
Exact bounds for distributed graph colouring

Joel Rybicki

Helsinki 18 May 2011

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14921091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Faculty of Science Department of Computer Science

Joel Rybicki

Exact bounds for distributed graph colouring

Computer Science

M. Sc. Thesis 18 May 2011 90 pages

graph colouring, distributed algorithms, colour reduction, Cole–Vishkin techniques, SAT

Kumpula Science Library, serial number C-

A distributed system is a collection of networked autonomous processing units which must work in
a cooperative manner. Currently, large-scale distributed systems, such as various telecommunication
and computer networks, are abundant and used in a multitude of tasks. The field of distributed
computing studies what can be computed efficiently in such systems.

Distributed systems are usually modelled as graphs where nodes represent the processors and edges
denote communication links between processors. This thesis concentrates on the computational
complexity of the distributed graph colouring problem. The objective of the graph colouring problem
is to assign a colour to each node in such a way that no two nodes connected by an edge share the
same colour. In particular, it is often desirable to use only a small number of colours. This task is a
fundamental symmetry-breaking primitive in various distributed algorithms. A graph that has been
coloured in this manner using at most k different colours is said to be k-coloured.

This work examines the synchronous message-passing model of distributed computation: every node
runs the same algorithm, and the system operates in discrete synchronous communication rounds.
During each round, a node can communicate with its neighbours and perform local computation. In
this model, the time complexity of a problem is the number of synchronous communication rounds
required to solve the problem.

It is known that 3-colouring any k-coloured directed cycle requires at least 1
2 (log∗ k−3) communication

rounds and is possible in 1
2 (log∗ k+ 7) communication rounds for all k ≥ 3. This work shows that for

any k ≥ 3, colouring a k-coloured directed cycle with at most three colours is possible in 1
2 (log∗ k+3)

rounds. In contrast, it is also shown that for some values of k, colouring a directed cycle with at
most three colours requires at least 1

2 (log∗ k + 1) communication rounds. Furthermore, in the case
of directed rooted trees, reducing a k-colouring into a 3-colouring requires at least log∗ k + 1 rounds
for some k and possible in log∗ k + 3 rounds for all k ≥ 3.

The new positive and negative results are derived using computational methods, as the existence of
distributed colouring algorithms corresponds to the colourability of so-called neighbourhood graphs.
The colourability of these graphs is analysed using Boolean satisfiability (SAT) solvers. Finally, this
thesis shows that similar methods are applicable in capturing the existence of distributed algorithms
for other graph problems, such as the maximal matching problem.

ACM Computing Classification System (CCS):
F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical algorithms and problems
C.2.4 [Computer-communication networks]: Distributed systems
F.1.1 [Computation by abstract devices]: Models of computation
F.4.1 [Mathematical logic and formal languages]: Mathematical logic – computational logic

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI



ii

Contents

1 Introduction 1

2 Related work in computer-aided proofs 4

3 Preliminaries 8

3.1 Sets and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Fundamental graph families . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Graph-theoretic problems . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Computational complexity of graph colouring . . . . . . . . . . . . . 17

4 Distributed computing 19

4.1 The structure of a distributed system . . . . . . . . . . . . . . . . . . 19

4.2 Models of computation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 The input and output of a distributed system . . . . . . . . . . . . . 24

4.4 Distributed algorithms and local neighbourhoods . . . . . . . . . . . 26

4.5 Coloured networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Distributed vertex colouring 30

5.1 The greedy approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Cole–Vishkin techniques . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Colouring bounded-degree graphs . . . . . . . . . . . . . . . . . . . . 37

5.4 The current state of deterministic distributed colouring . . . . . . . . 40

6 Lower bounds for distributed colouring 42

6.1 Ramsey-theoretic lower bound arguments . . . . . . . . . . . . . . . . 43

6.2 Lower bound for tree colouring . . . . . . . . . . . . . . . . . . . . . 48

6.3 Neighbourhood graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Computing the chromatic number 58



iii

7.1 The propositional satisfiability problem . . . . . . . . . . . . . . . . . 58

7.2 Encoding k-colourability as SAT . . . . . . . . . . . . . . . . . . . . 60

7.3 Finding an optimal colouring . . . . . . . . . . . . . . . . . . . . . . 63

8 Improved bounds for cycle and tree colouring 65

8.1 Colourings for the neighbourhood graphs . . . . . . . . . . . . . . . . 65

8.2 The value of local information . . . . . . . . . . . . . . . . . . . . . . 67

8.3 Faster deterministic 3-colouring . . . . . . . . . . . . . . . . . . . . . 70

8.4 Closing the gap in lower and upper bound results . . . . . . . . . . . 72

8.5 Extensions to other distributed problems . . . . . . . . . . . . . . . . 73

9 Conclusions 78

References 80



1

1 Introduction

A distributed system is a collection of networked autonomous processing units which
must work in a cooperative manner. Distributed systems are ubiquitous in the modern
world with applications ranging from telecommunication networks to distributed
database systems and industrial control systems [Pel00]. The field of distributed
computing studies what can be computed efficiently in a distributed system.

Traditionally, computability and complexity theory concentrates on questions such as
“what can be computed” and “how much resources does the computation need” in a
centralized setting: all the input data is seen by a single computational entity which
sequentially processes the data. In a distributed system, the situation is different, as
there are multiple autonomous processors active simultaneously, and all the data
may not be available to every processor.

The computational problems in distributed networks often relate to managing the
network such as scheduling the activity of the processors or finding good routing
schemes within the network. When the size of the distributed system grows large, it
becomes infeasible to use protocols and algorithms which essentially rely on global
information about the network. Therefore, it is natural to ask whether the network
can be efficiently managed if the processors utilize only local information, that is,
information available on “nearby” processors.

A distributed system is usually modelled as a graph where the processors are nodes
and communication links between two processors are edges. For example, Figure 1
illustrates the communication graph for a simple distributed system. Thus, various
aspects of managing the network can be regarded as graph problems.

This work studies the computational complexity of distributed graph colouring

Figure 1: A communication graph of a distributed system. The nodes represent
processors and the edges denote communication links between the nodes.



2

problems. More specifically, the thesis presents exact lower bounds and improved
upper bounds for distributed colour reduction in directed cycles and directed rooted
trees.

The usual measures for the computational complexity of distributed problems are
related to the amount of information exchanged by the processors: how often must a
processor communicate with others and how many bits must the processors exchange
in order to solve a problem in the worst case? These measures can be regarded
as distributed counter-parts for the time and space complexities in centralized
computing [Sip06].

In this thesis, we will concentrate on the synchronous message-passing model of
distributed computation. The time complexity is measured by the number of com-
munication rounds required to solve the problem and the message complexity is
measured by the size of the largest message sent. A distributed algorithm which has
a running time independent of the size of the network is called a local algorithm. The
models of distributed computing and related concepts such as locality are discussed
further in Section 4.

Colouring the vertices of a graph is a fundamental concept in graph theory dating
back to a cartographical problem stated in the 19th century [Cay79]: is it always
possible to colour a map divided into separate regions with at most four colours such
that no two adjacent regions have the same colour? The problem can be equivalently
stated as a vertex colouring problem for graphs where nodes are embedded on a
two-dimensional plane and edges intersect only at their end-points (the word vertex
refers to the alternative name for nodes). Graphs with this property are known as
planar graphs. For example, the communication graph illustrated in Figure 2 is
planar.

In the vertex colouring problem, the task is to assign a colour for each node in the
graph in such a way that nodes connected by an edge have different colours. The
colours are usually denoted by non-negative integers. The decision version of the
vertex colouring problem (does there exist a colouring that uses at most k colours)
was one of the first computational problems shown to be NP-complete [Kar72]. That
is, no efficient (polynomial-time) algorithm for optimally colouring graphs is known.

In addition to vertex colourings, other graph colouring problems also exist. For
example, instead of colouring the nodes of a graph, the edges (i.e., communication
links) can be coloured. In this case, edges with a common end-point must have
different colours.



3

Figure 2: The communication graph given in Figure 1 with a proper 5-colouring of
its vertices.

Graph colourings have numerous applications. For example, the vertex colouring
problem is closely related to various scheduling and resource allocation problems in
communication networks [ABLP89, BBH+98, Ram99]. Vertex colourings also have
applications in optimization problems related to compiler design [CAC+81].

In the realm of distributed computing, graph colouring algorithms are also used
as subroutines for other algorithms [PR01, ÅS10]. Furthermore, many algorithms
designed for stronger distributed models can be used in weaker models if the com-
munication graph is coloured. Of course, the graph colouring problems are also
of theoretical interest. Therefore, it is natural that the graph colouring problem
has received considerable attention in the field of distributed and parallel comput-
ing [CV86, GP87, GPS88, Nao91, Lin92, KW06, FGIP07, BE09, Kuh09, BE10a].

It is known that directed cycle graphs cannot be coloured with three colours in a
constant number of communication rounds [Lin92]. However, a classic algorithm
originally due to Cole and Vishkin [CV86] can reduce the number of colours from k

to O(log k) in a single communication round. Repeated applications of this algorithm
allow fast colour reduction in cycles and trees.

This work studies how well a distributed algorithm can reduce the number of colours
in a constant number of rounds. We derive exact values for various cases of distributed
colour reduction parametrized by the type of colouring, the number of colours in
the graph, and the number of communication rounds allowed for the distributed
algorithm. Furthermore, these results are used to give an improved algorithm for
3-colouring two fundamental graph families in distributed computing: directed cycles
and directed rooted trees.

The classic lower bound for distributed 3-colouring due to Linial [Lin92] states
that 3-colouring a directed n-cycle requires at least 1

2(log∗ n − 3) communication
rounds for all n. The corresponding upper bound established in the literature



4

is 1
2(log∗ n+ 7) [CV86, Pel00]. The so-called log-star function log∗ is a very slow

growing function. The precise definition is given in Section 3.1.

The main result of this thesis improves both upper and lower bounds for 3-colouring
k-coloured directed cycles: 3-colouring a k-coloured directed cycle requires at least
1
2(log∗ k + 1) communication rounds for some k and is possible in 1

2(log∗ k + 3)
communication rounds for all k. Moreover, bounds for k-coloured directed rooted
trees are given as well with a lower bound of log∗ k + 1 for some k ≥ 3 and an upper
bound of log∗ k + 3 for all k ≥ 3.

The methods used in this work are an example of using computers to derive new
upper and lower bounds for the complexity of computational problems. While this
idea is not new, this line of research has recently been advocated in the theoretical
computer science community [Aar07, Wil08]. For example, in the last few years,
this approach has been applied in the context of circuit complexity [KKY09] and
time-space lower bounds [Wil07, Wil10]. Prior work and related techniques are
discussed in Section 2. This work extends the approach to the field of distributed
computing, and in particular, the study of local algorithms [NS95, Suo11].

The thesis is divided into two parts. In the first part, we begin with an overview
of related work in computer-aided proofs. After this, we focus on distributed
computation: we recall some necessary graph theoretic concepts, define what is a
distributed system and a distributed algorithm, describe the models of distributed
computation, and give an overview of known algorithms and lower bounds for
distributed graph colouring with an emphasis on directed cycles and directed rooted
trees.

In the latter part of the thesis, we describe the methods used for deriving new
upper and lower bound results for distributed colouring. These results are based on
the correspondence between the colourability of certain graphs and the existence
of distributed colouring algorithms. For computing the chromatic numbers, we
utilize so-called SAT solvers which have been applied previously in solving graph
colouring [GS02, Pre04, Van08] and other combinatorial problems [LMS08, JK10].

2 Related work in computer-aided proofs

The idea of using computers in solving mathematical problems is not new. In fact, one
can argue that computer science itself studies how to solve such problems efficiently



5

with computers. A common feature for these problems is the fact that they are often
finite in their nature. That is, the computer is given some input of finite length
and the computer is expected to output an answer of finite length in finite time.
Of course, this is inevitable if we wish to restrict ourselves to effectively calculable
procedures.

However, many mathematical statements concern infinite sets and objects. For
example, many statements have the form “for every natural number n there is
an object with property A”. There are also statements about non-existence of
certain mathematical objects such as “there does not exist any algorithm that solves
the halting problem for Turing machines”. When studying computability, and in
particular, what cannot be computed, we need to argue that there does not exist an
algorithm with certain properties. For these statements, a naive approach yields a
countably infinite search space as there are infinitely many algorithms. Therefore,
to perform automated search effectively, the search space has to be limited in some
manner.

In this work, we study methods for proving uncomputability results and finding new
distributed algorithms for graph problems. While there does not seem to be any
prior work in regards to distributed algorithms, there exists a significant amount of
studies that use computers to solve problems of similar nature.

A common approach is to interpret some aspect of the problem as a combinatorial
problem that can be solved with a (possibly exhaustive) computer search. Therefore,
it is not surprising that the field of combinatorics provides many examples of proofs by
computers. Perhaps the most well-known examples are the proofs of the non-existence
of projective planes of order 10 [LTS89, Lam91] and the Four Colour theorem: every
planar graph is four-colourable [AH89, RSST97, Gon08]. However, a large body of
similar work predates these celebrated results.

Already during the 1950s computers were used to help in mathematical proofs. An
example of such an early result is the proof that finite projective plane of order 8 is
unique which was attained by enumeratively searching for 7×7 Latin squares [HSW56].
An early survey of combinatorial search techniques was written by Hall and Knuth
in 1965 [HK65]. In the same year, Golomb and Baumert [GB65] wrote an exposition
on backtrack programming which is an important tool for exhaustive search. Almost
half a century later, Knuth published the fourth volume of his celebrated book
series [Knu11]. The first section of the fourth volume contains a comprehensive
presentation of basic techniques for enumerative combinatorial search.



6

In Ramsey theory, computing upper and lower bounds for the values of specific
Ramsey numbers is an active area of research [Rad09]. Similarly, many other
combinatorial systems have been studied using computational search methods [KÖ06].
Furthermore, algorithmic tools for automatic proving of combinatorial identities have
been in use for quite some time [PWZ96].

Conjectures on major open problems, in e.g., number theory, such as Goldbach’s
conjecture and Riemann hypothesis, have been verified with the help of computer
search up to large numbers.

As regards to complexity theory, computers have been used to construct and verify
so-called gadgets which are often used in computational hardness proofs to reduce
a problem into another one. Usually, the construction of these gadgets is guided
by intuition and human insight. In the recent years, there have been examples of
constructing and verifying these gadgets using computers. For example, Trevisan
et al. used a linear programming approach to construct gadgets for hardness of
approximation proofs for the maximum 3-SAT, maximum 2-SAT and maximum cut
problems [TSSW96]. Mulzer and Rote showed that triangulating a point set such
that the sum of edge lengths is minimized is NP-hard [MR08].

In the recent years, so-called SAT solvers — programs for deciding the satisfiability
of formulas in propositional logic — have been used to solve various problems rang-
ing from formal verification and model checking to various classical combinatorial
problems [GS02, Pre04, Van08, JK10] and genome analysis such as haplotype infer-
ence [LMS08]. The positive results seem to stem from the fact that in the past twenty
years, SAT solvers have been intensively studied and new solvers are constantly
engineered. For example, there exist annual competitions1 for new state-of-the art
SAT solvers.

In addition, SAT solvers have been used to search upper and lower bounds for various
logical design problems in contrast to other exhaustive search algorithms [Knu11,
Ch. 7.1.2]. For example, Kamath et al. [KKRR93] introduced a way to translate a
problem of finding minimal canonical forms (algebraic sum-of-product expressions)
of certain Boolean functions into a SAT instance. Estrada [Est03] later experimented
with the transformations given by Kamath et al. and proposed a procedure for
synthesizing and minimizing logical circuits with SAT solvers.

Williams together with Woo [Wil08] proposed a research program for computational
search of small circuits in an effort to understand Boolean circuit complexity better:

1http://www.satcompetition.org/ (February 20th, 2011)

http://www.satcompetition.org/


7

catalog the smallest known circuits for various problems on small input sizes hoping
to gain new insight on the circuit complexity of some problems such as matrix
multiplication. Williams argues that while truly minimal examples are most likely
hard to come by, concrete examples of almost-minimal circuits could still be useful
by either as inspiration for theoreticians, or for computers as example patterns
for machine learning techniques. This approach has been dubbed as experimental
complexity theory [Aar07].

Of course, finding small circuits computationally has been studied already before.
During the 1960s, provably optimal circuits were attained via exhaustive search using
computers [Hel63]. In addition, classic text books on circuit complexity [Weg87] have
emphasized the importance (and difficulty) of designing small circuits. However, with
the increase in computational power and availability of high-performance computers,
there are hopes that such difficult problems can be attacked in a more systematic
way and on a much larger scale than before.

Kojevnikov et al. [KKY09] contributed by studying the use of SAT solvers for
constructing small Boolean circuits for symmetric Boolean functions. In particular,
they studied the class of MOD-functions. The MODn

m,r functions are defined as

MODn
m,r(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ r (mod m).

Kojevnikov et al. found better upper bounds for circuits computing the MODn
3,r

functions on two different circuit models.

Another benefit of the SAT solver approach is that it also yields lower bounds. The
formulas are often satisfiable if and only if a circuit (or an algorithm) with the
given constraints, e.g., certain number of logic gates, exists. If the formulas are
unsatisfiable, then we know that no such circuit exists. Unfortunately, it seems that
the unsatisfiable cases are very difficult to solve with current SAT or QBF (quantified
Boolean formula solvers) solvers [Wil08, KKY09].

In addition to SAT, linear programming solvers have also been used to construct proofs
for time lower bounds. Williams used a so-called alternation-trading method [Wil07,
Wil08, Wil10] to show both deterministic and non-deterministic time-space lower
bounds for NP- and coNP-hard problems such as SAT, Hamiltonian path, vertex
cover, and tautologies [GJ79]. The method is based on solving a series of linear
programs. For example, a proof that SAT problem cannot be solved by an algorithm
running in O(n1.6) time and no(1) space was found using a computer search. For a
detailed discussion of this type of automated search for proofs, see [Wil07, Ch. 5].



8

Computer-aided searches and proofs have also been used to improve the analyses of
running times for exact exponential time algortihms [FK10, Ch. 6]. For example,
Fomin et al. have analysed recursive backtracking algorithms (also known as search-
tree algorithms) for maximum independent and minimum dominating sets [FGK05,
FGK09]. These backtracking algorithms are recursively applied to solve subproblems
using two different types of rules. Reduction rules are used to simplify the problem
instance, whereas branching rules are used to choose a suitable subproblem to be
solved.

The upper bound analyses of such algorithms are usually based on bounding the
number of nodes in the search tree generated by the algorithm. The running time
of the algorithm is given by a collection of linear recurrences for each different
rule. Given such a collection of recurrences for the running time of a backtracking
search algorithm, Eppstein’s method [Epp06] for analysing multivariate recurrence
equations can be used to find suitable coefficents for the recurrences which minimize
the running time. Eppstein’s method is based on solving generalization of linear
programs called quasiconvex programs [Epp05].

Computers have not just been used to analyse but also to create new algorithms.
For example, Gramm et al. [GGHN04] and Fedin and Kulikov [FK06] give programs
for finding and analysing new search tree algorithms for NP-hard problems. Both
frameworks utilize the observation that an upper bound can be proved by considering
all bounded size subproblems. Thus, the search space of algorithms can be restricted
to a finite set.

In the case of local distributed algorithms and colour reduction algorithms, we can
limit the search of algorithms into a finite problem, as distributed colouring algorithms
correspond to colourability of certain finite graph structures. This correspondence is
discussed in Section 6.3.

3 Preliminaries

In this section, we introduce the notation used throughout this work and give the
definitions for various basic graph theoretic concepts, such as graphs, subgraphs,
neighbourhoods, independent sets and colourings. We also review the computational
complexity of graph colouring. Some knowledge of basic complexity theory is assumed.
For a reference on complexity theory, see for example the introductory textbook by
Sipser [Sip06].



9

3.1 Sets and functions

We begin with defining some set theoretic notation. The set of natural numbers is
denoted by N = {0, 1, . . . } and the set of positive natural numbers is N+ = N\{0}. For
any k ∈ N+ the set of the first k natural numbers is denoted by [k] = {0, 1, . . . , k−1}.
The size of a finite set A is denoted by |A|. The set of k-subsets of set A is(

A

k

)
= {B : B ⊆ A and |B| = k}

and the set of k-tuples of A is

Ak = {(a0, a1, . . . , ak−1) : ai ∈ A where i ∈ [k]}.

Multisets are a generalization of sets. In a multiset A, every element in the multiset
is assigned a multiplicity m : A → N. The value m(a) denotes how many times
the item a is contained within the set A. For example, the multiset {x, x, y, y, z}
contains elements x and y two times while the element z occurs once. A k-colouring
of a set A is a mapping c : A→ [k]. An n-ary relation over A is a set R ⊆ An.

Furthermore, there are two important functions that arise frequently when analysing
the running times of distributed algorithms: the iterated logarithm and the log-
star functions. All logarithms are to base 2 unless otherwise specified. That is,
log x = log2 x.

Definition 3.1. Let i ∈ N. The iterated logarithm log(i) x is defined inductively by

log(0) x = x,

log(i+1) x = log(log(i) x).

Definition 3.2. The log-star function log∗ x is defined as

log∗ x =

0 if x ≤ 1,

1 + log∗ log x otherwise.

The two functions are closely related. Observe that if i = log∗ x then log(i) x ≤ 1.
In addition, the log-star function grows extremely slowly; for all practical values
of k the value log∗ k is at most 7. For example, log∗ 2 = 1, log∗ 4 = 2, log∗ 16 = 3,
log∗ 65536 = 4, and log∗ 265536 = 5.

Similarly to the iterated logarithm, we use the following notation for other iterated
functions.



10

Definition 3.3. Let A be a non-empty set, f : A → A, and i ∈ N. The iterated
function f (i) is defined inductively by

f (0)(a) = a,

f (i+1)(a) = (f (i) ◦ f)(a).

3.2 Graphs

We will now define some central concepts of graph theory used throughout this
work. Most of the following graph theoretic terminology follows the ones presented
in standard textbooks of graph theory [Die10].

A graph is denoted by a pair G = (V,E) where V is the set of nodes (also called
vertices) and E is the set of edges. The order of the graph is |G| = |V |, that is, the
number of nodes in the graph. While it is often assumed that the nodes are a subset
of natural numbers, the nodes can be of any type, such as sets or tuples.

In this work, we consider both undirected and directed graphs. The edge set for an
undirected graph is a set E ⊆

(
V
2

)
of 2-subsets of the set V of nodes. Two nodes u

and v are said to be adjacent if {u, v} ∈ E.

In a directed graph, the edge set E ⊆ V × V is a set of ordered pairs. In a directed
graph, nodes u and v are adjacent if either (u, v) ∈ E or (v, u) ∈ E holds. An edge
(u, v) is said to be outgoing for u and incoming for v. In addition, the node u is
sometimes called the predecessor of v, while the node v is the successor of u.

Observe that an undirected graph G = (V,E) always corresponds to a directed graph
G ′ = (V,E ′) where {u, v} ∈ E ⇐⇒ (u, v), (v, u) ∈ E ′. Thus in both directed and
undirected graphs, the edge set E can be considered as a binary adjacency relation
over the set of nodes. For undirected graphs, the relation is always symmetric.

The nodes u and v connected by an edge e are said to be the end-points of e. Two
edges e and f are said to be adjacent if there exists a node v ∈ V such that both
e and f have v as an end-point. A node v is incident to the edge e if node v is an
end-point of e.

The degree of a node v ∈ V is the number of edges that have v as an end-point and
is denoted by deg(v). In an undirected graph, the degree of a node v is the size of
the set {{u, v} ∈ E}. For directed graphs the in-degree of a node v is the size of the
set of incoming edges {(u, v) : (u, v) ∈ E} and the out-degree of v is the number of
outgoing edges connected to v. In directed graphs, the degree of a node is the sum



11

of the in- and out-degrees of the node. A node v is said to be isolated if deg(v) = 0.
The maximum degree ∆(G) of a graph G is the maximum number of edges incident
to any node v ∈ V , that is, ∆(G) = max{deg(v) : v ∈ V }. For brevity, we denote
the maximum degree simply as ∆ when the graph G is clear from the context.

All the graphs considered in this work are simple: there are no self-loops (an edge
from a node to itself) or multiple edges between nodes. In other words, the adjacency
relation E is irreflexive and E is a set in contrast to a multiset.

Since any undirected graph corresponds to a symmetric directed graph, we only give
the following definitions for directed graphs. Let G = (V,E) and G ′ = (V ′, E ′) be
graphs. The graphs G and G ′ are said to be isomorphic if there exists a bijection
π : V → V ′ such that (u, v) ∈ E if and only if (π(u), π(v)) ∈ E ′. If V ′ ⊆ V and
E ′ ⊆ E, then G ′ is a subgraph of G. A graph G is said to be G ′-free if G does not
contain a graph isomorphic to G ′ as a subgraph. For example, triangle-free graphs
do not contain a complete graph of 3 vertices as a subgraph.

A subgraph G ′ of graph G is said to be induced by the node set V ′ ⊆ V if for all
u, v ∈ V ′ there is an edge (u, v) ∈ E ′ if and only if (u, v) ∈ E. That is, if there is an
edge between two nodes in the original graph, then there is also an edge between the
nodes in the induced subgraph. Moreover, no new edges are introduced. A subgraph
of G induced by the node set A ⊆ V is denoted by G[A].

A path of length k is a non-repeating sequence (v0, . . . , vk) ∈ V k+1 such that for
all i ∈ {0, 1, . . . , k − 1} it holds that {(vi, vi+1), (vi+1, vi)} ∩ E 6= ∅. The distance
distG(u, v) of two nodes u and v in graph G is the length of the shortest path from u

to v. The diameter of graph G is the maximum distance of any two nodes in the
graph and is denoted by diameter(G).

A node u is said to be a neighbour of node v if they are connected by an edge. The
the set of neighbours for u is {v : (u, v) ∈ E or (v, u) ∈ E}.

Definition 3.4. Let G = (V,E) be a graph and r ∈ N. The radius-r neighbourhood
of a node v ∈ V is defined as the set

BG(v, r) = {u : distG(u, v) ≤ r}.

When the graph is clear from the context, we omit the subscript G in BG and distG.
Finally, we say that a graph is connected if for all u, v ∈ V such that u 6= v, there is
a path between u and v.



12

(a) (b) (c)

Figure 3: Various graphs. (a) A directed path P4. (b) A directed cycle C13. (c) A
directed pseudotree. Notice that removing any edge from the directed cycle yields a
directed rooted tree. The union of these three graphs is a pseudoforest.

3.3 Fundamental graph families

We now give the definitions of the graph families considered throughout this work.

Definition 3.5. Let ∆ ∈ N. The family of bounded-degree graphs of degree ∆ is

{G = (V,E) : for all v ∈ V it holds that deg(v) ≤ ∆}.

Definition 3.6. A directed n-cycle Cn = (V,E) is a graph on n nodes such that

V = {v0, v1, . . . , vn−1}

and the edges have a globally consistent orientation such that

E = {(vi, vi+1) : i ∈ {0, 1, . . . , n− 2}} ∪ {(vn−1, v0)}.

A cycle is even if n is even and odd otherwise.

Definition 3.7. A tree is a connected graph without cycles. A directed rooted tree
is a tree where each node has an in-degree of at most one. The root is a node with
in-degree of zero.

Definition 3.8. A directed pseudotree is a connected, directed graph G such that
the in-degree of each node is at most one. That is, G may be a directed rooted tree,
directed cycle or a directed rooted tree with at most one directed cycle.



13

A graph consisting of vertex-disjoint trees is called a forest. Similarly, a pseudoforest
consists of one or more vertex-disjoint pseudotrees. A directed path is a directed
rooted tree where each node has an in-degree and out-degree of at most one. Figure 3
illustrates a directed path, cycle, and a pseudotree. Finally, a graph G = (V,E) is
d-regular if for all v ∈ V it holds that deg(v) = d. For example, cycles are 2-regular.

3.4 Graph-theoretic problems

In combinatorics, a colouring refers to a mapping from a set S of objects to a set
[r] of colours. For graphs, the set of colourable objects is usually either the set of
vertices, the set of edges, or both, Furthermore, graph colourings are often assumed
to have some additional properties. To emphasize these additional properties, the
word “colouring” is used in conjunction with suitable descriptive adjectives, such as
proper, defective, total, and so on.

Definition 3.9. A proper vertex k-colouring of a graph G = (V,E) is a mapping
ϕ : V → [k] such that for each edge (u, v) ∈ E it holds that ϕ(u) 6= ϕ(v). That is, ϕ
assigns a colour for each node v ∈ V such that no two adjacent nodes are given the
same colour.

Definition 3.10. An independent set in a graph G = (V,E) is a set I ⊆ V such that
for all u, v ∈ I it holds that (u, v) /∈ E. That is, no two nodes in the independent set
are adjacent. An independent set I is maximal if it is not a proper subset of any
other independent set. A largest independent set is called a maximum independent
set. The size of a maximum independent set in a graph G is denoted by α(G).

The chromatic number χ(G) of a graph G is the smallest number of colours required
to properly colour the vertices of graph G. A graph is k-colourable if the chromatic
number is at most k, that is, χ(G) ≤ k. In a k-colourable graph, for each colour
c ∈ {0, 1, . . . , k − 1}, the colour class Ic = {v ∈ V : ϕ(v) = c} is an independent set
in the graph.

Figure 4 illustrates some examples of proper vertex colourings. The graph depicted
in the figure has a chromatic number of 3. Figures 4b and 4c show that the graph
can be properly vertex coloured with three colours. However, the graph contains odd
cycles which are not two-colourable.

Cliques are a dual concept to independent sets. Cliques can be used, for example, to
lower bound the chromatic number of a graph.



14

(a) (b) (c)

Figure 4: Examples of vertex colourings. (a) A proper 5-colouring. (b) A proper
3-colouring. (c) Another proper 3-colouring.

Definition 3.11. A k-clique in an undirected graph G = (V,E) is a set U ⊆ V such
that |U | = k and for all nodes u, v ∈ U there exist edges {u, v} ∈ E if u 6= v. The
complete graph Kn = (V ′, E ′) on n vertices is a graph such that V ′ is an n-clique.
The size of a largest clique in a graph G is denoted by ω(G).

The computational problems related to vertex colourings, independent sets, and
cliques are hard in general. Given a graph G and a value k as input, it is NP-complete
to decide whether a proper vertex k-colouring of G exists, if G has an independent
set of size at least k, or if G has a clique of size at least k [GJ79]. This corresponds
to deciding whether χ(G) ≤ k, α(G) ≥ k, or ω(G) ≥ k, respectively.

It is easy to see that if a graph contains a k-clique, then the graph cannot be coloured
with less than k colours. Unfortunately, lower bounding the chromatic number by
finding large cliques is not easy. Finding relatively large cliques efficiently may not
be possible as the maximum clique problem is NP-complete and the optimization
version is hard to approximate [Vaz01, Ch. 29.6].

Moreover, ω(G) does not have a direct relation to χ(G) as there are graph families
where the largest clique has a constant size but the chromatic number is arbitrarily
large. For example, there exist so-called Mycielski graphs such that for every k there
is a graph G such that the graph is not k-colourable and the size of the largest clique
is two [Myc57]. The neighbourhood graphs presented in Section 6.3 are another
example of a graph family where the size of the largest clique remains constant while
the chromatic number grows as a function of the order of the graph.

On the other hand, every graph is (∆ + 1)-colourable as seen by a simple centralized
greedy algorithm [Die10, Ch. 5]: iterate over all nodes V = {v0, v1, . . . , vn−1} and
for each node vi choose the smallest free colour not assigned to any node in B(vi, 1).



15

This produces a proper colouring as after i steps for every 1 ≤ i ≤ n, the subgraph
induced by the node set {v0, v1, . . . , vi−1} is properly coloured. To see that there are
situations where the above algorithm has to use ∆ + 1 colours, consider for example
a complete graph or an odd cycle. If a graph is neither of these, then by Brooks’
theorem the graph is ∆-colourable [Bro41].

In addition to proper vertex and edge colourings, various other graph colourings
also exist such as total colourings (properly colour both nodes and edges), radius-r
colourings (each node v has a unique colour in their radius-r neighbourhood), p-
defective colourings (each colour class induces a subgraph with maximum degree at
most p), and so on.

Definition 3.12. Let G = (V,E) be a graph with a proper vertex k-colouring
ϕ : V → [k]. The colouring ϕ is a radius-r colouring if for all nodes v ∈ V it holds
that

|BG(v, r)| = |{ϕ(u) : u ∈ BG(v, r)}|.

That is, in every radius-r neighbourhood of G, the nodes have unique colours.

Unless otherwise mentioned, the phrase “graph colouring” refers to a proper vertex
colouring. The computational complexity of graph colouring problems is further
discussed in Section 3.5. In addition to proper vertex colourings, we also discuss the
following graph problems which are illustrated in Figure 5. We give the definitions
for undirected graphs.

Definition 3.13. A vertex cover of a graph G = (V,E) is a subset C ⊆ V of the
nodes such that {u, v} ∩ C 6= ∅ for every edge {u, v} ∈ E. That is, each edge is
covered by some node in C.

Definition 3.14. A dominating set of a graph G = (V,E) is a subset D ⊆ V of the
vertices such that for all v ∈ V either v ∈ D or there exists a node u ∈ D such that
{u, v} ∈ E. That is, all nodes are in the dominating set or adjacent to a node in the
dominating set.

Definition 3.15. A weak k-colouring of G = (V,E) is a colouring c : V → [k] such
that for each non-isolated node v ∈ V there exists {u, v} ∈ E such that c(v) 6= c(u).
That is, every node has at least one neighbour with a different colour.

If a graph has no isolated nodes, then a weak 2-colouring can be regarded as a
partitioning of the node set into two disjoint dominating sets.



16

(a) (b) (c)

(d) (e) (f)

Figure 5: Examples of various graph problems. (a) A maximum independent set.
(b) A minimum vertex cover. (c) A maximum matching. (d) A minimum dominating
set. (e) A weak 2-colouring. (f) An edge 3-colouring.

Definition 3.16. A matching in a graph G = (V,E) is a subset M ⊆ E of the edges
such that no two adjacent edges e, f ∈ E are both in M . A maximal matching M is
a matching such that every edge e ∈ E is either in the matching M or is adjacent to
another edge in M .

Definition 3.17. An edge k-colouring of graph G = (V,E) is mapping c : E → [k]
such that no two adjacent edges e, f ∈ E have the same colour.

Observe that matchings are edge sets analogous to independent sets. Moreover, while
independent sets were related to vertex colourings, matchings are closely related to
edge colourings.

Somewhat surprisingly, while the vertex chromatic number of graphs can range from
1 (a graph with no edges) to ∆ + 1 (a complete graph), the smallest number of
colours to properly colour the edges of a graph is always either ∆ or ∆ + 1. This is
known as Vizing’s theorem [Die10, Ch. 5.3]. Despite this fact, deciding whether a
graph can be edge coloured with ∆ colours or not is still NP-complete [Hol81].

Observe that a trivial independent set or a matching is just an empty set whereas
a trivial vertex cover or a dominating set is the set of all vertices. Therefore,
from a computational perspective, finding vertex covers and dominating sets are
minimization (or covering) problems, whereas finding independent sets and matchings
are maximization (or packing) problems. For these problems, finding the size of the
minimum (or maximum) solution is NP-hard [GJ79] with the exception of maximum
matchings which can be computed in polynomial time [PS98, Ch. 10].



17

3.5 Computational complexity of graph colouring

This section gives an overview on the results regarding the complexity of centralized
vertex colouring problems. We begin by defining the three important variants of the
vertex colouring problem: the decision, optimisation, and search problems.

Problem 1 (k-colourability problem). Given a graph G and k ∈ N+ as input, decide
whether there exists a proper vertex k-colouring for G.

Problem 2 (Chromatic number problem). Given a graph G find the smallest k such
that graph G is k-colourable. That is, compute the chromatic number χ(G).

Problem 3 (Minimum colouring problem). Given a graph G as input, output a
proper vertex χ(G)-colouring ϕ of the graph G.

An α-approximation algorithm for the minimum colouring problem outputs a proper
vertex colouring which uses at most α ·χ(G) colours where α ≥ 1 is the approximation
factor. Similarly, an α-approximation algorithm for the chromatic number problem
outputs a value k ∈ N where χ(G) ≤ k ≤ α · χ(G).

The computational complexity of various graph colouring problems has been studied
intensively during the last forty years. In fact, determining whether a graph is k-
colourable for k ≥ 3 was one of the first problems shown to be NP-complete [Kar72].
Thus, no polynomial-time algorithms for solving k-colourability or the chromatic
number problems are currently known. On the other hand, there exists an efficient
algorithm for deciding whether a graph is 2-colourable (or bipartite). Testing bipar-
titeness and finding a 2-colouring can be done in O(|V |+ |E|) time with a simple
breadth-first search algorithm [CLRS01]: start at an arbitrary node v ∈ V and
proceed in a breadth-first manner marking alternating levels as black and white.

While graph colouring is hard for general graphs, some restricted graph families admit
polynomial-time algorithms for computing the chromatic number. For example, there
are polynomial-time algorithms for solving the search problem in restricted graph
families, such as perfect graphs [GLS93, Ch. 9.4] and graphs with bounded tree-width
and clique-width (a generalization of tree-width). Unfortunately, these algorithms
are often impractical as they rely on the numerically unstable ellipsoid method or
require hard to compute algebraic expressions for describing the input graph.

Kobler and Rotics [KR03] give polynomial-time (in the size of the graph) algorithms
for a generalization of the k-colouring problem known as list k-colouring and the
chromatic number problem in bounded clique-width graphs. However, the running



18

time is exponential in the clique-width of the graph and approximating clique-width
is known to be hard [FRRS09].

Whereas colouring planar graphs optimally is NP-hard already when restricted to
planar graphs with maximum degree of four [GJS74], planar graphs admit polynomial-
time algorithms for computing almost-optimal solutions. A planar graph can be
4-coloured in O(n2) time [RSST96] and 5-coloured in linear time [CNS81].

Currently the algorithms for k-colourability and the chromatic number problems in
general graphs with best asymptotic running times require both exponential time and
space [Koi06, BH06]. These algorithms are based on evaluating algebraic inclusion-
exclusion expressions which count the number of ways to partition G in to k different
independent sets. This can be done in O(2nn2) time and O(n2n) space. However, it
is possible to trade time for space and compute the chromatic number in O(2.247n)
time and polynomial space [BH06]. Recently, Bjöklund et al. further refined the
result and showed that it is possible to compute the chromatic number in 2n time
up to polynomial factors and in space O(1.443n) [BHKK10]. A recent exposition of
these techniques can be found in the textbook by Fomin and Kratsch [FK10, Ch. 4].

In the past decades, the field of approximation algorithms [Vaz01] has attained wide
interest in the hopes of finding algorithms producing relatively good or almost-optimal
solutions to NP-hard problems. Not unlike other hard combinatorial optimization
problems, the approximability of minimum colouring problem has received a lot of
attention. Garey and Johnson provided one of the first inapproximability results
regarding the chromatic number problem: unless P = NP, there does not exist a
polynomial-time constant-factor approximation algorithm for the problem [GJ76].
However, it is possible to compute a 2-approximation of χ(G) in O(1.3998n) time and
a (1 + ε)-approximation for all ε > 0 in time and space O(1.221n + 2.247e−εn) [BH06].

During the 1990s, new inapproximability results gradually emerged. Lund and
Yannakakis [LY94] reduced the problem of approximating inpependent sets into
approximating chromatic number and proved that there exists a positive constant
ε > 0 such that the chromatic number cannot be approximated to within factor |V |ε

unless P = NP. Later, Bellare et al. [BGS98] showed that if P 6= NP, the chromatic
number cannot be approximated within a factor of |V | 17−ε for any positive constant
ε > 0. Furthermore, if coRP 6= NP holds, then the chromatic number cannot be
approximated within a factor of |V | 15−ε. Feige and Kilian [FK98] showed that if
coRP 6= NP, the chromatic number cannot be approximated within factor |V |1−ε for
any constant ε > 0.



19

4 Distributed computing

In this section, we define what is a distributed system and a distributed algorithm in
the context of this thesis. In this work, the basic model of distributed computation
is the synchronous message-passing model. This model is also known as the local
model or Linial’s model [Lin92, Pel00].

We begin with a discussion on the relationship between the network structure and
the input of the distributed system. We then examine some important variants of the
basic message-passing model: the model with unique identifiers, the port-numbering
model, and the broadcast model. For the latter two models, we will also discuss the
benefits gained by assuming a proper vertex colouring as part of the input. Finally,
we formalise the notions of distributed algorithms and the locality of computation.

4.1 The structure of a distributed system

A distributed system is represented by a graph G = (V,E) where V is the set of
nodes and E the set of edges. The nodes correspond to computational entities and
the edges represent communication links between two nodes. The graph G is called
the communication graph of the distributed system.

A node v ∈ V can directly send a message to another node u only if they are
connected by an edge. Unless otherwise specified, the communication graph is simple
and communication links are always symmetric: if v can send a message to u then u
can send a message to v.

All nodes in the network run the same algorithm. In addition, each node v may receive
local input, such as a unique identifier, weight, colour, some other information, or
any combination of these. While the communication graph G represents the structure
of the distributed system, it also acts as input for the distributed algorithm. As we
will see, many problems in distributed computing are related to the structure of the
graph. Usually, distributed algorithms compute and output some property of the
communication graph.

The distributed system operates in discrete synchronous rounds each consisting of
three steps where each node (i) sends messages to its neighbours, (ii) receives messages
and (iii) performs local computation. All communication and local computation is
both reliable and fault-free. That is, all sent messages always arrive, no processor
leaves the network or malfunctions, and no communication link breaks down.



20

Since the rounds are synchronous, all messages that are sent during step (i) are
propagated through the communication links and received by the appropriate nodes
before step (ii) begins. The details on how neighbours are addressed is discussed
in Section 4.2. On the first round, all the nodes in the network start running the
algorithm simultaneously.

These rounds are repeated until every node has computed and declared its output.
The output may be, for example, the colour of the node, or a binary value indicating
whether the node decided to be a part of a set of nodes (e.g. independent set,
dominating set, vertex cover). The output may also relate to edges; in these cases
the encoding of the output depends on the exact variant of the model at hand.

As regards to the model of local computation used by the nodes, we assume that
the nodes are capable of computing any recursive function. That is, while we do not
explicitly fix any particular model of computation for the nodes, any Turing-complete
model of computation suffices. However, it is mandatory that the local computation
of nodes always halts at the end of each round. In addition, the nodes can send
arbitrary (finite) messages to adjacent nodes. All algorithms discussed in this work
are deterministic.

In this model, the standard measure of time complexity is the maximum number of
synchronous communication rounds required for all nodes to compute and declare
their output. Any local computation performed by a node in step (iii) is considered
free and thus it does not affect the time complexity of a distributed algorithm. Thus,
the running time of a distributed algorithm refers to the number of synchronous
communication rounds taken by the algorithm to compute the output on all nodes.
The message complexity of an algorithm is the maximum size of any sent message in
bits. However, for the purpose of this work, we assume that the message sizes are
unbounded.

Initially, the assumption that the system operates synchronously may seem unrealistic,
as real-world distributed networks are usually asynchronous in nature. However, this
assumption is reasonable. First, in the worst case, an asynchronous system behaves
in a totally synchronous manner. Thus, any lower bound results for synchronous
systems directly yield lower bound results for asynchronous systems.

Second, there exist several techniques for converting asynchronous algorithms into
synchronous without considerable overhead [Pel00, Ch. 6]. The most common syn-
chronization techniques are the α- and β-synchronizers [Awe85]. The α-synchronizer
only has a constant factor overhead when measuring the time complexity and thus



21

is asymptotically time-optimal. The β-synchronizer is asymptotically optimal with
regards to the message complexity but it may increase the running time by a factor
proportional to the diameter of the communication graph.

4.2 Models of computation

There are many variations to the basic synchronous message-passing model. Most
notable of these are the model with unique identifiers, the port-numbering model,
and the broadcast model. Each model differs mainly in how much information is
available to the nodes.

Unique identifiers. The model with unique identifiers is often referred to either
as Linial’s model (after the seminal paper [Lin92]) or as the local model [Pel00]. Each
node in the graph is given a unique non-negative integer identifier as local input.
Usually, the set of used identifiers is the subset of natural numbers {0, 1, . . . , n− 1}
where n = |V | is the number of nodes in the communication graph.

This model is rather strong as it renders many problems trivial. A good example is
the leader election problem where the task is to select a single node v ∈ V as a leader
such that the node v knows it has been selected while all other nodes u ∈ V \ {v}
know that they have not been selected. Solving the leader election problem in this
model requires no communication: simply choose the node with identifier 0 as the
leader. For avoiding such trivialities, the set of identifiers is sometimes assumed to
be any n-subset of the set {0, 1, . . . , poly(n)}. That is, there is only a polynomial
bound on the size of the identifiers.

Even with this restriction, the model remains strong. If the communication graph is
connected, any computable function f of G can be computed deterministically in
O(diameter(G)) communication rounds: each node can collect complete knowledge
of G, compute f(G) locally, and output its result. Therefore, it is also interesting to
examine more restricted models.

Port-numbering model. In this model, the nodes do not receive any identifiers,
and thus, all nodes are anonymous. However, each node v can refer to its neighbours
by unique numbers {1, 2, . . . , deg(v)} where deg(v) is the number of edges connected
to the node. With port-numbering, any node can direct messages to a specific
neighbour and distinguish which neighbour sent a particular message.



22

1

1

2

2

1

12
1 2

2 1

1

2

2

1

12
1 2

2 1

1

2

2

1

12
1 2

2

1

5

4 3

2

(b)(a) (c) (d)

Figure 6: A communication graph isomorphic to a 5-cycle. (a) The graph with
unique identifiers. (b) A port-numbering. (c) A port-numbering and an orientation.
(d) A proper vertex 3-colouring, port-numbering, and an orientation.

The port-numbering model is known to be restricted; problems such as leader election
cannot be solved deterministically [Ang80]. The same applies to graph colouring
unless additional information is provided, as we will see later.

A slightly stronger variant of the port-numbering model is the port-numbering model
with orientation. An orientation is simply an assignment of a direction to each edge
in the communication graph. Each node v can partition the port-numbers into two
sets: incoming edges and outgoing edges. An oriented edge from u to v is denoted
by (u, v). The edge (u, v) is outgoing for u and incoming for v. Note that while the
edges have direction, the communication links remain symmetric. That is, for an
oriented edge (u, v) the node v can send a message to node u and vice versa.

Both variants of the port-numbering model are weaker than the model with unique
identifiers. For example, consider an anonymous directed cycle C = (V,E) with port
number 1 assigned to the incoming edge and 2 to the outgoing edge as illustrated in
Figures 6b and 6c. The graph is highly symmetric: the local neighbourhood BC(v, r)
of each node v ∈ V is identical for all r ∈ N+. Thus, any deterministic algorithm must
output the same result for every node in the graph. For this reason, no deterministic
algorithm can output a non-trivial subset of nodes, that is, something other than
the empty set or the set of all nodes.

While orientation does not help in the case of a symmetric cycle, orientation does
partially break the symmetry in graphs where every node has an odd degree. In such
graphs, nodes have different number of incoming and outgoing edges. A classical
example of utilizing orientation and odd degrees is the weak-colouring algorithm by
Naor and Stockmeyer [NS95].



23

Broadcast model. A natural restriction to the port-numbering model is to leave
out the port numbers and orientation. In this setting, the only way of communicating
is broadcasting: a node must send the same message to all neighbours as there is no
way to distinguish different neighbours. Thus, the messages received by a node v is
a multiset of size deg(v) rather than an ordered tuple of length deg(v).

In contrast to the other models, the broadcast model is quite weak as symmetry cannot
be broken without additional information. Perhaps due to this reason, the broadcast
model has not received as much attention as the previous models. Nevertheless, there
exist some non-trivial positive results when the nodes are given additional information
such as a proper colouring [KW06] or an improper colouring [BV01, ÅS10].

The computational power of distributed models. The use of the various
models is abundant in the field of distributed computing, and the computational
power of different models is an active topic of research. While the broadcast and
port-numbering models are in general weaker than the model with unique identifiers,
somewhat surprisingly, there are examples of non-trivial problems that are solvable
in the broadcast model as well as in the model with unique identifiers.

A recent example is the constant-time approximation of minimum vertex cover in
bounded-degree graphs. Given unique identifiers, there does not exist a constant-time
distributed algorithm for the minimum vertex cover probelm with approximation
factor 2 − ε, as this would contradict the fact that there are no constant-factor
approximation algorithms for the maximal independent set in cycles [CHW08]. More-
over, no (2− ε)-approximation algorithm is known in the centralized setting either.
However, in bounded-degree graphs, there exists a constant-time 2-approximation
algorithm for the minimum vertex cover in the broadcast model [ÅS10].

Anonymous port-numbered k-coloured networks. In this work, we concen-
trate primarily on the vertex colouring problem which is not deterministically solvable
in anonymous networks with port-numbering. Therefore, we assume a stronger vari-
ant of the port-numbering model where the all nodes are anonymous but the graph
has been properly k-coloured.

More precisely, in this model the distributed system consists of the communication
graph G = (V,E), a port-numbering, and a colouring ϕ : V → [k]. Each node v ∈ V
knows only its own colour and the local port-numbering given as input. Some
algorithms presented in this work assume that the nodes also know the exact value or



24

an upper bound on k. Observe that a graph with unique identifiers can be regarded
as properly vertex coloured.

Before discussing coloured networks further, let us refine the notion of input and
output in a distributed system and give precise definitions for distributed algorithms
and local neighbourhoods. After this, we will continue with a short discussion on
the benefits of coloured networks in Section 4.5.

4.3 The input and output of a distributed system

As stated in Section 4.1, the communication graph is part of the input for a distributed
algorithm. The communication graph may contain information, such as local inputs
for nodes, unique identifiers, port-numberings, or orientations for the edges. Input
regarding an edge is given to both end-points of the edge.

Frequently, distributed algorithms assume that some global information is also given
as input. For example, this may include the number of colours in a coloured graph,
the maximum degree, or an upper bound or the exact number of nodes in the
graph. Algorithms oblivious to these bounds are called uniform. Uniform distributed
algorithms and the necessity of this type of global information has been studied by
Musto [Mus11].

Furthermore, the distributed problem is often restricted in some way. For example,
the algorithms may assume that the communication graph belongs to a particular
graph family. Common graph families are trees, bounded-degree graphs, regular
graphs, unit-disk graphs or other geometric graphs. The algorithms in Section 5.2
assume that the input graphs are properly coloured directed pseudoforests.

The output of a distributed system is also distributed. For example, a centralized
algorithm that solves a decision problem needs to output only one bit to indicate
whether to accept or reject the input. Of course, in the distributed setting we cannot
assume that all the nodes unanimously agree on the output as this would require
network-wide, and hence global, cooperation.

Therefore, the output of a distributed decision problem is defined as follows: the
distributed algorithm accepts the input if and only if all nodes accept. Thus, if a
single node rejects the input, we say that the distributed algorithm rejects the input.
This model for distributed decision problems remedies the situation when the the
input is locally feasible but not globally.



25

u u

vv

(b)(a)

Figure 7: Distributively deciding the validity of a colouring given as input. Assume
that the running time of the distributed decision algorithm is at most 5. (a) All
nodes accept as the colouring is proper. (b) Node v accepts just as in the previous
case but node u must reject as it has equally-coloured neighbours.

As an example of distributed decision problem, consider the problem of verifying
whether a given vertex colouring is proper. A one-round algorithm can solve the
problem: each node sends its colour to its neighbours and in turn receives the colours
of its neighbours. Then the node checks that no neighbour has the same colour.

Figure 7 illustrates the verification scenario. In Figure 7a all the nodes are satisfied
with the given colouring. On the other hand, in Figure 7b, most of the nodes remain
satisfied as for them the colouring is locally proper. However, node u notices that
the given colouring is improper, and thus rejects the input whereas node v and its
neighbours cannot differentiate the two situations.

In the case of optimization problems, such as finding a large independent set or a
proper vertex colouring with few colours, each node outputs its role in the solution.
For the independent set problem, the node decides whether it is part of the set or
not, and in the vertex colouring problem, the node outputs its new colour.

When the output is related to an edge {u, v}, it is assumed that both end-points of
the edge unanimously agree on the output of the edge. For example, consider the
matching problem. Let pu and pv be the port-numbers assigned to the edge {u, v}
by nodes u and v, respectively. If {u, v} is part of the matching, then u knows that
the edge connected to port pu is in the matching, and node v knows that the edge pv
is in the matching.



26

4.4 Distributed algorithms and local neighbourhoods

We will now give some necessary definitions for reasoning about distributed algorithms
and their properties. Let G = (V,E) be a communication graph. Initially, each node
v ∈ V knows only its local input. By communicating with other nodes, the node v
can gather input from its local neighbourhood.

Let us recall the definition of radius-r neighbourhoods. The radius-r neighbourhood
of a node v ∈ V is the set B(v, r) = {u : dist(u, v) ≤ r}. The graph G[v, r]
is the subgraph of G induced by B(v, r) with edges (x, y) and (y, x) removed if
dist(v, x) = dist(v, y) = r. Figure 8 illustrates an example of radius-2 neighbourhoods
in two different port-numbered graphs.

If T is the running time of a distributed algorithm, then each node can gather
information only from the nodes that are within distance T . Therefore, the output
of node v ∈ V may only depend on the inputs of nodes in B(v, T ) and the structure
of G[v, T ]. Any node u /∈ B(v, T ) cannot affect the output of v. The running time T
of a distributed algorithm is often a function of the number of nodes, the maximum
degree, or some other property of the communication graph. In some cases, the
running time may be a constant.

Definition 4.1 (Radius-r local view). In a port-numbered graph G = (V,E), the
radius-r local view of node v is a tree VG(v, r) of depth r+1. The root of VG(v, r) cor-
responds to node v and its input. If r > 0, then for each neighbour u1, u2, . . . , udeg(v)

of v, the root node has a tree VG(ui, r − 1) as a child. The edges leading to children
are labeled according to the port numbering of v and the direction of the edge. The
tree VG(v, 0) consists only of the root node.

Note that in the port-numbering model, it is not necessary to branch again on node
v in the subtree VG(ui, r − 1). It suffices to recursively branch only on nodes in
BG(ui, 1) \ {v}. For example, the views in cycles can then be regarded as paths.

Using a simple flooding procedure, a node in the graph can construct its radius-r local
view in r communication rounds. The flooding procedure is given in Algorithm 1.
During each round, the algorithm gradually updates the local view and sends the
updated local view to all neighbours.

While most algorithms are explicitly presented using the send-receive-compute
framework, algorithms in this model can also be viewed as mappings from local views
to the set of possible outputs. That is, for any deterministic distributed algorithm A
running on node v, there is a corresponding function fA which maps the local view



27

G[v, 2]

H

G

H[u, 2]

v

u

4

1

v

13

1

2

4
1

2

3

3
22

1

5

4

1

v

13

1

2

4
1

2

3

3
22

1

5

2

3

2
3

Figure 8: Two different port-numbered graphs G andH. The radius-2 neighbourhoods
of nodes u and v are identical while the graphs G and H are not. The neighbourhoods
of u and v are highlighted. Observe that BG(v, 2) = BH(u, 2) and G[v, 2] = H[u, 2].
An algorithm that runs for T = 2 rounds outputs the same result at both nodes u
and v.



28

Algorithm 1 Gather the radius-r neighbourhood
1: Initialize the local view of the node v by setting x← V(v, 0).
2: In sequence, repeat the following for each round t ∈ {1, 2, . . . , r}:
3: Send the message (x, p) to port p for each p ∈ {1, 2, . . . , deg(v)}.
4: Set x← V(v, 0).
5: For each received message (y, p) where p ∈ {1, 2, . . . , deg(v)}:
6: Update x: Add y as a child of x. Label the edge from x to y with p.

of v into the output of the algorithm at v. When given unique identifiers, the local
view at v can be bijectively folded back into the graph G[v, r] but for anonymous or
coloured graphs this is not generally possible. In a properly coloured graph, different
neighbourhoods can map into the same view: consider a 3-coloured infinite path or
a large 3-coloured cycle as in Figures 9b and 9c.

In Section 6, we will see that local neighbourhoods and local views prove to be useful
when reasoning about the existence of distributed algorithms.

4.5 Coloured networks

Let us now briefly return to the discussion on coloured networks. One goal of the
theoretical study of distributed computing is to find the boundaries and limits of
different models. Just as in traditional computational complexity theory, often the
interesting question is not what can be computed but how much resources are needed
to solve a given problem. In centralized computing, the focus is often on the time
and space resources required to solve the problem. However, in a distributed setting,
the focus is on how much information does the algorithm need in order to solve a
problem.

Sometimes all the necessary information can be obtained through communication. In
such cases, it is customary to measure how many communication rounds or how many
bits need to be sent in order to solve the problem at hand. But communication is not
always sufficient. For example, as discussed in Section 4.2, there are many problems
that are not possible to solve in anonymous networks with the port-numbering using
deterministic algorithms.

To overcome this, some form of symmetry breaking is required. One way to solve this
problem is to assign each node a unique identifier. However, unique identifiers are a



29

(b)(a) (c)

C6 PC3

Figure 9: In a coloured communication graph, nodes cannot decide whether the
graph is triangle-free. The output must be the same in all the illustrated graphs.
(a) A triangle. (b) A 6-cycle. (c) An infinite path.

very strong form of symmetry breaking as all computable graph problems become
trivially solvable in time proportional to the diameter of the graph. In this model, it
is often interesting to study how much communication is required at the minimum.

Instead of giving globally unique identifiers to all nodes, it often suffices to break
the symmetry partially by using locally unique identifiers or almost unique labels
such as vertex colours. In a properly k-coloured graph, the distributed algorithm
can then use the natural total order of [k] ⊂ N to break symmetries since every node
has a different colour than its neighbours.

Vertex colourings provide enough information to break symmetry in most cases.
Many problems that are not possible to solve in port-numbered anonymous networks
can be solved if a vertex colouring is given as part of the input. For example, a
proper edge colouring can be computed in one communication round: First, all nodes
send their colours and port-numbers to their neighbours. Then for each edge {u, v},
the nodes u and v choose the colour as follows. Assume that u has a larger colour
than v. Let ϕ(u) be the colour of u and ϕ(v) colour of v. Respectively, let pu and
pv be the port-numbers for the edge {u, v}. Both nodes then colour the edge with
colour (ϕ(u), ϕ(v), pu, pv).

The edge colouring is proper since for any two adjacent edges {u, v} and {v, w}
the colour must differ at some component: even if the colours of u and w are the
same, the edges have different port numbers in v. Observe that it is critical that
the end-points of each edge have different colours. More examples of algorithms in
coloured graphs are given in Section 5.

In contrast, while a k-coloured network with port-numbers is a strictly stronger
model, it is still weaker than the model with unique identifiers. That is, the model is
not too strong. Of course, problems depending on fully global information, such as
counting the number of nodes in a graph, cannot be solved in coloured networks.



30

Nevertheless, there are also natural “local problems” that separate the two models.
For example, consider the problem of deciding if the communication graph G is
triangle-free. Clearly, the problem is local in the sense that in the unique identifier
model, each node u simply gathers its radius-2 view and checks if there is a 3-cycle
(u, v, w, u) in G[u, 2].

However, in a coloured network the nodes cannot distinguish between a 3-coloured C3

and C3n for any n ∈ N+. We can simply assign the colouring as depicted in Figure 9.
Now, in each colour class, all the local radius-r neighbourhoods are identical for all
r ≥ 0. Therefore, if a distributed algorithm rejects the graph illustrated in Figure 9a
then it must also reject the other two graphs. Hence, we can argue that coloured
networks are strictly weaker model of distributed computation than the model with
unique identifiers.

Moreover, in k-coloured networks, the size of the local input can be made independent
of the size of the communication graph assuming that the number of colours is
independent of the size of the graph. For example, in infinite but bounded-degree
graphs, it would not be possible to use algorithms where the running time depends
on unique identifiers. Also, the size of the local input would be unbounded.

In a k-coloured graph, the label of each node requires only dlog ke bits. Furthermore,
algorithms designed to use unique identifiers often work as-is in properly coloured
graphs. This can also improve the running time of the algorithm as the number of
colours is usually significantly smaller than the number of unique identifiers.

5 Distributed vertex colouring

In this section, we discuss how to find vertex colourings in a distributive manner.
Since a vertex colouring cannot be found in anonymous networks, we assume that
some vertex k-colouring is given as input, for example, in the form of unique
identifiers. Therefore, to be more precise, we look at colour reduction algorithms,
that is, algorithms that find a new vertex colouring that uses fewer colours than the
original colouring.

We will present three basic algorithmic ideas. First, we present a greedy colour
reduction algorithm which is often used as a subroutine in more elaborate colour
reduction algorithms. The second algorithm is the so-called Cole–Vishkin colour
reduction algorithm [CV86]. The algorithm can be iteratively applied in k-coloured



31

pseudoforests to find a colouring 3-colouring in O(log∗ k) rounds. While the Cole–
Vishkin algorithm works only in pseudoforests, it can be used as a subroutine to find a
(∆ + 1)-colouring in bounded-degree graphs in O(∆2 + log∗ k) rounds [GPS88, PR01].

Finally in Section 5.4, we briefly overview some recent positive results for distributed
graph colouring which have faster running times with regard to ∆.

5.1 The greedy approach

The greedy algorithm is listed as Algorithm 2. The greedy algorithm sequentially
considers each colour class and colours nodes with the smallest unused colour in their
neighbourhood. The algorithm can be used in both graphs with unique identifiers
and in k-coloured graphs. In addition, the algorithm can also be applied in infinite
bounded-degree graphs with a k-colouring as the running time depends only on the
value of the highest colour. Figure 10 illustrates the algorithm on a simple graph.

Algorithm 2 Greedy (∆ + 1)-colouring from k-colouring
1: In sequence, for each colour c from k − 1 to ∆ + 1 do
2: Send colour ϕ(v) to each neighbour.
3: Receive the colour of each neighbour; A = {ϕ(u) : u ∈ B(v, 1)}.
4: If ϕ(v) = c then ϕ(v)← min{[k] \ A}.

To see that the greedy algorithm properly colours the graph, we can look at each
colour class in the graph. As each colour class c ∈ [k] forms an independent set Ic,
every node v ∈ Ic can in parallel choose a new colour in a way that does not conflict
with the colour of its neighbours. Once all colour classes have chosen a new colour,
the graph has been properly coloured. If the maximum degree ∆ of the graph is
known, k −∆− 1 communication rounds suffice. Otherwise, the algorithm can be
run for k rounds. In each case, the asymptotic running time is Θ(k).

A similar greedy technique can be applied to other problems as well. Examples of
these are various maximal or minimal subsets of nodes or edges, such as maximal
independent sets, maximal matchings, minimal dominating sets, and minimal vertex
covers.



32

(a) (b) (c) (d)

0 0 0

0001 1

1

1 1

1

2 2 2 2
2

3 3 3 3
4 4 4

5 56

6

Figure 10: The greedy algorithm running three rounds with k = 7 and ∆ = 4.
(a) The independent set I6 consisting of nodes with colour 6 activates and every node
v ∈ I6 chooses a new colour. (b) Nodes in the set I5 choose a new colour. (c) Nodes
in the set I4 choose a new colour. (d) The resulting (∆ + 1)-colouring.

5.2 Cole–Vishkin techniques

While the greedy algorithm works, it is inefficient in large graphs with unique
identifiers. In this section, we will introduce a technique for 3-colouring directed
cycles originating to Cole and Vishkin [CV86]. This technique was soon extended
by Goldberg et al. to (∆ + 1)-colour bounded-degree graphs and to 3-colour rooted
trees [GP87, GPS88]. Although the algorithms were developed for parallel processors,
they easily translate into the distributed model. We will first describe the basic
Cole–Vishkin technique in pseudotrees.

The Cole–Vishkin technique is based on an iterative colour reduction algorithm. The
same technique can be used to colour directed cycles, directed rooted trees, and in
general, directed pseudoforests. During each communication round, the colouring
is reduced from k to O(log k) colours by manipulating the bit representations of
the colours. Algorithm 3 exploits both the orientation of the edges and the binary
encoding of the colours.

In Algorithm 3, every node sends its colour to all its successors. Since the graph is
properly coloured, the colour of the predecessor must be different. If the node v has
no predecessors, it can simulate a predecessor coloured with the smallest colour in
the set {0, 1} \ {ϕ(v)}.

After receiving the colour of its predecessor, each node v compares its own colour
ϕ(v) to the colour of its predecessor u. As the colours are natural numbers, each
colour can be treated as a bit string of length dlog ke. We denote such strings as
(b0, b1, . . . , bdlog ke−1), where b0 is the least-significant bit. Now, each node v finds the
smallest index i where the bit bi differs in ϕ(v) and ϕ(u). Then node v chooses the
binary encoding of the tuple (i, bi) as its new colour.



33

Algorithm 3 O(log k)-colouring in directed pseudoforests.
1: Send the colour ϕ(v) to all neighbours.
2: Receive the colour ϕ(u) from predecessor u.
3: Compare the binary encodings of ϕ(v) and ϕ(u). Let i be the index of the

least-significant bit that differs and bi be the ith bit of c(v).
4: Set (i, bi) as the new colour of v.

Lemma 5.1. In one communication round, a k-coloured directed pseudoforest can
be coloured with 2 · dlog ke colours.

Proof. To see that Algorithm 3 computes a proper colouring in a directed pseudoforest,
consider the node v and its predecessor u. In the comparison stage, if u chooses the
same index i as v then their respective bit values must differ as both u and v have
different colours. Otherwise, both nodes choose different indices and thus different
colours.

The algorithm reduces a k-colouring into an O(log k)-colouring in a single round.
When comparing two colours, there are dlog ke choices for the differing index i. In
addition, the differing bit bi may have two distinct values. Therefore, the largest
colour any node may choose is 2 · dlog ke − 1.

Observe that if k ≤ 6 the above method cannot be used to reduce the number of
colours. For example, consider the case that k = 6, node u is the predecessor of
node v, ϕ(v) = 5 = 1012 and ϕ(u) = 1 = 0012. Since the differing index is 2 = 102

and the differing bit of ϕ(v) has value 1, node v chooses 1012 = 5 as its new colour.
Therefore, while all pseudotrees are 3-colourable, a different method is needed to
reduce the number of colours further if 3 < k ≤ 6.

Nevertheless, the Cole–Vishkin method can be iteratively applied to reduce any
k-colouring in a directed pseudotree into a 6-colouring in log∗ k communication
rounds.

Lemma 5.2. A k-coloured directed pseudoforest can be 6-coloured in time log∗ k.

Proof. In one iteration, the Cole–Vishkin algorithm reduces the number of used
colours from k to at most f(k) = 2dlog ke colours. Let 6 ≤ k ∈ N and ` = log∗ k. The
assumption implies that ` ≥ 3. If ` = 3 then the value of k is at most k ≤ 222 = 16.
A 16-coloured pseudotree can be 6-coloured in two rounds as f(f(16)) = f(8) = 6,
thus proving the claim for the case ` = 3.



34

Assume that ` ≥ 4 and let i ≤ `− 3. We will prove by induction an upper bound for
the number of colours used after i iterations of the Cole–Vishkin algorithm. The
claim is

f (i)(k) < 4 log(i) k.

The base case i = 1 is trivial as by definition f(k) = 2dlog ke < 4 log k. Assume the
induction hypothesis f (i)(k) < 4 log(i) k holds. For the induction step, we observe
that

f (i+1)(k) = f(f (i)(k))

< f(4 log(i) k)

= 2dlog(4 log(i) k)e

≤ 2(1 + log 4 + log(i+1) k)

= 6 + 2 log(i+1) k.

Since i ≤ `− 3 we know that log(i+1) k ≥ log(`−2) k ≥ 4. Therefore,

6 < 2 · 4 ≤ 2 log(i+1) k

holds and we can finish the induction step with 6 + 2 log(i+1) k < 4 log(i+1) k.

After `− 3 iterations the number of colours is at most

f (`−3)(k) < 4 log(`−3) k ≤ 4 · 16 = 64.

The remaining three rounds suffice to drop the number of colours to

f (3)(64) = f (2)(12) = f(8) = 6.

Iterating the basic Cole–Vishkin method log∗ k times yields a 6-colouring in any
k-coloured directed pseudotree. To drop the number of colours to three, we utilize a
colour shifting algorithm and a variant of the greedy colour reduction algorithm.

The shifting algorithm given in Algorithm 4 shifts the colours from the root towards
the leaves. This ensures that for any node v the neighbours of v use at most two
different colours. That is, G[v, 1] uses at most three colours. As before, if node v has
no predecessor, it can simulate one by choosing the smallest colour that is different
from ϕ(v).

After one iteration of the Algorithm 4, the children of every node v have the same
colour. The new colouring is also proper since before shifting, the parent p(v) of



35

Algorithm 4 Colour shifting
1: Send ϕ(v) to all children.
2: Receive a colour from the parent and store it into p(v).
3: Store the old colour: ϕ′(v)← ϕ(v).
4: Update the current colour by setting ϕ(v)← p(v).

Algorithm 5 Reduce colours by one
1: Send ϕ(v) to all children.
2: Receive a colour from the parent and store it into p(v).
3: If ϕ(v) = k − 1, choose a new colour from the set {0, 1, 2} \ {ϕ′(v), p(v)}.

node v had a different colour for all v. Thus after shifting, the children of v take the
old colour of v while v takes the colour of its parent. After shifting, Algorithm 5 can
be applied to reduce the colours by one.

Now we have all the pieces for 3-colouring pseudotrees. First, reduce the number of
colours from k to 6 using Algorithm 3. Then alternate Algorithm 4 and Algorithm 5
for three iterations. Each iteration reduces the number of colours by one. Thus, we
have the following result.

Theorem 5.3. Every k-coloured directed pseudotree can be 3-coloured in log∗ k + 6
communication rounds using a deterministic distributed algorithm.

For directed cycles the shifting step is not necessary as this produces only an
isomorphic coloured cycle where all the colours have been shifted by one step. By
omitting the shifting step, we can reduce the 6-colouring into a 3-colouring in three
rounds: node v gathers the colours of its predecessor u and successor w and runs
Algorithm 5 with p(v) = ϕ(u) and ϕ′(v) = ϕ(w). This results in a speed-up of factor
two during the final steps of the cycle colouring algorithm. It is possible to get a
similar speed-up in the iterative Cole–Vishkin phase when restricting to directed
cycles.

Theorem 5.4. A k-coloured directed cycle can be 3-coloured in
⌈

1
2 log∗ k

⌉
+ 3 rounds.

Proof. Let C = (V,E) be a directed k-coloured cycle and f(ϕ(u), ϕ(v)) be the value
computed by Algorithm 3 for an edge (u, v). First, each node v ∈ V sends its colour
ϕ(v) to both its predecessor u and successor w. Next, node v computes its new



36

(a) (c)

ϕ1(v)

(d)

ϕ2(v)

ϕ1(w)

(b)

ϕ(u)

ϕ(v)

ϕ(w)w

v

u

Figure 11: Simulating two rounds of the colour reduction step in cycles. (a) A segment
of a cycle C. The node v running the algorithm is highlighted. (b) Node v collects
the colours in its radius-1 neighbourhood. (c) Node v computes a new colour ϕ1(v)
by simulating Algorithm 3 with u as predecessor. The node v also computes the new
colour ϕ1(w) of node w. (d) The orientation is reversed and node v simulates the
Algorithm 3 with w as predecessor and outputs the colour ϕ2(v).

colour ϕ1(v) = f(ϕ(u), ϕ(v)) and the colour ϕ1(w) = f(ϕ(v), ϕ(w)) of its successor
w. By Lemma 5.1 ϕ1 is a proper O(log k)-colouring.

Now, the node v knows its own colour and the new colour of its successor w. To
further reduce the colour without resorting to any additional communication, node v
can simulate the Cole–Vishkin colour reduction as if w was the predecessor of v as
illustrated in Figure 11. Essentially, the orientation of the edges is reversed. This
is possible since the graph is a cycle: each node has exactly the same number of
incoming and outgoing edges. Thus, node v can again simulate the Cole–Vishkin
colour reduction step and compute a new colour

ϕ2(v) = f(ϕ1(w), ϕ1(v)).

Therefore, in a single communication round, it is possible to simulate the Cole–
Vishkin colour reduction step for two iterations in directed cycles. By Lemma 5.2 it
follows that 6-colouring a directed cycles requires at most

⌈
1
2 log∗ k

⌉
communication

rounds. The 6-colouring can be reduced into a 3-colouring greedily in 3 rounds.

Both results for directed pseudotrees and directed cycles are optimal up to additive
terms. That is, 3-colouring directed pseudotrees requires at least log∗ k+ c communi-
cation rounds while 3-colouring directed cycles requires 1

2 log∗ k + c′ communication



37

rounds for some (possibly negative) constants c and c′. These lower bound results
are discussed in Section 6.

5.3 Colouring bounded-degree graphs

So far we have only considered a very restricted set of graph families as the Cole–
Vishkin style algorithms described work only in directed pseudoforests. However,
many other distributed graph problems can be solved by first partitioning a more
complex graph into pseudoforests [GPS88, PR01, ÅS10]. As an example, we consider
the problem of finding a (∆ + 1)-colouring in bounded-degree graphs.

The following distributed (∆ + 1)-colouring algorithm for bounded-degree graphs
follows the presentation given by Panconesi and Rizzi [PR01] although Goldberg et al.
also utilized a similar strategy [GPS88]. We begin by showing how to distributively
decompose the graph into disjoint trees.

Definition 5.5. Let G = (V,E) be a undirected graph. A forest decomposition of
the graph G is a collection F = {F1, F2, . . . , F∆} of pairwise disjoint edge sets such
that for all i ∈ {1, 2, . . . ,∆}, the subgraph Gi = (V, Fi) is a forest and

∆⋃
i=1

Fi = E.

An oriented forest decomposition is a forest decomposition F where all the edges
have been oriented such that for each i ∈ {1, 2, . . . ,∆}, the graph Gi = (V, Fi) is a
forest of directed rooted trees.

To (∆ + 1)-colour a k-coloured graph G, the general idea is to first construct an
oriented forest decomposition F = {F1, F2, . . . , F∆} of the graph G. After this, each
forest Gi = (V, Fi) is 3-coloured in parallel. Finally, all the forest colourings are
iteratively combined into a single colouring of the graph G such that the total number
of used colours is at most (∆ + 1).

The procedure in Algorithm 6 constructs an oriented forest decomposition in the
port-numbering model given a k-coloured graph G: every edge is oriented according
to the vertex colouring and for all i ∈ {1, 2, . . . ,∆} all incoming edges from port i are
added to the set Fi. Figure 12 illustrates the construction of the forest decomposition.

Proposition 5.6. Given a k-coloured graph G = (V,E), Algorithm 6 computes an
oriented forest decomposition F = {F1, F2, . . . , F∆} of graph G in one communication
round.



38

Algorithm 6 Oriented forest decomposition
1: Node v ∈ V sends its colour to each of its neighbours along with the port number

associated to the edge.
2: Orient each edge {u, v} ∈ E from the node with a smaller colour to the node

with the larger colour.
3: Node v ∈ V adds each incoming edge e = (u, v) with the port number i into the

set Fi. Similarly, outgoing edges are ordered according to port number assigned
by the neighbouring node u.

Proof. First, since the graph is properly k-coloured and the set of colours have a
natural total ordering, the orientation is well-defined for each edge. To see that all
the edge sets in F are pairwise disjoint, suppose the opposite holds: some oriented
edge (u, v) has been assigned to two sets Fi and Fj where i 6= j. Now, the port
number p of edge (u, v) at node v would have to satisfy p = i and p = j which is a
contradiction. Moreover, each node has at most one predecessor in the subgraph Gi.

Observe that no subgraph Gi contains a cycle as each edge in Fi is oriented towards
a node with a higher colour value. Finally, the number of communication rounds
required by the algorithm is clearly one, as all communication is performed during
the first step.

The (∆ + 1)-colouring procedure is given in Algorithm 7. Once an oriented forest
decomposition has been constructed, each node simulates the 3-colouring algorithm
for rooted trees in each Gi = (V, Fi) in parallel. This takes at most log∗ k + 6
communication rounds. The (∆ + 1)-colouring for graph G will be constructed
iteratively by merging all the 3-colourings of each forest in F .

Algorithm 7 Computing a (∆ + 1)-colouring
1: Construct an oriented forest decomposition F = {F1, . . . , F∆}.
2: In parallel, compute a 3-colouring ϕi in Gi = (V, Fi) for each i ∈ {1, . . . ,∆}.
3: Let A1 = F1 and π1 = ϕ1.
4: For each i ∈ {2, . . . ,∆}:

(a) Merge the colourings πi−1 and ϕi into a 3(∆ + 1)-colouring π∗i .

(b) Greedily reduce the 3(∆ + 1)-colouring into a (∆ + 1)-colouring πi.

5: Output π∆ as the proper (∆ + 1)-colouring of G.



39

3

1

3

21

3

2

3

2 4

1

2

12

1

1 1
2

1
2

(a) (b) (c)

1

1

2

1

2

1

1

2

2

3

1

1

1

1

1

4

3

5 6

14

3

5 6

1

5

2

5

4

3

5 6

1

5

666

2 2

Figure 12: Computing an oriented forest decomposition in a coloured graph G =
(V,E). (a) The graph G with a port-numbering. (b) The graph G after orienting and
assigning the edges into disjoint sets. The port-numbers next to the arrow heads
determine the set into which each edge is added. (c) The subgraph G1. Edges in F1

are drawn black and edges in E \ F1 are gray.

Let ϕ1, ϕ2, . . . , ϕ∆ be the 3-colourings for each subgraph Gi = (V, Fi) where i ∈
{1, 2, . . . ,∆}. Define A1 = F1, Ai+1 = Ai ∪ Fi+1 and π1 = ϕ1. Algorithm 7 satisfies
the following invariant for each i ∈ {2, 3, . . . ,∆}: the colouring πi of the subgraph
Hi = (V,Ai) will use at most ∆ + 1 colours. Consider the node v when i > 1.
The node v will set the pair (πi−1(v), ϕi(v)) as its new colour π∗i . The pair can be
presented as an integer

π∗i (v) = 3 · πi−1(v) + ϕi(v).

Using induction we can see that the colouring π∗i is a proper vertex colouring for
Hi when 1 ≤ i ≤ ∆. The claim holds for the base case π∗1 = ϕ1 since ϕ1 is a
proper colouring of H1 = (V, F1). Assume that the colouring π∗i properly colours
Hi for some i such that 1 ≤ i ≤ ∆− 1. For the induction step, we show that π∗i+1

properly colours Hi+1. Let {u, v} ∈ Ai+1 = Ai ∪ Fi+1. If {u, v} ∈ Ai, then by the
induction hypothesis it holds that π∗i (u) 6= π∗i (v). Otherwise, if {u, v} ∈ Fi+1, then
ϕi+1(u) 6= ϕi+1(v). Therefore, at least one component in (πi(v), ϕi+1(v)) will differ
and π∗i+1 is a proper colouring of graph Hi+1 = (V,Ai+1) .

We also maintain the invariant that the colouring πi−1 uses at most ∆ + 1 colours.
Since ϕi is a 3-colouring, the new colouring π∗i satisfies π∗i (v) < 3(∆ + 1) for all
v ∈ V . To satisfy the invariant for the next step, each node v iteratively runs the



40

greedy colour reduction algorithm given in Section 5.1 for 2(∆ + 1) rounds until a
(∆ + 1)-colouring πi has been computed in Hi = (V,Ai).

Theorem 5.7. Algorithm 7 finds a (∆ + 1)-colouring in O(∆2 + log∗ k) rounds in
any k-coloured bounded-degree graph with maximum degree ∆.

Proof. We already showed that the algorithm produces a proper (∆ + 1)-colouring.
To establish the running time, observe that the first two steps of the algorithm require
O(log∗ k) communication rounds. Step 4 is iterated for ∆ − 1 times where each
iteration requires at most 2∆ + 2 communication rounds. In total, step 4 requires at
most 2(∆2 − 1) communication rounds.

One might ask why settle for a (∆ + 1)-colouring as a (∆ + 1)-colouring can be
arbitrarily bad compared to an optimal colouring. For example, the maximum degree
of a star graph (a tree of height 2) may be arbitrarily large. But all trees are bipartite
and hence 2-colourable.

For one, finding an optimal colouring or even approximating it is a notoriously
difficult task even in the centralized setting as discussed in Section 3.5. Furthermore,
a classic result due to Erdős states that for every integer k there exists a graph such
that the optimal colouring uses k colours and the shortest cycle in the graph has
more than k nodes [Erd59]. That is, locally the graph resembles a tree. In a sense
this implies that the number of colours used by an optimal colouring can be a strictly
global phenomenon. The existence proof of these graphs was first given by Erdős
using the probabilistic method. However, a constructive proof was later given by
Lovász [Lov68].

5.4 The current state of deterministic distributed colouring

We conclude this section with a brief overview on other work regarding deterministic
distributed colouring algorithms. Essentially all algorithms either produce a (∆ + 1)-
colouring or an O(∆)-colouring. For this section, we assume the model with unique
identifiers and all the running times are given as a function of the maximum degree
∆ and the number of nodes n.

Linial showed that it is iteratively possible to find a O(∆2)-colouring in O(log∗ n)
communication rounds for bounded-degree graphs [Lin87, Lin92]. Unfortunately, no
explicit algorithm was given as the proof given essentially relies on a non-constructive
existence proof of certain set systems. However, it is pointed out that a slightly weaker



41

result (with regards to constant factors) can be constructively proven. This algorithm
is often used as a subroutine in other distributed graph colouring algorithms.

At the same time, Goldberg, Plotkin and Shannon [GP87, GPS88] studied parallel
(∆ + 1)-colouring algorithms. In addition to adapting the original Cole–Vishkin
3-colouring algorithm for directed rooted trees and pseudoforests, Goldberg and
Plotkin also gave a (∆ + 1)-colouring algorithm for bounded-degree graphs in the
PRAM model [GP87]. The algorithm uses the basic Cole–Vishkin bit manipulation
technique to first colour the graph with 2O(∆ log ∆) colours. A (∆ + 1)-colouring is
then attained by greedily computing maximal independents sets in sequence and
colouring each such set with a different colour.

Goldberg, Plotkin and Shannon [GPS88] soon gave a significantly faster (∆ + 1)-
colouring algorithm that utilises the 3-colouring algorithm for pseuodoforests. The
algorithm first partitions the graph into disjoint pseudoforests each of which are
3-coloured in parallel. These colourings are then used to recolour the graph with
(∆ + 1)-colours. In the distributed model, this algorithm requires O(∆2 + log∗ n)
communication rounds.

Later, Panconesi and Rizzi [PR01] used similar ideas to derive distributed algorithms
for maximal matchings, edge colourings, maximal independent sets, and vertex
colourings in bounded-degree graphs. These algorithms compute maximal matchings
and (2∆− 1)-edge colourings in O(∆ + log∗ n) communication rounds, while (∆ + 1)-
vertex colourings and maximal independent sets are computed in O(∆2 + log∗ n)
communication rounds.

While the (∆+1)-colouring algorithms of Goldberg et al. [GPS88] and Panconesi and
Rizzi [PR01] are rather simple and relatively fast in graphs of low maximum degree,
the algorithms are considerably slower in graphs with high maximum degrees. For a
faster algorithm for small graphs with high maximum degrees, a standard algorithm
can be used to find a (∆ + 1)-colouring in O(∆ log n) communication rounds [Pel00,
Ch. 7.4].

In 2006, Kuhn and Wattenhofer [KW06] improved the upper bounds by show-
ing that an iterative colour reduction algorithm can compute a (∆ + 1)-colouring
in O(∆ log ∆ + log∗ n) communication rounds. Intriguingly, Szegedy and Vish-
wanathan [SV93] had earlier conjectured that iterative colour reduction algorithms
that find a (∆ + 1)-colouring require Ω(∆ log ∆) communication rounds. Thus, it
was not surprising that the consequent improvements on the ∆-term required rather
different techniques.



42

During 2009, a new line of positive results emerged by Kuhn [Kuh09] and Barenboim
and Elkin [BE09]. The two groups independently published (∆ + 1)-colouring
algorithms with a running time of O(∆ + log∗ n). Unlike the previous iterative
colour reduction methods, the new algorithms relied on a different approach. Both
algorithms first find certain improper vertex colourings.

Instead of maintaining a proper colouring as an invariant like the previous algorithms,
the new algorithms compute a variant of weak colouring known as d-defective
colouring: each colour class is guaranteed to induce a subgraph with bounded
maximum degree of d. Finally, the defective colourings are recursively mended into
a single proper (∆ + 1)-colouring.

Recently, Barenboim and Elkin [BE10a] generalized the notion of defective colourings
and developed a family of algorithms that can find small colourings in polylogarithmic
time, that is, time polynomial in the logarithm of n and ∆. In particular, O(∆1+η)-
colourings can be computed in time O(log ∆ log n) for any positive constant η > 0
and a O(∆)-colouring can be computed in O(∆ε log n) rounds for any positive
constant ε > 0.

It seems that defective and weak colourings are sufficient to break symmetry in
many cases instead of proper vertex colourings. As the current algorithms for fast
vertex colouring use improper colourings, a promising area of investigation is to study
if algorithms for improper colourings can be applied to attain better algorithms
for other distributed graph problems as well. As a very recent example, defective
colourings were applied in new upper bounds for the distributed edge colouring
problem [BE10b].

6 Lower bounds for distributed colouring

The first lower bound results regarding the complexity of distributed vertex colouring
date back to the 1980s. Linial [Lin87, Lin92] proved that in a directed n-cycle with
unique identifiers, any deterministic colouring algorithm requires at least 1

2(log∗ n−3)
communication rounds. Later, Naor [Nao91] showed that randomisation does not
help: any probabilistic 3-colouring algorithm running fewer than 1

2(log∗ n− 4) rounds
has a high probability of producing an improper colouring. Of course, this directly
implies a lower bound for (∆ + 1)-colouring as cycles are bounded-degree graphs
with ∆ = 2.



43

Fraigniaud et al. have studied the information sensitivity of graph colouring in
directed cycles and rooted trees [FGIP07], that is, how many bits of additional
advice must be given to the nodes such that the time required to colour a graph
with a constant number of colours reduces. It turns out that colouring cycles and
trees is information insensitive in the sense that colouring a cycle with a constant
number of colours in constant time essentially requires advice consisting of the whole
solution. Similarly, colouring rooted directed trees and d-regular trees is information
insensitive.

In this section, we prove that there are no constant-time algorithms for colour-
ing directed cycles with a constant number of colours. Furthermore, we show an
asymptotic lower bound of Ω(log∗ n) for colouring cycles with a constant number of
colours. Finally, we show that colouring directed rooted trees requires twice as many
communication rounds as colouring directed cycles.

6.1 Ramsey-theoretic lower bound arguments

Ramsey theory has shown to be a useful tool in the study of distributed algorithms. In
particular, many results regarding local algorithms [Lin92, NS95, CHW08, ÅFP+09]
have been or can be proved using Ramsey’s theorem. Ramsey’s theorem dates back to
the early 1930s and was originally used in the context of mathematical logic [Ram30].
Essentially, Ramsey’s theorem states that certain substructures are unavoidable in
large enough structures. For a modern proof of the theorem, see for example the
textbook by Graham et al. [GRS80].

Before showing the lower bound results, we will introduce Ramsey’s theorem and
the notation used in this section. Recall that an r-colouring of a set S is a mapping
c : S → [r]. For m, ` ∈ N such that 2 ≤ ` ≤ m and a colouring c :

(
S
`

)
→ [r], we say

that an m-subset A ∈
(
S
m

)
is monochromatic (under c) if for all B,B′ ∈

(
A
`

)
it holds

that c(B) = c(B′), that is, c colours all the `-subsets of the m-subset A ⊆ S with
the same colour.

Theorem 6.1 (Ramsey’s theorem). For all positive integers 2 ≤ ` ≤ m and 2 ≤ r,
there exists a positive integer N such that for any colouring c :

(
[N ]
`

)
→ [r] there

exists a monochromatic m-subset A ⊂ [N ].

For any given 2 ≤ ` ≤ m, the value R(`,m) denotes the smallest N such that any
2-colouring of `-subsets of [N ] produces a monochromatic m-subset of [N ].



44

We prove the lower bounds for the following model of distributed computation: each
node is given a unique identifiers from the set {0, 1, . . . , n− 1} and the edges have a
clockwise orientation, that is, the input graph is a directed cycle.

We begin with a proof that a maximal independent set cannot be computed in a
constant number of communication rounds in a directed cycle with unique identifiers.
This implies that there does not exist a deterministic constant-time algorithm that
finds a proper vertex colouring using a constant-number of colours.

Lemma 6.2. There is no constant-time deterministic distributed algorithm for
computing a maximal independent set in a directed n-cycle with unique identifiers.

Proof. Assume that A is an algorithm that computes a maximal independent set in
T ∈ N communication rounds. We will show that there exists an input such that the
output of A is not a maximal independent set.

Consider radius-T neighbourhoods with increasing identifiers i0 < i1 < · · · < i2T .
Due to the order of the identifiers, such a cycle neighbourhood can be regarded
as a set {i0, i1, . . . , i2T}. Furthermore, in such neighbourhoods, the output of node
iT when running the algorithm A corresponds to a function fA :

(
[n]

2T+1

)
→ {0, 1}.

Node iT joins the independent set if fA({i0, i1, . . . , i2T}) = 1 and otherwise not. The
function fA is in fact a 2-colouring of all (2T + 1)-subsets of the identifier set [n].

We can now apply Theorem 6.1 by setting ` = 2T +1, m = `+2 and c = 2. As stated
in the theorem, for a large enough n (the size of the identifier space), any 2-colouring
of the `-sets must produce a monochromatic m-subset A = {i0, i1, . . . , i2T+2} ⊂ [n].

Let n ≥ R(m, `) and fix the monochromatic `-subset A. To yield a contradiction,
we will construct an n-cycle with a segment consisting of the identifiers in A in
increasing order as illustrated in Figure 13. The remaining identifiers [n] \ A can be
assigned arbitrarily for the remaining nodes.

In the segment constructed from A, the algorithm A must have the same output in
the three nodes with identifiers iT , iT+1, and iT+2. If the output is 1, the algorithm
does not output an independent set. On the other hand, if the output is 0, the
independent set is not maximal: the node with identifier iT+1 could then be added
to the independent set. Therefore, the algorithm A does not produce a maximal
independent set.

This technique can be extended to argue that it is not possible find a constant
factor approximation of a maximal independent set in a directed cycle in constant



45

(a)

(c)

(b)

i2i0 i1 i2T i2T+1 i2T+2iT+2iT iT+1

Figure 13: The Ramsey-theoretic lower bound construction using the monochromatic
set A = {i0, i1, . . . , i2T+2} as unique identifiers for a segment of length 2T+3. (a) The
local T -neighbourhood of node iT+1. (b) The local T -neighbourhood of node iT .
(c) The local T -neighbourhood of node iT+2.

time [CHW08]. As a corollary of Lemma 6.2, we also obtain a lower bound for
colouring cycles with a constant number of colours.

Corollary 6.3. There is no constant-time deterministic distributed algorithm for
O(1)-colouring a directed n-cycle with unique identifiers.

Proof. Let k ∈ N. Assume that a k-colouring algorithm A exists with a constant
running time T ∈ N. Now the algorithm A can be used to compute a maximal
independent set in T + k ∈ O(1) communication rounds: first colour the cycle with
k colours, and then in sequence, greedily try to add nodes in each colour class to the
independent set. This is a contradiction with Lemma 6.2.

We will now give a Ramsey-theoretic proof of Linial’s Ω(log∗ n) lower bound. For
this task, we apply an upper bound for the Ramsey numbers R(`,m). Using this
upper bound, we can analyse how large must the running time T of an algorithm be
in regard to the number of nodes. We express the lower bound using the following
exponent tower function.

Definition 6.4. The tower function twr(i, x) for i ∈ N+ is defined inductively by

twr(1, x) = x,

twr(i+ 1, x) = 2twr(i,x).

Observe the relation between tower function and the iterated logarithm. In particular,
it holds that log(i−1) twr(i, x) = x.



46

Lemma 6.5. For 2 ≤ ` ≤ m and c` = 2(`− 1)! the Ramsey numbers satisfy

R(`,m) ≤ twr(`, c`m).

Proof (Sketch). The Ramsey numbers for the special case ` = 2 are known as graph
Ramsey numbers [GRS80, Ch. 1]. This special case is upper bounded by

R(2,m) ≤
(

2(m− 1)
m− 1

)
≤ 22m−1 − 1.

Furthermore, a proof of Ramsey’s theorem [GRS80, Ch. 4.7] for fixed ` yields

log2R(`,m) ≤ R(`− 1,m)`−1.

With the above inequality, we show by induction that the tower bound

R(`,m) ≤ twr(`, c`m)

holds where 2 ≤ ` ≤ m and c` = 2(` − 1)!. The base case ` = 2 is covered by the
upper bound for graph Ramsey numbers:

R(2,m) ≤ 22m−1 − 1 < 22m = twr(2, c2m).

Using the induction hypothesis we get

R(`+ 1,m) ≤ 2R(`,m)`

≤ 2(twr(`,c`m)`)

≤ 2twr(`,`c`m)

= twr(`+ 1, c`+1m).

While the following Ramsey-theoretic argument has been known about as long as
Linial’s lower bound [Lin87, GP87] (even Linial referred to the result in his original
paper), the proof itself does not seem to appear explicitly in the literature.

Theorem 6.6. There is no deterministic algorithm for computing a maximal inde-
pendent set in a directed n-cycle with unique identifiers in time o(log∗ n).

Proof. Due to Theorem 5.4 we know that for large enough n, a maximal independent
set can be greedily computed in time at most log∗ n by first 3-colouring the cycle
and then greedily computing a maximal set. This takes time 1

2 log∗ n+ 5.



47

Let A be an algorithm that computes a maximal set in any directed n-cycle in T (n)
communication rounds such that T (n) ≤ log∗ n. Set ` = 2T (n) + 1 and m = `+ 2.
Due to Lemma 6.2 we know that if n ≥ R(`,m) holds, then the algorithm must fail.
Therefore, we will consider the case n < R(`,m) and apply the upper bound for
R(`,m) given in Lemma 6.5.

Now n < R(`,m) < twr(`, c`m). Using the definition of the iterative logarithm and
the tower function, it follows that

log(`−1) n < c`m

= 2(`− 1)!m

< (`+ 2)!

holds. Therefore, for large enough n,

log∗ n < `− 1 + log∗ ((`+ 2)!)

≤ `− 1 + log∗
(

log
(
(`+ 2)!

))
+ 1

= `+ log∗
(
`+2∑
i=1

log i
)

≤ `+ log∗ (` log(`+ 2) + 1)

≤ `+ 1 + log∗ (log(`) + log(log(`))) .

Since we set ` = 2T (n) + 1 we have

log∗ n < 2T (n) + 2 + log∗
(
log(`) + log(2)(`)

)
.

For large enough n it holds that

T (n) > 1
2

(
log∗ n− 2− log∗

(
log T (n) + log(2) T (n) + 2

))
and moreover

T (n) ≥ log T (n) + log(2) T (n) + 2.

Therefore, since we know that T (n) ≤ log∗ n we can derive the following inequalities
when n is large enough

T (n) > 1
2

(
log∗ n− 2− log∗

(
log T (n) + log(2) T (n) + 2

))
≥ 1

2

(
log∗ n− 2− log∗(T (n))

)
≥ 1

2 log∗ n− 1− 1
2 log∗(log∗ n)

≥ 1
2 log∗ n− log∗(log∗ n).



48

The above analysis yields almost the same result as Linial’s bound of 1
2(log∗ n− 3).

However while the log-star additive term in the above analysis is small, it seems to
be difficult to achieve Linial’s exact bound using upper bounds for Ramsey numbers.
All the known bounds for general Ramsey numbers are tower bounds containing a
function of either ` or m at the topmost level. Because both parameters depend on
T (n), any similar analysis will yield an additive term depending on T (n).

6.2 Lower bound for tree colouring

In this section, we show that any deterministic distributed algorithm for colouring
rooted trees requires twice as much time as an algorithm for colouring directed cycles.
Together with the lower bound for colouring directed cycles we get a lower bound
for colouring directed rooted trees.

Lemma 6.7. Let c, k, T ∈ N+ such that c ≤ k. If there exists a deterministic
distributed algorithm for c-colouring a k-coloured directed cycle in T communication
rounds, then any k-coloured directed rooted tree can be c-coloured in 2T communication
rounds.

Proof. Let A be a c-colouring algorithm for k-coloured directed cycles with running
time T . The output of the algorithm A at any node v depends only on the radius-T
neighbourhood of node v. For directed cycles the T -neighbourhood is a directed
path of length 2T + 1.

Let G = (V,E) be a k-coloured directed rooted tree. We will now devise an algorithm
for c-colouring G that runs for 2T rounds. First, each node v the shifts the colours
downwards by running Algorithm 4 for T rounds and simultaneously storing all the
previous colours in memory. Now, for any node v ∈ V every branch connected to
v is equally-coloured up to depth T ; that is, every directed T -path from v towards
the leaves is isomorphic up to port-numbering. If some path is shorter than T ,
say of length t < T , then the corresponding leaf node u will use the previously
received colours c0, c1, . . . , cT−t−1 and simulate a path of length T − t coloured with
the corresponding colours.

After the first step, each node v knows the colours of its children up to depth T . It
remains for node v to collect the colours of its T predecessors. If v has less than
T predecessors, for example only t < T predecessors, the root node r simulates a
properly k-coloured t-path towards r.



49

v′

(a) (b) (c)

v v

Figure 14: Colouring directed trees with a T -time cycle colouring algorithm.
(a) A coloured rooted tree and a node v running the algorithm. (b) The tree
with colours shifted downwards T times. (c) The virtual cycle constructed by v. The
node v simulates the cycle colouring algorithm on the virtual node v′ and outputs
the new colour of v′.

After 2T rounds each node v knows the colours d0, d1, . . . , dT−1 of its T predecessors,
its own colour dT , and the colours dT+1, dT+2, . . . , d2T of its successors up to depth
T . Node v can then construct a segment of a directed cycle x = (x0, x1, . . . , x2T )
with colours d0, d1, . . . , d2T and port-numbers assigned according to the orientation.
Finally, node v simulates A with input x and outputs the colour of xT . Since A
outputs a c-colouring colour chosen by v is also at most c. Figure 14 illustrates the
simulation.

To see that node v outputs a different colour than any of its neighbours, suppose the
opposite: either the the end-points of (u, v) or (v, w) have been coloured with the
same colours. Notice that v simulatesA on a path with colours d0, d1, . . . , d2T whereas
node u simulates A on a path with colours a, d0, d1, . . . , d2T−1 where a 6= d0. If after
simulating A both u and v have the same colour, then the algorithm A must fail in a
properly k-coloured directed cycle with a path consisting of colours a, d0, d1, . . . , d2T

which contradicts the correctness of A. The case (v, w) is analogous.

For proving the other direction we will use a family of k-coloured rooted trees.
Figure 15 illustrates the following construction for k = 4.

Definition 6.8. For all positive integers k ≥ 2, the tree Tk is the infinite directed
rooted k-coloured tree with the following properties: each node has k − 1 successors
and all nodes but the root have a predecessor p(v). Any node v with colour c ∈ [k]



50

Figure 15: A partially drawn k-regular tree Tk where k = 4. Colour 0 is white, colour
1 black, colour 2 green and colour 3 blue.

has k − 1 children each with a distinct colour from the set [k] \ {c} such that the
tree is properly k-coloured. The port numbering for node v is assigned such that
the children have the first k − 1 ports and the parent p(v) is given the port number
deg(v). The colour of the root is 0.

Proposition 6.9. Let k ≥ 2 and T be positive integers and A be a distributed
algorithm with running time T in the tree Tk. For any node v, the algorithm A only
needs to gather input from the T predecessors of v.

Proof. First, note that while Tk is infinite, the running time of A depends only on
T which is a fixed constant that may depend on k. Moreover, Tk contains all the
possible directed k-coloured paths.

Observe that any node v with colour ϕ(v) ∈ [k] knows the colours of its children
without resorting to any communication. This is possible due to the construction
of Tk. In fact, as the tree is infinite, v can recursively deduce the T -neighbourhood
consisting of its successors. Furthermore, after v learns the colour of its parent p(v),
then v can similarly deduce the whole subtree of p(v). Therefore, the node v can
construct its complete T -neighbourhood with only the information regarding its T
successors, that is, the directed path of length T + 1 ending in v.

Lemma 6.10. Let c, k, T ∈ N+ such that c ≤ k. If there exists a determinis-
tic distributed algorithm for c-colouring a k-coloured directed rooted trees in 2T
communication rounds, then any k-coloured directed cycle can be c-coloured in T

communication rounds.



51

Proof. Let C = (V,E) be a directed k-coloured graph and A be a 2T -time algorithm
for colouring trees. Colouring the cycle C proceeds as follows. First, every node
v ∈ V gathers its radius-T neighbourhood in T communication rounds; again the
neighbourhood is a directed path x = (x0, x1, . . . .x2T ). Node v = xT can then map
the path x into a equally-coloured path φ(x) in the tree Tk. Consider the node
u = φ(x2T ) in Tk. As noted in Proposition 6.9, the output of u depends only on
its predecessors and itself which are given in φ(x). Therefore, v can simulate A on
node u and output the new colour of u. See Figure 16 for illustration.

To see that the method produces a proper c-colouring, assume the opposite: let
(v, w) ∈ E be an edge with both end-points having the same colour. This implies that
also φ(v) = φ(w) which is a contradiction since A properly colours Tk. Finally, the
colouring uses at most c colours as by assumption A was a c-colouring algorithm.

Lemma 6.7 and Lemma 6.10 together imply the following theorem.

Theorem 6.11. Let c, k, T ∈ N+ such that c ≤ k. There is a T -time algorithm for
c-colouring k-coloured directed cycles if and only if k-coloured directed rooted trees
are c-colourable in time 2T .

The lower bound 1
2(log∗ n − 3) for 3-colouring directed cycles and Theorem 6.11

establish that the Cole–Vishkin style algorithms presented in Section 5.2 for 3-
colouring directed cycles and directed rooted trees are optimal up to additive constant
terms. Section 8 introduces improvements to these additive constant terms.

Therefore, while not strictly local, directed rooted trees can be coloured rather
efficiently in Θ(log∗ n) time. For non-oriented trees the case is quite different. Linial
showed that a d-regular tree of height r cannot be coloured with less than 1

2

√
d

colours in time 2
3r [Lin92]. A d-regular tree of height r has n = dr−1 nodes. For fixed

d ≥ 2 the running time is

2
3r = 2

3 logd dr >
2
3 logd dr−1 = 2

3 logd n ∈ Ω(log n).

Therefore, without an orientation from parents to children, 1
2

√
d-colouring d-regular

trees cannot be done in o(log n) rounds. That is, a colouring algorithm has to use
time proportional to the diameter of the tree.



52

C: T4:

(a)

(c)

(b)

(d)

φ(x2)

φ(x0)

φ(x1)

φ(x3)

v

φ(x4)

x3

x4

x1

x0

x2

u

φ(x2)

φ(x0)

φ(x1)

φ(x3)

v

φ(x4)

x3

x4

x1

x0

x2

u

Figure 16: Colouring a 4-coloured directed cycle C by simulating a 2T -time tree
colouring algorithm A where T = 2. (a) A node v in the input cycle and its radius-T
neighbourhood x = (x0, x1, x2, x3, x4). (b) The 4-regular tree T4 and the mapped
radius-T neighbourhood φ(x). (c) The new colouring mapped from the recoloured
T4. Node v chooses the colour of φ(x4) as its new colour in the cycle. (d) The tree
T4 after running the 2T -time colouring algorithm A for trees.



53

6.3 Neighbourhood graphs

We will now introduce the concept of neighbourhood graphs. Neighbourhood graphs
contain all possible T -neighbourhoods of all communication graphs in a given graph
family. In practice, the communication graph is from a restricted family of k-coloured
graphs. We will focus on neighbourhood graphs for k-coloured directed cycles in the
port-numbering model.

The colourability of neighbourhood graphs and the existence of distributed colouring
algorithms are closely related. Linial observed this and used neighbourhood graphs to
prove the Ω(log∗ n) lower bound result for distributed 3-colouring of directed cycles
with unique identifiers [Lin87, Lin92]. Similar constructions have since been used in
various other results related to distributed colouring [Nao91, KW06, FGIP07].

The neighbourhood graphs can be used to compute exact lower and upper bounds
for parametrized distributed colouring. The parameters we study are the number of
initial colours (or unique identifiers) denoted by k (or n), and the running time T
which is equal to the radius of the local neighbourhood.

First, let us present a construction due to Linial [Lin92]: the neighbourhood graph
for directed n-cycles with unique identifiers from the set {0, 1, . . . , n − 1}. The
construction can also be interpreted as the neighbourhood graph for directed cycles
with a radius-T colouring. Here n is the number of colours (or unique identifiers)
and T is the running time of the distributed algorithm.

Definition 6.12. Let T be a non-negative integer. The T -neighbourhood graph
for directed cycles with unique identifiers is denoted by Ln,T = (V,E). The set
V ⊂ [n]2T+1 of nodes consists of tuples (x0, x1, . . . , x2T ) where each xi is a distinct
integer from the set [n]. All edges in the graph are between nodes (x0, x1, . . . , x2T )
and (y, x0, x1, . . . , x2T−1) where y 6= x2T .

The construction for properly k-coloured neighbourhoods is slightly different.

Definition 6.13. Let k ≥ 3 and T be non-negative integers. The T -neighbourhood
graph for k-coloured directed cycles is the graph Nk,T = (V,E) with the following
properties:

(i) The set V ⊂ [k]2T+1 of nodes is the collection of all possible T -neighbourhoods
of directed k-coloured cycles. That is,

V = {(x0, x1, . . . , x2T ) : xi, xi+1 ∈ [k] and xi 6= xi+1 where 0 ≤ i < 2T}.



54

0 1 2

0 2 1

1 2 0

2 0 2

2 1 2

2 0 1

1 0 1

2 1 0

1 2 1 0 1 0

0 2 0

1 0 2

Figure 17: The neighbourhood graph N3,1.

(ii) There is an undirected edge between two nodes v = (v0, v1, . . . , v2T ) and
w = (w0, w1, . . . , w2T ) if w = (v1, v2, . . . , v2T , z) for some z ∈ [k] \ {v2T}.

The connection between the existence of distributed colouring algorithms and neigh-
bourhood graphs is established by the following theorem.

Theorem 6.14. Let c, k, and T be non-negative integers such that 3 ≤ c ≤ k. The
following claims are equivalent:

(i) There exists a deterministic distributed algorithm for c-colouring a directed
k-coloured cycle in T communication rounds.

(ii) The neighbourhood graph Nk,T is c-colourable.

Proof. Fix the integers c, k, and T .

(i) ⇒ (ii): Let A be a distributed c-colouring algorithm for k-coloured directed
cycles with a running time of T rounds. Let Nk,T = (V,E) be the neighbourhood
graph for the given parameters k and T . Let fA be the function corresponding to
the distributed algorithm A. The function fA maps the radius-T local view of a
node in a k-coloured cycle to a set [c] of colours. Recall from Definition 4.1 that in
directed cycles the local views are directed paths (x0, x1, . . . , x2T ). Thus, for each



55

x = (x0, x1, . . . , x2T ) ∈ V , set the colour of x to fA(x). By assumption, fA is a
proper colouring of Nk,T .

(ii) ⇒ (i): Let ϕ be a proper vertex c-colouring of Nk,T and (u, v, w) be a path in a
k-coloured directed cycle. Consider the following algorithm running on node v. First
v gathers its radius-T local view xv = (x0, x1, . . . , x2T ) where u = xT−1, v = xT , and
w = xT+1. Then the node v outputs the value ϕ(xv).

The algorithm produces a proper c-colouring as the local views xu and xw of nodes
u and w must be connected by an edge to xv in the graph Nk,T and ϕ was a proper
colouring of Nk,T .

In a similar fashion, it is easy to derive the following variant of Theorem 6.14.

Theorem 6.15. Let c, n, and T be non-negative integers such that 3 ≤ c ≤ n. There
exists a deterministic distributed algorithm for c-colouring an n-cycle with unique
identifiers from the set [n] in T communication rounds if and only if the chromatic
number of Ln,T is at most c.

However, as the properly k-coloured neighbourhood graphs are somewhat more
general, we will primarily concentrate on them. They will also turn out to be
useful in improving the Cole–Vishkin colour reduction algorithm. These results are
discussed in Section 8.

Our aim is to compute the chromatic numbers of neighbourhood graphs for various
values of k and T . Before this, we will first make some observations on the structure
of these graphs. These are useful in analysing the colourability of the graphs.

First, we already know an upper bound for the chromatic number due to the Cole–
Vishkin colour reduction techniques presented in Section 5.2. This means that the
chromatic number of Nk,T is at most f (2T )(k) where f(k) = 2 · dlog ke. However, we
will see that in many cases, the actual chromatic number is considerably lower.

Second, while the chromatic numbers of neighbourhood graphs grow as a function
of k and T , the maximum clique size still remains constant in all such graphs. In
Section 7, we will briefly discuss the implications of this fact. In essence, large cliques
cannot be used in the neighbourhood graphs to lower bound the chromatic number.

Proposition 6.16. For k ≥ 3 and T ≥ 1, the maximum clique size ω(Nk,T ) of the
neighbourhood graph Nk,T is 3 and there always exists a 3-clique in the graph.



56

Proof. Let k ≥ 3 and T ≥ 1 be positive integers and Nk,T = (V,E) the corresponding
neighbourhood graph. For convenience, let us define a relation R ⊂ [k]4T+2 such that

(x,y) ∈ R ⇐⇒ y = (x1, x2, . . . , x2T , z) where z ∈ [k] \ {x2T}.

The relation simply states that y can be constructed by “left-shifting” x and setting
y2T such that y2T 6= x2T . Observe that {x,y} ∈ E if and only if (x,y) ∈ R or
(y,x) ∈ R. Thus, as E is by definition constructed using the relation R, it suffices
to consider the directed graph G = (V,R). Observe that we do not leave out any
edges, only direct the edges in such a way that some edges become bidirectional.

To show that ω(Nk,T ) ≥ 3, we can construct a clique of size three in G as follows. Let
c0, c1, c2 ∈ [k] be pairwise distinct colours. Now, let v be a node that corresponds to
the (2T + 1)-length tuple consisting of the repeating pattern c0, c1, c2, c0, c1, c2, . . . ,
that is, vi = cj when i ≡ j (mod 3). The node u can be constructed by left-shifting
v and setting u2T as the next element in the repeating pattern such that (v,u) ∈ R.
Similarly, z can be constructed by left-shifting y, and z can be shifted to acquire
v. We have (v,u), (u,w), (w,v) ∈ R, that is, the nodes {u,v,w} form a 3-clique in
the neighbourhood graph.

To show that there are no 4-cliques in the graph, we first observe that the only
way to form a 3-clique in G is to find such a directed triangle in the relation R as
above. Suppose that for some x there are nodes y and z such that (x,y), (x, z) ∈ R
and these three nodes form a 3-clique in G. By definition, (x,y) ∈ R implies
that y = (x1, x2, . . . , x2T , a) and (x, z) ∈ R implies that z = (x1, x2, . . . , x2T , a

′).
Next, consider the case (y, z) ∈ R. This implies that z = (y1, y2, . . . , y2T , b) =
(x2, x3, . . . , x2T , a

′, b) and x1 = x2 which is a contradiction as the neighbourhoods
were properly coloured. The case for (z,y) ∈ R is symmetric.

For the upper bound ω(Nk,T ) < 4, assume that there exists a clique K of size 4 in
the graph G. In the subgraph induced by the clique K, the degree of each node is
odd. Thus, there must be a node x with out-degree 2 in the clique. Let y and z be
nodes such that (x,y), (x, z) ∈ R. That is, {x,y, z} is a 3-clique. Inspection shows
that either R(y, z) or R(z,y) must hold which is a contradiction as such 3-cliques
were not possible in the graph G.

Proposition 6.17. The neighbourhood graph Nk,T has k(k − 1)2T nodes and maxi-
mum degree of 2(k − 1).

Proof. There are exactly k(k − 1)2T different ways to construct a (2T + 1)-tuple
such that two successive elements in the tuple have different values. As these tuples



57

directly correspond to the k-coloured neighbourhoods, there are k(k − 1)2T different
nodes in the graph Nk,T .

Consider a node x = (x0, x1, . . . , x2T ). There are at most (k − 1) choices for y such
that R(x,y) holds. In addition, there are again at most (k − 1) choices such that
R(y,x) holds. Thus, there can be no more than 2(k − 1) edges connected to any
node.

While we defined neighbourhood graphs in directed cycles, neighbourhood graphs can
be extended to other regular and bounded-degree graphs just as well by constructing
radius-T views given in Definition 4.1.

Fix positive integers ∆, k, and T . Construct all the radius-T views in k-coloured
graphs with maximum degree ∆. Use this as the set of nodes for the neighbourhood
graph. Connect any two views (nodes) x = V(v, T ) and y = V(u, T ) with an edge if
x has a subtree of height T − 1 that is isomorphic up to the depth T − 1 with tree y
up to depth T − 1. That is, connect two views if the central nodes can be adjacent
in some k-coloured graph with maximum degree ∆.

Observe that a colouring of a neighbourhood graph for d-regular graphs also implies a
colouring algorithm for graphs of maximum degree ∆ = d: if a node v has deg(v) < ∆,
then the node v can simply simulate the missing ∆− deg(v) neighbours with colours
different from the colour of v.

While the number of views for k-coloured regular graphs is very large, it is still finite
and thus the graph is finite and the chromatic number can be computed. The size of
such neighbourhood graphs grows rapidly due to the various combinations of colours
and port-numbers. Thus, colouring the graphs (and storing them) seems infeasible
for most modern computers already for relatively small values of d, k and T unless
some effective symmetry reduction and encoding are applied.

Nevertheless, such general neighbourhood graphs have been applied in proving both
analytical lower and upper bounds for graph colouring. For example, Kuhn considered
one-round colour reduction algorithms in the broadcast model with d-regular graphs
and showed both upper and lower bounds for these types of algorithms [KW06].



58

7 Computing the chromatic number

In this section, we will describe the methods used for computing the chromatic
numbers of neighbourhood graphs and finding small colourings of the neighbourhood
graphs.

In this work, we solve the graph colouring problems using so-called propositional
satisfiability solvers, or SAT solvers for short. These programs solve the satisfiability
problem for formulas in propositional logic (also known as the SAT problem). The
decision versions of graph colouring problems given in Section 3.5 can be encoded as
SAT instances.

Although there are algorithms designed explicitly for computing optimal colourings
in graphs, the use of SAT solvers turned out to be a competitive alternative for these.
In fact, recent studies have shown promising results regarding the use of SAT solvers
for graph colouring [Pre04, Van08].

7.1 The propositional satisfiability problem

Let us begin by defining the necessary concepts for propositional logic and the SAT
problem. A Boolean variable can take one of two values: either the variable is set to
false or true. These are denoted by 0 and 1, respectively. A formula in propositional
logic consists of a set of Boolean variables {x0, x1, . . . , xn−1} which are connected
using parentheses and two connectives ¬ (negation) and ∧ (conjunction). In addition
to these two connectives, it is customary to define various short-hands such as ∨
(disjunction), → (implication), and ↔ (equivalence). All of these can be easily
defined using only conjunction, negation, and parentheses as we will see.

An example of a propositional formula over the variables {x0, x1} is the formula

ψ = ¬(¬x0 ∧ ¬x1).

A sentence is a formula where each variable has been assigned a value. For example,
assigning x0 = 0 and x1 = 1 in the previous formula ψ results in a sentence that is
true. The formula given by ψ is often written in a more succinct form as x0 ∨ x1

which is true if either the variables x0, x1, or both have the value 1.

In general, given two formulas ψ and ϑ, we denote disjunction, implication and
equivalence as follows. The formula ψ ∨ ϑ is a short-hand to

¬(¬ψ ∧ ¬ϑ),



59

whereas implication ψ → ϑ corresponds to the formula

¬ψ ∨ ϑ,

and equivalence ψ ↔ ϑ is the same as

(ψ → ϑ) ∧ (ϑ→ ψ).

The Boolean satisfiability problem for propositional logic (SAT) is defined as follows.

Problem 4 (SAT). Given a formula ψ over the set X = {x0, x1, . . . , xn−1} of variable
symbols, decide whether there exists a truth assignment τ : X → {0, 1} such that
formula ψ is true when the variable symbols are interpreted according to τ . If such
an assignment exists, ψ is said to be satisfiable and otherwise unsatisfiable.

The truth assignment function τ can be also regarded as a binary vector t ∈ {0, 1}n.
In the function version of SAT the output is either the truth assignment or false if
the given formula is unsatisfiable. In practice, most SAT solvers require that the
input formula ψ is given in conjunctive normal form.

Definition 7.1 (CNF). A propositional formula ψ over variables {x0, x1, . . . , xn−1}
is in conjunctive normal form, if ψ = C0 ∧C1 ∧ · · · ∧Cm−1 is a conjunction of clauses.
A clause is a disjunction of literals Ci = `0 ∨ `1 ∨ · · · ∨ `k−1 where a literal `i is either
a variable xi or its negation ¬xi.

A formula in conjunctive normal form is said to be a CNF formula for short. Any
formula in propositional logic can be converted into a CNF formula. However, we
will be encoding our graph colouring instances directly into CNF formulas as this is
the most common input format for SAT solvers. A CNF formula ψ can be considered
as a set of clauses ψ = {C0, C1, . . . , Cm−1} where each clause is a set of literals. An
empty clause is false while an empty formula ψ = ∅ is true.

The Boolean satisfiability problem was the first problem proven to be NP-complete
[Coo71]. The optimization version of SAT known as MAX-SAT is also hard to
approximate [Vaz01, Ch. 29.3]. Despite this, there have been numerous advances
in algorithms for SAT. Although the SAT problem remains intractable in theory,
in practice the current algorithms and techniques seem to solve many “natural”
instances arising from real-world problems relatively efficiently. This has led to an
interest in applying SAT solver technology to hard computational problems ranging
from traditional combinatorial problems [GS02, Van08, JK10] to model checking and
to applications in bioinformatics [LMS08].



60

7.2 Encoding k-colourability as SAT

For the k-colouring problem, various CNF encodings have been studied. These differ
in the number of variables, clauses and literals used in the produced formulas. In
addition, the effectiveness (i.e., running time and memory consumption) of these
encodings often varies depending on to the solver as different solvers use different
algorithms and heuristics [Wal00, Pre04, Van08].

For all the following encodings, let G = (V,E) be the input graph and k the input
parameter. In addition, we use the short-hands n = |V | and m = |E|.

Direct encoding. We begin with the simplest encoding known as the direct
encoding [Pre04] or as the extended encoding [SHvM09]. For this encoding, the set
of variables will be {xv,i : v ∈ V, i ∈ [k]}. When the variable xv,i is true, the node v
is assigned the colour i.

Our goal is to construct a formula ψ = direct(G, k) which is satisfiable if and only
if (i) each node is given some colour, (ii) no node is assigned more than one colour,
and (iii) adjacent nodes have different colours.

For condition (i), we add the following clause for all the nodes v ∈ V
∨
i∈[k]

xv,i = xv,0 ∨ · · · ∨ xv,k−1.

In order to satisfy condition (ii), for every node v ∈ V and each colour i, j ∈ [k]
where i 6= j, we add the clause

¬xv,i ∨ ¬xv,j.

Finally for condition (iii), we require that adjacent nodes have different colours. That
is, for every edge {u, v} ∈ E and each colour i ∈ [k] we add the clause

¬xu,i ∨ ¬xv,i.

In total, the direct encoding requires nk variables and n+ nk2 +mk clauses. Most
of the clauses are relatively short; there are nk2 + mk two-literal clauses and n

clauses of length k. The formula direct(G, k) is satisfiable if and only if the variable
assignment explicitly defines a valid k-colouring for the graph G. Thus, if the formula
is satisfiable, it is easy to extract the colouring from the output of the solver.



61

Multivalued encoding. It is easy to see that the set (ii) of clauses in the previous
encoding does not affect the satisfiability of the formula. If a node v is assigned more
than one colour, it suffices to choose any of them as the colour for v. The chosen
colour cannot conflict with any of the possible colours given to the neighbours of v.
Thus, we can omit the redundant clauses in the previous encoding. This variant of
the direct encoding is sometimes called multivalued encoding [Pre04] or traditional
encoding [Van08].

Logarithmic encoding. The logarithmic encoding [Van08, Pre04] was devised
to reduce the number of required variables in the encoded SAT instance. As the
colours are assumed to be non-negative integers from the set {0, 1, . . . , k − 1}, we
can interpret each colour as a bit string of length L = dlog ke. Unlike in the two
previous encodings, the logarithmic encoding does not have a variable xv,c for each
node-colour pair (v, c) where v ∈ V, c ∈ [k]. Instead, there is a variable xv,i for each
v ∈ V and i ∈ [L]. The variable xv,i denotes whether the node v has a colour with
the ith bit set to 1. This reduces the number of variables from nk to nL.

In the logarithmic encoding, the requirement that adjacent nodes u and v have
different colours is stated as “the colours of u and v must have at least one differing
bit”. As a consequence of this formulation, it is not necessary to explicitly generate
clauses that force u and v to have some colour. The requirement that adjacent nodes
have at least one differing bit can be easily stated using exclusive disjunction denoted
by the ⊕ operator (XOR). The exclusive disjunction is defined as

a⊕ b = (a ∧ ¬b) ∨ (¬a ∧ b).

Now the adjacency requirement for an edge {u, v} ∈ E can be enforced with the
formula

ϑ(u, v) =
∨
i∈[L]

xu,i ⊕ xv,i.

By applying the definition of exclusive disjunction, the above formula expands into

ϑ(u, v) =
∨
i∈[L]

(xu,i ∧ ¬xv,i) ∨ (¬xu,i ∧ xv,i).

Unfortunately, the above formula is not yet in conjunctive normal form. On the
other hand, it is in negation normal form: all the negations are in front of the literals
and the formula uses only conjunction and disjunction. We can now use the standard
procedure for transforming formulas in negation normal form into conjunctive normal



62

form by applying the distributivity law of propositional logic:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

This yields a logically equivalent CNF formula ϑ′(u, v) with 2L clauses consisting of
2L literals.

For a graph G and a colourability parameter k, the encoded CNF formula log(G, k)
is then

log(G, k) =
∧

{u,v}∈E
ϑ′(u, v).

For practical purposes, the following alternative characterisation for the CNF formula
ϑ′(u, v) is useful. The formula ϑ′(u, v) can be considered as a conjunction of clauses
{Cc : c ∈ [k]} where clause Cc has literals ¬xu,i and ¬xv,i whenever the ith bit of c is
1. For all the 0 bits, literals xv,i and xu,i are added. For example, the clause C3 for
an edge {v, u} is

¬xu,0 ∨ ¬xv,0 ∨ ¬xu,1 ∨ ¬xv,1 ∨ xu,2 ∨ xv,2 ∨ · · · ∨ xu,L−1 ∨ xv,L−1.

Once the adjacency requirement has been encoded, we must also ensure that colours
larger than k are not used. If k is a power of two, none of the log k bit combinations
produce an invalid colour. Otherwise, we must add clauses to disallow the prohibited
bit combinations. The simplest way is to list all the 2L−k prohibited bit combinations
for each node, though more efficient encodings exist. In addition, the adjacency
requirement can be encoded using fewer clauses when the exclusive disjunction is
encoded using additional variables. For a more thorough comparison of different
variants of logarithmic encoding, see [Pre04, Van08].

Evaluation. The encodings described in this section have been studied in both
experimental [Pre04, Van08] and theoretical [Wal00] settings. While the experimental
studies have focused on graph colouring problems, the theoretical results consider
encoding general constraint satisfaction problems into SAT.

Some experimental results have shown that the multivalued encoding generally
performs better than the direct encoding on satisfiable instances [Pre04, Van08].
Prestwich conjectured that this is due to the fact that the multivalued encoding has
usually a higher solution density [Pre04]. That is, the number of feasible solutions
for formulas attained by multivalued encoding is larger than the number of feasible
solutions for directly encoded formulas.



63

Another benefit of the multivalued encoding over the direct encoding is the smaller
length of the produced formulas. While in both encodings the number of variables
increases linearly with the parameter k, formulas using the direct encoding have
n+ nk2 +mk clauses, whereas the multivalued formulas have only mk + n clauses.
This is a considerable improvement for large but sparse graphs and for small values
of k.

On the other hand, the logarithmic encoding aims to ensure a smaller search space by
having less variables than in the direct and multivalued encodings. Van Gelder [Van08]
reports that the variations of logarithmic encoding have a rather poor performance
with unsatisfiable instances. For instances encoded with the direct or multivalued
encodings, SAT solvers can show the unsatisfiability using unit clause propagation,
while the logarithmic encodings seem to “conceal” this approach from the solver. This
seems to be in line with Walsh’s [Wal00] results stating that unit clause propagation is
less efficient when using the logarithmic encoding for constraint satisfaction problems.

Furthermore, the experimental results of Van Gelder [Van08] indicate that the
multivalued encoding outperforms logarithmic encodings most of the time in both
unsatisfiable and satisfiable instances. However, in a different study conducted by
Prestwich [Pre04], the author infers a somewhat different notion on the performance
of the logarithmic encoding and concludes that the encoding “may not be as bad as
expected”.

7.3 Finding an optimal colouring

Now that we know how to solve the k-colourability problem via Boolean satisfiability,
it is relatively straightforward to solve the chromatic number problem as well. For a
given graph G, we can simply solve the k-colourability problem iteratively for each
k = 1, 2, . . . ,∆ + 1 until the resulting formula is satisfiable. Once a satisfying truth
assignment for the variables is found, the colouring function ϕ : V → [k] can be
constructed by interpreting the variables according to the chosen encoding.

If the chromatic number is high, a considerable amount of work is spent on trying
to solve the unsatisfiable instances which usually take a long time to solve. One
reason for this is that in an unsatisfiable case, all permutations of colours may
be tried unless this is prevented or a counter-example such as a (k + 1)-clique is
identified by the solver. In addition, a high chromatic number can be a purely
global phenomenon [Erd59, Lov68]. Hence, it may be that the solvers cannot



64

easily distinguish unsatisfiable instances without enumerating a large portion of the
colourings.

Instead of an iterative search, it is also possible find the optimal k by applying
binary search. On the other hand, for k-colouring instances where k is considerably
larger than χ(G), it has been reported that the overhead generated by large formulas
degrades performance [Van08]. Thus, the simple iterative method often works best
if we can find good lower bounds on the chromatic number.

As discussed in Section 3.4, the chromatic number can be bounded in various ways by
either exploiting the properties of the graph family at hand or finding large cliques.
Unfortunately, even approximating the maximum clique size is hard [Vaz01, Ch. 29].
Nevertheless, greedily finding some clique already seems to improve the performance
drastically [Van08, SHvM09].

Given a clique K in the graph G, we can force a partial colouring for the graph G by
designating a distinct colour for each node in the clique K. This prunes the search
space explored by the SAT solver to some extent. For example in the direct and
multivalued encodings, this can be done by adding the unit clause (xv,i) for each
v ∈ K and distinct colour i ∈ {0, 1, . . . , |K| − 1}. Moreover, it is possible to partially
colour other dense subgraphs besides cliques as well [Van08].

In addition to these preprocessing techniques, there have been some recent work
on so-called dynamic symmetry breaking methods. For example, Schaafsma et
al. [SHvM09, Sch09] studied how to modify SAT solvers to work better on vertex
colouring instances. They implemented a specialized conflict-driven SAT solver that
essentially uses conflict clauses where one conflict clause can cover any permutation
of a improper partial colouring.

The experimental results presented by Schaafsma et al. suggest that this type of
dynamic symmetry breaking combined with the usual preprocessing techniques yields
performance improvements. In particular, unsatisfiable instances may be faster to
solve [SHvM09]. However, so far the dynamic symmetry breaking techniques are
both problem- and solver-specific, and the only implementation as of the time of
writing is the MiniMerge [Sch09] solver.



65

8 Improved bounds for cycle and tree colouring

This section presents the experimental results attained from computing the chromatic
numbers of various neighbourhood graphs. First, we outline the new results regarding
explicit upper and lower bounds for colour reduction in directed cycles. We also
discuss some observations on the SAT approach.

Second, using the new explicit bounds, we give improved upper and lower bounds for
the general case of colour reduction in directed k-coloured cycles. In addition, for all
practical values of k, the new algorithms improve the performance of the standard
Cole–Vishkin style algorithms by a factor of two or almost two. Finally, we analyse
the tightness of these new results and discuss possible approaches for closing the
remaining (small) gap between the upper and lower bounds.

8.1 Colourings for the neighbourhood graphs

The chromatic numbers for neighbourhood graphs were analysed using the techniques
described in Section 7. A computer program was set up to generate the neighbourhood
graphs and iteratively seek upper and lower bounds on the chromatic numbers using
SAT solvers.

The c-colouring instances were encoded using both the multivalued and direct
encodings. The logarithmic encoding was not used as it turned out that most
satisfiable instances were not difficult to solve and it has been argued that multivalued
encoding outperforms log encoding [Wal00, Van08]. In addition, the value of c is
small in all the relevant cases and thus the impact of using fewer variables seems
somewhat negligible.

As the maximum clique size remains constant for all neighbourhood graphs Nk,T ,
colouring large cliques as a preprocessing step cannot be used to efficiently prune
the search space. This may be the reason why the SAT solvers could not prove
unsatisfiability of various c-colouring instances of Nk,1 where k ≥ 25 and c ≤ 4. As a
prospective research topic, it would be interesting to see if more efficient symmetry-
breaking techniques can be successfully applied in order to find better lower bounds
for the chromatic numbers.

Nevertheless, the SAT solvers managed to find solutions to most colouring instances
with relative ease. In particular, parallel solvers, such as ManySAT, found solutions to
the largest colouring instances, e.g., 5-colouring of the graph N70,1 with multivalued



66

Solver Version Website
clasp [GKNS07] 1.3.4 http://www.cs.uni-potsdam.de/clasp/

lingeling [Bie10] 276 http://fmv.jku.at/lingeling/

ManySAT [HJS09] 1.0 http://www.cril.univ-artois.fr/~jabbour/manysat.htm

MiniSAT [ES03] 2.2 http://minisat.se/

MiniMerge [SHvM09] 1.0 –
picosat [Bie10] 913 http://fmv.jku.at/picosat/

precosat [Bie10] 570 http://fmv.jku.at/precosat/

smallk 8/29/99 http://webdocs.cs.ualberta.ca/~joe/Coloring/

Minion [GJM06] 0.11 http://minion.sourceforge.net/

Table 1: The solvers used to compute chromatic numbers. All are SAT solvers with
the exception of ’smallk’ (a vertex colouring software) and ’Minion’ (a CSP solver).

encoding, within reasonable time. The small unsatisfiable instances were solved by
all SAT solvers quite rapidly.

Moreover, attempts with other solver techniques such as integer programming and
general constraint satisfaction solvers with straightforward encodings did not seem
to bear fruit in comparison to the SAT solver approach. Thus, while no thorough
comparison study was made, it seems that SAT solvers are competitive with regard
to solving graph colouring problems. The different solvers that were experimented
with are listed in Table 1.

The solvers found exact chromatic numbers for all Nk,1 where 4 ≤ k ≤ 24. For
larger values of k, near-optimal results were found up to k = 70; we could not prove
that the results are not optimal. If χ(N25,1) > 4 holds, then for k ∈ {25, . . . , 70}
the chromatic numbers of Nk,1 are indeed exact. The 4-colourability of N25,1 was
attacked with multitude of solvers but none of the solvers managed to find a solution
during several weeks of computation on an Intel Xeon E5540 processor with 32
gigabytes of RAM. In contrast, the satisfiable instances were usually solved within a
few hours at most.

Table 2 summarises the known values for the chromatic numbers of neighbourhood
graphs. For values of k where the exact value of χ(Nk,1) is not known, the corre-
sponding bounds are given. The vertex colourings that yield the upper bounds are
available online [Ryb11].

Using these computational results, it is possible to derive new lower and upper bound
results on the complexity of distributed colour reduction in k-coloured directed

http://www.cs.uni-potsdam.de/clasp/
http://fmv.jku.at/lingeling/
http://www.cril.univ-artois.fr/~jabbour/manysat.htm
http://minisat.se/
http://fmv.jku.at/picosat/
http://fmv.jku.at/precosat/
http://webdocs.cs.ualberta.ca/~joe/Coloring/
http://minion.sourceforge.net/


67

k Lower bound Upper bound Exact
4 3 3 Yes
5 4 4 Yes
6 4 4 Yes
24 4 4 Yes
25 4 5 No
70 4 5 No

Table 2: Upper and lower bounds for the chromatic number of Nk,1. Rows with
matching upper and lower bounds are marked as exact.

cycles. We begin by observing the following lemmas which help us in analysing the
complexity of distributed colouring algorithms. The first result follows directly from
Theorem 6.14 and the fact that χ(N5,1) > 3.

Lemma 8.1. It is not possible to reduce the number of colours from 5 to 3 in a
directed cycle in one communication round.

Interestingly, it takes as many communication rounds to reduce the number of colours
from 5 as it does from 24.

Lemma 8.2. A 24-coloured directed cycle can be 3-coloured in 2 communication
rounds.

Proof. As χ(N24,1) = 4 the cycle can be 4-coloured in one communication round.
The 4-colouring can be reduced to a 3-colouring using the greedy colour reduction
algorithm.

8.2 The value of local information

The chromatic numbers of neighbourhood graphs Nk,T yield bounds for distributed
colour reduction algorithms with running time T in directed k-coloured cycles. For
comparison, we also explore two other cases where the nodes are given less information
and one where the nodes are given more information.

In the first case, the nodes can only use information available from their immediate
predecessor. In k-coloured directed cycles, this situation is captured by the neigh-
bourhood graph Sk = (V,E) where V = {(u, v) : u, v ∈ [k]} and there is an edge
between (u, v), (u′, v′) ∈ V if v = u′.



68

k Lower bound Upper bound Exact
4 4 4 Yes
6 4 4 Yes
7 5 5 Yes
11 5 6 No
20 5 6 No

Table 3: Upper and lower bounds for the chromatic number of Sk.

For example, the one-round Cole–Vishkin O(log k)-colour reduction used in Algo-
rithm 3 corresponds to this case. While the Cole–Vishkin algorithm cannot achieve
a 6-colouring when k > 8, it is still possible to achieve a 6-colouring when k ≤ 20
with other algorithms that only utilize information available from the predecessor.
The bounds for chromatic numbers for the graph Sk are given in Table 3.

In a sense, an algorithm that only utilizes the colour of a single predecessor is a
“half-round” algorithm: we can use the same technique as in Theorem 5.4 to simulate
two iterations of such an algorithm in a single communication round. For example,
we attain a one-round colour reduction algorithm from 20 to 4 colours as follows.

In one round, any node v in a directed cycle can gather information from its local
neighbourhood (u, v, w). Node v can first apply the colour reduction from 20 colours
to 6 colours since the colour of its predecessor u is known. Similarly, node v can
calculate the new colour of w as v itself is the predecessor of node w. After computing
the new 6-colouring, node v can apply the colour reduction from 6 to 4 colours by
simulating w as its predecessor.

From Table 3 we can also see that if a node only looks at its predecessor in a directed
cycle, reducing the number of colours from 4 to 3 is not possible. Indeed, this
conforms to the previous result that N5,1 is not 3-colourable: if this were not the
case, an algorithm could reduce from 5 to 4 colours and then from 4 to 3 in one
round. We can also see that the Cole–Vishkin colour reduction algorithm is not an
optimal half-round algorithm as it stops working after the cycle has been 6-coloured.
However, there is an algorithm that can reduce the colours from 6 to 4 just by using
the information from the predecessor.

The “half-round” colour reduction algorithms are listed in Table 4 and Table 5. The
tables have been constructed from the proper vertex colourings of the graphs S20

and S6. After a node v has received the colour ϕ(u) of its predecessor u, node v can
choose a new colour from the cell in row number ϕ(v) and column number ϕ(u).



69

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 - 1 1 0 0 0 2 0 2 0 1 1 1 1 1 2 2 1 0 1
1 5 - 2 5 2 0 2 0 5 0 5 2 5 0 0 2 5 0 0 0
2 4 4 - 0 0 0 4 0 3 0 3 3 4 4 0 4 4 0 0 0
3 4 1 1 - 4 4 1 2 2 4 1 2 1 1 1 2 2 2 2 1
4 5 1 1 5 - 3 1 3 5 5 5 1 1 1 1 3 5 1 5 5
5 5 1 2 5 2 - 1 2 2 5 1 1 1 1 1 2 5 1 2 1
6 3 3 5 3 0 3 - 3 3 0 5 3 5 0 0 3 5 0 0 5
7 5 1 1 5 4 4 1 - 5 5 1 1 1 1 1 4 5 1 5 1
8 4 1 1 0 4 0 4 0 - 4 1 1 1 1 1 4 4 1 0 1
9 3 1 1 3 2 3 2 3 3 - 1 1 1 1 1 2 2 1 2 1

10 4 4 2 0 4 4 4 0 2 4 - 2 4 4 0 4 4 2 0 0
11 5 4 5 0 0 0 4 0 5 0 5 - 5 0 0 4 5 0 5 0
12 3 3 2 0 0 0 2 0 3 0 3 3 - 0 0 3 2 0 0 0
13 3 3 2 5 2 3 2 3 5 5 5 3 5 - 3 3 5 2 5 5
14 5 4 2 5 4 4 4 2 5 4 5 2 5 4 - 4 5 2 5 5
15 5 1 5 0 0 0 1 0 5 0 1 1 1 1 1 - 5 1 0 1
16 3 1 1 0 0 0 1 0 3 0 1 1 1 1 1 3 - 1 0 0
17 3 4 5 3 4 3 4 3 3 4 3 3 4 4 3 4 4 - 5 5
18 4 4 1 3 4 4 4 3 3 4 1 1 4 4 1 4 4 1 - 1
19 3 3 2 3 4 4 4 3 3 4 3 3 4 4 3 4 4 2 2 -

Table 4: The colour reduction scheme from 20 to 6 colours using only the information
from the predecessor. For an edge (u, v) in a directed cycle, node v chooses the
colour in the cell (ϕ(v), ϕ(u)).

0 1 2 3 4 5

0 - 1 0 1 0 1
1 2 - 2 2 0 0
2 3 1 - 1 3 1
3 3 3 0 - 3 0
4 2 1 2 1 - 1
5 3 3 2 2 3 -

Table 5: The colour reduction scheme from 6 to 4 colours using only information
available from the predecessor. For an edge (u, v) in a directed cycle, node v chooses
the colour in the cell (ϕ(v), ϕ(u)).



70

Observe that the matrices give a proper colouring since for any i ∈ [k], all the
elements in the ith row are different from the elements in the ith column. This
ensures that a colour i node always chooses a different colour than its successor. A
very similar colour reduction algorithm was already used by Naor and Stockmeyer for
computing weak colourings [NS95]. Their algorithm reduces the number of colours
from k to log(k) +O(log log k).

In contrast to restricting the information available to a node, the communication
graph may be coloured in a way that allows the nodes to make stronger assumptions
of their neighbourhoods. For example, consider the situation where the node knows
the colours are unique in every T -neighbourhood, that is the graph has a radius-T
vertex colouring. This corresponds to colouring the neighbourhood graph Lk,T .

For the case T = 1, it turns out that the barrier of reducing from 5 colours to 3 can
be broken. In fact, there is enough information to admit colour reduction from 6
colours to 3. However, for k = 7 this is not possible any more. Similarly to the case
with a proper k-colouring, 4-colouring is possible in one round at least up to k = 24
in a directed cycle with a radius-1 vertex k-colouring.

8.3 Faster deterministic 3-colouring

We now derive faster deterministic 3-colouring algorithms for directed cycles and
directed rooted trees using the colourings of cycle neighbourhood graphs.

For 3-colouring a directed cycle, the Cole–Vishkin algorithms presented in Section 5.2
require d1

2 log∗ ke + 3 communication rounds. In the case of 3-colouring directed
pseudotrees, the algorithms had a running time of log∗ k + 6 communication rounds.

While these algorithms are optimal up to additive terms, for small values of k, the
additive term dominates the running time of the algorithm. In particular, the efficacy
of the Cole–Vishkin algorithms greatly decreases when the number of colours is close
to 6. In fact, after reducing the number of colours to 6, the Cole–Vishkin method
cannot be used any longer. From this point onward, the algorithm switches to a
linear time greedy algorithm in order to get rid of the last few colours.

In most practical cases, optimizing the additive terms result in a significant speed-up
due the slow growth of the log∗ k term. The additive terms can be improved by
utilizing the colourings of neighbourhood graphs. For now, we will call the traditional
iterative Cole–Vishkin style colour reduction techniques as naive Cole–Vishkin
algorithms.



71

As an example, consider cycles that use 2048-bit identifiers. The 2048-bit identifiers
correspond to a k-colouring where k = 22048. To 3-colour such a cycle, the naive
version of Cole–Vishkin uses⌈

1
2 log∗ k

⌉
+ 3 =

⌈
5
2

⌉
+ 3 = 6

communication rounds.

However, we can do much better. First, run the Cole–Vishkin algorithm for one
communication round. This reduces the colouring from 22048 to 24. Now, as
χ(N24,1) = 4, we can reduce the 24-colouring to a 4-colouring in one step and
finally, in one more round reduce it to the 3-colouring. In total, this requires three
communication rounds. We gained an improvement of factor two in the running
time.

In practice, the identifiers used in current-day distributed systems have considerably
smaller identifiers: IPv4 uses 32-bit addresses, MAC-addresses are 48-bit, and IPv6
uses 128-bit addresses. For 128-bit identifiers in cycles, the naive algorithm requires
5 rounds, whereas the improved algorithm requires only 3 communication rounds.

For general k ≥ 3 we get the following upper bound for 3-colouring directed cycles.

Theorem 8.3. Directed k-coloured cycles can be 3-coloured in
⌈

1
2 log∗ k

⌉
+ 1 com-

munication rounds.

Proof. In the proof of Lemma 5.2 it is shown that 12-colouring takes at most log∗ k−2
communication rounds. Using the double-speed trick in cycles, the cycle can be
12-coloured in at most

⌈
1
2 log∗ k

⌉
− 1 rounds. By Lemma 8.2, the 12-colouring can

be reduced to a 3-colouring in two communication rounds.

Alternatively, we can apply the one-round colour reduction algorithm from 20 to 4
colours given in Tables 4 and 5 instead of referring to Lemma 8.2 in the above proof.

Using any coloured graph Nk,1 requires that the nodes have the graph stored in the
memory. In practice, this means that the nodes are given precomputed lookup tables.
However, the size of the lookup table is rather small as Nk,1 contains k(k− 1)2 nodes
as shown in Proposition 6.17. For example in the case k = 24, the lookup table for
4-colouring requires log(4)k(k − 1)2 = 2 · 24 · 232 = 25392 bits which amount to 3174
bytes.



72

8.4 Closing the gap in lower and upper bound results

Let us now compare the result of Theorem 8.3 with Linial’s lower bound of 1
2(log∗ n−3).

The major difference between the lower and upper bound results is in the additive
constant and hence we will focus on analysing it. Moreover, Linial’s lower bound
holds for the model with unique identifiers whereas our upper bound holds in the
weaker model of k-coloured networks. Thus, we examine the latter model.

For all k ≥ 3 and for some constant c, it is known that 1
2(log∗ k + c) communication

rounds suffice to colour directed k-coloured cycle with at most three colours. The
results already established in the literature show that c ∈ [−3, 7]: the naive Cole–
Vishkin algorithm provides an upper bound c ≤ 7, whereas Linial’s lower bound
states that c ≥ −3 for all n.

However, given the new computational results, we can tighten the gap. First of all,
Theorem 8.3 gives us an upper bound of 3 for the constant c as⌈

1
2 log∗ k

⌉
+ 1 ≤ 1

2 log∗ k + 3
2 = 1

2(log∗ k + 3).

For the lower bound, we know by Lemma 8.1 that for k = 5 the algorithm needs at
least two communication rounds. This in turn implies that c ≥ 1 as

1
2(log∗ 5 + c) = 1

2(3 + c) ≥ 2 =⇒ c ≥ 4− 3.

Therefore, we can assert that c ∈ [1, 3] for all k-coloured directed cycles. It seems
that with these results alone, we cannot directly improve the bounds.

To improve the upper bound, one could try to show that it is possible to reduce
a 63-colouring into a 3-colouring in two communication rounds, that is, show that
χ(N63,2) = 3. The analysis in Lemma 5.2 and the double-speed trick given The-
orem 5.4 show that 63-colouring can be achieved in 1

2(log∗ k − 1) communication
rounds. If χ(N63,2) = 3 then 1

2(log∗ k + 1) rounds would suffice to 3-colour a k-
coloured directed cycle yielding a tight result that the additive term c = 1. On the
other hand, as there is no proof for that N63,1 is not 4-colourable, it may be possible
to use N63,1 to bound the value of c to at most 2.

To tighten the gap from below, there are several alternatives. First, if for some
k ∈ [17, 216] 3-colouring requires at least 3 rounds, then c ≥ 2. Second, if 3-colouring
a directed cycle requires at least 4 rounds for some k ∈ [2216 + 1, 2265536 ], then c ≥ 2.
Finally, to show that c = 3, it suffices that for some k ∈ [216 + 1, 2216 ] 3-colouring
takes at least 4 communication rounds.



73

Unfortunately, for such large values of k, computing the chromatic numbers becomes
infeasible using the methods described so far. Increasing the time parameter T
does not seem to help either as the graph size grows exponentially with T . Already
explicitly storing the graph itself would require considerable amounts of memory. For
example, computing χ(N25,2) was out of reach for the colouring applications used in
this work. Furthermore, none of the solvers managed to show that χ(Nk,1) > 4 for
any k ∈ [25, 70].

It may be possible to improve the above result by computationally or analytically
bounding the chromatic numbers of neighbourhood graphs where T = 2. That is, it
may be possible that by inspecting a larger local neighbourhood, an iterative colour
reduction algorithm may perform better.

8.5 Extensions to other distributed problems

So far, we have only considered the distributed graph colouring problem. In this
section, we outline some ideas on prospective research regarding exact bounds for other
distributed graph problems. Whereas the existence of distributed colour reduction
algorithms easily translates into the chromatic number problem for neighbourhood
graphs, other problems, such as maximal matchings, maximal independent sets,
minimal dominating sets, and minimal vertex covers, seem to require a somewhat
different approach. We now will examine the first two problems.

Consider the maximal independent set problem in k-coloured directed cycles. One
might try to use the same neighbourhood graph constructions parametrized by
the number of colours k and running time T as before. If we have a deterministic
distributed algorithm for maximal independent sets in k-coloured cycles, it is relatively
easy to see that this produces a maximal independent set in the neighbourhood
graph.

However, a feasible solution to the maximal (or maximum) independent set problem
in the neighbourhood graph does not imply a distributed algorithm for the maximal
independent set problem. For example, consider the maximum independent set I for
the cycle neighbourhood graph N3,1 given in Figure 18a. The solution I does not yield
a distributed algorithm for maximal independent sets in cycles: a counter-example is
given Figure 18c.

Therefore, the implication holds only for the other direction: a distributed algorithm
produces a maximal independent set in the neighbourhood graph, but a maximal



74

(a) (b)

1

0 0

1

1

0

02

2 2

1

2

(c) (d)

1 0 1

2 1 0

2 0 2 0 2 1

2 1 2

1 2 0

2 0 1

0 1 2 1 0 1

2 1 0

2 0 2

2 1 2

2 0 1

1 2 0

0 2 1

1 2 1 0 1 0

0 2 0

1 0 2

0 1 0

0 2 0

1 0 2

1 2 1

0 1 2

Figure 18: A maximum independent set in Nk,T does not guarantee a T -time
algorithm that computes a maximal independent set in a k-coloured cycle. This also
applies to the maximal matching problem. In the two bottom cycles, the numbers
denote the colouring and the nodes in an independent set are grey. (a) A maximum
independent set I in N3,1. (b) A maximum matching M in N3,1. (c) A 3-coloured
cycle where I does not yield a maximal independent set and M produces an empty
matching. (d) A 3-coloured cycle where I happens to produce a maximal independent
set but the matching is not maximal.



75

independent in the neighbourhood graph does not yield a distributed algorithm.
However, the solution yields a distributed algorithm that computes some independent
set. Of course, if the neighbourhood graph is c-colourable, there exists an algorithm for
computing maximal independent sets in (T +k−1) rounds: the communication graph
can be c-coloured and then a maximal independent set can be greedily constructed.

In the case of matchings, a maximal or maximum matching in the neighbourhood
graph does not imply a distributed algorithm for the maximal matching problem.
Figure 18b illustrates a maximum matching in the neighbourhood graph N3,1. Again,
the solution produces an algorithm that finds a matching in a cycle but it is not
maximal. For example, consider the graph depicted in Figure 18c: the matching is
empty.

Nevertheless, there is a way to characterise these problems with the help of a slightly
modified neighbourhood graph construction. This construction allows us to set
constraints on the edges with relative ease. For simplicity, we will define extended
neighbourhood graphs for directed cycles only. However, these graphs easily generalize
to other graph families similarly as the neighbourhood graphs discussed in Section 6.3.

Definition 8.4. For two non-negative integer parameters k ≥ 3 and T ≥ 1, the
extended neighbourhood graph Xk,T for directed cycles is a bipartite directed graph
constructed as follows. The set of vertices is V = S ∪K where

S = {(x0, x1, . . . , x2T ) : xi, xi+1 ∈ [k] and xi 6= xi+1 where 0 ≤ i < 2T}

is the set of node neighbourhoods and the set

K = {(x1, x2, . . . , x2T ) : (x0, x1, . . . , x2T ) ∈ S}

consists of edge neighbourhoods. The edge set E of the graph is given by the conditions
(s, a) ∈ E ⇐⇒ a = (s1, s2, . . . , s2T ) and (a, s) ∈ E ⇐⇒ a = (s0, s1, . . . , s2T−1)
where s ∈ S and a ∈ K.

We consider the distributed maximal matching problem. We will construct a for-
mula in propositional logic that is satisfiable if and only if there exists a T -time
distributed algorithm that computes a maximal matching in any k-coloured cycle.
The satisfiability of the formula can be determined with a SAT solver.

Let Xk,T = (S ∪K,E) be the neighbourhood graph. For each a ∈ K and s ∈ S let
xa and xs be Boolean variables. A variable xa denotes whether the corresponding
edge has been selected by the algorithm into the matching, whereas xs is true if the
corresponding node has been matched.



76

3 2 1 2 3 11 3 23 1 31 2 31 3 13 1 22 1 32 1 21 2 1 3 2 3

2 1 1 2 1 3 3 1 3 2 2 3

2 3 2

Figure 19: The extended neighbourhood graph X3,1 for cycles. The ellipse nodes rep-
resent the node neighbourhoods and the rectangular nodes are edge neighbourhoods.

We ensure that the following three properties hold in any communication graph:
(i) if an edge has been selected, then none of the adjacent edges have been selected,
(ii) if a node v has been matched, then some edge incident to v is in the matching,
and (iii) if a node has not been matched, then it is adjacent to a matched node.

These conditions are captured by the formula ψ(Xk,T ) = ψ1 ∧ ψ2 ∧ ψ3 where ψ1, ψ2,
and ψ3 correspond to the above constraints. Let

L = {(a, b) ∈ K ×K : dist(a, b) = 2}

be the pairs of edge neighbourhoods with a common node neighbourhood. Now the
formula ψ1 is defined as

ψ1 =
∧

(a,b)∈L

(
xa → ¬xb

)
.

That is, edge neighbourhood a can be selected if no edge neighbourhood b which
is “adjacent” to a is selected. This ensures that the selected edge set produces a
matching. The case (ii) is covered by the formula

ψ2 =
∧
s∈S

(
xs →

∨
(s,a),(a,s)∈E

xa
)

which states that a node neighbourhood can be matched only if some of its edge
neighbourhoods is in the matching. Observe that together with the formula ψ1, this
implies that there will be exactly one such edge neighbourhood. Finally, let

U = {(s, t) ∈ S × S : (s, a), (a, t) ∈ E for some a ∈ K}

be the pairs of node neighbourhoods for nodes that may be adjacent in some
communication graph. Now, the formula

ψ3 =
∧

(s,t)∈U
xs ∨ xt

ensures that the matching is maximal. If a node is not matched, then all of its
neighbouring nodes must be matched.



77

Proposition 8.5. Let k, T ∈ N+ such that k ≥ 3 and T ≥ 1. The following claims
are equivalent:

(i) There exists a deterministic distributed algorithm that finds a maximal matching
in a directed k-coloured cycle in T communication rounds.

(ii) The formula ψ(Xk,T ) is satisfiable.

Proof. (i) ⇒ (ii): Let A be an algorithm that computes a maximal matching in
any k-coloured directed cycle in T rounds and Xk,T = (S ∪K,E) be the extended
neighbourhood graph.

Simulate algorithm A for all node neighbourhoods s and t. Let vs and vt be the
nodes in the communication graph corresponding to neighbourhoods s and t. If the
algorithm selects an edge (vs, vt), then set xs, xt and xa to true where a ∈ K such
that (s, a) ∈ E and (a, t) ∈ E. That is, a is the common edge neighbourhood for s
and t. Otherwise, do nothing.

To see that this assignment satisfies the formula ψ(Xk,T ), assume the opposite. If ψ1

is false, then for some pair of edge neighbourhoods (a, b) ∈ L both xa and xb are true:
the algorithm A chose two incident edges which contradicts the correctness of A.
Neither ψ2 can be false as we never set xs true for any s ∈ S without also setting
the corresponding variable of some adjacent edge neighbourhood as true. Finally, if
ψ3 is false, then for some (s, t) ∈ U both xs and xt are false. In this case, algorithm
A would not produce a maximal matching in a graph where these two (unmatched)
neighbourhoods are adjacent, and this would contradict the correctness of A.

(ii) ⇒ (i): Let τ be a truth assignment that satisfies ψ(Xk,T ). The algorithm first
collects the radius-T neighbourhood of each node. Each node v checks the edge
neighbourhoods a1, a2, . . . , adeg(v) for each adjacent edge in port i. If τ(xai

) = 1 for
some i ∈ {1, 2, . . . , deg(v)}, then v adds the edge in port i to the matching.

Let us show that the above algorithm produces a maximal matching in any k-coloured
directed cycle. Let M be the set of edges selected by the algorithm. To see that M
is a matching, suppose the opposite holds: {(u, v), (v, w)} ⊆ M for some nodes u,
v, and w in the communication graph. Let a and b be the edge neighbourhoods of
edges (u, v) and (v, w), and s the node neighbourhood of v. Then τ(xa) = τ(xb) = 1.
However, as there is a path (a, s, b) in Xk,T , then (a, b) ∈ L and ψ1 is false since
xa → ¬xb does not hold.

Finally, the maximality of matching M is shown in a similar manner. Assume that
M is not maximal: there exists a matching M ′ such that M  M ′ is a proper subset.



78

Let (u, v) ∈M ′ \M be an edge that could be added into the matching and a be the
corresponding edge neighbourhood. Let s and t be the node neighbourhoods of u
and v. Since u is not incident to an edge in the matching M and ψ2 is satisfied by
assumption, it follows that τ(xs) = 0. Similarly, since v is not incident to an edge in
M , it also follows that τ(xt) = 0. But (s, a, t) is a path in Xx,T and hence ψ3 cannot
be satisfied since xs ∨ xt does not hold.

Observe that while we shoved the result for k-coloured cycles only, the definition
of the formula generalizes to other types of graphs as well. For example, given a
neighbourhood graph for k-coloured d-regular graphs, the same method can be used
to construct a formula that captures the existence of maximal matching algorithms
in d-regular graphs. Furthermore, it seems that the neighbourhood graphs that also
contain edge neighbourhoods can be used to characterise other distributed problems
as well. However, the characterisation of other distributed graph problems is left for
future work.

9 Conclusions

In the centralized setting it is convenient and often necessary to use asymptotic
bounds on computational complexity, whereas in the distributed setting it is both
possible and natural to report the exact complexity of a problem. The time complexity
of a problem corresponds exactly to the size of the local neighbourhood each node
must examine in order to compute the output.

In this work, it was shown that it is possible to study the concrete complexity of
distributed graph problems using computational methods. In particular, we examined
the distributed graph colouring problem in directed cycles and directed rooted trees.
Computational search with SAT solvers revealed exact lower bounds and new fast
colouring algorithms.

While the previously established analytical upper and lower bounds for distributed
graph colouring in directed cycles are tight up to constant additive terms, analysing
the chromatic numbers of neighbourhood graphs yielded new bounds. For all k ≥ 3,
the upper bound for reducing a k-colouring to a 3-colouring was improved from
1
2(log∗ k+ 7) communication rounds to 1

2(log∗ k+ 3) rounds in directed cycles, and in
directed rooted trees, from log∗ k + 6 rounds to log∗ k + 3 rounds. Furthermore, the
computational results indicate that for some values of k, reducing a k-colouring to



79

a 3-colouring requires at least 1
2(log∗ k + 1) rounds in directed cycles and log∗ k + 1

rounds in directed rooted trees.

Due to the slow growth of the log-star function, the additive term dominates the
running time for most practical values of k. In some special cases, it is possible to
gain significant speed-ups in colour reduction. As a concrete example, when k ≤ 22048,
it takes at most three rounds to properly 3-colour a k-coloured directed cycle in
contrast to the six rounds required by the standard Cole–Vishkin style algorithms.

While the new bounds for 3-colouring directed cycles and directed rooted trees
are almost tight, the exact value for the additive term c ∈ [1, 3] remains open. A
possible course of action is to target the colouring instances given in Section 8.4 and
implement a program for exhaustive search with better symmetry-breaking features,
such as isomorph rejection. Nevertheless, it seems that we are already quite close to
understanding the exact complexity of graph colouring in directed cycles and trees.

As a prospective research topic, it would be interesting to study whether a similar
approach can be successfully applied to also gain understanding of other distributed
graph problems. For example, for the maximal matching problem in 2-coloured
d-regular graphs, no matching lower and upper bounds are currently known. In
2-coloured bounded-degree graphs, a maximal matching can be computed in O(∆)
communication rounds [HKP98], while computing a maximal matching is known
to require at least Ω(log ∆) rounds [KMW10]. On the other hand, it seems that
for d-regular graphs, no non-constant lower bounds are known. Thus, for various
families of d-regular graphs, these bounds could be computationally derived by using,
for example, the characterisation given in Section 8.5.

In this work the computer search was performed using SAT solvers. In addition to
their good performance, one of the main advantages in the use of SAT solvers is the
wide availability of different types of solvers and their ease of initial configuration.
After encoding the problem instance once, it is easy to experiment with various
solvers and fine-tune their parameters when necessary. This feature was particularly
useful when some solvers could not solve the larger instances, while after some
experimentation, other solvers managed to find solutions.

However, in addition to the SAT solver techniques, there exists a large body of
work on various other combinatorial search algorithms and techniques. It may be
useful to investigate and implement customised search algorithms that exploit the
combinatorial properties of the more difficult and larger problem instances, such as
the unsolved colouring instances or matching instances for high-degree graph families.



80

Moreover, exploring alternative and more succinct characterisations of distributed
algorithms for graph problems is a possible avenue for future studies.

Acknowledgements

I am grateful to my thesis advisers Jukka Suomela and Petteri Kaski for invaluable
discussions and comments. In addition, I wish to thank Veli Mäkinen for feedback
and supervising the work, Matti Järvisalo for discussions on SAT solving, and the
following people for various ideas and comments: Patrik Floréen, Janne Korhonen,
Topi Musto, Laura Pesola, Jan–Mikael Rybicki, and Jara Uitto.

References

Aar07 Aaronson, S., Experimental complexity theory, June 2007. http://www.
scottaaronson.com/blog/?p=252. Accessed 1st April, 2010.

ABLP89 Alon, N., Bar-Noy, A., Linial, N. and Peleg, D., On the complexity of
radio communication. Proceedings of the 21st Annual ACM Symposium
on Theory of Computing (STOC, Seattle, WA, USA, May 1989), New
York, NY, USA, 1989, ACM Press, pages 274–285.

ÅFP+09 Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J. and
Uitto, J., A local 2-approximation algorithm for the vertex cover prob-
lem. Proc. 23rd International Symposium on Distributed Computing
(DISC, Elche, Spain, September 2009), volume 5805 of Lecture Notes in
Computer Science, Berlin, Germany, 2009, Springer, pages 191–205.

AH89 Appel, K. and Haken, W., Every Planar Map Is Four Colorable. Ameri-
can Mathematical Society, 1989.

Ang80 Angluin, D., Local and global properties in networks of processors. Proc.
12th Annual ACM Symposium on Theory of Computing (STOC, Los
Angeles, CA, USA, April 1980), New York, NY, USA, 1980, ACM Press,
pages 82–93.

ÅS10 Åstrand, M. and Suomela, J., Fast distributed approximation algorithms
for vertex cover and set cover in anonymous networks. Proc. 22nd Annual

http://www.scottaaronson.com/blog/?p=252
http://www.scottaaronson.com/blog/?p=252


81

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA,
Santorini, Greece, June 2010), New York, NY, USA, 2010, ACM Press,
pages 294–302.

Awe85 Awerbuch, B., Complexity of network synchronization. Journal of the
ACM, 32,4(1985), pages 804–823.

BBH+98 Bar-Noy, A., Bellare, M., Halldórsson, M., Shachnai, H. and Tamir, T.,
On chromatic sums and distributed resource allocation. Information
and Computation, 140,2(1998), pages 183–202.

BE09 Barenboim, L. and Elkin, M., Distributed (∆+1)-coloring in linear (in ∆)
time. Proc. 41st Annual ACM Symposium on Theory of Computing
(STOC, Bethesda, MD, USA, May–June 2009), New York, NY, USA,
2009, ACM Press, pages 111–120.

BE10a Barenboim, L. and Elkin, M., Deterministic distributed vertex coloring
polylogarithmic time. Proc. 29th Annual ACM Symposium on Principles
of Distributed Computing (PODC, Zurich, Switzerland, July 2010), New
York, NY, USA, 2010, ACM Press, pages 410–419.

BE10b Barenboim, M. and Elkin, M., Distributed deterministic edge coloring
using bounded neighborhood independence, October 2010. Manuscript,
arXiv:1010.2454v1 [cs.DC]. To appear in PODC 2011.

BGS98 Bellare, M., Goldreich, O. and Sudan, M., Free bits, PCPs, and non-
approximability – towards tight results. SIAM Journal on Computing,
27,3(1998), pages 804–915.

BH06 Björklund, A. and Husfeldt, T., Inclusion-exclusion algorithms for count-
ing set partitions. Proc. 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS, Berkeley, CA, USA, October 2006), Los
Alamitos, CA, USA, 2006, IEEE Computer Society Press, pages 575–582.

BHKK10 Björklund, A., Husfeldt, T., Kaski, P. and Koivisto, M., Covering
and packing in linear space. Proc. 37th International Colloquium on
Automata, Languages and Programming (ICALP, Bordeaux, France,
July 2010), volume 6198 of Lecture Notes in Computer Science, Berlin,
Germany, 2010, Springer, pages 727–737.



82

Bie10 Biere, A., Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race
2010. Technical Report 10/1, Institute for Formal Models and Verifcation,
Johannes Kepler University, August 2010. FMV Report Series.

Bro41 Brooks, R. L., On colouring the nodes of a network. Mathematical
Proceedings of the Cambridge Philosophical Society, 37,2(1941), pages
194–197.

BV01 Boldi, P. and Vigna, S., An effective characterization of computability in
anonymous networks. Proc. 15th International Symposium on Distributed
Computing (DISC, Lisbon, Portugal, October 2001), volume 2180 of
Lecture Notes in Computer Science, Berlin, Germany, 2001, Springer,
pages 33–47.

CAC+81 Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins,
M. E. and Markstein, P. W., Register allocation via coloring. Computer
Languages, 6,1(1981), pages 47–57.

Cay79 Cayley, A., On the colouring of maps. Proceedings of the Royal Geo-
graphical Society and Monthly Record of Geography, 1,4(1879), pages
259–261.

CHW08 Czygrinow, A., Hańćkowiak, M. and Wawrzyniak, W., Fast distributed
approximations in planar graphs. Proc. 22nd International Symposium
on Distributed Computing (DISC, Arcachon, France, September 2008),
volume 5218 of Lecture Notes in Computer Science, Berlin, Germany,
2008, Springer, pages 78–92.

CLRS01 Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C., Introduction
to Algorithms. The MIT Press, Cambridge, MA, USA, second edition,
2001.

CNS81 Chiba, N., Nishizeki, T. and Saito, N., A linear 5-coloring algorithm of
planar graphs. Journal of Algorithms, 2,4(1981), pages 317–327.

Coo71 Cook, S. A., The complexity of theorem-proving procedures. Proc.
3rd Annual ACM Symposium on Theory of Computing (STOC, Shaker
Heights, OH, USA, May 1971), New York, NY, USA, 1971, ACM Press,
pages 151–158.



83

CV86 Cole, R. and Vishkin, U., Deterministic coin tossing with applications
to optimal parallel list ranking. Information and Control, 70,1(1986),
pages 32–53.

Die10 Diestel, R., Graph Theory. Springer, Berlin, Germany, fourth edition,
2010.

Epp05 Eppstein, D., Quasiconvex programming. In Combinatorial and Com-
putational Geometry, Goodman, J. E., Pach, J. and Welzl, E., editors,
Cambridge University Press, 2005, chapter 16, pages 287–331.

Epp06 Eppstein, D., Quasiconvex analysis of multivariate recurrence equa-
tions for backtracking algorithms. ACM Transactions on Algorithms,
2,4(2006), pages 492–509.

Erd59 Erdős, P., Graph theory and probability. Canadian Journal of Mathe-
matics, 11,1(1959), pages 34–38.

ES03 Eén, N. and Sörensson, N., An extensible SAT-solver. Proc. 6th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT, Santa Margherita Ligure, Italy, May 2003), volume 2919 of Lec-
ture Notes in Computer Science, Berlin, Germany, 2003, Springer, pages
502–518.

Est03 Estrada, G. G., A note on designing logical circuits using SAT. Proc.
5th International Conference on Evolvable Systems (ICES, Trondheim,
Norway, March 2003), volume 2606 of Lecture Notes in Computer
Science, Berlin, Germany, 2003, Springer.

FGIP07 Fraigniaud, P., Gavoille, C., Ilcinkas, D. and Pelc, A., Distributed com-
puting with advice: Information sensitivity of graph coloring. Proc. 34th
International Colloquium on Automata, Languages and Programming
(ICALP, Wrocław, Poland, July 2007), volume 4596 of Lecture Notes in
Computer Science, Berlin, Germany, 2007, Springer, pages 231–242.

FGK05 Fomin, F. V., Grandoni, F. and Kratsch, D., Some new techniques in
design and analysis of exact (exponential) algorithms. Bulletin of the
EATCS, 87(2005), pages 47–77.



84

FGK09 Fomin, F. V., Grandoni, F. and Kratsch, D., A measure & conquer
approach for the analysis of exact algorithms. Journal of the ACM,
56,5(2009), pages 25:1–25:32.

FK98 Feige, U. and Kilian, J., Zero knowledge and the chromatic number.
Journal of Computer and System Sciences, 57,2(1998), pages 187–199.

FK06 Fedin, S. S. and Kulikov, A. S., Automated proofs of upper bounds
on the running time of splitting algorithms. Journal of Mathematical
Sciences, 134,5(2006), pages 2328–2391.

FK10 Fomin, F. V. and Kratsch, D., Exact Exponential Algorithms. Springer,
Berlin, Germany, 2010.

FRRS09 Fellows, M. R., Rosamund, F. A., Rotics, U. and Szeider, S., Clique-
width is NP-complete. SIAM Journal on Discrete Mathematics,
23,2(2009), pages 909–939.

GB65 Golomb, S. W. and Baumert, L. D., Backtrack programming. Journal
of the ACM, 12,4(1965), pages 516–524.

GGHN04 Gramm, J., Guo, J., Hüffner, F. and Niedermeier, R., Automated gener-
ation of search tree algorithms for hard graph modification problems.
Algorithmica, 39,4(2004), pages 321–347.

GJ76 Garey, M. R. and Johnson, D. S., The complexity of near-optimal graph
coloring. Journal of the ACM, 23,1(1976), pages 43–49.

GJ79 Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, New
York, NY, USA, 1979.

GJM06 Gent, I. P., Jefferson, C. and Miguel, I., MINION: A fast, scalable, con-
straint solver. Proc. 17th European Conference on Artificial Intelligence
(ECAI, Riva del Garda, Italy, August–September 2006), Amsterdam,
Netherlands, 2006, IOS Press, pages 98–102.

GJS74 Garey, M. R., Johnson, D. S. and Stockmeyer, L. J., Some simplified
NP-complete problems. Proc. 6th Annual ACM Symposium on Theory
of Computing (STOC, Seattle, WA, USA, May 1974), New York, NY,
USA, 1974, ACM Press, pages 47–63.



85

GKNS07 Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T., clasp: A
conflict-driven answer set solver. Proc. 9th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR, Tempe, AZ,
USA, May 2007), volume 4483 of Lecture Notes in Computer Science,
Berlin, Germany, 2007, Springer, pages 260–265.

GLS93 Grötschel, M., Lovász, L. and Schrijver, A., Geometric Algorithms and
Combinatorial Optimization. Springer, Berlin, Germany, second edition,
1993.

Gon08 Gonthier, G., Formal proof – the four-color theorem. Notices of the
AMS, 55,11(2008), pages 1382–1393.

GP87 Goldberg, A. V. and Plotkin, S. A., Parallel (∆+1)-coloring of constant-
degree graphs. Information Processing Letters, 25,4(1987), pages 241–
245.

GPS88 Goldberg, A. V., Plotkin, S. A. and Shannon, G. E., Parallel symmetry-
breaking in sparse graphs. SIAM Journal on Discrete Mathematics,
1,4(1988), pages 434–446.

GRS80 Graham, R. L., Rothschild, B. L. and Spencer, J. H., Ramsey Theory.
John Wiley & Sons, New York, NY, USA, 1980.

GS02 Gomes, C. P. and Shmoys, D., Completing quasigroups or Latin squares:
A structured graph coloring problem. Proc. of the Computational Sym-
posium on Graph Coloring and its Generalization, Ithaca, NY, USA,
2002, pages 22–39.

Hel63 Hellerman, L., A catalog of three-variable or-invert and and-invert logical
circuits. IEEE Transactions on Electronic Computers, 12,3(1963), pages
198–223.

HJS09 Hamadi, Y., Jabbour, S. and Sais, L., ManySAT: A parallel SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation, 6,1(2009),
pages 245–2262.

HK65 Hall, M. and Knuth, D. E., Combinatorial analysis and computers. The
American Mathematical Monthly, 78,2(1965), pages 21–28.



86

HKP98 Hańćkowiak, M., Karoński, M. and Panconesi, A., On the distributed
complexity of computing maximal matchings. Proc. 9th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA, San Francisco, CA,
USA, January 1998), Philadelphia, PA, USA, 1998, Society for Industrial
and Applied Mathematics, pages 219–225.

Hol81 Holyer, I., The NP-completeness of edge-colouring. SIAM Journal on
Computing, 10,4(1981), pages 718–720.

HSW56 Hall, M., Swift, J. D. and Walker, R. J., Uniqueness of the projective
plane of order eight. Mathematical Tables and Other aids to Computation,
10,56(1956), pages 186–194.

JK10 Junttila, T. and Kaski, P., Exact cover via satisfiability: An empirical
study. Proc. 16th International Conference on Principles and Practice of
Constraint Programming (CP, St. Andrews, Scotland, September 2010),
volume 6308 of Lecture Notes in Computer Science, Berlin, Germany,
2010, Springer, pages 297–304.

Kar72 Karp, R. M., Reducibility among combinatorial problems. Complexity
of Computer Computations, Miller, R. E. and Thatcher, J. W., editors,
New York, NY, USA, 1972, Plenum Press, pages 85–103.

KKRR93 Kamath, A. P., Karmarkar, N. K., Ramakrishnan, K. G. and Resende, M.
G. C., An interior point approach to Boolean vector function synthesis.
Proc. 36th Midwest Symposium on Circuits and Systems (MWSCAS,
Detroit, MI, USA, August 1993), Piscataway, NJ, USA, 1993, IEEE,
pages 185–189.

KKY09 Kojevnikov, A., Kulikov, A. S. and Yaroslavtsev, G., Finding efficient
circuits using SAT-solvers. Proc. 12th International Conference on
Theory and Applications of Satisfiability Testing (SAT, Swansea, UK,
June–July 2009), volume 5584 of Lecture Notes in Computer Science,
Berlin, Germany, 2009, Springer.

KMW10 Kuhn, F., Moscibroda, T. and Wattenhofer, R., Local computation:
Lower and upper bounds, 2010. Manuscript, arXiv:1011.5470 [cs.DC].

Knu11 Knuth, D. E., The Art of Computer Programming, volume 4A. Pearson
Education, Upper Saddle River, NJ, USA, 2011.



87

KÖ06 Kaski, P. and Östergård, P. R. J., Classification Algorithms for Codes
and Designs. Springer, Berlin, Germany, 2006.

Koi06 Koivisto, M., An O∗(2n) algorithm for graph coloring and other par-
titioning problems via inclusion–exclusion. Proc. 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS, Berkeley, CA,
USA, October 2006), Los Alamitos, CA, USA, 2006, pages 583–590.

KR03 Kobler, D. and Rotics, U., Edge dominating set and coloring on graphs
with fixed clique-width. Discrete Applied Mathematics, 126,2–3(2003),
pages 197–221.

Kuh09 Kuhn, F., Weak graph colorings: Distributed algorithms and applica-
tions. Proc. 21st Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA, Calgary, Canada, August 2009), New York,
NY, USA, 2009, ACM Press, pages 138–144.

KW06 Kuhn, F. and Wattenhofer, R., On the complexity of distributed graph
coloring. Proc. 25th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC, Denver, CO, USA, July 2006), New York,
NY, USA, 2006, ACM Press, pages 7–15.

Lam91 Lam, C. W. H., The search for a finite projective plane of order 10.
American Mathematical Monthly, 98,4(1991), pages 305–318.

Lin87 Linial, N., Distributive graph algorithms – global solutions from local
data. Proc. 28th Annual Symposium on Foundations of Computer
Science (FOCS, Los Angeles, CA, USA, October 1987), Los Alamitos,
CA, USA, 1987, IEEE Computer Society Press, pages 331–335.

Lin92 Linial, N., Locality in distributed graph algorithms. SIAM Journal on
Computing, 21,1(1992), pages 193–201.

LMS08 Lynce, I. and Marques-Silva, J., Haplotype inference with Boolean
satisfiability. International Journal on Artificial Intelligence Tools,
17,2(2008), pages 355–387.

Lov68 Lovász, L., On chromatic numbers of finite set-systems. Acta Mathe-
matica Aeademiae Seientiarum Hungaricae, 19,1–2(1968), pages 59–67.



88

LTS89 Lam, C. W. H., Thiel, L. and Swiercz, S., The non-existence of finite pro-
jective planes of order 10. Canadian Journal of Mathematics, 41,6(1989),
pages 1117–1123.

LY94 Lund, C. and Yannakakis, M., On the hardness of approximating mini-
mization problems. Journal of the ACM, 41,5(1994), pages 960–981.

MR08 Mulzer, W. and Rote, G., Minimum-weight triangulation is NP-hard.
Journal of the ACM, 55,2(2008), pages 11:1–11:29.

Mus11 Musto, T., Knowledge of global bounds in local algorithms. Master’s
thesis, Department of Computer Science, University of Helsinki, 2011.
To appear.

Myc57 Mycielski, J., Sur le coloriage des graphes. Colloquim Mathematicum,
3(1957), pages 161–162.

Nao91 Naor, M., A lower bound on probabilistic algorithms for distributive
ring coloring. SIAM Journal on Discrete Mathematics, 4,3(1991), pages
409–412.

NS95 Naor, M. and Stockmeyer, L., What can be computed locally? SIAM
Journal on Computing, 24,6(1995), pages 1259–1277.

Pel00 Peleg, D., Distributed Computing – A Locality-Sensitive Approach. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

PR01 Panconesi, A. and Rizzi, R., Some simple distributed algorithms for
sparse networks. Distributed Computing, 14,2(2001), pages 97–100.

Pre04 Prestwich, S., Local search on SAT-encoded colouring problems. Proc.
7th International Conference on Theory and Applications of Satisfiability
Testing (SAT, Vancouver, BC, Canada, May 2004), volume 2919 of
Lecture Notes in Computer Science. Springer, 2004, pages 105–119.

PS98 Papadimitriou, C. H. and Steiglitz, K., Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, Inc., Mineola, NY,
USA, 1998.

PWZ96 Petkovšek, M., Wilf, H. and Zeillberger, D., A=B. A K Peters, Wellesley,
MA, USA, 1996.



89

Rad09 Radziszowski, S. P., Small Ramsey numbers. Electronic Journal of
Combinatorics, DS1(2009). 12th revision.

Ram30 Ramsey, F. P., On a problem of formal logic. Proceedings of the London
Mathematical Society, 30(1930), pages 264–286.

Ram99 Ramanathan, S., A unified framework and algorithm for channel as-
signment in wireless networks. Wireless Networks, 5,2(1999), pages
81–94.

RSST96 Robertson, N., Sanders, D. P., Seymour, P. and Thomas, R., Efficiently
four-colouring planar graphs. Proc. 28th Annual ACM Symposium on
Theory of Computing (STOC, Philadelphia, PA, USA, May 1996), New
York, NY, USA, 1996, ACM Press, pages 571–575.

RSST97 Robertson, N., Sanders, D., Seymour, P. and Thomas, R., The four-
colour theorem. Journal of Combinatorial Theory, Series B, 70,1(1997),
pages 2–44.

Ryb11 Rybicki, J., Local colour reduction algorithms, http://cs.helsinki.fi/
group/parac/colour-reduction/, April 2011. Online appendix.

Sch09 Schaafsma, B., MiniMerge: Symmetry-free learning in combinatorial
problems. Master’s thesis, Delft University of Technology, 2009.

SHvM09 Schaafsma, B., Heule, M. J. and van Maaren, H., Dynamic symmetry
breaking by simulating Zykov contraction. Proc. 12th International
Conference on Theory and Applications of Satisfiability Testing (SAT,
Swansea, UK, June–July 2009), volume 5584 of Lecture Notes In Com-
puter Science, Berlin, Germany, 2009, Springer, pages 223–236.

Sip06 Sipser, M., Introduction to the Theory of Computation. Thomson Course
Technology, Boston, MA, USA, second edition, 2006.

Suo11 Suomela, J., Survey of local algorithms, http://www.iki.fi/jukka.
suomela/local-survey, 2011. Manuscript submitted for publication.

SV93 Szegedy, M. and Vishwanathan, S., Locality based graph coloring. Proc.
25th Annual ACM Symposium on Theory of Computing (STOC, San
Diego, CA, USA, May 1993). ACM Press, 1993, pages 201–207.

http://cs.helsinki.fi/group/parac/colour-reduction/
http://cs.helsinki.fi/group/parac/colour-reduction/
http://www.iki.fi/jukka.suomela/local-survey
http://www.iki.fi/jukka.suomela/local-survey


90

TSSW96 Trevisan, L., Sorkin, G. B., Sudan, M. and Williamson, D. P., Gadgets,
approximation, and linear programming. Proceedings of the 37th Annual
Symposium on Foundations of Computer Science (FOCS, Burlington,
VT, USA, October 1996), Los Alamitos, CA, USA, 1996, IEEE Computer
Society Press, pages 617–626.

Van08 Van Gelder, A., Another look at graph coloring via propositional satis-
fiability. Discrete Applied Mathematics, 156,2(2008), pages 230–243.

Vaz01 Vazirani, V. V., Approximation Algorithms. Springer, Berlin, Germany,
2001.

Wal00 Walsh, T., SAT v CSP. Proc. 6th International Conference on Principles
and Practice of Constraint Programming (CP, Singapore, September
2000), volume 1894 of Lecture Notes in Computer Science, Berlin, Ger-
many, 2000, Springer, pages 441–456.

Weg87 Wegener, I., The Complexity of Boolean Functions. John Wiley & Sons,
Chichester, UK, 1987.

Wil07 Williams, R., Algorithms and Resource Requirements for Fundamental
Problems. Ph.D. thesis, Carnegie Mellon University, 2007.

Wil08 Williams, R., Applying practice to theory. ACM SIGACT News,
39,4(2008), pages 37–52.

Wil10 Williams, R., Alternation-trading proofs, linear programming, and lower
bounds. Proc. 27th International Symposium on Theoretical Aspects
of Computer Science (STACS, Nany, France, March 2010), volume 5
of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl,
Wadern, Germany, 2010, Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, pages 669–680.


	Introduction
	Related work in computer-aided proofs
	Preliminaries
	Sets and functions
	Graphs
	Fundamental graph families
	Graph-theoretic problems
	Computational complexity of graph colouring

	Distributed computing
	The structure of a distributed system
	Models of computation
	The input and output of a distributed system
	Distributed algorithms and local neighbourhoods
	Coloured networks

	Distributed vertex colouring
	The greedy approach
	Cole–Vishkin techniques
	Colouring bounded-degree graphs
	The current state of deterministic distributed colouring

	Lower bounds for distributed colouring
	Ramsey-theoretic lower bound arguments
	Lower bound for tree colouring
	Neighbourhood graphs

	Computing the chromatic number
	The propositional satisfiability problem
	Encoding k-colourability as SAT 
	Finding an optimal colouring

	Improved bounds for cycle and tree colouring
	Colourings for the neighbourhood graphs
	The value of local information
	Faster deterministic 3-colouring
	Closing the gap in lower and upper bound results
	Extensions to other distributed problems

	Conclusions
	References

