〉.
The time complexity for FindConsecutive is O(n).

24 3 Consecutive ones

3.2 Consecutive matrices

We generalize the concept of consecutiveness on vectors to binary matri-
ces, namely consecutive-ones matrices and simultaneous consecutive-ones
matrices. Next, we define the consecutive-ones property (C1P) exactly.

Definition 3.4 (Direct C1P) A binary matrix A has direct C1P if each
row vector is consecutive.

Definition 3.5 (Consecutive-ones property, C1P) A binary matrix A
has the consecutive-ones property on rows, C1P, if there exists a permuta-
tion of the columns such that the permuted matrix has direct C1P.

The difference between Definitions 3.4 and 3.5 is that in a direct C1P
matrix the rows have consecutive 1s, while in a C1P matrix we only require
the existence of such a column permutation. There may exist several such
permutations, some of which may lead to identical matrices. We consider
C1P to be more important a property than direct C1P: the underlying
structure of the data matters more than any initial permutation of the
data. For example on page 21, both matrices in Figure 3.1 have direct C1P.
Also, consider the three matrices below in (3.1). Starting from the matrix
on the left, we can permute its columns to establish consecutive 1s on each
of the rows. Furthermore, by also permuting the rows we obtain the matrix
on the right that has consecutive 1s on both rows and columns.

a b c d e

A 1 0 1 0 1
B 0 1 1 0 0
C 1 0 1 1 1
D 1 0 1 0 0

;

d e a c b

A 0 1 1 1 0
B 0 0 0 1 1
C 1 1 1 1 0
D 0 0 1 1 0

;

d e a c b

C 1 1 1 1 0
A 0 1 1 1 0
D 0 0 1 1 0
B 0 0 0 1 1

(3.1)

An alternative characterization of C1P can be given by means of for-
bidden submatrices: a binary matrix has C1P if and only if none of its
submatrices belong to the collection of forbidden submatrices, as described
by Tucker [Tuc72]. This collection contains an infinite number of matrices,
and is not described here. In the literature the C1P pattern is sometimes
defined on the columns rather than on the rows.

All C1P matrices are also zero-partitionable (Definition 2.6). To see this,
consider a directly C1P matrix obtained from a C1P matrix by permuting
the columns. Order the consecutive row vectors r = 〈s, e〉 in ascending
order of s. Now each 0 that occurs before the 1s on a row can be labeled
with Cs and other 0s with Rs.

3.2 Consecutive matrices 25

Since the introduction of the concept of consecutiveness, many types
of matrix data have been studied for that property: archeological, DNA,
and interaction data, for example. Problems on consecutiveness belong to
a family of problems commonly known as the seriation problems [Lii10].

Detecting C1P in binary matrices is particularly important in pres-
ence/absence data of paleontological applications [PFM06], where the data
contains binary indication of fossil occurrence in excavation sites. It is
expected that reordering the data by the site age produces consecutive
patterns that show the lifespans of species. The question of determining
the distance from a given matrix to a C1P matrix corresponds to counting
Lazarus events, that is, occurrences of a species after its assumed extinction
and before its resurrection. Also file organization benefits from consecutive
patterns [DG99]: given a query, it is faster to read all relevant records if they
occur consecutively on a hard disk. In the field of bioinformatics, C1P pat-
terns are encountered in the physical mapping problem [GGKS95], in which
DNA fragments need to be reordered to obtain their relative positions in
the original DNA sequence.

Next we consider a pattern where consecutiveness holds for both row
vectors and column vectors simultaneously.

Definition 3.6 (Direct SC1P) A binary matrix A has direct SC1P if
both A and AT have direct C1P.

Definition 3.7 (Simultaneous consecutive-ones property, SC1P) A
binary matrix A has simultaneous consecutive-ones property, SC1P, if there
exist permutations of the rows and columns such that the permuted matrix
has direct SC1P.

A directly SC1P matrix may consist of several blocks of 1s, which can
be exploited to identify block matrices, to find overlapping clusters in data,
as well as to solve elementary scheduling tasks [Osw03]. For example, the
matrix in Figure 3.1(a) does not have SC1P but 3.1(b) has direct SC1P; in
(3.1) all three matrices have SC1P but only the last one has direct SC1P.
The SC1P pattern and its theoretical results also help to develop theory
and methods for other reorderable patterns, such as bandedness.

Another characterization of SC1P comes again from forbidden subma-
trices [Tuc72], but the collection of such matrices again has infinite size.

Also other concepts that involve consecutiveness exist. In circular-ones
[BL76] the consecutive 1s are allowed to wrap: the first and the last column
of a matrix are considered adjacent. In k-consecutive matrices [GGKS95]
each row has at most k consecutive streaks of 1s.

26 3 Consecutive ones

3.3 Recognizing consecutive matrices

This section studies how the C1P and SC1P patterns can be recognized in a
matrix regardless of its permutations. We consider the patterns that occur
without errors; the corresponding distance problems that involve errors are
studied in later sections.

Problem 3.8 (C1P Recognition) Given a binary matrix A, determine
whether it has C1P.

Several algorithms [BL76, Hsu02] exist for solving the problem in linear
time O(mn), and we will refer to these methods later as TestC1P. It would
be cumbersome to use the Tucker’s forbidden submatrices in developing
efficient algorithms for C1P, because the number of forbidden submatrices
increases with the size of the matrix. Matrices that do not have C1P give
rise to another problem: identifying the forbidden submatrices of minimum
size [BRV10]. Finding these submatrices has applications in, for example,
ancestral genome reconstruction [CHSY10].

Problem 3.9 (Recognizing SC1P) Given a binary matrix A, determine
whether it has SC1P.

It is easy to solve Problem 3.9 in linear time: it is sufficient to test with
TestC1P that both A and AT have C1P, which can be done in linear time.
As was the case with C1P, the number of forbidden submatrices for SC1P is
not bounded and the characterization does not lead to efficient algorithms.

As stated in Section 2.4, the recognition algorithms for C1P can be used
to check whether a graph is an interval graph [FG65]. A C1P recognition
algorithm can also be used to determine in polynomial time [BL76] whether
a matrix has circular-ones. It is, however, an NP-complete problem to
determine whether the columns of a matrix can be permuted so that the
matrix is k-consecutive, for all fixed k > 2 [GGKS95].

3.4 Distance to directly consecutive patterns

It may be the case that a data matrix contains errors which prevent a
perfect pattern to occur. We next study the problems of finding a closest
directly C1P or directly SC1P matrix for a given matrix A. It turns out
that for C1P the problem is computationally easy, whereas for SC1P it is
an NP-hard task.

3.5 Distance to consecutive patterns 27

Problem 3.10 (Closest Direct C1P) Given a binary matrix A and a
nonnegative weight matrix W , find a binary matrix B that has direct C1P
and minimizes the distance dW (A,B).

We give a linear-time method for Problem 3.10 in Algorithm 4. Since
the distance associated with each row in the matrix is independent from the
other rows, we can compute the distances row by row and add the distances
together. As a subroutine, we use Algorithm 3 for each row in A. The
overall time complexity is then linear O(mn).

Algorithm 4 FindDirectC1P
Input: m× n binary matrix A, nonnegative weights W
Output: (dist, B), where B is a directly C1P matrix that minimizes dis-

tance dW (A,B) = dist
1: dist← 0
2: B ← m× n zero matrix
3: for all i = 1, 2, . . . ,m do
4: r,w← ith row vectors from A and W
5: (d,b)← FindConsecutive(r,w)
6: dist← dist+ d
7: set b as the ith row in B
8: end for
9: return (dist, B)

Problem 3.11 (Closest Direct SC1P) Given a binary matrix A and
a nonnegative weight matrix W , find a matrix B that has direct SC1P and
minimizes the distance dW (A,B).

It is usually the permutation part that makes minimum distance prob-
lems hard on reorderable patterns, but for the SC1P pattern difficulty arises
even when no permutations are allowed. Indeed, the dH-Closest Direct
SC1P problem is NP-hard [OR09], and consequently also Closest Direct
SC1P is NP-hard, even though no reordering of rows or columns is done.
For other patterns in this thesis (C1P, nested, banded) the corresponding
problem can be solved in polynomial time.

3.5 Distance to consecutive patterns

It is common that the underlying C1P or SC1P pattern in data cannot be
seen because of errors and unsuitable permutations. We next define the

28 3 Consecutive ones

problems that ask for closest C1P and SC1P matrices, regardless of initial
permutations.

Problem 3.12 (Closest C1P) Given a binary matrix A and a nonneg-
ative weight matrix W , find a matrix B that has C1P and minimizes the
distance dW (A,B).

It is an NP-hard task to solve dA-Closest C1P [Boo75, Pap76, Osw03],
which means that it is unlikely that a polynomial-time algorithm exists.
Moreover, approximation of dA-Closest C1P is hard [Vel85]. We will give
two exponential-time methods in Section 3.7. A heuristic approach is thus
needed to solve the problem in practice; we give some well-known methods
for Closest C1P in the next section. In the special case where the number
of the rows or columns in a matrix is a constant, however, Closest C1P
requires only linear time [OR03].

Problem 3.13 (Closest SC1P) Given a binary matrix A and a nonneg-
ative weight matrix W , find a matrix B that has SC1P and minimizes the
distance dW (A,B).

The dD-Closest SC1P problem is NP-hard [OR09] and therefore Clos-
est SC1P is as well. Both exact (branch and bound) and heuristic algo-
rithms are known for the problem, and if the number of rows or columns
is bounded, then solving Closest SC1P requires only polynomial time
[Osw03].

As a related computational complexity result, finding a closest circular-
ones matrix for a given matrix is NP-complete, even when restricting to the
distance dA [GJ79, Prob. SR16].

3.6 Heuristic algorithms for closest C1P

In the following we describe two polynomial-time heuristic algorithms for
Closest C1P (Problem 3.12). Given a binary matrix A, both algorithms
produce a column permutation under which A is close to a directly C1P
matrix. We can then invoke FindDirectC1P (Algorithm 4) on the permuted
A, which finds a directly C1P matrix. This C1P matrix is close to the
original A, apart from different column permutations.

Intuition says that a good permutation tends to put similar columns
close to each other in the order. To find a good permutation for the columns,
we consider a symmetric similarity/distance graph, which is a complete
undirected graph whose vertices are the columns of the input matrix A.

3.6 Heuristic algorithms for closest C1P 29

The weight of an edge {c, d} is the similarity/distance value between the
columns c and d, which is defined later.

The first algorithm is based on a similarity graph on columns, spectral
graph theory, and eigenvectors, whereas the second algorithm finds a good
permutation for columns by approximating a minimum weight Hamiltonian
path in the distance graph. The two algorithms do not solve the problem
exactly, but the results in Sections 7.10 and 7.11 suggest they give fair
results nonetheless.

There also exists a heuristic [OR00] that is based on linear program-
ming. The idea is to formulate Closest C1P (Problem 3.12) as an integer
program (IP) by using the forbidden submatrix characterization and then
use a non-integral linear program (LP) relaxation as a heuristic. We do not
describe the algorithm in detail here, though.

3.6.1 Spectral ordering

Spectral ordering is based on spectral analysis [vL07] on a similarity graph
over the columns of a matrix, and it orders columns in such a way that simi-
lar columns are close to each other in the order. Given a symmetric similar-
ity matrix, the key is to construct an unnormalized Laplacian matrix L and
find its Fiedler vector, that is, an eigenvector associated with the second-
smallest eigenvalue of L. Because a symmetric real matrix has eigenvectors
with real values, we can sort the values in the Fiedler vector, which pro-
duces a permutation on the columns. This well-known SpectralOrdering
method is given as Algorithm 5.

SpectralOrdering has been popular in finding a permutation that makes
a binary matrix almost directly C1P. Furthermore, the method produces

Algorithm 5 SpectralOrdering
Input: m×n binary matrix A, symmetric similarity measure f on columns
Output: column permutation τ that establishes almost direct C1P
1: Construct n× n similarity matrix S:
sc,d ← f(c,d), where c and d are the cth and dth column vectors of A

2: Construct a diagonal matrix D with di,i =
∑n

j=1 si,j
3: Let L← D − S // an n× n Laplacian matrix
4: Compute the eigenvectors and eigenvalues of L, and let e2 be an eigen-

vector associated with the second-smallest eigenvalue (Fiedler vector).
5: Sort the values in e2 in nondecreasing order (break ties arbitrarily) and

let τ be the corresponding permutation of columns.
6: return τ

30 3 Consecutive ones

good approximations to seriation problems [ABH98]. A recent study [Vuo10]
shows that SpectralOrdering minimizes a certain function that is related
to direct C1P, which helps to understand why the method produces results
that are optimal for some instances [ABH98].

Note that if there is a ground-truth ordering, the column permutation
from SpectralOrdering may have it in reversed order. Indeed, the C1P
distance would remain unaffected if the sorting on Line 5 was nonincreasing,
but the permutation would be different. Therefore, if it makes any difference
in the application, both permutations should be considered.

Next, we define three similarity measures for comparing columns. Given
two columns c and d and their binary column vectors c and d, their dot
product is the number of positions where both vectors have 1s. The corre-
lation similarity on the other hand is (1 + ρ(c,d))/2, where ρ(c,d) is the
well-known Pearson correlation (corr) coefficient between the columns. We
see that the correlation similarity values range from 1 (identical columns)
to 0 (anticorrelated columns). As an alternative we will use the overlapping
measure computed by the Jaccard coefficient |C ∩D|/|C ∪D|, where C and
D are the set interpretations of columns c and d; in case C or D is empty,
the value is 1 (does not contradict overlapping sets). Again the value is 1
for identical columns, but this time it is 0 only for non-intersecting columns.

3.6.2 Hamiltonian ordering

Given a weighted undirected graph, in the Travelling Salesman prob-
lem we are asked to find a cycle that visits all vertices exactly once and
the sum of weights on included edges is minimum. This well-known opti-
mization problem is NP-hard, but there exists a 2-approximation algorithm
[RSL77] [CLRS01, Approx-Tsp-Tour] for graphs that satisfy the triangle in-
equality. The algorithm is based on finding a minimum spanning tree and
using it to obtain a Hamiltonian cycle.

We use the 2-approximation algorithm to find a Hamiltonian path that
has low total weight. Consider the distance graph G on the columns of an
input matrix A. We first use the algorithm to find a cycle from G, and
then we remove the edge that has the largest weight. The rest of the edges
form a Hamiltonian path, which represents a permutation for the columns
(or the reverse permutation). We call this method HamiltonianOrdering.

We use two distance measures that both satisfy the triangle inequality
and are thus eligible in the approximation algorithm. The Hamming dis-
tance between two column vectors is the number of positions where their
values differ. The Jaccard distance on the other hand is 1 − J , where J is
the Jaccard similarity coefficient presented in Section 3.6.1.

3.7 Exact algorithms for closest C1P 31

Whenever HamiltonianOrdering is used in experiments, as in Section
7.10, we will indicate which of the distance measures is used to construct
the distance graph on the columns. In experiments we will always use
the 2-approximation algorithm we just described; we could also use the
Christofides algorithm that produces a 3/2-approximation [Chr76] but ma-
jor improvement is unlikely.

3.7 Exact algorithms for closest C1P

Polynomial-time algorithms for solving Closest C1P (Problem 3.12) are
unlikely to exist, as that would imply P=NP.We propose two new exponential-
time algorithms for solving the problem exactly. The first reduces the prob-
lem to Maximum Satisfiability, whereas the second employs a branch
and bound method that uses a lower bound for distances. An integer-
programming algorithm for the problem has also been developed [OR00],
but we skip the details. Because of their exponential time requirements,
most exact algorithms have difficulties with matrices, say, larger than 20×
20, which makes heuristic methods more appealing for practical use.

3.7.1 MAX-SAT algorithm

Recall that an assignment on a propositional logic formula assigns truth
values 1 (true) or 0 (false) to each variable. The formula is satisfiable if the
formula evaluates to 1 under some assignment.

A complete satisfiability solver (SAT-solver) [GKSS08] recognizes whether
a given propositional logic formula is satisfiable and returns a satisfying as-
signment if one exists. Since deciding on satisfiability is an NP-complete
problem [GJ79, Ch. 2.6], all current solvers use exponential time in the
worst case, but recent developments [GKSS08] and regular competitions
[Sat11, Max11] suggest that these solvers can be useful in solving various
hard problems that can be encoded in propositional logic. Next, we show
how SAT-solvers can solve Problem 3.12.

SAT-solvers usually assume that the propositional logic formulae are in
conjunctive normal form (CNF), which is a conjunction of clauses, each of
which consists of a disjunction of variables and their negations. In order to
assess the size of a formula, we count the number of variables and clauses
used. Given an m× n binary matrix A, we construct a CNF formula that
is satisfiable if and only if A has C1P. The formula consists of variables and
clauses as follows.

32 3 Consecutive ones

• Entry variables ei,j for each matrix entry ai,j . Truth values on the
entry variables represent matrix values 1 and 0. Contributes mn vari-
ables.

• Order variables Za<b for each ordered pair of distinct columns (a, b)
in A. An assignment true on variable Za<b indicates that a preceeds
b in order. Contributes n(n− 1) variables.

• Entry clauses (ei,j) for each entry ai,j = 1, and (¬ei,j) for each entry
ai,j = 0. The entry clauses reflect the values in A, and each unsatisfied
entry clause corresponds to a flip in A. Contributes mn clauses.

• Antisymmetry clauses for each unordered pair of distinct columns
{a, b} in A.

Antisymmetry: ¬(Za<b ↔ Zb<a)

Same clauses in CNF: (Za<b ∨ Zb<a) ∧ (¬Za<b ∨ ¬Zb<a)

This ensures that either a preceeds b or vice versa. As a result, ¬Za<b

and Zb<a are equivalent. Contributes n(n− 1) clauses.

• Transitivity clauses for each ordered triplet of distinct columns (a, b, c).

Transitivity: (Za<b ∧ Zb<c → Za<c)

Same clause in CNF: (¬Za<b ∨ ¬Zb<c ∨ Za<c)

Given an assignment, the order variables form a total order if and only
if all antisymmetry and transitivity clauses are satisfied. Contributes
n(n− 1)(n− 2) clauses.

• Consecutivity clauses for each row i and ordered triplet of distinct
columns (a, b, c).

Between two 1s is a 1: (Za<b ∧ Zb<c ∧ ei,a ∧ ei,c → ei,b)

Same clause in CNF: (¬Za<b ∨ ¬Zb<c ∨ ¬ei,a ∨ ¬ei,c ∨ ei,b)

The consecutivity clauses ensure that on each row no 0s occur between
two 1s. Given an assignment, a total order is established and all
consecutivity clauses are satisfied if and only if the corresponding
matrix has direct C1P. Contributes mn(n− 1)(n− 2) clauses.

In cases where A contains errors and does not have C1P, we can still
find the Hamming distance to a closest such matrix. Indeed, based on the

3.7 Exact algorithms for closest C1P 33

construction above, we can produce a C1P matrix B by using an assignment
that satisfies all the antisymmetry, transitivity, and consecutivity clauses,
but leaves some entry clauses unsatisfied. The unsatisfied entry clauses then
correspond to the entries where A and B differ.

Finding the Hamming distance is an instance of the Partial Max-Sat
problem [HLO08]. Given a propositional logic formula and a subset P of its
clauses, the goal is to find a truth assignment on the variables that satisfies
all clauses in P , and the number of other satisfied clauses is maximum. We
include to P all antisymmetry, transitivity, and consecutivity clauses, and
only entry clauses are allowed to be unsatisfied. Solving this instance with
a partial MAX-SAT solver produces an assignment that corresponds to a
C1P matrix that is closest to A, and the Hamming distance is then the
number of unsatisfied entry clauses for this assignment.

The general dW -weighted version of finding a closest C1P matrix can be
solved similarly, when a weighted MAX-SAT solver [HLO08] is available.
We assign to each entry clause a weight that is the same weight as the
corresponding matrix entry ai,j has. All antisymmetry, transitivity, and
consecutivity clauses have infinite weights (any weight larger than the sum
of all weights in W), since they must always be satisfied. A weighted solver
maximizes the sum of weights on satisfied clauses; therefore the sum of
weights on the unsatisfied entry clauses gives the weighted distance from A
to a closest C1P matrix.

A more compact way to construct the CNF-formula above is to use
only n(n − 1)/2 order variables and treat ¬Za<b as Zb<a. As a result,
antisymmetry clauses can be removed, which reduces the size of the formula.

3.7.2 Branch and bound algorithm

To solve Closest C1P (Problem 3.12) exactly, we take a simple brute-force
algorithm BF as a starting point and convert it into a branch and bound
method that computes lower bounds (distances) in certain matrices as the
algorithm runs, which reduces its running-time.

Every C1P matrix has direct C1P under some column permutation. Ac-
tually, the solutions for Closest Direct C1P and Closest C1P (Prob-
lems 3.10 and 3.12) are identical, if the columns of the input matrix are
permuted appropriately. Therefore we can solve Closest C1P by trying
all n! permutations on columns and solving Closest Direct C1P for all
permuted matrices A′. The solution is then the minimum distance to direct
C1P among the permuted matrices.

The brute-force algorithm BF creates column-orders by adding columns
one by one into a chain C (a total order on a subset of columns), backtrack-

34 3 Consecutive ones

ing, and continuing until all total orders have been formed. Every time
BF forms a total order, we obtain a permuted matrix A′, and BF invokes
FindDirectC1P (Algorithm 4) to compute the distance from A′ to a closest
directly C1P matrix. Finally, by keeping track of the distances encountered,
BF returns the minimum distance and the associated permutation.

We modify BF so that it can avoid iterating through all permutations.
Assume that during its execution, BF has already established a chain C that
starts with columns c1 < c2 < · · · < ci , but ci+1, ci+2, . . . , cn have not been
included in C yet. Consider all total orders whose first i columns are as in
C: each of the total orders induces a permuted matrix A′. We give a lower
bound for the distance from any A′ to a directly C1P matrix.

We obtain a lower bound for the matrix as a sum of minimum dis-
tances computed separately for each row. We next show how to compute
the distance for a single row vector r, given a chain C of i columns from A.
Without loss of generality, we assume that when r is permuted as in C, its
first i entries are (r1, r2, . . . , ri), and the ordering of the remaining entries
ri+1, ri+2, . . . , rn has not been fixed yet. We need to know the minimum
distance from the permuted r to a consecutive vector, no matter what the
permutation of the remaining n − i entries is. We observe that placing all
remaining 1-entries before the remaining 0s minimizes the distance. As-
suming that the number of 1-entries among remaining entries is k, we then
arrive at the following permuted row vector s.

s =

sp = rp for p = 1, 2, . . . , i

sp = 1 for p = i+ 1, i+ 2, . . . , i+ k

sp = 0 for p = i+ k + 1, i+ k + 2, . . . , n

Then solving Maximum Subvector (Problem 3.3) on s and w gives
the minimum distance for this row, where w is the associated weight vector
in W and is permuted as s. As the total order used in s is found for each
row separately, this cannot always be applied to all rows simultaneously.
Therefore the sum of the distances from the row vectors gives a lower bound
for the matrix, given a chain C.

For example, consider a row vector r = (1, 1, 1, 0, 0, 1, 1, 0, 1) and a chain
C of columns that has c2 < c5 < c6 < c1. Therefore the first four entries
of the permuted r are (1,0,1,1). We establish a total order that starts with
C and produces a permuted vector s = (1,0,1,1,1,1,1,0,0). Given the chain
C, the produced total order minimizes the distance from s to a consecutive
vector, regardless of weights.

To conclude, we add the following check to the brute-force algorithm
BF. Every time the algorithm produces a new chain C, it computes a lower

3.8 C1P submatrices 35

bound for the distance from the matrix, assuming chain C. Should the lower
bound be equal to or larger than a distance produced by a total order this
far, the algorithm backtracks. In this case, it never considers another total
order that starts with C.

3.8 C1P submatrices

Even when a matrix does not have C1P, it is still interesting to know which
of its submatrices have such a property. After all, the forbidden submatrix
characterization ensures that some submatrices indeed have C1P (small
submatrices cannot contain a forbidden submatrix). In the physical map-
ping problem, for example, the C1P pattern does not occur perfectly if the
dataset on DNA fragments contains errors. C1P submatrices can then be
used to obtain the relative positions of the fragments [TZ07].

Problem 3.14 (Maximum-Size C1P Submatrix) Given a binary ma-
trix A, find in A a submatrix that has C1P and maximizes a + b, where
a is the number of rows in the submatrix and b that of columns.

Problem 3.14 is a special case of Problem 2.7, but restricted on C1P.
We show that this problem is hard by using Theorem 2.8 (Yannakakis) and
two types of binary matrices. An upper triangular matrix U has entry ui,j
equal to 1 if and only if i 6 j. A zero diagonal matrix D has entry di,j
equal to 1 if and only if i 6= j. Both matrix families have unbounded size
and rank.

Theorem 3.15 Maximum-Size C1P Submatrix is NP-hard.

Proof. Let M be the collection of all C1P matrices. We observe that
M is nontrivial: upper triangular matrices have C1P, but zero diagonal
matrices of size at least 3 × 3 do not have C1P. We note thatM is closed
under permutation of rows and columns by definition. Because C1P has
a forbidden submatrix characterization,M is also closed under deletion of
the rows and columns. The result follows from Theorem 2.8, because M
contains upper triangular matrices that have unbounded rank. 2

We can also restrict Problem 3.14 to either the rows or columns alone:
we remove as few rows (or columns) as possible to reach a submatrix that
has C1P. Still, both problems remain NP-hard [HG02].

Many matrices, such as the incidence matrices of graphs, contain only
a few 1s on each column. Focusing on sparse matrices where the number
of 1s is bounded on each row and column may produce more efficient al-
gorithms. Indeed, if each row and column contains at most two 1s, then

36 3 Consecutive ones

C1P submatrices can be found in polynomial time. Unfortunately, if either
the rows or columns contain three 1s, the problems already become NP-
complete [TZ07]. The literature knows several negative approximability re-
sults for the submatrix problems, but also polynomial-time approximation
algorithms that assume bounded row and column sums [DGN10].

Chapter 4

Nestedness

The concept of nestedness describes hierarchies and subset relations in data.
This type of pattern appears in contexts where one is expected to witness a
progressive development of attributes, such as students advancing through
a curriculum from introductory to specialized courses. Another example
involves species distributions: it is common that species found in barren
areas also occur in abundant areas, which demonstrates a hierarchy of the
species. Nested patterns occur frequently in ecological datasets, as well as
in interaction networks; these aspects will be discussed later in Chapter 5.
The figure below is an example of a nested matrix.

Figure 4.1: An example of a directly nested matrix.

4.1 Theoretical results

The theoretical background of the ecological concept of nestedness was not
fully developed until Mannila and Terzi [MT07] introduced the concept
to the data mining community. In this section we give the exact defini-
tion of nestedness and several alternative characterizations. We also review
theoretical results on nestedness that are needed in algorithms that are
introduced in the following sections.

37

38 4 Nestedness

Definition 4.1 (Directly nested) A binary matrix A is directly nested
if for each 1-entry ai,j = 1 we have that ar,c = 1 for all r ∈ [i] and c ∈ [j].

Definition 4.2 (Nested) A binary matrix A is nested if there exist per-
mutations of the rows and columns such that the permuted matrix is directly
nested.

For example the matrices in (4.1) are identical, apart from different
permutations. Both are nested, but only the latter is directly nested.

a b c d e f

A 1 0 0 1 1 0
B 1 0 0 1 1 0
C 0 0 0 0 1 0
D 1 1 1 1 1 1
E 1 1 0 1 1 0

 ;

e a d b c f

D 1 1 1 1 1 1
E 1 1 1 1 0 0
A 1 1 1 0 0 0
B 1 1 1 0 0 0
C 1 0 0 0 0 0

 (4.1)

We observe that nestedness is invariant under transposition: A is nested
if and only if AT is nested. This also holds for directly nested matrices.

We describe three characterizations for direct nestedness. First, anm×n
binary matrix A is directly nested if and only if R1 ⊇ R2 ⊇ · · · ⊇ Rm and
C1 ⊇ C2 ⊇ · · · ⊇ Cn, where Ri and Cj are the set interpretations of the row
i and column j. In other words, both the rows and columns form a chain
under set inclusion.

Second, consider a visual representation of a matrix A (as in Figure
4.1) and a grid between the entries of the matrix. We can imagine a path
along the grid that starts from the bottom-left corner, moves only up or
right, and ends at the top-right corner. Such a staircase path separates the
entries in A into two parts: a matrix is directly nested if and only if there
exists a staircase path that separates all 1s from 0s [Wes98]. The number
of directly nested matrices is thus equal to that of staircase paths. There
are exactly m + n moves until the path reaches the top-right corner, m of
which are up moves. The number of staircase paths—and that of directly
nested matrices—is therefore

(
m+n
m

)
.

The third characterization comes from number theory. An integer parti-
tion of a positive integer q is a vector c = (c1, c2, . . . , ck) of positive integers
such that c1 > c2 > · · · > ck > 0 and

∑k
i=1 ci = q. A graphical representa-

tion of an integer partition c, called a Ferrers diagram, is a binary matrix
F that has ci topmost entries on the column i as 1s. For example, given an
integer partition (5, 4, 4, 2, 1, 1), its Ferrers diagram is the second matrix in
(4.1). We observe that Ferrers diagrams and directly nested matrices are

4.1 Theoretical results 39

equivalent (apart from zero vectors on the rows and columns). By defini-
tion, c contains the column sums of the Ferrers diagram F . The conjugate
of c is the vector s whose values represent the row sums of F . We observe
that s is unique and also an integer partition of q.

If a matrix has a nested pattern, we need to find suitable permutations
of the rows and columns to observe the directly nested pattern. We give
two characterizations that describe the structure of nested matrices.

First, a matrix A is nested if and only if for all columns i, j we have
Ci ⊆ Cj or Cj ⊆ Ci. By the properties of subset inclusion, this forms a
chain on the column vectors in A. In fact, the rows form a chain if and only
if the columns form a chain.

Second, nestedness can be also characterized by forbidden submatrices.
The matrices in (4.2) are called switch boxes.[

0 1
1 0

] [
1 0
0 1

]
(4.2)

A binary matrix A is nested if and only if none of its submatrices is a
switch box. Contrary to the C1P and SC1P patterns, where the collections
of forbidden submatrices have unbounded size, the switch boxes have size
2× 2 and we can use them in developing efficient algorithms.

Next we show that nested patterns are unique given the row sums and
the column sums. A Ryser class [Rys60] is a collection of binary matrices
that have the same dimensions and identical row sums r and column sums
c. Ryser classes have been studied extensively [Bru80, WZ98]. Suppose a
binary matrix A contains a switch box as a submatrix. A switch represents
flipping the four entries in this submatrix, which produces another type of
switch box, but preserves the row sums and column sums.

Theorem 4.3 (Ryser class reachability [Rys57]) All binary matrices
included in a Ryser class are reachable from one another by a series of
switches on their switch boxes.

We can now state the result that establishes the uniqueness of nested
matrices. This result will be used to develop an algorithm for nestedness
recognition in the next section.

Theorem 4.4 (Nested matrices and Ryser classes) A binary matrix
A is nested if and only if A is the only matrix within its Ryser class.

Proof. By Theorem 4.3 a binary matrix A is the only matrix within its
Ryser class if and only ifA does not contain any switch boxes as submatrices.
A matrix with no switch boxes is equivalent to being nested. 2

40 4 Nestedness

4.2 Recognition of nestedness

In this section we give three polynomial-time algorithms that recognize
whether a matrix is nested. The challenge is to detect whether there ex-
ist suitable permutations of the rows and columns such that a directly
nested pattern can be observed. Because of the equivalence of chain graphs
and nestedness, as established in Section 2.4, an algorithm that recognizes
nestedness also recognizes chain graphs.

Problem 4.5 (Nestedness Recognition) Given a binary matrix A, de-
termine whether it is nested.

The first algorithm for Nestedness Recognition arises from the for-
bidden submatrix characterization. An m×n matrix A has

(
m
2

)(
n
2

)
subma-

trices of size 2× 2. Checking that none of them is a switch box takes time
O((mn)2).

The second algorithm comes from reordering the rows and columns and
then checking for direct nestedness. We reorder the rows (and columns)
in nonincreasing order by their row sums (column sums). Because of the
subset relations of the rows and columns in A, the permuted A is now
directly nested if and only if A is nested. Reordering and checking direct
nestedness takes time O(m logm+ n log n+mn).

The third algorithm solves Problem 4.5 in sublinear timeO(m+n), given
the row sums and column sums. For example the degrees of vertices in a
bipartite graph are often precomputed, and can be interpreted as row sums
and column sums. The algorithm combines the theory of nested matrices,
integer partitions, and CountingSort method [CLRS01, Ch. 8] that sorts
integers in linear time. For technical convenience, we can assume that
all row sums and column sums are positive, because zero vectors do not
affect nestedness. We first describe the subroutine Conjugate and then the
recognition algorithm TestNested (Algorithms 6 and 7).

The Conjugate method (Algorithm 6) takes an integer partition c as
input and returns the unique conjugate partition of c. Let F be a directly
nested matrix that represents the Ferrers diagram of c. To find the con-
jugate partition s of c, Conjugate constructs a staircase path implicitly
along the matrix grid of F from the bottom-left corner to the top-right
corner, and keeps track of the column and row positions with variables x
and y. We obtain the conjugate partition by examining the positions in the
path. Looking at the loop conditions reveals that the time complexity for
Conjugate is O(m+ n).

Next we describe the recognition algorithm TestNested. Given anm×n
binary matrix A as input, we use only its row sums r and column sums c.

4.2 Recognition of nestedness 41

Algorithm 6 Conjugate
Input: integer partition c = (c1, c2, . . . , cn)
Output: conjugate integer partition s = (s1, s2, . . . , sm)
1: m← max(c) // length of conjugate partition s
2: x← 1 // horizontal position: start from the left
3: y ← m // vertical position: start from the bottom
4: while y > 1 do // compute all values in s
5: if x > n or y > cx then // do we know the value of sy?
6: sy ← x− 1
7: y ← y − 1 // start finding the next value in s
8: else
9: x← x+ 1 // use the next value in c to deduce the values in s

10: end if
11: end while
12: return s

Algorithm 7 TestNested
Input: positive row sums r = (r1, r2, . . . , rm) and positive column sums

c = (c1, c2, . . . , cn) of a binary matrix A
Output: is A nested?
1: s← Conjugate(CountingSort(c) in nonincreasing order)
2: if s is identical to CountingSort(r) in nonincreasing order then
3: return yes
4: end if
5: return no

Since permuting the matrix does not affect nestedness, we can assume that
r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn) are in nonincreasing order; if
not, we can reorder them in linear time with CountingSort. Thus, r and c
represent a directly nested matrix if and only if A is nested.

Consider a directly nested matrix F that has column sums as c. By
using the equivalence of Ferrers diagrams and directly nested matrices, we
obtain the conjugate s of integer partition c from the Conjugate method.
Therefore, by using only the column sums c, we can deduce the unique row
sums s in the directly nested F .

We now compare the row sums s and r and determine whether A is
nested. If s and r are different, then A is not nested, because s contains the
unique row sums for a nested matrix that has column sums c. Now suppose
the contrary: s and r are identical. Now A and F belong to the same Ryser
class, since they have the same row sums and column sums. Because F is

42 4 Nestedness

nested, Theorem 4.4 implies F = A, and A is nested.
The time complexity of Algorithm 7 is sublinear in the size of an input

matrix, O(m + n), which comes from both sorting the integer vectors and
computing Conjugate. If the row and column sums are not available in
constant time, we need O(mn) time for preprocessing.

4.3 Distance to direct nestedness

If a matrix A is not directly nested, the reason may be that it contains
noise. We are interested in finding a closest matrix that is directly nested.
This way we can identify the entries in A that break the direct nestedness
pattern. We give a polynomial-time algorithm for the problem.

Problem 4.6 (Closest Directly Nested) Given a binary matrix A and
a nonnegative weight matrix W , find a binary matrix B that is directly
nested and minimizes the distance dW (A,B).

Algorithm FindDirectNested (Algorithm 8) uses dynamic program-
ming to solve Problem 4.6 in linear time O(mn). For technical convenience,
we decompose the weights in W into two matrices: W = U + V , where U
contains the weights of 1-entries and V those of 0-entries.

The goal is to construct a directly nested matrix B to which matrix A
has minimum distance. We use staircase paths to represent directly nested
matrices efficiently. Recall that a staircase path starts from the bottom-
left corner of the matrix grid, and moves right and up until it reaches the
top-right corner. On each row, we keep track of the position where the
path goes up—there are n + 1 such positions. The first and last positions
are special cases that indicate that the path is on the outer border of the
matrix grid.

Denote by Ai the submatrix of A that includes rows i, i+ 1, . . . ,m. We
use dynamic programming to compute distances from the submatrices Ai

to direct nestedness for i = m,m− 1, . . . , 1, and use the distances from Ai

to deduce the distances for Ai−1.
We compute anm×(n+1) distance matrix C, where entry ci,j represents

the path position j on the row i. We have the following invariant: ci,j is the
minimum distance from Ai to a directly nested matrix that has j−1 entries
as 1s on the (topmost) row i. Once C has been computed, the minimum
distance from A to a directly nested matrix is then the minimum on the
first row in C.

The algorithm computes the entries in C one by one—assume that ci,j
is computed next. We observe that the staircase path may reach (i, j) by

4.3 Distance to direct nestedness 43

Algorithm 8 FindDirectNested
Input: m× n binary matrix A, nonnegative weights W
Output: minimum distance from A to a directly nested matrix

1: U ←
{
ui,j = wi,j if ai,j = 1

ui,j = 0 if ai,j = 0
V ←

{
vi,j = 0 if ai,j = 1

vi,j = wi,j if ai,j = 0

2: Compute m× (n+ 1) matrix C using the recurrence

cm,1 ←
n∑

k=1

um,k

cm,j ← Right(m, j) for j = 2, 3, . . . , n+ 1

ci,1 ← Up(i, 1) for i = m− 1,m− 2, . . . , 1

ci,j ← min{Right(i, j), Up(i, j)}
for i = m− 1,m− 2, . . . , 1 and j = 2, 3, . . . , n+ 1

Right(i, j) = ci,j−1 + vi,j−1 − ui,j−1

Up(i, j) = ci+1,j +

j−1∑
k=1

vi,k +
n∑

k=j

ui,k

3: return minimum value on the first row vector in C

moving right or up. The operator Right assumes that the staircase path
reached (i, j) by moving right. In that case the distance ci,j is the same as
ci,j−1 but with the added/subtracted weight of the 0/1-entry ai,j−1. On the
other hand, the operator Up assumes the last move was up. In that case the
distance ci,j is the same as ci+1,j but with the added weights of the entries
on the row i that are on the wrong side of the staircase path position j.
Because the only way for a path to reach (i, j) is moving either right or
up, we choose the distance ci,j to be the minimum of those from operators
Right and Up.

In addition to the minimum distance, the algorithm can also produce a
closest directly nested matrix B: we obtain a staircase path by tracing the
operators (Right and Up) used along the path that produced the minimum
distance; this path defines a directly nested matrix B.

Algorithm 8 has time complexity O(mn) if we make use of the following
improvement. Instead of using matrices U and V as is, we compute two
cumulative weight sum matrices on the rows of U and V , which takes time
O(mn). With these new matrices all the sums in Algorithm 8 can be eval-
uated in constant time; thus computing a single entry in C takes constant
time.

44 4 Nestedness

The memory requirement of Algorithm 8 is O(mn), which comes from
the matrix C, the weight matrices U and V , and the cumulative sum ma-
trices. If we only need the minimum distance but not a closest matrix, then
O(n) space suffices. The idea is to implement C, U , V , and the cumulative
weight matrices as vectors. In particular, C is an (n+ 1)-dimensional vec-
tor and its values are recomputed on each row, which replaces the values
computed for the previous row. The weight vectors are generated for each
row separately. The minimum distance is obtained as before, but we cannot
reconstruct the associated staircase path or a closest matrix.

4.4 Distance to nestedness

In this section we address the problem of finding a closest nested matrix for
a given matrix. In contrast to the previous section, this problem involves
taking into account different permutations. We review the computational
complexity results for the problem restricted on the dA, dD, dH, and dW
distances (augmentation, deletion, Hamming, and weighted). We also give
polynomial-time heuristics restricted on these distance measures.

Problem 4.7 (Closest Nested) Given a binary matrix A and a non-
negative weight matrix W , find a binary matrix B that is nested and mini-
mizes the distance dW (A,B).

Problem 4.7 is NP-hard, because the dA-Closest Nested problem
(only 0-to-1 flips) has been shown [Yan81a, MT07] to be NP-hard via chain
graphs. Also dD-Closest Nested is NP-hard: we can solve dA-Closest
Nested by computing dD-Closest Nested on a matrix where 0s and
1s have been interchanged. The computational complexity of dH-Closest
Nested, however, is an open question.

We present three heuristic algorithms for Problem 4.7 restricted on cer-
tain distance measures. The first algorithm computes a lower bound on
dA and dH, the second is an approximation algorithm that gives an up-
per bound for dA, and the third method gives upper bounds for weighted
distances dW . For more algorithms, a recent study [FMT09] gives approxi-
mation algorithms for the dA-Closest Nested problem via minimum cuts
and vertex degrees (row sums and column sums).

4.4.1 Lower bound algorithm

Algorithm 9 produces a lower bound for dA-Closest Nested (0-to-1 flips).
Denote by p the number of 0-entries in an input matrix A, and by s(i, j)
the number of switch boxes in which the entry ai,j is included.

4.4 Distance to nestedness 45

Algorithm 9 LowerBoundAugNested
Input: m× n binary matrix A
Output: lower bound for dA(A,B), where B is a dA-closest nested matrix
1: L← empty list
2: for all (i, j) such that ai,j = 0 do
3: compute s(i, j) and add it to the list L
4: end for
5: (l1, l2, . . . , lp)← sort(L) in nonincreasing order
6: t← 1/2 ·∑p

k=1 lk // the number of switch boxes in the matrix
7: return min{e ∈ N>0 |

∑e
k=1 lk > t}

Theorem 4.8 (Lower Bound) Algorithm 9 produces a lower bound for
dA-Closest Nested.

Proof. We count a lower bound for the number of 0-to-1 flips needed to
make A nested. To do so, we seek to eliminate all switch boxes, but we
decide to ignore new switch boxes that are generated by flipping entries.

For each entry (i, j) such that ai,j = 0 denote by s(i, j) the number
of switch boxes in which the entry is included. Flipping just one entry,
say ai,j , eliminates exactly s(i, j) switch boxes. After the first flip, some
switch boxes have already been eliminated, and flipping a further entry au,v
eliminates at most s(u, v) switch boxes that were originally in A.

Denote by p the number of 0-entries in A, and let (l1, l2, . . . , lp) be their
switch box counts in nonincreasing order. Then flipping e entries eliminates
at most l1 + l2 + · · · + le switch boxes in A, which corresponds to flipping
the e entries that have the highest participation in switch boxes.

Since each switch box includes two 0s, the number of switch boxes in
the matrix is t = 1/2 · (l1 + l2 + · · · + lp). Let e be the minimum number
such that l1 + l2 + · · · + le > t. Because the number of eliminated switch
boxes is an upper bound, e−1 flips are not enough to eliminate all of them.
Because all solutions need to eliminate from A all switch boxes, e is a lower
bound for the minimum distance. 2

Flipping the entries in the matrix as indicated by Algorithm 9 does not
necessarily produce a valid solution, since flipping may generate new switch
boxes that are not eliminated. Computing the number of switch boxes for
each entry takes time O((mn)2), which dominates the time complexity of
the algorithm.

Algorithm 9 can be modified to handle the Hamming or deletion dis-
tances. For the Hamming distance, Line 2 should include all entries in the
matrix, Line 6 should have 1/4 instead of 1/2 (each switch box is counted

46 4 Nestedness

four times), and Lines 5 and 6 should have mn instead of p. In case of the
deletion distance, Line 2 should include only 1-entries instead of 0-entries,
and Lines 5 and 6 should have mn− p instead of p.

Unfortunately, an adaption of the algorithm for the weighted distance
is not straightforward. We could order the entries by their eliminating-
efficiencies si/wi, where w represents the weights, but this may lead to
flipping an entry with high efficiency, when an entry with low cost would
suffice. In other words, the result is not necessarily a lower bound.

4.4.2 Approximation algorithm

Another simple algorithm produces an upper bound for dA-Closest Nested
and does that with a provable approximation factor. The idea is to identify
all 0s that participate in switch boxes and to flip them to 1s; the method
is described in Algorithm 10. It is easy to modify the algorithm to solve
the deletion distance: flip 1s to 0s. We proceed by giving proofs for the
correctness and the approximation factor for the algorithm.

Algorithm 10 ApproxAugNested
Input: m× n binary matrix A
Output: (d, B̂), where d is an upper bound for dA(A,B); B̂ is close to a

dA-closest nested matrix B
1: B̂ ← A
2: S ← for each entry in A, the number of switch boxes it belongs to
3: for all entries ai,j in A do
4: if ai,j = 0 and si,j > 0 then
5: b̂i,j ← 1
6: end if
7: end for
8: d←∑

i,j |̂bi,j − ai,j |
9: return (d, B̂)

Theorem 4.9 (Upper Bound) Algorithm 10 produces an upper bound
for dA-Closest Nested.

Proof. Since all 0s in switch boxes are flipped to 1s, it is clear that all
switch boxes in the original matrix are eliminated. It remains to show that
the flips do not generate any new switch boxes.

If the original matrix is already nested, there are no switch boxes, and
flips are not needed. Otherwise the matrix contains at least one switch box.

4.4 Distance to nestedness 47

Without loss of generality, let the rows r1, r2 and the columns c1, c2 contain
one of these switch boxes. In what follows, we assume that we have flipped
all 0s that participate in switch boxes; in particular, 0-entries (r1, c1) and
(r2, c2) have been flipped (in bold).

c1 c2
r1 0 1
r2 1 0

c1 c2 c3
r1 1 1 ?
r2 1 1 0
r3 ? 0 1

Assume against the claim that the matrix still contains a switch box. Since
flipping the 0-entries eliminated all original switch boxes, the remaining
switch boxes are generated by these flips. Assume without loss of generality
that flipping the 0-entry (r2, c2) generated such a switch box on the rows
r2, r3 and columns c2, c3. We next examine the value of the unknown entry
(r1, c3). If (r1, c3) has value 0, the rows r1, r3 and columns c2, c3 form
a switch box that exists before flipping. On the other hand, if (r1, c3)
has value 1, the rows r1, r2 and columns c1, c3 formed a switch box before
flipping. Thus, either (r2, c3) or (r3, c2) participated in a switch box and
one of them should have been flipped, which is a contradiction with the
assumption that there exists a switch box after flipping the 0s. 2

Theorem 4.10 (Approximation Factor) The approximation factor for
Algorithm 10 is 2α, where α = max{s(i, j) | ai,j = 0}.

Proof. Suppose the matrix has k switch boxes. Since each switch box
includes two 0s, the algorithm flips at most 2k entries, with equality if all
0s in the matrix participate in at most one switch box.

On the other hand, compute for each 0-entry the number of switch boxes
it participates in and denote by α = max{s(i, j) | ai,j = 0} the maximum.
To eliminate all switch boxes, at least one entry must be flipped from each
of them. Then flipping one entry eliminates at most α switch boxes, and
the minimum number of flips needed is at least k/α.

Combined, the approximation factor for the algorithm is 2α. Diagonal
square matrices are tight examples. 2

4.4.3 Greedy upper bound algorithm

The third method, GreedyNested [MT07], is a heuristic algorithm designed
to produce an upper bound to dA-Closest Nested and dH-Closest
Nested. Although no approximation factor has been shown for the al-
gorithm, it provides fair results in practice [MT07]. In what follows is a

48 4 Nestedness

minor generalization (Algorithm 11) of the algorithm, which accepts arbi-
trary positive weights in the Closest Nested problem. The idea behind
the algorithm is to flip entries one by one until the matrix is nested. The
selection of flipped entries is based on the number of switch boxes they
belong to.

Algorithm 11 GreedyNested
Input: binary matrix A, positive weights W
Output: (d, B̂), where d is an upper bound for dW (A,B); B̂ is close to a

dW -closest nested matrix B
1: d← 0
2: B̂ ← A
3: S ← for each entry in B̂, the number of switch boxes it belongs to
4: while B̂ is not nested do // flip entries one by one until nested
5: (r, c)← argmax(i,j){si,j/wi,j} // best elimination efficiency
6: flip entry b̂r,c
7: d← d+ wr,c

8: update switch box counts in S
9: end while
10: return (d, B̂)

On Line 4, nestedness can be checked by keeping track of the total
count of switch boxes in B̂, and one evaluation takes constant time. On
Line 8, the counts of switch boxes must be updated: for all eliminated
switch boxes certain counts are decreased, and for all generated switch boxes
certain counts are increased. The details of updating are the same as in the
original algorithm [MT07].

In its original form [MT07], Algorithm 11 permits at most one flip per
entry—this is supposed to avoid situations where the algorithm flips the
same entries repeatedly and never stops. This may, however, lead to trouble:
suppose that flipping an entry produces a switch box and the three other
entries in this switch box have been flipped earlier. This switch box cannot
be eliminated and the algorithm fails to produce a solution. Although
unlikely, this phenomenon takes place occasionally with random 100× 100
matrices. We can fix this by invoking Algorithm 10 whenever the situation
occurs, which makes the matrix nested. Another fix would be to allow
several flips per entry, but disallowing consecutive flips (and flip cycles).

4.5 Exact algorithms for closest nested 49

4.5 Exact algorithms for closest nested

Although solving Closest Nested (Problem 4.7) is NP-hard, we can still
solve instances of size up to, say, 20 × 20. We present here two new algo-
rithms that use MAX-SAT solvers and a branch and bound technique.

Recall the SAT-formulae in Section 3.7.1. Given an m×n binary matrix
A, we construct the following propositional logic formula in CNF that is
satisfiable if and only if A is nested.

• Entry variables ei,j for each matrix entry ai,j . Truth values on the
entry variables represent matrix values 1 and 0. Contributes mn vari-
ables.

• Entry clauses (ei,j) for each entry ai,j = 1, and (¬ei,j) for each entry
ai,j = 0. The entry clauses reflect the values in A, and each unsatisfied
entry clause corresponds to a flip in A. Contributes mn clauses.

• Nested clauses for each ordered pair of distinct rows (i, k) and columns
(j, l) in A.

No switch box: ¬(ei,j ∧ ek,l ∧ ¬ei,l ∧ ¬ek,j)
Same clause in CNF: (¬ei,j ∨ ¬ek,l ∨ ei,l ∨ ek,j)

Each nested clause prevents one type of switch box on specific rows
and columns. Given an assignment, the corresponding matrix is
nested if and only if all nested clauses are satisfied. Contributes
n(n− 1)m(m− 1) clauses.

The Hamming distance from A to a closest nested matrix can be com-
puted by a partial MAX-SAT solver—just as in Section 3.7.1 to solve C1P
instances. Using the above formula for A, we search for an assignment that
satisfies all nested clauses and the number of satisfied entry clauses is maxi-
mum. This assignment corresponds to a nested matrix that is dH-closest to
A, and their Hamming distance is the number of unsatisfied entry clauses.

Solving the problem on the weighted distance dW follows the same guide-
lines as in the C1P solution. Each entry clause has the same weight as the
corresponding entry in A, and all nested clauses have infinite weights (larger
than the sum of all weights in W). A weighted SAT solver then produces
the weighted distance from A to a closest nested matrix: the sum of weights
on unsatisfied entry clauses.

An alternative way to construct the formula is to establish total orders
on both the rows and columns, which needs pairwise order variables and
both antisymmetry and transitivity clauses as in the C1P formula. Instead

50 4 Nestedness

of using nested clauses, we now ensure that the total orders establish direct
nestedness: for each 1-entry all entries above it and to the left from it are
1s; for this we need mn(m − 1) + mn(n − 1) clauses. Compared to the
formula above, this formula has more variables but the number of clauses
is asymptotically smaller.

Another exact algorithm for Closest Nested (Problem 4.7) uses a
branch and bound technique much like it was used to solve C1P instances
in Section 3.7.2. Recall that Algorithm 9 produces lower bounds for dis-
tances to nested matrices. The branch and bound algorithm flips entries
in the matrix and continues flipping one by one until it has completed that
branch of flips, after which the algorithm cancels the latest flip and contin-
ues flipping other entries. Completing a branch happens in two ways. First,
if the encountered matrix is nested, that branch is completed and the best
distance so far is updated. Second, at some point the estimated distance,
that is the distance from the flips so far plus the lower bound, is larger
than the best distance found so far. In that case the branch is completed,
as it has only worse solutions. In the end the algorithm has completed all
branches, and it has found a closest nested matrix.

In an implementation of the branch and bound algorithm two optimiza-
tions should be included. First, the algorithm should start flipping from the
entries that are included in many switch boxes. Second, we can complete
many early branches quickly, if we run a heuristic algorithm beforehand,
such as GreedyNested (Algorithm 11), and at the start of the algorithm we
treat this upper bound as the best solution found so far.

4.6 Nested submatrices

Instead of finding nested matrices that are close to a binary matrix A, we
can seek submatrices of A that are (almost) nested. For example, in a
dataset that combines data from many sources, perhaps only a part of the
attributes conforms to nestedness—the challenge is to identify this pattern.
We study three types of submatrix problems. In the first the goal is to find
a maximum set of columns that induces a nested submatrix. In the second
the goal is to remove as few rows or columns as possible so that the matrix
becomes nested. In the third problem we study how to find almost nested
submatrices that have a high utility value.

Problem 4.11 (Maximum Columns Submatrix) Given a binary ma-
trix A and the set of its columns C, find a subset D ⊆ C such that the
submatrix induced by the columns in D is nested and |D| is maximum.

4.6 Nested submatrices 51

Problem 4.11 can be seen as removing as few columns from A as possible
so that A becomes nested. Let us view the problem from the perspective of
graphs. An inclusion graph is a directed graph G = (V,E), where vertices
in V represent columns in A and a directed edge (i, j) ∈ E indicates that the
column j is included in i, which means Cj ⊆ Ci in terms of set interpretation
of columns. Given an m× n matrix, we have |V | = n and |E| 6 n2.

Now any path in the graph G forms a chain of columns, and therefore
the included columns form a nested submatrix. Finding the largest set of
columns is the same as solving the Longest Path problem on G. Although
this problem is NP-hard for general graphs, a well-known algorithm—via
topological sorting and dynamic programming—finds a longest path in time
O(|V |+ |E|) if the graph is acyclic.

We observe that G is almost acyclic: the only problem is that identical
columns have directed edges in both directions. We modify the inclusion
graph G above to produce an acyclic inclusion graph G′ = (V,E′) as follows.
We assume that the vertices have been labeled V = {v1, v2, . . . , vn}, and we
include in E′ a directed edge (i, j) if and only if Cj ⊂ Ci or both Cj = Ci

and j < i. This only restricts the order in which identical columns can
appear in a path, and in particular it does not change the lengths of longest
paths where each vertex appears at most once. Constructing the acyclic
inclusion graph G′ by a simple method takes time O(mn2), and Problem
4.11 can be solved in time O(mn2).

In the next problem we are allowed to remove rows in addition to
columns.

Problem 4.12 (Maximum-Size Nested Submatrix) Given a binary ma-
trix A, find in A a submatrix that is nested and maximizes a + b, where a
is the number of rows in the submatrix and b that of columns.

Problem 4.12 is a special case of Problem 2.7, but with a specific pattern,
nestedness. We establish the NP-hardness of this problem by using Theorem
2.8 and two matrix families, upper triangular and zero diagonal (page 35).

Theorem 4.13 Maximum-Size Nested Submatrix is NP-hard.

Proof. Let M be the collection of all nested matrices. We observe that
M is nontrivial: upper triangular matrices are nested, but zero diagonal
matrices of size at least 2 × 2 are not nested. By definition of nestedness,
M is closed under permutation of rows and columns. It is also closed
under deletion of the rows and columns, because nestedness has a forbidden
submatrix characterization. The result follows from Theorem 2.8, because
M contains upper triangular matrices that have unbounded rank. 2

52 4 Nestedness

An earlier attempt [MT07] to prove Theorem 4.13 had the correct result
but the argumentation was based on NP-completeness results on general
graphs [LY80]. This argumentation is not valid, as binary matrices are
presented as bipartite graphs, and the time complexity results for general
graphs are upper-bound results for bipartite graphs.

A more practical problem is to find almost nested submatrices that have
maximum utility with respect to a utility function f .

Problem 4.14 (Almost Nested Submatrix) Given a binary matrix A,
a nonnegative weight matrix W , and a fixed distance d, find a submatrix S
of A that has distance to nestedness at most d and maximizes the utility
f(S).

Recall Algorithm 1, FindSubmatrix, that works by removing rows and/or
columns one by one based on a utility function. We can invoke the algorithm
to find large submatrices that are almost nested, but we need to choose the
utility function f first. Given a submatrix S of A, we can compute the
utility value for each row/column i separately and then define f(S) as the
minimum of these values. Examples of utility measures for the row/column
i follow.

• The inverse of the number of switch boxes the entries in the row/column
i belong to.

• The inverse of the number of entries GreedyNested (Algorithm 11)
flips on the row/column i. This is the same as 1/(fp+ fn) in terms of
false positives and negatives.

• An information retrieval measure recall, precision, or accuracy, as pre-
sented in (2.2) on page 20. We obtain the ground-truth nested matrix
(or its approximation) from GreedyNested.

Using precision produces small but dense submatrices, whereas removing
the row/column that has the most flips produces a submatrix that is large
and sparse. It depends on the application whether dense or large nested
submatrices are preferred, and expert consultation is needed to choose a
suitable utility function.

Chapter 5

Significance testing for nestedness

In this chapter we assume a less technical view on nestedness that focuses
on the interpretation and applications in ecology. We explain the concept
of nestedness from an ecological viewpoint and review the null models that
are used for statistical significance testing. We provide tools for testing
how effective the null models are in detecting an almost nested pattern if it
exists, and how prone the models are to suggest almost nestedness when it
does not exist. By conducting a series of experiments, we show that many
popular nestedness measures and null models have severe shortcomings, and
noise-tolerant methods should be preferred.

5.1 Nestedness in ecology

It is common in ecology that the distribution of species and sites is described
by a presence/absence matrix, with the rows corresponding to sites (loca-
tions) and the columns corresponding to species (or more generally taxa).
These biogeographical matrices are binary: a 1 corresponds to the presence
of the species at the site, while a 0 indicates absence of the species. By
absence we mean that the species is not present or it has not been observed
yet. In addition to biogeographical data, species interactions can also be
described in matrix form. Bipartite graphs have been used to represent
both types of data [LIPJ+06, ANGL07, BJMO03, RJB07].

Understanding the structure of interaction and biogeographical binary
matrices is an important task in ecology. The nestedness pattern, as intro-
duced by Patterson and Atmar [PA86] in an ecological context, describes
co-occurrences where species compositions are proper subsets of those on
sites with greater species richness. In this chapter, we use nestedness as
a descriptive word, as it is used in ecology, and use the term fully nested

53

54 5 Significance testing for nestedness

whenever we refer to perfect nestedness in the sense of Definition 4.2.
Nestedness has been observed for several taxonomic groups [FL05]. Pos-

sible mechanisms leading to nestedness include differential colonization, dif-
ferential extinction, and hierarchical habitat distributions [HWS06]. More
possible causes for nestedness have been found [WPM+98, UANG09], such
as sampling bias, habitat fragmentation, distance from a source of colonists,
and island area. In addition, conflicting phenotypic traits of plants and ani-
mals, such as their physical size, leads to nestedness [RJB07]. In biodiversity
conservation management, identifying the nested patterns in data has impli-
cations on selecting the areas for conservation [SAP10, FL05, Pat87]. Anti-
nestedness, the concept of which still lacks an exact meaning [ANGL07], has
been used to describe data that are less nested than expected by chance.

As nestedness observed in nature is rarely perfect, lots of effort has
been made to define measures that evaluate how far a binary matrix is
from being fully nested. During the past 15 years, the most widely estab-
lished nestedness measure has been Temperature [AP93, ANGL07, RGS06].
Other measures in this study include, for historic reasons, N0 [PA86] and N1
[UG07b], as well as more recently developed measures Nodf [ANGG+08],
Discrepancy [BS99], and Hamming distance (Hamming) [MT07]. This set
of measures is, in our opinion, a representative sample of all measures de-
veloped for nestedness.

A nestedness measure produces a distance, but it does not tell whether
this distance is exceptionally small, that is, if data is strongly or signif-
icantly nested. In Section 2.6 we suggested using a null model to assess
the statistical significance of the results from nestedness measures. A null
model generates random matrices that share certain characteristics with
the original data. Here we study a wide range of null models, namely
Fill [WPM+98], R0 [PA86], R1 [PA86], R2 [WPM+98], Contin [GD82],
Bascompte [BJMO03], and Swaps [CC03]. To our knowledge, Bascompte
has not been analyzed against other methods earlier, although it is still in
use [SF07].

While the intuition behind nestedness measures and null models is sim-
ple, the actual selection of methods for a particular application is not. For
example, skewed distributions of species abundances can lead to patterns
that can be interpreted as nested, even when the species occurrences are in-
dependent [HWS06]. The selection of null models and nestedness measures
has been demonstrated to influence the results on parasite datasets [TP07].
The individual contribution of each row and column in the observed matrix
can also be addressed [SF07].

Differences between nestedness measures and null models have been

5.2 Methods and datasets 55

studied earlier [WPM+98], and recent studies [UG07b, UANG09, UG07a]
have identified shortcomings in most nestedness methods. The effects of
matrix shape, size, and fill have also been considered. Measures N0, N1, and
null models Fill, and R0 have all been found inadequate by earlier studies,
but are still included here for the sake of comparison.

The effect of sampling errors on nestedness detection has been studied
to some extent [NB07, CNHS00], but the overall effect of errors and noise
on nestedness analysis is still unclear. We use the error models described in
Section 2.5 that simulate the effects that degrade the quality of data. We
study the sensitivity of nestedness methods to noise in the data in order to
see how strongly the results depend on the quality of the data. A nestedness
measure should be resistant to small amounts of errors or noise in the data.
That is, if two binary matrices A and B differ from each other in only a few
entries, we would expect the values of nestedness measures for A and B to
be close to each other. We do not want a small set of observational errors to
completely change our views on the nestedness (or non-nestedness) of the
data. It turns out that there are fundamental differences in the way noise
affects the measures and null models.

The goal in nestedness analyses is to better understand the processes
that produce the data. Before analyzing the reasons for nestedness on
a specific dataset, however, it is necessary to ensure that such a pattern
exists in the data. In this study we concentrate on recognizing whether a
dataset represents a nested pattern regardless of noise, and leave aside the
discussion on the reasons for nestedness.

5.2 Methods and datasets

Next we describe the nestedness measures and null models that once were in
common use and those we believe to be the most widely used today. We also
include a new measure for nestedness, Hamming, which has not been used in
nestedness analyses before. It is the same as GreedyNested (Algorithm 11)
with Hamming distance: the minimum number of flips needed to make data
fully nested. Then we introduce the statistics and noise models that we use
to evaluate the noise-tolerance of the nestedness measures and null models.
We also give the details of the datasets that we used in the experiments.

5.2.1 Measures of nestedness

Given anm×n binary matrix A, a nestedness measure produces a value that
describes how far A is from perfect nestedness. In all measures presented
here, value 0 refers to perfect nestedness.

56 5 Significance testing for nestedness

N0: The measure N0 counts the number of false absences [PA86]. A 0-entry
ar,c is considered false if there exists another row s in A that has a smaller
row sum than r and as,c = 1. The number of false 0s in A is N0.

N1: In contrast to N0, the measure N1 counts the number of false presences
[UG07b]. A 1-entry ar,c is considered false if there exists another row s in
A that has a larger row sum than r and as,c = 0. The number of false 1s in
A is N1.

Temperature (T): In Temperature the idea is to measure disorder in a
given matrix by assessing the deviation of the matrix from one that has
the same rank and fill and is fully nested [AP93]. The computation of
Temperature is done in three steps [RGS06].

1. Compute an isocline of perfect order. This is a curve that separates
1s from 0s in a matrix of the same size as A that is fully nested and
has as many 1s as A.

2. Reorganize the matrix. This is done by permuting the rows and
columns in a way that maximizes its directly observable nestedness.

3. Associate with each absence above the isocline and with each pres-
ence below it a normalized measure of distance to the isocline. The
Temperature of the matrix is the sum of these distances, over all en-
tries. The Temperature measure is normalized so that it ranges from
0 to 100 (from a fully nested to a maximally non-nested matrix).

For evaluating the Temperature of the input matrices we have used the
code provided by the authors of [RGS06] with default parameters.

Discrepancy (D): One first sorts the rows and columns of A in nonincreas-
ing order by their row sums and column sums. Denote the matrix obtained
by this reordering by Ā. The row-discrepancy for a single row r is the num-
ber of 0s among the first k positions on the row r, where k is the row sum
of r. The Discrepancy [BS99] of A is then the sum of all row-discrepancy
values in Ā. Discrepancy captures the following intuition: a binary matrix
is nested if the 1s in each row are as far to the left as possible and the 1s in
each column are as near the top as possible. The Discrepancy of a matrix,
however, is implementation-dependent: the value is not necessarily unique
if several columns share a common column sum. Therefore the results from
using Discrepancy may be hard to replicate, and it should be considered
an approximative measure, not exact.

5.2 Methods and datasets 57

Hamming (H), Hamming distance to nestedness: The Hamming measure is
the minimum number of flips needed to make A fully nested [MT07], which
involves solving dH-Closest Nested (Problem 4.7). Since no polynomial-
time exact algorithm is known for the problem, we use GreedyNested (Al-
gorithm 11) to measure the distance.

Hamming resembles Discrepancy in the following way: both measures
count how many modifications are needed to make a matrix fully nested.
The results from Hamming are unique: they never change because of row
and column ordering, in contrast to Discrepancy. The reordering step is
also different: Discrepancy reorders the matrix before modifications, based
on possibly erroneous data, whereas Hamming makes the modifications first
and reorders the matrix according to the uncovered nested pattern.

A variant of Hamming can also take into account the specific character-
istics of species and sites. Weights, which represent the degree of certainty
that the data is correct, can be assigned to the entries (Section 2.2).

Nodf (F), Nestedness metric based on overlap and decreasing fill: Consider
an unordered pair of rows {i, j}, where i has a strictly larger row sum than
j has. The degree of nestedness DN{i,j} for the pair is the percentage of 1s
on the row j that have 1s on the row i at identical positions. If the rows i
and j have the same row sums, then DN{i,j} = 0. There are m(m − 1)/2
row pairs in total.

The degree of nestedness for column pairs {k, l}: transpose the matrix
and treat columns as rows {i, j} above. There are n(n− 1)/2 column pairs.

The Nodforig value among both rows and columns is then the average
degree of nestedness over all m(m − 1)/2 + n(n − 1)/2 unordered pairs
[ANGG+08]. We will use values Nodf = 100−Nodforig to achieve consistency
with the other measures (Nodf is 0 for fully nested matrices).

5.2.2 Null models

Null models are used to compare observed species distributions or interac-
tions to those generated by a random model or process. The choice of model
plays a major role: a particular pattern found in data, such as nestedness,
is significant only if it appears as exceptional with respect to the model.
The background of significance testing can be found in Section 2.6. Here
we employ a wide range of null models to test nestedness measures. Given
a binary dataset A, the models produce randomized matrices as follows.

Fill: This model generates a random dataset that has the same number of
1s as in A. The 1s are uniformly distributed. Also known as R00 [WPM+98].

58 5 Significance testing for nestedness

R0: For each row (site) of the matrix, we draw columns (species) from a
uniform probability distribution until the row sum in A (species richness)
is reached [PA86]. For each row, we sample columns without replacement,
and set all sampled entries to 1. Also known as RANDOM0.

R1: The generation process resembles that of R0. For every row, we sample
columns with probabilities proportional to their column sums in A until the
number of sampled columns equals the row sum in A [PA86]. For each row
we sample columns without replacement, and set sampled entries to 1. Also
known as RANDOM1.

R2: This generative model is almost the same as R1. The only difference
is that in R2 the probability of sampling a column in a row is proportional
to the squared column sum [WPM+98].

Contin: In this model [GD82], we associate a value v(i, j) = ricj/F with
each matrix entry (i, j), where ri is the row sum of i, and cj is the column
sum of j, and F is the total number of 1s in A. Entry (i, j) takes value 1
with probability min{v(i, j), 1}.

Bascompte: This model [BJMO03] uses an empirical probability of occur-
rence on each row and column, which is the proportion of 1s among all
values on that row or column. On matrix entry (i, j) the probability of
value 1 is the average of empirical probabilities of the row i and column j.

Swaps: We sample random matrices that have the same row sums and
column sums as A. This method is known as the fixed-fixed model [Got00]
or swap randomization [CC03, MP04], and is based on Ryser’s Theorem
4.3. The method seeks randomly two rows r, s and two columns c, d that
form a switch box (matrices in (4.2)) in A, and then makes a switch (flips
these four entries). This procedure is repeated until the initial matrix A
has a negligible effect on the randomized matrix (close to random); in our
experiments the number of repetitions was 10 times the number of 1s in A.
By Theorem 4.4, Swaps is not able to randomize a fully nested matrix.

Figure 5.1 displays an example of a data matrix and randomized matri-
ces generated from it by using each of these null models. The randomized
matrices share certain statistical properties with the data matrix A. Fill
generates matrices with the same proportion of 1s as A; R0, R1, and R2
generate matrices with the same row sums as A (and hence with the same
proportion of 1s); Contin generates matrices with approximately the same

5.2 Methods and datasets 59

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

(a) Original data
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

(b) R0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

(c) R1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

(d) R2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

(e) Contin

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

(f) Swaps

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

(g) Fill

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

49
47
45
43
41
39
37
35
33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

(h) Bascompte

Figure 5.1: Displayed in (a) is a dataset of size 50 × 50, and in (b–h) the
data has been randomized with different null models.

row sums and column sums as A; Swaps preserves the row sums and column
sums exactly. In Fill, Contin, Bascompte, and Swaps the roles of rows and
columns are the same in the generation process, which is desirable, as the
nestedness pattern does not distinguish between the two. Nevertheless, tak-
ing the specific nature of sites and species into account in the null model
adds complexity, and may not have use outside that particular biogeograph-
ical context.

In this thesis we assume that the data consists of binary values. If the
data, however, had abundance data of species instead of presence/absence
values, we could use an ecologically more explicit null model, as suggested
by Moore and Swihart [MS07]. It generates random matrices not based on
the observed values, but by using expected values of species richness and
abundance. This topic has been studied further and a nestedness measure
also for non-binary datasets has been proposed [GPI09].

5.2.3 Significance of nestedness

A nestedness measure alone does not give an indication of the relevancy
of nestedness. In the following we bring out two performance indicators
that determine how strong a nested pattern is and whether it is statistically
significant.

60 5 Significance testing for nestedness

Given an input matrixA, a nestedness measure N ∈{N0, N1, Temperature,
Discrepancy, Hamming, Nodf} and a null model R ∈ {Fill, R0, R1, R2,
Contin, Bascompte, Swaps}, we generate random instances AR of A by us-
ing the null model R, and compare the nestedness values N(AR) against the
value N(A) of the measure on the original data. Small values of N(A) indicate
strong nestedness; the value 0 stands for perfect nestedness.

To test whether a nested pattern in A is significant, we compute the
empirical p-value, denoted by p(A, N, R) for nestedness measure N and ran-
domization method R. As in Section 2.6, the value is computed by counting
the fraction of the random instances AR that have N(AR) 6 N(A). In other
words, p(A, N, R) indicates how likely it is that an instance generated from
the null model is considered at least as nested as the original data. A small
p-value means that rejecting the null hypothesis in favor of nestedness poses
only a small risk of Type I error.

We also introduce the measure of nestedness intensity I(A, N, R),

I(A, N, R) =
N(A)

E(N(AR))
, (5.1)

where we estimate expectation E by sample mean. An intensity value close
to 0 indicates that A has a strong nested structure, whereas a value close
to 1 indicates that A is non-nested. Values greater than 1.0 indicate that
the original dataset is even less nested (when measured by N) than random
instances produced by R, which is known as anti-nestedness [ANGL07].

These two measures, intensity and p-value, have different roles: nested-
ness intensity indicates how strongly the data are nested with respect to
the null model used, whereas p-value shows whether the pattern is statis-
tically significant. Indeed, a weak pattern may be considered significant if
the sample size is large enough.

5.2.4 Data and error models

We test all combinations of nestedness measures and null models on a va-
riety of datasets: Rasch-type matrices, real-world data on Rocky Mountain
mammals, and synthetic matrices that contain noise and errors. The matri-
ces in the first dataset are non-nested, while the second and third datasets
are nested up to some noise level. As in Section 2.5, we use the symmet-
ric error model (both 1-to-0 and 0-to-1 errors) and the asymmetric error
model (only 1-to-0 errors). The noise level for symmetric noise is denoted
by ` = Pr(0-to-1) = Pr(1-to-0), whereas h = Pr(1-to-0) shows the level of
asymmetric noise. Next we describe the datasets in detail.

5.2 Methods and datasets 61

We use a model close to the Rasch model [Ras60, FM95] to generate
random matrices that are non-nested. We sample two sets of 100 real num-
bers from the interval [0, 1], one for rows r1, . . . , r100 and one for columns
c1, . . . , c100. Then a 100 × 100 matrix is generated, with entry (i, j) equal
to 1 with probability ricj . Figure 5.1(a) shows an example of a 50 × 50
matrix generated by this method, with rows and columns ordered by r and
c. Because in Rasch matrices the 1s on rows and columns are condition-
ally independent, given the values r and c, they bear no structure that is
specifically characteristic of nestedness. Therefore Rasch matrices should
be identified as non-nested by any reasonable method.

As a particular example of a real-world dataset that is strongly nested
we use the data about the mammals on the Rocky Mountains [PA86]. The
dataset, consisting of 28 sites and 26 species, corresponds to Boreal and
Boreo-Cordilleran species of mammals in the Southern Rocky Mountains.
Figure 5.2(a) displays the dataset. Figures 5.2(b,c) show the effect of sym-
metric noise at the level ` = 0.32 and that of asymmetric noise at the level
h = 0.70.

To study the effects of noise in a controlled fashion, we use the following
procedure to generate synthetic data that is fully nested. Given the number
of rows m and columns n, we sample a random number k uniformly from
{0, 1, . . . , n} for each row and set the first k entries on that row to 1 and set
the rest to 0. We then add symmetric or asymmetric noise at various levels
to test how the nestedness methods handle noise. The size of the synthetic
matrices is 100× 100, which is a typical size for an ecological dataset.

1 3 5 7 9 11 13 15 17 19 21 23 25

27

25

23

21

19

17

15

13

11

9

7

5

3

1

(a) Original data

1 3 5 7 9 11 13 15 17 19 21 23 25

27

25

23

21

19

17

15

13

11

9

7

5

3

1

(b) With noise ` = 0.32

1 3 5 7 9 11 13 15 17 19 21 23 25

27

25

23

21

19

17

15

13

11

9

7

5

3

1

(c) With noise h = 0.70

Figure 5.2: Examples of noisy datasets on Rocky Mountain mammals. On
the left (a) is the original data [PA86]; in the middle (b) is the data with ` =
0.32 symmetric noise; on the right (c) is the data with h = 0.70 asymmetric
noise. All matrices share the same row and column ordering, which shows
how the true underlying nested pattern appears as noisy data.

62 5 Significance testing for nestedness

5.3 Results

The following sections show the experimental results for Rasch, Rocky
Mountain mammals, and synthetic datasets. The Rasch experiment tests
whether the methods are able to detect non-nestedness, and the others test
how well the methods recognize underlying nestedness. There are major
differences in the behavior of nestedness measures and null models.

5.3.1 Results on Rasch data

In the Rasch experiment the datasets are assumed non-nested. We gen-
erated 100 Rasch matrices and randomized each one of them 100 times
with a null model, yielding 10,000 samples. Figure 5.1 displays examples of
randomized Rasch matrices, and Table 5.1 shows the results of the Rasch
experiment. The generated datasets are considered significantly nested by
each measure for the null models Fill, Bascompte and R0, implying that
Type I errors are frequent. Swaps and Contin correctly identify Rasch ma-
trices as non-nested, whereas the matrices are considered less nested than
expected by R2. Using R1 gives both nested and non-nested results, de-
pending on the measure used. Of the measures, Discrepancy, Hamming,
and Nodf behave in a similar fashion, all having good performance.

R0 R1 R2 Contin Swaps Fill Basc
I p I p I p I p I p I p I p

N0 .90 .00 1.00 .55 1.20 1.00 1.03 .85 1.04 0.90 .74 .00 .78 .00
N1 .96 .00 0.98 .03 1.04 0.99 1.03 .88 0.98 0.05 .93 .00 .94 .01
Disc .73 .00 0.93 .00 1.21 1.00 1.03 .92 0.99 0.31 .65 .00 .73 .00
Hamming .78 .00 0.94 .00 1.18 1.00 1.03 .92 0.98 0.04 .72 .00 .75 .00
Temp .50 .00 0.90 .00 1.29 1.00 1.01 .59 1.04 0.97 .34 .00 .47 .00
Nodf .83 .00 0.97 .11 1.18 1.00 1.02 .96 1.02 1.00 .74 .00 .81 .00

Table 5.1: Displayed are the nestedness intensities I(A,N,R) and signifi-
cance values p(A,N,R) for measures and null models on the Rasch data.
The expected intensity is close to 1, which translates into non-nestedness.

5.3.2 Results on Rocky Mountain data

The results of adding symmetric noise to the Rocky Mountain data are
shown in Table 5.2. The datasets should be considered nested up to some
noise level, and in general, the null models tend to follow the ordering:
Fill, Bascompte, R0, R1, Contin, and R2, meaning that the p-value and the
nestedness intensity increase when moving from one model to the next in

5.3 Results 63

this ordering. Fill is the most lenient, in that it treats some datasets as
nested when the other null models do not.

Null model Swaps suggests that the Rocky Mountain data is not signif-
icantly nested at any symmetric noise level with most methods, which is
counter-intuitive. It is known that Swaps cannot distinguish a fully random
data from a fully nested one, but this experiment shows that the underlying
nestedness can be almost completely missed, regardless of noise level. Only
with Hamming is Swaps able to recognize significant nestedness consistently,
although nestedness intensity is identified as weak.

At noise level ` = 0.32, as displayed in Figure 5.2(b), the results show
large differences between the null models: Fill and R0 consider the data
still very nested for Discrepancy, Hamming, Nodf, and Temperature, while
R2 considers the data anti-nested. Null model R1 together with measures
N0 and N1 yield non-nested results already around ` = 0.08, whereas all
other measures require a noise level between ` = 0.16 and ` = 0.32 to reject
nestedness, which is more reasonable.

Null model R2 gives a non-nested result already at low noise levels `,
and, as noted, suggests that at noise level ` = 0.32 the Rocky Mountain
matrices are less nested than on the average. The Contin results lie between
those of R1 and R2.

The results for the asymmetric noise model in Table 5.3 follow the same
pattern: Fill, Bascompte and R0 are the most lenient null models and R2
is the most conservative. Again, the Swaps method stands out against the
other null models. The nestedness measures indicate that when asymmetric
noise reaches level h = 0.5, nestedness has vanished from the data. The
exception is Temperature: for R1 and more lenient null models it considers
the data nested even at level h = 0.70, which is intuitively hard to accept,
given Figure 5.2(c).

5.3.3 Results on synthetic data

Figures 5.3(a–g) show the results for the synthetic experiment where sym-
metric noise was applied to fully nested matrices. We expect that the best
methods consider the datasets nested up to some noise level.

The behavior of the null models Fill, R0, and Bascompte in Figures
5.3(a,f,g) resemble each other under symmetric noise. With these models,
the measures N0 and N1 fail to recognize nestedness (intensity close to 1)
even if the noise level remains fairly low (` < 0.04). Measures Discrepancy,
Hamming and Temperature, too, have only small differences under these null
models, but they recognize nestedness correctly even at relatively high noise
levels. Nodf jumps out as a compromise between the two extremes.

64 5 Significance testing for nestedness

R0
R1

R2
Co

nt
in

Sw
ap

s
Fi

ll
Ba

sc
om

pt
e

in
te

n
si

ty
in

te
n
si

ty
in

te
n
si

ty
in

te
n
si

ty
in

te
n
si

ty
in

te
n
si

ty
in

te
n
si

ty
(i

n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

`
=

0
.0

0
N0

0.
23

(.
00

)
0.

00
0.

27
(.

00
)

0.
00

0.
40

(.
00

)
0.

00
0.

27
(.

00
)

0.
00

0.
78

(.
00

)
0.

03
0.

17
(.

00
)

0.
00

0.
20

(0
.0

0)
0.

00
N1

0.
36

(.
00

)
0.

00
0.

43
(.

00
)

0.
00

0.
63

(.
00

)
0.

00
0.

47
(.

00
)

0.
00

0.
95

(.
01

)
0.

40
0.

24
(.

00
)

0.
00

0.
28

(0
.0

0)
0.

00
Di

sc
0.

30
(.

00
)

0.
00

0.
40

(.
00

)
0.

00
0.

61
(.

00
)

0.
00

0.
44

(.
00

)
0.

00
0.

91
(.

00
)

0.
15

0.
22

(.
00

)
0.

00
0.

28
(0

.0
0)

0.
00

Ha
mm

in
g

0.
28

(.
00

)
0.

00
0.

36
(.

00
)

0.
00

0.
57

(.
00

)
0.

00
0.

40
(.

00
)

0.
00

0.
95

(.
00

)
0.

27
0.

18
(.

00
)

0.
00

0.
24

(0
.0

0)
0.

00
Te

mp
0.

10
(.

00
)

0.
00

0.
19

(.
00

)
0.

00
0.

43
(.

01
)

0.
00

0.
19

(.
00

)
0.

00
1.

12
(.

03
)

0.
81

0.
05

(.
00

)
0.

00
0.

09
(0

.0
0)

0.
00

No
df

0.
25

(.
00

)
0.

00
0.

34
(.

00
)

0.
00

0.
56

(.
00

)
0.

00
0.

32
(.

00
)

0.
00

1.
00

(.
00

)
0.

94
0.

19
(.

00
)

0.
00

0.
24

(0
.0

0)
0.

00
`
=

0
.0

2
N0

0.
44

(.
08

)
0.

00
0.

51
(.

08
)

0.
00

0.
71

(.
12

)
0.

04
0.

51
(.

09
)

0.
00

1.
00

(.
11

)
0.

51
0.

35
(.

06
)

0.
00

0.
40

(.
07

)
0.

00
N1

0.
53

(.
08

)
0.

00
0.

62
(.

09
)

0.
00

0.
87

(.
13

)
0.

22
0.

69
(.

11
)

0.
02

0.
99

(.
12

)
0.

47
0.

37
(.

06
)

0.
00

0.
42

(.
07

)
0.

00
Di

sc
0.

38
(.

02
)

0.
00

0.
50

(.
03

)
0.

00
0.

74
(.

04
)

0.
00

0.
55

(.
03

)
0.

00
0.

91
(.

04
)

0.
14

0.
28

(.
02

)
0.

00
0.

36
(.

02
)

0.
00

Ha
mm

in
g

0.
34

(.
02

)
0.

00
0.

43
(.

02
)

0.
00

0.
66

(.
03

)
0.

00
0.

48
(.

03
)

0.
00

0.
85

(.
03

)
0.

02
0.

23
(.

01
)

0.
00

0.
29

(.
02

)
0.

00
Te

mp
0.

17
(.

03
)

0.
00

0.
31

(.
05

)
0.

00
0.

65
(.

10
)

0.
02

0.
33

(.
06

)
0.

00
1.

06
(.

06
)

0.
74

0.
11

(.
02

)
0.

00
0.

16
(.

03
)

0.
00

No
df

0.
36

(.
04

)
0.

00
0.

48
(.

05
)

0.
00

0.
76

(.
08

)
0.

04
0.

45
(.

05
)

0.
00

1.
04

(.
04

)
0.

91
0.

28
(.

03
)

0.
00

0.
35

(.
04

)
0.

00
`
=

0
.0

4
N0

0.
57

(.
08

)
0.

00
0.

65
(.

08
)

0.
00

0.
88

(.
11

)
0.

23
0.

66
(.

08
)

0.
00

1.
05

(.
11

)
0.

64
0.

46
(.

07
)

0.
00

0.
52

(.
07

)
0.

00
N1

0.
64

(.
09

)
0.

00
0.

74
(.

10
)

0.
02

1.
01

(.
14

)
0.

54
0.

82
(.

12
)

0.
12

1.
01

(.
12

)
0.

54
0.

47
(.

07
)

0.
00

0.
52

(.
07

)
0.

00
Di

sc
0.

44
(.

03
)

0.
00

0.
57

(.
03

)
0.

00
0.

83
(.

05
)

0.
05

0.
64

(.
04

)
0.

00
0.

92
(.

04
)

0.
15

0.
34

(.
02

)
0.

00
0.

42
(.

03
)

0.
00

Ha
mm

in
g

0.
40

(.
02

)
0.

00
0.

50
(.

02
)

0.
00

0.
75

(.
03

)
0.

00
0.

56
(.

03
)

0.
00

0.
85

(.
04

)
0.

01
0.

28
(.

02
)

0.
00

0.
36

(.
02

)
0.

00
Te

mp
0.

24
(.

03
)

0.
00

0.
41

(.
05

)
0.

00
0.

82
(.

09
)

0.
14

0.
46

(.
06

)
0.

00
1.

03
(.

05
)

0.
69

0.
15

(.
02

)
0.

00
0.

23
(.

03
)

0.
00

No
df

0.
45

(.
04

)
0.

00
0.

58
(.

05
)

0.
00

0.
89

(.
06

)
0.

23
0.

56
(.

05
)

0.
00

1.
04

(.
04

)
0.

90
0.

36
(.

03
)

0.
00

0.
43

(.
04

)
0.

00
`
=

0
.0

8
N0

0.
75

(.
07

)
0.

00
0.

82
(.

07
)

0.
04

1.
05

(.
09

)
0.

66
0.

85
(.

08
)

0.
11

1.
08

(.
08

)
0.

77
0.

64
(.

07
)

0.
00

0.
70

(.
08

)
0.

00
N1

0.
78

(.
07

)
0.

00
0.

88
(.

08
)

0.
12

1.
15

(.
10

)
0.

88
0.

98
(.

09
)

0.
47

1.
02

(.
08

)
0.

60
0.

61
(.

06
)

0.
00

0.
66

(.
06

)
0.

00
Di

sc
0.

54
(.

04
)

0.
00

0.
68

(.
04

)
0.

00
0.

95
(.

05
)

0.
35

0.
76

(.
05

)
0.

00
0.

92
(.

04
)

0.
14

0.
44

(.
03

)
0.

00
0.

53
(.

04
)

0.
00

Ha
mm

in
g

0.
51

(.
03

)
0.

00
0.

62
(.

04
)

0.
00

0.
88

(.
05

)
0.

12
0.

69
(.

04
)

0.
00

0.
87

(.
04

)
0.

01
0.

38
(.

03
)

0.
00

0.
46

(.
03

)
0.

00
Te

mp
0.

38
(.

05
)

0.
00

0.
58

(.
05

)
0.

00
1.

04
(.

08
)

0.
63

0.
68

(.
07

)
0.

00
1.

01
(.

03
)

0.
58

0.
26

(.
04

)
0.

00
0.

36
(.

05
)

0.
00

No
df

0.
60

(.
05

)
0.

00
0.

73
(.

05
)

0.
00

1.
05

(.
06

)
0.

77
0.

74
(.

06
)

0.
00

1.
04

(.
02

)
0.

94
0.

49
(.

05
)

0.
00

0.
58

(.
05

)
0.

00
`
=

0
.1

6
N0

0.
90

(.
05

)
0.

05
0.

94
(.

05
)

0.
24

1.
09

(.
06

)
0.

85
0.

99
(.

06
)

0.
47

1.
03

(.
05

)
0.

69
0.

81
(.

06
)

0.
00

0.
87

(.
06

)
0.

04
N1

0.
91

(.
06

)
0.

10
0.

98
(.

06
)

0.
46

1.
18

(.
08

)
0.

96
1.

11
(.

08
)

0.
84

1.
02

(.
06

)
0.

64
0.

78
(.

06
)

0.
00

0.
82

(.
06

)
0.

01
Di

sc
0.

70
(.

04
)

0.
00

0.
82

(.
04

)
0.

00
1.

08
(.

04
)

0.
87

0.
93

(.
04

)
0.

22
0.

96
(.

03
)

0.
23

0.
62

(.
04

)
0.

00
0.

70
(.

04
)

0.
00

Ha
mm

in
g

0.
69

(.
04

)
0.

00
0.

78
(.

03
)

0.
00

1.
03

(.
04

)
0.

69
0.

89
(.

04
)

0.
09

0.
91

(.
03

)
0.

03
0.

56
(.

04
)

0.
00

0.
65

(.
04

)
0.

00
Te

mp
0.

60
(.

05
)

0.
00

0.
78

(.
04

)
0.

00
1.

21
(.

05
)

0.
97

0.
95

(.
06

)
0.

37
0.

99
(.

02
)

0.
41

0.
45

(.
05

)
0.

00
0.

58
(.

05
)

0.
00

No
df

0.
77

(.
04

)
0.

00
0.

88
(.

03
)

0.
01

1.
13

(.
02

)
0.

98
0.

94
(.

04
)

0.
27

1.
01

(.
01

)
0.

92
0.

67
(.

04
)

0.
00

0.
76

(.
04

)
0.

00
`
=

0
.3

2
N0

0.
97

(.
02

)
0.

30
0.

99
(.

02
)

0.
45

1.
04

(.
03

)
0.

79
1.

04
(.

03
)

0.
77

0.
99

(.
02

)
0.

49
0.

95
(.

03
)

0.
18

0.
97

(.
03

)
0.

36
N1

0.
99

(.
02

)
0.

43
1.

01
(.

02
)

0.
67

1.
08

(.
03

)
0.

95
1.

09
(.

03
)

0.
92

1.
01

(.
02

)
0.

64
0.

95
(.

03
)

0.
17

0.
97

(.
03

)
0.

34
Di

sc
0.

90
(.

03
)

0.
04

0.
97

(.
03

)
0.

38
1.

14
(.

03
)

0.
99

1.
08

(.
02

)
0.

94
0.

99
(.

02
)

0.
46

0.
87

(.
04

)
0.

01
0.

92
(.

03
)

0.
11

Ha
mm

in
g

0.
91

(.
03

)
0.

03
0.

97
(.

02
)

0.
33

1.
13

(.
03

)
0.

99
1.

09
(.

02
)

0.
95

0.
98

(.
02

)
0.

40
0.

86
(.

04
)

0.
00

0.
92

(.
03

)
0.

08
Te

mp
0.

87
(.

04
)

0.
01

0.
98

(.
03

)
0.

38
1.

23
(.

02
)

0.
99

1.
19

(.
03

)
0.

98
0.

99
(.

01
)

0.
39

0.
79

(.
06

)
0.

00
0.

88
(.

05
)

0.
08

No
df

0.
93

(.
02

)
0.

05
0.

98
(.

01
)

0.
49

1.
10

(.
01

)
0.

99
1.

08
(.

01
)

0.
96

1.
00

(.
00

)
0.

89
0.

88
(.

03
)

0.
01

0.
93

(.
03

)
0.

17

Table 5.2: Rocky Mountain data under symmetric noise. Randomization
results for the data under various levels ` of symmetric noise (both 0-to-1
and 1-to-0 errors). We generated 100 noisy matrices from the original data,
and randomized each of them 100 times. The tables shows the associated
nestedness intensity, its standard deviation (std), and p-value.

5.3 Results 65

R0
R1

R2
Co

nt
in

Sw
ap

s
Fi

ll
Ba

sc
om

pt
e

in
te

n
si

ty
in

te
n
si

ty
in

te
n
si

ty
in

te
n
si

ty
in

te
n
si

ty
in

te
n
si

ty
in

te
n
si

ty
(i

n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

(i
n
te

n
si

ty
st

d
)

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

p
-v

al
u
e

h
=

0
.0

0
N0

0.
23

(.
00

)
0.

00
0.

27
(.

00
)

0.
00

0.
40

(.
00

)
0.

00
0.

27
(.

00
)

0.
00

0.
78

(.
00

)
0.

03
0.

17
(.

00
)

0.
00

0.
20

(.
00

)
0.

00
N1

0.
36

(.
00

)
0.

00
0.

43
(.

00
)

0.
00

0.
63

(.
00

)
0.

00
0.

47
(.

00
)

0.
00

0.
95

(.
01

)
0.

40
0.

24
(.

00
)

0.
00

0.
28

(.
00

)
0.

00
Di

sc
0.

30
(.

00
)

0.
00

0.
40

(.
00

)
0.

00
0.

61
(.

00
)

0.
00

0.
44

(.
00

)
0.

00
0.

91
(.

00
)

0.
15

0.
22

(.
00

)
0.

00
0.

28
(.

00
)

0.
00

Ha
mm

in
g

0.
28

(.
00

)
0.

00
0.

36
(.

00
)

0.
00

0.
57

(.
00

)
0.

00
0.

40
(.

00
)

0.
00

0.
95

(.
00

)
0.

27
0.

18
(.

00
)

0.
00

0.
24

(.
00

)
0.

00
Te

mp
0.

10
(.

08
)

0.
00

0.
20

(.
16

)
0.

01
0.

47
(.

37
)

0.
01

0.
20

(.
16

)
0.

01
1.

11
(.

04
)

0.
80

0.
06

(.
05

)
0.

00
0.

09
(.

00
)

0.
00

No
df

0.
25

(.
00

)
0.

00
0.

34
(.

00
)

0.
00

0.
56

(.
00

)
0.

00
0.

32
(.

00
)

0.
00

1.
00

(.
00

)
0.

94
0.

19
(.

00
)

0.
00

0.
24

(.
00

)
0.

00
h

=
0
.0

8
N0

0.
31

(.
02

)
0.

00
0.

37
(.

03
)

0.
00

0.
53

(.
04

)
0.

00
0.

38
(.

03
)

0.
00

0.
69

(.
05

)
0.

00
0.

24
(.

02
)

0.
00

0.
28

(.
02

)
0.

00
N1

0.
73

(.
09

)
0.

00
0.

88
(.

10
)

0.
19

1.
24

(.
14

)
0.

92
0.

98
(.

12
)

0.
46

1.
24

(.
10

)
0.

94
0.

54
(.

07
)

0.
00

0.
59

(.
07

)
0.

00
Di

sc
0.

40
(.

03
)

0.
00

0.
54

(.
04

)
0.

00
0.

81
(.

05
)

0.
05

0.
61

(.
04

)
0.

00
0.

92
(.

05
)

0.
21

0.
30

(.
02

)
0.

00
0.

38
(.

03
)

0.
00

Ha
mm

in
g

0.
37

(.
02

)
0.

00
0.

49
(.

03
)

0.
00

0.
75

(.
05

)
0.

01
0.

54
(.

04
)

0.
00

0.
88

(.
04

)
0.

05
0.

26
(.

02
)

0.
00

0.
33

(.
02

)
0.

00
Te

mp
0.

16
(.

02
)

0.
00

0.
30

(.
03

)
0.

00
0.

61
(.

06
)

0.
01

0.
31

(.
04

)
0.

00
0.

91
(.

07
)

0.
21

0.
10

(.
01

)
0.

00
0.

15
(.

02
)

0.
00

No
df

0.
36

(.
03

)
0.

00
0.

48
(.

03
)

0.
00

0.
76

(.
05

)
0.

03
0.

46
(.

04
)

0.
00

0.
95

(.
02

)
0.

40
0.

29
(.

02
)

0.
00

0.
35

(.
03

)
0.

00
h

=
0
.1

6
N0

0.
37

(.
03

)
0.

00
0.

44
(.

03
)

0.
00

0.
64

(.
05

)
0.

00
0.

47
(.

04
)

0.
00

0.
66

(.
05

)
0.

00
0.

29
(.

02
)

0.
00

0.
33

(.
02

)
0.

00
N1

0.
88

(.
07

)
0.

06
1.

05
(.

08
)

0.
73

1.
45

(.
12

)
0.

99
1.

19
(.

10
)

0.
90

1.
24

(.
08

)
0.

97
0.

69
(.

07
)

0.
00

0.
74

(.
07

)
0.

00
Di

sc
0.

49
(.

03
)

0.
00

0.
66

(.
04

)
0.

00
0.

98
(.

07
)

0.
47

0.
75

(.
06

)
0.

00
0.

95
(.

04
)

0.
29

0.
39

(.
03

)
0.

00
0.

48
(.

04
)

0.
00

Ha
mm

in
g

0.
48

(.
04

)
0.

00
0.

61
(.

05
)

0.
00

0.
93

(.
07

)
0.

32
0.

70
(.

06
)

0.
00

0.
90

(.
04

)
0.

10
0.

34
(.

03
)

0.
00

0.
42

(.
04

)
0.

00
Te

mp
0.

22
(.

03
)

0.
00

0.
39

(.
04

)
0.

00
0.

75
(.

08
)

0.
08

0.
42

(.
06

)
0.

00
0.

84
(.

06
)

0.
06

0.
14

(.
02

)
0.

00
0.

21
(.

03
)

0.
00

No
df

0.
46

(.
04

)
0.

00
0.

61
(.

05
)

0.
00

0.
93

(.
06

)
0.

34
0.

60
(.

06
)

0.
00

0.
93

(.
02

)
0.

14
0.

38
(.

04
)

0.
00

0.
45

(.
04

)
0.

00
h

=
0
.3

2
N0

0.
45

(.
04

)
0.

00
0.

55
(.

04
)

0.
00

0.
79

(.
07

)
0.

08
0.

61
(.

05
)

0.
00

0.
66

(.
05

)
0.

00
0.

35
(.

03
)

0.
00

0.
41

(.
04

)
0.

00
N1

0.
95

(.
04

)
0.

20
1.

10
(.

04
)

0.
93

1.
48

(.
08

)
1.

00
1.

29
(.

07
)

0.
99

1.
15

(.
05

)
0.

96
0.

82
(.

05
)

0.
00

0.
86

(.
05

)
0.

07
Di

sc
0.

62
(.

04
)

0.
00

0.
82

(.
04

)
0.

01
1.

19
(.

06
)

0.
97

0.
96

(.
05

)
0.

38
0.

99
(.

04
)

0.
49

0.
52

(.
04

)
0.

00
0.

62
(.

04
)

0.
00

Ha
mm

in
g

0.
65

(.
04

)
0.

00
0.

83
(.

05
)

0.
01

1.
22

(.
07

)
0.

97
0.

96
(.

06
)

0.
40

0.
98

(.
04

)
0.

47
0.

51
(.

04
)

0.
00

0.
60

(.
04

)
0.

00
Te

mp
0.

30
(.

04
)

0.
00

0.
50

(.
05

)
0.

00
0.

86
(.

10
)

0.
25

0.
55

(.
07

)
0.

00
0.

75
(.

05
)

0.
00

0.
21

(.
03

)
0.

00
0.

30
(.

05
)

0.
00

No
df

0.
62

(.
04

)
0.

00
0.

78
(.

04
)

0.
00

1.
12

(.
04

)
0.

91
0.

81
(.

05
)

0.
02

0.
93

(.
01

)
0.

07
0.

54
(.

04
)

0.
00

0.
61

(.
04

)
0.

00
h

=
0
.5

0
N0

0.
54

(.
05

)
0.

00
0.

67
(.

06
)

0.
00

0.
98

(.
09

)
0.

45
0.

78
(.

07
)

0.
06

0.
71

(.
06

)
0.

00
0.

42
(.

04
)

0.
00

0.
50

(.
05

)
0.

00
N1

0.
98

(.
03

)
0.

40
1.

09
(.

03
)

0.
93

1.
39

(.
08

)
1.

00
1.

26
(.

06
)

0.
98

1.
08

(.
04

)
0.

92
0.

89
(.

05
)

0.
07

0.
92

(.
05

)
0.

24
Di

sc
0.

75
(.

05
)

0.
00

0.
97

(.
05

)
0.

40
1.

36
(.

06
)

0.
99

1.
12

(.
05

)
0.

88
1.

03
(.

04
)

0.
78

0.
66

(.
05

)
0.

00
0.

75
(.

05
)

0.
00

Ha
mm

in
g

0.
81

(.
06

)
0.

00
1.

00
(.

05
)

0.
57

1.
43

(.
07

)
0.

99
1.

17
(.

06
)

0.
92

1.
06

(.
04

)
0.

86
0.

70
(.

06
)

0.
00

0.
78

(.
06

)
0.

02
Te

mp
0.

40
(.

07
)

0.
00

0.
57

(.
07

)
0.

00
0.

88
(.

13
)

0.
31

0.
63

(.
10

)
0.

03
0.

71
(.

07
)

0.
00

0.
31

(.
07

)
0.

00
0.

42
(.

09
)

0.
00

No
df

0.
76

(.
04

)
0.

00
0.

90
(.

03
)

0.
05

1.
21

(.
04

)
0.

99
0.

98
(.

04
)

0.
45

0.
95

(.
01

)
0.

08
0.

69
(.

04
)

0.
00

0.
75

(.
04

)
0.

00
h

=
0
.7

0
N0

0.
64

(.
06

)
0.

00
0.

83
(.

08
)

0.
11

1.
17

(.
13

)
0.

82
1.

00
(.

10
)

0.
51

0.
79

(.
07

)
0.

03
0.

52
(.

06
)

0.
00

0.
62

(.
07

)
0.

00
N1

1.
00

(.
02

)
0.

58
1.

06
(.

03
)

0.
91

1.
25

(.
09

)
0.

99
1.

17
(.

07
)

0.
89

1.
04

(.
03

)
0.

85
0.

95
(.

05
)

0.
25

0.
96

(.
05

)
0.

43
Di

sc
0.

87
(.

06
)

0.
07

1.
07

(.
05

)
0.

82
1.

41
(.

07
)

0.
99

1.
21

(.
06

)
0.

96
1.

05
(.

04
)

0.
82

0.
81

(.
06

)
0.

00
0.

89
(.

06
)

0.
19

Ha
mm

in
g

0.
91

(.
05

)
0.

14
1.

07
(.

05
)

0.
84

1.
41

(.
09

)
0.

99
1.

21
(.

06
)

0.
94

1.
04

(.
04

)
0.

80
0.

84
(.

06
)

0.
02

0.
90

(.
06

)
0.

25
Te

mp
0.

54
(.

11
)

0.
00

0.
61

(.
10

)
0.

02
0.

80
(.

14
)

0.
22

0.
62

(.
12

)
0.

05
0.

70
(.

10
)

0.
02

0.
47

(.
13

)
0.

00
0.

57
(.

15
)

0.
04

No
df

0.
88

(.
03

)
0.

00
0.

99
(.

01
)

0.
53

1.
22

(.
05

)
0.

99
1.

08
(.

01
)

0.
91

0.
97

(.
01

)
0.

24
0.

84
(.

03
)

0.
00

0.
88

(.
03

)
0.

01

Table 5.3: Rocky Mountain data under asymmetric noise. Randomization
results for the data under various levels h of asymmetric noise (1-to-0 er-
rors). We generated 100 noisy matrices from the original data, and random-
ized each of them 100 times. The tables shows the associated nestedness
intensity, its standard deviation (std), and p-value.

66 5 Significance testing for nestedness

D D D D D D D D
D

D

D

D

D

D

0 0 0 0 0
0

0

0

0

0

0
0 0 0

1 1 1 1 1
1

1

1

1

1

1
1 1 1

H H H H H H H H
H

H

H

H

H

H

T T T T T T T T T
T

T

T

T

T

F F F F F F F
F

F

F

F

F

F
F

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

R0−randomization

symmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) R0

D D D D D D D
D

D

D

D

D

D
D

0 0 0 0 0
0

0

0

0

0

0
0 0 0

1 1 1 1 1
1

1

1

1

1

1 1 1 1

H H H H H H H H
H

H

H

H

H

H

T T T T T T T T
T

T

T

T

T
T

F F F F F F
F

F

F

F

F

F

F
F

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

R1−randomization

symmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) R1

D D D D D D D
D

D

D

D

D

D D

0 0 0 0 0
0

0

0

0

0

0 0
0 0

1 1 1 1
1

1

1

1

1

1
1

1

1 1

H H H H H H H
H

H

H

H

H

H
H

T T T T T T
T

T

T

T

T

T T
T

F F F F F
F

F

F

F

F

F

F F F

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

R2−randomization

symmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) R2

D D D D D D D
D

D

D

D

D

D
D

0 0 0 0 0
0

0

0

0

0

0
0 0 0

1 1 1 1 1
1

1

1

1

1

1
1

1 1

H H H H H H H H
H

H

H

H

H
H

T T T T T T T
T

T

T

T

T

T T

F F F F F F F
F

F

F

F

F

F F

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

Contin−randomization

symmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) Contin

D

D
D

D D D D D D
D

D

D

D D0

0
0 0 0 0

0
0

0 0

0

0
0 01 1

1
1

1
1 1

1
1 1

1

1
1 1H

H

H
H H H H H H

H

H

H

H
HT

T

T
T T

T T T T

T
T

T T TF F
F

F F

F

F F
F

F

F
F F

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

Swaps−randomization

symmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(e) Swaps

D D D D D D D D D
D

D

D

D

D

0 0 0 0 0 0
0

0

0

0

0

0
0 0

1 1 1 1 1
1

1

1

1

1

1

1
1 1

H H H H H H H H H
H

H

H

H

H

T T T T T T T T T
T

T

T

T

T

F F F F F F F F
F

F

F

F

F

F
1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

Fill−randomization

symmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(f) Fill

D D D D D D D D
D

D

D

D

D

D

0 0 0 0 0 0
0

0

0

0

0
0

0 0

1 1 1 1 1
1

1

1

1

1

1
1

1 1

H H H H H H H H H
H

H

H

H

H

T T T T T T T T T
T

T

T

T

T

F F F F F F F
F

F

F

F

F

F

F
1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

Bascompte−randomization

symmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(g) Bascompte

Figure 5.3: Results on synthetic data with symmetric noise (both 0-to-1
and 1-to-0 errors) and different null models. Displayed on the x-axis is the
level of symmetric noise `; displayed on the y-axis is nestedness intensity.
The plotted values are averages over 10,000 values (100 noisy matrices and
100 randomizations for each).

5.3 Results 67

As the level of symmetric noise increases, the null models R1, Contin,
and R2 begin to suggest weak anti-nestedness with many measures. Fur-
thermore, both measures N0 and N1 are prone to Type II errors: the data is
seen as non-nested already at low noise levels(> 0.04), which makes these
measures unreliable.

The most distinctive behavior is that of the Swaps model, as seen in
Figure 5.3(e). This model has become increasingly popular in nestedness
analyses during the past years. The original fully nested matrix is mis-
classified as non-nested for all measures (nestedness intensity 1.0) because
Swaps cannot randomize fully nested matrices. Still, adding low levels of
noise helps Hamming and Discrepancy to reveal underlying nestedness to
some extent under Swaps. For the popular Temperature and Nodf mea-
sures, however, the results incorrectly suggest anti-nestedness on almost all
noise levels. The behavior of measures N0 and N1 is erratic, indicating that
they should not be used to analyze nestedness when noise is present.

Hamming is more lenient under synthetic noise than other measures. This
behavior is indeed desirable, since the underlying original data is known to
be fully nested.

Figures 5.4(a–g) show the results for asymmetric noise (1-to-0 errors)
on synthetic matrices that are nested. Many observations from the ex-
periment on symmetric noise hold here, too: similarity of null models
Fill, Bascompte, and R0; counter-intuitive results for the Swaps model;
the N1 measure is prone to Type II error; and similarity of Hamming and
Discrepancy. The main difference is that Nodf follows the behavior of
Hamming and Discrepancy fairly closely.

In the experiment with asymmetric noise N0 and Temperature are the
most lenient measures. This is expected from N0, considering the way it
counts 0s. Low levels of noise keep Temperature close to Hamming and
Discrepancy, but as the level of noise increases, Temperature becomes
more lenient for nestedness, even overly so. In Figures 5.4(b,d) we ob-
serve that Temperature considers the datasets nested even at asymmetric
noise level 0.70 when coupled with the most reasonable null models. Thus
Temperature is prone to Type I errors, just like in the Rocky Mountain
experiment.

Again in Figure 5.4(e) we see the unexpected results for Temperature
under the Swaps model. The underlying data, despite noise, is strongly
nested, which is captured by N0, Hamming and Discrepancy. The overall
graphic nonetheless shows how unreliable the Swaps model is for nestedness
analyses with respect to noise. This compromises the use of Swaps, since
practically all real-world datasets contain noise.

68 5 Significance testing for nestedness

D D D D D D D D D
D

D

D

D

D

D
DD

0 0 0 0 0 0 0 0 0 0
0

0

0

0

0

0

0

1 1 1 1 1
1

1

1

1

1

1
1 1 1111

H H H H H H H H H
H

H

H

H

H

HHH

T
T T T T T T T T T

T
T

T
T

T

T

T

F F F F F F F F F
F

F

F

F

F

F
FF

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

R0−randomization

asymmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16 0.70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) R0

D D D D D D D D
D

D

D

D

D

D
DD

D

0 0 0 0 0 0 0 0 0 0
0

0

0

0

0

0

0

1 1 1 1 1
1

1

1

1

1

1 1
1 1111

H H H H H H H H H
H

H

H

H

HHHH

T
T T T T T T T T

T

T

T

T
T

T
T

T

F F F F F F F F F
F

F

F

F

F
F
FF

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

R1−randomization

asymmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16 0.70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) R1

D D D D D D D
D

D

D

D

D

D

DD
D

D

0 0 0 0 0 0 0 0 0 0
0

0

0

0

0

0
0

1 1 1 1
1

1

1

1

1

1

1

1
111

H H H H H H H H H
H

H

H

H

H

H

H
H

T

T T T T T T T
T

T

T

T

T TTT

T

F F F F F F F F
F

F

F

F

F
FFF

F
1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

R2−randomization

asymmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16 0.70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) R2

D D D D D D D D
D

D

D

D

D

DDD
D

0 0 0 0 0 0 0 0 0 0
0

0

0

0

0

00

1 1 1 1
1

1

1

1

1

1

1

1

1
111

H H H H H H H H H
H

H

H

H

H
H
HH

T

T T T T T T T
T

T

T

T

T T
TT

T

F F F F F F F F F
F

F

F

F

F
FFF

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

Contin−randomization

asymmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16 0.70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) Contin

D

D

D
D D D D D D

D
D

D

D
DDDD0

0

0

0
0 0 0 0 0 0

0
0

0

0

0

0

01

1

1

1

1
1111H

H

H

H
H H H H H H

H

H

H

HH
HH

T

T
T

T
T

T T
T

T

T

T

T
TT

T

TF F F F F F
F F F F F F F FFFF

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

Swaps−randomization

asymmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16 0.70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(e) Swaps

D D D D D D D D D D
D

D

D

D

D
D
D

0 0 0 0 0 0 0 0 0 0
0

0

0

0
0

0

0

1 1 1 1 1 1
1

1

1

1

1

1
1 1111

H H H H H H H H H H
H

H

H

H

HHH

T T T T T T T T T T T T
T

T
T

T

T

F F F F F F F F F F
F

F

F

F

F

F
F

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

Fill−randomization

asymmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16 0.70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(f) Fill

D D D D D D D D D
D

D

D

D

D

D
DD

0 0 0 0 0 0 0 0 0 0
0

0

0

0

0

0

0

1 1 1 1 1 1
1

1

1

1

1
1

1 1111

H H H H H H H H H H
H

H

H

H

HHH

T T T T T T T T T T
T

T
T

T

T

T

T

F F F F F F F F F
F

F

F

F

F

F
FF

1
0
D
H
T
F

N1
N0
Discrepancy
Hamming
Temperature
NODF

Bascompte−randomization

asymmetric noise, log−scale

ne
st

ed
ne

ss
 in

te
ns

ity

0.00 0.000625 0.005 0.04 0.16 0.70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(g) Bascompte

Figure 5.4: Results on synthetic data with asymmetric noise (1-to-0 errors)
and different null models. Displayed on the x-axis is the level of asymmetric
noise h; displayed on the y-axis is nestedness intensity. The plotted values
are averages over 10,000 values (100 noisy matrices and 100 randomizations
for each).

5.4 Discussion 69

5.4 Discussion

There is no differentiation between species and sites in the concept of nested-
ness: a fully nested matrix remains nested even if the matrix is transposed.
Thus, a nestedness measure should not be affected by transposition or ex-
changing the roles of the rows and columns in the matrix. Of all measures
presented here, Temperature, Hamming, and Nodf satisfy this desirable prop-
erty. Likewise, null models should be ignorant of the nature of rows and
columns of the matrix. Of the models described here, Fill, Contin, Swaps,
and Bascompte indeed have this property. This implies that the nestedness
methods that are transposable are also applicable to both biogeographi-
cal and interaction data. When analyzing specific datasets, we can develop
tailored null models for detecting nested patterns that are generated by spe-
cific processes, or to account for different properties of rows and columns
[UANG09]. This is likely to improve statistical inference, but requires ad-
ditional data and experts to develop the methods, and is not applicable to
other domains.

What is a nested pattern also depends on the application. No single null
model is able to address all these aspects of nestedness. A null model should
reflect what we expect to see in datasets without nestedness—a deviation
from this model (significance) should indicate a notable discovery in the
data. The results from earlier studies [UG07a] show that almost any kind
of regularity is enough to make non-nested matrices nested in the eyes of
many null models. These null models identify nonrandomness instead of
nestedness. In order to distinguish between different nonrandom patterns,
specifically designed null models are needed.

The results from the Rasch, Rocky Mountain, and synthetic experiments
show that the choice of the measure and null model has a strong effect on
the conclusions of nestedness analysis. How should we classify the choices
of six measures and seven null models? The measures fall roughly into
three categories: the measures N0 and N1 have less tolerance for noise than
Discrepancy, Hamming, and Temperature; between these groups lies Nodf.
The results agree with earlier claims that Temperaturemay lead to incorrect
conclusions about nestedness [FL02, GC06]. The behavior of N0 and N1 is
also dependent on the type of noise (symmetric or asymmetric noise): N1
is fairly sensitive to asymmetric noise. Because of their proneness to Type
II error, using N0 and N1 for nestedness analyses is not recommended. This
agrees with an earlier study [UG07b] that found N0 and N1 to be generally
inferior to Discrepancy.

For the null models, the ordering Fill, Bascompte, R0, R1, Contin,
R2 characterizes the results quite well: Fill, Bascompte, and R0 consider

70 5 Significance testing for nestedness

most of the datasets to be nested, R1 fewer, and so on, while R2 views only
few datasets as nested. This result is understandable, as the set inclusion
relation between the collection of random matrices produced by the null
models follows approximately the same ordering. To our knowledge, this
study is the first to include the Bascompte model in a comparison against
other null models. The results show that the results from using this model
are as questionable as with Fill, which has poor performance [UG07b,
Got00]. The experimental results indicate that Fill, Bascompte, R0 and R1
are too lenient (prone to Type I error), while R2 is too conservative (Type
II error).

We showed that the null model Swaps is counter-intuitive and erratic
in nature. It recognizes fully nested matrices as non-nested, and when
used together with the Temperature measure it may incorrectly assert non-
nestedness or even anti-nestedness. This is in contrast with the current
popularity of the method [UANG09], and indicates that the meaningful-
ness of using Swaps should be re-evaluated. If the Swaps model is used,
only noise-tolerant measures, such as Hamming and Discrepancy should be
employed. Then Swaps serves as a conservative model, with poor statistical
power, as noted earlier [UG07b]. Since Swaps has poor statistical power
and its behavior is hard to predict, we recommend using a more robust null
model instead, such as Contin.

The selection of measure and null model still has a lot of impact on the
results. The conclusion of the experiments reported here is that Temperature
is prone to Type I errors at large levels of asymmetric noise. Also, the be-
havior of the Swaps model is erratic. To assure more reliable data analysis
on real-world data, noise-tolerant null models should be used instead. After
a consideration of desirable properties of co-occurrence methods [Got00], we
conclude that of the methods evaluated here, the use of Contin as the null
model and Hamming, Discrepancy, or Nodf as the nestedness measure pro-
duces the most robust results. The first two measures have good statistical
power, while Nodf could be used as a conservative less powerful measure.

If a data matrix is nested, its rows and columns can be reordered to
reveal the pattern, which helps to understand the reasons for nestedness.
Apart from the studies involving Temperature, there has not been a lot of
discussion about the methods for reordering. In many cases the data matrix
is simply ordered by its row sums and column sums. Thus, the errors in the
data potentially have an effect on ordering, nestedness results, and further
conclusions. Instead of using erroneous data as the basis for reordering, the
new measure Hamming seeks a nested pattern that is closest to the data,
and reorders the matrix according to that pattern. In fact, sum-based

5.4 Discussion 71

reordering can be arbitrarily bad when compared to a reordering that is
based on the underlying nested pattern [MT07]. It is still an open question
whether changing reordering methods has an impact on nestedness analysis
on real-world data.

There is still disagreement on what counts as a nested pattern. This is
exemplified by the Nodf measure as it uses a different concept of nestedness
than the other measures. A matrix that has 1s in a rectangular shape
is considered by Nodf even less nested than a fully random matrix, while
all other nestedness measures agree on perfect nestedness. In this respect
Nodf identifies different patterns than the other measures. In general the
differences between the concepts can be seen only in the most extreme
cases. Nevertheless, a unified view of nestedness is desirable for further
development of nestedness methods, or a clear separation of different nested
patterns, based on the processes that produce such patterns.

Besides nestedness, there are other well-established types of structure.
The concept of anti-nestedness, that is, situations in which the data is less
nested than would be assumed by a null model, has stimulated discussion
on the ecological processes that lead to such a pattern [ANGL07]. A null
model specifically tailored for anti-nestedness is still needed to reliably de-
tect anti-nestedness. There are (roughly) four types of ecological structures
[LIPJ+06]: gradients, compartmented, nested, and combined. Modularity
patterns have been shown to co-occur with nestedness [FSO+10] in plant-
pollinator communities. In segmented nestedness [MT07] a dataset consists
of several nested patterns; it remains to be seen whether this type of pattern
occurs frequently in ecological data. The theoretical properties of segmented
nestedness are considered in the next chapter.

72 5 Significance testing for nestedness

Chapter 6

Segmented nestedness

In this chapter we study the concept of segmented nestedness, in which
binary data consists of several disjoint nested patterns. Recall that nested-
ness describes patterns in which one is expected to witness a hierarchy or
a progressive variation of attributes. If the columns of a dataset can be
divided into k nested parts, we say that the data has a k-nested pattern.
Such a pattern occurs in datasets that have several layers of hierarchical
structure, or those that are composites of several smaller data matrices; for
example, species may form different nested patterns in different habitats.
An example of a k-nested matrix is displayed in Figure 6.1.

In what follows, we develop a theoretical background for k-nestedness
and give computational complexity results for finding such structures in
binary matrices. By reduction to the Minimum Path Cover problem,
we give an algorithm that recognizes the pattern in a noise-free dataset
in polynomial time. If noise is present, finding a closest k-nested matrix
is an NP-hard problem. We provide heuristic algorithms for studying k-
nestedness in noisy data. It turns out that the heuristic that employs both
singular value decomposition and k-means++ methods provides the best
results in terms of structure discovery and robustness to noise. Experiments
on synthetic data show that the algorithms are noise-tolerant and perform
well. In addition, we show how to choose a good number of almost nested
blocks k for a data matrix by an MDL model, and how this method gives
meaningful results for real-world datasets.

6.1 The concept of segmented nestedness

When Mannila and Terzi [MT07] studied nestedness from the viewpoint of
data mining, they also introduced a new concept, segmented nestedness,

73

74 6 Segmented nestedness

Figure 6.1: A 3-nested binary matrix. We display the matrix (top), with
the three nested submatrices grouped into contiguous columns (middle),
and each of the three directly nested submatrices (bottom). Observe that
the nested components in general cannot be simultaneously presented as
directly nested.

which is the main focus in this chapter. The corresponding pattern, k-
nestedness, is a reorderable pattern that, unlike other patterns in this thesis,
involves partitioning the data.

Segmented nestedness [MT07] is a conceptual extension of nestedness
that assumes that a dataset can be partitioned into independently nested
parts (Figure 6.1). Consider an m × n binary matrix A. Given a set of
columns S, we denote by A[S] a submatrix of A that is restricted on columns
in S.

Definition 6.1 (k-Nested) Given a binary matrix A and a positive inte-
ger k, we say that A is k-nested if there exists a partition {S1, S2, . . . , Sk} of
the columns of A so that submatrix A[Sj] is nested for each j = 1, 2, . . . , k.

Given a partition {S1, S2, . . . , Sk} in Definition 6.1, we say that the
partition splits A into the nested submatrices A[Sj]. We call these nested
submatrices blocks. From the perspective of set interpretations, a k-nested
pattern can be characterized by k chains of subsets.

If a matrix is k-nested, it is also t-nested with all t > k. In particular,
an m×n matrix is always n-nested, since a submatrix with only one column
is nested (it cannot contain a switch box). All k-nested matrices are also
k-consecutive.

6.1 The concept of segmented nestedness 75

A perfectly k-nested dataset is of course rarely witnessed in practice,
for example, due to noise or a more rich structure present in the data. In
practice one can hope to discover that the dataset is almost k-nested, that is,
the distance (say, the Hamming distance) to a perfectly k-nested matrix is
relatively small. Figure 6.2 illustrates a paleontological dataset partitioned
into three blocks that are almost nested.

A related concept of bucket orders [UPGM09] represents a dataset as
ordered partitions. This can be seen as a dual problem of k-nestedness,
which focuses on partitions of orders. In general the emphasis on matrix
reordering has been on single global patterns that fill the whole matrix, but
the existence of several independent patterns has received relatively little
attention, perhaps partly due to the computational challenges involved in
the task. Indeed, already in the case for a single pattern (k = 1), finding the

Figure 6.2: A paleontological dataset in its original form (top) and parti-
tioned into 3 almost nested blocks whose rows and columns are permuted
individually (bottom). Details of the data are given in Section 6.7.2.

76 6 Segmented nestedness

minimum number of flips to reach a target pattern can be computationally
challenging, as is the case for nestedness.

Another related problem (in the noise-free case) is the k-Chain Sub-
graph Cover problem [YCM98], in which the task is to determine if the
edge set of a given bipartite graph is the union of the edges in k chain
graphs. The difference to k-nestedness is that the partition is for edges,
and several paths may be used to cover all 1s on a column.

6.2 Recognition of k-nestedness

In this section we give a polynomial-time algorithm for recognizing a k-
nested pattern in a noise-free matrix. The problem is as follows.

Problem 6.2 (k-Nestedness Recognition) Given a binary matrix A
and a positive integer k, find a partition {S1, S2, . . . , Sk} that splits A into
nested parts, or determine that no such partition exists.

Given an m × n binary matrix A as input, we look for the minimum
k ∈ [n] such that A is k-nested. The idea for solving k-Nestedness
Recognition in polynomial time is based on a reduction to Minimum
Path Cover (Problem 6.5) in directed graphs that are transitive and
acyclic. For basic graph-theoretic terminology we refer to [Die10].

For the remainder of this section we assume, without loss of generality,
that A has distinct columns. Indeed, we can collapse each class of repeated
columns into one representative column, solve for k-nestedness, and expand
each representative column in the solution.

We construct an acyclic inclusion graph D = (V,E) for A as in Section
4.6. In short, vertices in V represent the columns of A and a directed
edge (i, j) ∈ E indicates that column Ci is a superset of Cj (when viewing
columns as sets). We observe that the graph D is transitive, that is, for all
a, b, c ∈ V it holds that if (a, b) ∈ E and (b, c) ∈ E, then (a, c) ∈ E. Figure
6.3 shows an example matrix and its acyclic inclusion graph. Later in this
section, to denote the vertices or edges that belong to a certain structure,
we use functions V (·) and E(·).

Lemma 6.3 (Paths and nested submatrices) A directed path P in D
defines a nested submatrix A[V (P)]. Conversely, if A[S] is a nested sub-
matrix obtained by restricting A to columns S ⊆ [n], then there exists a
directed path P in D with V (P) = S.

Proof. Consider a directed path P inD with vertices V (P) = {j1, j2, . . . , jp}
and edges E(P) = {(jt, jt+1) : t = 1, 2, . . . , p − 1}. We observe that

6.2 Recognition of k-nestedness 77

1 1 0 0 1 1 1 1 1
1 1 0 0 0 0 1 1 0
1 0 0 0 1 1 1 0 0
1 1 1 0 1 0 0 0 0
1 0 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0 0

1 2 3 4

5 6

7 8 9

Figure 6.3: A 3-nested matrix with nine columns and its acyclic inclusion
graph (with transitive edges omitted). Three paths are needed to cover all
the vertices.

Cj1 ⊇ Cj2 ⊇ · · · ⊇ Cjp and hence A[V (P)] is nested. Conversely, let A[S] be
a nested submatrix of A with |S| = p. Because A[S] is nested, there exists
a bijection g : [p]→ S such that Cg(1) ⊇ Cg(2) ⊇ · · · ⊇ Cg(p). It follows that
(g(t), g(t+ 1)) ∈ E(D) for each t = 1, 2, . . . , p−1. In particular, these p−1
edges form the edge set of a directed path P with vertex set S in D. 2

Lemma 6.4 (Paths and k-nestedness) The matrix A is k-nested if and
only if there exist k directed paths P1, P2, . . . , Pk in D such that V (D) =
∪ki=1V (Pi).

Proof. It follows immediately from Definition 6.1 and the previous lemma
that A is k-nested if and only if there exist k directed paths P1, P2, . . . , Pk

in D such that (a) V (D) = ∪ki=1V (Pi) and (b) for all 1 ≤ i < j ≤ k
it holds that V (Pi) ∩ V (Pj) = ∅. In particular, it suffices to show that
the requirement (b) is redundant. Put otherwise, we must show that if
there exists a collection of paths in D that satisfies (a), then there exists a
collection of paths in D that satisfies both (a) and (b). It turns out that
this follows from the transitivity of D.

Let P1, P2, . . . , Pk be a collection of paths that satisfies the condition (a).
For technical convenience, let us allow empty paths; that is, V (Pi) = ∅ may
hold. Now suppose that V (Pi) ∩ V (Pj) 6= ∅ holds for some 1 ≤ i 6= j ≤ k.
That is, there exists a vertex v ∈ V (Pi) ∩ V (Pj). Let us delete v from Pi

as follows. If v either starts or ends the path, we delete v and the only
(if any) incident edge with v from Pi. Otherwise v is an internal vertex,
with incident edges (u, v) and (v, w) in Pi with some u,w ∈ V (D). By
transitivity of D, also edge (u,w) exists in D. We delete v and its edges
from Pi, and add edge (u,w) to the path. After v has been removed, Pi is
still a path, but it may be empty. By deleting vertices in this way from the
paths, until no such deletions can be made, we obtain a collection of paths
P1, P2, . . . , Pk (some of which may be empty) that meet both (a) and (b).

78 6 Segmented nestedness

Suppose there are t empty paths. The (k− t) nonempty paths still form
a path cover, which implies that A is (k − t)-nested, and also k-nested. 2

We are ready to restate k-Nestedness Recognition in the language
of directed graphs, given an inclusion graph D.

Problem 6.5 (Minimum Path Cover) Given a directed graph D = (V,E)
as input, find directed paths P1, P2, . . . , Pk in D such that V = ∪ki=1V (Pi)
and k is minimum.

Minimum Path Cover in transitive acyclic directed graphs can be
transformed [NH79] into a Minimum Flow or a Maximum Matching
problem, for which efficient polynomial-time algorithms are known [Gal86].
The idea is to find the maximum independent set of vertices (that is, a
maximum antichain in the set of columns partially ordered by the subset
relation), which, by Dilworth’s Theorem [Dil50], has a size equal to that of
a minimum path cover. In the context of sets this gives the minimum size
chain-partition [Mie05, Ch. 5.2]; in the context of nestedness it is a maximum
set of columns where each pair of columns forms a switch box. Since con-
structing the directed graph D takes O(mn2) time, which includes subset
checks between all column pairs, we have a polynomial-time algorithm for
checking whether a binary matrix is k-nested.

6.3 Distance to k-nestedness

As seen in the paleontological dataset (Figure 6.2), noise leaves no room
for a perfect k-nested pattern. We can, however, address the problem of
detecting almost k-nested patterns. We next consider the problem of finding
a closest k-nested matrix for a given matrix, which turns out to be NP-hard
in the general case.

Problem 6.6 (Closest k-Nested) Given a binary matrix A, a nonneg-
ative weight matrix W , and a positive integer k, find a binary matrix B that
is k-nested and minimizes the distance dW (A,B).

We will first describe a family of binary matrices where we have control
over the distance to a nested matrix. After that we establish NP-hardness on
the Closest k-Nested problem by showing that dH-Closest k-Nested
is NP-hard, via a reduction from a relaxation of the Vertex Cover prob-
lem.

6.3 Distance to k-nestedness 79

· · ·

· · ·

Figure 6.4: Stars (top) and daisies (bottom) that have at least one edge.

Let us start by studying two families of undirected graphs, the stars and
daisies as in Figure 6.4. Throughout this section we assume that all graphs
are undirected, loopless (that is, no edge joins a vertex to itself) and simple
(that is, no two edges have the same end points).

A center of a star or a daisy is a vertex of maximum degree. Note that
a center need not be unique if the number of edges is small (at most 1 edge
for stars and at most 3 for daisies).

For an undirected graph G with n vertices and s edges, denote by N(G)
the incidence matrix of G. That is, N(G) is the n × s binary matrix with
vertices as rows and edges as columns such that the entry at row i, column
j is 1 if and only if the vertex i and edge j are incident in G. Because of
our assumptions (all graphs are simple and loopless), every column of N(G)
has exactly two 1s and there are no repeated columns. As an example, we
show the incidence matrix of the 3-edge star and the 4-edge daisy:

1 1 1
1 0 0
0 1 0
0 0 1

 ,

1 1 1 0
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
The following lemmas analyze the Hamming distance of certain inci-

dence matrices to a nested matrix.

Lemma 6.7 (Nested distance from a star) The incidence matrix of an
s-edge star has Hamming distance s− 1 to a closest nested matrix.

Proof. We can always permute the rows and columns of the incidence
matrix of an s-edge star so that the first row is full of 1s and the rest of the
rows 2, . . . , s+ 1 form an s× s identity matrix.

We need at least s− 1 flips to reach nestedness: In the identity matrix
each pair of columns forms a switch box. If less than s− 1 flips are made,
then at least two columns are left intact, and they still form a switch box.

80 6 Segmented nestedness

In fact, s−1 flips are sufficient: Flip all 1s in the identity matrix except
one. After these s− 1 flips, switch boxes no longer exist. 2

Lemma 6.8 (Nested distance from a daisy) The incidence matrix of
an s-edge daisy has Hamming distance s− 1 to a closest nested matrix.

Proof. Consider the s = 3 case below.
1 1 0
1 0 0
0 1 1
0 0 1

There are two disjoint switch boxes, so one flip is not enough but two flips
suffices (the top-right entry and first entry on the second row).

For s ≥ 4, the incidence matrix of an s-edge daisy consists of the fol-
lowing: an incidence matrix of a (s − 1)-edge star, a non-central column
corresponding to the edge not incident to the center vertex, and a row that
stands for the vertex not belonging to the star.

We need at least s − 1 flips to reach nestedness: The (s − 1) × (s − 1)
identity matrix within the star takes exactly s − 2 flips. The non-central
column and the row corresponding to the center-vertex still form a switch
box, so more than s− 2 flips are needed.

In fact, s − 1 flips are sufficient: Denote by e the edge that connects
the center of the daisy to the vertex with degree 2. Make s− 2 flips in the
identity matrix, namely, flip all 1s but on the column that corresponds to
the edge e. This removes all switch boxes within the identity matrix. All
remaining switch boxes involve the row that corresponds to the center of
the daisy, and we need to flip the only 0 on this row. We observe that for
s − 1 = 3 we arrive at the following nested matrix, up to permutation of
the rows and columns; the bold entries have been flipped.

1 1 1 1
0 0 0 0
0 0 0 0
0 0 1 1
0 0 0 1

2

Lemma 6.9 (Nested distance from a triangle-free graph) Let G be
a triangle-free loopless simple graph with s ≥ 1 edges. Then the incidence
matrix of G has Hamming distance at least s− 1 to a closest nested matrix,
with equality if and only if G is a daisy or a star.

6.3 Distance to k-nestedness 81

Proof. Let G be a triangle-free loopless simple graph with s edges. We
proceed by induction on s. The base cases s = 1, 2 (1-edge star, 2-edge star,
two disjoint edges) are immediate. In particular, observe that a graph with
two disjoint edges requires two flips to eliminate the switch boxes. Indeed,
up to permutation of the rows and columns, there are three ways F1, F2,
and F3 to eliminate the switch boxes with two flips:

F1 F2 F3
1 0
1 0
0 1
0 1

;

0 0
0 0
0 1
0 1

 ,

1 0
1 0
1 1
1 1

 ,

0 0
1 1
0 1
0 1

 .
So suppose that s ≥ 3. Because G is triangle-free it follows that either G
is a star (in which case the claim follows by Lemma 6.7) or G must contain
two disjoint edges. We thus obtain a partition of the edges of G into two
parts, a subgraph D with two disjoint edges and a subgraph H with s− 2
edges. By the induction hypothesis we know that at least s − 3 flips are
required to eliminate all switch boxes in N(H), with equality if and only if
H is a daisy or a star. Two more flips are required to eliminate the switch
boxes in N(D), so at least s− 1 flips are required.

Suppose that exactly s − 1 flips are required. We must flip twice in
N(D), so exactly one of the s − 2 columns in N(H) must remain intact
after the s − 3 flips. Indeed, if at least two columns remain intact, these
two edges define at least one switch box. Thus, N(H) contains one intact
column and s− 3 columns with exactly one flip on them.

Suppose N(D) has been flipped as F1. Regardless of the positions of
two 1s in the intact column, we see that it is either a copy of an edge in F1

or it forms a switch box with the second column of F1. Therefore the flips
in F1 cannot occur. The same holds for F2.

Suppose N(D) has been flipped as F3. Up to the permutation of the
third and fourth rows, there is exactly one way to insert an intact column
without introducing a switch box, namely

0 0 0
1 1 1
0 1 1
0 1 0

0 0 0
0 0 0

 .

Now, each of the remaining s − 3 columns have one flipped entry; that is,
the number of 1s in these columns is one or three. If the second row does

82 6 Segmented nestedness

not contain a 1 in each of these columns, we obtain a switch box because
of the first column. Thus in what follows we assume that the second row
always contains a 1 in the remaining columns.

Suppose first that the 1 in the second row is the result of a flip. Then
the column has three 1s and we are in one of the six cases:

0 0 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 0 0
0 1 0 0 1 1 0 1 0

0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1

 .

The first case cannot occur because the edge joining the first and third row
would complete a triangle with the intact column and the first column. The
second case completes a switch box with the intact column. The third case
repeats the second column. The last three cases each complete a switch box
with the first three columns.

It follows that the 1 in the second row is not the result of a flip. We
thus have that G is a daisy since all but the second column share the vertex
that corresponds to the second row, and the second column shares a vertex
with the intact column. Lemma 6.8 completes the proof. 2

Problem 6.10 (Minimum Daisy/Star Covering) Given an undirected
graph G and a nonnegative integer k as input, determine whether the edges
of G can be covered with at most k subgraphs of G, each of which is a daisy
or a star.

We observe that this problem is a relaxation of the classical Vertex
Cover problem, which insists on a covering with stars only.

Theorem 6.11 (Covering is NP-complete) Minimum Daisy/Star
Covering is NP-complete when restricted to triangle-free graphs.

Proof. The problem is in NP because a given covering with daisies/stars
can be checked in polynomial time. We reduce from 3SAT to establish
completeness. Suppose we are given as input an instance of 3SAT with v
variables and c clauses of length 3, such that each variable occurs in at least
one clause. We construct a triangle-free graph with 3v+c(5+2(2(v+2c)+1))
vertices and 2v+c(9+2(2(v+2c)+1)) edges that has a covering with v+2c
daisies/stars if and only if the 3SAT instance is satisfiable.

For each clause in the 3SAT instance, we introduce the following gadget
that consists of 5 + 2(2(v+ 2c) + 1) vertices and 9 + 2(2(v+ 2c) + 1) edges;
in the bottom row there are two groups of 2(v + 2c) + 1 vertices each.

6.3 Distance to k-nestedness 83

· · · · · ·

Observe that all the black solid edges (and at most two of the dashed
blue edges) in this gadget can be covered with two disjoint daisies/stars. In
particular, those two must have their centers at the gray vertices. Indeed,
if we do not use two daisies/stars centered at the gray vertices, we require
at least v + 2c+ 1 daisies/stars to cover the black edges.

For each variable x in the 3SAT instance, introduce the following vari-
able gadget that consists of 3 vertices and 2 edges (dashed blue edges not
included).

x ¬x

Join each clause gadget via the dashed blue edges to the 3 vertices in
the variable gadgets that correspond to the 3 literals in the clause.

Observe that if we use 2c daisies/stars to cover the clause gadgets (which
we must do if we want to use at most v + 2c daisies/stars), then at least v
daisies/stars are required to cover the variable gadgets, one for each gadget.
Without loss of generality we may assume that such a daisy/star is a daisy
and is centered at one of the literal vertices (x or ¬x) and covers all the
dashed blue edges incident to the vertex. Here we apply our assumption
that every variable occurs in at least one clause; that is, each variable gadget
is incident to at least one dashed blue edge.

We now claim that a daisy cover of size v + 2c exists if and only if the
3SAT instance is satisfiable. In the “if” direction, use a satisfying assign-
ment to cover the variable gadgets with daisies so that each satisfied literal
is the center of a daisy. Since each clause contains at least one satisfied
literal, the corresponding dashed blue edge is covered by the daisy centered
at the variable gadget, and the remaining at most two dashed blue edges
can be covered with the daisies/stars in the clause gadget. Moreover, the
daisies/stars in the cover can be taken to be pairwise disjoint. In the “only
if” direction, use the centers of the daisies covering the variable gadgets to
reconstruct a satisfying truth assignment. 2

From the proof of the previous theorem we observe that the problem
remains NP-complete if instead of a cover we ask for a partition of the
edges into daisies/stars.

84 6 Segmented nestedness

Theorem 6.12 (k-Nestedness and graph covering) Let G be a simple
loopless triangle-free graph with n vertices and s edges. Then G has a par-
tition into k daisies/stars if and only if the minimum Hamming distance
from N(G) to a k-nested binary matrix at most s− k.

Proof. Let us abbreviateN = N(G). We start with the “only if” direction.
Consider a daisy/star partition S1, S2, . . . , Sk ofG. Denote by si the number
of edges in Si, i = 1, 2, . . . , k. Consider the n×si submatrix N [Si] obtained
by restrictingN to columns Si. From Lemma 6.9 we have that the minimum
Hamming distance from N [Si] to a nested matrix is exactly si − 1 . It
follows that the minimum Hamming distance from N to a k-nested matrix
is at most

∑k
i=1(si − 1) = s− k.

We continue with the “if” direction. Let B be a k-nested binary matrix
at Hamming distance at most s − k from N , and let S1, S2, . . . , Sk be a
partition of the columns that splits B into nested submatrices. Let si = |Si|
for i = 1, 2, . . . , k and observe that

∑k
i=1 si = s. Let di = dH(N [Si], B[Si]).

By assumption we have
∑k

i=1 di ≤ s − k. For each i = 1, 2, . . . , k, the
submatrix N [Si] meets the conditions of Lemma 6.9, and hence di ≥ si− 1,
with equality if and only if Si is either a daisy or a star. It follows that
di = si − 1 and that Si is either a daisy or a star. 2

It follows from Theorems 6.11 and 6.12 that, given positive integers k, d
and a binary matrix A as input, it is an NP-complete problem to decide
whether the minimum Hamming distance from A to a k-nested matrix is at
most d. Consequently, Closest k-Nested is NP-hard.

6.4 Heuristic algorithms for closest k-nested

Given that Closest k-Nested is NP-hard, it is unlikely that an exact
polynomial-time algorithm exists for the problem. This section investigates
heuristic algorithms that, given a binary matrix A, a nonnegative weight
matrix W , and an integer k as input, find a k-nested matrix B̂ such that
the distance dW

(
A, B̂

)
is relatively small.

Our focus is on algorithms that attempt to find a partition for the
columns of A into k sets such that each induced submatrix A1, A2, . . . , Ak is
almost nested. Since no polynomial-time algorithm is known for computing
the distance from a given Ai to nestedness, we approximate the distance
with the GreedyNested method (Algorithm 11). Thus we arrive from each
Ai to a nested matrix B̂i, and obtain an upper bound to dW (Ai, Bi) by keep-
ing track of the flips. Given a partition of columns, we use

∑k
i=1 dW

(
Ai, B̂i

)
as an upper bound for the minimum distance from A to a k-nested matrix.

6.4 Heuristic algorithms for closest k-nested 85

We study three types of algorithms. First, the Mannila-Terzi algorithm
relies on hierarchical refinement of the partition of columns based on spec-
tral ordering. Second, we introduce two novel techniques, SVD-k-Baseline
and SVD-k-Sim, which are based on computing a singular value decomposi-
tion (SVD) of the input data. Third, k-Cut and AgglomerativeClustering
use a weighting on columns-pairs, which is the number of switch boxes gen-
erated by having the two columns in the same matrix.

Mannila–Terzi. The first algorithm for Closest k-Nested was pro-
posed by Mannila and Terzi [MT07, Partition], in which spectral ordering
[vL07] is used on a graph that represents the similarities between columns.
The method is hierarchical: it starts with all columns in a single set, and
in each step it splits one set into two and continues until the partition has
k sets. We employ the variant with the inclusion similarity measure.

In its original form, the Mannila-Terzi algorithm invokes a greedy
method LocalMoves afterwards to fine-tune the partition. We did not in-
clude this time-consuming method in the experiments, as it provides only
minor improvements to the best algorithms.

SVD-k-Baseline. We recall that the singular value decomposition (SVD)
decomposes a real-valued matrix M into a product of three real matrices
M = UΣV T where Σ is a diagonal matrix and U and V are unitary matrices;
that is, UUT = V V T = I, where I is the identity matrix.

In the SVD-k-Baseline algorithm, given a binary matrix A and the
number of nested blocks k as input, we run SVD on A and choose from
V the first k columns that correspond with the k largest singular values in
Σ. These vectors form the basis of a k-dimensional Euclidean space. We
project the columns of A into this space and run the k-means++ clustering
algorithm [AV07], which gives us a partition of the columns.

Figure 6.5 displays the columns of a 3-nested matrix projected into a
Euclidean space. We observe that the SVD apparently separates the nested
blocks from each other, which enables one to find a good partition.

SVD-k-Sim. The k-means++ clustering assumes that the data points fol-
low approximately a mixture of Gaussian distributions, but the chains seen
in Figure 6.5 do not have this property. To improve on the results of
SVD-k-Baseline, we run SVD on a derived subset-similarity matrix instead
of A directly. This produces more Gaussian-like concentrations of points.

We construct an n × n subset-similarity matrix as follows. Given an
m× n binary matrix, we compare each pair of columns (i, j) and their cor-

86 6 Segmented nestedness

−0.08 −0.06 −0.04 −0.02−0.1

0

0.1

−0.1

−0.05

0

0.05

Figure 6.5: The columns of a 3-nested matrix A projected into a 3-
dimensional Euclidean space. The basis vectors are the first three columns
in the V matrix from the SVD of A. The observed three chains correspond
to the nested blocks in A. The chains intersect roughly at two points, which
correspond to columns that are full of 1s and full of 0s.

responding sets, Ci and Cj , to see how likely they belong to the same nested
structure. Suppose the 1s in the columns were independent and uniformly
distributed. Then the number of common 1s between the columns i and
j, denoted by X, would be distributed as X ∼ Hypergeom(m, |Ci|, |Cj |),
for which expectation E(X) and variance Var(X) are known. Denote by
|Ci ∩ Cj | the actual number of common 1s between the columns i and j.
The symmetric subset-similarity measure is defined as

sim(i, j) =
1

1 + exp

(
− |Ci∩Cj |−E(X)

Var(X)

) .
Values in [0, 0.5) indicate that similarity is less than randomly expected,
whereas values in (0.5, 1] indicate greater similarity. A logistic function was
chosen as the basis of the measure because the range of values is [0, 1] and
the mapping is smooth.

k-Cut. We recall that a k-cut in an undirected graph G is a set of edges
whose removal partitions G into k connected components. In the Maximum
k-Cut problem, we are given (a) an undirected graph G, (b) a nonnegative
integer weight for each edge of G, and (c) a nonnegative integer k; the task
is to find a k-cut with the maximum total weight.

To obtain a heuristic solution to Closest k-Nested, we construct a
complete undirected graph G whose vertices represent the columns in the

6.5 Choosing k with MDL 87

input matrix A. The weight on edge {c1, c2} is their conflict-weight , defined
as the number of switch boxes that the two columns form together.

We employ the following greedy algorithm for Maximum k-Cut. Start
with k empty bins, and insert the vertices of G one by one into the bins so
that each vertex v is placed into the bin that has the smallest cost, where
the cost is the sum of conflict-weights between v and the vertices already
in the bin. We obtain a partition of the columns of A into k sets from the
connected components of the k-cut produced by the algorithm.

Agglomerative clustering. Agglomerative clustering [Ber02] starts by
viewing each column as its own cluster, and then merges a pair of clusters
with the smallest distance, continuing until k clusters are left. The cluster-
distance between two clusters is either the minimum, the maximum, or the
average of all pairwise conflict-weights between the columns of two clusters.
We refer to these methods as Agglo-Min, Agglo-Max, and Agglo-Ave.

Benchmark methods. The following two benchmarks are used to assess
the performance of the column-partitioning algorithms on synthetic data
where an underlying ground-truth is available.

Given the sizes of the underlying nested blocks in synthetic data, method
Random returns a partition of the columns with these sizes, selected uni-
formly at random.

The generative process for k-nested synthetic data includes a partition
of the columns, which is used as an underlying ground-truth before adding
noise. Method Original returns this partition.

6.5 Choosing k with MDL

This section studies the problem of choosing the number k of almost nested
blocks when the data is noisy and the correct number k is unknown. This
problem is analogous to the problem of choosing the number k of clusters in
the context of clustering, where techniques such as BIC, MML and MDL are
employed to determine a good value of k [Ber02, HY01]. Here we develop
an approach based on MDL for choosing a good number of nested blocks.

The minimum description length (MDL) principle states that the best
model for the data uses as few bits as possible to represent the data. In
other words, MDL chooses the model that best compresses the data by
exploiting the regularities in the data.

We introduce a model and an associated encoding scheme for binary
data that succinctly encodes a k-nested structure if such a structure is

88 6 Segmented nestedness

present in the data. In other words, our encoding scheme for almost k-
nested matrices first computes a partition that identifies the almost nested
blocks, then constructs nested matrices that are close to these blocks, and
finally encodes the k-nested structure together with the differences between
the nested matrices and the data. The best value of k is the one that gives
the minimum encoded length for the data.

Next we describe the nestedness scheme in more detail. To encode an
m×n binary data matrix A using k = 1, 2, . . . , n nested blocks, we proceed
as follows. First, we encode the dimensions m and n of the matrix with
Elias δ-coding [Eli75], which is a universal integer-coding scheme. Then,
we encode the number of nested blocks k using log2 n bits. (We adopt the
convention of not rounding up the codelengths to integers.) Next we use
SVD-k-Sim to find a partition of the columns of A into k almost nested
blocks, and encode the partition with n log2 k bits.

We then repeat the following operations for each almost nested block Ai

of A with i = 1, 2, . . . , k. Let ni be the number of columns in Ai; the value
ni can be recovered from the encoded partition. We run GreedyNested on
Ai and obtain (a) a matrix Qi that is directly nested; and (b) row and
column permutations for Qi such that the permuted matrix is close to Ai.
We encode the permutations using log2(m!) + log2(ni!) bits.

We observe that because Qi is directly nested, its structure can be de-
scribed compactly by using a staircase path that identifies the boundary
between the 1s and 0s (see Figure 4.1). It takes log2

(
m+ni
m

)
bits to encode

Qi, stemming from the number of different staircase paths (Section 4.1).
To recover Ai from the encoded Qi and the row and column permuta-

tions, we must also encode the differences between Ai and the permuted Qi.
Observe that we can recover the number of 1s and 0s in Qi, denoted by p1
and p0, respectively, from the existing encoding. We encode the number of
differences, that is, the number of 1s in Ai where the permuted Qi has 0s,
denoted by e1, as well as the number of 0s that occur in Ai but not in the
permuted Qi, denoted by e0. Finally, the positions of all the differences are
encoded using log2

(
p0
e1

)
+ log2

(
p1
e0

)
bits. The total codelength is thus

Lnest = δ(m) + δ(n) + log2 n+ n log2 k+ (6.1)

+
k∑

i=1

(
log2

(
m!
)

+ log2
(
ni!
)

+ log2

(
m+ ni
m

)
+

+ log2
(
p0 + 1

)
+ log2

(
p1 + 1

)
+ log2

(
p0
e1

)
+ log2

(
p1
e0

))
.

6.6 Experiments on synthetic data 89

As a baseline encoding scheme—that is, without assuming a nested
structure—we employ the following uniform scheme, which encodes the bi-
nary matrix as is. First, encode the dimensions m and n, again with Elias
δ-coding. Then, encode the number of 1s in the data, p = 0, 1, . . . ,mn,
together with the p entries in the matrix out of all

(
mn
p

)
possibilities. The

total codelength is

Lunif = δ(m) + δ(n) + log2
(
mn+ 1

)
+ log2

(
mn

p

)
. (6.2)

6.6 Experiments on synthetic data

In the following sections we show how to generate almost k-nested synthetic
binary data, and how the generative process gives a ground-truth, against
which Closest k-Nested algorithms can be compared. We then proceed
to three tests, in which the algorithms need to recognize existing k-nested
structure, reconstruct an underlying k-nested structure, and reliably find
the correct number of nested blocks k for a data matrix.

6.6.1 Data generation

We generate an almost k-nested dataset A synthetically by first generating
a k-nested binary matrix and then adding errors to it. The parameters
include the number of rows m, columns n, nested blocks k, and the size for
each block (n1, n2, . . . , nk). Each block i = 1, 2, . . . , k is an m × ni matrix
Ai, where row r has its first `i,r entries as 1s and `i,r is a random number
from {0, 1, . . . , ni}.

We then construct a k-nested m×n matrix B by merging all the blocks
together, after which we employ the symmetric and asymmetric error mod-
els as presented in Section 2.5. Dataset A is generated by independently
flipping the entries in B according to given error probabilities.

6.6.2 Distance test

In this test we measure the Hamming distances produced by the Closest k-
Nested algorithms, when the correct k is given but the number of columns
in each block is unknown. The smaller the distance, the less the produced
matrix deviates from the underlying k-nested structure.

For each level of symmetric and asymmetric noise, we generate 30 sam-
ples of 150 × 150 matrices that are 3-nested with block sizes 25, 50, and
75. We use each algorithm to produce a partition for each dataset, and we

90 6 Segmented nestedness

approximate the Hamming distance to a closest 3-nested matrix by using
the GreedyNested algorithm on each submatrix induced by the partition.

The results are shown in Figure 6.6, where each data point is an average
of 30 samples. We observe that SVD-k-Sim has the lowest distances. Fur-
thermore, at low noise levels the distances are roughly the same that the
benchmark method Original produces, which suggests SVD-k-Sim is near-
optimal. At higher noise levels the partition from SVD-k-Sim describes the
data even better than Original. At the same time, SVD-k-Baseline is
close to SVD-k-Sim, and Agglo-Max is a bit behind. These three algorithms
perform better than Mannila-Terzi, in which a bad early choice of split-
ting sets in partition might lead to poor results. The k-Cut algorithm has
the worst performance, which is roughly the same as what a random par-
tition with correct block sizes produces. The plots suggest that the overall
behavior of the algorithms remains comparative regardless of noise model
(symmetric or asymmetric). Of the three Agglo algorithms presented, we
only show the results for Agglo-Max, which is the best of the three.

From now on, we include only SVD-k-Sim in further experiments, as it
produces the best distances and is reasonably fast in practice.

0 0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Symmetric noise

H
am

m
in

g−
di

st
an

ce

SVD−k−Sim
SVD−k−Baseline
Mannila−Terzi
k−CUT
Agglo−Max
Original
Random

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1000

2000

3000

4000

5000

6000

Asymmetric noise (for 1−to−0 flips)

H
am

m
in

g−
di

st
an

ce

SVD−k−Sim
SVD−k−Baseline
Mannila−Terzi
k−CUT
Agglo−Max
Original
Random

Figure 6.6: Results of the distance test with symmetric noise (left) and
asymmetric noise (right). On the x-axes the noise levels are shown: on
the left symmetric noise Pr(1-to-0) = Pr(0-to-1); on the right missing
data Pr(1-to-0). For the latter, the misclassification parameter is fixed
to Pr(0-to-1) = 0.10. On the y-axes are the approximated Hamming dis-
tances to closest 3-nested matrices. The plots show how the distances to
closest 3-nested matrices change when the noise level increases. The plotted
distances are averages of 30 samples.

6.6 Experiments on synthetic data 91

6.6.3 Classification test

In this test we evaluate how well the partition produced by SVD-k-Sim
matches with the underlying k-nested structure. To be more precise, we
measure classification accuracy, which is the proportion of columns that a
given partition assigns to the same sets as Original. We assume the correct
k is given, but the number of columns in each block is unknown.

For each noise level, we generate 50 samples of r × 150 matrices, where
the number of rows is r = 6, 25, 100, 400, 1,600, and the matrices are al-
most 3-nested with block sizes 25, 50, and 75. For each dataset we run
the SVD-k-Sim algorithm and compute the accuracy for its partition. To
compare the sets in two partitions correctly, we try all bijections between
sets and choose the one that results in maximum accuracy.

The results are displayed in Figure 6.7. The more rows the matrix
has, the better accuracy SVD-k-Sim achieves. The columns that are full of
either 1s or 0s can belong to any nested block. Despite this, SVD-k-Sim
has high accuracy, and when the number of rows is low, we see satisfactory
results. At high noise levels the underlying k-nested structure has vanished,
and SVD-k-Sim produces partitions that fit better with the noisy data than
with the k-nested structure that was used to generate the data.

0 0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

Symmetric noise

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

1600 rows
400 rows
100 rows
25 rows
6 rows

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Asymmetric noise (for 1−to−0 flips)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

1600 rows
400 rows
100 rows
25 rows
6 rows

Figure 6.7: Results of the classification accuracy test with symmetric (left)
and asymmetric noise (right) for SVD-k-Sim. On the x-axes are the noise
levels: on the left symmetric noise Pr(1-to-0) = Pr(0-to-1); on the right
missing data Pr(1-to-0). For the latter, the misclassification parameter is
fixed to Pr(0-to-1) = 0.10. On the y-axes classification accuracies are shown.
Each line corresponds to a number of rows r, and the average accuracy from
50 samples of r× 150 data matrices are shown for that line. The more rows
in the data, the better the accuracy. The expected accuracy of a uniform
random partition with correct block sizes is 0.39.

92 6 Segmented nestedness

6.6.4 MDL test

In this test we assess the reliability of MDL model selection, that is, test
whether MDL is able to retrieve the correct k from synthetic data when we
use SVD-k-Sim to find a partition and GreedyNested to find nested blocks.

We generate 30 samples of 150 × 150 matrices that are k-nested. We
repeat the generation process for each true value k = 0, 1, 2, . . . , 10, while
keeping the sizes of k nested blocks (almost) equal. With parameter k = 0,
we generate data that is uniformly random and has 50% fill of 1s. We add
symmetric noise to each dataset.

We consider both nestedness and uniform MDL-schemes, and use the
GreedyNested method with the Hamming distance. From k = 1, 2, . . . , 20,
we choose the number of blocks that produces the shortest codelength in
the nestedness scheme, or 0 in case the uniform scheme has the shortest
codelength.

The results of MDL model selection with symmetric noise are shown in
Figure 6.8. The general observation is that the method finds the true k

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10

Symmetric noise

A
ve

ra
ge

 n
um

be
r

of
 n

es
te

d
bl

oc
ks

k=10 (true)
k=9 (true)
k=8 (true)
k=7 (true)
k=6 (true)
k=5 (true)
k=4 (true)
k=3 (true)
k=2 (true)
k=1 (true)
k=0 (true)

Figure 6.8: Results of the MDL test with symmetric noise. Displayed on
the x-axis are the levels of symmetric noise; on the y-axis are the estimated
numbers of nested blocks. The legend gives the correct value of k for each
line, and plotted values show the number of blocks selected by MDL. Each
value is an average from 30 samples. If the uniform encoding scheme is
preferred, the number of blocks is zero. Each line is divided into two parts,
solid and dotted: the solid part is for noise levels where correct k is recovered
reliably, and the dotted part displays the divergent part.

6.7 Experiments on real-world data 93

reliably. If each almost nested block consists of only a few columns, or if
noise levels are high, finding the correct k is hard. In these situations the
MDL method usually favors uniform scheme k = 0 instead of choosing an
incorrect positive value for k.

6.7 Experiments on real-world data

We next describe two real-world datasets and show that they have an almost
k-nested structure, as found by the SVD-k-Sim method and MDL.

6.7.1 Mammals data

The Mammals dataset1 consists of presence/absence records of European
mammals: for 2,179 locations (columns) of size 40 km × 40 km we have
binary information about 124 mammal species (rows). If a mammal has
been observed in a location, the corresponding entry has value 1.

We use SVD-k-Sim and MDL to analyze whether the locations have
a k-nested structure. If the uniform MDL scheme produces the shortest
codelength, the data is considered non-nested with k = 0. We opted to use
the Hamming distances in GreedyNested.

Figure 6.9 shows a sample partition of locations when MDL selects
k = 16. Geographically coherent areas are revealed without using spatial
information, which asks for a detailed ecological investigation. For example,
Figure 6.10 shows the submatrices that correspond to almost nested blocks
in Western France, Bulgaria and Northern Finland. To our knowledge, the
observed nested areas roughly agree with common knowledge about the
distribution of mammals, for example with cluster analysis [HFEM07].

Because of the randomized nature of the k-means++ algorithm, the value
of k selected by MDL is not always the same. From the 50 samples of
running SVD-k-Sim and MDL on the locations, we obtain median 16 and
standard deviation 4.7 for the number of blocks. The differences in MDL
codelength are typically small with real-world data, and this is the case
with values around 16. We conclude that it is convenient to describe the
Mammals data as a composite of k almost nested blocks, but k is not a
single number but a range of numbers around 16.

On the other hand, the same methods suggest that the species in the
Mammals data are 1-nested. The data is displayed in Figure 6.11, with
rows and columns permuted to reveal the nested structure.

1 The preprocessing of the data is described in [HFEM07]. The dataset is available by
request from Societas Europaea Mammalogica: http://www.european-mammals.org/

http://www.european-mammals.org/

94 6 Segmented nestedness

Figure 6.9: Analyzing nestedness in the Mammals data. We display Eu-
ropean locations in their 16-nested form, as selected by MDL. All points
that share a color and symbol belong to the same almost nested block. We
observe that the partition produces geographically coherent areas without
any use of spatial information in the algorithms.

Figure 6.10: Three examples of almost nested blocks in Figure 6.9, from
left to right: Western France (225 locations), Bulgaria (89), and Northern
Finland (47). The rows are mammals and the columns are locations.

6.7 Experiments on real-world data 95

Figure 6.11: Mammals data with its rows and columns permuted to show
its nested structure. Rows are mammal species, columns are European
locations, and black dots indicate presence.

6.7.2 Paleontological data

The Paleontological dataset [For08]1 has binary information on fossil genera
in Europe. There are 124 sites (rows) and 139 genera (columns), and value
1 indicates that a fossil of specific genus has been found on a site, whereas
0 means that it has not been found.

We assume that the data has lots of missing 1s, as is typical for this kind
of data, and assign a weight parameter w = 4, meaning that the weight on
a 1-entry (1-to-0 flip) is four times that of a 0-entry (0-to-1 flip). These
weights are used in GreedyNested to find nested matrices.

We use SVD-k-Sim and MDL to evaluate a good choice of k for genera,
and to determine whether an assumption of k-nestedness should be dis-
carded (if the uniform scheme has the shortest codelength). The result is
that MDL always selects k = 3; the dataset and its partition into 3 almost
nested blocks are shown in Figure 6.2. This corroborates an earlier claim
[MT07] that the genera are 3-nested.

1From August 31, 2007, the version of the dataset selects all columns with at least 10
occurrences and all rows with at least 10 genera present.

96 6 Segmented nestedness

6.8 Conclusions and further research

While we have shown that it is an NP-complete problem to decide whether
a binary matrix has Hamming distance to k-nestedness at most d, our ex-
periments suggest that k-nestedness can be studied on real-world data with
heuristic tools, such as the SVD-based algorithms. In this context we would
like to highlight two directions for further research.

First, the possibility of rigorous approximation algorithms for k-nestedness
should be investigated. Also the computational complexity of dH-Closest
Nested is still unknown, which is the same as dH-Closest k-Nested
with restriction k = 1.

Second, we believe that the SVD-based algorithms would benefit from
a more detailed analysis. In particular, we would like to highlight Figure
6.5, where the chains are easy to distinguish visually—why do such chains
emerge, and what tools could be used to automatically detect such chain-
like patterns in the presence of noise?

We have proposed an MDL-based model selection approach to discover
k-nestedness in practice. In addition to sound performance on synthetic
data, the tests on real-world data show that MDL is able to discover mean-
ingful structures, such as geographically coherent European areas based
on mammal occurrences, and a 3-nested structure in paleontological data.
In this context we observe that MDL discovers a 1-nested structure for the
mammal species and a 16-nested structure for the locations in the Mammals
data. While a further analysis of the results from an ecological perspective
is clearly warranted, it is also of theoretical interest to understand how the
(almost) nestedness properties of a matrix and its transpose may interact.

A conceptual extension of nestedness that remains to be studied is lami-
narity: a collection of sets is a laminar family if any two sets in the collection
are either disjoint or one set is a subset of the other.

Chapter 7

Bandedness

The concept of bandedness describes patterns in which we witness a vari-
ation of overlapping binary attributes. In this chapter we first give the
definition of bandedness and outline potential applications where such a
pattern may emerge. A theoretical study on bandedness provides combina-
torial properties that can be used as the basis of algorithms. We then pro-
ceed to the recognition, distance, and permutation problems, and provide
both exact and heuristic algorithms for these problems. Finally, we demon-
strate the usefulness of the bandedness concept by applying our methods
to synthetic datasets and several applications in life sciences: paleontolog-
ical dataset, mammal dataset, DNA amplification data, and a dataset on
phonological features of Finnish dialects.

7.1 The concept of bandedness

Informally, a binary matrix is banded if both the rows and columns can be
permuted so that the nonzero entries exhibit a staircase pattern of overlap-
ping rows. An illustration of a directly banded matrix is in Figure 7.1; also
the matrix on the right in (3.1) (page 24) is directly banded.

Figure 7.1: An example of a directly banded matrix.

97

98 7 Bandedness

Next, we define three types of bandedness that differ in the way how
the pattern can be observed: the banded pattern is either observable as is,
or we allow a permutation of the rows to bring out the pattern, or we allow
permutations on both the rows and columns.

Definition 7.1 (Directly banded) An m × n binary matrix is directly
banded if

(i) its row vectors are all consecutive (direct C1P),
(ii) s1 6 s2 6 · · · 6 sm, and
(iii) e1 6 e2 6 · · · 6 em,

where 〈si, ei〉 is the consecutive row vector on the ith row.

Definition 7.2 (Columns-banded) A binary matrix A is columns-banded
if there exists a permutation of the rows such that the permuted matrix is
directly banded.

Definition 7.3 (Banded) A binary matrix A is banded if there exist per-
mutations of the rows and columns such that the permuted matrix is directly
banded.

Perfectly banded matrices are not expected to arise in real-world (noisy)
environments. Therefore we study the problem of determining the distance
from the original matrix to bandedness. A simple example is shown in
Figure 7.2. In its original form the matrix appears less structured, yet
when permuted suitably, it displays a high concentration of 1s in what is
an almost banded pattern. Banded submatrices occur when only a subset
of attributes belongs to a banded pattern.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

(a)

26 25 12 30 33 29 17 15 3 27 5 24 34 18 6 13 22 23 21 4 40 20 37 7 39 2 28 31 8 36 11 32 19 35 10 9 1 14 38 16

23
7

10
8

28
5

19
18
6

27
26
1

30
24
25
22
17
16
12
13
3

11
29
14
21
15
20
4
9
2

(b)

Figure 7.2: An example of a binary matrix in its original form (a), and after
permuting its rows and columns to uncover an almost banded structure (b).

7.1 The concept of bandedness 99

Related work. The concept of banded matrices has its origins in numer-
ical analysis, where the matrix entries can indicate coefficients of variables.
From the computational point of view, working with banded matrices is
always preferable: the work load involved in performing certain operations,
such as multiplication, falls significantly for banded matrices [CM69], often
leading to savings in terms of computation time.

Much research has focused on minimizing the bandwidth of a matrix by
applying permutations [APÇ04, CM69, Ros68]. Roughly, the bandwidth of
a binary matrix is the maximum distance of the 1-entries from the main
diagonal. Noisy data is still a problem for the bandwidth pattern, as it
requires that all 1s must be close to the diagonal. The approach in this
chapter allows some 1s in the banded pattern to deviate from the diagonal.

Finding a banded structure is closely related to biclustering problems
[MO04] and subspace clustering [MZK+09, PHL04]: the goal is to identify
groups of columns and rows that display similar value patterns (for example,
similar expression patterns in the case of microarray data). In other words,
we interpret the data as a bipartite graph and describe it as a vertex-
disjoint union of bicliques (complete bipartite graphs), if possible. Many
combinatorial problems have been studied around biclustering. However,
in our case the different biclusters (groups of columns and rows with 1s) do
not have to be vertex-disjoint.

Our approach can also be seen as a ranking of clusters [BYGL+08].
Rather than simply partitioning a network into clusters, in cluster ranking
we also order the clusters by their strength. In our problem, the differ-
ent “clusters” or groups of rows are mapped into a one-dimensional rank
provided by the columns of the same matrix. A difference with those ap-
proaches is that bandedness is a parameter-free pattern in the sense that
we do not need to fix the number of clusters [CL09].

Applications. From the perspective of data analysis, banded structures
occur in many applications. For example, banded patterns can be found
in network datasets that consist of overlapping communities without cy-
cles [BKG+05]. Indeed, the permutations of rows and columns can reveal
communities of nodes that are strongly connected in overlapping fashion.
Consider the Football dataset [GN02]: a 115×115 binary matrix that tells us
which US college football teams played against each other in year 2000. An
almost banded pattern in Figure 7.3(a) reveals teams that frequently play
against each other and are geographically close to one another; the data
matrix has Hamming distance 534 to the closest directly banded matrix.
Apart from the clusters of teams, the overlapping structure is negligible.

100 7 Bandedness

Football teams

F
oo

tb
al

l t
ea

m
s

(a) Football data

Book characters

B
oo

k
ch

ar
ac

te
rs

(b) Les Misérables data

Figure 7.3: Almost banded patterns in two network datasets after suitable
row and column permutations: Football (a) and Les Misérables (b). These
permutations (from a heuristic method) do not establish symmetricity.

Another example comes from the network of characters [Knu93] in the
novel Les Misérables by Victor Hugo: an almost banded pattern of this
77× 77 matrix displayed in Figure 7.3(b) shows the coappearence patterns
in the novel. The Hamming distance of this dataset to direct bandedness is
201. In both datasets the ordering of the rows and columns reveals clusters
that are linked in an overlapping fashion. In Les Misérables data, we also
observe characters that appear more independently across the chapters.

Not all network datasets are banded, but still they might contain com-
munities. The notion of a community expresses a group of highly interacting
nodes, which is more general. The idea of bandedness is that the locality
structure of the communities can be mapped in an overlapping fashion. In
general, bandedness conveniently describes linearly overlapping clusters.

For another application, consider the physical mapping problem of the
human genome [AKNW95]. Genome biologists break the genome into pieces
(clones) which by recursive breaking can eventually be sequenced together.
Unfortunately, the information about the relative positions of clones is lost
during the breaking process. The physical mapping process starts with the
experimental data from which information about the clone overlaps can be
derived. The biological community has invested considerable efforts in the
analysis of clone–probe matrices, in order to determine useful properties of
both clone and probe orderings [AKNW95]. In this genetic fingerprinting
application, rows would correspond to probes and columns to clones

Banded patterns can also exist in species occurrence data, such as in
presence/absence data from paleontology. Rows represent sites and columns
represent species. A banded structure signifies an overlapping pattern be-

7.2 Properties of bandedness 101

tween a set of species occurring in a spatially correlated set of sites. Or
similarly, consider a dataset of dialect words used in several locations or mu-
nicipalities, represented by a binary matrix. For this linguistic application a
banded pattern provides a possible visualization of the spatial distribution
of dialects across the municipalities of a country.

7.2 Properties of bandedness

This section studies the definition and combinatorial nature of banded ma-
trices. We also define an intuitive binary relation between the rows which,
under a suitable column permutation, will lead to a banded structure. Sev-
eral results will be exploited later in algorithms.

Consider an m× n binary matrix A. It follows from the definition that
bandedness is a hereditary property: submatrices of a banded matrix are
also banded. Also, A is banded if and only if its transpose AT is banded.

Direct bandedness has several alternative characterizations. For exam-
ple, consider in a matrix grid two staircase paths that start from the top-left
corner, move only down or right, and end up in the bottom-right corner. Two
staircase paths define a directly banded matrix that has 1s on entries that
fall between these paths. Each directly banded matrix corresponds to such
a pair of paths. We get a lower and upper bound for the number of directly
banded m × n matrices by counting how many staircase paths there are.
The lower bound

(
m+n
m

)
comes from restricting to one path only, and upper

bound
(
m+n
m

)2 comes from two independent paths. The latter is an upper
bound, because for some directly banded matrices there are more than one
suitable pair of staircase paths, since the paths may cross.

Also, recall the Definition 2.6 of zero-partitionable matrices. A matrix
is directly banded if and only if its 0s can be labeled with R or C so that
(a) all entries above and to the right from an R-entry are Rs, and (b) all
entries below and to the left from a C-entry are Cs [Wes98].

The adjacency matrices of certain interval graphs have a banded pattern,
known as monotone consecutive arrangement in graph theory. The details
of this connection were already covered in Section 2.4.

We observe that every columns-banded matrix has direct C1P (Defi-
nition 3.4), but the matrix is not necessarily directly banded under the
current permutation of the rows. Also, each banded matrix has SC1P, but
the converse does not hold. For example, consider the following matrices
F1 and F2: both of them have direct SC1P, but neither is banded.

102 7 Bandedness

F1 F2 F3 1 1 1 0
0 1 1 1
0 0 1 0

 ,
 1 1 0 0

1 1 1 1
0 1 1 0

 ,
 1 1 0 0

1 0 1 0
1 0 0 1

 (7.1)

In fact, we can separate the family of banded matrices from both zero-
partitionable matrices and SC1P matrices by using characterizations by
forbidden submatrices.

Theorem 7.4 (Bandedness and zero-partitionability [LSW97]) If a
binary matrix A is zero-partitionable, then A is banded if and only if it does
not contain F1, F

T
1 , F2, F

T
2 , F3, or F T

3 as a submatrix, as in (7.1).

Theorem 7.5 (Bandedness and SC1P [LSW97]) If a binary matrix A
has SC1P, then A is banded if and only if it does not contain F1, F

T
1 , F2, or

F T
2 as a submatrix, as in (7.1).

Even if a matrix is banded, all column permutations that establish direct
C1P will not lead to an overlapping sequence of rows. For an example, the
following matrix in (7.2) has direct SC1P but it is not columns-banded (the
last column should be placed first). 0 0 0 1

1 1 1 1
0 1 1 0

 (7.2)

Next we characterize exactly the relation of columns-banded matrices
with C1P matrices. This will be possible via the following binary relation
between rows that are not zero vectors.

Definition 7.6 (Proper consecutive inclusion) Let ri = 〈si, ei〉 and
rj = 〈sj , ej〉 be two consecutive vectors. We say that rj is properly in-
cluded in ri, denoted by rj ≺ ri, if and only if both vectors are nonzero and
si < sj and ej < ei. We write rj _ ri to indicate that rj ⊀ ri and ri ⊀ rj.

As an example, the third row of the matrix in (7.2) is properly included
in the second row. The rows of a directly C1P matrix A form a Sperner
family of consecutive rows if the row vectors have ri _ rj for all rows i and
j. The following result follows directly from Definition 7.6.

Lemma 7.7 For two consecutive nonzero row vectors ri = 〈si, ei〉 and rj =
〈sj , ej〉 we have rj _ ri if and only if at least one of the following holds:
(1) si = sj, (2) ei = ej, (3) si < sj ∧ ei < ej, or (4) sj < si ∧ ej < ei.

7.2 Properties of bandedness 103

Proof. We have

rj _ ri ⇔ rj ⊀ ri ∧ ri ⊀ rj

⇔ ¬(si < sj ∧ ej < ei) ∧ ¬(sj < si ∧ ei < ej)

⇔ (sj 6 si ∨ ei 6 ej) ∧ (si 6 sj ∨ ej 6 ei)

⇔ (si = sj) ∨ (ei = ej) ∨ (si < sj ∧ ei < ej) ∨ (sj < si ∧ ej < ei).

2

This Sperner property on the family of consecutive rows can be seen as
a restricted version of the Sperner property1 on the family of row sets: even
if two rows i, j in a directly C1P matrix A have a proper subset relation
Ri ⊂ Rj for their set interpretations, the row j does not necessarily properly
contain the row i, that is, ri ⊀ rj may hold. This depends on the column
permutation of the directly C1P matrix A, which, in the end, determines the
starting and ending positions of consecutive 1s on the rows. For example,
the third row in the matrix in (7.2) would not be properly included in the
second row if the last column was placed first. The following statement
characterizes exactly this relation.

Theorem 7.8 (Columns-banded and consecutive inclusion)
A binary matrix A is columns-banded if and only if it has direct C1P and
for every two rows i and j the row vectors satisfy ri _ rj.

Proof. “If”: Consider two consecutive row vectors ri = 〈si, ei〉 and rj =
〈sj , ej〉 in A. Because ri _ rj , none of the rows properly contains another.
By Lemma 7.7 we can establish a preorder of rows by sorting them in
ascending order by their s-values, while resolving ties with the ascending
e-values; ties on identical rows can be resolved arbitrarily. We obtain a row
permutation under which A is directly banded, as per Definition 7.1.

“Only if”: Given that A is columns-banded, we know that A has direct
C1P and that there exists a permutation of the rows so that A is directly
banded. It follows from Definition 7.1 and Lemma 7.7 that none of the rows
in a directly banded matrix properly includes another row. 2

The result from Theorem 7.8 can also be expressed in terms of forbidden
submatrices. Consider a directly C1P matrix A and its 2× 3 submatrix as
in (7.3). The columns a, b, and c in the submatrix occur in that order
in A (but not necessarily on consecutive indices). We call such matrices
forbidden Sperner submatrices, regardless of the order and position of the

1 In the context of sets, a Sperner family is an antichain: a collection of sets such
that none of the sets is a subset of another. We depart from the original definition for
technical reasons.

104 7 Bandedness

rows. If such a submatrix exists on two rows, we say that they have a
Sperner-conflict . [a b c

1 1 1
0 1 0

]
(7.3)

Theorem 7.9 (Columns-banded C1P forbidden submatrices) A bi-
nary matrix A is columns-banded if and only if it has direct C1P and none
of its submatrices is a forbidden Sperner submatrix (7.3), when the columns
in the submatrix follow the same order as in A.

Proof. By Theorem 7.8, a directly C1P matrix A is columns-banded if
and only if we have ri _ rj for all row vectors ri = 〈si, ei〉 and rj = 〈sj , ej〉.
From Lemma 7.7 we see that this is a required and sufficient condition for
the following: there are not three column indices a, b, and c (in that order)
that together form a forbidden Sperner submatrix (7.3). 2

7.3 Recognition of bandedness

In this section we study the problem of recognizing columns-banded and
banded matrices. It turns out that both problems can be solved in polyno-
mial time in the size m× n of the input matrix.

Problem 7.10 (Columns-Bandedness Recognition) Given a binary
matrix A, determine whether it is columns-banded.

We can solve Problem 7.10 in time O(mn + m2) by Theorem 7.8. We
first check whether A has direct C1P; if it has, then we check all row pairs,
and A is columns-banded if and only if no row properly contains another
row, which by Lemma 7.7 takes constant time for each pair of rows.

Problem 7.11 (Bandedness Recognition) Given a binary matrix A,
determine whether it is banded.

The set of permutations that satisfies direct bandedness is a subset of
those satisfying direct C1P. Checking whether a matrix A is banded would
be infeasible if we had to go through all the permutations that establish
consecutive rows: there might be exponentially many such permutations.
We next describe polynomial-time algorithms for Problem 7.11.

For the first algorithm, we construct a band-conflict matrix Ã by insert-
ing extra rows in A and then check whether Ã has C1P. More precisely, for

7.3 Recognition of bandedness 105

every pair of rows i, j in A that have Rj ⊂ Ri (in the set interpretation),
we insert a binary row that has set interpretation Ri \ Rj . We notice that
given a column permutation, this inserted row is consecutive if and only if
rows i, j do not properly include each other.

Theorem 7.12 (Band recognition through C1P) Let A be a binary
matrix and Ã its band-conflict matrix. Then A is banded if and only if
Ã has C1P.

Proof. “If”: Since Ã has C1P, we may assume its column permutation
establishes direct C1P. Because A is a submatrix of Ã and direct C1P is
a hereditary property, also A has direct C1P. All the inserted rows in Ã
are consecutive, too, which means that none of the rows in A is properly
contained in another row. By Theorem 7.8 the matrix A is columns-banded.

“Only if”: Assume without loss of generality that A has already been
permuted to be directly banded (these permutations always exist and per-
mutations do not affect inserted rows). Since a directly banded matrix
always has direct C1P, we need to show that also the inserted row vectors
in Ã are consecutive under this column permutation. For each inserted row,
there are rows i, j in A that have Rj ⊂ Ri. Let ri = 〈si, ei〉 and rj = 〈sj , ej〉
be the row vectors. Because A is directly banded and Rj ⊂ Ri, we have
either si = sj ∧ ej 6 ei or ei = ej ∧ si 6 sj . The inserted row, Ri \ Rj ,
is therefore either 〈ej , ei〉 or 〈si, sj〉, which are both consecutive. Since this
holds for all inserted rows, matrix Ã has direct C1P under the given column
permutation. 2

The TestBandedmethod in Algorithm 12 uses Theorem 7.12 to recognize
banded matrices. It relies on a subroutine TestC1P that tests whether a
matrix has C1P, which can be done in linear time in the size of the matrix
(Section 3.2). The number of inserted rows in the band-conflict matrix Ã is
at most m(m− 1)/2, which gives time complexity O(m2n) for TestBanded.

Another algorithm comes from Theorem 7.5. We first check if a matrix
A has SC1P by testing C1P on both A and AT . Then A is banded if
and only if it does not contain any forbidden submatrices mentioned in
Theorem 7.5, which all have size 3 × 4 or 4 × 3. This algorithm has time
complexity O(m3n4 + m4n3). Lin and West [LW95] present a series of
improvements that lead to a time complexity O((m + n)2). They also
establish a result [LSW97] where the construction of Theorem 7.5 gives a
linear-time O(mn) recognition algorithm for bandedness (under the name
monotone consecutive arrangement). There is no pseudocode for either of
these algorithms.

106 7 Bandedness

Algorithm 12 TestBanded
Input: m× n binary matrix A
Output: is A banded?
1: Ã← A
2: for all row pairs (i, j) ∈ [m]× [m] such that Rj ⊂ Ri do

3: Define r as rk =

{
1 if k ∈ Ri and k /∈ Rj ,

0 otherwise,
for all k = 1, 2, . . . , n.

4: Insert row vector r in Ã // extra row
5: end for
6: return TestC1P(Ã) // “yes” if and only if Ã has C1P

7.4 Distance to direct bandedness

In this section we study the problem of finding a closest directly banded
matrix for a given matrix. We will give a polynomial-time algorithm for the
problem.

Problem 7.13 (Closest Directly Banded) Given a binary matrix A
and a nonnegative weight matrix W , find a binary matrix B that is directly
banded and minimizes the distance dW (A,B).

Given anm×nmatrix, Algorithm 13 solves Closest Directly Banded
in time O(mn2) by using dynamic programming much like in Algorithm 8.
Again, it is convenient to split the weight matrix into two partsW = U+V ,
where U contains the weights of 1-entries and V those of 0-entries. Denote
by Ar the submatrix of A that contains the rows 1, 2, . . . , r.

The algorithm proceeds row by row and keeps track of the distance from
Ar to a closest directly banded matrix by computing a 3-dimensional array
C. Each entry C(r, 〈s, e〉) represents the minimum distance from Ar to a
directly banded matrix whose rth row is 〈s, e〉. The algorithm relies on
dynamic programming and uses previously computed distances to compute
the distances on subsequent entries. We use consecutive vectors to represent
rows in this directly banded matrix. Once the algorithm has computed the
last row in C, the smallest distance on the last row is the minimum distance
from A to a directly banded matrix.

The algorithm applies the recurrence only to triplets of indices r, s, e
that satisfy 1 6 r 6 m and 1 6 s 6 e 6 n + 1, where m is the number
of rows and n is the number of columns. To initialize the recurrence, the
algorithm assigns consecutive vector 〈1, 1〉 (a row full of 0s) to the first row;
hence all 1s on the first row in A contribute to the distance.

7.4 Distance to direct bandedness 107

Algorithm 13 FindDirectBanded
Input: m× n binary matrix A, and nonnegative weights W
Output: minimum distance from A to a directly banded matrix

1: U ←
{
ui,j = wi,j , if ai,j = 1

ui,j = 0, if ai,j = 0
V ←

{
vi,j = 0, if ai,j = 1

vi,j = wi,j , if ai,j = 0
2: Compute the 3-dimensional array C using the recurrence:

C(1, 〈1, 1〉)←
n∑

j=1

u1,j

C(r, 〈s, e〉)← min{Ext(r, 〈s, e〉), Trun(r, 〈s, e〉), Move(r, 〈s, e〉)}
for s = 1, 2, . . . , n+ 1 and e = s, s+ 1, . . . , n+ 1

Ext(r, 〈s, e〉) = C(r, 〈s, e− 1〉) + vr,e−1 − ur,e−1
Trun(r, 〈s, e〉) = C(r, 〈s− 1, e〉)− vr,s−1 + ur,s−1

Move(r, 〈s, e〉) = C(r − 1, 〈s, e〉) +

s−1∑
j=1

ur,j +

e−1∑
j=s

vr,j +

n∑
j=e

ur,j

3: return minimum value associated with the last row in C

There are three ways to reach a consecutive vector 〈s, e〉 on a row r:
by extending a consecutive vector 〈s, e − 1〉, by truncating a consecutive
vector 〈s − 1, e〉, or moving from the row r − 1 that is 〈s, e〉. Together
these operators can produce any directly banded matrix. The minimum
from these three operators provides the minimum distance to C(r, 〈s, e〉).
Of these three values we ignore the ones that are not available. We next
describe these three operators Ext, Trun, and Move used in the recurrence.

• The value of Ext(r, 〈s, e〉) is available if and only if s < e. In effect, we
add one 1 more to 〈s, e− 1〉 on the row r, which becomes 〈s, e〉. The
distance from Ar then changes accordingly: we either add or subtract
the weight wr,e−1, depending on whether ar,e−1 = 0 or ar,e−1 = 1.

• The value of Trun(r, 〈s, e〉) is available if and only if s > 1. We flip
the leftmost 1 in 〈s − 1, e〉 into 0, which truncates the sequence of
1s in the vector. The distance from Ar then changes: we either add
or subtract the weight wr,s−1, depending on whether ar,s−1 = 1 or
ar,s−1 = 0.

• The value of Move(r, 〈s, e〉) is available if and only if r > 1. We fix the
consecutive vector 〈s, e〉 on the row r − 1 and move to the next row
r. Initially, the consecutive vector on the row r is identical to that of

108 7 Bandedness

the row r − 1. We need to compute the distance from Ar: it is the
distance from Ar−1 plus the errors, that is, the sum of weights on all
entries where 〈s, e〉 and the row r in A differ.

The minimum distance from A to direct bandedness is then the mini-
mum value among the last-row entries of C: min16s6e6n+1{C(m, 〈s, e〉)}.
We can also construct a directly banded matrix that is closest to A: trace a
sequence of Ext, Trun, and Move used to obtain the minimum distance and
deduce the consecutive vectors for every row.

The time complexity for FindDirectBanded is O(mn2) and comes from
computing the array C. Instead of using the weights in U and V directly, we
construct cumulative weight matrices on the rows of U and V beforehand.
With these cumulative matrices, we can evaluate in constant time all the
sums in FindDirectBanded. Alternatively, we can implement the algorithm
in O(n2) space, if we represent C as a 2-dimensional array and we replace
the distances for the row r−1 by the distances for the row r as we compute
them. Also, we need the weights and cumulative weights only for one row
at a time. The time requirement remains unaffected, however.

7.5 Distance to columns-bandedness

This section deals with a problem that seeks a closest columns-banded ma-
trix, that is, a directly banded matrix after a permutation of the rows.

Problem 7.14 (Closest Columns-Banded) Given a binary matrix A
and a nonnegative weight matrixW , find a binary matrix B that is columns-
banded and minimizes the distance dW (A,B).

To reveal the structure in a banded matrix, we need row and column
permutations that bring out direct bandedness. In Problem 7.14 we assume
that the columns of A have already been permuted, and all that is needed
to reveal its almost directly banded structure is to permute the rows.

We next introduce polynomial-time algorithms for Closest Columns-
Banded and dA-Closest Columns-Banded. All the algorithms work in
two phases. In the first phase we flip entries in the input matrix A so
that A has direct C1P. In the second phase we flip entries in A so that the
resulting matrix is columns-banded. The first two algorithms are motivated
by Theorem 7.8, and their second phase consists of eliminating all Sperner-
conflicts that prevent bandedness. In the third algorithm the second phase
flips entries in order to eliminate forbidden Sperner submatrices that were
introduced in Theorem 7.4.

7.5 Distance to columns-bandedness 109

Only the first method FindColBandedAug (Algorithm 14), which solves
dA-Closest Columns-Banded, is exact. The following two algorithms,
FindColBandedConf and FindColBandedForb, give upper bounds for Clos-
est Columns-Banded. These two heuristic algorithms do not come with
any kind of performance guarantee. In general, it seems that Problem 7.14
would still be NP-hard for a fixed permutation of the columns, although no
proof is known.

We obtain a distance from all these algorithms by comparing the input
matrix A to the output matrix B that is columns-banded. It is also easy to
find out a row permutation that establishes a directly banded pattern: sort
the rows 〈s, e〉 of B in ascending order of s, resolving ties with the ascending
order of their e.

7.5.1 Augmentation algorithm

Algorithm 14 solves dA-Closest Columns-Banded (only 0-to-1 flips) in
polynomial time. For notational convenience, we assume that all row vectors
are nonzero. Indeed, rows that have only 0s affect neither bandedness nor
the distance.

In the first phase we convert the input matrix A into a directly C1P
matrix. Knowing that only 0-to-1 flips are allowed, it is enough to flip all
0s that occur between two 1s on the same row, as on Lines 2–4. We ob-

Algorithm 14 FindColBandedAug
Input: m× n binary matrix A
Output: B is columns-banded and minimizes the distance dA(A,B)
1: B ← A
2: for all i = 1, 2, . . . ,m do
3: Flip all 0s falling between 1s on the row i in B
4: end for
5: for all i = 1, 2, . . . ,m do
6: Denote by ri = 〈si, ei〉 the ith row vector of B
7: C ← {〈sj , ej〉 | ri ≺ rj} // conflicting rows
8: Set ri = 〈x, y〉 from the following options so that y− x is minimum:
9: (a) x = min{sj | 〈sj , ej〉 ∈ C} and y = ei
10: (b) x = si and y = max{ej | 〈sj , ej〉 ∈ C}
11: (c) x = sj and y = max{ek | 〈sk, ek〉 ∈ C and sk < sj},

for every 〈sj , ej〉 ∈ C // several combinations of x and y
12: end for
13: return B

110 7 Bandedness

serve that this is the minimum number of flips needed. Because all directly
banded matrices have direct C1P, all solutions make at least the same flips.
In particular, this conversion still allows an optimal solution in terms of
fewest flips.

In the second phase we eliminate all conflicts that prevent bandedness.
Lines 5–12 ensure that row vectors are pairwise overlapping, that is ri _ rj
for all rows i 6= j. Since only 0-to-1 flips are allowed, the only way to
eliminate conflicts is to extend the row vectors. An extension of a consec-
utive vector ri = 〈s, e〉 means to flip 0s into 1s in the vector and keep it
consecutive; in other words, an extended row is 〈s′, e′〉 with s′ 6 s 6 e 6 e′.

We say that rj is a container of ri if rj properly contains ri, that is
ri ≺ rj . The algorithm finds out an optimal extension for each row vector
ri. To do so it selects all containers of ri, tests all the potential extensions of
ri, and chooses the extension that none of the containers properly contains.

An extension of ri that will always resolve all Sperner-conflicts for that
row can either be a left-hand side extension to the leftmost container (Line
9 (a)); a right-hand side extension to the rightmost container (Line 10 (b));
or, extending ri to both left and right-hand sides with a combination of two
containers (Line 11 (c)). This requires going through all containers rj and
pairing sj with the maximum ek, where rk contains ri and sk < sj . Each
(a), (b), and (c) eliminate all conflicts on row i. Eventually, for a row i
the algorithm takes the extension that represents the fewest flips.

Resolving the Sperner-conflicts for row i does not change the optimal
extension on the other rows j 6= i, that is, there is no cascading. To see this,
consider a row vector rk that is not properly included in ri = 〈si, ei〉 but
is included in extended r′i = 〈s′i, e′i〉. Let the row vector rj = 〈sj , ej〉 be a
container from which the extension of ri originates: we have either sj = s′i
or ej = e′i. Now the row vector rj contains rk by transitivity, and did that
even before ri was extended. This implies that when processing row k, its
optimal extension is independent of a previous extension on row i.

The FindColBandedAug algorithm requires polynomial time to solve dA-
Closest Columns-Banded exactly. The number of extensions is at most
the number of rows m, and each extension takes at most time O(m2) (es-
pecially Line 11 (c)), when we represent consecutive rows by the starting
and ending positions of 1s. The complexity of the algorithm is O(m3),
but a more detailed analysis gives a slightly better time complexity when
n < m. An easy parallelization is also possible on Lines 5–12, since there is
no cascading: we can compute the extensions independently for each row.

As an example, we show how FindColBandedAug converts a small matrix
into a columns-banded matrix.

7.5 Distance to columns-bandedness 1111 0 1 0
1 1 1 1
0 1 1 0

;

1 1 1 0
1 1 1 1
0 1 1 0

;

1 1 1 0
1 1 1 1
0 1 1 1

 (7.4)

We use two flips (in bold). The first flip makes the matrix direct C1P;
the second flip eliminates the Sperner-conflict between rows 2 and 3. This
renders the matrix columns-banded, and in this case it is directly banded
without reordering the rows.

7.5.2 Sperner-conflicts algorithm

Next we study an upper bound algorithm for Closest Columns-Banded
(Problem 7.14). The basic idea behind the algorithm is simple: first make
the input matrix A have direct C1P with minimum cost and then resolve all
Sperner-conflicts between rows. Despite the distant similarity, the details
are, however, largely different from Algorithm 14. Algorithm 15 produces
an upper bound for the problem. Again we may assume that all row vectors
are nonzero.

Algorithm 15 FindColBandedConf
Input: m× n binary matrix A, and nonnegative weight matrix W
Output: B̂ is columns-banded and the distance dW

(
A, B̂

)
is an upper

bound for the minimum distance
1: (d, B̂)← FindDirectC1P(A,W)
2: for all pairs of rows i, j in B̂ do
3: Let r and t = 〈s, e〉 be the ith and jth row vectors in B̂
4: if r ≺ t then

5: c← (cs, cs+1, . . . , ce−1), where ck =

{
+wi,k if rk = 0

−wi,k if rk = 1

6: (sum, a, b)← MaximumSubvector(c) such that s 6 a 6 b 6 e
7: Flip entries on the row i in B̂ so that the row remains consecutive

and Rj \Ri = {a, a+ 1, . . . , b− 1}.
8: end if
9: end for
10: return B̂

In the first phase we make A have direct C1P with minimum cost (Line
1). We recall that given a matrix A, FindDirectC1P (Algorithm 4) finds a
closest directly C1P matrix in linear time.

In the second phase (Lines 2–9), the matrix already has direct C1P,
and the algorithm proceeds by removing the Sperner-conflicts between row

112 7 Bandedness

vectors in a pairwise fashion. One useful technical observation comes from
Theorem 7.12: a matrix is banded if its band-conflict matrix with inserted
rows has C1P. Therefore, to eliminate all possible Sperner-conflicts between
the consecutive rows of A, the algorithm simply has to go through all the
inserted rows in Ã and make them consecutive. When we propagate the
changes back to A we end up with a banded matrix. As before, we can make
use of the MaximumSubvector algorithm on the extra rows of Ã to make them
consecutive. It only remains to update the rows in A so that they are kept
consistent with the changes made over Ã. The final obtained solution on
A will be columns-banded. Basically, this corresponds to selecting the low-
weight flips that will eliminate Sperner-conflicts in a pairwise comparison
of rows in A.

The time complexity for FindColBandedConf is O(m2n). One pass
through all the row pairs is enough to make matrix B̂ columns-banded:
after resolving a conflict between two rows, they either share a starting or
ending point of 1s, or one of them becomes a zero vector. This also holds
in the end.

Algorithm FindColBandedConf does not, however, give an exact solu-
tion for Problem 7.14. The reason resides in the second phase: rows are
compared in a pairwise fashion and globally beneficial flips may be missed.
As an example of how FindColBandedConf finds a columns-banded matrix,
consider the following.

1 0 1 0
0 1 1 0
0 1 0 0
1 1 1 1

;

1 1 1 0
0 1 1 0
0 1 0 0
1 1 1 1

;

1 1 1 0
0 1 1 1
0 0 0 0
1 1 1 1

 (7.5)

In the first phase, the algorithm flips one (bolded) entry to reach direct
C1P. Then under pairwise comparisons on rows, we observe that Sperner-
conflicts occur between row pairs (1, 3), (2, 4), and (3, 4). Two flips on rows
2 and 3 remove the conflicts, and the matrix is columns-banded. To make
it directly banded, move the last row between the first and second.

We get better upper bounds if we allow flips on either row i or j on Line
7, which also allows truncating the 1s on row j from left or right. Empirical
tests (not shown here) suggest that this method converges when all 0s share
the same weight and so do all 1s, but a proof is missing. Furthermore, there
is no guarantee this scheme works with arbitrary weights.

7.5 Distance to columns-bandedness 113

7.5.3 Forbidden submatrices algorithm

We recall the forbidden Sperner submatrices in (7.3) that separate C1P ma-
trices from those that are columns-banded. We use Theorem 7.9 to develop
an algorithm that eliminates forbidden submatrices by flipping entries until
there are no forbidden submatrices left and the matrix is banded. Note that
in case of bandedness, after we flip any entry in a forbidden submatrix, the
resulting submatrix is no longer forbidden.

Again we assume that matrix A already has direct C1P. If not, then we
invoke the first phase of Algorithm 15.

Let us study the forbidden Sperner submatrices that occur between two
consecutive row vectors ri = 〈si, ei〉 and rj = 〈sj , ej〉 in a matrix that has
direct C1P. If none of the rows properly contains the other row or either of
them is a zero vector, then ri and rj do not form a forbidden submatrix.
Assume the opposite, and let rj ≺ ri. To make it easier to count the total
number of forbidden submatrices between the rows i and j, we partition
the columns into five sets S1, S2, S3, S4, and S5 as follows.

S1 = {c | c < si}, |S1| = si − 1

S2 = {c | si 6 c < sj}, |S2| = sj − si
S3 = {c | sj 6 c < ej}, |S3| = ej − sj (7.6)
S4 = {c | ej 6 c < ei}, |S4| = ei − ej
S5 = {c | ei 6 c}, |S5| = n− ei + 1

For example, S3 contains the columns in which both rows have 1s, and S2
contains those columns c where only row i has 1 and c occurs before the
columns in S3. We observe that picking one column from each S2, S3, and
S4 forms a forbidden Sperner submatrix on the rows i and j. The number of
forbidden submatrices between the two rows is |S2| · |S3| · |S4|. In particular,
the number of forbidden submatrices between two rows can be computed
in constant time, given si, sj , ei, and ej .

We concentrate on certain entries in the matrix, called border entries.
A zero vector does not have border entries. Given a consecutive row vector
r = 〈s, e〉 that is nonzero, the entries on indices s − 1, s, e − 1, and e are
border entries. A row may have less than four border entries if s = e − 1,
s = 1, or e − 1 = n. In other words, the border entries on a row represent
the entries that occur next to the two borders of 0s and 1s on that row.

Theorem 7.15 A binary matrix A is columns-banded if and only if it has
direct C1P and none of its border entries belongs to a forbidden Sperner
submatrix.

114 7 Bandedness

Proof. By Theorem 7.9 we only need to show that a directly C1P matrix
A has forbidden submatrices if and only there exists a border entry in A
that belongs to a forbidden submatrix.

“If”: If a border entry belongs to a forbidden submatrix, then the sub-
matrix is also in A.

“Only if’: Assume thatA contains a forbidden submatrix on, say, columns
x, y, z. Let the two associated consecutive row vectors be 〈s1, e1 + 1〉 and
〈s2, e2 + 1〉. This situation looks like this:

s1 x s2 y e2 z e1
· · · 0 1 · · · 1 · · · 1 1 · · · 1 · · · 1 1 · · · 1 · · · 1 0 · · ·
· · · 0 0 · · · 0 · · · 0 1 · · · 1 · · · 1 0 · · · 0 · · · 0 0 · · ·

We observe that if the columns x, y, z form a forbidden submatrix, so do
the columns s1, y, e1. In particular, border entries on columns s1 and e1
belong to this forbidden submatrix. 2

This result gives rise to Algorithm 16 that flips border entries until all
forbidden submatrices have been eliminated. After each flip, the matrix still
has direct C1P, and Theorem 7.9 can be used. In particular the forbidden
submatrices are independent of the other rows: when we flip an entry, we can
count the exact number of eliminated forbidden submatrices by examining
the submatrices of that row alone.

If the consecutive row vectors are stored by the starting and ending
positions of 1s, then the subroutine NumBandForbOnRow (Algorithm 17),
takes time O(m) on a single row. Since each row has at most four border
entries, Algorithm 16 calls the NumBandForbOnRow method O(m) times per
flip. We can ensure convergence by never flipping an entry twice, which
leads to direct bandedness after at most mn flips. Without the restriction
there is no guarantee of convergence, although empirical tests indicate (not
shown here) that the algorithm produces a solution when 0s have a common
weight and 1s likewise.

An easy extension to the algorithm is to consider multiple flips at once:
for example, entries si, si+1, si+2 on row i may be flipped at the same time.
This results in a small improvement in the upper bound, but in practice the
running time increases significantly.

There is also an algorithm that eliminates different kinds of forbidden
submatrices. We know that a C1P matrix is also zero-partitionable, and
therefore the matrix is banded if and only if none of its submatrices is
one of those listed in Theorem 7.4. The algorithm counts for each entry
in how many forbidden submatrices it participates in, and then flips the
entry with the best elimination efficiency with respect to the weight of the
entry. The time complexity with a simple implementation is dominated by

7.5 Distance to columns-bandedness 115

Algorithm 16 FindColBandedForb
Input: m× n binary matrix A, and positive weight matrix W
Output: B̂ is columns-banded and the distance dW

(
A, B̂

)
is an upper

bound for the minimum distance
1: (d, B̂)← FindConsecutiveMatrix(A,W)
2: while forbidden submatrices exist do
3: F ← zero matrix of size m×n // number of eliminated submatrices
4: for all i = 1, 2, . . . ,m do
5: t← NumBandForbOnRow(B̂, i) // forb. submatrices on the row i
6: for all border entries b̂i,j on the row i do
7: flip the entry b̂i,j
8: fi,j ← t− NumBandForbOnRow(B̂, i)

9: flip the entry b̂i,j // cancel the latest flip
10: end for
11: end for
12: (r, c)← argmax(i,j) fi,j/wi,j // best elimination efficiency
13: flip the entry b̂r,c
14: end while
15: return B̂

Algorithm 17 NumBandForbOnRow
Input: m× n matrix A that has direct C1P, and row index i
Output: number of forbidden Sperner submatrices on the row i in A
1: c← 0 // number of forbidden submatrices on the row i
2: Let ri = 〈si, ei〉 be the ith row vector in A
3: if si < ei then // is not a zero vector?
4: for all nonzero rows j 6= i in A do
5: Let rj = 〈sj , ej〉 be the jth row vector in A
6: if rj ≺ ri then
7: c← c+ (sj − si) · (ej − sj) · (ei − ej)
8: else if ri ≺ rj then
9: c← c+ (si − sj) · (ei − si) · (ej − ei)
10: end if
11: end for
12: end if
13: return c

116 7 Bandedness

the number of such forbidden submatrices, which is O(min{m3n4,m4n3}).
This algorithm is probably slow for practical purposes.

7.6 Distance to bandedness

In this section we seek a closest banded matrix for a given matrix. In other
words, we are allowed to permute both the rows and columns to reveal an
almost banded pattern. We show that the problem is NP-hard.

Problem 7.16 (Closest Banded) Given a binary matrix A and a non-
negative weight matrix W , find a binary matrix B that is banded and mini-
mizes the distance dW (A,B).

To illustrate how difficult it is to find a closest banded matrix, consider
the following two examples. On the left we use only 0-to-1 flips to make the
matrix banded, whereas on the right both types of flips are allowed.

1 0 1 0
1 1 1 1
0 1 1 0

;

1 0 1 0
1 1 1 1
0 1 1 1

 ,

1 0 1 0
1 1 1 1
0 1 1 0
0 1 1 0

;

1 0 1 0
1 1 1 0
0 1 1 0
0 1 1 0

 (7.7)

On the left only one flip (in bold) is enough to transform the matrix into
a banded matrix: the third column in the matrix can be placed between
the first and second to show direct bandedness. On the right we observe
the same: direct bandedness appears by flipping one entry (in bold) and
reordering the columns as on the left.

Before proving that Closest Banded is NP-hard, recall the definition
of incidence matrices from page 14: Given an undirected graph G = (V,E)
with |V | = m and E = n, we construct anm×n binary matrix with vertices
as rows and edges as columns; entry at the row v and column e is 1 if v and
e are incident in G. For an example, see the matrix in (7.8).

The decision version of Closest Banded asks whether there exists a
banded matrix such that the distance from the input matrix is at most a
given d. Next we establish the NP-completeness of this decision problem.

Theorem 7.17 The decision version of Closest Banded is NP-complete.

Proof. The problem is in NP because we can recognize banded matrices
in polynomial time with the algorithms in Section 7.3. To show that the
problem is NP-hard, we use a reduction from the well-known NP-complete
problem Hamiltonian Path (Problem 2.5).

7.6 Distance to bandedness 117

In particular, we show that given an undirected graph G = (V,E) with
m vertices and n edges, G has a Hamiltonian path if and only if its inci-
dence matrix has deletion distance n− (m− 1) to a closest banded matrix
(minimum number of 1-to-0 flips).

“If:” Consider the m× n incidence matrix A of G. We notice that after
making one 1-to-0 flip on a column, the column has only one 1 left, and
can be included in any banded submatrix. Therefore the deletion distance
from A is the same as the number of columns on which flips are needed.
Because A has deletion distance n − (m − 1), in total m − 1 columns are
left intact in the flipped matrix. Since we know that the flipped matrix is
banded and no edge appears twice, the intact m − 1 columns must be like
e1, e2, . . . , em−1 in matrix (7.8), apart from row and column permutations.
Interpreted as edges, those columns define a Hamiltonian path in the graph
from which A was constructed. We obtain the actual order of vertices by
restricting ourselves to the intact columns (the ones that still have two 1s)
and setting as end-vertices the two rows (v1 and vm) that have just one 1
on the intact columns. After this, there is a unique way to order the rest of
the vertices so that they form a Hamiltonian path.

e1 e2 e3 ··· em−2 em−1 em ··· en

v1 1 0 0 0 0 1 0
v2 1 1 0 0 0 0 1
v3 0 1 1 0 0 1 0
v4 0 0 1 0 0 0 0
...

. . .
vm−2 0 0 0 1 0 0 0
vm−1 0 0 0 1 1 0 1
vm 0 0 0 0 1 0 0

(7.8)

“Only if:” Let v1, v2, . . . , vm and e1, e2, . . . , em−1 be the vertices and
edges that appear in a Hamiltonian path (in that order), and let the rest of
the edges be em, em+1, . . . , en in arbitrary order. Assuming these permuta-
tions, the incidence matrix of G looks like the matrix in (7.8).

We observe that the edges in the path form a banded submatrix. We flip
one 1 on each edge that is not included in the path. After these n− (m−1)
deletion-flips the resulting matrix is banded. Therefore n − (m − 1) is an
upper bound for the deletion distance.

The said distance is also a lower bound. To see this, consider a subset
of edges and the induced submatrix S of the incidence matrix A. Because
there are no duplicate columns in A, having more than m − 1 columns
in S leads (after careful examination) to a Tucker’s forbidden submatrix

118 7 Bandedness

[Tuc72] that prevents consecutive columns. If S is banded, it can contain
at most m − 1 columns. Thus, there are at least n − (m − 1) edges that
violate bandedness, each of which needs one 1-to-0 flip to make the matrix
A banded. 2

By the previous result, the decision versions of both Closest Banded
and dD-Closest Banded are NP-complete. The time complexity for dA
and dH remain open questions, but nonetheless, we expect both of them to
be hard. The basis of this assumption arises from Theorem 7.12 and the
result that computing the dA-distance on C1P is an NP-complete problem
[GJ79, Prob. SR16]. Also a problem related to bandedness, Bandwidth
Minimization of binary matrices is NP-complete [Pap76]. Section 2.4 es-
tablished the connection between bandedness and interval graphs.

7.7 Heuristic algorithms for closest banded

Since Closest Banded (Problem 7.16) is NP-hard, there is no polynomial-
time algorithm for the problem unless P=NP. Thus we develop heuristic
algorithms for practical use that scale well with the size of an input matrix,
although no guarantees can be given for performance.

The first class of algorithms works in two phases: (i) finding a per-
mutation of columns that establishes almost direct C1P, and (ii) flipping
entries in the directly C1P matrix until the matrix becomes banded. Given
an input matrix, we simply use the heuristic algorithms in Section 3.6 to
solve Closest C1P on the matrix, from which we obtain a column per-
mutation that establishes almost direct C1P. Given this permutation for
columns, we employ the columns-banded algorithms in Section 7.5 to make
the matrix banded, namely, SpectralOrdering or HamiltonianOrdering
is combined with the algorithms FindColBandedAug, FindColBandedConf,
or FindColBandedForb.

Using the Jaccard coefficient in heuristic algorithms seems convenient,
as it captures the particularities of bandedness where columns should be
increasingly overlapping one with the other. Indeed, for identical columns
the coefficient is 1 and for non-intersecting columns it is 0.

The second class of algorithms considers both row and column permu-
tations simultaneously, instead of splitting Problem 7.16 into two parts.
The algorithms of the second class are likely to lead to algorithms that
find smaller distances. We introduce three such algorithms: Alternating
and Simulated Annealing are new algorithms, whereas Barycentric is a
pre-existing method, now adapted to solve problems on bandedness.

7.7 Heuristic algorithms for closest banded 119

7.7.1 Alternating

The first of the algorithms follows from the observations that matrix A is
banded if and only if its transpose AT is banded, and transposing A does not
affect its distance to a closest banded matrix. This means that in practice we
can solve the Closest Banded problem on either A or AT . This suggests
the following alternating approach: Given the current column permutation,
we solve the columns-banded Problem 7.14 with any algorithm in Section
7.5 and obtain a good row permutation. Then we transpose the matrix and
keep on solving Problem 7.14 on transposed matrices until convergence, or
until a certain number of iterations is reached. The pseudocode of this
AlternatingBand method is shown in Algorithm 18.

Algorithm 18 AlternatingBand
Input: m×n binary matrix A, nonnegative weight matrixW , and number

of iterations t
Output: permutation σ for the rows and τ for the columns such that the

permuted matrix A is almost directly banded.
1: Let σ be a random permutation for the rows
2: M ← A; V ←W ; dbest ←∞
3: for all i = 1, 2, . . . , t do
4: M ←MT ; V ← V T ; τ ← σ // transpose, rows become columns
5: B̂ ← AnyColBandedAlgorithm(τ(M), τ(V)) // any such algorithm
6: Sort the rows 〈s, e〉 of B̂ in nondecreasing order of s, resolving ties

with nondecreasing e; let σ be the corresponding row permutation.
7: d← FindDirectBanded(σ(τ(M)), σ(τ(V)))
8: if d < dbest then

9: dbest ← d and let (σbest, τbest)←
{

(σ, τ) if i is even
(τ, σ) if i is odd

// new best

10: end if
11: end for
12: return (σbest, τbest)

Notice that the alternating strategy just described does not necessarily
converge for all matrices. Indeed, it is not possible to guarantee that the
distance to the closest banded matrix will decrease after each iteration. To
stop the alternating process, we bound the number of iterations by an input
parameter t. The output of this algorithm is a pair of permutations for the
rows and columns that achieved the minimum distance among the t iter-
ations. Given these permutations, we use FindDirectBanded (Algorithm
13) to obtain the minimum distance and a closest directly banded matrix.

120 7 Bandedness

For example, the banded structures in Figure 7.3 were found by the
AlternatingBand algorithm.

7.7.2 Barycentric

Another strategy that transposes the matrix is presented by the Barycentric
algorithm, used previously for example to draw graphs [STT81], to seriate
paleontological data [BK88], and more recently to reorder binary matrices
[MS05]. In essence, the Barycentric algorithm finds permutations for both
rows and columns such that 1s reside close to each other. It is based on a
barycenter measure, which is the average position of 1s in a row/column.
Given a binary matrix A, let the barycenter of row i be defined as follows:

Barycenter(i) =

∑n
j=1 j · ai,j∑n
j=1 ai,j

.

The Barycentric algorithm first computes the barycenter for all rows, then
it orders (stable ordering) the rows from smallest to largest barycenter,
and finally, it transposes the matrix A to iterate again following the same
strategy until convergence. Notice that this sorting process does not use flips
or compute in any way the borders of a direct band at any iteration. Indeed,
Barycentric only orders the rows and columns according to the barycenter
measure in an iterative fashion; one of its advantages is its simplicity.

7.7.3 Simulated annealing

The third algorithm for Closest Banded (Problem 7.16) is simulated
annealing [KGV83], which is a general stochastic optimization method. It
has been used successfully to solve various combinatorial problems.

The origin of simulated annealing comes from physics and metallurgy:
when the temperature of metal is decreased, the molecular structure tends
to move to a state that has low energy. If this annealing process is performed
slowly enough, the lowest-energy state is finally found.

To apply this method in finding banded patterns, we use states to reflect
the permutations of the rows and columns of the input matrix. The energy
value of a state is the distance from the permuted matrix to a closest directly
banded matrix. We seek permutations of the rows and columns (states) such
that the distance from the permuted matrix A to a directly banded matrix
(energy) is minimum. The search space includes all permutations of rows
and columns.

7.7 Heuristic algorithms for closest banded 121

Algorithm 19 SimulatedAnnealingBand
Input: m× n binary matrix A, nonnegative weight matrix W , number of

iterations t, temperature T , and temperature multiplier α
Output: permutation σ for the rows and τ for the columns such that the

permuted matrix A is almost directly banded.
1: (σcur, τcur)← random permutations for the rows and columns in A
2: Ebest ←∞; Ecur ←∞
3: for all i = 1, 2, . . . , t do
4: (σ, τ)← Neighbor(σcur, τcur) // generate a neighbor state
5: E ← FindDirectBanded(σ(τ(A)), σ(τ(W))) // candidate energy
6: if E < Ebest then // best solution so far?
7: Ebest ← E; (σbest, τbest)← (σ, τ)
8: end if
9: With probability min{1, e(Ecur−E)/T }: Ecur ← E; (σcur, τcur)← (σ, τ)
10: T ← αT // decrease temperature
11: end for
12: return (σbest, τbest)

Algorithm 19 describes the simulated annealing method. The algorithm
starts with a random state and a large temperature parameter T , such as 10.
The algorithm keeps track of the current state (permutations) of the system
all the time. The temperature is decreased at each iteration of the algorithm
until a pre-determined number of iterations has passed; a common choice
is to multiply the temperature by α ∈ [0.95, 1). At each iteration, a new
candidate state (permutations) is generated stochastically by a function
Neighbor. The candidate state is then accepted as a new current state
with a probability that depends on the difference of their energy values and
on the temperature: the lower the temperature, the more the algorithm
favors reductions in energy. In our case, the polynomial-time Algorithm 13,
FindDirectBanded, serves as the exact energy function.

We next define the details for the auxiliary method Neighbor for the
simulated annealing algorithm. The most important requirement for the
function Neighbor is that all states (in our case, permutations) in the search
space should be accessible by repeating the candidate generation process
repeatedly. We consider several candidate generation methods [TMZ99]
for finding good permutations and we apply them in our 2-dimensional
permutation problem. Given permutations for the rows and columns, all
the following methods describe how the permutations of the underlying
matrix change. We treat an ordering as a cycle: after the last row the first
row follows. We summarize the methods in the following.

122 7 Bandedness

• Swap-k: Choose two random rows and swap them; do the same for
two random columns. Repeat k times.

• Adj-swap-k: Randomly choose a row index r, then swap the (adja-
cent) rows r and r + 1; do the same for a randomly chosen column.
Repeat k times.

• Reverse: Choose two random row indices r and r′. Starting from r,
move forward in row order until r′ is found. Reverse the order of all
encountered rows, including r and r′. Do the same for columns.

• Relocate: Choose two random row indices r, r′, and a random integer
k ∈ {1, . . . , n}. Starting from r, move forward in row order until r′ is
found. Shift all encountered rows k steps forward in row order. Do
the same for columns.

• Reverse+Relocate: Apply both Reverse and Relocate methods si-
multaneously: first choose an interval of rows, then relocate the rows
and reverse their order. Do the same for columns.

We do not expect this stochastic method to be as competitive in terms
of running time as the other algorithms presented this far for the problem.
In practice the simulated annealing strategy comes with a high computa-
tional cost, but yields near-optimal results when implemented properly. For
this reason we use this strategy as a benchmark method for comparing the
different algorithms for bandedness.

7.8 Exact algorithms for closest banded

Next we give an exact MAX-SAT method for Closest Banded (Prob-
lem 7.16). As with all exponential-time exact methods, we do not expect
this method to be practical with matrices that have more than 20 rows or
columns.

Recall the SAT formulae for C1P in Section 3.7.1 and for nestedness in
Section 4.5. Given an m×n binary matrix A, we construct a propositional
logic formula in CNF that is satisfiable if and only if A is banded.

• To ensure consecutive rows, we need all the variables and clauses from
the C1P formula in Section 3.7.1. There are mn+ n(n− 1) entry and
pairwise order variables; antisymmetry, transitivity, and consecutivity
require n(n− 1) + n(n− 1)(n− 2) +mn(n− 1)(n− 2) clauses.

7.9 Banded submatrices 123

• Add band clauses for each ordered pair of rows (i, j) and each ordered
triplet of columns (a, b, c) in A.

No forbidden Sperner submatrices:
¬(Za<b ∧ Zb<c ∧ ei,a ∧ ei,b ∧ ei,c ∧ ¬ej,a ∧ ej,b ∧ ¬ej,c)

Same clause in CNF:
(¬Za<b ∨ ¬Zb<c ∨ ¬ei,a ∨ ¬ei,b ∨ ¬ei,c ∨ ej,a ∨ ¬ej,b ∨ ej,c)

The band clauses ensure that, given consecutive rows and a total order
on the columns, no forbidden Sperner submatrices exist as in (7.3).
Contributes m(m− 1)n(n− 1)(n− 2) clauses.

If a given assignment on this formula satisfies all its antisymmetry, transi-
tivity, consecutivity, and band clauses, the corresponding matrix is banded.
We require all these to be satisfied, and allow leaving some entry clauses
unsatisfied. Then a partial MAX-SAT solver finds an assignment that cor-
responds to a banded matrix that is dH-closest from A, and the actual
Hamming distance is the number of unsatisfied entry clauses. Moreover,
Closest Banded can be solved by a weighted MAX-SAT solver: the en-
try clauses have weights equal to the weightsW of the corresponding entries
in A and the other clauses have weights larger than the sum of all weights.
Using this formula, the minimum distance is the sum of the weights on
the entry clauses that are unsatisfied, when a weighted MAX-SAT solver
produces an assignment.

7.9 Banded submatrices

Sometimes only a part of a dataset is banded, but not the whole dataset.
Then it makes sense to find submatrices that are (almost) banded.

Problem 7.18 (Maximum-Size Banded Submatrix) Given a binary ma-
trix A, find in A a submatrix that is banded and maximizes a+ b, where a
is the number of rows in the submatrix and b that of columns.

Theorem 7.19 Maximum-Size Banded Submatrix is NP-hard.

Proof. Let M be the collection of all banded matrices. We note that
M is nontrivial: upper triangular matrices (page 35) are banded, but zero
diagonal matrices of size at least 3 × 3 are not banded. Collection M is
closed under permutation of rows and columns by definition. It is also
closed under deletion of the rows and columns, because bandedness has a

124 7 Bandedness

forbidden submatrix characterization. The result follows from Theorem 2.8,
becauseM contains upper triangular matrices with unbounded ranks. 2

As in Section 2.7, we introduce the problem of finding almost banded
submatrices that are useful with respect to a utility function f .

Problem 7.20 (Almost Banded Submatrix) Given a binary matrix A,
a nonnegative weight matrix W , and a fixed distance d, find a submatrix S
of A that has distance to bandedness at most d and maximizes the utility
f(S).

Solving Problem 7.20 is useful on datasets that contain several indepen-
dent band structures, and also when noise is too high to identify a banded
structure from the complete dataset. In essence, a solution extracts the most
relevant banded pattern in a dataset. Removing the rows and columns that
appear in a banded submatrix allows us to run the algorithm several times
and obtain a distinct submatrix every time.

For finding banded submatrices, we use FindSubmatrix (Algorithm 1)
that removes rows and/or columns one by one until the distance is within
acceptable range. We settle for measures recall, precision, and accuracy, and
leave the development of utility functions for bandedness as future work.

7.10 Experiments on synthetic data

In this section we demonstrate that our algorithms for bandedness are fast
in practice and tolerate noise in synthetic datasets.

7.10.1 Data generation

Given the number of rows m, that of columns n, and a width parameter 2w,
we describe how to generate a synthetic matrix that is banded. We rely on
generating a staircase path by a random walk along the matrix grid of an
m× n zero matrix. Starting at coordinate (0, 0), the random walk chooses
to move either one step down (i.e. from (i, j) to (i + 1, j)) or one step to
the right (i.e. from (i, j) to (i, j + 1)) with equal probabilities. Whenever
a step right is chosen, we will set to 1 all the w entries above the current
position and all the w entries below the current position (or less than w,
if i < w). The random walk always reaches the final position (m,n), and
when it does, the matrix has a clear solid band of maximum thickness 2w
like shown in Figure 7.1.

Additionally we can introduce noise, as in Section 2.5, by flipping the
original values from 0 to 1, or from 1 to 0, according to given probabilities
Pr(0-to-1) and Pr(1-to-0).

7.10 Experiments on synthetic data 125

We generate samples of 50 × 55 binary matrices, which are used in all
synthetic data experiments. The width parameter is 2w = 30, which yields
approximately a 50% fill of 1s. Before we run the experiments on these
matrices, we add noise and randomize the permutations on the rows and
columns. We prepare a variety of test settings, including both symmetric
noise (Pr(0-to-1) = Pr(1-to-0)) and asymmetric noise, and different distance
measures.

In all synthetic experiments we generated 30 sample matrices for each
one of our parameter settings. The plotted values in the figures of this
section are the averages of the values obtained from the samples. We will
next summarize the performance of our algorithms on synthetic data.

7.10.2 Methods

The algorithms used in the synthetic experiments include the following:
AlternatingBand, Barycentric, and SimulatedAnnealingBand, as well as
FindColBandedAug and FindColBandedConf coupled with several similarity
measures and column-ordering methods. We obtained the distances for the
algorithms by letting the algorithms choose the permutations for rows and
columns, and then running FindDirectBanded to evaluate the minimum
distance to direct bandedness.

In order to make the evaluation of algorithms more reliable, we intro-
duce two new benchmark methods, Random and Original. In the Random
method, the permutations for the rows and columns are selected randomly.
Another competitor is the Original method, which has access to the orig-
inal “correct” permutations. By correct we mean that the original directly
banded structure was generated under these permutations. Once noise has
been added, the matrix is no longer perfectly banded, but Original gives
good permutations nonetheless.

As expected, whenever noise exists, FindColBandedConf outperforms
FindColBandedAug, so we decided to leave FindColBandedAug out of the
results presented next. Preliminary results from FindColBandedForb sug-
gest that it performs slightly better than FindColBandedConf, but it is
also slower, and was not included in extensive experiments. Also the other
submatrix-eliminating algorithm in Section 7.5.3 was tried: the prelimi-
nary results from a simple implementation were promising, but the time
consumption hindered large-scale experiments.

For FindColBandedConf, we sorted the columns via SpectralOrdering
(Section 3.6.1) with three similarity measures: Pearson correlation, dot
product, and Jaccard similarity. We also experimented with finding the
column permutations with HamiltonianOrdering (Section 3.6.2) that uses

126 7 Bandedness

either the Hamming or Jaccard distance measure on columns. For visual
clarity, only the best results are shown: SpectralOrdering using the dot
product and HamiltonianOrdering with the Jaccard distance.

For SimulatedAnnealingBand, we first compared the neighbor schemes:
Swap-k and Adj-swap-k for k ∈ {1, 2, 4}, as well as Reverse, Relocate,
and Reverse+Relocate. The results are shown in Figure 7.4(a). Using
one million iterations and starting temperature 10 produced results that
we consider near-optimal. In terms of convergence speed, Swap-1 proved to
be the fastest, as seen in Figure 7.4(a). This scheme was chosen to be the
neighbor scheme for all experiments that include SimulatedAnnealingBand.

Because of the 2-dimensional nature of bandedness, the number of iter-
ations that SimulatedAnnealingBand needs is larger than other ordinary
permutation problems of the same size. We studied the convergence of
SimulatedAnnealingBand with the Swap-1 scheme extensively by using dif-
ferent numbers of iterations and temperature multipliers. Using a large
multiplier requires significantly more iterations, which makes the largest
multiplier values impractical for this experimental setting. We chose a
running-time limit of 2 minutes (per sample) and settled for the multiplier
α = 0.9999 with 100,000 iterations. Other parameter choices that satisfy

S S

S

S

S
S S S S S

Simulated annealing convergence

Iteration

H
am

m
in

g
di

st
an

ce

S S

S

S
S S S S S S

S
S

S

S
S

S S S S S

A A

A

A

A A A A A A

A A

A

A

A A A A A A

A A

A

A

A A A A A A

R
R

R

R
R

R R R R R

L
L

L

L

L L
L L

L
L

B B

B
B

B
B B B B B

A
S
A
B
A
L
S
R
S

Adj−swap−2
Swap−4
Adj−swap−1
Reverse+Relocate
Adj−swap−4
Relocate
Swap−2
Reverse
Swap−1

0 100000 300000 500000

500

600

700

800

900

(a) SimulatedAnnealingBand

Alternating method convergence

Iteration

H
am

m
in

g
di

st
an

ce

1 41 81 121 161 201

500

600

700

800

900

(b) AlternatingBand

Figure 7.4: Displayed on the left (a) is the convergence analysis of
SimulatedAnnealingBand with different Neighbor schemes; on the right
(b) is the analysis of AlternatingBand. On the y-axes are the minimum
Hamming distances to bandedness; on the x-axes are the iterations used.

7.10 Experiments on synthetic data 127

the time limit were tested but they failed to produce better results. The
chosen parameter combination is conservative: the temperature is allowed
to drop low enough so that further improvement is unlikely, thus reducing
variance. These parameters yield Hamming distances that are, on average,
3% higher than those from one million iterations.

In most cases, both AlternatingBand and Barycentric converge fast,
taking on average less than 30 iterations to find good permutations, regard-
less of the matrix size and initial permutations. After the first iterations,
the AlternatingBand algorithm does not strictly converge towards an op-
timal solution, but starts oscillating, as seen in Figure 7.4(b). Because of
this, we always return the best solution among the first 100 iterations.

7.10.3 Results

We performed two types of tests. In the first test we studied the Hamming
distances obtained from the algorithms when the banded datasets contained
symmetric or asymmetric noise. In the second test we compared the ground-
truth permutation to the ones obtained from the algorithms.

We added symmetric noise to a sample of 30 synthetically generated
banded matrices and then ran each algorithm to obtain an upper bound
for dH-Closest Banded. The average results from the 30 runs for each
method are shown in Figure 7.5(a). We observe that both AlternatingBand
and SimulatedAnnealingBand consistently perform as well as the Original
method, and at high noise levels, they perform even better. This is a good
sign since only Original has access to the original permutations. The other
methods do not beat Original until extreme noise levels. Whenever we talk
about Spectral or Hamiltonian, we mean the FindColBandedConf method
that uses either SpectralOrdering or HamiltonianOrdering to preorder
the columns. We noticed that non-optimal cycle-to-path transformations
cause Hamiltonian to have a large variance.

In the asymmetric noise case we chose to fix one of the noise probabil-
ities as Pr(0-to-1) = 0.1 and added different levels (Pr(1-to-0)) of asym-
metric noise to the input matrices; again, with a sample of 30 matrices in
total. To make the comparison reliable, we use the Hamming distance.
As in the symmetric noise case, the average result of 30 runs was col-
lected for each method; the results are shown in Figure 7.5(b). Again, the
AlternatingBand algorithm and SimulatedAnnealingBand perform very
well, beating Original at noise levels Pr(1-to-0) > 0.25. Overall it seems
that AlternatingBand produces the best results on average, although we
noticed its variance to be a bit larger than that of SimulatedAnnealingBand.
Curiously, the Barycentricmethod performs poorly here: at high noise lev-

128 7 Bandedness

Hamming distance average

Symmetric noise, log scale

H
am

m
in

g
di

st
an

ce
 a

ve
ra

ge

A A A
A

A

A

A

A

S S S
S

S

S

S

S

B
B B

B

B

B

B

B

H H H
H

H

H

H
H

D D
D

D

D

D

D

D

O O O
O

O

O

O

O
R R R R R R R R

A
S
B
H
D
O
R

Alternating
Simulated annealing, 100k
Barycentric
Hamiltonian+Jaccard
Spectral+Dot product
Original permutations
Random permutations

0.00 0.01 0.02 0.04 0.08 0.16 0.32

0

200

400

600

800

1000

1200

(a) Symmetric noise

Hamming distance average

Asymmetric noise (for 1−to−0 flips)
H

am
m

in
g

di
st

an
ce

 a
ve

ra
ge

A

A

A

A

A

A
A

A A A
A

A
A

A

A
A

A

A
A

A

A

S

S

S

S

S
S

S
S S S S

S
S

S

S

S

S

S
S

S

S

B

B

B

B

B

B
B

B
B

B
B

B
B

B

B

B

B

B

B

B

B

H

H

H
H

H
H

H
H H H

H
H

H
H

H

H

H

H

H

H

H

D

D

D

D

D

D

D
D

D
D

D
D

D
D

D

D

D

D

D

D

D
O

O

O

O

O

O

O

O
O

O
O

O
O

O

O

O

O

O

O

O

O

R
R

R

R

R

R

R

R

R

R

R

A
S
B
H
D
O
R

Alternating
Simulated annealing, 100k
Barycentric
Hamiltonian+Jaccard
Spectral+Dot product
Original permutations
Random permutations

0.00 0.15 0.30 0.45 0.60 0.75 0.90

100

200

300

400

500

600

700

(b) Asymmetric noise

Figure 7.5: Displayed on the left (a) are the average Hamming distances
from the synthetic experiment with symmetric noise; on the right (b) the
same with asymmetric noise Pr(1-to-0) when Pr(0-to-1) = 0.1. On the y-
axes are the Hamming distances (average of 30 samples); on the x-axis sym-
metric and asymmetric noise probabilities. Algorithms AlternatingBand
and SimulatedAnnealingBand are the best performers.

els, the results barely beat a random permutation. The Spectral method
performs a bit better, whereas the results for Hamiltonian are mixed:
mediocre results at low noise levels; good results at high noise levels.

In addition to distance measurements, we want to know how well our
methods can recover the original permutations after we have added noise
and randomly reordered the rows and columns. For this we use the Spear-
man rank correlation, which compares two sets of rankings and computes a
correlation coefficient that describes the similarity of the rankings. Here we
understand a ranking as an ordering of rows and columns. We compare two
rankings, namely original and recovered : the original ranking is the same
as the row order in the generation process of noiseless data; the recovered
ranking comes from a row ordering retrieved by any of our algorithms. The
correlation value 1.0 means perfect agreement between the rankings; values
close to 0.0 indicate that there is no correlation between the two.

The results of the rank correlation experiment with symmetric noise are
shown in Figure 7.6(a). We see that none of the methods dominates the oth-
ers: at low noise levels under 0.15, the Spectral method is able to recover

7.10 Experiments on synthetic data 129

Rank correlation

Symmetric noise

R
an

k
co

rr
el

at
io

n
m

ea
n

A A A A
A

A
A

A

A

B
B B B B

B B

B

B

H
H

H H

H

H
H

H

H

D D D
D D

D

D

D

D

A
B
H
D

Alternating
Barycentric
Hamiltonian+Jaccard
Spectral+Dot product

0.00 0.10 0.20 0.30 0.40

0.2

0.4

0.6

0.8

1.0

(a) Symmetric noise

Rank correlation

Asymmetric noise (for 1−to−0 flips)

R
an

k
co

rr
el

at
io

n
m

ea
n

W W W
W

W
W W W

W
W W W

W

W

W

W W

B B B B B B
B B B

B B
B

B B

B

B

B

I I

I I

I

I
I

I
I I

I

I I

I

I I

I

E E E E
E

E
E E

E
E

E
E

E E

E
E

E

W
B
I
E

Alternating+Weights
Barycentric
Hamiltonian+Jaccard+Weights
Spectral+Dot product+Weights

0.00 0.15 0.30 0.45 0.60 0.75

0.2

0.4

0.6

0.8

1.0

(b) Asymmetric noise

Figure 7.6: Displayed on the left (a) are the results of rank correlation on
symmetric noise: correlations between the original row permutation and a
permutation from an algorithm. Displayed on the right (b) are the results of
rank correlation on asymmetric noise Pr(1-to-0) when Pr(0-to-1) = 0.1. On
the y-axes are the mean measurements of Spearman rank correlation from
30 samples; on the x-axes are the symmetric and asymmetric noise proba-
bilities. The weight parameter was passed to the methods with “+Weights”.

the original order almost perfectly; from 0.15 to 0.30, the AlternatingBand
algorithm seems to be the best choice; at levels of noise over 0.30, the
Barycentric method is the best. Overall, these three methods are good
in recovering the original row order. Hamiltonian, however, is able to
find the original order only at the lowest noise levels. Occasionally the
AlternatingBand method converges towards local minimum, as demon-
strated by the correlation value below 1.0 with noiseless data.

The results of correlation with asymmetric noise are shown in Figure
7.6(b). To better deal with asymmetric noise, we analyze the input data
and pass a weight parameter to the methods (except for Barycentric). We
use a simple but effective weighting scheme: compute the relative proportion
of 1s and 0s in the input matrix, namely p1 and p0, where p1 + p0 = 1. If
the weight for a 0-entry is 1, then the weight of a 1-entry is log(p1)/ log(p0).

Unlike the other methods, Barycentric is almost unaffected by the type
of noise (symmetric, asymmetric), and needs no weight parameter. Once we
have analyzed a weight parameter from the input data, AlternatingBand
and Spectral perform well. Until noise level 0.6 these methods are the best

130 7 Bandedness

Runtime (ms) Barycentric Alternating Hamiltonian Spectral Simulated
Matrix size (100 iterations) (100 iterations) Annealing

50× 50 2 12 4 8 136,000
200× 200 24 150 120 170 –
800× 800 240 2,110 4,850 12,050 –

3200× 3200 4,250 44,300 344,800 1,163,000 –

Table 7.1: Running times for the algorithms (in ms) with matrices that
have 50% fill and 10% symmetric noise.

at recovering original permutations that establish almost direct bandedness.
As was the case with symmetric noise, the Hamiltonian method has larger
variance and has difficulties in recovering the original order.

Table 7.1 shows running-time examples for the algorithms. The fastest
methods are Barycentric and AlternatingBand, even though both per-
form 100 iterations. Their running times increase steadily with the size of
an input matrix, whereas the increase is more pronounced for Hamiltonian
and Spectral. Overall, most of the methods are able to handle large ma-
trices in reasonable time.

7.11 Experiments on real-world data

In the next sections we will present a variety of real-world datasets, es-
pecially from life sciences. We show that our algorithms discover almost
banded patterns and the results have meaningful interpretations.

7.11.1 Mammals data

The Mammals dataset was described in Section 6.7.1. We use its transpose:
we have presence/absence records of 124 European mammals (columns) in
2,179 locations (rows).

Figure 7.7(a) shows the band obtained by the AlternatingBand algo-
rithm that uses the Hamming distance. We see an almost nested structure
of locations and mammals so far unknown in the dataset. The correla-
tion between the ordering of the sites and the temperature variable is 0.64,
which affirms that the temperature of a location heavily affects the diversity
of mammal species living there. Furthermore, the nested structure is dense:
of the 54,155 total 1s in the dataset, 70% of them are accumulated within
the direct band retrieved by AlternatingBand (Figure 7.7(b)). The matrix
has Hamming distance 23,997 to a banded matrix (upper bound).

For comparison, Figure 7.7(c) shows the data as seen by the Barycentric

7.11 Experiments on real-world data 131

Mammal species

E
ur

op
ea

n
lo

ca
tio

ns

(a) Mammals data by
AlternatingBand

Mammal species
E

ur
op

ea
n

lo
ca

tio
ns

(b) Extracted banded part
from (a)

Mammal species

E
ur

op
ea

n
lo

ca
tio

ns

(c) Mammals data by
Barycentric

Figure 7.7: Permuted Mammals data. Displayed on the left (a) is the data
permuted by AlternatingBand that uses the Hamming distance; in the
middle (b) is a depiction of the borders of the band, that is, all the 1s in
the Mammals data (70%) that belong to the pattern; on the right (c) is
the Mammals data as permuted by Barycentric. The permutation of the
locations (rows) has strong correlations with latitude (0.92) and average
temperatures (−0.85) of the locations.

method. The Hamming distance from this matrix to a banded matrix is
42041 (upper bound). Nonetheless, the row ordering has high correlation
with certain variables associated with the location, such as latitude (0.92)
and average temperature (−0.85).

It seems that both AlternatingBand and Barycentric produce rea-
sonable, yet visually different results here: AlternatingBand prefers large
dense clusters of 1s, whereas Barycentric assumes that all the rows and
columns belong to the banded pattern. Which shape is preferable depends
on the application. Note that assigning different weighting schemes causes
the AlternatingBand method to change the shape of the band.

7.11.2 Dialect data

The Dialect dataset [EW00], originally published in 1940, contains data
about the usage of dialectical features in spoken Finnish language. The
data is in binary form and represents 1,334 phonological features and their
usage in 506 municipalities.

The basic division of Finnish dialects has long remained static among
linguistics. The division into two dialects results in the Western and East-
ern dialects; further divisions bring out more detail inside these two main
dialects. Figure 7.8(a) displays the known division into eight dialect areas.

132 7 Bandedness

(a) Traditional division into 8 dialect areas (b) Municipalities in band-order

Figure 7.8: Displayed on the left (a) is the traditional division of the
Finnish-speaking municipalities into eight areas by their dialects; on the
right (b) is a visualization of an ordering of the municipalities, obtained from
AlternatingBand. The position of a municipality in the band-ordering is
depicted by its color, ranging from black to white. For each area in (a) the
associated municipalities share roughly the same grayscale color in (b). The
ordering of the band has captured the main variation between the Western
and Eastern dialects without any use of spatial data.

7.11 Experiments on real-world data 133

We used both AlternatingBand and Barycentric on the Dialect data
to uncover a band structure. In Figure 7.9(a) we display the best ordering
found by AlternatingBand after 1,000 iterations. It visually indicates a
band where 65% of the original 1s belong to the banded pattern, despite
the noise in the data. For comparison purposes, Figure 7.9(b) shows the
band of the Barycentric method. The two bands are very different: while
AlternatingBand aims at creating dense bands of 1s, the Barycentric
method aims at creating wider banded patterns.

Municipalities

D
ia

le
ct

 fe
at

ur
es

(a) AlternatingBand band

Municipalities

D
ia

le
ct

 fe
at

ur
es

(b) Barycentric band

Figure 7.9: Displayed on the left (a) is the Dialect data permuted by
AlternatingBand; on the right (b) is the data permuted by Barycentric.
The Hamming distances to direct bandedness are 54,461 and 105,410.

From AlternatingBand we obtain a permutation for municipalities,
which can be interpreted as a crude estimate of the dialect spoken in a
municipality: the ordering captures the variation from the Western dialects
to Eastern dialects. Indeed, the municipalities interpolated from the or-
dering are plotted in Figure 7.8(b). We can see that this interpolation is
similar to the known division shown in Figure 7.8(a), despite some out-
liers. The outliers are those municipalities that have exceptionally small
number of data points (1s). Of course the dialectical variation cannot be
fully described by a single ordering: some municipalities do not fit anywhere
in the linear order, for example those in Karelia. The results show many
geographically coherent dialect areas, although the algorithm did not have
access to spatial information about the municipalities.

134 7 Bandedness

7.11.3 Paleontological data

Recall the Paleontological data in Section 6.7.2: we have binary information
on 139 fossil genera (columns) from 124 sites (rows). The banded structure
found in the Paleontological dataset is shown in Figure 7.10. The result is
given by the AlternatingBandmethod, and the ordering of the rows reflects
the relative ages of the sites.

Species

S
ite

s

Figure 7.10: The Paleontological data permuted by AlternatingBand where
the weights for the 1-entries are four times those for the 0-entries.

As is common with data gathering in real-world, the Paleontological
data has more missing 1s than false 1s. Therefore 0-entries should have
smaller weights than 1-entries. In general it is difficult to select the best
weights for a real-world application, and many criteria for “correct” band-
shape can be given. On this dataset, we decided that each 1-entry has a
weight that is four times that of a 0-entry, as it matches our estimation of
error rates.

7.11.4 DNA amplification data

The DNA amplification data is available upon request from the authors of
[MHB+06]. It contains information on the DNA copy number amplifica-
tions recorded in 4,590 cases (rows) and 393 specific chromosomal locations
(columns). A 0-entry denotes no DNA copy number amplification in the
corresponding chromosomal location, and a 1-entry denotes a finding in the
DNA copy number amplification in the location. More than this we also
have available the neoplasm labels (cancer label) coupled to the cases of the
matrix.

The goal is to investigate DNA amplifications in different neoplasms
types. This justifies a solution where different subsets of columns and rows

7.12 Conclusions 135

can be evaluated separately, so we will run FindSubmatrix (Algorithm 1) to
find such banded submatrices. We use SpectralOrdering with dot product
to reorder the columns, and FindColBandedConf to obtain ground-truth
matrices. As utility measures, we use the performance measures accuracy
and precision, while allowing a Hamming distance of at most 100 to a banded
submatrix.

Figures 7.11(a,b) show the two submatrices retrieved from the original
data, found by accuracy and precision. For both submatrices we observe
immediately that the distance to a directly banded submatrix is relatively
small, with almost no noise outside the band. The submatrices are largely
distinct: they identify different reduced collections of cancer types.

Chromosomes

P
at

ie
nt

s

(a) DNA submatrix with accuracy

Chromosomes

P
at

ie
nt

s

(b) DNA submatrix with precision

Figure 7.11: Two submatrices from the DNA data. Displayed on the left
(a) is a 1,402 × 282 submatrix, found by FindSubmatrix that uses ac-
curacy as the utility function; on the right (b) is a 291 × 244 submatrix
(with precision). Both submatrices have their Hamming distances to direct
bandedness at most 100. We used a combination of FindColBandedConf,
SpectralOrdering, and dot product to compute accuracy and precision.

7.12 Conclusions

We introduced a new data mining concept, banded patterns in binary matri-
ces, which illustrates the variation of attributes in the data. In particular,
bandedness is a generalization of nested patterns, and a special case of
SC1P matrices. The theoretical results on bandedness, both old and new,
give rise to polynomial-time recognition algorithms as well as exact and

136 7 Bandedness

heuristic algorithms for finding a closest banded matrix. The idea is to
use a combinatorial view on a dataset to uncover hidden banded structures
from the data.

The first set of algorithms relies on fixing a column permutation before-
hand. We then lift this column permutation requirement and propose two
new algorithms that search for both column and row permutations at the
same time. We use synthetically generated data to show that the proposed
algorithms are able to detect almost banded structures in reasonable time.

Experiments on real-world datasets show that bands occur in a wide
range of applications, from life sciences to dialect data. For two of the
datasets, we discover previously unknown banded structures that have nat-
ural interpretations in the final ordering of the rows and columns. Our
results suggest that a hierarchy of mammals exists in Mammals occurrence
data. For the word dialect data we have discovered that the banded struc-
ture has captured the main variation between the Eastern and Western
dialects of the spoken Finnish language.

We see several directions for future work. First, relaxing the requirement
of binary values opens an opportunity to form banded patterns from, say,
positive integers or real values. The structure in a banded pattern can
then be described through the variation from large to small values within
the pattern. Second, finding banded submatrices more efficiently [ABJ10]
allows analyzing larger datasets. Third, analyzing TestBanded (Algorithm
12) and the inserted rows more closely may improve the time complexity.
Fourth, for applications it would be crucial to develop a null model for
bandedness: is the banded structure statistically significant in data?

Chapter 8

Discussion

We have described a framework of reorderable patterns that considers dif-
ferent permutations of the rows and columns of a matrix. The goal is not
to modify the data, but to reorganize the data so as to reveal its hidden
structure.

The reorderable patterns presented in this thesis form a sequence in
which a pattern includes all matrices that have a more specific pattern,
namely, let N , B, S, C, Z, and M be the following patterns: nested,
banded, SC1P, C1P, zero-partitionable, and all binary matrices. Then we
have the following chain of proper inclusions.

N ⊂ B ⊂ S ⊂ C ⊂ Z ⊂M (8.1)

Of course, this selection of patterns is incomplete and many patterns
are missing; for example, the pattern of k-nestedness cannot be included
in the chain. Another matrix pattern not studied here, but related to k-
nestedness, is laminarity : in a collection of sets each two sets are either
disjoint or one is a subset of the other.

To see that the inclusions are proper, we give examples of minimum-size
matrices that separate the patterns in (8.1). The first matrix in (8.2) is not
in N but is in B, and the last one is not in Z but it is inM; the rest of the
matrices fall between the patterns similarly.

B[
1 0
0 1

] S1 1 1 0
0 1 1 1
0 0 1 0

C

1 1 1
0 0 1
0 1 0
1 0 0

Z1 1 0 0

1 0 1 0
1 0 0 1

M0 1 1

1 0 1
1 1 0

 (8.2)

By studying the combinatorial properties of consecutive, nested, k-
nested, and banded patterns, we developed efficient algorithms for recog-

137

138 8 Discussion

nizing these patterns in noise-free binary matrices. For example, there exist
polynomial-time algorithms for recognizing the following patterns: C1P,
SC1P, nestedness, k-nestedness, and bandedness. If the dataset contains
noise, however, the problem becomes that of finding a closest matrix that
has the reorderable pattern. Alas, the results on computational complexity
suggest that such problems are often NP-hard, and we need to settle for
heuristic or approximative approaches.

When solving some matrix-related problems it is convenient to view a
binary matrix as a bipartite graph, and vice versa. Thus, we can have the
best from both worlds, which helps to develop both theory and algorithms.
The field of data analysis has long been dominated by real-valued meth-
ods such as principal component analysis and clustering. Therefore it is
intriguing to see that purely combinatorial methods find meaningful pat-
terns in real-world datasets. However simple datasets binary matrices may
present, matrix decomposition methods designed for binary data perform
well [MMG+08] in comparison to more established decomposition methods.

Some notable problems remain open. In this thesis we concentrated on
weighted distances, but we can consider each specific distance separately,
such as the augmentation, deletion and Hamming distances. Indeed, the
computational complexity results are known only for some of these dis-
tances. One notable open problem is the time complexity of dH-Closest
Nested. In addition, we do not know the complexity of computing the
dH-distance to a closest C1P, SC1P, or banded matrix. Same holds for dA-
Closest Banded and Closest Columns-Banded. We expect that all
these problems are NP-hard. On the other hand, there is a polynomial-
time algorithm [Mül97] for recognizing whether a graph is a directed in-
terval graph. Since zero-partitionable matrices and adjacency matrices of
directed graphs differ only by diagonal entries (self-loops), this could lead
to a polynomial-time algorithm for checking zero-partitionability.

The experimental results reported in this thesis show that a variety of
structures that appear in real-world datasets can be described by reorder-
able patterns. Furthermore, new heuristic algorithms are able to detect
these patterns automatically. Once detected, these patterns offer a dif-
ferent view on the dataset, which often helps to understand the hidden
structure and processes behind the data. In particular, tests on synthetic
data verify that the heuristic methods find reorderable patterns reliably.
However, since reordering the rows and columns only produces one linear
order for each set of attributes, the descriptive power of reorderable patterns
is limited in cases where the structure is richer than that.

139

Detecting that a real-world dataset almost has a pattern is not enough—
we need a statistical significance test to assess whether the pattern is ex-
ceptional or a mere occurrence of random chance. In this thesis we concen-
trated on nestedness and showed that the selection of a null model is not
straighforward. The other patterns would benefit from a null model, too:
for example, Contin could be used to test whether bandedness is significant.

Even if we find a pattern in a real-world dataset, we cannot tell whether
the pattern has an important meaning or if it is just a by-product of another
pattern. For example, we can see a nested dataset as a C1P matrix, if we
are looking for such consecutive patterns, but consecutiveness alone cannot
explain all the processes behind the dataset. Of course, simple models
and patterns cannot fully explain real-world datasets, but they still give a
direction. To distinguish better between different pattern classes, such as
C1P and nestedness, we need specifically developed null models.

The distance from a matrix to a pattern is an absolute measure. In
addition to using statistical inference, we could also develop a relative mea-
sure. To measure how strong a pattern is in a matrix, we can take into
account, for example, the distance, the dimensions of the matrix, and the
number of 1s. We can employ also a null model as a part of the measure,
like in nestedness intensity.

It is worthwhile to ask whether there are any alternatives to the flips-
based distance measure used. The approach in this thesis is based on earlier
work on edit distances that assume independent entries and flips. Still, in
some applications it might be beneficial to fine-tune the distance measure to
deal with known dependencies in the dataset. Indeed, adding dependency
to the error models may produce more realistic matrices, which increases
the relevancy of synthetic tests. Developing such a dependent error model is
of course application-sensitive, and requires expertise on the topic at hand.

A generalization from binary patterns to multivariate patterns is possi-
ble. For example, a generalization from binary nestedness into multivariate
values could contain any nonnegative integers, with largest values in the
innermost layer (top-left corner) and 0s in the outermost layer of values.
We can also consider generalizing the patterns into higher dimensions: the
patterns described in this thesis appear on two-dimensional matrices, but
also more general patterns on n-dimensional tensors can be studied. For
example, a three-dimensional tensor could contain two-dimensional data at
several points in time. In addition to global patterns and submatrices, we
could also consider datasets that consist of two parts: pattern-part and
noise-part. The challenge would be to identify the rows and columns of the
data that have relevant structure, despite noisy rows and columns.

140 8 Discussion

References

[ABH98] Jonathan E. Atkins, Erik G. Boman, and Bruce Hendrickson.
A spectral algorithm for seriation and the consecutive ones
problem. SIAM Journal on Computing, 28(1):297–310, 1998.

[ABJ10] Faris Alqadah, Raj Bhatnagar, and Anil G. Jegga. Mining
maximally banded matrices in binary data. In Proceedings
of the 10th SIAM International Conference on Data Mining
(SDM’10), pages 942–953, 2010.

[AIS93] Rakesh Agrawal, Tomasz Imieliński, and Arun N. Swami. Min-
ing association rules between sets of items in large databases.
In SIGMOD Conference, pages 207–216, 1993.

[AKNW95] Farid Alizadeh, Richard M. Karp, Lee Aaron Newberg, and
Deborah K. Weisser. Physical mapping of chromosomes: A
combinatorial problem in molecular biology. Algorithmica,
13(1–2):52–76, 1995.

[ANGG+08] Mário Almeida-Neto, Paulo Guimarães, Paulo R. Guimarães,
Jr, Rafael D. Loyola, and Werner Ulrich. A consistent met-
ric for nestedness analysis in ecological systems: reconciling
concept and measurement. Oikos, 117(8):1227–1239, 2008.

[ANGL07] Mário Almeida-Neto, Paulo R. Guimarães, Jr, and Thomas M.
Lewinsohn. On nestedness analyses: rethinking matrix tem-
perature and anti-nestedness. Oikos, 116(4):716–722, 2007.

[AP93] Wirt Atmar and Bruce D. Patterson. The measure of order and
disorder in the distribution of species in fragmented habitat.
Oecologia, 96(3):373–382, 1993.

[APÇ04] Cevdet Aykanat, Ali Pinar, and Ümit V. Çatalyürek. Per-
muting sparse rectangular matrices into block-diagonal form.

141

142 References

SIAM Journal on Scientific Computing, 25(6):1860–1879,
2004.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advan-
tages of careful seeding. In Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms (SODA’07), pages 1027–
1035, 2007.

[BBD06] Pablo Burzyn, Flavia Bonomo, and Guillermo Durán. NP-
completeness results for edge modification problems. Discrete
Applied Mathematics, 154(13):1824–1844, 2006.

[Ben84] Jon Bentley. Programming pearls: algorithm design tech-
niques. Communications of the ACM, 27(9):865–871, 1984.

[Ber99] Jacques Bertin. Graphics and graphic information processing.
In Stuart K. Card, Jock Mackinlay, and Ben Shneiderman,
editors, Readings in information visualization: using vision to
think, pages 62–65. Morgan Kaufmann, San Francisco, USA,
1999.

[Ber02] Pavel Berkhin. Survey of clustering data mining techniques.
Technical report, Accrue Software, Inc., 2002.

[BJMO03] Jordi Bascompte, Pedro Jordano, Carlos J. Melián, and
Jens M. Olesen. The nested assembly of plant-animal mu-
tualistic networks. Proceedings of the National Academy of
Sciences USA (PNAS), 100(16):9383–9387, 2003.

[BK88] James C. Brower and Kenneth M. Kile. Seriation of an original
data matrix as applied to paleoecology. Lethaia, 21(1):79–93,
1988.

[BKG+05] Arindam Banerjee, Chase Krumpelman, Joydeep Ghosh, Sug-
ato Basu, and Raymond J. Mooney. Model-based overlapping
clustering. In Proceedings of the 11th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD’05),
pages 532–537, 2005.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the con-
secutive ones property, interval graphs, and graph planarity
using PQ-tree algorithms. Journal of Computer and System
Sciences, 13(3):335–379, 1976.

References 143

[Boo75] Kellogg S. Booth. PQ-tree algorithms. PhD thesis, University
of California, 1975.

[Bru80] Richard A. Brualdi. Matrices of zeros and ones with fixed row
and column sum vectors. Linear Algebra and its Applications,
33:159–231, 1980.

[BRV10] Guillaume Blin, Romeo Rizzi, and Stéphane Vialette. A
faster algorithm for finding minimum Tucker submatrices. In
Fernando Ferreira, Benedikt Löwe, Elvira Mayordomo, and
Luís Mendes Gomes, editors, Programs, Proofs, Processes, vol-
ume 6158 of Lectures Notes in Computer Science, pages 69–77.
2010.

[BS99] Richard Brualdi and James Sanderson. Nested species subsets,
gaps, and discrepancy. Oecologia, 119(2):256–264, 1999.

[BYGL+08] Ziv Bar-Yossef, Ido Guy, Ronny Lempel, Yoëlle S. Maarek,
and Vladimir Soroka. Cluster ranking with an application to
mining mailbox networks. Knowledge and Information Sys-
tems, 14(1):101–139, 2008.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern In-
formation Retrieval. Addison-Wesley, 1999.

[CC03] George W. Cobb and Yung-Pin Chen. An application of
Markov chain Monte Carlo to community ecology. American
Mathematical Monthly, 110(4):265–288, 2003.

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for
the travelling salesman problem. Technical Report Report 388,
Graduate School of Industrial Administration, CMU, 1976.

[CHSY10] Cedric Chauve, Utz-Uwe Haus, Tamon Stephen, and Vivija P.
You. Minimal conflicting sets for the consecutive ones property
in ancestral genome reconstruction. Journal of Computational
Biology, 17(9):1167–1181, 2010.

[CL09] Keke Chen and Ling Liu. “Best K”: critical clustering struc-
tures in categorical datasets. Knowledge and Information Sys-
tems, 20(1):1–33, 2009.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms. MIT Press and
McGraw-Hill, second edition, 2001.

144 References

[CM69] Elizabeth Cuthill and James M. McKee. Reducing the band-
width of sparse symmetric matrices. In Proceedings of the 1969
24th ACM National Conference, pages 157–172, 1969.

[CNHS00] Emmanuelle Cam, James D. Nichols, James E. Hines, and
John R. Sauer. Inferences about nested subsets structure when
not all species are detected. Oikos, 91(3):428–434, 2000.

[DG99] Jitender S. Deogun and K. Gopalakrishnan. Consecutive re-
trieval property — revisited. Information Processing Letters,
69(1):15–20, 1999.

[DGN10] Michael Dom, Jiong Guo, and Rolf Niedermeier. Approxima-
tion and fixed-parameter algorithms for consecutive ones sub-
matrix problems. Journal of Computer and System Sciences,
76(3–4):204–221, 2010.

[Die10] Reinhard Diestel. Graph Theory, volume 173 of Graduate
Texts in Mathematics. Springer-Verlag, Heidelberg, fourth edi-
tion, 2010.

[Dil50] Robert P. Dilworth. A decomposition theorem for partially
ordered sets. The Annals of Mathematics, Second Series,
51(1):161–166, 1950.

[Eli75] Peter Elias. Universal codeword sets and representations of
the integers. IEEE Transactions on Information Theory, IT-
21(2):194–203, 1975.

[EW00] Sheila M. Embleton and Eric S. Wheeler. Computerized di-
alect atlas of Finnish: Dealing with ambiguity. Journal of
Quantitative Linguistics, 7(3):227–231, 2000.

[FG65] Delbert R. Fulkerson and Oliver A. Gross. Incidence ma-
trices and interval graphs. Pacific Journal of Mathematics,
15(3):835–855, 1965.

[FL02] Joern Fischer and David B. Lindenmayer. Treating the nested-
ness temperature calculator as a ”black box” can lead to false
conclusions. Oikos, 99(1):193–199, 2002.

[FL05] Joern Fischer and David B. Lindenmayer. Perfectly nested or
significantly nested – an important difference for conservation
management. Oikos, 109(3):485–494, 2005.

References 145

[FM95] Gerhard H. Fischer and Ivo W. Molenaar, editors. Rasch
Models: Foundations, Recent Developments, and Applications.
Springer-Verlag, 1995.

[FMT09] Tomás Feder, Heikki Mannila, and Evimaria Terzi. Approxi-
mating the minimum chain completion problem. Information
Processing Letters, 109(17):980–985, 2009.

[For08] Mikael Fortelius. Neogene of the old world database of fos-
sil mammals (NOW), 2008. URL: http://www.helsinki.fi/
science/now.

[FSO+10] Miguel A. Fortuna, Daniel B. Stouffer, Jens M. Olesen, Pedro
Jordano, David Mouillot, Boris R. Krasnov, Robert Poulin,
and Jordi Bascompte. Nestedness versus modularity in eco-
logical networks: two sides of the same coin? Journal of
Animal Ecology, 79(4):811–817, 2010.

[Gal86] Zvi Galil. Efficient algorithms for finding maximum matching
in graphs. Computing Surveys, 18(1):23–38, 1986.

[GC06] Michelle Greve and Steven L. Chown. Endemicity biases
nestedness metrics: a demonstration, explanation and solu-
tion. Ecography, 29(3):347–356, 2006.

[GD82] Michael Gilpin and Jared Diamond. Factors contributing to
non-randomness in species co-occurrences on islands. Oecolo-
gia, 52(1):75–84, 1982.

[GGKS95] Paul W. Goldberg, Martin C. Golumbic, Haim Kaplan, and
Ron Shamir. Four strikes agains physical mapping of DNA.
Journal of Computational Biology, 2(1):139–152, 1995.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. WH
Freeman Co, New York, 1979.

[GJM08] Gemma C. Garriga, Esa Junttila, and Heikki Mannila. Banded
structure in binary matrices. In Proceedings of the 14th ACM
SIGKDD Conference on Knowledge Discovery and Data Min-
ing (KDD’08), pages 292–300, 2008.

[GJM11] Gemma C. Garriga, Esa Junttila, and Heikki Mannila. Banded
structure in binary matrices. Knowledge and Information Sys-
tems, 28(1):197–226, 2011. doi: 10.1007/s10115-010-0319-7.

http://www.helsinki.fi/science/now
http://www.helsinki.fi/science/now

146 References

[GKSS08] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart
Selman. Satisfiability solvers. In Frank van Harmelen,
Vladimir Lifschitz, and Bruce Porter, editors, Handbook of
Knowledge Representation, chapter 2. Elsevier, 2008.

[GN02] Michelle Girvan and Mark E. Newman. Community structure
in social and biological networks. Proceedings of the National
Academy of Sciences USA (PNAS), 99(12):7821–7826, 2002.

[Goe03] Bart Goethals. Survey on frequent pattern mining. Technical
report, Helsinki Institute for Information Technology HIIT,
2003.

[Got00] Nicholas J. Gotelli. Null model analysis of species co-
occurrence patterns. Ecology, 81(9):2606–2621, 2000.

[GPI09] Javier Galeano, Juan M. Pastor, and Jose M. Iriondo.
Weighted-interaction nestedness estimator (WINE): a new es-
timator to calculate over frequency matrices. Environmental
Modelling & Software, 24(11):1342–1346, 2009.

[HFEM07] Hannes Heikinheimo, Mikael Fortelius, Jussi Eronen, and
Heikki Mannila. Biogeography of European land mammals
shows environmentally distinct and spatially coherent clusters.
Journal of Biogeography, 34(6):1053–1064, 2007.

[HG02] Mohammad Taghi Hajiaghayi and Yashar Ganjali. A note on
the consecutive ones submatrix problem. Information Process-
ing Letters, 83(3):163–166, 2002.

[HLO08] Federico Heras, Javier Larrosa, and Albert Oliveras. Mini-
MaxSat: An efficient weighted Max-SAT solver. Journal of
Artificial Intelligence Research, 31:1–32, 2008.

[Hsu02] Wen-Lian Hsu. A simple test for the consecutive ones property.
Journal of Algorithms, 43(1):1–16, 2002.

[HWS06] Christopher L. Higgins, Michael R. Willig, and Richard E.
Strauss. The role of stochastic processes in producing nested
patterns of species distributions. Oikos, 114(1):159–167, 2006.

[HY01] Mark H. Hansen and Bin Yu. Model selection and the princi-
ple of minimum description length. Journal of the American
Statistical Association, 96(454):746–774, 2001.

References 147

[JK11] Esa Junttila and Petteri Kaski. Segmented nestedness in bi-
nary data. In Proceedings of the 11th SIAM International Con-
ference on Data Mining (SDM’11), pages 235–246, 2011.

[JTM10] Esa Junttila, Evimaria Terzi, and Heikki Mannila. Sensitiv-
ity of nestedness measures to noise. Unpublished manuscript,
2010.

[JXFD08] Ruoming Jin, Yang Xiang, David Fuhry, and Feodor F. Dra-
gan. Overlapping matrix pattern visualization: a hypergraph
approach. In Proceedings of the 8th IEEE International Con-
ference on Data Mining (ICDM’08), pages 313–322, 2008.

[KGV83] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Op-
timization by simulated annealing. Science, 220(4598):671–
680, 1983.

[Knu93] Donald E. Knuth. The Stanford GraphBase: a platform for
combinatorial computing. ACM, New York, USA, 1993.

[Lii10] Innar Liiv. Seriation and matrix reordering methods: An
historical overview. Statistical Analysis and Data Mining,
3(2):70–91, 2010.

[LIPJ+06] Thomas M. Lewinsohn, Paulo Inácio Prado, Pedro Jordano,
Jordi Bascompte, and Jens M. Olesen. Structure in plant–
animal interaction assemblages. Oikos, 113(1):174–184, 2006.

[LSW97] In-Jen Lin, Malay K. Sen, and Douglas B. West. Classes of
interval digraphs and 0,1-matrices. In Proc. 28th SE Conf.
Congressus Numer., volume 125, pages 201–209, 1997.

[LW95] In-Jen Lin and Douglas B. West. Interval digraphs that are
indifference digraphs. In Y. Alavi and A. Schwenk, editors,
Graph theory, Combinatorics, and Algorithms, pages 751–765.
Wiley, New York, 1995. Also in: Proc. 7th Intl. Conf. Graph
Th. Comb. Alg., Kalamazoo, 1992.

[LY80] John M. Lewis and Mihalis Yannakakis. The node-deletion
problem for hereditary properties is NP-complete. Journal of
Computer and System Sciences, 20(2):219–230, 1980.

[Max11] Max-SAT Evaluation web page, 2011. URL: http://maxsat.
ia.udl.cat/.

http://maxsat.ia.udl.cat/
http://maxsat.ia.udl.cat/

148 References

[MHB+06] Samuel Myllykangas, Johan Himberg, Tom Böhling, Balint
Nagy, Jaakko Hollmén, and Sakari Knuutila. DNA copy num-
ber amplification profiling of human neoplasms. Oncogene,
25(55):7324–7332, 2006.

[Mie05] Taneli Mielikäinen. Summarization Techniques for Pattern
Collections in Data Mining. PhD thesis, University of Helsinki,
2005.

[MMG+08] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gau-
tam Das, and Heikki Mannila. The discrete basis prob-
lem. IEEE Transactions on Knowledge and Data Engineering,
20(10):1348–1362, 2008.

[MO04] Sara C. Madeira and Arlindo L. Oliveira. Biclustering algo-
rithms for biological data analysis: A survey. IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
1(1):24–45, 2004.

[MP04] István Miklós and János Podani. Randomization of presence-
absence matrices: comments and new algorithms. Ecology,
85(1):86–92, 2004.

[MS00] Erkki Mäkinen and Harri Siirtola. Reordering the reorder-
able matrix as an algorithmic problem. In Proceedings of the
1st International Conference on the Theory and Application
of Diagrams (Diagrams’00), pages 453–467. Springer-Verlag,
2000.

[MS05] Erkki Mäkinen and Harri Siirtola. The barycenter heuristic
and the reorderable matrix. Informatica, 29(3):357–363, 2005.

[MS07] Jeffrey E. Moore and Robert K. Swihart. Toward ecologically
explicit null models of nestedness. Oecologia, 152(4):763–777,
2007.

[MT07] Heikki Mannila and Evimaria Terzi. Nestedness and seg-
mented nestedness. In Proceedings of the 13th ACM
SIGKDD Conference on Knowledge Discovery and Data Min-
ing (KDD’07), pages 480–489, 2007.

[Mül97] Haiko Müller. Recognizing interval digraphs and interval bi-
graphs in polynomial time. Discrete Applied Mathematics,
78:189–205, 1997.

References 149

[MZK+09] Gabriela Moise, Arthur Zimek, Peer Kröger, Hans-Peter
Kriegel, and Jörg Sander. Subspace and projected cluster-
ing: experimental evaluation and analysis. Knowledge and
Information Systems, 21(3):299–326, 2009.

[NB07] Anders Nielsen and Jordi Bascompte. Ecological net-
works, nestedness and sampling effort. Journal of Ecology,
95(5):1134–1141, 2007.

[NH79] Simeon C. Ntafos and S. Louis Hakimi. On path cover prob-
lems in digraphs and applications to program testing. IEEE
Transactions on Software Engineering, 5(5):520–529, 1979.

[OR00] Marcus Oswald and Gerhard Reinelt. Polyhedral aspects of the
consecutive ones problem. In Ding-Zhu Du, Peter Eades, and
Xuemin Lin, editors, Computing and Combinatorics, volume
1858 of Lecture Notes in Computer Science, pages 373–382.
Springer, 2000.

[OR03] Marcus Oswald and Gerhard Reinelt. The weighted consec-
utive ones problem for a fixed number of rows or columns.
Operations Research Letters, 31(5):350–356, 2003.

[OR09] Marcus Oswald and Gerhard Reinelt. The simultaneous con-
secutive ones problem. Theoretical Computer Science, 410(21–
23):1986–1992, 2009.

[Osw03] Marcus Oswald. Weighted consecutive ones problems. PhD
thesis, Ruprecht-Karls-Universität Heidelberg, 2003.

[PA86] Bruce D. Patterson and Wirt Atmar. Nested subsets and the
structure of insular mammalian faunas and archipelagos. Bi-
ological Journal of the Linnean Society, 28(1–2):65–82, 1986.

[Pap76] Christos H. Papadimitriou. The NP-completeness of the band-
width minimization problem. Computing, 16(3):263–270, 1976.

[Pat87] Bruce D. Patterson. The principle of nested subsets and its
implication for biological conservation. Conservation Biology,
1(4):323–334, 1987.

[PFM06] Kai Puolamäki, Mikael Fortelius, and Heikki Mannila. Seri-
ation in paleontological data using Markov chain Monte Carlo
methods. PLoS Computational Biology, 2(2), 2006.

150 References

[PHL04] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace
clustering for high dimensional data: a review. SIGKDD Ex-
plorations Newsletter, 6(1):90–105, 2004.

[Ras60] George Rasch. Probabilistic Models for Some Intelligence and
Attainment Tests. Danmarks Paedogogiske Institut, Copen-
hagen, Denmark, 1960. Reprinted 1993 by MESA Press.

[RGS06] Miguel A. Rodríguez-Gironés and Luis Santamaría. A new al-
gorithm to calculate the nestedness temperature of presence–
absence matrices. Journal of Biogeography, 33(5):924–935,
2006.

[RJB07] Enrico L. Rezende, Pedro Jordano, and Jordi Bascompte. Ef-
fects of phenotypic complementarity and phylogeny on the
nested structure of mutualistic networks. Oikos, 116(11):1919–
1929, 2007.

[Rob69] Fred S. Roberts. Indifference graphs. In Frank Harary, editor,
Proof Techniques in Graph Theory, pages 139–146. Academic
Press, New York, 1969.

[Ros68] Richard Rosen. Matrix bandwidth minimization. In Proceed-
ings of the 1969 23rd ACM National Conference, pages 585–
595, 1968.

[RSL77] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M.
Lewis, II. An analysis of several heuristics for the traveling
salesman problem. SIAM Journal on Computing, 6(3):563–
581, 1977.

[Rys57] Herbert John Ryser. Combinatorial properties of matrices of
zeros and ones. Canadian Journal of Mathematics, 9:371–377,
1957.

[Rys60] Herbert John Ryser. Matrices of zeros and ones. Bulletin of
the American Mathematical Society, 66(6):442–464, 1960.

[SAP10] Brice X. Semmens, Peter J. Auster, and Michelle J. Paddack.
Using ecological null models to assess the potential for marine
protected area networks to protect biodiversity. PLoS ONE,
5(1), January 2010.

[Sat11] The international SAT competitions web page, 2011. URL:
http://www.satcompetition.org/2011/.

http://www.satcompetition.org/2011/

References 151

[SF07] Nuria Selva and Miguel A. Fortuna. The nested structure of
a scavenger community. Proceedings of the Royal Society B,
274(1613):1101–1108, 2007.

[SS94] Malay K. Sen and Barum K. Sanyal. Indifference digraphs:
A generalization of indifference graphs and semiorders. SIAM
Journal on Discrete Mathematics, 7(2):157–165, 1994.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Meth-
ods for visual understanding of hierarchical system struc-
tures. IEEE Transactions on Systems, Man and Cybernetics,
11(2):109–125, 1981.

[TMZ99] Peng Tian, Jian Ma, and Dong-Mo Zhang. Application of the
simulated annealing algorithm to the combinatorial optimisa-
tion problem with permutation property: An investigation of
generation mechanism. European Journal of Operational Re-
search, 118(1):81–94, 1999.

[TP07] Juan T. Timi and Robert Poulin. Different methods, different
results: temporal trends in the study of nested subset patterns
in parasite communities. Parasitology, 135(1):131–138, 2007.

[Tuc72] Alan Tucker. A structure theorem for the consecutive 1’s prop-
erty. Journal of Combinatorial Theory, Series B, 12(2):153–
162, 1972.

[TZ07] Jinsong Tan and Louxin Zhang. The consecutive ones subma-
trix problem for sparse matrices. Algorithmica, 48(3):287–299,
2007.

[UANG09] Werner Ulrich, Mário Almeida-Neto, and Nicholas J. Gotelli.
A consumer’s guide to nestedness analysis. Oikos, 118(1):3–17,
2009.

[UG07a] Werner Ulrich and Nicholas J. Gotelli. Disentangling commu-
nity patterns of nestedness and species co-occurrence. Oikos,
116(12):2053–2061, 2007.

[UG07b] Werner Ulrich and Nicholas J. Gotelli. Null model analysis of
species nestedness patterns. Ecology, 88(7):1824–1831, 2007.

152 References

[UPGM09] Antti Ukkonen, Kai Puolamäki, Aristides Gionis, and Heikki
Mannila. A randomized approximation algorithm for comput-
ing bucket orders. Information Processing Letters, 109(7):356–
359, 2009.

[Vel85] Marinus Veldhorst. Approximation of the consecutive ones
matrix augmentation problem. SIAM Journal on Computing,
14(3):709–729, 1985.

[vL07] Ulrike von Luxburg. A tutorial on spectral clustering. Statis-
tics and Computing, 17(4):395–416, 2007.

[Vuo10] Niko Vuokko. Consecutive ones property and spectral order-
ing. In Proceedings of the 10th SIAM International Conference
on Data Mining (SDM’10), pages 350–360, 2010.

[Wes98] Douglas B. West. Short proofs for interval digraphs. Discrete
Mathematics, 178:287–292, 1998.

[WPM+98] David H. Wright, Bruce D. Patterson, Greg M. Mikkelson,
Alan Cutler, and Wirt Atmar. A comparative analysis of
nested subset patterns of species composition. Oecologia,
113(1):1–20, 1998.

[WZ98] Bo-Ying Wang and Fuzhen Zhang. On the precise number
of (0,1)-matrices in A(R,S). Discrete Mathematics, 187(1–
3):211–220, 1998.

[Yan81a] Mihalis Yannakakis. Computing the minimum fill-in is NP-
complete. SIAM Journal on Algebraic and Discrete Methods,
2(1):77–79, 1981.

[Yan81b] Mihalis Yannakakis. Node-deletion problems on bipartite
graphs. SIAM Journal on Computing, 10(2):310–327, 1981.

[YCM98] Chang-Wu Yu, Gen-Huey Chen, and Tze-Heng Ma. On the
complexity of the k-chain subgraph cover problem. Theoretical
Computer Science, 205(1–2):85–98, 1998.

Index

accuracy, 20
acyclic inclusion graph, 51, 76
adjacency matrix, 8, 15
Agglo, 87
agglomerative clustering, 87
AlternatingBand, 119
anti-nestedness, 54
antisymmetry, 32
ApproxAugNested, 46
asymmetric noise, 17
augmentation distance dA, 9

band-conflict matrix, 104
banded, 97, 98
bandwidth, 99
Barycentric, 120
binary, 7
bipartite graph, 8
branch and bound, 33, 50

consecutive-ones property, C1P, 24
chain, 16, 38, 74, 78
circular-ones, 25, 26
closest columns-banded pattern, 108
closest direct pattern, 11, 22, 27, 42, 106
closest pattern, 12, 28, 44, 78, 116
columns-banded, 98
conflict-weight, 87
Conjugate, 41
conjugate integer partition, 39
conjunctive normal form, CNF, 31
consecutive vector, 22
correlation similarity, 30, 128
CountingSort, 40

data mining, 2
deletion distance dD, 9
direct, 11
direct C1P, 24
direct SC1P, 25
directly banded, 98
directly nested, 37
distance, 9
distance graph, 28
distance to a pattern, 10
distance vector, 23
dot product, 30
dynamic programming, 22, 42, 51, 106

error, 16, 18

Ferrers diagram, 38
FindColBandedAug, 109
FindColBandedConf, 111
FindColBandedForb, 115
FindConsecutive, 23
FindDirectC1P, 27
FindDirectBanded, 107
FindDirectNested, 43
FindSubmatrix, 20
fixed permutation, 11
flip, 9
forbidden submatrix, 13, 24–26, 39, 102,

103, 113, 123

GreedyNested, 48

Hamiltonian, 127
Hamiltonian path, 14, 30, 116
Hamming distance dH, 9

153

154 Index

Hamming distance on vectors, 30
HamiltonianOrdering, 30
hereditary, 13

incidence matrix, 14, 79
included in a consecutive vector, 22
inclusion graph, 51, 76
integer partition, 38
interval graph, 15, 26

Jaccard, 30

k-consecutive, 25
k-Cut, 86
k-means++, 85
k-nested, 74

LowerBoundAugNested, 45

Mannila-Terzi, 85
matrix, 7
MaximumSubvector, 23
minimum description length, MDL, 87
misclassifications, 16
missing data, 16

Neighbor, 121
nested, 38
nestedness intensity, 60
noise, 16
nontrivial, 19
null model, 18, 57

Original, 17, 87, 125

p-value, 17, 18, 60
pattern, 10
permutation, 8
precision, 20
proper inclusion, 102

Random, 87, 125
Rasch model, 61
recall, 20
recognition, 11, 26, 40, 76, 104
reject, 17
reorderable pattern, 10
reordering, 10, 12

Ryser class, 39

satisfiability, SAT, 31, 49, 82, 122
segmented nestedness, 74
set interpretation, 8
significance test, 17
similarity graph, 28
simulated annealing, 13, 120
SimulatedAnnealingBand, 121
simultaneous consecutive-ones, SC1P, 25
singular value decomposition, SVD, 85
Spearman rank correlation, 128
Spectral, 127
spectral methods, 29
SpectralOrdering, 29
Sperner, 102, 103, 113, 123
Sperner-conflict, 104
staircase path, 38, 40, 42, 88, 101, 124
statistical significance, 17, 60
submatrix, 7, 18, 35, 50, 123
subset-similarity matrix, 85
subvector, 22
SVD-k-Baseline, 85
SVD-k-Sim, 85
switch box, 39
symmetric noise, 17
synthetic data generation, 16, 61, 89,

124

TestBanded, 106
TestC1P, 26
TestNested, 41
Type I error, 18
Type II error, 18

upper triangular, 35
utility, 19

vector, 7

zero diagonal, 35
zero matrix, 7
zero vector, 7, 22
zero-partitionable, 15, 24

Notation

Notation Explanation
⊆,⊂ subset, proper subset
[k] set {1, 2, . . . , k}
a vector
ai entry of the vector a at index i
A matrix, set, or list
ar,c entry of the matrix A at row index r, column index c
AT transpose of a matrix A (for all entries aTr,c = ac,r)
|s| s is a number: absolute value of the number s
|S| S is a set: cardinality of the set S (the number of elements)
Ã band-conflict matrix constructed from a matrix A
Â matrix that is in some sense close to a matrix A
Ri, Cj set interpretation of the row i and column j (positions of 1s)
〈s, e〉 consecutive binary vector with 1s on the indices

s, s+ 1, . . . , e− 1 and 0s elsewhere
m× n size of a matrix: m rows, n columns
U × V cartesian product of two sets U and V
dW (A,B) distance from the matrix A to B relative to weights W
dA, dD, dH augmentation, deletion, and Hamming distance on matrices
G = (V,E) graph with the vertex set V and edge set E
G = (R ∪ C,E) bipartite graph with vertex sets R (rows) and C (columns)

and edge set E ⊆ R× C
P pattern: set of binary matrices that have a certain property
π, σ, τ permutation; σ for rows, τ for columns
Problem font used for problems
Method font used for algorithms and methods
Other font used for other technical elements

155

Errors found in my doctoral thesis Patterns in
Permuted Binary Matrices

Esa Junttila

August 8, 2011

Pages 46 and 47: Algorithm 10, Theorems 4.9 and 4.10 The reasoning
in the proof of Theorem 4.9 has a flaw. The entry (r3, c3) used in the proof is
assumed to have value 1 in the input matrix. Yet, it is possible that the entry has
been flipped from 0 to 1 by Algorithm 10. There are matrices where Algorithm
10 generates a new switch box, which makes the resulting matrix non-nested.

An example: Given the matrix A below, Algorithm 10 transforms it to B,
which contains a switch box.

A =

0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

 ; B =

1 1 1 1
1 1 0 1
1 0 1 1
1 1 1 1

Consequences:

1. The proofs for Theorems 4.9 and 4.10 are not valid. Both Theorems may
still be true, but no proofs or counter-examples are known for them.

2. Tight examples (in the proof of Theorem 4.10) hold nonetheless.

3. Repeating Algorithm 10 will lead to a nested matrix. This works because
a submatrix full of 1s is nested.

4. On page 48, the corrective move in Algorithm 11 can be implemented by
repeating Algorithm 10 (instead of running it only once).

5. The rest of the thesis remains unaffected.

1

	Introduction
	Organization
	Contributions

	Preliminaries
	Binary matrices
	Matrix distance
	Reorderable patterns
	Patterns in graphs
	Error models
	Significance testing
	Patterns in submatrices

	Consecutive ones
	Consecutivity
	Consecutive matrices
	Recognizing consecutive matrices
	Distance to directly consecutive patterns
	Distance to consecutive patterns
	Heuristic algorithms for closest C1P
	Spectral ordering
	Hamiltonian ordering

	Exact algorithms for closest C1P
	MAX-SAT algorithm
	Branch and bound algorithm

	C1P submatrices

	Nestedness
	Theoretical results
	Recognition of nestedness
	Distance to direct nestedness
	Distance to nestedness
	Lower bound algorithm
	Approximation algorithm
	Greedy upper bound algorithm

	Exact algorithms for closest nested
	Nested submatrices

	Significance testing for nestedness
	Nestedness in ecology
	Methods and datasets
	Measures of nestedness
	Null models
	Significance of nestedness
	Data and error models

	Results
	Results on Rasch data
	Results on Rocky Mountain data
	Results on synthetic data

	Discussion

	Segmented nestedness
	The concept of segmented nestedness
	Recognition of k-nestedness
	Distance to k-nestedness
	Heuristic algorithms for closest k-nested
	Choosing k with MDL
	Experiments on synthetic data
	Data generation
	Distance test
	Classification test
	MDL test

	Experiments on real-world data
	Mammals data
	Paleontological data

	Conclusions and further research

	Bandedness
	The concept of bandedness
	Properties of bandedness
	Recognition of bandedness
	Distance to direct bandedness
	Distance to columns-bandedness
	Augmentation algorithm
	Sperner-conflicts algorithm
	Forbidden submatrices algorithm

	Distance to bandedness
	Heuristic algorithms for closest banded
	Alternating
	Barycentric
	Simulated annealing

	Exact algorithms for closest banded
	Banded submatrices
	Experiments on synthetic data
	Data generation
	Methods
	Results

	Experiments on real-world data
	Mammals data
	Dialect data
	Paleontological data
	DNA amplification data

	Conclusions

	Discussion
	References
	Index
	Notation

