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The Thesis presents a state-space model for a basketball league and a Kalman filter algorithm for the estimation of 

the state of the league. In the state-space model, each of the basketball teams is associated with a rating that 

represents its strength compared to the other teams. The ratings are assumed to evolve in time following a 

stochastic process with independent Gaussian increments. The estimation of the team ratings is based on the 

observed game scores that are assumed to depend linearly on the true strengths of the teams and independent 

Gaussian noise. The team ratings are estimated using a recursive Kalman filter algorithm that produces least 

squares optimal estimates for the team strengths and predictions for the scores of the future games. Additionally, if 

the Gaussianity assumption holds, the predictions given by the Kalman filter maximize the likelihood of the 

observed scores. 

 

The team ratings allow probabilistic inference about the ranking of the teams and their relative strengths as well as 

about the teams’ winning probabilities in future games. The predictions about the winners of the games are correct 

65-70% of the time. The team ratings explain 16% of the random variation observed in the game scores. 

Furthermore, the winning probabilities given by the model are concurrent with the observed scores. 

 

The state-space model includes four independent parameters that involve the variances of noise terms and the home 

court advantage observed in the scores. The Thesis presents the estimation of these parameters using the maximum 

likelihood method as well as using other techniques. The Thesis also gives various example analyses related to the 

American professional basketball league, i.e., National Basketball Association (NBA), and regular seasons played 

in year 2005 through 2010. Additionally, the season 2009-2010 is discussed in full detail, including the playoffs. 
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Työssä esitellään koripalloliigaa kuvaava diskreettiaikainen tila-avaruusmalli sekä Kalman-suotimeen perustuva 

algoritmi koripalloliigan tilan estimointiin. Tila-avaruusmallissa jokaisella liigan joukkueella on voimaluku 

(”rating”), joka kuvastaa joukkueen hyvyyttä suhteessa muihin liigan joukkueisiin. Joukkueiden voimasuhteiden 

oletetaan kehittyvän stokastisesti ajassa ja niiden muutokset oletetaan normaalijakautuneiksi riippumattomiksi 

satunnaismuuttujiksi. Joukkueiden voimalukujen estimointi perustuu havaittuihin ottelutuloksiin, joiden oletetaan 

riippuvan lineaarisesti joukkueiden todellisista voimaluvuista sekä normaalijakautuneesta kohinasta. Joukkueiden 

voimaluvut estimoidaan rekursiivisella Kalman-suodin algoritmilla, joka tuottaa pienimmän neliösumman mielessä 

optimaalisia estimaatteja joukkueiden voimaluvuille sekä tuleville ottelutuloksille. Lisäksi normaalijakauma-

oletusten pätiessä Kalman-suotimen tuottamat ennusteet maksimoivat havaittujen tulosten uskottavuuden.  

 

Voimalukuestimaattien avulla voidaan tehdä päätelmiä joukkueiden paremmuusjärjestyksestä ja niiden välisistä 

tasoeroista sekä ennustaa voitontodennäköisyyksiä tulevissa otteluissa. Mallin ennusteet otteluiden voittajista 

osuvat oikein 65-70%:sti. Mallin avulla pystytään selittämään noin 16% ottelutulosten satunnaisesta vaihtelusta. 

Lisäksi mallin tuottamat arviot joukkueiden voitontodennäköisyyksistä ovat sopusoinnussa havaittujen 

ottelutulosten kanssa. 

 

Tila-avaruusmallissa on neljä riippumatonta parametria, jotka kuvaavat erilaisten kohinatermien varianssia sekä 

ottelutuloksien sisältämää kotietua. Työssä esitellään näiden parametrien estimointi sekä suurimman uskottavuuden 

menetelmällä että hyödyntäen muita keinoja. Työ tarjoaa myös lukuisia esimerkkianalyyseja, joissa tarkastellaan 

amerikkalaisen ammattilaiskoripallosarjan NBA:n (National Basketball Association) runkosarjan ottelutuloksia 

vuosina 2005-2010. Lisäksi esitetään kauden 2009-2010 yksityiskohtaisempi tarkastelu, mukaan lukien 

pudotuspelit. 
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1. Introduction

Ranking and rating of basketball teams (see, e.g., Govan 2009, Govan et al. 2009)

as well as of individual players (see, e.g., Berri 1999, Oliver 2004, Berri et al. 2007,

Doolittle and Pelton 2010) is an emerging topic of statistical analysis that captures

the interest of both fans and professionals. There are also situations where the

ranking of teams holds actual relevance in, e.g., determining the seeding of teams

in tournament brackets (Shapiro et al. 2009). The common perception is that sta-

tistical analysis of basketball yields additional insight and added value in a manner

similar to the analysis of other sports such as baseball (Lewis 2003) and soccer

(Kuper and Szymanski 2009). In such analyses, observations of the performance

levels of teams and individual players are aggregated into statistical evidence that

is then exposed to comprehensive testing and study. The thinking is that given a

large enough data set, the statistical analysis unveils trends and phenomena that

are hard to discover by naked eye, i.e., by simply watching live basketball games.

This Thesis presents a state-space model for a basketball league that is based

on observed game results and the Kalman filter algorithm (Kalman 1960). In the

model, the state of the system represents the strengths of the teams and game point

differentials are taken as observations of the relative differences between the teams’

level of performance. New observations are combined with the current estimate of

the system state recursively using the Kalman filter algorithm in order to produce

updated estimates of the system state that minimize the mean square error. The

estimates of the system state are used to rank and rate the basketball teams ac-

cording to their level of performance as well as to predict the future outcomes of

games.
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1.1. Background Information about Basketball. Basketball is a team sport

where the teams score points by shooting the ball to the basket of the opponent

(FIBA 2010). Successful scoring attempt is called a basket. The scoring team is

awarded one, two, or three points, depending on the position of the shooting player

at the time of the shot attempt. The team with the most points at the end of the

regulation time wins the game. A single game lasts 40 minutes when international

rules are used (FIBA 2010). In American professional leagues, the regulation time

lasts 48 minutes. A basketball game cannot end in a tie. If the teams have equal

number of points at the end of the regulation, additional five minute periods are

played until the winner is found. The teams’ active rosters consist of maximum of

12 players out of whom five are on the court at one time.

Basketball competition is organized in leagues, where the teams first complete a

regular season schedule and then the league championship is determined by play-

offs. In general, the teams with best records receive the most advantageous playoff

schedule and the worst teams are left out of playoffs entirely. The international com-

petition in basketball is governed by International Basketball Association (Fédéra-

tion Internationale de Basketball, FIBA). This Thesis concentrates on the National

Basketball Association (NBA). It is the pre-eminent men’s professional basketball

league in North America which composes thirty franchised member clubs, of which

twenty-nine are located in the United States and one in Canada. A more compre-

hensive presentation of the history of NBA is given, e.g., in Yilmaz and Chatterjee

(2000).

During a single game, NBA teams make between 75 and 90 field goal attempts on

average. There exists some controversy about the statistical dependence between the

successfulness of consecutive shot attempts. Gilovich et al. claim that shot attempts

can be considered as independent and that no so called ”hot hand” phenomenon

exists (Gilovich et al. 1985). In general, this view is not shared by all basketball

analysts and it has been challenged in more recent analyses (Bar-Eli et al. 2006,

Arkes 2010). Nevertheless, in practice the dependence between shot attempts, i.e.,

their correlation, is not dominant and it is reasonable to assume that the central

limit theorem (see, e.g., Davidson and MacKinnon 1993, pp. 136) holds for total

number of points scored by the two teams, and each of the individual teams. In

other words, the joint probability distribution of the points scored by the home

team and the visiting team should approximately follow a multinormal distribution

with two variables. Due to the rules of basketball, the game cannot end in a tie,
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i.e., the two variables cannot have identical values. This results in ”a gap” in the

middle of the joint probability distribution of the teams’ points. Nevertheless, the

joint probability distribution can be approximated with multinormal distribution

(as is seen in Chapter 3).

The aim of this Thesis is to measure the level of performance of the basketball

teams based on the observed outcomes of games. The team performance is a col-

lection of multiple factors pertaining to different aspects of the game: offence, i.e.,

scoring points; defence, i.e., preventing the opponent from scoring; and winning

the game, i.e., scoring more points than the opponent. In previous literature, var-

ious measures of team performance have been suggested such as points per game,

points allowed per game, and winning percentage (Yilmaz and Chatterjee 2000,

NBA 2011). Usually, it is assumed that the level of team performance changes in

time both during the season and between consecutive seasons (Yilmaz and Chatter-

jee 2000, Chatterjee and Yilmaz 1999). The Thesis is based on the same starting

points, but now the focus is on the evaluation of teams during a single basketball

season.

1.2. Previous Work in Ranking and Rating of Basketball Teams. The ob-

jective of ranking and rating of teams is to order the teams and show which teams

are the best. In practice, the game results are observed and the teams are ranked

or rated according to their perceived level of performance. In this Thesis, the result

or the score of a game is represented by either its outcome or its point differential.

The outcome of a game refers to the information about the team that won the game,

i.e., the team that had the most points at the end of the game. On the other hand,

the final winning margin, i.e., the points scored by the home team less the points

scored by the visiting team, is referred to as the point differential of the game.

In ranking, the teams are placed on an ordinal scale, i.e., the separation between

successive teams is not evaluated. In rating, the ordering takes place on an inter-

val scale so that differences between teams are measurable and have an meaningful

interpretation.

In basketball leagues, the final standings are generally determined based on the

number of wins by each team (FIBA 2010) or by the teams’ winning percentages

(NBA 2011). Thus, the ranking of teams based on their cumulative number of

wins or winning percentage offers the simplest and most straightforward approach

to measuring the teams’ level of play. This is particularly practical at the end of
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season when all teams have completed their schedules. During the season when

the league schedule has not been completed, the effect of schedule is ignored as

these metrics do not include the strength of the teams’ opponents. Furthermore,

the larger basketball leagues may not even use a balanced schedule and the teams

may not face the same opponents during the season.

For additional accuracy, the method used to rank or rate the teams should also

include the strength of the teams’ opponents in the assessment (Fearnhead and

Taylor 2009). Thus, when assessing a given teams’ strength, it is not enough to just

study the number of wins and losses by the team. On the other hand, the wins and

winning percentages measure the teams’ performance based on the current season in

its entirety. This may not give a completely accurate picture of the teams’ current

level of play as such evaluation assumes implicitly that the teams level of play

remains constant during the season and the teams’ current level of performance is

reflected by the point differentials of all the games played during the season.

The objective of the ranking or rating of teams is to answer the question: "which of

the two teams is better?" When the performances of two teams are to be compared,

it should be kept in mind that the number of games played between two teams is

small and the results include random variation. For example in the NBA, the teams

meet at most four times during the season. Thus, available ”direct” information

is limited and the comparison of two teams needs to include also the ”indirect”

information, i.e., the games played against other teams (Hu and Zidek 2004, Park

and Newman 2005). In some leagues, the teams do not play a balanced schedule,

i.e., the teams meet only a fraction of the opposing teams during the season. Thus,

the teams overall performance is measured based on the games played against all

other teams participating in the league.

In extreme cases, the number of teams in the league may be so large that most

of the teams do not face each other at all during the season. The most important

example of such league is the Men’s basketball Division I of the National Collegiate

Athletics Association (NCAA) where there are 346 teams in 34 conferences. During

the regular season, the teams play between 26 and 36 games each (NCAA 2011).

The NCAA basketball champion is determined through the NCAA Men’s Division

I Basketball Tournament where the top 68 teams compete for the championship

(NCAA 2011, Shapiro et al. 2009)1. The participating teams are selected according

to a ranking based on expert analysis, i.e., the decision of the 10 member NCAA

1This tournament is commonly known as the ”March Madness”.
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tournament selection committee, and seeded to the tournament bracket. In practice,

the winners of 31 conferences automatically qualify for the final tournament and the

other 37 teams are selected by the committee. The committee uses various statistical

guidelines in selecting and seeding basketball teams for the NCAA tournament, one

of which is the Ratings Percentage Index, or RPI (NCAA 2011). For recent and

more comprehensive presentations of the selection and seeding process (see, e.g.,

Shapiro et al. 2009, Coleman and Lynch 2009).

The RPI was created by the NCAA in 1981 to objectively assess the college basket-

ball teams and it is calculated as a weighted sum of the team’s winning percentage,

its opponents’ winning percentage, and its opponents’ opponents’ winning percent-

age. The teams’ RPI are used to rank the college basketball teams in descending

order from one to 346. Other guidelines used by the selection committee include,

among others, the teams’ win-loss record, non-conference record, non-conference

RPI, conference record, conference RPI, etc. One should note that, the weights

used to calculate the index were modified in 2005, but they still appear rather ar-

bitrary. Nevertheless, the RPI continues to receive a lot of weight from the NCAA

selection committee when decisions are being made about selecting and seeding

the teams, especially after the 2005 adjustment (West 2006). Other rankings of

NCAA Division I Men’s basketball teams include, among others, the Sagarin rating

(Sagarin 1985), the Massey rating (Massey 1995), and the Pomeroy rating Pomeroy

(2003).

In the NBA, the schedule is a mixture of a balanced and unbalanced schedule –

the teams face all the other teams during the season, but the number of meetings

varies. Despite the fact the standings in the NBA are determined directly based on

the teams’ winning percentages (and, in case of a tie, various tiebreakers), the NBA

teams are actively rated by the experts of the field. In actuality, all major sports

web sites publish their own expert rankings for the NBA (see, e.g., Schuhmann 2010,

Stein 2010, Hollinger 2011, Galinsky 2010). The published rankings are usually of

ordinal but, e.g., the method used by ESPN’s John Hollinger is based on the so

called Hollinger Rating (Hollinger 2011). Overall, even though the rankings and

ratings have been criticized as subjective, inconsistent, and even biased (Sanders

2007, Zimmer and Kuethe 2008), the ranking and rating of basketball teams is an

active area of research and discussion.

Overall, the ranking and rating of teams can be performed ex ante, i.e., the

estimates can be recursively updated in real time during the season as soon as new
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results are observed. This kind of models are needed for following the progress of

the season or predicting game outcomes. On the other hand, the ranking and rating

may be carried out ex post, i.e., after the season has finished and all the games have

been played. For official standings, the ex post approach is used in order to make

all the regular season games meaningful.

The simplest models for ranking of teams are calculated directly from the game

results. For example, the official league standings are determined based on the

teams’ number of wins (FIBA 2010) or their winning percentage (NBA 2011), i.e.,

the number of wins divided by the total number of games played. More detailed

information about the teams’ performance is included when the ranking is done

according to the teams’ point differential, i.e., the difference between points scored

by the team and its opponents. In such ranking, the teams are awarded for beating

their opponents by wider margins which is seen as a quality of a better team. For

a more current perspective on the teams level of play, it is possible to calculate

the teams’ point differential during, e.g., the last 60 days. This kind of approach

concentrates of the teams’ latest accomplishments and ignores the results of its older

games.

In the following, a literary survey of the approaches to ranking and rating of sports

teams is given. All the presented models are statistical or stochastic models where

the randomness inherent in game results is included but, unless otherwise mentioned,

no exact probability distributions are assessed for the ratings. All models listed do

not necessarily involve basketball, but all of them could also be applied to ranking or

rating of basketball teams. Also in general, the methods used for ranking basketball

teams could be applied to other team sports.

Harville (Harville 1977) presents a linear additive model for rating of high school

and college football teams where the expectation of the point differential of a game

is the difference between teams’ ratings with home court advantage added. In

the model, the teams’ observed performances include deviations from their true

level that are generated by a first-order autoregressive stochastic process. Harville

(Harville 1980) applies a similar model to National Football League (NFL) data over

several years time. Stefani (Stefani 1980) improves the existing models by adding

a heuristic reduction factor to the model in order to correct the bias found in the

previously predicted margins of victory.
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Harville (Harville 2003) discusses the desirable attributes of a fair and balanced

ranking method used in the selection of NCAA basketball teams to the final tourna-

ment. The article presents a model having all but one of these attributes by applying

least squares to a linear additive model in which the expected point differential in

each game is modeled as a difference in team ratings plus the home court advantage.

Additionally, the benefit of the teams ”running up the score” is avoided by weighing

down the effects of large victories. With this modification, the teams cannot affect

their own rating by intentionally increasing the scoring margin after the outcome

of the game has already been decided.2 Similar robustness factors are discussed in

(Bassett 1997) where linear additive model is used in ranking but now, instead of

the minimization of least squares errors, the least absolute value of the errors is

minimized. Thus, the unwanted effect of large victory margins is diminished.

Massey (Massey 1997) discusses three approaches to rating of teams based on

the game results. The first approach is based on a linear additive model where the

expected value of the victory margin is the difference between the teams’ ratings with

the home court advantage added. Then, the teams’ ratings are solved by minimizing

the sum of the squared errors when compared to the scores of the complete season.

In so called maximum likelihood rating, the probability of the first team winning

a game is relative to the ratio of the first team’s rating and the sum of the two

teams ratings. The ratings of the teams are solved by searching for the values that

maximize the total likelihood of the observed game outcomes. The third discussed

approach is the Elecs rating method that models win probabilities by applying

continuous time Markov chains. In Elecs rating, the ratio of two teams’ ratings

approximates the ratio of their number of wins in a conceptually infinite series of

games played between the teams.

Bassett (Bassett 2007) proposes an alternative for the linear additive model by

introducing quantile regression to rating of sports teams. In quantile regression,

the point differentials are not used to estimate the team ratings as the expected

values of team strengths but instead the random variables representing the teams

strengths are modeled as a collection of quantiles of their probability distribution.

The quantile functions include, as a special case, the median equivalent to the

expected victory margin of a game, i.e., the predictions are based on the median

of the probability distribution of the point differential. The quantile regression

2The meaningless playing time that takes place after the winner of the game has been determined
is often referred to as ”garbage time”.
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approach reproduces the entire probability distribution of the team strengths which

can be used in predicting game outcomes, e.g. for betting purposes. The article

illustrates the approach with an application to NFL teams. Koenker and Bassett

(Koenker and Bassett Jr. 2010) apply quantile regression to predicting the NCAA

tournament results and calculating different betting opportunities against the point

spreads offered by the bookmakers.3

There are several optimization formulations for the ranking and rating of teams.

In general, the optimization approaches aim to find a ranking or rating of teams

that minimizes/maximizes an objective function that measures the correspondence

between the ordering of teams and the point differentials observed in the past. Such

objectives include, e.g., the maximization of the number of games won by the higher

ranked team and the minimization of the distance between the point differentials

predicted by the rating and the observed point differentials. Coleman (Coleman

2005) proposes a ranking that is based on minimizing game outcome violations,

i.e., the number of times a past game’s winner is ranked behind its loser. This

results in an optimization problem that is solved using mixed-integer programming.

Govan and Langville (Govan et al. 2009) present an iterative approach to rating

of teams that produces an offensive and a defensive rating for each team based on

the observed point differentials. The final ranking of the teams is then calculated

as the ratio of these two ratings. Cassady et al. (Cassady et al. 2005) formulate

a quadratic assignment problem where the teams are rated so that their relative

distances match with the observed point differentials as well as possible. In the

article, a heuristic solution for the resulting optimization problem is obtained by

employing a genetic algorithm.

In addition to the linear models and optimization approaches, various completely

different methodologies have also been used in ranking and rating of teams based

on observed game outcomes. Park and Newman (Park and Newman 2005) present

the collegiate football system as a directed network where the arcs of the network

represent one teams victory over another. Then, the structure of the network and

the resulting ”indirect victories” are used to calculate the teams’ rankings. On the

other hand, Rotshtein et al. (Rotshtein et al. 2005) propose a fuzzy model with

3The point spread is essentially a handicap towards the underdog. In so called spread betting, the
point spread is determined by the bookmaker as the difference between the levels of performance
of the two teams playing. Then, the customer bets her money (on equal odds) on either ”the
favorite will win by at least x points” or ”the favorite will lose or win by less than x points.” See,
e.g., Bassett (1981).



18 JIRKA POROPUDAS

genetic and neural tuning for predicting the outcome of a soccer match from the

previous results of both teams.

In the previous models, the results of a season are considered as a whole. In order

to follow the teams’ level of play in real time, dynamic models have been presented.

Glickman and Stern (Glickman and Stern 1998) present a dynamic model for NFL

using a state-space representation. In the model, the observations of the system state

are acquired a linear additive model including the home field advantage. The actual

team rating are solved using Markov Chain Monte Carlo method and Bayesian

statistics. Knorr-Held (Knorr-Held 2000) considers the problem of dynamically

rating sports teams on the basis of results from the German soccer league Bundesliga

as well as from the NBA. In the article, the leagues are presented as state-space

models where the teams level of performance follows a specific constrained random

walk. The presented method uses a cumulative link model for the observed outcomes

of the games and takes a Bayesian approach to the estimation of the system state

with an extended Kalman filter and a smoothing algorithm.

There exists many models based on the available expert rankings of basketball

teams, viz., the seeding order of the NCAA tournament. Schwertman et al. (Schw-

ertman et al. 1991) introduce three ad hoc probability models to predict the four

finalists in the NCAA basketball tournament based on the seeding of the teams.

Schwertman et al. (Schwertman et al. 1996) then consider the use of eight addi-

tional logistic and ordinary least squares regression models to further develop the

probability models aimed for the same purpose. Smith and Schwertman (Smith and

Schwertman 1999) study the predictive power of expert rankings using regression

analysis and it is discovered that the margin of victory in NCAA basketball tour-

nament games can be predicted fairly reliably based on the teams’ seeding. Caudill

and Godwin (Caudill and Godwin 2002) apply a skewed logit model with heteroge-

nous skewness to predicting the NCAA basketball tournament based on the teams’

seeding. Coleman and Lynch (Coleman and Lynch 2009) analyzed the statistical

information used by the NCAA tournament selection committee in the seeding of

basketball teams and found eight relevant predictors for team performance in the

large data set.

On the other hand, the performances of mathematical models have also been

compared to the expert rankings in the literature. Boulier and Stekler (Boulier

and Stekler 1999) use probit regression with difference of rankings as the predictor

to model the outcomes of NCAA basketball games as well as tennis matches. It
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is concluded that the rankings by are useful predictors by themselves and their

predictive performance can be improved using probit regression. In Ref. (Boulier

and Stekler 2003), the previously mentioned analysis is continued by predicting the

point differentials of NFL games using the NFL power scores published by The New

York Times, the betting market, and the opinions of the sports editor of The New

York Times. The article concludes that the best predictions are given by the betting

market and followed by the probit predictions based on the power scores. Kvam and

Sokol (Kvam and Sokol 2006) combine logistic regression and Markov chain modeling

in order to predict the outcomes of NCAA tournament games given the scores of the

regular season games. In a comparative analysis, the presented method outperforms

other common methods, including the NCAA tournament seedings as well as the

RPI, Sagarin, and Massey ratings.

In addition to previously mentioned approaches, there are several articles where

the inputs of the models are something other than simple game scores. Stern (Stern

1991) studies the probability of team winning in football game using a linear additive

model based on the point spreads offered by the betting bookmakers and a normal

distribution. Carlin (Carlin 1996) uses a similar Gaussian model to predict the

teams’ probability of winning the NCAA tournament using the information given

by the point spreads. West (West 2006) proposes a rating method based on ordinal

logistic regression that was designed to predict the teams’ success in the NCAA

tournament. The proposed method involves the teams’ winning percentages, point

differentials, Sagarin ratings as well as their performance against the top rated

teams. Parker (Parker 2010) applies multinomial logistic regression to basketball

teams’ points per possession data4. The teams’ productivity is then used to rank

NCAA basketball teams and predict probabilities of winning future games.

1.3. Objectives of the Presented Work. This Thesis presents a mathematical

algorithm that is aimed for ranking and rating of basketball teams according to

their level of performance, i.e., the observed point differentials up to the current

date. The algorithm is based on the state-space model for a system representing

a basketball league (see, e.g., Glickman and Stern 1998, Knorr-Held 2000). The

estimation of the system state is done in accordance to a linear additive model

4Points per possession is an advanced basketball statistic that measures the productivity of the
teams’ offence using the average number of points the team has scored per the number of ball
possessions. Note that the number of possessions has to be calculated from the more elementary
statistics using an approximative formula.
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for the point differentials including the home court advantage. This approach is

very common in literature (see,e.g., Bassett 1997, Carlin 1996, Harville 1977, 1980,

2003, Massey 1997, Schwertman et al. 1996, Stefani 1980, Stern 1991, Parker 2010).

The current estimate of the system state is updated using a recursive Kalman fil-

ter algorithm (Kalman 1960, Hamilton 1994) when new scores are observed. The

Kalman filter algorithm produces estimates of the system state that minimize the

mean square error. Therefore, the estimates produced by the Kalman filter algo-

rithm are analogous with those produced by the optimization approaches involving

the minimization least squares errors (Stefani 1980, Bassett 1997, Massey 1997,

Harville 2003). The state estimates also produce a method for rating the teams,

i.e., measurable information about the relative differences between the strengths of

the teams. The updated state estimates are applicable for prediction of scores of

future games. This is used for validating and confirming the accuracy of the pro-

duced ratings as a valid rating should also have predictive power, i.e., ”the better

teams” should be able to beat ”the weaker teams”. One should note that the aim

of this Thesis is not to predict the results of entire playoff series (Niemi 2005) as

the dynamics of a payoff series include various complications that are beyond the

scope of this study (see, e.g., Bassett and Hurley 1998). On the other hand, this

Thesis omits entirely the possibility of generating optimal or profitable strategies for

betting in general (see, e.g., Marttinen 2001, Spann and Skiera 2008) or for betting

pools (see, e.g., Hu and Zidek 2004).

1.4. Structure of the Thesis. Chapter 2 presents the state-space model for a sys-

tem representing a basketball league as well the estimation of the system state using

the Kalman filter algorithm. In Section 2.1, the state-space model and a general

Kalman filter algorithm are introduced. Section 2.2 presents a state-space model for

a basketball league and the application of the Kalman filter algorithm to the estima-

tion of team ratings from observed point differentials. In Section 2.5, it shown how

the parameters of the model are estimated from data using maximum likelihood.

The calibration of the model using expert assessment in cases where history data

is unavailable is discussed is also Section 2.5. Sections 2.3 and 2.4 present some

mathematical properties of the ratings produced by the Kalman filter algorithm

as well as some qualitative characteristics of the introduced rating approach. The

utilization and validation of the algorithm are briefly discussed in Sections 2.6 and

2.7. In Chapter 3, the rating of basketball teams using a Kalman filter is illustrated
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by analyzing data from NBA Season 2009-2010. Some alternative models and ideas

for further development are discussed Section 4. Finally, the conclusions are give in

Chapter 5.
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2. Kalman Filter Algorithm for Analysis of a Basketball League

2.1. General Kalman Filter. Kalman filter is recursive algorithm for estimating

the unobservable true state of a system from observations that include random noise

(Kalman 1960, Harvey 1989, Hamilton 1994, Bertsekas 2005). The Kalman filter is

based on a state-space model for the system under consideration. The Kalman filter

combines the possibly contradictory observations giving both the optimal estimates

for the current state of the system as well as optimal predictions that minimize

the expected quadratic prediction error. The results of the algorithm can be used

for predicting the future state of the system and the future observations. If the

noise included in the observations is Gaussian white noise, the Kalman filter gives

maximum likelihood estimates and predictions for the system state (Hamilton 1994).

2.1.1. State-Space Model. Let xt ∈ R
n be the state of the system at time t. The

state-space representation for the system is the following system of equations:

xt+1 = Atxt +Btut + vt+1(1)

yt = Ctxt +Dtut +wt(2)

where equation (1) is known as the state equation and equation (2) as the observa-

tion equation (e.g., Bertsekas 2005, Hamilton 1994). In the equations, ut ∈ R
l is the

control applied to the system at time t, and yt ∈ R
m is the vector of observations

made at time t. The matrix At ∈ R
n×n describes the evolution of the system state

if no control is applied and Ct ∈ R
m×n is the observation matrix. On the other

hand, the matrix Bt ∈ R
n×l models the effect of applied control on the system state

and Dt ∈ R
m×l the effect of the applied control on the made observation.

The vectors vt+1 ∈ R
n and wt ∈ R

m are random white noise affecting evolution

of the system state and observation vector, respectively:

E(vtv
T

τ ) =

{
Mt if t = τ

0 if t 6= τ
(3)

E(wtw
T

τ ) =

{
Nt if t = τ

0 if t 6= τ
,(4)

where Mt ∈ R
n×n and Nt ∈ R

m×m are positive definite covariance matrixes. The

noise vectors are assumed to be uncorrelated for all lags, i.e., E(vtw
T
τ ) = 0 for

all values of t and τ . The random vectors vt and wt are interpreted as follows.

Vector vt represents the uncertainty about the time evolution of the system, i.e.,
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the random variations in the state of the system, while vector wt is the random

noise included in the observations made about the system state.

2.1.2. Kalman Filter Algorithm. Kalman filter algorithm is used for calculating lin-

ear least squares estimates of the state vector on the basis of data observed up to

time instant t (e.g., Bertsekas 2005, Hamilton 1994). The estimation is done recur-

sively, i.e., the estimate is updated whenever new observations are made. Now, it is

assumed that there is no control vector ut ≡ 0. Then, the Kalman filter algorithm

is as follows:

(i) Initialization: The initial estimate of the system state is set as x̂0|0 = E(x0)

and a positive definite covariance matrix Σ̂0|0 is defined to represent the un-

certainty related to the initial estimate of the system state.

(ii) Prediction of system state: The state equation (1) is used to predict the system

state for the following time instant giving

x̂t|t−1 = At−1x̂t−1|t−1.

(iii) Predictive covariance matrix: The uncertainty related to the prediction is given

by the predictive covariance matrix

Σ̂t|t−1 = At−1Σ̂t−1|t−1At−1
′ +Mt−1.

(iv) Posterior covariance matrix: The covariance matrix is updated to include the

effect of the made observations

Σ̂t|t = Σ̂t|t−1 − Σ̂t|t−1Ct
′(CtΣ̂t|t−1Ct

′ +Nt)
−1CtΣ̂t|t−1.

(v) Updated estimate of the system state: The estimate of the system state is

updated based on the previous estimate and the made observations yt

x̂t|t = x̂t−1|t−1 + Σ̂t|tCt
′Nt

−1(yt −Ctx̂t−1|t−1).

The algorithm produces linear least squares estimates for the system state, i.e.,

x̂1|1, x̂2|2, . . . , x̂t|t, in accordance to the made observations. The covariance matrixes

Σ̂t|t represent the accuracy of the current estimate of the system state. The main

attractive feature of the Kalman filter algorithm is that the estimate x̂t+1|t is ob-

tained by means of a simple equation that involves only the previous estimate x̂t|t−1

and the new measurement yt, but none of the past measurements y1,y2, . . . ,yt−1.

2.2. Model for Basketball League.
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2.2.1. System State. Now, in a basketball setting, the system under consideration

is a basketball league that consists of n teams. The state of the system is a vector

describing the relative strengths of the teams at time t, denoted by xt ∈ R
n. In

this presentation, the ith element of the state vector, xt(i) where i ∈ {1, . . . , n},
gives the strength of the ith team in relation to the ”average team”. With a suitable

selection of the model parameters, the ”average team” is represented by the value

0. This is further discussed in Section 2.3.

The strengths of the teams cannot be directly observed. Instead, the teams

strengths are measured in relation to other teams by observing the scores of games

played between the teams. In the presented model, it is assumed that the point

differential of a given game depends linearly on the strength of the teams, home court

advantage, and random variation, viz., Gaussian white noise, resulting from the

non-deterministic nature of the game of basketball. For now, all model parameters,

including the home court advantage, are taken as time invariant constants which

are equal for all teams. Other modeling possibilities such as team dependent home

advantage as well as the inclusion of the effect of rest in the model are discussed in

Chapter 4.

2.2.2. System Dynamics. The strength of a team depends on numerous factors such

as coaching (Colquitt et al. 2007); development and decline of individual players,

injuries, and player transactions between teams. The team performance depends

also on many intangible factors such as ”team spirit” that are hard to model mathe-

matically (despite some recent advances, see, e.g., Kraus et al. 2010). For modeling

purposes, most of these factors can be assumed to be more or less independent and

the evolution of the state of the system is presented as a (discrete time variant of)

Brownian motion. In other words, the changes in the team strengths from the time

instant t to the time instant t + 1 are modeled as a random vector vt+1 following

the multivariate normal distribution, vt+1 ∼ N(0,M). The changes in strengths of

individual teams are assumed to be independent and identically distributed so that

the covariance matrix is diagonal matrix M = σ2
v · I, where σ2

v is the variance of

the change in the strength of a single team. In theory, player transactions between

teams should benefit some teams on at other teams’ expense which could raise neg-

ative correlation between the changes in team strengths. Now, such additions are

considered beyond the scope of this Thesis and left as a topic for future research

(see, Chapter 4).
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There are no deterministic trends in the model and it is defined that At = I

in equation (1). In other words, the expected value of the system state remains

constant in one time step. No controls are applied on the system.5 Therefore, the

respective matrixes in equations (1) and (2) can be defined as zero, Bt = 0 and

Dt = 0. Based on these assumptions, the state equation 1 takes the form

(5) xt+1 = xt + vt+1.

Note that the resulting system is in fact a discrete-time Brownian motion (Hamilton

1994) where the time instant t represents the tth game day.

2.2.3. Observations of System State. The state of the system is observed indirectly

by following the scores of the games played between teams. The league schedule,

i.e., the m games played on the tth day, is represented by the matrix Ct ∈ R
m×n. If

the team i is the home team in the kth game played on the tth day, k ∈ {1, . . . , m},
Ct(i, k) = 1. Similarly, if the team j is the visiting team in the kth game, Ct(j, k) =

−1. The rest of the matrix is set equal to zero, i.e., the outcome of the kth game

is independent of the other teams’ strengths. For example, in a league with n = 4

teams, where on the tth day the team 1 hosts team 2 and team 3 hosts team 4, the

schedule matrix is

Ct =

(
1 −1 0 0

0 0 1 −1

)
.

The point differentials of the games played on the tth day, represented by the

vector yt ∈ R
m, are assumed to depend additively from the difference of the teams’

strengths resulting in the model

(6) yt = Ctxt + µ · ιt +wt

where µ ∈ R is a constant representing the home court advantage, ιt = (1 1 1 . . . 1)′ ∈
R

m, and wt ∼ N(0,Nt) is the random variation in the point differentials of respec-

tive games. The random factors affecting individual games are assumed independent

and identically distributed so that Nt = σ2
w · I.

5Certain unsportsmanlike and even illegal actions might be seen as controls applied to the system.
Such activities might include, e.g., biased (or bribed) referees, ”tanking” where teams lose inten-
tionally to improve their position in draft of future players (e.g., Soebbing and Humphreys 2011),
or players involved in a some sort of point shaving scheme where the exact point differential of a
game is intentionally manipulated for betting purposes (e.g., Gibbs 2007).
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For the kth game on tth day where team j visits team i, equation (6) simplifies

to

(7) yt(k) = xt(i)− xt(j) + µ+wt(k).

If it is observed that yt(k) > 0, the home team i wins the kth game. Otherwise,

the game results in a win for the visiting team. Note that due to the home court

advantage and the random variation included in the model, the observation yt(k) >

0 does not necessarily mean that team i is better than team j. In other words,

the observation yt(k) > 0 does not necessarily mean that xt(i) > xt(j). On the

contrary, a winning margin for the home team that is smaller than the home court

advantage would actually imply that xt(i) < xt(j).

2.2.4. Kalman Filter Algorithm. The Kalman filter algorithm is used in the up-

dating of the estimate of the system state at time t, x̂t|t ∈ R
n, and the respective

posterior covariance matrix of the estimate Σ̂t|t ∈ R
n×n. The algorithm is initialized

with the prior estimate of the system state, x̂0|0, and the related covariance matrix,

Σ̂0|0. The estimates and covariance matrixes are updated recursively according to

the observed game outcomes y1,y2, . . . ,yt.

(i) Initialization: The recursive Kalman filter algorithm is initialized by giving the

initial estimate for system state, i.e., x̂0|0 = E(x0). The uncertainty related

to the initial estimate is represented by the covariance matrix,

(8) Σ̂0|0 = σ2

0 · I.

The matrix Σ̂0|0 is diagonal making the initial estimates independent. The

variance parameter σ2
0 measures the confidence in the initial estimates of the

system state.

(ii) Prediction of system state: The predicted system state at time t as given at

time t− 1 is calculated using equation (5) which gives

x̂t|t−1 = x̂t−1|t−1.

Thus, according to the made assumptions, the prediction is equal to the latest

estimate of the system state.

(iii) Predictive covariance matrix: The uncertainty related to the predicted sys-

tem state is calculated as the covariance matrix of the predicted system state
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Σ̂t|t−1 ∈ R
n×n at time t as given at time t− 1

Σ̂t|t−1 = Σ̂t−1|t−1 +M.(9)

In practice, the effect of the multinormal noise with covariance matrix M =

σ2
v · I is added to the covariance matrix to represent the random changes in the

teams’ strengths between time instants t−1 and t. The covariance matrix M is

diagonal and the changes in team strengths are assumed independent. Variance

parameter σ2
v measures the magnitude of variation in the team strengths.

(iv) Posterior covariance matrix: The covariance matrix is updated to include the

effect of the observed scores

Σ̂t|t = Σ̂t|t−1 − Σ̂t|t−1Ct
′(CtΣ̂t|t−1Ct

′ +Nt)
−1CtΣ̂t|t−1.(10)

(v) Updated estimate of the system state: The observations made according to

equation (6) are used to update the estimate of the system state at time t,

x̂t|t.

x̂t|t = x̂t−1|t−1 + Σ̂t|tCt
′Nt

−1

︸ ︷︷ ︸
=:Kt

(yt −Ctx̂t−1|t−1 − µ · ιt)︸ ︷︷ ︸
=:dt

(11)

= x̂t−1|t−1 +Ktdt,

where Kt ∈ R
n×m is the so called the optimal Kalman gain matrix (see, e.g.,

Hamilton 1994, pp. 380) and dt ∈ R
m×1 is the difference between the expected

and observed point differentials. Note that the observed differences between

the prediction given by the algorithm and the observations made, i.e., dt, are

used as the innovations that dictate the evolution of the estimated system

state.

2.2.5. Initialization of the Algorithm. The recursive Kalman filter algorithm is ini-

tialized by giving the initial estimate for system state. According to Ref. (Hamilton

1994, pp. 378), the proposed initial value is the expected value of system state

which gives

x̂0|0 = E(x0).

If no information about the teams’ strengths is available, all teams are assumed

equal and the initial state estimate is set as

x̂0|0 = 0.
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The uncertainty related to the initial estimate is represented by the covariance

matrix,

Σ̂0|0 = σ2

0 · I.

Here, larger values of the variance parameter σ2
0 imply greater uncertainty about

the initial state estimate. In maximum likelihood estimation of the parameters of

the model (see, Section 2.5), parameter σ2
0 determines the amount of variation that

takes place at the beginning of the season. If the parameters are determined based

on expert analysis, the variance parameter can also be seen as the accuracy of the

expert assessment determining x̂0|0.

If the analysis of the basketball league is continued from one season to another,

the final state of the previous season can be used as the initial estimate of the

following season. In such a case, the possible changes in team rosters and other

unknown factors should be accounted for by adding considerable random noise to

the state estimate. In practice, the uncertainty related to off-season activities could

be modeled by increasing the variance of the state estimates during the off season.

2.3. Mathematical Properties of the Model.

2.3.1. Conditional Probability Distributions. If the assumptions presented in Section

2.2 hold, the conditional probability distribution of the system state, i.e., the true

strengths of the teams, is

xt| Yt ∼ N(x̂t|t, Σ̂t|t),(12)

where Yt := (y1
′,y2

′, . . . ,yt
′)′ denotes the observations made up to time instant t.

Because the initial state and the innovations (v1
′,v2

′, . . . ,vt
′,w1

′,w2
′, . . . ,wt

′)′ are

multivariate Gaussian, the conditional probability distribution used for predicting

future scores is

yt+1| Yt ∼ N(Ct+1x̂t+1|t + µ · ιt+1︸ ︷︷ ︸
=:ŷt+1

,Ct+1Σ̂t+1|tCt+1
′ +Nt+1︸ ︷︷ ︸

=:Ôt+1

).

2.3.2. Observability. A n-dimensional state vector xt is called observable if it can be

determined exactly given the observations yt, . . . ,yt+n−1 (Harvey 1989, pp. 115).

This does not hold for the state of the basketball league, as defined in Section 2.2,

which cannot be uniquely determined because only the differences of team strengths

are observed. For example, two systems xt and x̃t = xt + c · ι, where c ∈ R is a

constant and ι = (1 1 1 . . . 1)′ ∈ R
n, cannot be distinguished from each other by
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observing the differences between elements of the state vector as

x̃t(i)− x̃t(j) = xt(i) + c− xt(j)− c = xt(i)− xt(j).

In practice, this means that two teams playing in completely disjoint leagues can-

not be compared based on intra-league games only. On the other hand, within an

individual league the sum of the initial team ratings can be set as equal to zero,

i.e., ι′x0 = 0, resulting in unambiguous ratings for this league. Most importantly,

this somewhat arbitrary constraint does not affect the ranking of the teams. Ad-

ditionally, the non-uniqueness of the observations has no effect on the maximum

likelihood estimation of the model parameters discussed in Section 2.5.

2.3.3. Optimality. The Kalman gain matrix Kt in equation (11) is determined in

order to minimize the mean square error of the state estimates given by the Kalman

filter algorithm (Hamilton 1994, pp. 377). That is, the state estimates produced by

the Kalman filter are linear projections of the observed point differentials that min-

imize E
(
(xt − x̂t|t)(xt − x̂t|t)

′
)

and E ((yt+1 − ŷt+1)(yt+1 − ŷt+1)
′). This deriva-

tion does not involve the Gaussianity assumption. In fact, the state estimates x̂t|t

and predictions ŷt+1 are optimal within the set of linear unbiased estimators in Yt

(Harvey 1989, pp. 105). That is, for any other linear unbiased estimators x̃t|t and

ỹt+1 with corresponding covariance matrixes Σ̃t|t and Õt+1, respectively, it holds

that Σ̃t|t − Σ̂t|t and Õt+1 − Ôt+1 are positive semidefinite matrixes.

Furthermore, if the joint distribution of the initial state and the innovations

(v1
′,v2

′, . . . ,vt
′,w1

′,w2
′, . . . ,wt

′)′ is multivariate Gaussian, the estimates given by

the Kalman filter algorithm are optimal among any functions of Yt (Hamilton 1994,

pp. 385). It can also be shown that, in case of Gaussian initial state and inno-

vations, the estimates produced by the Kalman filter are the maximum likelihood

estimates for both the current state and the predicted future scores (Hamilton 1994,

pp. 385).

2.3.4. Effect of Parameter Values. In the following, the effects of the parameter

values are explored using a simple example where home team 1 hosts visiting team

2 on the tth day of the season. Assume that the current estimate of the system

state is x̂t−1|t−1 = (x1 x2)
′ and the predictive covariance matrix is

Σ̂t|t−1 =

(
σ2 ρσ2

ρσ2 σ2

)
.
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The schedule of the tth day is represented by Ct = (1 − 1) and the variance related

to its point differentials is Nt = σ2
v .

When the point differential of the game is observed to be yt = y ∈ R, the estimate

of the system state is updated using equation (11). Noting that CtΣ̂t|t−1Ct
′ =

2(1− ρ)σ2, the Kalman gain matrix is

Kt = Σ̂t|tCt
′Nt

−1

=
(
Σ̂t|t−1 − Σ̂t|t−1Ct

′(CtΣ̂t|t−1Ct
′ +Nt)

−1CtΣ̂t|t−1

)
Ct

′Nt
−1

=
1

σ2
v

(
Σ̂t|t−1Ct

′ − 2(1− ρ)σ2Σ̂t|t−1Ct
′

2(1− ρ)σ2 + σ2
v

)

=
1

2(1− ρ)σ2 + σ2
v

Σ̂t|t−1Ct
′ =

1

2(1− ρ)σ2 + σ2
v

(
(1− ρ)σ2

−(1− ρ)σ2

)

=
1

2 + σ2
v/((1− ρ)σ2)

(
1

−1

)
=

1

2 + r2

(
1

−1

)
,

where r2 := σ2
v/((1 − ρ)σ2) ≥ 0. It should be noted that r2 can be interpreted

as the ratio of the uncertainty related to the point differential of the game and

the uncertainty related to the predicted state of the system. This can be seen as

the amount of information included in the observation related to the existing state

information. That is, if the state is known accurately, σ2 is small, and if there is

a lot of noise in the observation, the observing the value of the point differential is

less informative and σ2
v is large.

The difference between the predicted and observed point differential of the game

is dt = y − x1 + x2 − µ ∈ R. Together with Kt, this is used to update the estimate

of the state:

x̂t|t = x̂t−1|t−1 +Ktdt

=

(
x1

x2

)
+
y − x1 + x2 − µ

2 + r2

(
1

−1

)

=
1

2 + r2

(
y + (1 + r2)x1 + x2 − µ

−y + x1 + (1 + r2)x2 + µ

)
.

From this result, several observations can be made. First, it is seen that ι
′x̂t|t =

x1 + x2 = ι
′x̂t−1|t−1, i.e., the sum of ratings remains constant regardless of the

outcome of the game y or the values of the model parameters. Second, if the
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outcome of the game matches its predicted value, i.e., y = x1−x2+µ, the estimate

for the state of the system remains constant x̂t|t = x̂t−1|t−1.

Third, the correction made to the state estimate is inversely proportional to r2.

That is, the highly uncertain observations give little new information about the

state of the system. If the variance σ2
v is large compared to (1− ρ)σ2 and r2 → ∞,

the estimate of the system state is not changed regardless of the point differential

of the game, and x̂t|t = x̂t−1|t−1. On the other hand, if variance σ2
v is small in

comparison with (1− ρ)σ2 and r2 → 0,

x̂t|t =
1

2

(
y + x1 + x2 − µ

−y + x1 + x2 + µ

)
.

In this case, the estimate for the state of the system is updated to match the

outcome of the game exactly, so that x̂t|t(1)− x̂t|t(2) = y. In other words, if there is

no uncertainty in the game results, the difference between teams’ ratings is simply

set equal to the outcome of their latest game.6

2.3.5. Sum of Ratings. In the presented state-space model, the uncertainties related

to teams’ initial state and changes in team strengths are represented by the covari-

ance matrixes Σ̂0|0 and M in equations (8) and (9), respectively. If the state of

each team is known with equal accuracy, the variation of each team’s performance

is equal, and the changes in teams performance levels are independent, it holds that

Σ̂0|0 = σ2
0 ·I and M = σ2

v ·I. From this it follows that the sum of team ratings remain

constant, i.e., ι′x̂t|t = ι
′x̂t−1|t−1 = . . . = ι

′x̂0|0 where ι = (1 1 1 . . . 1)′ ∈ R
n. In

other words, the corrections made to the team ratings sum to zero.

This is seen by first calculating the difference between consecutive team ratings

from equation (11)

x̂t|t − x̂t−1|t−1 = Ktdt.

and adding the changes in team strengths together resulting in

ι
′(x̂t|t − x̂t−1|t−1) = ι

′Ktdt = ι
′Σ̂t|tCt

′Nt
−1 · dt.(13)

Now, it is shown by induction that ι
′Σ̂t|t = α̃ι′, i.e., the sums of the columns of

covariance matrix Σ̂t|t are equal at all time instants t.

6In Finnish basketball circles, this kind of naïve updating of implicit team ratings is playfully
referred to as jabastics after Jari ”Jaba” Suvanto.
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For the initial covariance matrix Σ̂0|0 in equation (8), it is seen that

ι
′Σ̂0|0 = σ2

0ι
′.(14)

If it is assumed that ι
′Σ̂t−1|t−1 = αι′, i.e., the sum of every column of matrix

Σ̂t−1|t−1 is equal to some α ∈ R. By equation (9), this holds also for the columns

of the predictive covariance matrix

ι
′Σ̂t|t−1 = ι

′(Σ̂t−1|t−1 +M) = (α+ σ2

v)︸ ︷︷ ︸
=:α̃

ι
′ = α̃ι′.

When the covariance matrix is updated to include the new observations in equation

(10), the sums of the columns of posterior covariance matrix Σ̂t|t are also equal

ι
′Σ̂t|t = ι

′Σ̂t|t−1 − ι
′Σ̂t|t−1Ct

′(CtΣ̂t|t−1Ct
′ +Nt)

−1CtΣ̂t|t−1(15)

= α̃ι′ − α̃ ι
′Ct

′

︸︷︷︸
=0

(CtΣ̂t|t−1Ct
′ +Nt)

−1CtΣ̂t|t−1 = α̃ι′.

Together, equations (14) and(15) imply that ι
′Σ̂t|t = α̃ι′ for some α̃ for all time

instants t. Thus, it holds for all time instants t that

ι
′Σ̂t|tCt

′ = α̃ ι
′Ct

′

︸︷︷︸
=0

= 0.

The latter equality holds regardless of the value of α̃ as the sum of each column of

the matrix Ct
′ is zero.

Finally, from equation (13) it is seen that

ι
′(x̂t|t − x̂t−1|t−1) = ι

′Σ̂t|tCt
′

︸ ︷︷ ︸
=0

Nt
−1 · dt = 0(16)

⇒ ι
′x̂t|t = ι

′x̂t−1|t−1.

Thus, when the uncertainty about all teams’ level of play is the same, the sum of

team ratings is constant. For example, if the sum of ratings is set equal to zero at

the beginning of the season, it remains such for the duration of the season. On the

other hand, if the variances on the diagonals of Σ̂t|t or M are not constant, the

ratings of teams with higher variances are corrected more drastically, and equation

(16) does not hold.

2.3.6. Dependence between Ratings. The estimates of the teams’ strengths are de-

pendent as only the differences between team strengths are observed. In effect, the

initially diagonal covariance matrix ”fills out” accordingly to reflect the covariances
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between estimates. For example, if there are three teams in a basketball league and

the predictive covariance matrix is given by

Σ̂t|t−1 =




σ2 0 0

0 σ2 0

0 0 σ2


 .

Note that the covariance matrix is diagonal and the predicted state estimates of the

individual teams are independent prior to the game played on the tth day. Assuming

that team 1 hosts team 2, i.e., Ct = (1 − 1 0) and Nt = σ2
v . Then, noting that

CtΣ̂t|t−1Ct
′ = 2σ2, the covariance matrix is updated according to (10) yielding

Σ̂t|t = Σ̂t|t−1 − Σ̂t|t−1Ct
′(CtΣ̂t|t−1Ct

′ +Nt)
−1CtΣ̂t|t−1

=
1

2σ2 + σ2
v




σ4 + σ2σ2
v σ4 0

σ4 σ4 + σ2σ2
v 0

0 0 2σ4 + σ2σ2
v




=
1

2 + σ2
v/σ

2




σ2 + σ2
v σ2 0

σ2 σ2 + σ2
v 0

0 0 2σ2 + σ2
v


 .

Clearly, it is seen that there now exists a positive correlation between teams 1 and

2 while team 3 remains independent of the other two.

The magnitude of the introduced correlation depends on the ratio of σ2
v and σ2 (cf.

Subsection 2.3.4). For example, if there is no noise in the observed point differential,

it is seen that

lim
σ2
v
→0

Σ̂t|t =
1

2




σ2 σ2 0

σ2 σ2 0

0 0 2σ2


 ,

resulting in coefficient of linear correlation ρ = 1 between ratings of the teams 1 and

2. On the other hand, if the observed point differential is completely uninformative,

the covariance matrix remains unchanged by the observation

lim
σ2
v
→∞

Σ̂t|t =




σ2 0 0

0 σ2 0

0 0 σ2


 .

2.3.7. Geometric Interpretation for State-Space Model. The presented state-space

model for a basketball league has a clear geometric interpretation. The current state
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of the system, i.e., xt, is a point in R
n where each of the coordinates represents an

individual team. When the teams’ performance levels change, the point moves in

R
n accordingly. Similarly, the current estimate of the system state x̂t|t ∈ R

n. When

new scores are obtained, the estimate is updated using the Kalman filter algorithm

and, hopefully, the corrected estimate is closer to the true state of the system. The

direction of the correction is innovated by the differences between the predictions

given by the algorithm and the observed point differentials, viz., dt in equation (11).

The direction and magnitude of the correction is determined by the Kalman gain

matrix Kt in equation (11) which combines the relative variances of the state esti-

mate and observations in an optimal manner. The covariance matrix Σ̂t|t presents

the uncertainty related to the location of the true system state. Therefore, the state

estimate, the covariance matrix, and the assumed Gaussianity of the system can be

used together to construct confidence regions for the true system state, i.e., regions

where the true state lies with a given probability.

2.3.8. Measures of Uncertainty. The uncertainty about the state of the basketball

league (Yilmaz and Chatterjee 2000) can be measured using various measures. The

simplest approach is to study the difference between two consequent covariance

matrixes representing the accuracy of the state estimate before and after an obser-

vations, i.e., Σ̂t|t−1 − Σ̂t|t. For the uncertainty related to a multivariate normal

distribution, there exists also more specific measures such as the total variation and

generalized variance (see, e.g., Mardia et al. 1979).

The total variation is used as measure of uncertainty in principal component

analysis and is defined as the sum of individual variances

(17) tr
(
Σ̂t|t

)
= λ1 + λ2 + . . .+ λn

where λ1, . . . , λn are the eigenvalues of the covariance matrix.

The generalized variance is defined as the determinant of the covariance matrix

(18)
∣∣∣Σ̂t|t

∣∣∣ = λ1 · λ2 · · ·λn

and it has an information theoretic background because the entropy of the multi-

variate normal distribution is

1

2

(
n log(2π) + log

∣∣∣Σ̂t|t

∣∣∣ + n
)
.

In the example discussed in Subsection 2.3.6, the effect of observations have on

the uncertainty related to the state estimate is studied by comparing the covariance
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matrixes before and after the observation:

(19) Σ̂t|t−1 − Σ̂t|t =
1

2 + σ2
v/σ

2




σ2 −σ2 0

−σ2 σ2 0

0 0 0


 .

This matrix is positive semidefinite which means that the observation does not

increase the amount of uncertainty. Stronger results are obtained when measures

specific to the multinormal distribution are used.

The total variation before the observation is

tr
(
Σ̂t|t−1

)
= 3σ2.

For the updated covariance matrix, the total variation is

tr
(
Σ̂t|t

)
=

4σ4 + 3σ2σ2
v

2σ2 + σ2
v

= 3σ2 − 2σ4

2σ2 + σ2
v

< 3σ2 = tr
(
Σ̂t|t−1

)
.

Thus, the made observation decreases the uncertainty about the state of the system

when it is measured using total variation.7

Similarly in Subsection 2.3.6, the generalized variance before the observation is
∣∣∣Σ̂t|t−1

∣∣∣ = σ6.

After the covariance matrix is updated, the generalized variance is
∣∣∣Σ̂t|t

∣∣∣ =
(σ4 + σ2

vσ
2)2(2σ4 + σ2

vσ
2)

(2σ2 + σ2
v)

3
<

(2σ4 + σ2
vσ

2)3

(2σ2 + σ2
v)

3
= σ6 =

∣∣∣Σ̂t|t−1

∣∣∣

and also the generalized variance is reduced.7

It should be noted that both the total variation and the generalized variance

suffer from severe limitations (Mustonen 1997). Most notably, the total variation

ignores the correlation between variables and the generalized variance collapses to

zero if there exists linear dependence between them. There exists also extensions

for the generalized variance that might perform better (Mustonen 1997), but their

analysis is now omitted.

2.4. Qualitative Characteristics of Model. In addition to the mathematical

properties of the discussed state-space model and the Kalman filter algorithm, the

presented model includes several qualitative features that are beneficial for its use

and analysis. These positive characteristics are listed and described in the following.

7Unless, of course, the observation is completely uninformative and σ
2

v
→ ∞.
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Ranking and rating: The state estimates given by the Kalman filter algo-

rithm can be used to order the teams based on their level of performance.

Simplicity: The state-space model for a basketball league is intuitive and com-

prehensible. The system dynamics as well as the modeling of game scores

involve no complex assumptions or ad hoc modeling choices. Furthermore,

the model includes only four independent parameters with clear interpreta-

tion which aids in their analysis as well as in their calibration if it is based

on expert knowledge.

Interpretability: The system state has a clear interpretation, i.e., the differ-

ence x̂t|t(i)− x̂t|t(j) represents the difference in the two teams’ performance

as measured in points. In addition, sum x̂t|t(i) − x̂t|t(j) + µ gives the ex-

pected point differential for the game between teams i and j at i’s home

court.

Transparency: The mathematics involved in the Kalman filter algorithm are

simple and the effects of the model parameters are transparent as presented

in Subsection 2.3.4.

Limited Input: After the parameters of the model have been estimated or

calibrated, the model uses only scoreboard information that is readily avail-

able immediately after the end of the game.

Measurable Uncertainty: Covariance matrix Σ̂t|t gives topical and proba-

bilistic information about the uncertainty of system state. The covariance

matrix and the normality assumption can be used to calculate confidence

regions for the system state.

Time Evolution: The changes in the estimated system state tell the story

behind the ongoing season and the observed scores. This is further discussed

in Subsection 2.6.1.

2.5. Estimation and Calibration of Model.

2.5.1. Parameters of the Model: θ := (σ2
0 , σ

2
w, σ

2
v , µ). The state-space model and

Kalman filter algorithm discussed in Section 2.2 include four parameters that de-

termine the behavior of both the system representing a basketball league and the

state estimates used for rating the teams. These parameters are σ2
0 , σ

2
w, σ2

v , and µ

in equations (5), (6), and (8). In the following, the parameters are collected into

a parameter vector θ := (σ2
0, σ

2
w, σ

2
v , µ) for convenience. The three variance param-

eters have been discussed earlier and they are as follows. Variance σ2
0 reflects the
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uncertainty about the initial state of the system, i.e., the team strengths at the

beginning of the season. As discussed in Subsection 2.2.2, the performance of teams

is affected by many factors that include, e.g., evolution and devolution of individual

players, injuries and player transactions between teams. Variance σ2
v is a measure

of this variability in team strength during the season, i.e., the volatility in team

performance from game to game. There are many random factors affecting the

scores of individual games. The intensity of these aleatory elements in represented

by variance σ2
w, i.e., the amount of noise in the observed point differentials.

The observation equation (6) includes the parameter µ representing the advantage

the teams have for playing in their home courts. The home court advantage has

been studied in the literature (see, e.g., Courneya and Carron 1992, Jones 2007,

Entine and Small 2008, Moskowitz and Wertheim 2011) and it has a significant

effect on the game scores. Therefore, home court advantage is also included in

many models discussed in Section 1.2. Courneya and Carron (Courneya and Carron

1992) propose four factors that could account for the home court advantage: crowd

factors, familiarity with local conditions, travel factors, and effects related to rule

differences for the home versus visiting team. Entine (Entine and Small 2008) notes

that rest is also a significant factor in the home court advantage as the visiting

team has often played a game also on the previous night because the NBA teams

usually play their away-games on road trips consisting of several successive games.

Jones (Jones 2007) presents the home advantage as a game-long process. Jones

(Jones 2008), on the other hand, discusses the team dependence of the home court

advantage.

In the following, maximum likelihood estimation (ML, see, e.g., Davidson and

MacKinnon 1993, Casella and Berger 2001) and expert calibration of the parameters

are presented. The notable difference between ML estimation and expert calibration

is that the calibration can be done ex ante – even before any game scores have been

observed. The ML estimation requires available data and, therefore, it is done

ex post, i.e., after a suitable number of games has been played. Naturally, the

parameters can also be estimated based on the previous seasons’ scores. In theory,

the ML estimation should produce most accurate results. On the other hand, it

also involves an assumption about the normality of system state and observed point

differentials that may not hold in practice.
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2.5.2. Maximum Likelihood Estimation: θ̂ML. The parameters presented in Sub-

sections 2.2.2 and 2.2.3 can be estimated using the ML method (see, e.g., Davidson

and MacKinnon 1993, Casella and Berger 2001) provided that the necessary data

are available. In practice, the parameters can be estimated if the scores of one sea-

son’s games are known up to the time instant T . Let us denote the observed results

up to time instant t − 1 ≤ T by Yt−1 := (y1
′,y2

′, . . . ,yt−1
′)′. If the initial state

and the innovations (v1
′,v2

′, . . . ,vt
′,w1

′,w2
′, . . . ,wt

′)′ are multivariate Gaussian

(as was assumed in Section 2.2), it follows that

yt| Yt−1 ∼ N(ŷt, Ôt),(20)

where ŷt and Ôt are as defined in equation (13). Thus, the conditional probability

distribution function of yt| Yt−1 is

fyt| Yt−1
(yt| Yt−1) = (2π)−m/2|Ôt|−1/2(21)

× exp

(
−1

2
(yt − ŷt)

′Ô−1

t (yt − ŷt)

)
,

where |Ôt| denotes the determinant of the covariance matrix Ôt. The probability

of making a sample of observations YT = (y1
′,y2

′, . . . ,yT
′)′ is then proportional to

the likelihood function

L(θ;YT ) =

T∏

t=1

fyt| Yt−1
(yt| Yt−1).

For computational purposes, the analysis is often based on the logarithm of the

likelihood function, viz., the log-likelihood function

ℓ(θ;YT ) =
T∑

t=1

log fyt| Yt−1
(yt| Yt−1).

In order to find the maximum likelihood estimator for the model parameters, the

log-likelihood function is maximized with respect to the parameter values (Harvey

1989, pp. 126) yielding

θ̂ML = argmax
θ∈Θ

ℓ(θ;YT ).(22)

where the parameter space Θ ⊂ R
4 is defined so that the variance parameters are

non-negative (e.g., Davidson and MacKinnon 1993, pp. 248).
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The ML estimator can also be defined as the solution of the likelihood equations

or the following first-order conditions for the maximum of the likelihood function:

(23) g(θ̂ML) = 0.

Here, the vector g ∈ R
4 is the gradient of the log-likelihood function with typical

element

gi(θ) :=
∂ℓ(θ;YT )

∂θ(i)

where ∂θ(i) refers to the individual model parameters. In practice, equation (23) is

solved numerically using, e.g., the Newton’s method or quasi-Newton methods (e.g.,

Davidson and MacKinnon 2004, pp. 228). In these methods, the log-likelihood func-

tion is evaluated by performing the Kalman filter algorithm presented in Subsection

2.2.4 repeatedly for given parameter values. This is straightforward as the Kalman

filter algorithm readily produces all the state estimates and covariance matrixes

needed in the calculations, i.e., x̂t|t−1 and Ôt in equation (21). The Newton method

makes use of the Hessian matrix, which is now a 4 × 4 matrix H(θ) consisting of

the second derivatives of the log-likelihood function

Hij(θ) :=
∂2ℓ(θ;YT )

∂θ(i)∂θ(j)
.

According to the information matrix equality (e.g., Davidson and MacKinnon 1993,

pp. 263), the asymptotic covariance matrix of the ML estimates is given by

V(θ̂ML) = −H
−1(θ0),

where the Hessian matrix is evaluated in the numerical solution of the likelihood

equations θ̂ML. This matrix is also known as the observed information matrix. The

ML estimator θ̂ML is a consistent estimator for the true values of the parameters

(e.g., Davidson and MacKinnon 1993, pp. 145). When the number of observations

increases, the asymptotic distribution of the ML estimator is
√
T
(
θ̂ML − θ0

)
∼
a
N(0,−H

−1(θ0)),(24)

given that certain regularity conditions hold. These conditions include that the true

value θ0 is an interior point of the parameter space,8 the derivatives of ℓ(θ;YT ) with

respect to θ exist and are continuous in the neighborhood of θ0 (up to order three),

and the model is identifiable (Harvey 1989, pp. 128).

8Note that this condition does not hold for one of the examples in Section 3.1.
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2.5.3. Calibration of Using Other Techniques: θ̂EK. If there is no available data

for the ML estimation of the parameter vector θ, the parameter values can also

be calibrated based on expert knowledge, historical data involving the league in

question or even some similar basketball league. In practice, a subject matter expert

is asked for ballpark estimates for the parameter values. These values are then used

for following the ongoing basketball season and more detailed estimation is carried

out when the necessary data have become available.

Naturally, the expert assessment of the parameter values can depend on the data

from previous seasons or similar leagues. For example, the home court advantage

can be estimated from the previous season by calculating the average difference

between the points scored by the home team and the visiting team. In the NBA

2004-05 and 2005-06 seasons, the home court advantage has been estimated as 3.24

points (Entine and Small 2008). Similar calculations can be performed for more

recent NBA seasons resulting in a rough estimate µ̂ ≈ 3.

The calibration of the variance parameters, on the other hand, is not as straight-

forward. If the random variables in question are assumed Gaussian, rough estimates

for the variance parameters can be obtained using a line of reasoning that is based

on confidence regions, e.g., 95% confidence intervals. That is, it may be easier to

evaluate intervals for likely variation of the modeled system, instead of the direct

values of the variance parameters.

Variance parameter σ2
0 represents the uncertainty related to the initial state es-

timates of the system. One might argue, e.g., the expected value of an individual

team’s state should lie with a 95% probability within ±20 points from the league av-

erage. Given the assumption about normality, this would imply that in the expert’s

opinion σ̂2
0 ≈ 102 = 100.

An interesting way for estimating variance parameter σ2
v , i.e., the amount of

random noise in the point differential of an individual game, can be constructed

using the betting odds and point spreads offered by bookmakers.9 The betting odds

for the winner of a game can be used to calculate the implied probability of a home

win. On the other, the point spread offered by the bookmaker represents the median

of the probability distribution. Under the normality assumption, this equals the

9In actuality, the bookmakers continuously adjust the odds and point spreads according to the
bets placed by the bettors in order to maintain a profitable position regardless of the realized
result of the game. Thus, the betting odds and point spreads offered by the bookmakers in fact
represent the entire betting market’s view on the relative strength of the teams. See, e.g., Bassett
(1981), Gandar et al. (1998).



KALMAN FILTER ALGORITHM FOR RATING AND PREDICTION IN BASKETBALL 41

mean of the probability distribution. Together, the home team’s winning probability

and the location of the mean are used to calculate the variance (or equivalently the

standard deviation) of the underlying probability distribution. This calculation can

be performed to almost any betting odds and respective point spreads resulting in

the implied estimate σ̂2
v ≈ 13.52 = 182.25.

The variance of the team strengths can be estimated, e.g., by studying a typical

difference in the level of performance for a team at the beginning of the season and

the same team at the end of the season. One can try to imagine a virtual game

between these teams and project a 95% confidence interval for the game outcome.

This interval, together with the normality assumption, is then used to calculate an

estimate for the variance of the team performance during a season. Furthermore,

as the changes in team strength are assumed independent during non-overlapping

time intervals, an approximation for the variance between games is calculated by

dividing the variance over the entire season by the number of games played. This

kind of reasoning leads to an estimate σ̂2
w ≈ 0.25.

To summarize, the estimates for the model parameters resulting from this anal-

ysis are θ̂EK = (100, 0.25, 182.25, 3). These estimates are compared with the ML

estimates in Section 3.1.

2.6. Utilization of Model.

2.6.1. Following the Current Season. State estimates x̂t|t represent the progress of

the ongoing season as a n-dimensional time series. The perceived performance levels

of the teams can be presented graphically which gives a good overall picture of the

evolution of the entire league. Naturally, the analysis can also focused on individual

teams, e.g., x̂t|t(i), or comparison of two teams, e.g., x̂t|t(i) and x̂t|t(j). Examples

of time series representing NBA Season 2009-2010 are given in Section 3.3.

2.6.2. Ranking of Teams. The presented state-space model and the Kalman filter

algorithm are used to rank and rate the teams according to their perceived level of

performance. If an ordinal listing of teams is needed, the teams are simply sorted in a

descending order based on their ratings. Furthermore, if more detailed presentation

of the teams’ strength is desired, the teams are first sorted based on their ratings

and the ranking is augmented by presenting the exact ratings of the teams.

In effect, the team ratings are used for statements such as ”team i is better than

team j because it has a higher rating”. The ranking of two basketball teams can
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be presented as a hypoThesis test where the null and alternative hypotheses are as

follows

H0 : xt(i)− xt(j) ≤ 0 and H1 : xt(i)− xt(j) > 0.

The P-value for the test is solved using the conditional distribution

xt(i)− xt(j)| Yt ∼ N



x̂t|t(i)− x̂t|t(j), Σ̂t|t(i, i) + Σ̂t|t(j, j)− 2Σ̂t|t(i, j)︸ ︷︷ ︸
=:σ2





which gives

P (xt(i)− xt(j) ≤ 0| Yt) = Φ

(−x̂t|t(i) + x̂t|t(j)

σ

)
,(25)

where Φ(·) is the cumulative distribution function of the standard normal distri-

bution. The P-value is used to analyze the differences between the teams’ level of

play and study the credibility of the presented ordering of teams. The teams could

also be classified into statistically similar groups based on their performance. This

classification is considered beyond the scope of this Thesis and omitted.

2.6.3. Prediction of Game Outcomes and Odds. The Kalman filter algorithm con-

centrates all available information about observed scores into the predicted state of

the system and its covariance matrix in a form that can be used to predict future

scores. That is

yt+1| Yt ∼ N(ŷt+1, Ôt+1),

The state estimates given by the Kalman filter algorithm and equation (13) can

be used to calculate odds for future game, i.e., the teams’ winning probabilities for

each game played at time instant t + 1. In particular,

yt+1(k)| Yt ∼ N(x̂t+1|t(i)− x̂t+1|t(j) + µ, σ2)

where team i is the home team and team j is the visiting team on the kth game

played on day t + 1, and σ2 := Ôt+1(i, j). This information can be used to predict

the probability of the home team winning the game k on t+ 1th day:

P (yt+1(k) > 0| Yt) = 1− Φ

(−x̂t+1|t(i) + x̂t+1|t(j)− µ

σ

)
,(26)

where Φ(·) is again the cumulative distribution function of the standard normal

distribution. This information can be used in two ways. First, the team with a
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higher probability of winning is seen as the predicted favorite to win the game

under consideration. Second, the probability given by equation (26) is a measure of

confidence on this prediction with a clear interpretation, i.e., the favorite’s predicted

winning probability ranges from 0.50 to 1.00.

2.7. Validation of Team Ratings. The Kalman filter algorithm and its predic-

tions are compared with observed results in order to ascertain that the produced

team ratings give a valid representation for the basketball league under considera-

tion. Techniques applicable for the validation analysis include:

Graphical Analysis: The state estimates given by the Kalman filter algo-

rithm depend on time and they are easily presented as time series represent-

ing the evolution of the teams’ ratings. These time series give a narrative

of the season and a subject matter expert can compare them with teams’

actual performance in order to assess the credibility of the portrayed ratings.

This kind of assessment is referred to as ”passing the laugh test” in Oliver

(2004).

Accuracy of Predictions Given by Algorithm: The Kalman filter algo-

rithm predicts the favorite for each match and the accuracy of these pre-

dictions reflects the accuracy of the team ratings. The prediction accuracy

is measured by comparing the predictions with the realized game outcomes.

Then, the percentage of games predicted correctly can be calculated and

compared with alternative models. Naturally, inaccurate predictions imply

an inaccurate rating.

Accuracy of Odds Given by Algorithm: The Kalman filter algorithm gives

an estimate for the teams’ winning probabilities for each match, e.g., the

probability of the home team winning. The accuracy of the odds given by

the algorithm are compared with the realized game results using a logis-

tic regression model with normal errors. If the predicted odds are accurate

there should be an almost linear dependence between the predicted winning

probability and the realized match results.

Sensitivity Analysis: The parameters of the state-space model affect the

team ratings. In sensitivity analysis, the values of the parameters are varied

in order to see the dependence between the team ratings and the parameter

values. If the performance or the predictions of the algorithm are heavily
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sensitive to parameters, this source of uncertainty should be emphasized in

the presentation of results.

The validation of the team ratings is discussed in further detail in Sections 3.2 and

3.3.
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3. Example Analyses

In the following, the utilization of the Kalman filter algorithm illustrated by

analyzing NBA data. First, in Section 3.1 the parameters of the model are for the

NBA seasons 2005-2006 through 2009-2010 using ML estimation technique discussed

in Subsection 2.5.2. The estimates are also compared to those obtained in Subsection

2.5.3. Second, in Section 3.2 the performance of the Kalman filter algorithm is

validated by studying the predictions given by the algorithm for the NBA seasons

2005-2006 through 2009-2010. Third, in Section 3.3 the Kalman filter algorithm is

used to study NBA season 2009-2010 in full detail. Initially, the assumptions of

the state-space model are compared with actual game scores. Then, the Kalman

filter algorithm is used to estimate team ratings for the entire season using both the

ML estimates for the parameter vector and the parameter values suggested by an

expert analyst. In Section 3.5, the final rankings and ratings for the NBA season

2009-2010 are compared. Finally, in Section 3.4 the scores of individual games of

the NBA 2010 Finals are predicted and discussed.

3.1. Model Parameters Estimated for the NBA Seasons 2005-2010. The

parameters of the state-space model are estimated using ML estimation presented

in Section 2.5.2 for NBA regular seasons 2005-2006 through 2009-2010 where each of

the seasons consists of 1230 games. The ML estimates are estimated independently

for each of the seasons and the estimates are presented in Table 1.

θ̂ML ’05-’06 ’06-’07 ’07-’08 ’08-’09 ’09-’10 θ̂EK

σ̂2
0 11.48 6.88 25.53 19.48 16.76 100
σ̂2
w 0.0174 0.0917 0.0138 0.0000 0.0533 0.25
σ̂2
v 127.08 133.99 132.31 131.45 133.58 182.25
µ̂ 3.37 3.01 3.26 3.28 2.72 3

no. of games 1230 1230 1230 1230 1230 -
Table 1. Maximum likelihood estimates for the model parameters
for NBA regular seasons 2005-2006 through 2009-2010. The estimates
based on expert knowledge are also presented for comparison.

The estimate σ̂2
0 varies heavily from season to season, ranging from 6.88 to 25.53.

This may be the result of differences in teams’ level of play or the variations in

the teams’s performance at the beginning of the seasons. The estimate σ̂2
w ranges

between 0.0000 and 0.0917. Interestingly the largest estimate coincides with the

smallest value of σ̂2
0. That is in season 2006-2007, the initial uncertainty is quite
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small, but the changes in team ratings are the greatest. In season 2008-2009, the

ML estimate is equal to zero, i.e., the probability of the data is highest if the model

does not include any variation in team strengths.10 Compared to the other variance

estimates, the residual variation in point differentials is more consistent from season

to season which seen in the estimates σ̂2
v that range from 127.08 to 133.99. It

would appear that the models explain some of the variation in observed scores as

the estimates are smaller than the estimate given by the expert. This explanatory

power is discussed also in Section 3.2. Overall, the variance estimates given by the

expert knowledge are much larger than the ML estimates – reflecting the higher

uncertainty. This is natural as the expert estimates are given a priori, i.e., before

the game results have been estimated.

The estimate µ̂ varies slightly during the interval 2005-2010, but changes are

moderate with range from 2.72 to 3.37. Notably, these estimates match to the

average point differentials observed in the corresponding seasons. The ML estimates

of home court advantage are congruent with the estimate given by the expert that

falls in the middle of the range of the ML estimates.

’05-’06 ’06-’07 ’07-’08 ’08-’09 ’09-’10

Kalman rating (ML) 0.6577∗ 0.6539∗ 0.6894∗ 0.6995∗ 0.6862∗

Kalman rating (ML, prev.) - 0.6426∗ 0.6829∗ 0.6995∗ 0.6830∗

Kalman rating (EK) 0.6561∗ 0.6491∗ 0.6854∗ 0.6922∗ 0.6911∗

home team 0.6033 0.5922 0.5951 0.6099 0.5941
wins 0.5724 0.5597 0.6211 0.6262 0.6031

winning percentage 0.5984 0.5865 0.6393 0.6393 0.6194
point differential 0.6341 0.6288 0.6772∗ 0.6938∗ 0.6626

point differential (60 days) 0.6472∗ 0.6426∗ 0.6764∗ 0.6922∗ 0.6650
Table 2. Probability of correctly predicting the game outcomes for
the NBA regular seasons 2005-2006 through 2009-2010 using different
predictors.

3.2. Performance of Kalman Filter Algorithm during the NBA Seasons

2005-2010. The performance of the Kalman filter algorithm is tested by using it

to predict the outcomes of the games in the NBA during the seasons 2005-2006

through 2009-2010. The probabilities of correctly predicting the game outcomes

10As stated in Subsection 2.5.2, the asymptotic distribution of the estimator of the parameters is
not normal in this case. This is an occurrence that may warrant further analysis.
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using various performance measures are given in Table 2. Table 2 includes the pre-

dictions given by the Kalman filter with three alternative parameter estimates: ML

estimates based on the season’s results (ML), ML estimates based on the previous

season’s results (ML, prev.), and estimates given by the expert (EK). For compar-

ison, the predictions given by five other performance measures are also presented.

In these predictions, the favorite is either the home team, the team with more wins,

the team with higher winning percentage, the team with higher point differential, or

the team with the higher point differential during last 60 days. For each season, the

highest probability is bolded denoting the best predictions. The predictive power of

different methods is compared with the predictions given by the Kalman filter with

ML based parameter estimates using the McNemar’s test for marginal homogeneity

with dependent observations (McNemar 1947). The probabilities marked with an

asterisk (*) do not differ statistically significantly from those given by the Kalman

filter on the 0.05 significance level.

Table 2 shows that, among the discussed predictors, the Kalman filter algorithm

and the scoring differentials give the most accurate predictions. The predictions

given by the Kalman filter are not sensitive to the values of the parameter estimates

as there is no statistically significant differences between three parameters values.

Notably, the predictions given by the two scoring differentials are almost as accurate

as those given by the Kalman filter and the difference is not statistically significant.

This is further discussed in Section 3.5.

’05-’06 ’06-’07 ’07-’08 ’08-’09 ’09-’10

Kalman rating (ML) 0.6916∗ 0.6623∗ 0.7256∗ 0.7138∗ 0.7071
Kalman rating (ML, previous) - 0.6510∗ 0.7208∗ 0.7106∗ 0.6909

Kalman rating (EK) 0.6916∗ 0.6575∗ 0.7289∗ 0.7122∗ 0.7039∗

home team 0.6266 0.5828 0.6201 0.6276 0.5615
wins 0.6218 0.5958 0.6769 0.6488 0.6472

winning percentage 0.6396 0.6153 0.6883 0.6569 0.6505
scoring differential 0.6429 0.6299 0.6997 0.6699 0.6748

scoring differential (60 days) 0.6429 0.6136 0.6851 0.6650 0.6699
Table 3. Probability of correctly predicting the game outcomes for
the second halves of NBA regular seasons 2005-2006 through 2009-
2010 using different predictors.

Table 3 presents data similar to Table 2 but now the predictor performances

are studied only for the second half of each of the seasons. In this table, the



48 JIRKA POROPUDAS

predictors have had time to ”warm up”, i.e., the first half of the season is only

used for producing the estimates and their performance during the this period is

ignored in the comparison. The best predictors are now those given by the Kalman

filter algorithm. Interestingly for some of the seasons, the best predictions are given

by the parameter estimates based on expert knowledge or the scoring differential.

None of the differences among Kalman filters are statistically significant.

The predictions given by the Kalman filter algorithm are correct 65 − 70% of

the time when only the complete seasons are considered. This quite a good result

and the algorithm outperforms the simplest predictors in Tables 2 and 3. On the

other hand, the results do not differ statistically significantly from those given by

the scoring differential during last 60 days. For the second half of the season, the

Kalman filter algorithm predicts correctly 66− 73% of the games and outperforms

the other predictors. There is no notable differences between the alternative values

of the parameters.

Unfortunately, the comparison of the predictive accuracy of the Kalman filter

algorithm with the existing literature is not straightforward. Out of the articles

discussed in Section 1.2, only Knorr-Held discusses the ranking of NBA teams

(Knorr-Held 2000) and even in this article the accuracy of the model predictions is

not reported. In most of the articles mentioned in Section 1.2, statistical models

are used to predict the results of NCAA Tournament games. Boulier and Stekler

(Boulier and Stekler 1999) report that the seedings set by the NCAA tournament

selection committee predict correctly 70% of the NCAA tournament games played

during seasons 1986 − 1995. The models presented in (Harville 2003) predict cor-

rectly 69 − 71% of the NCAA 2001 Tournament games while the betting market

is correct 66.5% of the time. Coleman and Lynch (Coleman and Lynch 2009) give

a comprehensive presentation of the NCAA Tournaments for seasons 1999− 2008.

According to this article, the accuracies of different predictors during this time are

as follows: RPI 69.6% (NCAA 2011), NCAA seedings 70.0% (NCAA 2011), Sagarin

rating 71.4% (Sagarin 1985), Kvam-Sokol 71.4% (Kvam and Sokol 2006), and bet-

ting market 74.6%. In the same time interval, the regression models presented by

Coleman and Lynch are correct in 73.2−73.8% of the tournament games (Coleman

and Lynch 2009).

However, one should note that the prediction of NCAA Tournament games is not

entirely comparable with the prediction of NBA regular season games as one could

argue that the differences between team strengths are higher in college basketball
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Figure 1. Scatterplot of the scores of the games as well as the his-
tograms representing the marginal distributions of the points scored
by the home and visiting team for the NBA season 2009-2010.

than in the NBA. Additionally, the teams participating in the final tournament

are guaranteed to be playing at full force which does not necessarily hold for all

the NBA regular season games. For example, NBA teams that have secured their

playoff position have been known to rest their key players for the playoff run in

the last games of the regular season. Therefore, one could expect a slightly lower

accuracy when predicting the outcomes of NBA regular season games compared

to the NCAA Tournament. Overall, it is safe to conclude that the accuracy of the

predictions given by the Kalman filter algorithm is good and in line with the existing

literature.

3.3. NBA Season 2009-2010.

3.3.1. Observed Scores. Scatterplot of the scores of the games played in the NBA

season 2009-2010 including the playoffs is given in Figure 1. The figure also displays

the marginal distributions of the points scored by the home team and visitor that

appear approximately normally distributed. On average, the home team scores

slightly more points, i.e., 2.86 points per game, and wins 60.0% of the games. The
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Figure 2. Quantile-quantile plot comparing the distributions of
points scored by the home and visiting team as well as the point
differential and the total points to respective normal distributions for
the NBA season 2009-2010.

game cannot end in a tie and there is a gap in the joint probability distribution.

This makes the actual distribution of point differentials bimodal.

variable
test

χ2 Kolmogorov- Jarque-
Lilliefors

(dof = 5) Smirnov Bera
home team 0.0001 0.0319 0.0070 0.0010

visiting team 0.0001 0.0320 0.0010 0.0010
total points 0.0031 0.0629 0.0010 0.0010

point differential 0.0000 0.0008 0.0010 0.5000
Table 4. P-values of statistical tests used in testing the normality of
observed distributions of points scored by home team, points scored
by visiting team, total points, and point differential. The number of
observations is 1267.

The normality of the observed distributions is tested using quantile-quantile plots

presented in Figure 2. The figure shows that the distributions appear approximately

normal, despite slight curvature at the tails of the distributions. The normality of
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the different point distributions is tested using several statistical tests and rejected

(Table 4). In other words, the observed distributions do not exactly follow a nor-

mal distribution. Nevertheless, the probability distribution of the point differential

appears approximately normal and in accordance with the assumptions of the state-

space model presented in Chapter 2. Furthermore, the derivation of the Kalman

filter algorithm does not assume normality and it produces best linear estimates

for the system state and observations even without the normality assumption (see,

Subsection 2.3.3). Thus, it is not sensitive to slight deviations from normality.

3.3.2. Model Parameters. The data are used to calculate the ML estimates for the

parameters of the model, i.e.,

(27) θ̂ML = (σ̂2

0, σ̂
2

w, σ̂
2

v , µ̂) = (17.27, 0.0390, 135.68, 2.85).

The covariance matrix of the parameter estimates is

(28) V(θ̂ML) = −H
−1(θ̂ML) =




0.0110 0.0010 0.0495 −0.0011

0.0010 0.008 −0.0514 −0.0015

0.0495 −0.0514 5.7885 0.1121

−0.0011 −0.0015 0.1121 0.0031


 .

parameter lower bound estimate upper bound
σ̂2
0 17.07 17.28 17.48
σ̂2
w -0.0172 0.0390 0.0951
σ̂2
v 130.96 135.68 140.39
µ̂ 2.74 2.85 2.96

Table 5. Estimates and confidence intervals with confidence level
0.95 for the ML parameters in the NBA 2009-2010 season.

The covariance matrix and the normality assumption can be used to construct

95% confidence intervals for the parameters. The parameter estimates and corre-

sponding confidence intervals are presented in Table 5. The confidence intervals

and the covariance matrix imply that the parameters have been estimated reason-

ably well as the intervals are quite narrow relative to the absolute values of the

parameters and the models’s sensitivity to parameter values.11

11However, one should note that these estimates are not exactly ML estimates as the normality
assumption does not hold for the observed point differentials. Therefore, it might be more accurate
to refer to these estimates as pseudo-ML estimates (e.g., Gourieroux et al. 1984).
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3.3.3. Team Ratings for the NBA Season 2009-2010. In Figure 3, the team ratings

x̂t+1|t calculated with parameter vector θ̂ML are presented for individual teams for

the duration of the NBA season 2009-2010. For clarity, the ratings for Western and

Eastern Conferences are also presented separately in Figures 4 and 5.

The season, ”first half” between days 1-108, ”All-Star break” 109-112 no games

are played, ”second half” 113-170, playoffs from day 173 forward... Not all teams

qualify for the playoffs which is seen in their ratings, viz., the ratings are stopped at

the level of the last game played. Similarly, after teams are eliminated from playoffs,

their ratings stop. Slight variations due to correlations between ratings, especially

after team is eliminated from playoffs as its rating is tangled with the last opponent

due to several games played between them.

In the Eastern Conference (Figure 4), the teams separated to better and worse

teams gradually. The worst team’s rating (New Jersey Nets, NJN) plummets at the

beginning of the season. Seven teams separate themselves from the rest after All-

star break and qualify for the playoffs. Note that the eight team entering the playoffs

(Chicago Bulls, CHI) is ranked notably worse than the other playoff bound teams.

Consequently, they are eliminated in five games by the Cleveland Cavaliers (CLE,

ranked second in East by the Kalman filter). In advanced round of the playoffs,

Boston Celtics (BOS) are able to upset both Orlando Magic (ORL) and CLE despite

these teams’ better performances in the regular season and the subsequent higher

playoff seed and home court advantage. After three playoff rounds, BOS qualifies

for the NBA Finals from the Eastern Conference.

Western Conference ratings (Figure 5) reveal the parity within the conference.

The rating of the worst team (Minnesota Timberwolves, MIN) falls behind the pack

at the beginning of the season. Other weaker teams such as Sacramento Kings

(SAC) and Los Angeles Clippers (LAC) follow suit and their seasons are effectively

over well before the All-star break. In the Western Conference, the teams qualifying

to the playoffs are clearly separated from the other teams at the end of the regular

season. Notably, the defending champion Los Angeles Lakers (LAL) entered the

playoffs as the fifth ranked team in West. At the beginning of the playoffs, the

best ranked teams appear to be Phoenix Suns (PHO), Utah Jazz (UTA), and San

Antonio Spurs (SAS). The rating of PHO is further escalated by the 4-0 victory

over SAS with very large point differentials in the second round of the playoffs.

Nevertheless, LAL are able to sweep UTA 4-0 in the second round and eliminate

PHO 4-2 in the Western Conference finals qualifying for the NBA Finals. The
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Figure 3. Team ratings for the NBA teams during season 2009-2010 with parameter vector θ̂ML.
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vector θ̂ML.
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performances of LAL and BOS in the NBA 2010 Finals are further discussed in

Section 3.4.

For the comparison of alternative parameter values and sensitivity analysis, the

team ratings x̂t+1|t obtained using parameter estimates θ̂EK are presented in Figures

18, 19 and 20 in Appendix B. The notable difference between ratings given by

parameter estimates θ̂ML and θ̂EK is in the variation of the ratings. The changes

in the ratings produced by θ̂EK are much more volatile and ranking of the teams

shifts continuously throughout the regular season. This is a natural consequence

of the larger variance parameters discussed in Section 3.1. These differences are

discussed in further detail in Subsection 3.3.6. At the end of the season, though,

the effect of the parameter values has diminished which is seen in the similarities of

the teams’ ratings and rankings presented in Section 3.5.

3.3.4. Predicted Point Differentials. The point differentials predicted by the Kalman

filter algorithm with θ̂ML and the actual observed point differentials are presented

in Figure 6. From the ranges of variables, it is seen that the predictions of the

Kalman filter algorithm match the expected value of observations and individual

observations have a larger range due to random variation. The figure also includes

red line corresponding to perfect and black dashed line representing the linear re-

gression between predicted and observed point differentials. In the regression model,

the constant term is 0.109 and the slope is 0.987. Therefore, the predicted point

differentials give almost perfectly unbiased estimates for the actual point differen-

tials. The P-value for the complete model is 0.000. The model included considerable

variation, though, as the R2 statistic is only 0.165 and therefore there exists plenty

of variation unaccounted for by the model. Overall, the Kalman filter algorithm

with θ̂ML predicts correctly 69.2% of the games.

The predictions given by the Kalman filter algorithm with parameter vector θ̂EK

are presented in a similar scatterplot in Figure 7. The most notable difference

between Figures 6 and 7 is in the regression model fitted to the predictions produced

with θ̂EK . The regression model in Figure 7 has a constant term 0.802 and slope

0.511 which is smaller than one leading to inconsistency in the expected values of

the two variables. For example, if the model predicts a 10 point win for the home

team, the expected point differential is in fact only 5.91 points. In other words, the

model gives predictions whose expected values are exaggerated – even though the
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Figure 6. Scatterplots presenting the predicted and observed point
differentials with parameter vector θ̂ML.

range of predictions is much narrower than that of observed point differentials. The

regressor has P-value of 0.000 and R2 = 0.161.

Figure 8 shows that there is no non-linear dependence between predictions given

by the Kalman filter algorithm with either of the two parameter vectors. The

residuals appear homoscedastic and their scatterplots resemble normal probability

distributions. All in all, the observed point differentials could not be predicted any

better based on the team ratings.

3.3.5. Predicted Winning Probabilities. The Kalman filter algorithm and equation

(26) in Subsection 2.6.3 are used to calculate the predicted probability of a home

win for each of the games played in the NBA season 2009-2010. The predicted

probabilities are presented in Figures 9 and 10 for the parameter vectors θ̂ML and

θ̂EK , respectively. In the figures, the observed home win is denoted by 1 and a

home loss by 0. The figures present also a logistic regression model where the

observed wins are explained using the predicted winning probabilities. A dashed

line representing perfect match between predicted winning probabilities and the

observed outcomes is also presented for comparison.
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Figure 7. Scatterplot presenting the predicted and observed point
differentials with parameter vector θ̂EK .

In Figure 9, the logistic regression model has a constant term −1.681 and slope

3.371. The deviance of the model is 1554 which is small compared to the model’s

error degrees of freedom 1306, i.e., the model gives an adequate representation for

the observed outcomes. The theoretical dispersion parameter of the model is 1

and estimated dispersion parameter is 1.001 In other words, the observed outcomes

do not include significant variation excluding that included in the model. The

predictions appear unbiased as the only deviation from the line representing perfect

fit is due to the functional form of the logistic regression model. For example, if

the predicted winning probability is 0.50 for the home team, the logistic regression

fitted to the observed outcomes gives the value 0.501 for the probability.

In Figure 10, the logistic regression model has a constant term −1.578 and slope

3.250. The deviance of the model is 1559 which small compared to the model’s

error degrees of freedom 1306, i.e., the model gives an adequate representation for

the observed outcomes. The theoretical dispersion parameter of the model is 1

and estimated dispersion parameter is 1.000 In other words, the observed outcomes

do not include significant variation excluding that included in the model. The

predictions appear unbiased as the only deviation from the line representing perfect
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Figure 8. Scatterplot presenting the predicted point differentials
and the residuals with parameter vectors θ̂ML and θ̂EK .

fit is due to the functional form of the logistic regression model. For example, if

the predicted winning probability is 0.50 for the home team, the logistic regression

fitted to the observed outcomes gives the value 0.511 for the probability.

3.3.6. Comparison of Models with Alternative Parameter Estimates. To evaluate

the effect of alternative parameter estimates, the behavior of the ratings produced

by parameter vectors θ̂ML and θ̂EK . In Figure 11, the predicted point differentials

for models with parameter vectors θ̂ML and θ̂EK are plotted. The red line denotes

the line where x = y and the black dashed line is the linear regression model fitted to

the data. In the regression model, constant term is 0.424, slope 0.807, R2 = 0.962,

and P-value for the complete model is 0.000. The fit between the two predictions is

good. The predictions given by θ̂ML are more conservative, i.e., smaller in absolute

value. This is due to the greater variation in the ratings given by θ̂EK and its

larger variance estimates. There is also heteroscedasticity in the data. That is, the

differences between the two predictions increase in magnitude towards the edges of

the data set.
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Figure 9. Scatterplot presenting the predicted winning probabilities
for the home team and the wins by the home team with parameter
vector θ̂ML.

As discussed in Subsection 2.3.8, the total uncertainty related to the system state

can be evaluated using various measures of uncertainty. In Figure, two measures

of uncertainty about the system state with parameter vectors θ̂ML and θ̂EK are

presented, viz., the total dispersion and generalized variance of the corresponding

covariance matrixes. For parameter estimates θ̂EK the uncertainty is always greater

than for θ̂ML. This is reasonable as the larger variance estimates in θ̂EK represent

the uncertainty related to the system before the season. In ML estimation of θ̂ML,

the scores of the games have already been observed and optimal parameter values

can be calculated from the data.

The effect of the larger variance estimates is also presented in Figure 13. The

figure shows the changes in the maximum of the diagonal elements of the Kalman

gain matrix in equation (11). It is seen that the corrections made to the estimated

system state are approximately twice as large when estimates θ̂EK are used, in

comparison to those resulting from θ̂ML. In practice, this means that there exists

larger fluctuations in the team ratings.
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Figure 10. Scatterplot presenting the predicted winning probabili-
ties for the home team and the wins by the home team with parameter
vector θ̂EK .

The final state estimate xT|T given by θ̂ML can be seen as the best available

estimate for the system state when the scores of the entire season are utilized.

Therefore, in Figure 14 the state estimates xt|t given by the two parameter vectors

are compared to the final state estimate by using linear coefficient of correlation.

It is seen that the correlation between the state estimates xt|t and xT|T increases

rapidly at the beginning of the season and by the 50th day a rough understanding of

the teams’ relative strengths has emerged. The state estimates given by parameter

vector θ̂EK approach the final estimates more slowly, but in the end, they too

approach the similar ordering of the teams (cf. Section 3.4). In other words, the

”warm-up” time is smaller when the ML estimates are used for the parameters and

true ranking of the teams is found more rapidly.

3.4. NBA 2010 Finals. Before the final series, LAL is rated at 5.27 and BOS at

4.14, meaning that LAL is appraised approximately one point better than BOS.

During the series, there are only moderate changes in the ratings, only exception

being game 6 which was a blowout for LAL. One should note that the sum of
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Figure 11. Scatterplot presenting the predicted point differentials
for models with parameter vectors θ̂ML and θ̂EK .

Game LAL B0S P-value
Home
team

Pred. Winning
prob.

(game)

Winning
prob.

(series)
Winner

Obs.
point point
diff. diff.

1 5.27 4.14 0.335 LAL 3.98 0.822 0.776 LAL 13
2 5.49 3.92 0.272 LAL 4.42 0.849 0.881 BOS −9
3 5.17 4.24 0.357 BOS −1.92 0.326 0.536 LAL 7
4 5.38 4.04 0.296 BOS −1.51 0.361 0.867 BOS −7
5 5.26 4.16 0.328 BOS −1.75 0.338 0.666 BOS −6
6 5.16 4.25 0.353 LAL 3.77 0.816 0.344 LAL 22
7 5.55 3.87 0.241 LAL 4.53 0.862 0.862 LAL 4
- 5.54 3.88 0.241 - - - 1.000 LAL -

Table 6. Results of the NBA 2010 Finals. The columns LAL and
BOS present the teams’ ratings before the game. In the Winner col-
umn, correctly predicted winners are bolded.

ratings remains almost constant (up to the second decimal). Thus, the games played

between LAL and BOS do not affect their average rating compared to other teams.

In a sense, the playoff series are a ”zero sum game” where the increase in one team’s

rating causes a decrease in the other’s.
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Figure 12. Two measures of uncertainty about the system state with
parameter vectors θ̂ML and θ̂EK for the NBA season 2009-2010.

If the teams are compared with the test presented in Subsection 2.6.2, the P-

value for the test is equal to 0.3352, i.e., the difference between teams’ ratings is

not statistically significant at 0.05 significance level. After seven game series, the

P-value has decreased only little, but the direction of the change makes a stronger

case for the superiority of LAL.

The teams are so evenly matched that the home is the favorite in every game. Ad-

ditionally, the predicted winning probabilities and point differential remain almost

constant during the series. At home, LAL is expected to win with a probability

ranging from 0.816 to 0.862. Away, the predicted winning probabilities are between

0.326 and 0.361. Similarly, the predicted point differentials are from 3.77 to 4.53 in

Los Angeles and from −1.92 to −1.51 in Boston. One should note that the observed

point differentials are much larger in absolute value than the predictions – which is

how it should be.

Before the series, the predictions given by the Kalman filter algorithm present

LAL as the favorite to win the series as the probability of LAL first reaching four

wins is 0.776. This probability changes with every observed score and the changes
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Figure 13. Maximum of the Kalman coefficients as a function of
time with parameter vectors θ̂ML and θ̂EK for the NBA season 2009-
2010.

are much more dramatic than the changes in team strengths.12 The most influential

games are those where the team is able to upset its opponent away from home.

In the 2010 Finals, BOS was able ”to steal the home court advantage” in game 2,

tying the series at 1− 1 and dropping the LAL probability of winning the series to

0.536. Unfortunately for BOS, LAL reclaims the home court advantage in game 3

by winning in Boston and raising its probability of winning the series back to 0.867.

After BOS wins games 4 and 5 in Boston and leads the series 3 − 2, it is in fact

the favorite to win the entire series as LAL championship would necessitate two

consecutive LAL victories in game 6 and 7. For BOS on the other hand, winning

either one of those game would clinch the series. Then, LAL wins game 6 by 22

points extending the finals to the seventh and decisive game that is played in Los

Angeles. At this point, LAL probability of winning the game 7, and the entire

12This is completely natural as every game played means an additional win for one of the teams
bringing the team closer to the championship.
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Figure 14. Coefficient of linear correlation between the state esti-
mates xt|t and xT|T with parameter vectors θ̂ML and θ̂EK for the
NBA season 2009-2010.

series, is 0.862. In the end, LAL wins the game 7 and the series 4− 3. Overall, the

Kalman filter algorithm predicts five of the seven finals games correctly.13

Finally, it is important to remark that the ratings of the NBA finalists LAL and

BOS are only the third and seventh best in the NBA at the end of 2009-2010 season

– even though the finalists are undoubtedly the two best teams in the NBA. Ap-

parently, the statistical analysis of point differentials does not tell the entire story

about the progress of a NBA season. This shortcoming is addressed in the following

quote from Bradford Doolittle and Kevin Pelton, the authors of Basketball Prospec-

tus 2010-11 (Doolittle and Pelton 2010), one of the most respected compilations of

advanced NBA statistics:

The moral of the 2010 postseason, after all, was more about mislead-

ing statistics. By no measure did the Boston Celtics look like an elite

team after limping into the playoffs with an 11-11 record in March

and April. The defending champion Los Angeles Lakers claimed the

13Yet, one should keep in mind that identical predictions about the outcomes of games would have
been made by simply selecting the home team as the favorite.
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Western Conference’s top seed, meanwhile, but did so with a point

differential that ranked third in the West.14 Ultimately, those num-

bers did not matter during the playoffs. The Celtics and Lakers both

found additional gears, demonstrating that their regular-season per-

formance painted an inaccurate picture of their ability. While we

weren’t fooled by the Lakers’ middling numbers, both of us picked

against Boston prior to the Celtics’ upset wins over Cleveland and

Orlando.

The lesson here is not to abandon statistics entirely. After all, the

Celtics’ run was noteworthy precisely because it was so unlikely and

unexpected. The NBA’s grueling seven-game series leave relatively

little room for the kind of fluke outcomes that are commonplace

in the MLB (Major League Baseball) and NFL post seasons; more

often than not teams perform to their regular-season level during

the playoffs. Instead, the takeaway is a healthy humility about the

limitations of statistical analysis, which cannot account for every

external factor like health or even motivation.

3.5. Final Team Ratings for the NBA Season 2009-2010. The final team

ratings for the NBA season 2009-2010 calculated using parameter vectors θ̂ML and

θ̂EK are presented in Table 7. The table also includes the teams winning percent-

ages, point differentials and point differentials over last 60 days, for comparison.

The team ratings are followed by P-values in parenThesis.

The P-values presented in Table 7 show the statistical significance of the differ-

ences of team ratings. The teams are compared to the highest rated team (ORL)

using as discussed in Subsection 2.6.2. The teams have been ordered in a descend-

ing order with respect to the ratings given by parameter vector θ̂ML. Therefore,

the test statistic used in the comparison should increase along the rows resulting in

monotonously decreasing P-values, i.e., stronger evidence on the difference between

the teams. This is indeed the case for most teams. The few exceptions follow from

the correlations between the teams’ ratings. Across the board, the P-values related

to the ratings produced by parameter vector θ̂EK are larger than those given by

θ̂ML. This is follows from the larger values of variance parameters in θ̂EK . In effect,

14One should note that the Kalman ratings are highly correlated with the cumulative point dif-
ferentials referred to by Doolittle and Pelton as is seen in Section 3.5.
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Rank Team W L W%
Point
diff.

Point Team Team
diff. rating, rating,

(60 days) θ̂ML θ̂EK

1. ORL 69 27 0.719 7.66 10.05 8.76 (-) 10.23 (-)
2. PHO 64 34 0.653 4.86 5.96 6.56 (0.1995) 8.11 (0.3275)
3. LAL 73 32 0.695 4.52 3.64 5.55 (0.1269) 7.01 (0.2761)
4. CLE 65 25 0.722 6.01 4.27 5.30 (0.1075) 5.25 (0.1714)
5. UTA 57 35 0.620 4.63 2.54 4.75 (0.0791) 3.94 (0.0460)
6. SAS 54 38 0.587 4.16 3.73 4.52 (0.0651) 4.75 (0.1484)
7. BOS 64 41 0.610 3.19 1.14 3.87 (0.0443) 5.15 (0.1743)
8. DEN 55 33 0.625 3.74 2.18 3.48 (0.0123) 2.82 (0.0663)
9. OKC 52 36 0.591 3.03 2.10 3.40 (0.0300) 3.41 (0.1059)
10. DAL 57 31 0.648 2.63 3.14 3.04 (0.0169) 4.02 (0.1287)
11. ATL 57 36 0.613 3.28 0.55 2.32 (0.0119) 0.99 (0.0445)
12. POR 52 36 0.591 2.38 1.96 2.29 (0.0048) 2.13 (0.0687)
13. MIA 48 39 0.552 1.68 2.31 1.81 (0.0072) 1.91 (0.0260)
14. MIL 49 40 0.551 1.27 1.59 1.47 (0.0044) 1.16 (0.0471)
15. CHA 44 42 0.512 0.92 1.53 1.13 (0.0036) 1.16 (0.0418)
16. HOU 42 40 0.512 -0.37 -0.97 -0.63 (0.0003) -1.19 (0.0186)
17. CHI 42 45 0.483 -2.07 -4.45 -1.13 (0.0003) -0.65 (0.0231)
18. IND 32 50 0.390 -3.01 0.33 -1.53 (0.0002) 0.44 (0.0276)
19. MEM 40 42 0.488 -1.50 -2.29 -1.75 (0.0001) -2.98 (0.0080)
20. NOH 37 45 0.451 -2.37 -4.68 -2.36 (0.0000) -2.92 (0.0086)
21. TOR 40 42 0.488 -1.96 -4.33 -2.41 (0.0000) -2.94 (0.0043)
22. GSW 26 56 0.317 -3.60 -3.10 -2.99 (0.0000) -3.01 (0.0050)
23. PHI 27 55 0.329 -3.94 -7.33 -4.00 (0.0000) -4.48 (0.0035)
24. NYK 29 53 0.354 -3.48 -5.53 -4.12 (0.0000) -4.09 (0.0012)
25. SAC 25 57 0.305 -4.37 -5.37 -4.52 (0.0000) -5.41 (0.0021)
26. WAS 26 56 0.317 -4.73 -5.63 -4.71 (0.0000) -4.79 (0.0030)
27. DET 27 55 0.329 -5.11 -5.39 -5.08 (0.0000) -5.10 (0.0017)
28. LAC 29 53 0.354 -6.35 -9.90 -6.86 (0.0000) -8.43 (0.0002)
29. NJN 12 70 0.146 -9.13 -4.73 -7.42 (0.000) -6.11 (0.0002)
30. MIN 15 67 0.183 -9.60 -11.59 -8.73 (0.0000) -9.55 (0.0000)

Table 7. Team rankings for NBA season 2009-2010 with parameter
vector θ̂ML.

the larger values of variance parameters lead to less compelling conclusions when

the teams are compared.

The data presented in Table 7 is also illustrated in Figures 15, 16, and 17. Figure

15 shows the dependence between the final ratings produced by two alternative

parameter estimates, viz., θ̂ML and θ̂EK . The red line in the figure denotes the
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Figure 15. Scatterplot presenting the final team ratings with pa-
rameter vectors θ̂ML and θ̂EK .

line where x = y. Clearly, the ratings are consistent with one another, i.e., the

teams’ ratings are more or less equal with both parameter estimates. This is also

represented by the linear regression model fitted to the data (black dashed line). In

the regression model, the constant term is 0.000 and the slope is 0.903. The fit is

almost perfect giving the coefficient of determination R2 = 0.986, and P-value for

the regressor is 0.000.

The ratings produced by θ̂ML are plotted with other measures of performance

in Figure 16. The figure shows that there is considerable positive correlation be-

tween the performance measures. Interestingly, the teams’ ratings match their point

differentials. That is, when the full seasons scores are used to determine the ML

estimates for the model parameters, the model reproduces the ranking given by

the point differentials. Figure 17, similar comparison is done for the ratings based

on θ̂EK . Now, the positive dependence is also observed, but the ratings do not

match the point differentials as exactly as in Figure 16. Overall, the four discussed

performance measures result in very similar rankings for the teams.
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Figure 16. Scatterplot presenting the final team ratings with pa-
rameter vector θ̂ML and other measures of performance.
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Figure 17. Scatterplot presenting the final team ratings with pa-
rameter vector θ̂EK and other measures of performance.
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4. Alternative Models and Topics for Future Research

The state-space model presented in this Thesis is intentionally minimal and sim-

plistic and it could be developed further in various ways. In the following, a few

ideas for future research are introduced. First, alternative state-space models are

proposed. Then, some ideas for other applications of the state-space model and the

Kalman filter algorithm are given.

4.1. Alternative Models.

4.1.1. Additional Factors. Many additional factors may also be included in the ob-

servation equation of the state-space model, i.e., equation (7). Examples of such

factors include, among others, the effects of rest, traveling, and roster changes.

These factors are included in the following model:

(29) yt(k) = xt(i)− xt(j) + µ+ ν + ξ + ψ +wt(k),

where µ denotes the home court advantage, ν is the effect of rest, ξ represents the

traveling schedule, and ψ represents the roster changes. The effect of home court

advantage, denoted by µ, is already discussed in Chapter 2.2.

The amount of rest is a notable factor in the NBA as the teams play 82 reg-

ular season games within approximately 170 days (Entine and Small 2008) and,

therefore, its effect should be included in the observation equation. On average, for

seasons 2004-05 and 2005-06 home teams scored 3.24 more points than the visitors.

This effect could be divided into to 0.31 points due to smaller amount of rest for

visiting teams in NBA schedule, and 2.93 due to other factors, e.g., the home court

advantage. Thus, the inclusion of rest would yield a more detailed representation

of the home court advantage resulting in improved ratings and better predictive ca-

pability. In this approach, if visiting team has played the previous night but home

team has not, a positive term is added to the expected value of the game score. If

home team is playing a back-to-back game, a negative term is used. Naturally, if

both teams have played the previous night, these effects can neutralize each other.

The traveling schedule is also a real, although not dramatic factor contributing

to the NBA’ home court advantage (Entine and Small 2008). That is, the travel

itself makes a team playing in its third consecutive away game more fatigued than

a team with the same game dates, but playing at home. Therefore, the effect of the

length of the current road trip should perhaps be included in equation (6).
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The effect of roster changes, i.e., the absence of key players due to injuries or

suspensions, could also be included in the state-space model. For example, if the

visiting team is missing one of its key players, a positive factor can be added to

the expected score. However, the effects of home court, rest, and traveling are

easily estimated from observed game results, but the effect of roster changes is

not as straightforward. First, expert knowledge is needed in determining who the

”key players” are for each team. For example, the team’s best scorer may not be

its most important player and the number of key players may vary from team to

team. Second, the existing data has to studied to determine whether teams are

playing in full strength or not. This may be tedious, unless some easily screened

definition for the key players is given. Third, the effect of missing players may

not be additive or linear, i.e., the availability of a capable substitute may remove

the effect altogether or the simultaneous absence of several players may render the

team completely incapacitated. This is an interesting topic for future research that

definitely warrants further attention.

4.1.2. Team Specific Model Parameters. The state-space model presented in this

Thesis assumes identical and time invariant variance parameters µ, σ2
0 , σ

2
w, and σ2

v

for all the teams. Alternatively, it would be possible to have different parameters

for each team. For example, each team could have its own home court advantage

representing, e.g., the fanaticism of the team’s supporters, the atmosphere of the

team’s home arena, and the playing style of the team. Similarly, different values of

variance parameters would represent team specific uncertainties and variations.

4.1.3. Time Variant Model Parameters. The values of the parameters could also

be time variant. This would enable the model to adjust to possible changes in the

system dynamics and observation equation. For example, the effect of playoff atmo-

sphere could also be tackled by having different home court advantages for regular

season and playoffs. On the other hand, it should be kept in mind that models

with parameters that follow complicated time dynamics may become unstable and

over-fit into inconsequential variations in the observations.

4.1.4. Non-Linear Models. The dependence between the difference of team strengths

and the observed game outcomes need not be linear as in equation (6). For example,

the observation equation could be replaced with a non-linear alternative such as

yt(k) = f (xt(i),xt(j)) + µ+wt(k),
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where f (xt(i),xt(j)) is non-linear function of the team strengths. The function

could also be made discontinuous in order to exclude the possibility of a tied game.

The state of this kind of non-linear model could then be estimated using, e.g., the

extended Kalman filter (e.g., Harvey 1989, pp. 160).

4.1.5. Bimodal Probability Distribution for Point Differential. In the presented anal-

yses, the ML estimates of the model parameters are calculated based on point

differentials that are assumed normally distributed. However, the observed point

differentials follow a bimodal probability distribution that deviates from the model

assumptions. Therefore, the state-space model could possibly be improved by re-

placing the normal distribution with some bimodal alternative. For example, a

suitable non-linear mapping applied to the predictions given by the Kalman filter

algorithm could produce predictions more in line with the observed distributions.

4.2. Other Applications.

4.2.1. Model for Total Points. In over/under betting, the bettor is supposed to

guess whether the total number of points scored in a game surpasses a limit set by

the bookmaker, viz. the over/under line. In practice, this involves the bettor’s view

on the tempo of the game (fast pace results in more scoring opportunities) and the

playing styles of the teams (high scoring vs. defensive minded). The state-space

model introduced in this Thesis could be easily modified for modeling the playing

styles of the teams. That is, instead of the point differential, the vector yt would

represent the total number of points scored in a game resulting in the following

observation equation:

yt(k) = xt(i) + xt(j) +wt(k).

This would give a tool for predicting the total number of points scored in a game

and assessing over/under -type bets.

4.2.2. Other Predictions. In this Thesis, the Kalman filter algorithm is used to

predict the results of individual games, viz., ŷt+1. Similar predictions could also be

made with a longer time horizon, e.g., ŷt+2, . . . , ŷT. Thus, the current team ratings

could be combined with league schedule to produce predictions for the rest of the

season. These predictions could be collected into the implied final standings for

the regular season. Furthermore, the final standings could then used to determine

the seeding of the teams and the team matchups for the playoffs. Naturally, the

algorithm could also produce predictions for all playoff series and, ultimately, the
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NBA Finals. Thus, the Kalman filter algorithm could be used to estimate each

teams’ probability of making the playoffs or winning the NBA championship, at any

time during the season. In practice, such calculations would be easiest to perform

using some kind of Monte Carlo simulation (e.g., Fishman 1996).

4.2.3. Optimal Smoothing. In the presented analyses, the team ratings are given ex

ante, i.e., the estimate of system state x̂t|t at time t is based on the games played

by that date. In an retrospective approach, the team ratings could be calculated

after the season has been played. In such ex post analysis, optimal smoothing could

be used to obtain the smoothed estimates of system state, i.e., x̂t|T, that use all the

available information at time T (e.g., Harvey 1989, pp. 149).

4.2.4. Measuring Competitiveness. The ratings produced by the Kalman filter could

also be used to measure the level of competitiveness of the league, i.e., the parity

between the strengths of the teams. A suitable measure for the competitiveness

would be given by the variance of the team ratings where smaller variance implies

higher level of competitiveness. For a more detailed discussion of competitiveness,

see, (Yilmaz and Chatterjee 2000).
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5. Conclusions

This Thesis presents a state-space model for a basketball league and the estima-

tion of the system state using a Kalman filter algorithm. Now, the system state

represents the relative strengths of the teams. In the state-space model, the teams’

strengths follow a discrete time random walk and the state of the system is observed

through the game results. The Kalman filter algorithm is used to update the esti-

mate of the system state in accordance to the observed scores and this estimate is

referred to as the rating of the teams. The rating of the teams gives the ordering of

the teams from the best to the worst, viz., the ranking of the teams. The ratings

can also be used to predict the scores of the future games.

Based on the example analyses related to the National Basketball Association

(NBA) that are presented in this Thesis, the team ratings given by the Kalman fil-

ter algorithm give an accurate and informative representation for the time evolution

of the basketball season and the assumptions behind the model appear more or less

valid.15 In the presented analyses, the algorithm predicts correctly 65− 70% of the

outcomes of the NBA games which is slightly better than the simplest performance

measures excluding the point differential. If only the second half of the season is

considered, the performance improves to 66− 73%. Additionally, the team ratings

explain approximately 16.5% of the total variation in observed point differentials.

Most importantly, on average the predictions given by the algorithm appear un-

biased and independent of the residuals. This holds for both the predicted point

differentials and the predicted winning probabilities. Therefore, the algorithm can

be said to produce accurate and correct predictions for the results of the NBA

games.

In this Thesis, the parameters of the underlying state-space model are estimated

using maximum likelihood (ML) method and other means. In the ML estimation,

the numerical results provided by the Kalman filter are utilized for increased effi-

ciency. When alternative estimates for the parameters of the state-space model were

compared, it was found that the ML estimates give the best predictions. This is to

be expected as the ML estimation exploits the observed scores for the entire season,

unlike the parameter estimates calibrated by the expert. However, this finding is far

from conclusive as the performance of the algorithm does not decline significantly

if expert analysis or previous season’s scores are used in parameter estimation. The

15This holds true also for numerous other analyses conducted by the author. These analyses are
not reported in this Thesis, however.
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ML estimates discussed in this Thesis are based on point differentials following a

normal distribution but this is not the case in the observed scores of the NBA games.

Therefore, the model could be improved by using some kind of bimodal distribution

for the point differentials. On the other hand, the parameter estimates given by

the expert are overtly conservative, i.e., the variances are evaluated as too large.

This increases rapid changes in the ratings and slows down the convergence of the

ratings. If future studies are conducted based on expert analyses, it might be a

good idea to employ smaller estimates for the variance parameters.

As a criticism of the Kalman filter algorithm, one could claim that the it does

not produce radically better results than the simple calculation of average point

differentials due to the high correlation between the two performance measures.

This criticism is countered by pointing out that this Thesis introduces a state-space

model for the basketball league and that the Kalman filter algorithm is only used

to estimate its state. Thus, the ratings produced by the Kalman filter algorithm

are based on a dynamic and probabilistic model of a system instead of calculating

arbitrary differences in scoring averages. That is, the objective of a basketball team

in a given game is to score more points than its opponent – not to outscore the

opponent by highest margin possible. Therefore, one could also articulate that

the state-space model and Kalman filter algorithm give a mathematical foundation

and justification to the use of point differential as a measure of teams’ level of

performance.

As a final note, there is more to winning in the NBA, and particularly in the

NBA playoffs, than the point differentials achieved during the regular season (as is

discussed in Section 3.4). In a seven game playoff series, the winner is not deter-

mined by the past performance but by the ability elevate one’s game at the critical

moment. To quote legendary NBA coach Rudy Tomjanovich, ”don’t ever under-

estimate the heart of a champion” (Feinstein 2002). On the other hand, keeping

this caveat in mind, the Kalman filter algorithm produces believable ratings and

accurate predictions for the duration of the regular season. Therefore, it is to be

considered a useful tool for rating of the teams and following the progress of an

ongoing season.
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Appendix A

Rank Team W L W%
Point
diff.

Point Team Team
diff. rating, rating,

(60 days) θ̂ML θ̂EK

1. ORL 69 27 0.719 7.66 10.05 8.76 (-) 10.23 (-)
2. PHO 64 34 0.653 4.86 5.96 6.56 (0.1995) 8.11 (0.3275)
3. LAL 73 32 0.695 4.52 3.64 5.55 (0.1269) 7.01 (0.2761)
4. CLE 65 25 0.722 6.01 4.27 5.30 (0.1075) 5.25 (0.1714)
5. BOS 64 41 0.610 3.19 1.14 3.87 (0.0443) 5.15 (0.1743)
6. SAS 54 38 0.587 4.16 3.73 4.52 (0.0651) 4.75 (0.1484)
7. DAL 57 31 0.648 2.63 3.14 3.04 (0.0169) 4.02 (0.1287)
8. UTA 57 35 0.620 4.63 2.54 4.75 (0.0791) 3.94 (0.0460)
9. OKC 52 36 0.591 3.03 2.10 3.40 (0.0300) 3.41 (0.1059)
10. DEN 55 33 0.625 3.74 2.18 3.48 (0.0123) 2.82 (0.0663)
11. POR 52 36 0.591 2.38 1.96 2.29 (0.0048) 2.13 (0.0687)
12. MIA 48 39 0.552 1.68 2.31 1.81 (0.0072) 1.91 (0.0260)
13. MIL 49 40 0.551 1.27 1.59 1.47 (0.0044) 1.16 (0.0471)
14. CHA 44 42 0.512 0.92 1.53 1.13 (0.0036) 1.16 (0.0418)
15. ATL 57 36 0.613 3.28 0.55 2.32 (0.0119) 0.99 (0.0445)
16. IND 32 50 0.390 -3.01 0.33 -1.53 (0.0002) 0.44 (0.0276)
17. CHI 42 45 0.483 -2.07 -4.45 -1.13 (0.0003) -0.65 (0.0231)
18. HOU 42 40 0.512 -0.37 -0.97 -0.63 (0.0003) -1.19 (0.0186)
19. NOH 37 45 0.451 -2.37 -4.68 -2.36 (0.0000) -2.92 (0.0086)
20. TOR 40 42 0.488 -1.96 -4.33 -2.41 (0.0000) -2.94 (0.0043)
21. MEM 40 42 0.488 -1.50 -2.29 -1.75 (0.0001) -2.98 (0.0080)
22. GSW 26 56 0.317 -3.60 -3.10 -2.99 (0.0000) -3.01 (0.0050)
23. NYK 29 53 0.354 -3.48 -5.53 -4.12 (0.0000) -4.09 (0.0012)
24. PHI 27 55 0.329 -3.94 -7.33 -4.00 (0.0000) -4.48 (0.0035)
25. WAS 26 56 0.317 -4.73 -5.63 -4.71 (0.0000) -4.79 (0.0030)
26. DET 27 55 0.329 -5.11 -5.39 -5.08 (0.0000) -5.10 (0.0017)
27. SAC 25 57 0.305 -4.37 -5.37 -4.52 (0.0000) -5.41 (0.0021)
28. NJN 12 70 0.146 -9.13 -4.73 -7.42 (0.000) -6.11 (0.0002)
29. LAC 29 53 0.354 -6.35 -9.90 -6.86 (0.0000) -8.43 (0.0002)
30. MIN 15 67 0.183 -9.60 -11.59 -8.73 (0.0000) -9.55 (0.0000)

Table 8. Team rankings for NBA season 2009-2010 with parameter
vector θ̂EK .

Appendix B

Figure 18, Figures 19 and 20 present the ratings of NBA teams during season

2009-2010 with parameter vector θ̂EK .
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Figure 18. Team ratings for the NBA teams during season 2009-2010 with parameter vector θ̂EK .
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Figure 19. Team ratings for the Eastern Conference teams during season 2009-2010 with parameter
vector θ̂EK .
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Figure 20. Team ratings for the Western Conference teams during season 2009-2010 with parameter
vector θ̂EK .


