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Abstract

This thesis consists of four parts. The first part addresses issues related to
quantitative analysis of phospholipid compositions of cells and tissues by
mass spectrometry. In particular, the effects of phospholipid structure and
concentration were investigated. The second part describes a new computa-
tional method for calculation of the unit resolution isotopic distribution for
any compound, given the isotope abundances of the elements it consists of.
In the third part, software (LIMSA) for processing mass spectrometric data
from complex lipid samples was developed and tested. The fourth part of
the thesis makes use of the tools listed above and a novel mass-spectrometric
approach was developed to determine the substrate specificities of three se-
cretory phospholipases in unprecedented detail.
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Chapter 1

Introduction

Lipids comprise a very diverse group of compounds [Fahy et al., 2005]. They
have various functions, such as signal transduction and energy storage, but
most importantly, lipids are able to form membranes. Membranes surround
the cell and its organelles and restrict the diffusion of water-soluble ions,
nucleic acids, proteins and other metabolites. Membranes protect the cell
and its metabolism from the interference of the outside, and allow the cell
organelles to have specialized functions.

Mass spectrometry has proven to be an excellent method for the analy-
sis of lipid compositions, owing to its great resolving power and sensitivity
[Brugger et al., 1997]. Mass spectrometry is also very suitable for study-
ing metabolism because it can distinguish between stable isotope labelled
compounds and naturally occurring compounds, and thus can be used to
follow the isotope label during the course of metabolic reactions. For exam-
ple, isotope labelled compounds and mass spectrometry have been used to
study cholesterol absorption in man [Godin et al., 2004] and metabolism of
phosphatidylcholine in the lung surfactant [Bernhard et al., 2004].

As the mass spectrometric methods of lipid analysis have developed, a
new field, lipidomics has emerged [Wenk, 2005], [Orešič et al., 2008], [Ger-
man et al., 2007]. Lipidomics allow detailed high throughput analysis of
complex biological samples, thus giving the possibility to answer the many
unresolved questions of the regulation of lipid metabolism at the cell or
organism level. Lipidomics strives for comprehensiveness, sensitivity and
accuracy of analysis. The large amount of data from lipidomics experiments
necessitates the use of software for data processing and analysis [Katajamaa
and Orešič, 2007], [Song et al., 2009].

This work consists of development of mass spectrometric methods for the
analysis of phospholipid compositions of biological samples, development of
lipidomic data processing software, and application of these methods for the
study of substrate specificities of secreted phospholipases.
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Chapter 2

Review of the literature

This review briefly introduces lipids and their properties. An overview of
mass spectrometry and electrospray ionization is also provided, as much as
it relates to mass spectrometry of lipids, especially phospholipids.

2.1 Lipid classes

Lipids are a diverse group of hydrophobic or amphipathic compounds. The
theoretical total number of distinct lipid molecules has been estimated to
be close to 200000 [Niemelä et al., 2009]. Lipids can be grouped to e.g.
fatty acids, simple glycerolipids, glycerophospholipids, sphingolipids, sterols,
prenol lipids and polyketides [Sud et al., 2007], [Vance and Vance, 1996].

Fatty acids are carboxylic acids of variable length (typically 14-24 car-
bons) containing a varying number of double bonds. The double bonds in a
naturally occurring fatty acid are typically of the cis-configuration and, de-
pending on the distance of the first double bond from the methyl end, fatty
acids are divided to the omega- 3, 6, and 9 series. Hydroxy fatty acids are in-
termediates of fatty acid catabolism and constituents of some sphingolipids.
While mammalian cells contain the necessary enzymes for synthesis, elonga-
tion and unsaturation of their fatty acids, they cannot synthesize fatty acids
of the omega-3 series [Vance and Vance, 1996]. Fatty acids are commonly
described using the C:D notation, where C denotes the number of carbons
in the chain, and D denotes the number of double bonds.

Arachidonic acid (20:4) is the precursor for eicosanoids, including prosta-
glandins, thromboxanes and leukotrienes, which are involved in inflamma-
tory response and blood clotting. They act as local hormones that coor-
dinate the local response for stimuli [Vance and Vance, 1996] and are also
involved in cancer [Wang and DuBois, 2010]. Eicosapentaenoic acid (EPA,
20:5) and docosahexaenoic acid (DHA, 22:6) are omega-3 fatty acids and
precursors of resolvins, docosatrienes and protectins [Serhan, 2005b]. Oxi-
dized fatty acids of phospholipids seem to be involved in apoptosis and in
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age-related diseases [Domingues et al., 2008], and thus there is an increasing
interest in mass-spectrometric analysis of these compounds [Tyurin et al.,
2008].

Simple glycerolipids are divided to mono-, di- and triacylglycerols and
are important for the energy metabolism of the cell. Large amount of energy
can be stored in triacylglycerols as they are osmotically inactive and their
acyl chains consist of highly reduced carbon [Vance and Vance, 1996]. Di-
acylglycerols are also important intermediates of phospholipid biosynthesis
[Vance and Vance, 1996].

Glycerophospholipids (GPLs) are the most abundant constituents of the
cellular membranes, followed by sphingolipids and sterols (sphingomyelin
and cholesterol in mammalian cells). GPLs are composed of a glycerol
backbone, two fatty acids, a phosphate group and the polar head group
(see Figure 2.1). Typically, the sn1 position of the glycerol moiety is occu-
pied by a saturated fatty acid and the sn2 position by an unsaturated fatty
acid [Lands, 2000]. The sn1 can also contain an ether or vinyl ether -linked
alkyl chain. The GPL classes differ in respect of the head group, which can
be ethanolamine, choline, serine, inositol, glycerol etc.

Phospholipids have many important roles in cells, i.e. they form the
backbone of all membranes, participate in signal transduction and anchor
some proteins to membranes [van Meer et al., 2008]. Especially PI is impor-
tant in signal transduction as it is the precursor of polyphosphoinositoles,
which are cleaved to phosphorylated inositol and DAG which activate e.g.
protein kinase C [Martin, 1998]. PS is found in the outer leaflet of the PM
of apoptotic cells and may play a role in removal of such cells [Tyurina et al.,
2004].

O O

O
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P

OH
O

Fatty acylFatty ether

Fatty vinyl ether

Fatty acyl

sn1 sn2

Polar head group

Choline (PC)

Ethanolamine (PE)

Inositol (PI)

Serine (PS)

Glycerol (PG)

H (PA)

Figure 2.1: Phospholipid structure

Sphingolipids are composed of a sphingosine backbone, a fatty acid, and
a polar “head group”. The head-group of sphingomyelin (SM), is phospho-
choline, while the head groups of glykosphingolipids consist of one or more
glycosyl moieties. Because of the diversity of these moieties, glycosphin-
golipids are structurally even more diverse than GPLs. Some sphingolipids
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Lipid class Mitochondria ER PM lysosomes

PC 40.3 58.4 39.3 39.7
PE 34.6 21.8 23.3 14.1
PI 4.6 10.1 7.7 4.5
PS 0.7 2.9 9.0 1.7
SM 0.5 2.5 16.0 20.3
CL 17.8 1.1 1.0 1.0
LBPA 0.2 7.0

Table 2.1: Phospholipid compositions (%) of various organelles of rat liver
[van Meer, 1989]

are rather hydrophilic (complex sphingolipids with many sialic acids, or
sphingosine phosphate), while others can be very hydrophobic (ceramide)
and thus no single extraction method provides good recovery of all sphin-
golipids [Merrill et al., 2005]. Sphingolipids, e.g. ceramides take part in sig-
nal transduction [Eyster, 2007], [Mills and Moolenaar, 2003]. Sphingomyelin
and cholesterol have high affinity to each other [Bittman et al., 1994], and
tend to form nanoscopic domains or rafts in cellular membranes [Simons
and Gerl, 2010]. Glykosphingolipids have important roles in cell adhesion
[Turner et al., 1992] and cellular recognition [Libero and Mori, 2007].

2.2 Lipid compositions of cellular membranes

An eukaryotic cell contains many specialized organelles: The plasma mem-
brane surrounding the cell, mitochondria, endoplasmic reticulum, the Golgi
apparatus, lysosomes, etc. The lipid compositions of all these organelles
differ, as shown in Table 2.1.

The lipid compositions of the cellular membranes are maintained by both
metabolic and intracellular transport processes. The latter include vesicular
trafficking, protein mediated and spontaneous diffusion as well as membrane
contact site -dependent translocation (van Meer et al. [2008], Voelker [2005]).
Regarding metabolism, cholesterol, ceramide and most phospholipids are
synthesized in ER. PC is synthesized via the CDP-choline pathway in most
cells but also via the PE methylation pathway in the liver [Houweling et al.,
1995]. PE is synthesized via the CDP-ethanolamine pathway in the ER or
by decarboxylation of PS in mitochondria [Vance and Vance, 2004]. PG and
CL are both synthesized in the mitochondria [Schlame et al., 2000] and CL is
only found in this organelle. PS is synthesized by a base-exchange reaction
from PC (by PS synthase-1) or from PE (by PS synthase-2) in the ER and
mitochondria-associated membranes (MAM). SM and glykosphingolipids are
synthesized from ceramide in the Golgi apparatus. SM and PC are enriched
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in the outer leaflet of the plasma membrane, while PE and PS are abundant
in the inner leaflet [van Meer et al., 2008].

The maintenance of the lipid compositions of the various cellular mem-
branes is poorly understood. Apart from synthesis and trafficking, phos-
pholipases and acyltrasferases play a significant role [Lands, 2000]. Phos-
pholipases are classified according to the bond they hydrolyze. A -type
phospholipases hydrolyze the ester bond between glycerol and a fatty acid
[Schaloske and Dennis, 2006]. C and D -type phospholipases cleave between
the phosphorous and the DAG moiety or between the phosphorous and the
polar head group, respectively. Acyltransferases differ in their acyl speci-
ficity [Shindou and Shimizu, 2008], which may explain why different GPLs
have different acyl chain compositions.

2.3 Lipid analysis

The progress in the analysis of lipid mixtures has been slower than for other
biomolecules. One of the main reasons for this is the structural similarity of
the molecular species belonging to same lipid class, which makes their sep-
aration difficult. Another reason is that the relative abundances of different
lipids can vary several orders of magnitude which poses problems in their
detection.

Earlier studies concentrated in the analysis of phospholipids at the class
level with using thin-layer chromatography (TLC) or high performance liq-
uid chromatography (HPLC) [Sderberg et al., 1991], [Patton et al., 1982].
Another “workhorse” in lipid analysis has been gas chromatography, which
is used to analyze the fatty acid profiles of lipid classes, which had to be
first separated using TLC or HPLC. Alternatively, the molecular species
in a lipid class could be obtained by reverse-phase separation of molecular
species of intact lipids. This approach, however, requires large amounts of
lipids (hundreds of nanomoles) [Patton et al., 1982], thus making it unsuit-
able for e.g. the analysis of sub-cellular fractions from cultured cells. Also,
complete separation of all molecular species is rarely achieved.

Mass spectrometry has opened up new possibilities for lipid analysis due
to its high resolving power, sensitivity and the possibility to do structural
identification by fragment analysis. Initially, the ionization methods avail-
able caused extensive fragmentation of the lipid molecules. This prevented
detailed analysis of biological samples typically containing hundreds of lipid
species. The introduction of Electrospray ionization (ESI), developed by
Fenn and coworkers [Fenn et al., 1989] and the advances in instrumentation
revolutionized the analysis of lipid compositions [Brugger et al., 1997]. ESI
is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids,
and it is also compatible with on-line HPLC separation.

This novel method of analyzing lipid compositions lead to the introduc-
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tion of the term lipidomics [Han and Gross, 2003]. Besides ESI, matrix-
assisted laser desorption ionization (MALDI) has been used for lipidome
analysis [Schiller et al., 2004]. MALDI is particularly useful for mapping of
lipid distributions in tissues [Burnum et al., 2009].

2.4 Mass spectrometry of lipids

2.4.1 Principles of mass spectrometry

Mass spectrometry is based on the behavior of gas phase ions in an electric
or magnetic field. The ions are accelerated in the field and the degree of
acceleration depends on the charge and the mass of the ion. For this reason,
mass spectrometers always measure the mass-to-charge ratio or m/z ratio
of ions. There are various types of mass spectrometers but they all have
following things in common: an ion source, a mass analyzer and a detector.
The ion source generates ions of the analytes, the mass analyzer determines
the mass-to-charge ratios of the ions generated and the detector counts the
ions arriving from the mass analyzer [Gross, 2004]. Some instruments, like
the Orbitrap [Hu et al., 2005] do not have a separate detector, because the
mass analyzer is also used for detection.

Several types of mass analyzers with their particular advantages and dis-
advantages are employed in lipidomics [Milne et al., 2006] The mass analyzer
and detector must be kept under high vacuum, which means that mass spec-
trometers are accompanied by vacuum pumps. Modern mass spectrometers
are always accompanied by a computer which runs the control and data
processing software.

Source MS1 Collision Cell MS2 Detector

Figure 2.2: The components of a triple-quadrupole mass spectrometer. MS1
and MS2: the first and second mass analyzers. Collision cell can be used for
fragment analysis by collision induced dissociation.

The most commonly used analyzer in lipidomics studies is the triple-
quadrupole (Fig. 2.2). In such instruments, the ions entering the instrument
first pass a mass analyzer (quadrupole 1), then a collision cell and finally
the second mass analyzer (quadrupole 2). The fragments created in the
collision cell (if active) provide direct information on the structure of the
analytes. Common fragmentations are the loss of water, amine or methyl
groups [Smith and Busch, 1999], but in regard to phospholipids, more useful
information is provided by the fragmentations involving fatty acid and head
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group moieties [Pulfer and Murphy, 2003].
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Figure 2.3: Electrospray ionization process [Cole, 1997]. The electric field
created by the high voltage power supply drives the formation of the Taylor
Cone at the tip of the spray needle. The high surface charge of the cone
leads to ejection of small ESI droplets. Gas phase ions are formed when the
solvent evaporates from the droplets. Ions enter the mass spectrometer for
further analysis.

In electrospray ionization (Figure 2.3) the dissolved analytes are intro-
duced to the source through a capillary, set to a high potential (voltage)
relative to the entrance of the mass analyzer. The electric field drives the
formation of the Taylor cone with highly charged surface at the tip of the
capillary. The high charge density causes the formation of small droplets
which are pulled towards the entrance of the instrument by the field. The
droplets shrink as the solvent evaporates and eventually naked gas phase
ions are formed [Cole, 1997], [Kerbale, 2000], [Cole, 2000], [Cech and Enke,
2001a].

Different ions partition between the surface and the interior of the charged
solvent droplets, depending on their polarity and other properties. Salts or
other easily ionizable impurities in the sample can cause pronounced loss of
intensity of the analyte peaks. This is because salt ions tend to occupy the
surface of the droplets, thus out-competing the analyte and reducing the
efficiency of their ionization [Constantopoulos et al., 1999]. This suppres-
sion depends on the total concentration of the sample [Enke, 1997]. This
phenomenon, also called the matrix effect complicate the quantification of
the analyte, because the measured analyte ion intensity does not depend
only on its own concentration, but is also affected by the amount of other
ions present in the sample [Tang and Kebarle, 1993].

Interestingly, it has been shown that the ion intensity of an analyte cor-
relates with its surface activity [Cech and Enke, 2001b], [Tang and Kebarle,
1993] and the retention time in a reverse-phase column [Cech et al., 2001].
Lipids are special among biomolecules as they form series of homologues
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GPL class Fragment Precursor Mode polarity

PC phosphocholine [M+H]+ Par 184 positive
PE phosphoethanolamine [M+H]+ NL 141 positive
PS serine [M-H]- NL 87 negative
PI inositol phosphate [M-H]- Par 241 negative

Table 2.2: Specific scan modes for phospholipid classes (Par: parent scan,
NL: neutral loss)

with systematically varying chain length or unsaturation. Thus, molecules
with different surface activity and hydrophobicity exist within a lipid class.
In ESI-MS, this property of lipids results in varying instrument response
[Han and Cross, 1994]. For phospholipids, the instrument response has been
shown to decrease with increasing acyl chain length [Brugger et al., 1997].
It has also been observed that the instrument response increases with the
degree of unsaturation [Ishida et al., 2004], which is consistent with the fact
that unsaturation decreases the hydrophobicity of the lipid molecules. In
addition, the relative intensities can vary as function of the total phospho-
lipid concentration [Zacarias et al., 2002], [Han et al., 2006], which further
complicates their quantitative analysis.

While tuning of instrument settings, especially the collision energy in
tandem MS, can be used to make the relative responses of the different
lipid species more similar to each other, [Han, 2002], [Han and Gross, 2004],
[Schwudke et al., 2006], this does not overcome the concentration and matrix
effects, which can vary significantly between samples.

2.4.2 Fragmentation of phospholipids

Phospholipids contain a polar head group, the glycerol backbone and two
fatty acids (Figure 2.1). Collision induced dissociation of phospholipids
creates many informative fragments. Perhaps the most useful ones are those
deriving from the head group (Table 2.2), since they allow one to do lipid
class specific scans [Han and Gross, 2004], [Pulfer and Murphy, 2003]. Also,
the fragmentations involving the fatty acid ester bond are useful as they
provide information on the acyl chains either directly or indirectly based on
the lyso-phospholipid fragments [Ekroos et al., 2003], [Pulfer and Murphy,
2003]. When using such specific scanning modes, one must be aware of
overlapping (non-specific) fragmentations [Yan and Caldwell, 2004]. It is
also notable that the intensities of the fragment ions can vary depending
which adduct-forming ions (e.g. H+, Na+, Li+) are present [Han and Gross,
1995], [Hsu and Turk, 2003].

Positioisomers are difficult to identify using mass spectrometric methods
because they usually produce the same fragment ions. However, the relative
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abundances of the acyl chain loss ions often differ significantly and can be
used for identification [Simes et al., 2008]. It has been observed that the
ester bond of the sn2 fatty acid is more labile [Hsu and Turk, 2008b].

Identification of the double bond positions in the fatty acids of lipids
relies on multistage MS (MSn) [Mitchell et al., 2009]. Polyunsaturated
fatty acids are particularly difficult to identify, because of fewer informative
product ions. Lithium adducts [Hsu and Turk, 2008a] and chemical deriva-
tization by osmium tetroxide [Moe et al., 2005] or ozone [Thomas et al.,
2007] have been successfully used to identify the double bond positions in
phospholipids.

2.4.3 Instrumentation

The two main approaches used in mass spectrometric analysis of lipids are
1) direct infusion MS/MS and 2) LC-MS (liquid chromatography coupled to
a mass-spectrometer). Although many kinds of mass spectrometers can be
used for lipid analysis, triple-quadrupole instruments are the most commonly
used ones because they allow one to carry out lipid class-specific MS/MS
scans or allow sensitive selected reaction monitoring (SRM) in the context
of LC-MS. Ion trap instruments are sensitive, and can be used for detailed
structural analysis of lipids by using MS3 fragmentation [Ekroos et al.,
2003].

Hybrid instruments which combine a time-of-flight (TOF) analyzer to
quadrupole analyzer provide a better duty cycle and resolution than triple
quadrupole instruments [Schwudke et al., 2006], [Taguchi et al., 2005]. These
instruments can simultaneously perform multiple precursor ion scans, allow-
ing e.g. both the head group and fatty acyl -specific scans to be performed
at the same time [Zehethofer and Pinto, 2008]. By using special software,
this enables the identification and quantification of a large number of lipids
from a single analysis [Ejsing et al., 2006].

The LTQ Orbitrap instrument has a very high mass resolution and al-
lowed one to resolve PS and PE species that differ by 0.0726 Da [Schwudke
et al., 2007]. Koulman et al. [2009] were able to distinguish lyso PC18:3
from the sodium adduct of lyso PC16:0, the monoisotopic peaks of which
differ by 0.0024 Da, using high resolution extracted ion chromatography.

Fourier transform ion cyclotron resonance mass spectrometry can have
even higher resolution and has been used to identify e.g. the PE species in
C. elegans and PC species in soybean [Ishida et al., 2004]. This instrument
could distinguish the isotope peak of PC34:2 containing two 13C from the
monoisotope peak of PC 34:1, which differ only by 0.009 Da.

Most mass spectrometers have a wide dynamic range, i.e. the measured
intensity is proportional to the amount of ions in the sample. The range is
limited by detector saturation and the charge space phenomenon at higher
concentrations [Oursel et al., 2007]. The linear concentration range also

9



depends on the type of instrument and the rate the sample is introduced
into the ion source. For example, a linear range of only up to 2 µM has
been reported for Micromass Quattro II triple quadrupole instrument with
a conventional ESI source [DeLong et al., 2001], whereas upper limit of 100
µM was reported for QSTAR pulsar i hybrid instrument equipped with a
nanoflow ion source [Ejsing et al., 2006].

Direct infusion mass spectrometry

Direct infusion mass spectrometry (DI-MS) with lipid class -specific scanning
has been widely used in lipidomics [Brugger et al., 1997], [Hsu and Turk,
2009], [Yang et al., 2009b], [Gross and Han, 2009]. Direct infusion has the
advantage over LC-MS that the electrospray conditions remain constant, i.e.
the solvent composition, matrix and sample concentration, which can affect
the ionization of analytes, do not change during the run.

The main disadvantage of DI-MS is that quantification of isobaric species
in a lipid class is not possible using class-specific scanning but additional
fragmentation analyses are required. Also, non-specific fragmentations and
chemical background limit the dynamic range, thus hampering the quantifi-
cation of the minor species [Yetukuri et al., 2008]. These problems can be
partially mitigated with high resolution instruments.

Nanospray allows one to use low flow rates and thus can accommodate
smaller samples. Also, nanospray seems to be less sensitive to suppres-
sion effects, presumably because the smaller size of the droplets allow a
larger fraction of the ions to evaporate and enter the analyzer [Enke, 1997],
[Schwudke et al., 2006]. Several groups have used a chip-based nanospray
source (Advion NanoMate) in lipidomics [Yetukuri et al., 2008], [Ahn et al.,
2007], [Ejsing et al., 2006].

Liquid chromatography - mass spectrometry

A chromatographic step can be included before the mass analysis either
online [Wang et al., 2005], [Sommer et al., 2006], off-line [Houjou et al.,
2005] or both [Hutchins et al., 2008]. In a normal phase (e.g. silica or
diol-modified silica) chromatography phospholipids are separated according
the polar head group i.e. the different classes elute at different times [Her-
mansson et al., 2005]. Reverse phase chromatography employs hydrocarbon
(typically C18) modified stationary phases and separate the lipids based on
the hydrophobicity of their acyl chains. Separation of isobaric species can be
achieved in some cases. In the analysis of sphingolipids, normal phase chro-
matography can be employed to separate the classes differing in the polar
head group structure (e.g. glycosylceramides from lactosylceramides), while
reverse phase chromatography allows separation of the molecular species
in each class based on their different fatty acyl and/or sphingosyl residues
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[Sullards et al., 2007]. LC-MS analysis is typically more sensitive than that
using DI-MS because suppressing impurities are separated from the analytes.

On the other hand, the chromatographic step increases the time and cost
of the analysis and creates problems like column memory or selective lipid
losses in chromatography [DeLong et al., 2001]. Accurate quantification
is also more difficult, because the composition of the eluent, which affects
ionization efficiency, typically changes during the run.

2.4.4 Sample preparation and introduction to MS instru-
ment

Usually, the first step in lipid analysis is extraction with a mixture of organic
solvents, typically chloroform and methanol. It is often not possible to
optimally extract all lipids with one method and thus one has to combine
two methods, such as normal Folch and acidic solvent extractions [Wakelam
et al., 2007]. Ejsing et al. [2009] used 2-step extraction protocol to optimally
recover both polar and apolar lipids from yeast cells. Solid phase extraction
methods have also been used to extract lipids [Shen et al., 2005] [Mallet
et al., 2004].

Phospholipids can hydrolyze during storage, especially if the solvent is
basic [James et al., 2006]. Hydrolysis can be used to advantage. For instance,
treatment with LiOMe hydrolyzes glycerophospholipids thus facilitating the
analysis of SM [Yang et al., 2009b]. Polyunsaturated acyl chains are also
prone to oxidation during storage and thus antioxidants are often added.

In DI-MS, the solvent composition is chosen so that it allows for optimal
ionization of the analytes. A typical choice is a mixture of chloroform and
methanol. In LC-MS, the properties of the column matrix dictate the choice
of solvent.

Additives that improve ionization of lipids are often used in lipidomics. A
commonly used additive is ammonia, which can be used both in positive and
negative mode. In the positive mode, ammonia facilitates the “wrong-way-
round” ionization [Mansoori et al., 1997], i.e. the observation of [M+H]+
ions in strongly basic solutions.

Addition of NaOH produces intense sodium adducts ([M+Na]+), while
LiOH produces lithium adducts ([M+Li]+) with different fragmentation pat-
terns ([Hsu et al., 1998], [Yang et al., 2009b], [Han and Gross, 2004]). In the
negative mode, Cl ions [Han and Gross, 1995], ammonium acetate or for-
mate [Mallet et al., 2004] or methyl amine [Ejsing et al., 2009] can be added
to improve ionization or induce adduct formation. The additives which do
not evaporate readily tend to contaminate the instrument.
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2.5 Lipidomics

Lipidomics [Orešič et al., 2008], [German et al., 2007] [Merrill et al., 2005],
[Wenk, 2005] [van Meer, 2005] is a branch of metabolomics [Robertson,
2005]. Initially, NMR was used in metabolomics [Bales et al., 1984], while
mass spectrometry was implemented later [Plumb et al., 2002]. Lipidomics
research could be roughly divided to four branches: 1) lipid fingerprint-
ing, 2) biomarker discovery, 3) targeted analysis and 4) dynamic lipidomics.
Lipidomics has mostly focused on the analysis of the lipid proper [Han and
Gross, 2004], [He et al., 2007], [Merrill et al., 2005], but there is increasing
interest to analyze also water soluble intermediates or break-down products
(choline, phosphocholine, glycerophosphocholine, etc.), because that allows
one to study lipid turnover as well.

Lipidomics has been applied to study a number of health-related issues,
e.g. the cardiovascular disease, metabolic syndrome and diabetes [Gross
and Han, 2007]. Han et al. [2005] studied the heart tissue of mice with
streptozotocin induced diabetes. They found dramatic and progressive de-
crease of 18:2 fatty acid containing cardiolipin (CL) and increase of 22:6
fatty acid containing cardiolipin, thus indicating altered CL remodeling in
the mitochondria. Lankinen et al. [2009b] measured serum lipid profiles from
patients with metabolic syndrome and found that groups with different car-
bohydrate diets had significant differences in the serum concentration of lyso
PC species and 22:6 fatty acid. Han et al. [2004a] found that modest caloric
restriction of mice causes approximately 25% decrease of phospholipid mass
in murine myocardium and 54 % decrease of TG in muscle. Signalling
is another important application of lipidomics [Fernandis and Wenk, 2009],
[Wymann and Schneiter, 2008], [Serhan, 2005a]. For example, Gronert et al.
[2004] found specific elevation of di-16:0 species of DAG, a product of the
phospholipase D signaling pathway, in human neutrophils of patients with
localized aggressive periodontitis. Also, neurolipidomics is an active field of
study [Han, 2007a]. Han [2007b] found depletion of sulfatides in gray matter
from subjects with Alzheimer’s disease.

In case of plants, lipidomics has been applied to study the response to
stress, development, gene function and food quality improvement [Wang
et al., 2006], [Welti et al., 2007].

Cellular lipidomics [van Meer, 2005] tries to answer the many open ques-
tions of cellular lipid metabolism. For example, why there are so many
lipids, and how are the lipid compositions of cellular organelles determined,
e.g. what is the role of metabolism vs. trafficking?

The aim of lipid fingerprinting [Han et al., 2004b], is to classify samples
based on their lipid profile, for example to discriminate between bacterial
species [Arnold and Reilly, 1998] or to distinguish between Fabry hemizy-
gotes and heterozygotes from urine samples [Fuller et al., 2005]. It is not
necessary to identify all the lipid species in the sample, but comparison
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of the profiles or “fingerprints” is carried out using statistical methods to
classify the samples.

Biomarker discovery aims to find lipids which could be used as indicators
of a disease or other condition. Although it is unlikely to have a single ana-
lytical method that would allow the analysis of all lipids, due to the diversity
of structures and highly different concentrations [Hu et al., 2009], LC-MS
is probably the best choice for biomarker discovery. Biomarker discovery
methods do not have to be quantitative, but they should be as reproducible
as possible. Biomarker discovery has been applied (among others) to study
LDL receptor knock-out mice [Yang et al., 2009c], benefits of fish diet [Lank-
inen et al., 2009a] and plant shear stress response [Han and Yuan, 2009].

In targeted lipidomics, the aim is to look for quantitative changes in
specific lipids or lipid class [Taguchi et al., 2005], [Han and Gross, 2004],
[Gross and Han, 2009]. For instance, lipid signalling pathways are a good
targets for such studies [Serhan, 2005a].

In dynamic lipidomics [Postle and Hunt, 2009], isotope-labelled lipids
or lipid precursors are used to follow the metabolism of cells [Kainu et al.,
2008]. The goal is to elucidate the metabolic fluxes of the different pathways.
Hellerstein et al. [1991] applied mass isotopomer analysis to the study of de
novo hepatic lipogenesis. They found that the fraction of de novo synthetized
palmitate was less than 2 % and stearate less than 1 % of the total palmitate
and stearate in very low density lipoprotein particles, which indicates that de
novo lipogenesis is a quantitatively minor pathway. The use of ESI-MS for
studying the metabolism of phospholipids was pioneered by [DeLong et al.,
1999] who studied the pathways of synthesis of PC using deuterated choline
as the precursor. Other labels that have been used for phospholipid studies
include D4-ethanolamine, D3-serine and D6-inositol [Postle et al., 2004],
[Kainu et al., 2008]. Isotope-labelled lipids have been used successfully to
study e.g. the substrate specificity of PE N-methyltransferases [Boumann
et al., 2004a] and the synthesized PC in yeast [Boumann et al., 2004b] as
well as the metabolism of PC in HL60 cells [Tserng and Griffin, 2004].

2.6 Processing mass spectrometric lipid data

The first step of processing the mass spectrometric data is usually data
conversion from proprietary format to open and well documented format
like MZXML [Pedrioli et al., 2004], netCDF or even ASCII. The analysis
of mass spectrometric data consist of several steps [Katajamaa and Orešič,
2005]. These typically include: 1) preprocessing, i.e. smoothing, background
and/or spike removal, etc. 2) peak detection and assignment, 3) alignment,
4) peak integration, 5) de-isotoping i.e. combining the contributions of iso-
tope peaks and reducing their overlap 6) Normalization or intensity calibra-
tion. The alignment step can correct for minor errors in the mass calibration
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of the instrument and is essential for correcting the variability in the elution
times of analytes in LC-MS. Depending on the experiment, various statis-
tical methods can be used to analyze the data [Ivanova et al., 2004], [Han
and Yuan, 2009], [Scholz et al., 2004].

Numerous general purpose software packages for processing MS data
exist, including those provided by instrument manufacturers. There are
also many software packages specifically designed for the analysis of lipid
MS data, including: LipidQA [Song et al., 2007], LIPID arrays [Ivanova
et al., 2004], LipID [Hubner et al., 2009], Lipid Inspector [Schwudke et al.,
2006], Pecoder [Schwudke et al., 2007], Lipid Profiler [Ejsing et al., 2006],
FAAT [Leavell and Leary, 2006] and MZmine 2 [Niemelä et al., 2009]. Most
of the packages contain a comprehensive library of molecular formulas and
isotopic distributions of lipids and some also include SMILES structures
[Yetukuri et al., 2007] and/or fragmentation data [Song et al., 2007].

2.6.1 Isotopic distributions

Most of the elements have more than one stable isotope [Rosman and Taylor,
1998]. The isotopes have different masses due to the presence of different
number of neutrons in their nucleus. The presence of isotopes is the reason
that the mass spectrum of most compounds shows multiple isotope peaks
[Gross, 2004]. This list of isotope peaks, each with a mass and an intensity
is called the isotopic distribution of the compound.

Lipid molecules typically consist of C, H, O, P , N , and also S is present
in sulfatides. Lipids also form adducts with Na+, Li+, Cl− and possibly
other ions. 13C is the most relevant isotope for lipids, since they contain
many carbons and the abundance of the 13C is fairly large, representing
1.109% of all carbon isotopes. In case of lipidomic studies, it is generally
sufficient consider the 13C isotope only [Han and Gross, 2001], because the
error due to neglecting the isotopes of the other elements is smaller than
typical experimental errors. However, if Cl− adducts of lipids are being
analyzed, the isotopic distribution of Cl must be taken into account because
37Cl is so abundant (24% of all chlorine).

The full isotopic distribution of a compound contains all the peaks, cor-
responding to the all possible combinations of isotopes that can occur in the
compound. The relative intensity of each isotope peak is determined by the
abundances of the isotopes and the number of each element that occurs in
the molecule [Yergey, 1983]. The exact mass of a peak is the sum of the
exact masses of all the isotopes from which it is composed. The nominal
mass of a peak is the total number of protons and neutrons of its isotopes.
The difference between the exact mass and nominal mass of a peak is the
sum of all (positive or negative) mass defects of the isotopes [Gross, 2004].
The full isotopic distribution is not observed in practical measurements of
biomolecules, because some of the peaks are vanishingly small and many
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have such small mass difference that they cannot be resolved by the instru-
ment.

Often the isotopic distributions of candidate (or known) compounds have
to be calculated so that the peaks in a measured mass spectra can be as-
signed. The problem when calculating the isotopic distribution is that the
number of peaks increases rapidly as the number of isotopes in the molecule
increases. The common approach to overcome the combinatorial explosion is
to discard and/or combine the minor peaks [Yergey, 1983], [Kubinyi, 1991],
or to use Fourier transform to avoid computationally costly multiplication of
the peak vectors [Rockwood and Orden, 1996]. The decision which peaks to
combine in the calculation depends on the resolution of the measured spec-
tra. When analyzing the data from unit resolution instruments, it is possible
to do the calculations with nominal masses, combining the peaks with the
same nominal masses, and approximate the exact masses [Rockwood and
Orden, 1996]. High resolution FT-ICT instruments, with resolving power
m/∆m50% > 350000 [Hughey et al., 2001], can resolve much more isotope
peaks than unit mass instruments, precluding the use of nominal mass al-
gorithms.

One should keep in mind that the isotopic distributions depend on the
isotope abundancies, which can be different e.g. in inorganic samples [Ros-
man and Taylor, 1998], although for lipidomics studies this rarely is the case.
Notably, lipidomics studies often employ specific precursor ion scans. This
will bias the observed isotopic distribution, because it represents only the
part of the molecule that reaches the detector [Rockwood et al., 2003].

2.6.2 Data reduction

Mass spectrometric data typically consists of spectra, which are visualized
as plots of intensity vs. mass/charge ratio (m/z). The mass spectrum of
a sample can be presented as a profile spectrum, in which there are many
data points within a mass unit. Profile spectra are produced when the mass
spectrometer scans the mass range, sampling the intensity of the signal
produced by the ions entering the detector. Alternatively, a centroid spectra
can be produced, where the data consists of only peak centroid masses and
intensities.

One LC run can produce hundreds or thousands of individual spectra.
The goal of the data processing is to reduce complexity through peak assign-
ment, integration and deisotoping, so that a single value (total peak area)
can be assigned for each compound.

The data is often preprocessed by smoothing [Andreev et al., 2003], e.g.
by using median [Hastings et al., 2002] or Savitzky-Golay filtering [Yang
et al., 2009a]. Baseline correction can be done by modelling approaches
[Malyarenko et al., 2004], [Yang et al., 2009a] or by using an empty spectra
as a point of comparison [Hermansson et al., 2005], [Wallace et al., 2004].
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Before integration, the peak positions and limits have to be known. This
can be done by different filtering approaches, for example wavelets [Du et al.,
2006], or derivatives [Smith et al., 2006].

Peak assignment is based on mass information and can be guided by
other information, like fragmentation data [Song et al., 2007], [Ejsing et al.,
2006] or LC retention times [Hermansson et al., 2005]. Good mass accuracy
and high resolution obviously helps in the assigment.

Deisotoping consists of 1) combining the areas of all the isotope peaks
originating from the same compound, and 2) estimating the contributions of
different compounds in unresolved peaks. When analyzing biological sam-
ples, the mass spectrometer often cannot resolve all the lipid peaks. In the
mass spectra produced by instruments with unit resolution, the monoiso-
topic peak of many lipids overlaps with the second isotope peak of another
lipid having one additional double bond (cf. Figure 5.8). This kind of
overlap can be readily corrected for by taking int account the isotopic dis-
tributions [Kurvinen et al., 2001], [Liebisch et al., 2004], [Han et al., 2004b].
Some lipids, like cardiolipins, produce doubly charged ions and require the
use of algorithms that take the higher charge state into account, such as
Zscore [Zhang and Marshall, 1998]. In case of partial peak overlap, typical
for the high resolution instruments, peak model fitting can be used [Meija
and Caruso, 2004], [Zacarias et al., 2002], [Roussis and Prouix, 2003].

2.6.3 Calibration

Because of the matrix effect, differences in ionization efficiency of different
lipids and selective suppression at high lipid concentrations (cf. 2.4.1), the
peak intensities may not be comparable between samples. To minimize
errors due to such factors, the following measures can be taken: 1) use
diluted samples [Schwudke et al., 2007], 2) measure the sample at different
dilutions [Zacarias et al., 2002], 3) use multiple internal standards [Brugger
et al., 1997] or 4) use on-line LC to separate the lipids before MS analysis
[Houjou et al., 2005].

Isotope dilution mass spectrometry, i.e. the use of an isotope-labelled
analog of the analyte as internal standard, is a common method in quantita-
tive mass spectrometry [Tai and Welch, 2004], [Briche et al., 2002]. However,
it is not practical to obtain an isotope-labelled standard for each lipid present
in a biological sample. Thus other means of calibration have been proposed,
including the use of external standards [Pang et al., 2008], single standard
for each lipid class [Ejsing et al., 2006], multiple standards for each lipid
class [Hermansson et al., 2005] and multiple standards with optimal nor-
malization factors for each detected compound [Sysi-Aho et al., 2007]. For
accurate quantification, standards have to be added before lipid extraction.

Isobaric species have been quantificated by utilizing fatty acyl specific
fragmentations [Song et al., 2007], [Han and Gross, 2001]. Positioisomers
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have the same fatty acids and thus their quantification can depend only on
the differences in the relative intensities of the fragment ions [Kushnir et al.,
2004].
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Chapter 3

Outline of the present study

This study consists of four publications:

1. Study of the effects of lipid concentration and structure on the instru-
ment response in electrospray ionization mass spectrometry.

2. Developement of a novel method for calculating isotopic distributions
with accurate masses.

3. Developement of the LIMSA software for automatic processing of mass
spectra from complex lipid samples.

4. Study of the substrate specificity of secreted A2 phospholipases using
electrospray ionization mass spectrometry.
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Chapter 4

Materials and methods

PC lipid standards were obtained from Avanti Polar Lipids. Fatty acids
were from Larodan AB (Malm, Sweden). Sphingosylphosphorylcholine from
Matreya, Inc. (Pleasant Gap, PA).

Phospholipase D (Streptomyces sp.) and phospholipases A2 from cobra
venom (Naja mossambica mossambica (P7778), bee venom (P9279), and
porcine pancreas (P6534) were obtained from Sigma

All solvents were of high performance liquid chromatography (HPLC)
or analytical grade and were purchased from Merck or Rathburn Chemicals
Ltd. (Walkerburn, Scotland).

D3-methyl iodide was purchased from Cambridge Isotope Laboratories
(Andover, MA).

Mass spectrometric measurements were done with the following instru-
ments: 1) Esquire-LC, Bruker-Franzen Analytik, Bremen, Germany (ion
trap), 2) Sciex API 300, Perkin Elmer, Massachusetts, USA (triple quadrupole)
and 3) Quattro Micro, Micromass, Manchester, U.K. (triple quadrupole).
Esquire-LC and Sciex API 300 were used in the first part of the work, Quat-
tro Micro was used in the third and fourth parts.

Software developement was done using ANSI C++ and Microsoft Visual
Basic for Applications for Excel integration. C++ portions were compiled
with Gnu Compiler Collection (gcc) and Microsoft Visual C++ 6.0 compiler.
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Method Reference

Conditions used in mass spectrometry Papers I, III, IV
Cellular lipid extraction [Folch et al., 1957]
Synthesis of PE or PS species from PC by PLD
transesterification

[Kasurinen and Somerharju,
1995]

Synthesis of D9-labelled PC from PE by D3-
methyl Iodide

Paper IV

Synthesis of SM standards [Koivusalo et al., 2004]
Synthesis of PC series with systematically vary-
ing sn1/sn2 chain

[Somerharju et al., 1987]

Lipid purification using HLPL on a diol column [Silversand and Haux, 1997]
TLC separation of phospholipid classes Paper I
Determining phospholipid concentration by
phosphorous assay

[Bartlett and Lewis, 1970]

Assay of PLA2 specificity with octyl glucoside
micelles

Paper IV

Assay of PLA2 specificity with unilamellar vesi-
cles

Paper IV

Table 4.1: Methods used during the course of the work
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Chapter 5

Results and discussion

5.1 Behaviour of phospholipids in the mass spec-
trometer

At the time this work was initiated, no systematic studies addressing quanti-
tative analysis of phospholipid compositions by ESI-MS had been published.
Accordingly, we set out to study the effect of lipid concentration and struc-
ture on the instrument response [Paper I].

5.1.1 Effect of PC acyl chain length and unsaturation

We analyzed mixtures of phosphatidylcholine (PC) standards at different
concentrations. Figure 5.1 shows how the intensity of the measured peaks
varies with phospholipid concentration (panel A). The intensities of the dif-
ferent PC species appear to increase linearly at low concentration, but level
off at higher concentrations. This kind of signal saturation is typical for
ESI-MS and presumably due to limiting charge density at the surface of
the spray droplets [Enke, 1997]. Notably, however, the relative intensities of
the different PC species remain linear up to a higher, 5 µM , concentration
range (panel B). This makes it possible to determine the concentration of
analytes even at high concentrations by comparing their intensities to those
of internal standards.

Figure 5.2 shows how the instrument response depends on the combined
length (carbon number) of the acyl chains of PC as shown previously by
Brugger et al. [1997]. The decrease in intensity with chain length is signif-
icantly more than what is to be attributed to the decrease of the relative
size of the monoisotopic peak and is probably due to decrease in the sur-
face activity of the PC molecules with increasing chain lenght. At high
total concentration, the surface charge density becomes limiting and the
more surface-active short-chain PC species can outcompete the less surface
active long chain ones. Beside this effect, differences in the vaporization en-
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Figure 5.1: Effect of phospholipid acyl chain length and concentration on
instrument response. The samples contained seven saturated PC species
with total acyl chain length from 28 to 44 at different dilutions (0.1 - 10 µM ,
or 0.7 - 70 µM total lipid concentration) and PC 26:0 whose concentration
remained constant 0.1 µM . Panel A: Peak intensity vs. concentration.
Panel B: Response for selected species relative to that of the 26:0 species. ◦
= 28:0, 4 = 36:0, � = 44:0.
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ergy may also contribute to the chain-length dependency of response [Enke,
1997]. The chain length effect is linear at under 5 pmol/ul, but at high
concentration regime the (see figure 5.2) it becomes nonlinear.

Figure 5.2: Instrument response vs. PC carbon number at different concen-
trations. An equimolar mixture of 12 saturated PC species with different
acyl chain lengths at different dilutions (0.1 - 10 µM per species, or 1.2 -
120 µM total lipid concentration). Panel A: Normalized data for the three
highest concentrations. Panel B: data for the three lowest concentrations.
Data normalized to the highest intensity value.

To study the effect of acyl chain unsaturation on the instrument response,
different concentrations of a equimolar PC mixture containing five 36-carbon
species with 0, 1, 2, 4 or 6 acyl chain double bonds was analyzed (Figure 5.3).
At high concentrations, the instrument response increased significantly with
increasing number of double bonds, but at lower concentrations this effect
diminished and eventually disappeared. Similar results have been obtained
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previously for triacylglycerides [Duffin et al., 1991]. Double bonds reduce
the hydrophobicity of the acyl chains, which could increase the affinity of
the lipid to the surface of the solvent (chloroform-methanol) droplets.

Figure 5.3: Effect of the number of double bonds. Lipid concentration per
species: • = 0.1 µM , ◦ = 0.4 µM , � = 4 µM , � = 10 µM . The response
values have been normalized relative to the average of the response for the
36:6 species at each concentration. The error bars indicate the standard
deviation (n = 5).

5.1.2 Effect of polar head group and ammonia

As expected, the polar head group and ionization mode have a major effect
on the ionization efficiency of phospholipids (Figure 5.4). In the negative
ion mode, the highest response was observed for PG, followed by PI, PA
and PS. PE and the chloride adduct of PC gave a much smaller response.
Inclusion of ammonia (1 %) in the infusion solvent markedly increased the
response for PE and PA relative to other negatively charged phospholipids
(Panel C).

In the positive ion mode, in the absence of ammonia, the sodium adducts
of PC and PE were prominent (Panel D), which complicates the analysis.
However, when ammonia was included, the relative intensities changed dra-
matically (Panel F) so that the intensity of protonated PC far exceeded
those of the sodium adducts.
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Figure 5.4: Effect of head group at different concentrations. An equimolar
mixture of dipalmitoyl-PC, -PE, -PS, -PG, -PI and -PA was analyzed at
various dilutions. Panel A: Negative-ion spectrum at 10 µM per species.
Panel B: Relative instrument response vs. concentration in negative mode
without added ammonia. Panel C: As in B, with added 1% NH4OH. Panel
D: Positive-ion spectrum at 10 µM per species. Panel E: Relative instrument
response vs. concentration without added ammonia. Panel F: As in E but
with added 1% NH4OH.
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5.1.3 Implications on phospholipid quantification

Beside lipid structure and solvent composition, the instrument response is
also sensitive to instrument settings. The parameters should be set to e.g.
optimize analyte ionization and minimize cone fragmentation. In MS/MS
analyses, the collision energy is important and can be programmed to in-
crease with analyte molecular weight to obtain similar response [Ekroos
et al., 2003]. However, care should be taken not to compromize the detec-
tion of species in the low or high molecular mass range.

As shown in Figs 5.2 and 5.3, dilution of the sample can reduce the lipid
structure -dependent differences in instrument response. However, there is a
limit to sample dilution below which the lipids present at low concentrations
(like minor PS, PA and PG species) cannot be reliably detected or quantified,
particulary, if detergents or other surface-active suppressors of ionization are
present.

Internal standards need to be included for each lipid class to account
for the structure-dependent differences in ionization efficiency. While the
accuracy of quantification increases with the number of internal standards,
the availibility or cost of the latter often limits their number to 1-3. When
using more than 1 standard per class the (often unpredictable and biasing)
suppression effects caused by salts or other impurities can be observed and
partially eliminated. The standards should be added before extraction to
account for possibly different recoveries of different lipids. We have found
that diunsaturated standards are most useful as their respose is similar to
that of the (typically unsaturated) biological lipids.

5.2 Method for calculation of isotopic distribu-
tions with accurate masses

Knowing the isotopic distributions of compounds is necessary for being able
to assign compounds to peaks found in mass spectrometric data. Isotopic
distributions are also needed in isotopomer analysis, where one aims to de-
duce the position of the stable isotope from the fragment data, possibly
allowing to distinguish between alternative biosynthetic pathways [Heller-
stein and Neese, 1999].

Various methods for computing isotopic distributions have been pro-
posed [Yergey, 1983], [Kubinyi, 1991], [Rockwood and Orden, 1996]. These
methods either trade mass accuracy for speed of execution or approximate
the masses. We developed method for calculation of isotopic distributions
with good mass accuracy for unit resolution mass spectrometers [Paper II].

Our method has the advantage to previous methods that it is relatively
easy to understand and computationally efficient, while still maintains very
high accuracy.
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Our method does not calculate the fine isotopic structure that the high
resolution instruments can partially resolve. Algorithms that can calculate
high resolution isotopic distributions [Rockwood et al., 1996] [Snider, 2007]
are necessarily slower and unnecessary for processing data from unit mass
resolution instruments.

The isotopic distribution calculation algorithm in Paper II breaks the
calculation into a binary series of convolutions, similar to the method re-
ported by Rantanen et al. [2002], with the number of atoms involved in the
calculation doubling at each successive iteration. In each convolution step
(Figure 5.5), a Cartesian product of the isotopic distributions is formed so
that the corresponding peak intensities are multiplied and masses added to-
gether (Step 1). To keep the algorithm efficient, all the peaks having the
same nominal mass are combined by using weighted average (Step 2). This
merging reduces the amount of calculations dramatically while still keeps
good mass accuracy.

Figure 5.5: Principle of the peak convolution algorithm. Two isotopic dis-
tributions are convoluted to form a larger isotopic distribution. In step 1,
all the peak intensities are multiplied and massess added together to obtain
the peaks in the convoluted pattern. In the step 2, all the peaks having the
same nominal mass are combined by adding together their intensities and
calculating the mass of the new peak by weighted average.
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Molecular formula Average mass
(Da)

Number
of peaks

Average absolute
mass difference (Da)

(CH2O)100 3002.59 18 1.19587e-06
(C39H49N15O24P4)100 123578.57 105 0.000142669
Sn1000 118710.00 884 2.79372e-07
C44H87NPO8 789.13 11 2.54449e-07

Table 5.1: Comparison of the mass accuracy of the program from Paper II
and qmass. Qmass uses the Fourier transform method for calculating the
isotopic distributions [Rockwood and Orden, 1996] and another algorithm
for calculating the isotope compositions and accurate masses of isotopic
peaks [Rockwood et al., 2004]. Pruning limit used in the calculation with
the program from Paper II was 1e-30. Only the nominal isotopic peaks that
were larger than 1 ppb of the largest peak in the isotopic distribution were
used for calculating the average absolute mass difference between the two
programs.

5.2.1 pruning

If the unit resolution isotopic distributions are not pruned, they grow pro-
portionally to the number of atoms in the molecule, and because convoluting
the distributions is computationally expensive, the algorithm would be slow
for large molecules. However, the peaks at the sides of the isotope distri-
butions of large molecules are vanishingly small. By pruning (removing)
these peaks, the size of the distributions does not grow unduly. Because the
pruning only occurs at the edges of the isotopic distribution, and when the
pruning threshold is set low, the mass accuracy of the calculated isotopic
peaks is high and agrees with other program that uses unrelated algorithms
(Table 5.1 to sub ppb level.

5.3 Automated analysis of complex lipid samples

LIMSA is a program (Excel add-on) that was developed to simplify quanti-
tative analysis of complex lipid mixtures [Paper III]. LIMSA was designed
for the analysis of MS spectra obtained in direct infusion experiments carried
out with unit resolution instruments. Many other software packages exist
for lipid analysis (See Chapter 2.6). The choice of the package depends
on the type of the instrument producing the spectra, the type of experi-
ments (e.g. direct infusion vs. LC-MS) and types of lipids in the analysis.
Some packages are specifically developed for the analysis of spectra from
high resolution instruments (e.g. FAAT [Leavell and Leary, 2006], LipID
[Hubner et al., 2009] and Pecoder [Schwudke et al., 2007]), whereas others
are developed for unit resolution instruments (LIMSA [Paper III], MSPEC-
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TRA [Kurvinen et al., 2001] and LIPID arrays [Ivanova et al., 2004]), or
can handle both kinds of data (MZmine 2 [Niemelä et al., 2009]). Lipid
Profiler [Ejsing et al., 2006], LipidQA [Song et al., 2007] and Lipid Inspec-
tor [Schwudke et al., 2006] are developed for data from hybrid quadrupole
- time of flight instruments, although some of them can also process spec-
tra from triple quadrupole instruments. There are packages designed for
LC-MS data (LipID, MZmine 2 and [Hermansson et al., 2005]). Some also
include statistical analysis tools: LIPID arrays for comparative experiments
and MZmine 2 for e.g. principal component analysis. MZmine 2 can also
be extended with custom analysis modules.

LIMSA has an internal database of thousands of lipids and it carries
out the necessary steps required for identification and quantification of the
lipids in complex mixtures. LIMSA’s lipid database is user extensible and
compatible with isotope-labelled lipids. The user can specify the molecular
formula of the fragment, which may contain an isotope label, in specific scan
modes (precursor ion or neutral loss) and LIMSA will calculate the correct
isotopic distributions for these modes. This ability makes LIMSA especially
suitable for analysis of data from isotope- labelled metabolic experiments.
Figure 5.6 shows the steps of data processing by LIMSA. LIMSA works per
spectrum basis, necessitating the use of other tools for either combining or
extracting parts from multi-spectra datasets, and for statistical analysis of
the results from individual LIMSA runs.

For example, Figure 5.7 shows spectra obtained from an isotope labelling
experiment. LIMSA can be used in batch mode allowing automated analysis
of multiple spectra which is useful when costructing e.g. time series graphs
(lower panel).

5.3.1 Deisotoping

LIMSA employs three alternative algorithms for deisotoping of mass spec-
tra: 1) a subtraction algorithm, 2) a linear fit algorithm and 3) a peak model
fitting algoritm. The subtraction algorithm subtracts the scaled theoretical
isotopic distribution of the compound with the lowest m/z from the spec-
trum, thus eliminating the contribution of this compound. The procedure is
repeated for the next compound until no further compounds remain. This
type of algorithm is the most commonly used one in lipid analysis software
(Han and Gross [2004], Kurvinen et al. [2002], Liebisch et al. [2004]).

The linear fit algorithm models the overlapping peak intensities as a
weighted sum of isotopic distributions using a set of linear equations, which
is solved to yield the contributions of the individual molecules [Meija and
Caruso, 2004]. In LIMSA, the algorithm is constrained to positive weights
in order to increase performance with noisy data.

The peak model fit algorithm [Meija and Caruso, 2004] used in LIMSA
models the raw spectrum as a weighted sum of isotopic distributions with
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Figure 5.6: Lipid MS data processing steps carried out by LIMSA. The
user supplies the mass spectra, the list of lipids that may be present in
the sample and the list of standards. LIMSA picks the peaks present in
the spectrum and uses its database of lipid molecular formulas and isotope
distributions to calculate the isotopic distributions of lipids and uses them
for assinging and de-isotoping the peaks. LIMSA uses the standards for data
normalization/quantification.
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Figure 5.7: Analysis of the data from a heavy-isotope labelling experiment
using LIMSA. The PE species of HeLa cells were labelled by including D4-
ethanolamine (100 g/ml) in the cell culture medium for up to 24 h. Upper
panel: Mass spectra obtained for the cellular lipid extract using neutral
loss of 141 (selective for the unlabelled PE species) and neutral loss of 145
(selective for the D4-labelled PE species). PE 40:2 is an unlabeled internal
standard and thus no corresponding labeled species is seen. Lower panel:
Time series constructed from the output of multiple LIMSA runs showing
the ratio of labelled to unlabelled PE molecular species with time.
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a gaussian peak shape (Figure 5.8). If the peak model parameters are con-
stant, linear equations could be used. However, LIMSA allows the peak
width to vary and the isotopic distributions to move along the m/z axis,
thus combining peak modeling and alingment. This nonlinear fitting prob-
lem is solved using the Levenberg-Marquardt algorithm implemented in the
Gnu Scientific Library (www.gnu.org/software/gsl/). Since nonlinear fitting
tends to be very sensitive for the initial choise of fitting parameters, LIMSA
first carries out preliminary gaussian filtering -based peak finding, alingment
and integration steps to obtaining good starting values for the optimization
routine.

738 740 742 744 746 748 750

0

2

4

6

8

10

12

14

x 10
5

m/z

in
te

n
s
it
y

Figure 5.8: Overlapping PE species. Dark blue trace: Neutral loss 141
spectrum. Black, yellow, magenta, light blue, red and green traces: the
calculated neutral loss 141 isotope distributions for PE36:5, PE36:4, PE36:3,
PE36:2, PE36:1, PE36:0, respectively. Fitted to the data using the peak
model deisotoping algorithm of LIMSA.

Comparison of three algorithms for isotopic distribution deconvolution
(deisotoping) showed that the subtraction and linear fit algorithms per-
formed comparably in terms of accuracy while the peak model fit algorithm
performed best both with mixtures of standards and human HDL lipid ex-
tract. Especially with less well resolved spectra, peak model fitting was su-
perior as shown in Figure 5.9. The results obtained with linear fit algorithm
were unacceptable at low spectral resolution. As tested with lipid standards,
the limit for detection (at CV 25 %) of a minor signal was approximately
10 % of the intensity of the major overlapping signal.

When the signal to noise ratio was high and the specral resolution ad-
equate, all three deisotoping methods produced similar results. The peak
model method was 10-100 times slower the other two methods, but gen-
erally this is irrelevant regarding the throughput of lipid analysis by MS.
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Unlike the subtraction algorithm, the linear and the peak model fit algo-
rithms can deconvolute isotopic distributions even when all the peaks over-
lap, provided that the distributions themselfs are different enough [Meija
and Caruso, 2004]. Such a situation can arise for example when a partially
isotope-labeled (impure) standard overlaps a sample lipid.

5.3.2 Normalization

LIMSA can quantify the lipids in biological samples if one or more internal
standards per lipid class is included. In case of several standards, LIMSA
fits a simple linear regression model to the standards to get an estimate of
the instrument response at each point on the m/z axis. LIMSA assumes
that the instrument response depends on the molecular weight for each lipid
class. LIMSA does not model the effect of double bond to the instrument
response, although separate standards can be used for saturated and un-
saturated lipids. Nonlinear function for modeling the molecular weight -
dependent instrument response could also be used, but in our experience,
this does not improve the accuracy significantly.

To test the quantification by LIMSA, test mixtures with different PCs
with known concentrations were made. PC-32:2, PC-40:2 and PC44:2 were
chosen as internal standards and their concentration was kept constant 2
µM . The concentration of the other PC:s ranged from 0.01 to 5 µM . Figure
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5.10 shows the known vs. measured concentration for select analyte PCs.
As can be seen, some of the PC:s (28:0 and 40:8) are overestimated, some
(38:0) are underestimated and some (36:4, 36:1 and 40:6) are measured
accurately. The use of diunsaturated standards slightly underestimates the
concentration of saturated PC species. The mean error in the measured
concentrations was 15 %. When using a few internal standards it is not
possible to fully correct for the differences in response due to varying acyl
chain unsaturation. However, the errors are generally small if one employs
diunsaturated standards as they give similar responses as most biologically
relevant phospholipid species.
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Figure 5.10: Test of accuracy of quantification with LIMSA. The red line
shows the ideal quantification. The data are from two separately prepared
sets of the PC test mixtures. Symbols denote the mean and the 95 %
confidence intervals for the mean of 8 measurements

Beside accuracy, the sensitivity of analysis is of interest. Figure 5.11
shows the coefficient of variation vs. the concentration of PC. If the CV
threshold is set to 0.2, approximately 0.01 µM PC can be reliably quantified.

5.4 Substrate specificity of phospholipases

Traditionally, phospholipase specificity has been studied using radiolabelled
phospholipid substrates [Sundler et al., 1994]. This approach is not practical
when comparing many different phospholipid substrates as each of them
have to be studied separately. This introduces problems as the curvature
of the substrate vesicles or the enzyme affinity to the substrate may differ
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between the experiments. Two lipids can be studied simultaneously if they
are labeled with different radioisotopes (3H and 14C) [Ghomashchi et al.,
1991]. This improves the accuracy of the assay as the other lipid can be
used in all substrate mixtures, but this approach as well is impractical when
studying the hydrolysis of many phospholipids.

Due to its high resolving power, mass spectrometry can be used to study
simultaneously the hydrolysis of a multitude of phospholipids. This ap-
proach was first implemented by Kuksis and coworkers who studied the
hydrolysis of the phospholipids in native lipoproteins by secretory phospho-
lipase [Pruzanski et al., 2005], [Pruzanski et al., 2007]. We used a similar ap-
proach to study the hydrolysis of tens of different phospholipid species by A-
type phospholipases (PLAs) in micelles or small unilamellar vesicles (SUVs)
[Paper IV]. After addition of PLA, timed samples were taken from the reac-
tion mixture and concentrations of the individual phospholipid species were
determined by mass spectrometry. Figure 5.12 shows the normalized con-
centrations of select PC species with time and major differences in the rate
of hydrolysis are obvious.

5.4.1 Analysis of kinetics

The mass spectrometric data was first processed by LIMSA, to obtain the
normalized peak areas. The kinetics of the hydrolysis were then obtained
by least squares fitting a first order progress curve. The maximum fraction
of the hydrolyzable substrate was set to that accessible to the enzyme, i.e.
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Figure 5.12: Hydrolysis of select PC species in micelles containing 25 differ-
ent PC species and sphingomyelin 18:0. First order reaction progress curves
fitted using gnuplot software (http://www.gnuplot.info/)

0.67 for SUVs (only the molecules in the outer layer are accessible) and 1.0
for micelles (all of substrate is accessible).

During simultaneous reaction the conditions of the experiment (i.e. the
enzyme concentration) stay the same for all substrates and assuming that all
PC molecules are equally accessible (which is certainly valid for micelles but
not necessarily for vesicles due to possible differences in transbilayer distri-
butions, the relative reaction velocities (substrate specificities) are obtained
directly from the ratio of the normalized reaction velocities [Fersht, 1985],
[Duggleby, 1995]. For first order reaction, the normalized reaction velocity
equals -k (the rate constant).

5.4.2 Specificity of three secretory PLAs

We studied the specificity of three different PLA enzymes, i.e. those from
cobra and bee venom and porcine pancreas PLA2. The substrate consisted
of a mixture of PCs and also included 5 mol% of phosphatidic acid to provide
negative charge increasing the affinity of the enzymes for the macrosubstrate
(micelle or SUV).

Figure 5.13 shows the relative rates of hydrolysis by the three PLAs
of PC species with varying acyl chain length and unsaturation. In micelles
(left column) the rate of hydrolysis decreased modestly with increasing chain
length for both the bee and cobra enzymes. The rate of hydrolysis by the

36



bee enzyme increased markedly with increasing acyl chain unsaturation, and
the arachidonic acid containing PC:s were hydrolyzed especially quickly. In
contrast, with the cobra PLA2, unsaturation had hardly any effect, except
for the PC with a 22:6 or 18:3 chain. The porcine PLA2 favored short di-
unsaturated species as well as the 16:0/18:2 and di-18:3 species. These data
suggest that the acyl-binding sites of the different PLAs differ significantly.

The specificity profiles obtained with SUVs differed markedly from those
for micelles (Figure 5.13 right column). Most notably, the length of a satu-
rated acyl chain had a far stronger effect on the rate of hydrolysis in SUVs.
However, the effects of double bond position and number were similar to
those found for micelles.

To obtain more detailed information on the contribution of the individual
acyl chains, we synthesized two sets of saturated PC species in which the
length of either the sn1 (the Cn/16:0-PC series) or sn2 (the 16:0/Cn-PC
series) acyl chain varied from 6 to 24 carbons, while the length of the chain
in the other sn-position was kept constant at 16 carbons. The Cn/16:0-PC
species contained a D9-labeled choline headgroup, whereas the 16:0/Cn-
PC species were unlabeled. Both PC sets were present in the hydrolysis
reaction simultaneously, which allows one to determine the relative rates of
hydrolysis of positional isomers accurately. The D9-label is unlikely to affect
the hydrolysis because the PLAs studied are not specific to the polar head
group of phospholipids and the deuteriums are too far from the hydrolyzed
bond to cause significant kinetic isotope effect.

Figure 5.14 displays the hydrolysis of both the Cn/16:0- and 16:0/Cn-
PCs. With all the PLAs the rate of hydrolysis decreased monotonically as
the length of the sn1 acyl chain increased. In contrast, the effect of the
-sn2 chain length was complex. With the bee enzyme, increasing of the
length of this from 6 to 8 carbons increased the rate of hydrolysis, which
then decreased sharply at carbons 9-11 and finally leveled off. The cobra
enzyme behaved similarly but showed an additional (modest) peak at 13-14
carbons. The porcine PLA2 discriminated between positional isomers even
more effectively than the other enzymes. For example, 16:0/9:0-PC was
hydrolyzed 9-fold faster than its 9:0/16:0 isomer. These findings suggest
that the sn2 chain associates more intimately with the enzyme that the
sn1 chain, which is consistent with the crystallographic data obtained for
cobra PLA2 complexed with a non-hydrolyzable PC analogue [Scott et al.,
1990]. Peaking of the activity of the bee enzyme when the length of the sn2
chain is 9 carbons indicates that this equals the dimension of the sn2 chain
binding cavity of this enzyme, in agreement with previous crystallographic
data [Thunnissen et al., 1990].

In vesicles, the rate of hydrolysis by bee and cobra PLAs (the pancreatic
enzyme was inactive with vesicles) diminished much more with increasing
chain length than in micelles (Figure 5.15) and remarkably, there was prac-
tically no difference between sn1 and sn2 isomers, in contrast to what was
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Figure 5.13: Relative rates of hydrolysis of PC species by bee, cobra and
pancreatic PLA2 in micelles and SUVs. Rates are normalized to the fastest
species. PCs are grouped to series according to the total number of double
bonds in the acyl chains (see Legend). 1 and 2 indicate 16:0/18:2 and di-
18:3 species that are not homologous with the other species marked with
the same symbol.
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Figure 5.14: Hydrolysis of acyl chain positional isomers of PC in micelles.
See text for details.
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observed for micelles.

Figure 5.15: Hydrolysis of acyl chain positional PC isomers by bee and cobra
PLAs in SUVs. See text for details.

The very strong effect of the acyl chain length (molecular hydrophobic-
ity) and lack of discrimination between positional isomers in vesicles strongly
suggests that the efflux of the phospholipid substrate is a key factor in PLA
specificity. Previous studies with cross-linkable phospholipids support this
notion (Soltys et al. [1993], Wu and Cho [1993]). However, accommodation
of the substrate acyl chains in the binding site of the enzymes also plays a
role in specificity of the secretory PLAs as indicated by differences in the
hydrolysis of unsaturated PCs or positional isomers in micelles by the three
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enzymes (Figures 5.13 and 5.14).
In summary, our findings provide strong evidence that substrate efflux

propensity is a key player in selective hydrolysis of membrane-bound sub-
strates by secretory PLAs.
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