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Gustaf Hällströmin katu 2a, on July 1st 2011 at 12:15

Helsinki 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14921121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Supervisor:

Prof. Keijo Hämäläinen
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Abstract

Inelastic x-ray scattering spectroscopy is a versatile experimental technique for probing

the electronic structure of materials. It provides a wealth of information on the sample’s

atomic-scale structure, but extracting this information from the experimental data

can be challenging because there is no direct relation between the structure and the

measured spectrum. Theoretical calculations can bridge this gap by explaining the

structural origins of the spectral features. Reliable methods for modeling inelastic x-

ray scattering require accurate electronic structure calculations. This work presents the

development and implementation of new schemes for modeling the inelastic scattering

of x-rays from non-periodic systems. The methods are based on density functional

theory and are applicable for a wide variety of molecular materials. Applications are

presented in this work for amorphous silicon monoxide and several gas phase systems.

Valuable new information on their structure and properties could be extracted with

the combination of experimental and computational methods.
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1 Introduction

Understanding the microscopic structure of materials and the ability to control it had

a strong impact on technology and society in the 20th century. The knowledge of the

underlying physics made it possible to design components and devices with charac-

teristics tailored for a variety of applications. The focus of the research has shifted

towards even smaller length and time scales, such as nanotechnological applications

and attosecond physics. Large-scale experimental facilities have enabled new kinds

of measurements and constantly provide interesting scientific findings. Also the rapid

development of computational physics has contributed to the improved understanding

of many complicated phenomena in the atomic scale. Increased computational power

and the development of efficient electronic structure calculation methods now enable

accurate simulation of the properties of condensed matter systems. Combination of

the state-of-the-art calculations and experiments at the large-scale facilities can pro-

vide the most comprehensive understanding of the materials, and the development of

new computational methods for this purpose is thus essential.

X-rays are widely used in materials research due to their appropriate wavelength

that is comparable to the interatomic spacing. X-ray absorption and emission spectro-

scopies are frequently used techniques for element-specific studies. This work, however,

focuses on the nonresonant inelastic x-ray scattering (NRIXS) technique whose poten-

tial in the structural studies has been revealed relatively lately. [1] For a long time

the low inelastic scattering cross section hindered experimental data collection with

sufficient statistical accuracy. This condition has changed with the emergence of third

generation synchrotron radiation facilities and crystal spectrometers that enable effi-

cient data collection. [2, 3] New kinds of experiments have become possible and the

applicability of NRIXS has been extended to the study of new materials, elements, and

experimental conditions. [4–7]

Concerning its applications, NRIXS bears similarity to x-ray absorption spectroscopy

(XAS) which is a widely used technique for studying the local atomic scale structure

of various materials. [8] At small scattering angles NRIXS can approximately yield the

x-ray absorption spectrum but the scattering angle dependence reveals also additional

information. [9] Due to the different experimental requirements, NRIXS is applicable

in many studies where the surface or saturation effects obscure the use of XAS. These

advantageous features make NRIXS a favorable technique for the studies of various

disordered materials. A good example is the microscopic structure of liquid water,

where inelastic x-ray scattering with its bulk-sensitivity and high structure-sensitivity

provides a very insightful experimental approach. [10–13] These studies have increased

the knowledge of the complicated hydrogen bond network of molecular liquids and

helped in understanding the x-ray absorption spectra of such systems. NRIXS also

enables experiments at unusual conditions and it has been used in probing the mi-
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croscopic changes during phase transitions at specific temperatures or at very high

pressures. [14–16] The scattering angle dependence has been utilized in probing indi-

rect band gaps of dielectrics and for studying the symmetry properties of electronic

states. [17, 18] It has also been used in characterizing excitons. [19–21]

The wide applicability of inelastic x-ray scattering is well acknowledged now, but

the analysis of the experimental data still requires effort and creativity. The chal-

lenge is to connect the features of the NRIXS spectrum to the material’s structure

or other property of interest. Unfortunately there is no direct and general relation

between them, and even at the approximate level their connection may be compli-

cated. The computational methods are invaluable in understanding the origins of the

experimental features and thereby in establishing the structure-to-property relation.

Schemes for calculating the NRIXS spectra have been developed for this purpose in

the past, especially for crystalline and amorphous solids. [22–28] These studies have

demonstrated the need for advanced calculation schemes that account for the electron-

hole interactions. For molecular systems corresponding calculation schemes have been

scarcer, partly because of the lack of experimental NRIXS studies on such systems until

recent years. The necessary computational machinery of quantum chemistry has nev-

ertheless been available for long time and has been utilized in analyzing the electron

energy loss spectroscopy (EELS) data where the probed electronic transitions obey

similar selection rules as in NRIXS. These calculations have often focused on individ-

ual transitions of small molecules and on the role of electronic correlation effects for

the transition rates. [29–32] To interpret the experimental NRIXS spectra in terms of

structural properties the computational methods that are applicable for wide energy

ranges and for larger nanoscale systems are favorable. This work presents new methods

for modeling the NRIXS spectra of molecular materials (systems consisting of up to

hundreds of atoms) and demonstrates them in solving problems in materials science.

The structure of the thesis is as follows: In Section 2 an overview of the inelastic

x-ray scattering technique is presented. The basic equations for the scattering cross

section are given and NRIXS experiments are described. Section 3 reviews the theoret-

ical foundations of the electronic structure theory and in Section 4 the calculations of

this work are described. Some demonstrative examples of the computational methods

presented in this work are given. Section 5 gives a summary of the papers that are

included in this thesis. In addition to the new computational methods, the papers

present their applications and in particular they include a study of the microscopic

structure of disproportionating amorphous silicon monoxide and of the excited state

properties of dinitrogen molecule.

Throughout this thesis, atomic units (a.u.) are employed in the formulae. Numer-

ical values are given in SI units, electron volts, or Ångströms.
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2 Inelastic x-ray scattering

Understanding how the electromagnetic radiation interacts with matter is the basic

requirement for describing the inelastic x-ray scattering (IXS) process. When pho-

tons pass through a material and interact with its electrons and nuclei, they can be

absorbed or scattered elastically or inelastically. The probabilities of these processes

depend strongly on the wavelength of the light as well as on the structure of the ma-

terial. Elastic scattering is employed e.g. in x-ray diffraction for the determination of

crystalline structures. Photoabsorption and elastic scattering are the dominant pro-

cesses in the energy ranges from infrared to soft x-ray energies, but at hard x-ray

energies (above ∼50 keV) they give way to inelastic x-ray scattering.

Using spectroscopic techniques, such as IXS, one can observe that the elementary

excitations often occur at certain material-specific energies. For example, infrared

absorption is especially strong at the wavelengths that correspond to the material’s

vibrational or phonon energies. A similar phenomenon is observed in optical and x-

ray photoabsorption spectroscopies where the resonances are caused by excitations of

the electrons in the material. In the IXS process part of the incident photon’s energy

is transferred to the sample, and the scattering is most probable when the energy

transfer is close to the characteristic excitation energies of the material. Theoretical

understanding of the scattering process is necessary for connecting the scattering cross

section with the electronic structure of the sample material. This chapter gives a brief

overview to the inelastic x-ray scattering technique and introduces the basic equations

that are necessary to understand this relation.

2.1 Scattering cross section

Inelastic x-ray scattering is a photon-in-photon-out process where the properties of

the photon (energy, momentum, and polarization state) can change. In the IXS spec-

troscopy the energies of the incident and scattered x-rays (ω1 and ω2, respectively) are

usually much larger than the energy transfer ω = ω1 − ω2. By varying the scattering

angle, the momentum transfer q = q1 − q2 can be chosen separately from the energy

transfer. This freedom makes it possible to study e.g. the dispersion curves of the

observed excitations.

Theoretical description of the scattering of x-rays from elementary excitations re-

quires quantum mechanical treatment of the process. Interaction of the electromagnetic

radiation with materials can be described using the minimal substitution which gives

an additional interaction term in the Hamiltonian of the scattering system. If the

relativistic effects and the scattering from nuclei are neglected, this term is

Hint =
∑

j

(

1

2
A(rj , t) ·A(rj , t) + pj ·A(rj , t)

)

(1)
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where A(r, t) is the operator of the vector potential of the electromagnetic field and

rj and pj are the position and momentum operators of the electron j, respectively.

[33] The interaction causes the electronic system to undergo transitions between the

eigenstates of its Hamiltonian, i.e. it induces elementary excitations. Applying the

first-order time-dependent perturbation theory to calculate the transition probabilities

for scattering yields the double differential scattering cross section to the solid angle

element dΩ2:

d2σ

dΩdω2

= r20

(

ω2

ω1

)

|e1 · e
∗

2|
2
∑

I,F

ρI

∣

∣

∣

∣

∣

〈F |
∑

j

eiq·rj |I〉

∣

∣

∣

∣

∣

2

δ(EF − EI − ω). (2)

Here I and F denote the initial and the final many-particle states of the sample ma-

terial, respectively, and EI and EF are their total energies. e1 and e2 are the unit

polarization vectors of the incident and scattered photons, respectively, r0 is the clas-

sical electron radius, and ρI are the statistical weights for the involved initial states.

The second-order perturbation theory would give extra terms in the cross section that

describe e.g. resonant inelastic scattering. [33] The contribution of resonant scattering

is nevertheless small if the incident energy is far from the binding energies of the elec-

trons of the material. This is the case throughout this work and therefore the resonant

terms are omitted.

2.2 Dynamic structure factor

The double differential cross section (Eq. 2) is proportional to the dynamic structure

factor

S(q, ω) =
∑

I,F

ρI |〈F |
∑

j

eiq·rj |I〉|2δ(EF − EI − ω), (3)

which is a central function in NRIXS and thereby in this work. It depends only on the

electronic and structural properties of the material and not on the experimental setup.

In particular it is independent of the energy of the incident x-rays. The behaviour of

the dynamic structure factor at different energy transfers is illustrated in Fig. 1 that

shows how it reflects the various elementary excitations at their characteristic energies.

The momentum transfer dependence of S(q, ω) gives more specific information on the

nature of the excitations. It can be employed to study their symmetry properties and

to probe the dispersion curves of plasmons and phonons. At high values of q and ω the

broad Compton scattering feature reflects the momentum distribution of electrons in

the sample material. [34] Historically, its finite width was the first experimental proof

of the applicability of Fermi-Dirac statistics for conduction electrons. [35]
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Figure 1: Experimental NRIXS

spectrum of LiF at q ≈ 10 Å
−1

showing various electronic excita-

tions at the different energy trans-

fers. The spectrum was originally

presented in Ref. 19.

Dynamic structure factor is also closely related to several important linear response

functions of the sample material. Van Hove derived its connection to charge density

fluctuations,

S(q, ω) =
1

2π

∫

d3r

∫

d3r′
∫

dteiq·re−iωt〈ρ(r′ − r, t)ρ(r′, 0)〉, (4)

where the Fourier transformed statistical expectation value is the density correlation

function. [36] Using the fluctuation-dissipation theorem [37] the charge density corre-

lations can be connected to the dielectric properties of the material, leading to the

important relation

S(q, ω) =
−q2

4π2n
Im

[

1

εM(q, ω)

]

, (5)

where n is the average electron density of the system and εM its macroscopic dielectric

function. Dynamic structure factor is thus related very closely to the optical and

electrical properties of the materials and NRIXS can be used to study these bulk

sensitively. Also the propagation of fast charged particles in materials can be described

by the dielectric function and thus by the NRIXS energy loss spectrum. [38–41]

NRIXS experiments are mainly carried out at third generation synchrotron radia-

tion facilities that provide sufficiently intense x-ray beams. Although one would like

to determine S(q, ω) at the optimal energy and momentum resolution together with

high statistical accuracy, these requirements are often conflicting and compromises be-

tween them have to be made. In typical NRIXS experiments the energy resolution is

0.3 - 1 eV and measurement times for a single spectrum are several hours. In order

to use the limited beamtime efficiently it is often advantageous to focus only on the

most relevant ranges of energy and momentum transfers. Calculations for S(q, ω) can

help in preparing the experiment as they enable one to distinguish the most important

spectral features, e.g. those that are the most structure-sensitive. It is also essential

to understand how the energy and momentum resolution and the measurement times

depend on the characteristics of the incident x-ray beam and on the performance of the

spectrometer. In modern beamlines the x-rays are generated in the so-called insertion

devices, i.e. undulators or wigglers. The energy of the incident photons can be tuned
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and is usually 8 - 12 keV which provides appropriate penetration for bulk-sensitive

studies and relieves the requirement for placing the sample in vacuum. The scattered

radiation is collected by crystal analyzers [2, 3] that reflect the x-rays of the desired

wavelength to the detector. The wavelength and thus the photon energy is chosen using

a suitable diffraction condition. The NRIXS energy loss spectrum is obtained usually

by recording the intensity at the detector when the analyzer energy is kept fixed and

the incident beam energy is varied.

NRIXS experiments are routinely performed e.g. at the European Synchrotron Ra-

diation Facility (ESRF, France), Advanced Photon Source (USA), and SPring-8 (Japan).

There are also ongoing or proposed projects for building NRIXS-applicable beamlines

at least in Soleil (France), PETRA-III (Germany), and Diamond (U.K.). Furthermore,

one of the flagship projects of the ESRF Upgrade program is a dedicated beamline for

electronic excitations that will enable microfocus experiments and increased flux for

NRIXS studies. In addition to this development and the emerging applications at the

third generation synchrotron radiation facilities, the free electron lasers operating at

the hard x-ray regime will soon enable new kinds of experiments, such as nonlinear

and time-resolved x-ray spectroscopy. New computational methods for these processes

will be needed. [42, 43]

3 Electronic structure theory

The proper treatment of the inelastic x-ray scattering process requires that both the

ground and the excited state electronic structures are characterized accurately. The

electronic structure calculations in this work start from the nonrelativistic Hamiltonian

H = −
∑

J

∇2
J

2MJ

−
∑

i

∇2
i

2
+
∑

i<i′

1

|ri − ri′ |
−

∑

iJ

ZJ

|ri −RJ |
+

∑

J<J ′

ZJZJ ′

|RJ −RJ ′ |
, (6)

where RJ , ZJ , and MJ are the coordinates, atomic numbers, and the masses of the

nuclei J , respectively, and ri are the coordinates of the electrons i in the system. The

solutions of the Schrödinger equation H|Ψ〉 = E|Ψ〉, i.e. the many-particle states that

also appear in Eq. 3, yield all physical observables and fundamental properties of the

materials. Solving this equation is a formidable task and the full solution is only

possible for very small systems. A basic approximation to facilitate the calculation

is the separation of the fast motion of the electrons from the slower dynamics of the

nuclei, which leads to individual Schrödinger equations for both parts. Nevertheless

the calculation of the electronic equation still remains complicated and the most ac-

curate methods for solving it, e.g. configuration interaction and coupled clusters, are

the computationally heaviest ones. Density functional theory (DFT) provides calcu-

lation schemes that are much less expensive but nevertheless often very accurate. Its
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time-dependent extension also introduces well justified methods for the excited state

calculations.

3.1 Separating the electronic and nuclear dynamics

The Schrödinger equation for the many-body wavefunctions depends on both the elec-

tronic and nuclear coordinates, which makes its calculation complicated. In the Born-

Oppenheimer approximation (BOA) the wavefunction is separated into electronic and

nuclear parts and reads

Ψ(r,R) = Φ(r;R)χ(R), (7)

where Φ and χ are the electronic and nuclear wavefunctions, and r and R are the sets

of the electronic and nuclear coordinates, respectively. [44] For each configuration R

one can write an electronic Schrödinger equation

He(r;R)Φ(r;R) = V (R)Φ(r;R), (8)

where the electronic HamiltonianHe is chosen to include all terms of Eq. 6 except for the

nuclear kinetic energy operator. The eigenvalues V (R) provide the potential energy

surfaces (PESs) which determine the nuclear dynamics. Applying the Hamiltonian

(Eq. 6) to the ansatz of Eq. 7 and ignoring the effect of the nuclear kinetic operator on

the electronic wavefunctions yields individual nuclear Schrödinger equations for each

PES:
[

−
∑

J

∇2
J

2MJ

+ V (R)

]

χ(R) = Eχ(R). (9)

Cuts through some calculated1 potential energy surfaces for N2O and H2O molecules

are shown in Fig. 2. Born-Oppenheimer approximation is valid if the PESs are suffi-

ciently separated in energy. For more accurate calculations one should replace Eq. 7

by the general ansatz Ψ(r,R) =
∑

k Φk(r;R)χk(R), where k denotes the electronic

states. This approach leads to a set of coupled nuclear Schrödinger equations and

more complicated calculations. [45]

In order to solve Eq. 9 one needs to know the value of the PES at all possible

configurations. The equation also involves a significant number of variables already

for small molecules, i.e. 3Nat, where Nat is the number of atoms. Often it is sufficient

to study the nuclear dynamics only in the vicinity of the minimum of the PES, where

the probability to find the nuclei is highest. The problem simplifies considerably by

employing the harmonic approximation for the PES in this region and by introducing

the normal coordinates in place of the nuclear coordinates. [46] The normal coordinates

Qm represent the displacements of the nuclei from the minimum of the PES and they

(as well as the vibrational frequencies ωm) can be found by diagonalizing the Hessian

1The calculation method is described in Sect. 4.1.
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Figure 2: Calculated ground (GS) and first few core-excited (Exc.) state potential

energy surfaces of (left) N2O and of (right) H2O. The value for E0 is chosen in such a

way that the shown ground state curve has a minimum at 0 eV.

matrix of the PES at its minimum. The normal mode approach transforms the original

differential equation of 3Nat variables to M = 3Nat − 6 independent single-variable

differential equations2 whose solutions ψm are the harmonic oscillator eigenstates. The

nuclear wavefunction then reads

χ(R) ≡ χ(Q) =
M
∏

m=1

ψm(Qm) (10)

and the corresponding energy is
∑M

m=1 ωm(
1
2
+nm), where nm is the vibrational quantum

number for the mth mode. [47]

3.2 Ground state electronic structure

The ground state electronic structure is the lowest-energy solution of Eq. 8 that is

consistent with the Pauli exclusion principle. The electronic wavefunction depends on

3N electronic coordinates (plus the spin variables, which are omitted here for sim-

plicity), where N is the number of electrons in the system. Many electronic structure

calculation methods, e.g. Hartree-Fock and configuration interaction, are based on find-

ing an approximation for the many-particle wavefunction that can be expressed as a

linear combination of Slater determinants. [48] Another approach is to focus on the

electronic Green’s functions instead of the wavefunction. [49, 50] In DFT one in turn

focuses on the electronic density and this method is used in this work. DFT bases

2
M = 3Nat − 5 for linear molecules
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on the Hohenberg-Kohn theorems proving that in addition to the many-particle wave-

function, all observable properties of a material can be derived also from its ground

state electronic density which can be determined by variationally minimizing the total

energy. [51] The practical DFT scheme was developed by Kohn and Sham [52] who

wrote the electronic density in terms of single-particle orbitals (ρ(r) =
∑

j |φj(r)|
2)

that are solved from the Kohn-Sham (KS) equations
[

−
1

2
∇2 +

∫

d3r′
ρ(r′)

|r− r′|
+ Vxc[ρ](r) + Vext(r)

]

φj(r) = εjφj(r). (11)

The four terms appearing in the Hamiltonian are the kinetic energy and the Hartree,

exchange-correlation, and external potentials. The only unknown term is Vxc which

includes the exchange (that is due to Pauli repulsion) and correlation (Coulombic in-

teractions beyond the mean field Hartree potential) effects. The single-particle orbitals

can be also used to construct a Slater determinant that approximates the true wave-

function.

The applicability of DFT in predicting the properties of different materials depends

on two issues. First, the relation between the electronic density and the desired physical

observables is not always known. For example, even though one would know the exact

electronic density of the molecule, it is unknown how to deduce the electronic binding

energies from it. The second issue is that the exchange-correlation potential is unknown

and must be approximated. A widely used form for it is the local density approximation

(LDA) whose value at a given point depends only on the electronic density at that point,

and whose form is parametrized using the results for homogeneous electron gas. [52]

Although the overall performance of LDA and its applicability in different problems

is surprisingly good, it nevertheless has some drawbacks, e.g. it slightly overbinds

molecules (it gives too high binding energies and too short bonds) and underestimates

the total and ionization energies as well as the band gaps. [53,54] Its deficiencies have

been studied in detail during the last decades and significant effort has been dedicated

to the development of more accurate functionals. In generalized gradient approximation

Vxc at a given point also depends on the gradient of the density at that point. [55] Quite

sophisticated orbital-dependent and semiempirical functionals are also frequently used

and there are even functionals that are specifically designed for particular materials,

e.g. liquid water. [56–59]

3.3 Electronic excitations

The electronic excitations that can take place in the material differ e.g. in their char-

acteristic energy, degree of localization, number of electrons involved, and the way that

the other electrons in the system respond to it. Accurate computational methods for

simulating materials’ properties have to take these into account. Static DFT only ap-

plies for time-independent external potentials and is, in principle, a ground state theory
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but in some situations it can be applied also for predicting excited state properties.

For example, the ionization potential of the system is the single-particle eigenvalue of

the highest occupied orbital. [60] ∆Kohn-Sham method for determining the electronic

binding energies from total energy differences can be also justified. [53,61,62] Further-

more, Janak’s theorem relates the single-particle eigenvalues with the variation of the

total energy with respect to the occupation numbers, [63] yielding a transition state

method for predicting the excitation energies of the electrons. [64]

Time-dependent perturbation theory provides well justified schemes for the excited

state calculations. The basic idea is that when the system is perturbed by an external

field, it is driven out of the ground state and its consequent behaviour then describes its

excited state properties. When the perturbation is sufficiently weak, the induced effects

can be expressed as a series expansion using response functions. An insightful case is

the density response function χ(r, r′, t) that is defined by the connection between the

external potential Vext(r, t) and the charge density change δρext(r, t) that the potential

induces,

δρ(r, t) =

∫ t

−∞

dt′
∫

d3r′χ(r, r′, t− t′)Vext(r
′, t′) +O(V 2

ext), (12)

where O(V 2
ext) includes all the nonlinear effects. Apart from some exceptional cases [65],

the linear density response function in frequency space has poles at the exact excitation

energies of the system. [66] Moreover, fluctuation-dissipation theorem [37] relates the

dynamic structure factor and the density response function by the equation

S(q, ω) = −
1

π
Im [χ(q,−q, ω)] (13)

and then Eq. 5 follows from the relation of the density response function and the

macroscopic dielectric function. The connection means that in addition to the elemen-

tary excitations, S(q, ω) at different energies and momenta contains information on

the electronic density fluctuations at different time and length scales. [36, 67]

Eqs. 12 and 13 show that the dynamic structure factor can be calculated if one

can predict how the time-dependent electronic density behaves under the influence of

external perturbations. Within the density functional framework the necessary exten-

sion to the time-dependent processes was presented by Runge and Gross. [68] They

showed, analogously to the theorems of Hohenberg and Kohn, that the quantum me-

chanical system under an influence of time-dependent external fields can be described

completely by the time-dependent electronic density and justified the time-dependent

counterpart of Eq. 11:
[

−
1

2
∇2 +

∫

d3r′
ρ(r′, t)

|r− r′|
+ Vxc[ρ](r, t) + Vext(r, t)

]

φj(r, t) = i
∂φj(r, t)

∂t
. (14)

Although the time-dependent DFT (TDDFT) and the linear response theory give the

connection between the electronic density and the excitation energies, [69, 70] an ap-

proximation for the unknown exchange-correlation potential is still required. It is a
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functional of the entire history of the density ρ(r, t) but usually its value at time t is

calculated only from the density at that instant, i.e. an adiabatic approximation

V adiab
xc [ρ](r, t) ≈ Vxc[ρ(t)](r) (15)

is employed. Then the exchange-correlation potentials from static DFT can be used

directly in the calculations. The most commonly used approximation is the adiabatic

equivalent of the local density approximation (ALDA). It has provided excellent results

for the photoabsorption spectra of molecules and nanoscale clusters as well as for the

energy loss spectra of solids. [71,72] On the other hand, it has several deficiencies that

restrict its applicability, including the locality, lack of memory, the wrong asymptotic

behaviour, and the self-interaction error. [73–78] An important example is its failure to

reliably predict band gaps and optical spectra of periodic systems. [50,66,79]. Moreover,

ALDA predicts significantly too low core electron binding energies. [80] Despite some

TDDFT-studies using sophisticated functionals have shown improved results, [78, 81]

the calculations for inner-shell excitations are mostly carried out using static DFT with

some suitable approximation for the core hole effects.

3.4 Vibrational transitions

As described in Sec. 3.1, the nuclear wavefunctions are the solutions of the Schrödinger

equation (Eq. 9) where the relevant PES appears as the external potential. The wave-

functions are related to many important properties of the molecule, e.g. its vibrational

frequencies. In the infrared absorption spectroscopy one can probe excitations where

the electronic state of the molecule does not change but the nuclear part of the wave-

function undergoes a transition between two eigenstates of the same nuclear Hamil-

tonian, usually corresponding to the ground state PES. Infrared absorption peaks are

then observed at the energies that correspond to the vibrational frequencies and the

transition rates can be calculated from the nuclear wavefunctions. [82] Also in the elec-

tronic excitation spectra one can detect vibrational excitations, although in that case

also the electronic state changes and the reason for the vibrational excitation is quite

different. The electronic transition takes place extremely fast compared to the nuclear

motion, which yields a sudden change in the external potential for the nuclei. There-

fore the nuclear wavefunction, originally in an eigenstate of the ground state PES,

ends up in a superposition of the eigenstates of the excited state PES. In other words

the molecule has a finite probability to end up in a vibrationally excited state. This

phenomenon causes side peaks (that is, vibrational fine structure) in the electronic

excitation spectrum.
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Figure 3: Calculated NRIXS

spectrum (q=0.19 Å−1) of N2

molecule in the vicinity of

the nitrogenK-edge with and

without vibrational effects.

The intensities of the peaks in the fine structure depend on the nuclear wavefunc-

tions participating in the transition and thereby reflect the shapes of the potential

energy surfaces. The transition matrix element for the excitation is

〈F |Â|I〉 =

∫

dR[χF (R)]∗χI(R)

∫

dr[ΦF (r;R)]∗ÂΦI(r;R), (16)

where Â is the transition operator (
∑

j e
iq·rj in NRIXS). [83] Practical schemes for

evaluating the transition rates often rely on the Condon approximation where the R-

dependence of the latter (electronic transition) integral of Eq. 16 is neglected and the

integral is calculated only at the minimum energy configuration. The harmonic approx-

imation for the PESs further simplifies the calculation as it facilitates the evaluation

of the former (so-called Franck-Condon) integral of Eq. 16. [84,85] When the harmonic

approximation is not valid, e.g. for dissociative states, alternative approaches must

be used. [86, 87] Figure 3 demonstrates the vibrational effect for the nitrogen K-edge

NRIXS spectrum of N2. It shows how the spectral intensity is distributed into several

fine structure peaks. The convoluted spectrum then shows non-symmetric features.

4 Calculations

All electronic structure calculations in this work were carried out in the framework of

density functional theory. A wide number of computer codes are available for DFT

calculations nowadays. They differ in their implementations in several ways, and one

important difference is the approach for expressing the single-particle orbitals. Typical

choices are plane waves [88], localized basis functions [48], real space grids [89–92],

and finite elements [93, 94]. Each approach has its advantages related e.g. to the

numerical evaluation of the integrals and the parallelizability. In this work the StoBe-

deMon computer code was employed for calculating the contribution of the inner shell

excitations to the NRIXS spectrum (i.e. x-ray Raman scattering or XRS). [95, 96] It

employs localized Gaussian basis functions to represent the single-particle orbitals.
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Valence electron excitations were calculated with Octopus computer code that uses

a real space grid representation for the electronic states. [91, 97, 98]

4.1 Inner-shell excitations

Kohn-Sham DFT calculation provides a set of single-particle states that can be used

to construct a Slater determinant which approximates the many-particle wavefunction.

Within this approach the dynamic structure factor is

S(q, ω) =
∑

f

∣

∣

〈

f |eiq·r|i
〉
∣

∣

2
δ(ω + ωi − ωf ), (17)

where i denotes the core-level orbital from which the excitation takes place and the

sum includes all unoccupied single-particle states f . ωi and ωf are their eigenvalues,

respectively.

Within Eq. 17 the excitation energies are obtained from the single-particle eigen-

value differences. The eigenvalues from a ground state calculation do not yield good

transition energies, but they can be improved by taking into account that all electrons

in the system respond to the presence of the core hole. [99] One possible way to es-

timate these relaxation effects is the Transition Potential Approximation (TPA). In

this method the KS-equations are solved within the constraint that the occupancy of

the excited inner-shell orbital is 0.5. [62] Other frequently used methods are the Z+1

approximation [100], ∆Kohn-Sham method [53], and the final state rule [101]. Com-

parison of these methods for different systems has revealed that TPA works well in

general, although for systems with strong excitonic effects the Z+1 method can be a

better choice. [62, 102–105]

In StoBe-deMon computer code the molecular orbitals are expressed using lo-

calized Gaussian-type basis functions centered at the nuclear coordinates Rj in the

molecule:

φn(r) =
∑

j

ζnjPj(r−Rj)e
−αj(r−Rj)

2

, (18)

where the polynomials Pj and the coefficients αj depend on the chosen basis set. In this

formulation the Kohn-Sham equation (Eq. 11) is solved for the coefficients ζnj. The

quality of the basis set affects the accuracy of the solution for the electronic structure

and thereby the desired observables. For the calculation of the near-edge XRS spectrum

it is especially important to have a good representation of the electronic structure near

the excited site. To achieve this, one can use specifically designed basis functions that

enable improved description of the orbital relaxation effects. The delocalized continuum

states can be also better represented by special diffuse basis sets. [96]

The localization of the core hole orbital requires additional consideration in the

calculations when the system includes many atoms of the same element as the excited
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one. This is because in that case there are multiple nearly degenerate core orbitals

that are localized in the vicinity of all these atoms. If not somehow controlled, the

core hole can then be centered at a wrong site. In the TPA calculations of this work

the localization of the half-occupied core orbital at a specific atom site was enforced by

using effective core potentials. [106, 107] In this method the core orbitals of the non-

excited atoms of the same element as the excited one are removed from the problem

and the other electrons experience a combined potential of the nucleus and the frozen

core electrons, which is obtained from a predetermined atomic calculation. Only one

core orbital remains, which ensures its proper localization.

The molecular orbitals that are represented using localized Gaussian basis functions

can be transformed into spherical harmonic basis around the excited atom:

φn(r) =
∞
∑

l=0

+l
∑

m=−l

cnlm(r)Ylm(r̂). (19)

This is advantageous for the interpretation of the XRS spectrum, as demonstrated in

the included papers I and II and in Ref. 13. In particular it enables one to decompose

the matrix elements 〈i|eiq·r|f〉 and the ensuing XRS spectrum

i according to the transition channels; at low q only dipole transitions (∆l = 1) are

observed but with increasing q also monopole, quadrupole, etc. transitions contribute.

ii with respect to the initial state; at the K-edge the initial state is almost completely

of s-type and all the spectral intensity comes from the l = 0 component. At the

L-edge the intensity in turn comes from the l = 1 component.

iii with respect to the final state; this decomposition describes the symmetry properties

of the final states and yields a very insightful decomposition of the spectrum.

The spherical harmonic expansion of the orbitals also makes it possible to estimate

the local density of states as

LDOS(ω) =
∑

f

∞
∑

l=0

+l
∑

m=−l

∫ R

0

drr2
∣

∣

∣
cflm(r)

∣

∣

∣

2

δ(ω − ωf ), (20)

where R was in this work chosen so that the integration regime contains Z − 0.5 elec-

trons, Z being the atomic number of the excited site. The definition for LDOS is

somewhat ambiguous, but one convenient feature of this expression is that Eq. 20 gives

a well-defined density of states
∑

f δ(ω−ωf ) at the limit R → ∞. It also enables one to

separate the LDOS into its different angular momentum components in a straightfor-

ward way by including only the terms with the desired l. Moreover, the p-type LDOS

can be decomposed into different cartesian directions by using the m-dependence of the

terms. [13] Fig. 4 shows the angular momentum decomposition of LDOS for benzene
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Figure 4: Calculated symme-

try decomposition of the benzene

XRS spectrum (at q = 17 Å
−1
) to

the s and p type final states and

the comparison to the correspond-

ing separation of the LDOS. The

d-type (and higher) contribution

in the spectrum is negligible and

is therefore not shown here.

molecule in the vicinity of carbon atoms, and the decomposition of the correspond-

ing carbon K-edge XRS spectrum into different final state components. Fig. 5 shows

the relevant radial functions of the two orbitals that correspond to the strongest peak

(at 286.7 eV) of the benzene spectrum. The initial state is very localized and com-

pletely of s-type character. The final state is a delocalized π∗-type orbital, yielding

only p-type character with respect to the excited site. Its perpendicular orientation to

the benzene ring is reflected in the very different p-type radial functions for m = 0 as

compared with m = ±1.

4.2 Valence electron excitations

Whereas time-independent DFT within TPA has appeared to be a suitable method

for calculating core-excitation spectra, it is not very applicable for valence excitations.

This is partly because various initial states with similar energies contribute the spec-

trum in the same energy range and have different relaxation effects. The excitations

can also couple with each other so that the single-excitation approximation is not

valid. Time-dependent density functional theory provides a better starting point for

such calculations. As discussed in Sect. 3.3, the ability to calculate the time-dependent

electronic density with TDDFT means that also the density response function can be

obtained. With an appropriate external potential, Eq. 12 can be solved for χ(r, r′, t).

In the time propagation method one uses Vext(r, t) = I0e
iq·r and calculates the induced

charge density δρ(r, t). Its Fourier transformation then gives χ(q,−q, ω). In frequency

space the analogous approach, i.e. studying the effect of a weak time-dependent per-

turbation on the system, leads to a Dyson-type equation for the density response
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function. [108] Casida formulated an efficient scheme for solving the response function

for finite systems. [69]

The calculations were carried out using Octopus computer code that enables

TDDFT calculations for molecular systems. [91, 97] The single-particle orbitals are

expressed in a numerical real space grid and the derivative operators are constructed

by a finite differences method. The eigenvectors of the Kohn-Sham equation contain

the values of the single-particle wavefunctions at the grid points. The time evolution

of the system under the influence of an external field is determined by the Runge-

Gross equations (Eq. 14), whose practical implementation is discussed in Ref. 109. An

appealing feature of the real space grid approach is that the calculation parallelizes

efficiently. [91] On the other hand, the remarkable number of degrees of freedom (grid

points) can require significant computational cost. The number depends on the size of

the system and on the distance between the grid points, which has to be small enough

to accurately describe also the most localized states in the system. These are usually

the core electrons, which however can be replaced by pseudopotentials. Within the

pseudopotential approximation the electronic wave functions are different from the so-

lutions of the original Kohn-Sham equations in the vicinity of the nuclei, but at the

chemically more relevant spatial region between the atoms the difference vanishes. [110]

To include the inner-shell electron dynamics in real-space calculations one would need

a very small spacing or use of non-uniform grids [111,112].

Since the time propagation and Casida’s methods are based on the same theoreti-

cal framework, they, in principle, give same results. Nevertheless only very few direct

comparisons of the results from the two methods exist in the literature. [113] This is

partly because the two methods are applicable in different situations. Casida’s method

is an efficient scheme for calculating the bound-to-bound excitation energies and tran-

sition rates for small molecules. Time propagation scheme has a better scaling with
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respect to the system size and it is therefore more suitable for large systems. [114,115]

It also enables, at least in principle, studies of the nonlinear response [116], com-

bined electron-ion dynamics [117], ionization [118], nonequilibrium processes relevant

in molecular electronics [119], and is also applicable in periodic systems. [120].

5 Summary of papers

This thesis includes five individual publications that present new computational meth-

ods (papers I and IV) and their applications (papers II, III, and V) in inelastic

x-ray scattering spectroscopy. First of the developed methods is applicable for cal-

culating the core-level excitation part of S(q, ω), and the second one for the valence

excitations. The methodological papers include benchmark test calculations, discus-

sions about the underlying approximations and limitations of the methods, as well as

suggestions for future improvements. The application papers report an analysis of the

momentum transfer dependent XRS spectra of several molecules, provide new results

concerning the structure of amorphous silicon monoxide, and present new insight into

the excited state properties of N2 molecule.

Paper I introduces a new computational method for calculating dynamic structure

factor in the vicinity of x-ray absorption edges. It is based on the single-particle

expression (Eq. 17) of the dynamic structure factor. The work presents calculations

for aromatic hydrocarbon molecules and polyfluorene, showing good agreement with

experimental data (Fig. 6). The results confirm the applicability of the developed

method and the transition potential approximation based framework for momentum

transfer dependent calculations. The paper also presents a scheme for expressing the

single-particle states in spherical harmonic basis. This transformation enables one to

decompose the transition matrix elements (and subsequently the XRS spectrum) into

different transition channels providing new insight into the experimental spectrum.

The method can be expected to work well for bound core-level transitions and to have

applications in future XRS studies for molecular systems.

Paper II presents a study of the microscopic structure of disproportionating amor-

phous silicon monoxide which has advantageous properties for optical and semiconduc-

tor technology. In particular, since its atoms arrange in well separated domains of

silicon and oxygen, the material contains a significant amount of silicon nanoclus-

ters embedded in SiO2. The size of these regions can be controlled experimentally

by varying the annealing temperature TA. [121] Moreover, at sufficiently high TA Si

nanocrystals form. In this paper the structure of the interface regions between the Si

and SiO2 domains was studied using XRS. Detailed understanding of the structure is

important because further improvement of the material’s properties (e.g. controlling

the size distribution of the silicon nanocrystals) requires the understanding of how

the bulk regions form and grow. Si/SiO2 interfaces can also play an important role
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for the optical properties of SiO2-embedded silicon nanocrystals. [122] One aim of the

study presented in paper II is the determination of the proportion of the Si atoms

at the interfaces (or more specifically the amount of suboxidic Si atoms, i.e. silicons

bonding with 1-3 oxygens). The approach that was taken in paper II uses NRIXS ex-

periments, molecular dynamics simulations, and electronic structure calculations. The

suboxide contribution of the experimental Si LII,III-edge spectrum was extracted using

the annealing temperature dependence of the spectrum. The corresponding theoretical

spectrum was calculated from the MD snapshots using the method of paper I. The

content of the interfaces was extracted by finding the amount of suboxidic silicon atoms

in the material that gives the best agreement between experimental and computational

suboxide spectra. The resulting annealing temperature dependent suboxide proportion

and the suboxide spectra for one anneling temperature (assuming binomial distribution

of oxidation states) are shown in Fig. 7. The amount of suboxides and thereby the

contribution of the interfaces was found to be larger than previously thought. Further-

more, the most remarkable structural changes take place at the annealing temperatures

between 900◦C and 1000◦C.

Paper III presents one of the very first applications of NRIXS for gaseous samples.

The experimental data is analyzed using the computational method of paper I. It also

demonstrates how the molecular vibrations influence the experimental spectrum via si-

multaneous electronic-vibrational transitions. The paper shows how these vibrational

effects can be modeled and dicusses more advanced schemes that could be used in the

forthcoming NRIXS studies with improved energy resolution. The potential energy

surfaces calculated with the transition potential approximation show good agreement

with previous calculations presented in the literature. The calculations and the mo-

mentum transfer dependence of the observed excitations facilitate the assignment of
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the spectral features with specific molecular orbitals. Figure 8 shows the experimen-

tal nitrogen K-edge spectra of N2O and demonstrates how the vibrations affect its

lowest-lying feature.

Paper IV introduces two novel TDDFT-based computational schemes for calcu-

lating the dynamic structure factor for non-periodic systems in the energy region of

valence electron excitations. One of the schemes is based on the frequency space cal-

culation of the density response function using Casida’s method [69] and the second

scheme uses the time propagation approach. [70] The paper shows how the time propa-

gation approach yields the directionally averaged dynamic structure factor and how the

calculated spectrum can be decomposed into different transition channels. The appli-

cability and limitations of both methods are discussed in the paper and demonstrative

calculations are presented for benzene and freon-13 molecule.

Paper V presents a study of the excited state properties of N2 molecule and shows

that the understanding of the so-called Lyman-Birge-Hopfield (LBH) transitions of

its valence excitation spectrum has been incomplete. First reason is that at high q

the previous EELS-derived transition rates have suffered from the violation of the
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Born approximation that had not been taken into account. Secondly, we show that

the dipole-forbidden LBH feature consists of two transitions with different momentum

transfer dependencies, which is in contrast to the prior understanding. Experimental

NRIXS and EELS spectra of gaseous nitrogen are analyzed using the computational

method of paper IV. Our TDDFT calculations within the adiabatic local density

approximation provide good agreement with the NRIXS data in the energy region of

the LBH band (Fig. 9) and confirm the new interpretation of the energy loss spectrum

of N2.

6 Concluding remarks

This thesis presents new computational methods for the analysis of inelastic x-ray scat-

tering data and their applications for obtaining new structural information on various

materials. The development of such methods is important because the interpretation

of the experimental spectra can be difficult without reliable theoretical approaches ex-

plaining the origin of the specific features in the data. The structural studies presented

in this work demonstrate how the new methods give a deeper understanding of the

studied materials.

There are several ways for continuing the present work and for improving the new

methods further. Including the vibrational effects in a more general way would increase

their applicability. This is desirable when the experimental energy resolution improves

and enables high resolution studies for the vibrational fine structure. Further stud-

ies of the exchange and correlation effects on S(q, ω) at the intermediate momentum

transfer regime and the comparison to the previous EELS-related studies could provide

interesting insight into the electronic excitations of molecules.

The methods developed in this work can play an important role in forthcoming

NRIXS-studies where the momentum transfer dependence of the technique are utilized.

They are straightforward to implement and examples of their use can be already found

in Refs. 13,16,123 and 124, where the methods are applied to various alcohols, water,

and clathrate hydrates.
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