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ABSTRACT

Nuclear receptors comprise a large family of proteins that mediate the effects of small

lipophilic molecules such as steroid and thyroid hormones. In addition, there are a group

of nuclear receptors that lack identified natural ligands and are referred as orphan nuclear

receptors. In this thesis, the function of two such orphan nuclear families has been studied.

The NR3B family includes the receptors ERR  (NR3B1), ERR  (NR3B2) and ERR

(NR3B3) and the NR4A family includes the receptors NGFI-B (NR4A1), Nurr1 (NR4A2)

and  Nor1  (NR4A3).  NR3B  receptors  (ERRs)  are  constitutively  active.  They  are  closely

related to estrogen receptors but unable to bind natural estrogens as their ligand. However,

ERRs bind other ligands, including 4-hydroxytamoxifen and diethylstilbestrol, which

function as their inverse agonists inhibiting their activity. NR3B receptors regulate cellular

energy balance and carcinogenesis. In addition, it has been suggested that NR3B receptors

play a role in bone homeostasis. NR4A receptors are true orphan receptors as their ligand-

binding pockets (LBPs) are tightly packed with bulky, hydrophobic side chains, which

makes them incapable of binding ligands. NR4A receptors have an important role in the

central nervous system in which Nurr1 regulates the differentiation of dopaminergic

neurons. However, NR4A receptors are also expressed in peripheral tissues including the

bone.

The purpose of this thesis work was to study the signaling and function of

NR3B and NR4A orphan nuclear receptors specifically in osteoblasts. The aim was to

identify (I) new signaling pathways that regulate the transcriptional activity of NR3B and

NR4A receptors, (II) new ligands for the NR3B family, (III) to investigate how NR3B and

NR4A orphan nuclear receptors affect the Wnt signaling pathway and finally (IV) to

analyze the role of ERR  in osteoblastic differentiation of mesenchymal stem cells

(MSCs).

NR4A receptors were found to be regulated by NR3B receptors as ERR

and ERR  inhibited the transcriptional activity of NR4A receptors in U2-OS cells.

Another  signaling  pathway  that  was  found  to  repress  the  activity  of  NR4A  receptors  in

osteoblasts was the Wnt/ -catenin signaling pathway. -catenin repressed the

transcriptional activities of Nurr1, NGFI-B, and Nor1. On the other hand, NR3B receptors

were  found  to  be  repressed  by  NR4A  receptors  as  NGFI-B  and  Nor1  repressed  the

transcriptional activity of ERR  in HeLa cells.
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The  phytoestrogen  equol  was  identified  as  a  new  agonist  for  ERR  and

ERR  in PC-3, U2-OS, and SaOS-2 cells. Equol increased the transcriptional activity of

ERR  by increasing the interaction between ERR  and the co-activator GRIP-1 and by

inducing a conformational change in the LBP of ERR . We also showed that ERR  could

mediate some of the potentially beneficial health effects of equol as the growth inhibitory

effect of equol on PC-3 prostate cancer cells was decreased by blocking ERR  expression

by siRNA.

The Wnt signaling pathway is important for the differentiation and function

of osteoblasts. Both the NR3B and also the NR4A receptors were found to repress the

transcriptional activity mediated by -catenin in U2-OS cells. Nurr1 was also able to

repress the -catenin induced expression of Axin2 mRNA in MC3T3-E1 cells.

The MSCs isolated from the bone marrow of 8-12 week old male ERR

knockout (KO) mice showed diminished proliferation, osteoblastic differentiation and

expression of the bone marker genes osteocalcin and bone sialoprotein (BSP) compared to

the cells isolated from their wild-type littermates. The overexpression of ERR  in

osteoblastic MC3T3-E1 cell line increased their mineralization and the expression of BSP,

Runx2 and alkaline phosphatase mRNAs. BSP was  shown to  be  a  direct  target  gene  for

ERR  and ERR  as the BSP promoter was activated in HeLa cells when transfected with

ERR  or ERR  together with PGC-1 . The adipogenic differentiation of ERR  KO MSCs

was also decreased and they expressed less adipogenic markers PPAR  and aP2.

As a conclusion, the studies described in this thesis demonstrated that the

transcriptional  activity  of  NR3B  and  NR4A  receptors  can  be  regulated  by  other  orphan

nuclear receptors and signaling pathways in osteoblasts. NR3B receptors can also be

regulated by ligands and a new agonist, equol, was identified for ERR  and ERR . New

roles for NR3B and NR4A were also identified as they were shown to converge with the

Wnt signaling pathway in osteoblasts, ERR  was shown to mediate the growth inhibitory

effect of equol in prostate cancer cells, and ERR  was shown to regulate positively MSC

proliferation, osteoblastic differentiation and adipogenic differentiation.
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NF- B nuclear factor- B
NGFI-B nerve growth factor inducible-B
Nor1 neuron-derived orphan receptor 1
NR nuclear receptor
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Nurr1 Nur-related factor 1
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Tcf T cell factor
TGF- transforming growth factor 
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TR thyroid hormone receptor
TRAF6 tumor necrosis factor receptor-associated factor 6
VDR vitamin D receptor
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REVIEW OF THE LITERATURE

1. NUCLEAR RECEPTORS

1.1 The nuclear receptor superfamily

All living organisms, from simple prokaryotic cells such as bacteria to complex eukaryotic

systems such as mammals, are composed of cells. These cells have to be able to

communicate with each other and with the prevailing environment they are in to be able to

function properly. The communication is mediated mainly by different types of molecular

signals and cellular receptors that interpret those signals. Four types of receptors are found

on the surface of eukaryotic cells: G protein-coupled receptors, ion-channel receptors,

tyrosine kinase-linked receptors, and receptors with intrinsic enzymatic activity (Lodish et

al. 2000). Receptors are embedded in the cell membrane where they convert the

extracellular signals that are transmitted in the form of specific ion and protein ligands into

one or more intracellular signals that  alter the behaviour of the target cell.  In addition to

the cell surface, receptors can also be located inside a cell. Nuclear receptors (NRs) are

transcription factors that are essential for many physiological processes including

embryonic development and differentiation, metabolism, and cell proliferation and death.

They are located in the cytosol and in the nucleus, and therefore their ligands have to be

lipophilic to be able to reach them (Alberts et al. 1994, Gronemeyer et al. 2004,

Mangelsdorf et al. 1995).

There are 48 identified NR genes in the human genome. The NR superfamily

consists of receptors that bind steroid hormones, such as the estrogen receptors (ERs), the

androgen receptor (AR) and the glucocorticoid receptor (GR), and receptors that bind non-

steroidal ligands, such as the thyroid hormone receptors (TRs), the vitamin D receptor

(VDR),  and  the  retinoic  acid  receptors  (RARs).  Some  NRs,  such  as  the  constitutive

androstane receptor (CAR), the pregnane X receptor (PXR), and the peroxisome

proliferator-activated receptors (PPARs) bind multiple structurally diverse ligands.

Typically, these are naturally occurring metabolites of nutrients (Bain et al. 2007, Benoit

et al. 2004, Gronemeyer et al. 2004, Noy 2007).
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Fig. 1. Human nuclear receptors

In addition to the traditional NRs with known physiological ligands, there

are many NRs that were discovered by their structural similarities to the classical NRs and

which lacked ligand at the time they were discovered (Giguère 1999). For some of these,

physiological ligands have since been found. For retinoid X receptors (RXRs) the

recognized ligand was 9-cis-retinoic acid (Heyman et al. 1992, Levin et al. 1992). RXRs

participate in a wide range of hormone response systems by associating with other NRs

and forming non-permissive or permissive heterodimers. Non-permissive heterodimers are

formed, inter alia, with RARs, TRs and VDR and can be activated only by the partner’s

ligand. Permissive heterodimers that can be activated by both RXR’s and partner’s ligand

are formed, inter alia, with PPARs and liver X receptors (LXRs) (Germain et al. 2006).

PPARs, LXRs, farnesoid X receptor (FXR), PXR and CAR are a group of NRs that were

described as orphans when first identified but are now known to have large ligand-binding

pockets (LBPs) that make them less discriminating and capable of binding several

different ligands. As previously mentioned, the ligands that are bound are typically

naturally occurring metabolites of nutrients and other compounds. Therefore, it has been

suggested that these receptors function as nutritional and metabolic sensors (Benoit et al.

2004). PPARs bind for example fatty acids (Göttlicher et al. 1992) and eicosanoids

(Forman et al. 1995, Yu et al. 1995), and PPAR  binds selectively thiazolidinediones

(Forman et al. 1995, Lehmann et al. 1995). LXR has been shown to bind different
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oxidized derivatives of cholesterol (Janowski et al. 1996, Janowski et al. 1999). FXR

binds bile acids (Makishima et al. 1999, Parks et al. 1999, Wang et al. 1999) and PXR

binds C21 steroids pregnanes and several compounds used as drugs, including

dexamethasone (Kliewer et al. 1998) and hyperforin (Moore et al. 2000).

1.2 The structure of nuclear receptors

Nuclear receptors have a characteristic, modular structure, which includes the amino-

terminal domain (NTD), a central and highly conserved DNA-binding domain (DBD) and

a carboxyl-terminal ligand-binding domain (LBD) which binds the ligand. A schematic

representation of the NR structure is shown in figure 2.

Fig. 2. The  schematic  layout  of  the  nuclear  receptor  structure.  NRs are  composed  of  an
amino-terminal domain (NTD), which contains an activation function 1 (AF-1), DNA-
binding domain (DBD), a hinge region (H) and a ligand-binding domain (LBD) that
contains an activation function 2 (AF-2). The highly conserved DBD folds into two zinc
finger motifs and two -helices. The residues that are critical for the sequence-specific
DNA binding are located in helix 1 and are defined as P-box. The residues of the D-box
are located in the C-terminal zinc finger and make up the dimer interface. The C-terminal
extension (CTE) contains T-box and A-box that function in receptor DNA binding and
heterodimerization (adapted from Bain et al. 2007).

1.2.1 The DNA-binding domain

The centrally located DBD docks the NR to specific DNA sequences known as hormone

response elements (HREs). The highly conserved DBD folds into two zinc finger motifs,

on which each zinc atom is co-ordinated by four cysteine residues. The atoms are

necessary to retain stable domain structure (Bain et al. 2007, Ribeiro et al. 1995). The zinc

fingers are common for the whole family, with the exception of SHP (small heterodimer

partner) and DAX-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical
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region  on  the  X chromosome,  gene  1),  each  of  which  lack  a  DBD and do  not  associate

directly with DNA (Gronemeyer et al. 2004, Noy et al. 2007). Two -helices extend from

the  base  of  the  zinc  fingers.  The  first  helix  (helix  1)  contains  a  region  called  P-box that

interacts with DNA and is responsible for the sequence specificity of the binding. The C-

terminal zinc finger contains the D-box, which is involved in dimerization (Aranda and

Pascual 2001, Bain et al. 2007, Ribeiro et al. 1995). The second -helix (helix 2)

contributes to the stabilization of the overall protein structure. After the zinc fingers DBD

continues as a C-terminal extension (CTE) that contains the T- and A-boxes, which

contribute to the sequence specificity, DNA binding and heterodimerization (Aranda and

Pasqual 2001, Bain et al. 2007).

1.2.2 The ligand-binding domain

The DBD is linked via a small and flexible hinge region to the C-terminal half of the NR

that harbors the LBD. The LBD is a multifunctional domain that mediates ligand binding,

homo- and heterodimerization, interaction with heat shock proteins, nuclear localization

and ligand-dependent transactivation functions (Aranda and Pasqual 2001, Giguère 1999,

Ribeiro et al. 1995). The LBD contains 10-13 -helices (typically 12 numbered H1-H12),

several -turns and connecting loops of varying size arranged into a three-layered

“sandwich”-like structure (Benoit et al. 2004, Moras and Gronemeyer 1998). The overall

architecture of LBD is well conserved among the family members but still different

enough to ensure selective ligand recognition. Eleven of the helices form a LBP, whereas

C-terminal helix 12 forms a movable lid over the entrance of the pocket (Gronemeyer et

al. 2004, Moras and Gronemeyer 1998, Noy 2007). Helix 12 also contains residues that

are crucial for the function of activation function 2 (AF-2), a highly conserved

hydrophobic motif required for co-activator recruitment and ligand-dependent

transactivation (Bain et al. 2007, Giguère 1999).

1.2.3 The amino-terminal domain

The NTD, which is sometimes referred as an A/B region is the most variable domain both

in length and in sequence among the NR family members. The lack of homology may be

critical in explaining the different transcriptional responses of closely related NRs binding
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to similar response elements. The NTD contains the activation function 1 (AF-1) region

that can function as a ligand-independent transcriptional activator or work in synergy with

AF-2. The NTD can interact with co-activators and other transcription factors and is

involved in both the activation and repression of NR target genes. The NTD can also be

post-translationally modified by phosphorylation and sumoylation, which can result in

changes in intracellular localization, turnover and protein-protein interactions of the NR

(Bain et al. 2007, Giguère 1999, Lavery and McEwan 2005, Ribeiro et al. 1995).

1.3 The function of nuclear receptors as transcription factors

NRs regulate transcription by binding to specific DNA sequences, HREs, in regulatory

segments of their target genes as monomers, homodimers or heterodimers (Giguère 1999,

Sonoda et al. 2008). HREs can locate on proximal promoter regions upstream of the target

gene but also on distal enhancer regions (Deblois and Giguère 2008, Kininis and Kraus

2008). A typical HRE consists of two hexa-nucleotide motifs of AGGTCA or its close

variants, separated by a gap of several nucleotides and is possibly preceded by a 5´-

flanking A/T-rich sequence. The half-core motifs and 5´-flanking A/T-rich sequence are

recognized by the first zinc finger and the CTE. Binding specificity of different NRs is

largely achieved by spacing three to five nucleotides in between the elements and by the

orientation of the two half sites that can be configured as a direct-repeat, inverted-repeat or

everted-repeat (Giguère 1999, Sonoda et al. 2008).

The ability of some NRs to bind ligand was acquired during evolution as the

ancestral NR was an orphan (Escriva et al. 1997).  In  the  absence  of  a  ligand,  NRs  are

either present in the cytoplasm in a complex with heat shock proteins and immunophilin

chaperones or in the nucleus constitutively bound to their HREs, where they form a

repressive complex with co-repressors and histone deacetylases (HDACs). The HDACs

generate a condensed chromatin structure over the target promoter that results in gene

repression (Gronemeyer et al. 2004, Perissi and Rosenfeld 2005, Sonoda et al. 2008). NRs

can bind a broad range of different ligands such as glucocorticoids, androgens,

mineralocorticoids, progestins, estrogens, thyroid hormones, vitamin D and retinoic acid.

The lipophilic ligands travel in the circulation bound to the plasma proteins. After

dissociating from the proteins, ligands enter the cell by passive diffusion or by using

specific transport processes (Ribeiro et al. 1995, Visser et al. 2008). NRs can also bind
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ligands that are intracellularly originated as metabolic products (Aranda and Pasqual

2001).

When  the  ligand  reaches  its  receptor  it  binds  to  the  LBP  in  the  LBD  and

induces a conformational change. In the case of an activating agonistic ligand, helix 12 is

stabilized against the surface of the LBD, which disrupts a repressive hydrophobic groove.

The intact repressive hydrophobic groove binds co-repressors which contain a co-

repressor nuclear-receptor box, and its disruption causes their release. Instead, a new

hydrophobic cleft is formed that allows co-activator recruitment by AF-2. The co-

activators, such as the steroid receptor co-activator (SRC) family, typically contain a

helical LxxLL motif (where L is leucine and x is any amino acid) and interact with histone

acetyltransferases (HATs), chromatin remodeling proteins and the general transcriptional

activation machinery to allow initiation of transcription (Bain et al. 2007, Gronemeyer et

al. 2004, Renaud and Moras 2000). However, there are many exceptions to this model.

For example, ligand-dependent nuclear-receptor corepressor (LCoR) and receptor-

interacting protein 140 (RIP140) can bind to NRs in a ligand-dependent fashion and

compete with co-activators by displacing them. Some co-factors, such as the SWI/SNF

chromatin remodeling complexes, can function either as repressors or as activators

depending on the context. The ability of co-activators and repressors to associate in

different  complexes  allows  a  temporal-  and  tissue-specific  modulation  of  target  gene

transcription (Perissi and Rosenfeld 2005). In contrast to an agonistic ligand, an antagonist

inhibits co-activator binding by sterically blocking the ability of helix 12 to approach the

core LBD structure or by inducing helix 12 to bind within the hydrophobic cleft thus

unproductively mimicking a co-activator (Bain et al. 2007). However, helix 12 has more

than two positions (on and off). It can adopt several intermediary positions, which enables

the design of ligands with different degrees of agonism and antagonism (Gronemeyer et

al. 2004). With some NRs such as estrogen-related receptors (ERRs), the AF-2 domain is

fixed in an active conformation in the absence of ligand, which results in constitutive

receptor activation. In these cases, the transcriptional activity of the NR is regulated by

nuclear availability of the receptor or its co-activators, by signal-induced receptor

modifications such as phosphorylation or acetylation, or by interactions with other

transcription factors. However, the transcriptional activity of constitutively active NRs can

also be modified by ligands that repress or increase their activity by, for example,
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inhibiting or enhancing co-activator binding, respectively (Benoit et al. 2004, Sonoda et

al. 2008).

NRs can also regulate cellular functions via direct interactions with other

transcription factors. A classic example of such regulation is mutual transrepression of the

GR and NF- B (nuclear factor- ) (Gronemeyer et al. 2004). In addition, many so-called

non-genomic  effects  have  been  associated  with  NRs.  These  effects  are  often  very  rapid

and do not need mRNA or protein synthesis to be mediated. An example of such an effect

is the regulation of endothelial nitric oxide synthase activity in endothelial cells by

estrogen. Steroids have been shown to interact with non-NRs such as ion channels and G

protein-coupled receptors at the plasma membrane. Moreover, potentially relevant

membrane-bound steroid receptors have been identified for at least ER , ER ,

progesterone receptor, and AR (Gronemeyer et al. 2004, Wierman 2007).

Fig. 3. The function of nuclear receptors. NRs can bind small lipophilic ligands and
products of cellular metabolism (a). In the absence of ligand, NRs are present in the
cytoplasm in a complex with heat shock proteins (b) or in the nucleus constitutively bound
to their HREs, forming a repressive complex with co-repressors and HDACs (c). Ligand
binding induces a conformational change that results in either recruitment of co-activators
and  HATs  (agonist)  (d)  or  co-repressors  and  HDACs  (antagonist)  (e).  NRs  can  also
regulate cellular functions by other mechanisms, for instance, by interacting directly with
other transcription factors and repressing or increasing their function (f).
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2. ORPHAN NUCLEAR RECEPTORS

Orphan NRs are defined as receptors that lack an identified natural ligand. Some of the

NRs,  such  as  PPARs  and  RXRs,  were  first  identified  as  orphan  receptors  but  were

recategorized after having been shown to bind ligands. However, many receptors still

remain in the diverse group of orphan receptors (Benoit et al. 2006). ERRs were the first

orphan receptors to be discovered (Giguère et al. 1988). ERRs are constitutively active in

the absence of any ligand (Kallen et al. 2004). Their LBDs are still capable of binding

ligands, although most of the recognized synthetic ligands inhibit their constitutive

activity and therefore function as their inverse agonists. There are also orphan NRs such as

hepatocyte nuclear factor 4 (HNF-4) that bind structural ligands, which are unable to leave

the receptor once bound and constitute part of the receptor itself (Benoit et al. 2006). The

members of the NGFI-B receptor family are true orphan NRs incapable of ligand binding

because  of  their  small  LBP  (Wang et al. 2003). Although the transcriptional activity of

these receptors can not be regulated by ligands, their function is modulated at the level of

their expression or by post-translational mechanisms, which will be discussed in more

detail in chapter 2.2.1.

2.1 The NR3B orphan nuclear receptor family

The NR3B orphan NR family comprises three members: ERR  (NR3B1), ERR  (NR3B2)

and ERR  (NR3B3).  ERR  was  the  first  orphan  NR ever  discovered.  Its  gene  (ESRRA)

was indentified in the search for genes that encode proteins related to ER  and it was

accordingly named estrogen-related receptor. The gene that encodes ERR  (ESRRB) was

identified by using the ERR  cDNA as the probe (Giguère et al. 1988). The last member

of  the  family,  ERR  (ESRRG), was finally identified a decade later (Eudy et al. 1998,

Heard et al. 2000, Hong et al. 1999).

2.1.1 The structure of the NR3B family

ERR receptors share the typical NR structure with domains necessary for ligand and DNA

binding and a nonconserved NTD. The different members of the ERR family show

considerable  homology  in  their  amino  acid  sequence.  The  NTD  is  the  most  variable
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domain whereas the DBDs of ERR  and ERR  show 91% similarity compared to ERR .

The LBD of ERR  is 65% and 63% identical to those of ERR  and ERR , respectively

(Fig.  4).  In addition to the three main isoforms (ERR 1, ERR 2, ERR 2),  several  splice

variants of ERRs have been identified.  Human ERR  has a short-form that is  the human

ortholog of mouse ERR  and lacks 67 amino acids from its C-terminus. hERR 2- 10

lacks exon 10 and encodes a different C-terminal end (Zhou et al. 2006). ERR 1 is 23

amino acids smaller than ERR 2 from the NTD and lacks the functional AF-1 domain that

is present in the larger isoform (Heard et al. 2000). Although the subject remains poorly

known, the different variants could have independent functions in cells (Bombail et al.

2010, Tremblay and Giguère 2007). The crystal structures of ERR  (Kallen et al. 2004)

and ERR  (Greschik et al. 2002) have been solved and they show that the receptors are in

their active conformation in the absence of any ligand.

Fig. 4. The amino acid sequence identity between human estrogen-related receptors and
estrogen receptors. The percentages represent the similarity of ERR  and ERR  proteins
and the related ER  and ER  proteins when compared to ERR . The length of each
protein is also shown. The figure is adapted from Ariazi and Jordan (2006) and Tremblay
and Giguère (2007).

2.1.2 The DNA and ligand binding of NR3B receptors

ERRs bind DNA by recognizing an ERR response element (ERRE), which contains the

nucleotides  5´-TNAAGGTCA-3´.  ERRs  can  bind  to  the  ERRE  as  a  monomer,  a

homodimer  or  a  heterodimeric  complex  that  is  composed  of  two  distinct  ERR  isoforms

(Barry et al. 2006, Johnston et al. 1997, Sladek et al. 1997). The ERRE sequence can be
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recognized and also bound by steroidogenic factor-1 (Wilson et al. 1993a). ERRs can bind

in vitro to the same hormone response element as the ERs (ERE) (Johnston et al. 1997,

Vanacker et al. 1999, Zhang and Teng 2000) but the physiological significance of the ERE

binding remains to be determined.

ERRs and ERs share considerable amino acid identity between their

respective LBDs (Fig. 4) though none of the ERR family members bind natural estrogens.

Although most of the amino acids that line the LBP are identical between ER  and ERR ,

a few differences lead to a smaller ERR  LBP volume. The most significant of these

differences is ERR  F435, which corresponds to ER  L525. F435 partially fills the ligand

binding cavity and prevents ERR  from binding to the estrogen ligands (Wang et al.

2006a). ERRs can still bind several other chemical compounds. The transcriptional

activity of all three ERR isoforms is inhibited by the potent synthetic estrogen analog

diethylstilbestrol (DES) and its close relatives hexoestrol and dienestrol (Coward et al.

2001, Tremblay et al. 2001b). A selective estrogen receptor modulator 4-

hydroxytamoxifen (4-OHT) acts as an inverse agonist for ERR  and ERR  (Coward et al.

2001, Tremblay et al. 2001a). Due to the small volume of the ERR  LBP, the receptor has

to undergo a large conformational change to be able to bind DES or 4-OHT. Binding of

the ligands results in a rotation of F435, which induces the displacement of the AF-2 helix

to a position that interferes with the recruitment of co-activators (Greschik et al. 2004,

Wang et al. 2006a). Bisphenol A, which is an ubiquitous environmental contaminant with

estrogenic activity, can bind to ERR . Bisphenol A does not affect the transcriptional

activity of ERR  but it can prevent 4-OHT from binding to the LBP (Takayanagi et al.

2006). ERR  has been found to bind two organochlorine pesticides, toxaphene and

chlordane, and a specific synthetic ligand XCT790, which inhibit its activity (Busch et al.

2004, Willy et al. 2004, Yang and Chen 1999). In addition, there are several synthetic

agonists that ERR receptors bind. Phenolic acyl hydrazones GSK4716 and DY131 act as

selective ERR  and ERR  agonists that increase their transcriptional activity (Yu and

Forman 2005, Zuercher et al. 2005). The crystal structure of ERR  with the agonist

GSK4716 was solved and it shows that binding of GSK4716 forces a rotation of E275 and

R316 that allows access of the ligand to an additional pocket, which was previously

shielded. This increases the volume of the combined pocket so that it can accommodate an

acyl hydrazone ligand without requiring displacement of the AF-2 helix. GSK4716

induces a small increase in protein stability in an active conformation, which could partly
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explain the agonistic effect (Wang et al. 2006a). The isoflavones genistein, daidzein, and

biochanin A, and the flavone 6,3’,4’-trihydroxyflavone can also bind to ERRs and act as

their agonists (Suetsugi et al. 2003).

Table 1. The specificity of selected ERR ligands. Ligands can either increase ( ) or
decrease ( ) the transcriptional activity of the ERRs. Some of the ERR ligands bind
specifically to the designated ERR isoforms but have no effect (-) on others.

ERR ERR ERR

4-OHT -

DES

XCT790 - -

GSK4716 -

daidzein

2.1.3 The function of NR3B family as transcriptional regulators

The LBD of the ERR receptors contains a conserved AF-2 motif that is in an active

configuration when in the absence of any ligand (Greschik et al. 2002, Kallen et al. 2004,

Kallen et al. 2007, Wang et al. 2006a). Therefore, ERRs interact with co-activators in a

ligand-independent manner. Because the transcriptional activity of ERRs is mostly

dependent on the configuration of co-factor binding, their potencies as transcriptional

activators vary according to the cell type and the promoter in question, the overall effect

being either negative or positive.

ERRs bind numerous co-regulatory proteins that they share with other NRs.

The transcriptional activity of ERRs is greatly enhanced by peroxisome proliferator-

activated receptor  coactivator-1  and  (PGC-1  and PGC-1 ) (Huss et al. 2002, Kamei

et al. 2003, Schreiber et al. 2003). Moreover, members of the steroid receptor co-activator

family, which include SRC-1 (NcoA1), SRC-2 (NcoA2, GRIP1, TIF2) and SRC-3

(NcoA3, AIB1, ACTR, RAC3, TRAM-1) bind to ERRs and function as their co-activators

(Hong et al. 1999, Xie et al. 1999, Zhang and Teng 2000). RIP140 can either repress or

increase the transcriptional activity of ERRs depending on the target sequence on the

promoter (Castet et al. 2006). Co-repressors of ERRs include PROX1 (prospero-related

homeobox 1) (Albers et al. 2005, Charest-Marcotte et al. 2010) and SMRT (silencing
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mediator of retinoid and thyroid hormone receptors) (Wang et al. 2006a). The co-

regulatory protein interactions can be altered by ligand binding. For example, 4-OHT

blocks AF-2 co-activator binding by changing receptor conformation as described in

previous chapter. The transcriptional activity of ERRs can also be modulated by other

transcription factors, such as SHP which represses their transcriptional activity (Sanyal et

al. 2002), and by post-translational modifications. The NTDs of ERR  and ERR  contain

a functional phosphorylation-dependent sumoylation motif. In the case of ERR , the

phosphorylation of serine 19 is required for the sumoylation at lysine 14, and both the

phosphorylation and the sumoylation decrease the transcriptional activity of ERR

(Tremblay et al. 2008, Vu et al. 2007).  Dimerization  can  also  affect  the  transcriptional

activity of ERRs. For instance, homodimerization increases whereas heterodimerization

with ERR  decreases the transcriptional activity of ERR  (Huppunen and Aarnisalo

2004).  ERR  dimers  can  interact  with  PGC-1  on  DNA  whereas  monomers  can  not

(Barry and Giguère 2005).

2.1.4 The biological function of the NR3B family

ERRs are ubiquitously expressed in mouse and human. All of the ERR isoforms are

expressed in the heart and kidney. ERR  is also highly expressed in many other tissues

such as the intestine, skeletal muscle, brain and brown adipose tissue. ERR  is most highly

expressed in the brain and in the spinal cord (Bookout et al. 2005). ERR  is mostly

expressed during embryonic development (Luo et al. 1997, Mitsunaga et al. 2004). After

birth it is expressed in the eye with lower concentrations in thyroid, testis and parts of the

brain (Bookout et al. 2005). NR3B receptors have been shown to regulate many biological

processes, including energy metabolism, embryonic development and carcinogenesis.

2.1.4.1 The function of ERR  and ERR  in energy homeostasis

ERR  (Esrra) knockout (KO) mice are viable and fertile and they do not have any gross

anatomical alterations. However, they have reduced body weight and peripheral fat

deposits and they are resistant to high-fat diet-induced obesity (Luo et al. 2003). The lean

phenotype of ERR  KO mice can, in part, be explained by lipid malabsorption exhibited

by ERR  KO pups (Carrier et al. 2004). ERR  KO mice show altered expression and
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altered regulation of several enzymes and proteins involved in energy metabolism (Huss et

al. 2004, Luo et al. 2003, Rangwala et al. 2007). ERR  KO mice are also unable to

maintain body temperature when exposed to cold because of decreased mitochondrial

mass and oxidative capacity in their brown adipocytes (Villena et al. 2007). ERR  has

been shown to have an important role as a regulator of energy metabolism, mitochondrial

biogenesis and oxidative phosphorylation in numerous additional studies (Giguère 2008)

and therefore the mild phenotype of ERR  KO mice is quite surprising. However, this

could be explained by compensation by the other two ERR isoforms. In fact, in the ERR

KO heart, the expressions of ERR  and PGC-1  are increased, which suggests a

compensatory mechanism (Dufour et al. 2007). ERR  is a plausible candidate for

metabolic diseases due the important role it has in energy metabolism. Nonetheless, in

genetic studies no association between the variants of ERR  encoding gene ESRRA and

type 2 diabetes or obesity was found in caucasian Danish population (Larsen et al. 2007).

ESRRA23 is a polymorphic 23-base pair sequence located at position -682 in the 5´-

flanking  region  of  the ESRRA. It can be found in one to four copies in human

chromosomes with higher number of repeats leading to higher expression of ERR . In

Japanese individuals the longer 2.3 genotype of ESRRA23 was  linked  to  a  higher  body

mass index (BMI) when compared to the shorter 2.2 genotype (Kamei et al. 2005). In

addition, in mice ERR  was found to be essential for the ATP synthesis and therefore for

bioenergetic and functional adaptation of the heart subjected to hemodynamic stressors

known to cause heart failure (Huss et al. 2007). In humans, the expressions of ERR  and

its target genes are decreased in the hearts of cardiomyopathy and end-stage heart failure

patients (Karamanlidis et al. 2010, Sihag et al. 2009).

At birth, the heart undergoes a metabolic switch from a predominant

dependence on carbohydrates to a greater dependence on postnatal oxidative metabolism.

Disruption of the ERR  encoding gene Esrrg from  mice  (ERR  KO  mice)  blocks  this

switch which results in lactatemia, electrocardiographic abnormalities and death during

the first week of life (Alaynick et al. 2007). ERR  regulates the expression of key ion

homeostatic genes, including a voltage-gated potassium channel Kcne2, in heart, stomach

and kidney, which leads to elevated serum potassium, reductions in gastric acid

production markers, and cardiac arrhythmia in ERR  KO mice. A correlation between

specific ESRRG single-nucleotide polymorphism genotypes and altered blood pressure has

also been reported in humans (Alaynick et al. 2010). ERR  also functions in skeletal
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muscle in which it is induced by exercise and it positively regulates mitochondrial activity

and oxidative capacity (Rangwala et al. 2010).

Fig. 5. The metabolic functions of ERR  and/or ERR  in different tissues.

2.1.4.2 The function of ERR  in embryonic development

ERR  has  been  shown  to  sustain  embryonic  stem  cell  self-renewal  and  pluripotency  by

regulating the expression of Oct4 and Nanog genes (van den Berg et al. 2008, Zhang et al.

2008). ERR  also functions in concert with Oct4 and Sox2 to mediate reprogramming of

mouse embryonic fibroblasts to induced pluripotent stem cells with many of the

characteristics of embryonic stem cells (Feng et al. 2009). ERR  is also essential for

normal  placental  formation  as  ERR  (Esrrb) KO mice die in utero at 10.5 days post

coitum due to impaired placental formation (Luo et al. 1997). The complement of

placental  defects  with  wild-type  tetraploid  embryos  has  demonstrated  that  ERR  KO

embryos have a diminished number of primordial germ cells in their gonads. Despite the

defects in primordial germ cell number, the adult ERR  KO mice are fertile. However,

they show behavioural abnormalities with, inter alia, circling behaviour and head-tossing

(Mitsunaga et al. 2004).



Review of the Literature

26

2.1.4.3 The function of NR3B receptors in carcinogenesis

ERRs are expressed in many cancer tissues. These include tumors of the breast (Ariazi et

al. 2002, Deblois et al. 2009, Lu et al. 2001, Suzuki et al. 2004), prostate (Cheung et al.

2005, Fujimura et al. 2007, Fujimura et al. 2010, Yu et al. 2008), ovary (Sun et al. 2005),

and the endometrium (Gao et al. 2006, Watanabe et al. 2006). The expression of ERR

and ERR  correlate with unfavourable and favourable biomarkers, respectively, in human

breast cancer (Ariazi et al. 2002). It has been suggested that ERR  functions as a

determinant of heterogeneity in breast cancer (Deblois et al. 2009) and ERR  mediates

tamoxifen resistance in invasive lobular breast cancer cells (Riggins et al. 2008). The

elevated  expression  of  ERR  has  been  shown to  correlate  with  poor  survival  in  prostate

(Fujimura et al. 2007) and ovarian (Sun et al. 2005) cancers. On the other hand, ERR  and

ERR  suppress  growth  of  prostate  cancer  cells  (Yu et al. 2007, Yu et al. 2008). In

endometrial carcinoma, the expression of ERR  is positively correlated with cancer stage

and myometrial invasion whereas ERR  negatively correlates with nodal metastasis (Gao

et al. 2006).

2.2 The NR4A orphan nuclear receptor family

The NR4A subfamily of NRs comprises three members: NGFI-B (NR4A1, Nur77, TR3),

Nurr1 (NR4A2, NOT), and Nor1 (NR4A3, MINOR, TEC). NGFI-B (nerve growth factor

inducible-B) was the first member of the subfamily identified as a gene induced by serum

in mouse fibroblast cells (Hazel et al. 1988) and by the nerve growth factor in the rat

pheochromocytoma cell line PC12  (Milbrandt 1988). Nor1 (neuron-derived orphan

receptor 1) was cloned from forebrain neural cells that were undergoing apoptosis (Ohkura

et al. 1994) and finally Nurr1 (Nur-related factor 1) was characterized as a brain-specific

transcription factor in dopaminergic neurons (Law et al. 1992).

2.2.1 The structure and transcriptional regulation by the NR4A family

The structures of NR4A receptors are very similar to each other. Therefore, it has been

suggested that the members of the family have evolved from a common ancestral gene

(Martínez-González and Badimon 2005, Maxwell and Muscat 2005). The NTD containing
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Fig. 6. The schematic representation of the NR4A1 receptor structure. The percentages
represent the similarity of Nurr1 and Nor1 amino-terminal domain (NTD), DNA-binding
domain (DBD) and ligand-binding domain (LBD) when compared to NGFI-B. The length
of each protein is also shown.

the  AF-1  is  the  most  variable  domain.  The  NTD  of  NGFI-B  shows  28%  amino  acid

homogeneity  with  Nurr1  and  26% with  Nor1  (Fig.  6)  (Martínez-González  and  Badimon

2005). The AF-1 of NR4A receptors is exceptionally potent and mediates the

transactivation, cell specificity and co-factor recruitment of these receptors (Maira et al.

2003, Wansa et al. 2002, Wansa et al. 2003). DBD is well conserved with over 90%

homology.  It  interacts  with  the  consensus  response  element  NGFI-B responsive  element

(NBRE) AAAGGTCA as monomers and with the palindromic Nur-responsive element

(NurRE) TGATATTTX6AAATGCCA comprising two inverted NBRE sequences spaced

by 6 bp as homodimers and heterodimers (Fig. 7) (Maira et al. 1999, Philips et al. 1997,

Wilson et al. 1991). NGFI-B and Nurr1 can form heterodimers with retinoic X receptor

(RXR)  though  Nor1  can  not.  As  heterodimers  with  RXR,  Nurr1  and  NGFI-B  mediate

transactivation in response to the RXR ligands through the DR-5 element. The DR-5

element comprises two direct repeats of the consensus NR binding motif separated by five

nucleotides (Fig. 7) (Aarnisalo et al. 2002, Perlmann and Jansson 1995, Zetterström et al.

1996a).

The NR4A receptors are incapable of binding ligands to their LBPs. The

structure of the Nurr1 LBD has been determined by X-ray crystallography and it revealed

that the LBP is tightly packed with bulky, hydrophobic amino acid side chains (Wang et

al. 2003) that are conserved throughout the NR4A subfamily (Flaig et al. 2005, Wang et

al. 2003). Moreover, the hydrophobic co-activator binding cleft typical of NRs is filled

with polar side chains, which makes it incapable of binding co-regulators (Wang et al.

2003). However, there is a hydrophobic patch between helices 11 and 12 that potentially

interacts with co-factors and modulates transcriptional activity (Codina et al. 2004, Flaig
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Fig. 7. NR4A receptors can bind DNA as monomers (NBRE), by forming homodimers or
heterodimers with other NR4A receptors (NurRE on the pro-opiomelanocortin promoter),
or by forming heterodimers with RXR (DR5).

et al. 2005). This patch has been reported to bind, for example, co-repressors SMRT and

NCoR (nuclear receptor co-repressor) (Codina et al. 2004). In addition, NR4A family has

been reported to bind SRC-1, SRC-2, p300 and PCAF (p300/CBP-associated factor) co-

regulators through their AF-1 and NTD (Wansa et al. 2002). Despite the fact that NR4A

receptors do not bind ligands to their LBP, there are compounds that target regions outside

of the LBP that regulate receptor/co-factor interactions and receptor functions (Shi 2007).

One of these compounds is 6-mercaptopurine, which is a widely used antineoplastic and

anti-inflammatory drug that activates Nurr1 (Ordentlich et al. 2003) and Nor1 (Wansa et

al. 2003) through their AF-1 domains. Moreover, other agonists have been described for

Nurr1 but their mechanisms of action are still unknown (Dubois et al. 2006, Hintermann

et al. 2007). 1,1-bis(3-indolyl)-1-(p-anisyl)methane activates NGFI-B through the LBD

(Chintharlapalli et al. 2005) and prostaglandin A2 functions as a transactivator of Nor1 by

a mechanism that is dependent of both LBD and AF-1 (Kagaya et al. 2005).

An  important  mechanism  for  regulating  the  function  of  NR4A  receptors  is

mediated through the alterations of their protein expression. The NR4A family functions

as immediate-early genes and their expression is induced rapidly in response to a range of

signals, such as parathyroid hormone (PTH) (Pirih et al. 2003, Pirih et al. 2005, Tetradis

et al. 2001a, Tetradis et al. 2001b), typical and atypical antipsychotic drugs such as

raclopride and olanzapine (Maheux et al. 2005), vascular endothelial growth factor (Liu et

al. 2003) and inflammatory cytokines (Pei et al. 2005). Furthermore, physical stimuli such

as stress, magnetic fields, mechanical agitation and membrane depolarization can induce

their expression (Bandoh et al. 1997, Hazel et al. 1991, Honkaniemi et al. 1994, Katagiri
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et al. 1997, Miyakoshi et al. 1998). Protein kinase A (Kovalovsky et al. 2002, Pirih et al.

2003, Song et al. 2001, Tetradis et al. 2001a, Tetradis et al. 2001b), Ca2+/calmodulin

dependent kinase II (Kovalovsky et al. 2002), protein kinase C, phosphatidylinositol 3-

kinase (PI3K) (Lammi and Aarnisalo 2008, Song et al. 2001), NF- B (Pei et al. 2005),

and mitogen-activated protein kinase pathways (MAPK) (Kovalovsky et al. 2002, Lammi

and Aarnisalo 2008) have been reported to be involved in the regulation of the NR4A

expression.

In addition to the regulation of expression, extracellular stimuli can also

influence the NR4A post-translational modifications. For instance NGFI-B can be

phosphorylated by several kinases, including the PI3K/Akt and MEK1/2-ERK1/2 MAP

kinase pathways. Phosphorylation by PI3K/Akt pathway has been shown to antagonize the

DNA  binding  of  NGFI-B  and  to  increase  its  translocation  from  the  nucleus  to  the

cytoplasm (Cunningham et al. 2006, Masuyama et al. 2001, Pekarsky et al. 2001).

Phosphorylation by MEK1/2-ERK1/2 MAP kinase pathway regulates NGFI-B’s nuclear

export and translocation to mitochondria (Jacobs et al. 2004, Wang et al. 2009a). Nurr1

has been shown to be sumoylated by PIAS , which leads to the repression of the

transcriptional activity of Nurr1 (Galleguillos et al. 2004).

In  addition,  cross-talk  with  other  signaling  pathways  has  been  shown  to

regulate the transcriptional activity of Nurr1. GR interacts with NR4A receptors and

represses their NurRE-dependent transcription (Martens et al. 2005). DAX-1 interacts

with NGFI-B and thereby represses its transcriptional activity by competing with the co-

activator SRC-1 for binding (Song et al. 2004).

2.2.2 The biological function of the NR4A family

NR4A receptors play an important role in the central nervous system. Nonetheless,

recently, it has become clear that they also function in peripheral tissues and regulate

processes such as those of the immune system, energy metabolism, the hypothalamic-

pituitary-adrenal axis, and carcinogenesis.
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2.2.2.1 The function of NR4A receptors in the central nervous system

Nurr1 is predominantly expressed in the central nervous system with high levels of

expression at sites such as the substantia nigra, cerebellum, olfactory bulb, hypothalamus,

neocortex and ventral tegmental area (Zetterström et al. 1996b). Nurr1 is essential for the

development and survival of dopaminergic neurons. Dopamine neurons localize at the

substantia nigra and ventral tegmental area where they regulate movement and affective

behaviour. Mutations in Nurr1 gene  have  been  associated  with  Parkinson’s  disease,  a

condition in which dopamine neurons are degenerated (Le et al. 2003). Nurr1 KO mice

fail to generate midbrain dopaminergic neurons, are hypoactive and die within two days

after birth (Zetterström et al. 1997). Furthermore, heterozygous Nurr1 (Nurr1 +/-) mice

have lower levels of dopamine in the midbrain, prefrontal cortex, and nucleus accumbens,

and increased locomotor activity in response to mild stress (Eells et al. 2002). Nurr1 +/-

mice also show decreased ethanol preference and wheel running, which associates Nurr1

with excessive reward-seeking behaviour typical for addiction (Werme et al. 2003). The

other two members of the NR4A family are also expressed in the brain (Zetterström et al.

1996a, Zetterström et al. 1996b). NGFI-B KO mice are hyperactive and have disturbances

in both basal and haloperidol-induced dopamine turnover, which suggests a role for NGFI-

B in dopamine clearance (Gilbert et al. 2006). Nor1 has been associated with the

modulation of food intake and energy balance as the underexpression of Nor1 in mice

suppresses their food intake and body weight (Nonogaki et al. 2009). Nor1 KO mice also

show impaired postnatal axonal growth and region-specific cell death in the hippocampus

that are associated with lasting changes in hippocampal excitability and increased

susceptibility to chemically induced seizures (Pönniö and Conneely 2004).

2.2.2.2 The function of NR4A receptors in peripheral tissues

NR4A  receptors  have  been  shown  to  play  an  important  role  in  the  cells  of  the  immune

system. For instance, they function in T cell receptor-mediated apoptosis during which

immature thymocytes and mature T cells that express self-reactive T cell receptors are

deleted by apoptosis to eliminate self-reactive and potentially autoimmune lymphocytes.

NGFI-B and Nor1 are induced to a high level during T cell receptor-mediated apoptosis in

immature thymocytes and T cell hybridomas (Cheng et al. 1997, Liu et al. 1994,
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Woronicz et al. 1994) and the blocking of NGFI-B expression or function by antisense or

dominant negative NGFI-B inhibits T cell receptor mediated apoptosis (Calnan et al.

1995, Liu et al. 1994, Woronicz et al. 1994, Zhou et al. 1996). On the other hand, Nurr1 is

strongly expressed in the peripheral blood T cells of multiple sclerosis patients (Satoh et

al. 2005) in which it regulates the expression of interleukin-17 and interferon- , two key

cytokines suggested to work in the multiple sclerosis pathogenesis (Doi et al. 2008).

In contrast to the apoptotic effects in T cells and thymocytes, the members of

the  NR4A  family  are  able  to  mediate  prosurvival  effects  in  other  tissues.  In  the

endothelium, for example, Nor1 mediates the prosurvival effects of hypoxia-inducible

factor 1 (Martorell et al. 2009) and in vascular smooth muscle cells Nor1 promotes

proliferation (Nomiyama et al. 2006).

NR4A receptors regulate many aspects of energy metabolism and

expenditure. NR4A receptors are involved in hepatic glucose metabolism. They are

induced in the liver by different physiological stimuli, including glucagon stimulation and

fasting (Oita et al. 2009, Pei et al. 2006). Adenovirus-mediated overexpression of NGFI-B

in the mouse liver activates multiple genes involved in gluconeogenesis and stimulates

hepatic glucose production (Pei et al. 2006). In skeletal muscle, the NR4A receptors are

induced by -adrenergic signaling (Pearen et al. 2008) and endurance exercise (Mahoney

et al. 2005). NR4A receptors promote glucose utilization as NGFI-B KO  mice  have

reduced expression of genes involved in skeletal muscle glucose and glycogen metabolism

(Chao et al. 2007). NGFI-B KO mice also have an increased susceptibility to diet-induced

obesity and insulin resistance in skeletal muscle and liver (Chao et al. 2009). NR4A

receptors also participate in lipid metabolism. NGFI-B promotes lipolysis in muscle

(Maxwell et al. 2005), decreases hepatic triglyceride content and modulates plasma

lipoprotein profiles by increasing plasma low density lipoprotein cholesterol and by

decreasing high density lipoprotein cholesterol (Pols et al. 2008). In addition, NR4A

receptors may participate in adipogenic differentiation (Chao et al. 2008, Fumoto et al.

2007) and central regulation of energy homeostasis (Nonogaki et al. 2009).

NR4A receptors also function in many other peripheral tissues. They are

overexpressed in atherosclerotic lesions obtained from patients with coronary artery

disease (Arkenbout et al. 2002, Martínez-Gonzaléz et al. 2003, Nomiyama et al. 2006)

and they inhibit macrophage activation and foam-cell formation and differentiation that

suggests a protective role in atherogenesis (Bonta et al. 2006). The NR4A family has been
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linked in the regulation of gene expression in the hypothalamic-pituitary-adrenal axis that

is related to inflammation and steroidogenesis. Their expression is rapidly induced by

corticotropin releasing hormone (Parkes et al. 1993, Philips et al. 1997) and

adrenocorticotropic hormone (Enyeart et al. 1996), and their target genes include pro-

opiomelanocortin (Murphy and Conneely 1997, Philips et al. 1997), 21-hydroxylase

(Wilson et al. 1993b), and 20 -hydroxysteroid dehydrogenase (Stocco et al. 2000).

However, there is normal basal regulation of the hypothalamic-pituitary-adrenal axis and

normal steroidogenesis in NGFI-B KO mice possibly due to the compensatory effects of

related proteins (Crawford et al. 1995).

Finally, the NR4A receptor family has been linked to carcinogenesis. The

dominating cytoplasmic expression of Nurr1 over nuclear Nurr1 correlates with an

advanced pathological stage and an invasive growth pattern in bladder cancer patients. In

vitro, silencing of endogenous Nurr1 by siRNA reduced the migration of bladder cancer

cells (Inamoto et al. 2010). Chromosomal translocations that create chimeric fusions of

full Nor1 protein fused with the amino-terminal domains of EWS (Ewing sarcoma

breakpoint region 1 protein) (Clark et al. 1996, Labelle et al. 1999), TCF12 (Transcription

factor 12) (Sjögren et al. 2000), TAF2N (TATA box binding protein (TBP)-associated

factor, RNA polymerase II, N) (Attwool et al. 1999, Panagopoulos et al. 1999, Sjögren et

al. 1999) or TFG (TRK-fused gene) (Hisaoka et al. 2004) proteins have been linked to

extraskeletal myxoid chondrosarcoma.
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3. THE BONE AND OSTEOBLASTS

In vertebrates, skeletal bone has various physiological roles. Bone functions in

locomotion,  protection  and  support  of  soft  tissues  but  it  is  also  a  hematopoietic  and

endocrine organ and regulates calcium homeostasis (Imai et al. 2009, Lee et al. 2007,

Tortora and Grabowski 2000).

3.1 The structure of bone

Bone is composed mainly of extracellular matrix, which contains both organic and

inorganic substances. The inorganic component accounts for 65% of the bone’s weight

and contains minerals. Calcium and phosphate exist in bone in the form of hydroxyapatite

(3Ca3(PO4)2 · Ca(OH)2). The skeleton contains about 99% of the body’s calcium, 90% of

its phosphate, 50% of its magnesium and 33% of its sodium. The organic matrix consists

mainly of collagen (90-95%) whereas the rest is made of proteoglycans, glycoproteins,

sialoproteins and a small amount of lipid (Brook and Marshall 2001).

Bones are composed of two different types of bone tissue: cortical (compact)

and trabecular (cancellous, spongy) bone. The rigid cortical bone, which constitutes about

80% of the skeleton, forms the external layer of all bones and provides protection and

support to resist stress produced by weight and movement. Cortical bone tissue is arranged

in units called osteons or Haversian systems. Blood and lymphatic vessels and nerves

penetrate the cortical bone through central Haversian canals and perforating Volkmann’s

canals. The hard, calcified matrix is arranged in ringlike concentric lamellae which are

arranged around the central canals. Between the lamellae small spaces called lacunae that

contain osteocytes can be found. Radiating in all directions from the lacunae are tiny

channels called canaliculi, which are filled with extracellular fluid and which connect

lacunae with one another and with the central canals. The areas between osteons contain

interstitial lamellae comprising fragments of older osteons, which have been partially

destroyed during bone remodeling or growth. In contrast to cortical bone, trabecular bone

does not contain true osteons. Instead it contains lamellae that are arranged in an irregular

lattice of thin columns of bone called trabeculae. The space between the trabeculae of

certain bones is filled with red bone marrow, which produces blood cells. Trabecular bone

is light and it tends to be located at sites where bone is not heavily stressed or where stress
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is applied from many directions. Trabecular bone constitutes about 20% of bone and

makes  up  most  of  the  bone  tissue  of  short,  flat,  and  irregular  shaped  bones  such  as  the

sternum. Moreover, the epiphyses and a narrow rim around the medullary cavity of the

diaphysis of long bones contain trabecular bone (Tortora and Grabowski 2000).

3.2 The different cell types of bone

There are several types of cells in bone. The cells that are specific for bone are

preosteoblasts, osteoblasts, osteocytes, and osteoclasts. Preosteoblasts differentiate from

the  mesenchymal  stem  cells  (MSCs)  of  the  bone  marrow.  Preosteoblasts  in  turn  can

differentiate into osteoblasts, which are bone forming cells that synthesize and secrete

collagen fibers and other organic components to the bone matrix. Osteoblasts,

preosteoblasts and MSCs are discussed in more detail in next chapter. Osteocytes are

mature bone cells that are derived from osteoblasts that have been embedded in the

extracellular matrix. Osteocytes do not secrete matrix materials but maintain the metabolic

activities of bone tissue such as the exchange of nutrients and waste products with the

blood. They make contact with the neighbouring cells and nearby blood supply by means

of cytoplasmic processes, which lie in canaliculi. Osteoclasts are large cells that are

derived from the fusion of several monocytes, which are concentrated in the endosteum.

The  side  of  the  cell  that  makes  contact  with  the  bone  surface  is  composed  of  a  ruffled

border, by which osteoclast releases lysosomal enzymes and acids that digest the protein

and mineral components of the underlying bone (Brook and Marshall 2001, Tortora and

Grabowski 2000).

There are two major modes of bone formation, intramembranous and

endochondral ossification, which both involve the transformation of a preexisting

mesenchymal  tissue  into  bone  tissue.  Flat  bones  of  the  skull  are  formed by  a  process  of

intramembranous ossification by which MSCs first proliferate and condense and then

differentiate directly into the bone matrix secreting osteoblasts. In endochondral

ossification MSCs first form a hyaline cartilage model by differentiating into

chondroblasts and chondrocytes. Cells that surround the cartilage model subsequently start

to differentiate into osteoblasts and to form bone matrix and eventually the cartilage model

is completely replaced by bone (Gilbert 2000, Tortora and Grabowski 2000).
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3.3 The osteoblasts

3.3.1 The osteoblastic differentiation of mesenchymal stem cells

Adult stem cells are undifferentiated cells that include MSCs, which can differentiate into

multiple cell lineages such as osteoblasts, adipocytes and chondrocytes. In addition to

MSCs, adult stem cells also include hematopoietic stem cells that differentiate into blood

cells and osteoclasts, and neural stem cells that differentiate into neural cells (Jeong and

Mangelsdorf 2009, Liu et al. 2009b).

The differentiation process of MSCs is controlled by specific signals and

transcription factors. The key transcription factor for osteoblastic differentiation is Runt

related transcription factor 2 (Runx2, Cbfa1). Runx2 KO mice have a complete lack of

ossification due to maturational arrest of osteoblasts (Komori et al. 1997, Otto et al.

1997). In human, Runx2 haploinsufficiency causes the autosomal dominant bone disorder

cleidocranial dysplasia, which is characterized by defective bone formation (Lee et al.

1997, Mundlos et al. 1997). Runx2 expression is initiated in the mesenchymal

condensations of the developing skeleton (Ducy et al. 1997). Runx2 binds to and activates

the promoters of several osteoblastic genes, which results in the commitment and

establishment of osteoblastic phenotype. These genes include type I collagen (Coll  I)

(Ducy et al. 1997, Kern et al. 2001), osteopontin (OPN) (Ducy et al. 1997, Sato et al.

1998), and osteocalcin (OCN) (Ducy et al. 1997). On the other hand, Runx2 inhibits the

terminal differentiation of osteoblasts as mice overexpressing Runx2 have an increased

number of immature osteoblasts but a decreased number of mature osteoblasts and

osteocytes, which results in osteopenia with multiple fractures (Liu et al. 2001). In

addition, Runx2 regulates the differentiation of hypertrophic chondrocytes as Runx2 KO

mice have delayed chondrocyte maturation (Inada et al. 1999).

The expression and function of Runx2 is regulated by several factors, which

include growth factors such as bone morphogenetic proteins (BMPs) and fibroblast growth

factors (FGFs) and hormones such as PTH. The binding of BMP-2 to its receptor activates

Smads, which can interact with Runx2 and enhance its transcriptional activity (Hanai et al.

1999, Lee et al. 2000). Mice that express dominant negative form of BMP receptor IB in

their osteoblasts have reduced bone growth and formation, which indicates an important

role for BMPs in osteoblast differentiation (Zhao et al. 2002). FGF-2 increases the
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phosphorylation of Runx2 improving its transcriptional activity (Xiao et al. 2002).

Intermittent PTH treatment increases the expression and activity of Runx2 (Krishnan et al.

2003). In addition to Smads, numerous other interacting proteins have been reported to

regulate the function of Runx2. Runx2 requires the interaction with a co-transcription

factor Cbf  (Core-binding factor ) for the efficient association with DNA and

transcriptional activity. Cbf  is therefore needed for skeletal development (Yoshida et al.

2002). Runx2 also binds proteins such as CCAAT/enhancer-binding protein  (C/EBP )

(Gutierrez et al. 2002), and co-activators such as retinoblastoma protein (Thomas et al.

2001), TAZ (Transcriptional co-activator with PDZ-binding motif) (Cui et al. 2003), and

p204 (Liu et al. 2005), which all enhance its transcriptional activity. Other transcription

factors and co-regulators, including PPAR  (Jeon et al. 2003) and Stat1 (signal transducer

and activator of transcription 1) (Kim et al. 2003), reduce the transcriptional activity of

Runx2.

Osterix (Osx) is another osteoblast specific transcription factor that is

important for the osteoblastic differentiation. It functions downstream of Runx2 as Osx

KO mice show a lack of osteoblasts and have defective bone formation in spite of normal

Runx2 expression (Nakashima et al. 2002). Very little is known about factors that regulate

Osx. BMP-2 up-regulates Osx expression during osteoblast differentiation (Nakashima et

al. 2002). Nuclear factor of activated T cells c1 (NFATc1) binds Osx and activates Osx-

dependent Coll  I promoter activity (Koga et al. 2005) and p53 has been shown to

negatively regulate Osx expression (Wang et al. 2006b).

The canonical Wnt signaling pathway is an important factor in the control of

bone formation and bone mass and will be discussed in detail under the heading 3.3.1.1.

In vitro, the bone nodule formation can be divided into three stages: (I)

proliferation, (II) extracellular matrix development and maturation, and (III)

mineralization. Although an extensive diversity in the expression of osteoblastic marker

genes exists, some guidelines have been developed. In general, the expression of alkaline

phosphatase (ALP) increases during the extracellular matrix development and decreases

again when mineralization is well progressed. OPN peaks prior to bone sialoprotein (BSP)

and OCN, which are expressed by differentiated mineralizing osteoblasts (Aubin 2001).
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Fig.  8. Osteoblast progenitors in mesenchymal condensations of endochondral and
membranous skeletal elements differentiate first into preosteoblasts because of the
function  of  Runx2.  Preosteoblasts  express  low  levels  of  type  I  collagen  (Coll  I)  and
alkaline phosphatase (ALP). To become fully committed osteoblasts, preosteoblasts
require the function of Osx. Mature osteoblasts start to secrete osteoblastic markers,
including Coll I, ALP, osteopontin (OPN), bone sialoprotein (BSP) and osteocalcin
(OCN) into the extracellular matrix and are therefore responsible for the formation of
highly mineralized bone matrix.

3.3.1.1 The Wnt signaling pathway

Wnts are a family of 19 secreted glycoproteins that control many important biological

processes such as embryogenesis and tumorigenesis. Wnts bind to a membrane receptor

complex composed of a Frizzled (FZD) G protein-coupled receptor and a low-density

lipoprotein receptor-related protein 5 or 6 (LRP5/6) on the cell surface. Wnts can activate

three different intracellular signaling cascades: the canonical Wnt/ -catenin pathway, the

Wnt/Ca2+ pathway and the Wnt/planar polarity pathway. The most comprehensively

characterized of these is the canonical Wnt/ -catenin pathway. In the absence of Wnt

ligands, a degradation complex of glycogen synthase kinase 3 (GSK3), casein kinase 1 ,

Axin2 and adenomatous polyposis coli is formed that promotes the phosphorylation of -

catenin, which leads to the ubiquitylation and degradation of -catenin. When Wnt ligands

are present, they bind to their receptors. This activates the cytoplasmic mediators,

Dishevelled (Dsh) phophoproteins, which inhibit the -catenin degradation complex and

thereby block the degradation of -catenin. The stabilized -catenin protein accumulates

within the nucleus, where it binds lymphoid enhancer-binding factor (Lef)/T cell factors

(Tcf), displaces co-repressors and recruits transcriptional co-activators to stimulate the

expression of specific target genes such as c-myc and cyclin D1. However, canonical Wnt-

signaling can also repress gene expression by mechanisms that are less understood
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(Angers and Moon 2009, Bodine 2008, Bodine and Komm 2006, Cadigan and Liu 2006,

Kahler and Westendorf 2003, Westendorf et al. 2004).

Fig. 9. The function of canonical Wnt signaling pathway. In the absence of Wnt ligands
(left), a degradation complex of glycogen synthase kinase 3 (GSK3), casein kinase 1
(CK1 ), Axin2 and adenomatous polyposis coli (APC) is formed that promotes the
phosphorylation of -catenin, which leads to the ubiquitylation and degradation of -
catenin. When Wnt ligands are present (right), they bind to their receptors that constitute
of Frizzled (FZD) and LRP5/6 proteins, which activates the cytoplasmic mediator
Dishevelled (Dsh). Dsh inhibits the -catenin degradation complex, and thereby blocks the
degradation of -catenin. The stabilized -catenin protein accumulates and translocates
into the nucleus where it binds lymphoid-enhancer binding factor (Lef)/T cell factors (Tcf)
and stimulates expression of specific target genes.

Wnt/ -catenin signaling pathway is essential for skeletal development and

homeostasis. In human, different LRP5 mutations correlate with high or low bone mass

(Boyden et al. 2002, Gong et al. 2001, Little et al. 2002). When -catenin is deleted early
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in the embryonic development in the limb and the head mesenchyme, the loss of -catenin

results in an early osteoblast differentiation that leads to the absence of mature osteoblasts

(Hill et al. 2005). Canonical Wnt signaling is also required for osteoblast proliferation.

LRP5 KO mice have low bone mass due to decreased osteoblast proliferation and function

(Kato et al. 2002). The in vitro effects of Wnt signaling on osteogenic differentiation are

controversial.  In  mouse,  the  canonical  Wnt  signaling  pathway  seems  to  promote  the

osteoblastic differentiation of MSCs (Gaur et al. 2005, Gong et al. 2001). On the other

hand, in the preosteoblastic mouse MC3T3-E1 cell line the Wnt signaling pathway has

been found to both increase (Gaur et al. 2005) and decrease osteoblastic differentiation

and mineralization (Kahler et al. 2006, Shi et al. 2007). In human MSCs, both stimulatory

(Gregory et al. 2005) and inhibitory (Boland et al. 2004, de Boer et al. 2004, Liu et al.

2009a) effects have been reported for Wnt signaling pathway.

3.3.1.2 The pluripotency of mesenchymal stem cells

MSCs are pluripotent and can give rise to the cells of different mesodermal cell lineages

including osteoblasts, chondrocytes and adipocytes. In addition, they have endodermic and

ectodermic differentiation potential although the in vivo results  are  still  controversial

(Uccelli et al. 2008). Of these osteoblastic and adipogenic differentiation especially seem

to be in balance as the decrease in bone volume found in osteoporosis, immobilization, or

ovariectomy is accompanied by an increase in bone marrow adipose tissue (Ahdjoudj et

al. 2002, Justesen et al. 2001, Martin and Zissimos 1991).

PPAR  is the master regulator of adipogenesis and its forced expression is

sufficient to induce adipogenesis in fibroblasts (Tontonoz et al. 1994). The temporal

expression of C/EBP family also plays a central part in adipogenic differentiation. The

cascade starts with early induction of C/EBP  and  that leads to the induction of C/EBP

and PPAR , which activate adipocytic gene transcription (Rosen and MacDougald 2006).

In part, the adipocytic differentiation process is controlled by the same factors that control

osteoblastic differentiation. For example, Wnt signaling decreases adipogenesis by

inhibiting PPAR  and C/EBP  function and by maintaining preadipocytes therefore in an

undifferentiated state (Ross et al. 2000). BMP-4 commits MSCs to the adipocytic lineage

(Tang et al. 2004) and BMP-2 can cooperate with PPAR  and C/EBP  to increase

adipogenic differentiation (Fux et al. 2004, Sottile and Seuwen 2000).
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Fig. 10. The mesenchymal stem cells (MSCs) are capable of self renewal. They can also
differentiate towards mesodermal lineages, which include osteoblasts, chondrocytes and
adipocytes. Osteoblastic differentiation is dependent on the transcription factors Runx2
and Osx. Sox9 and later Runx2 are needed for chondrocyte differentiation, and C/EBPs
and  PPAR  are  obligatory  for  adipocytic  differentiation.  The  ability  of  MSCs  to
differentiate into non-mesodermal lineages in vivo is still under debate with controversial
results.

MSCs are of interest in regenerative medicine because of their capacity for

self-renewal, for their ability to differentiate and because they are relatively easily isolated

from a small aspirate of bone marrow (Giordano et al. 2007, Mishra et al. 2009). MSCs

have been used to treat severe osteogenesis imperfecta, which results in increased total

bone mineral content associated with an increased growth velocity and fewer fractures

(Horwitz et al. 1999). MSCs support the growth of hematopoietic progenitors in vitro

(Robinson et al. 2006, Wagner et al. 2007) and cancer patients treated with systemic

infusion of MSCs with peripheral-blood progenitor cells after high-dose chemotherapy

had rapid hematopoietic recovery (Koc et al. 2000). MSCs also have immunosuppressive

effects and they have been used to effectively prevent graft-versus-host disease (Le Blanc

et al. 2004, Le Blanc et al. 2008). However, in leukemia patients, MSCs might also impair
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the therapeutic graft-versus-leukemia effect as a higher incidence of relapses was seen in

these patients (Ning et al. 2008). The ability of MSCs to migrate to the sites of

inflammation, injury and solid tumors, makes them promising as a gene delivery

mechanism in gene therapy (Giordano et al. 2007, Mishra et al. 2009). However, there are

several concerns about their safety. It has been proposed that MSCs could be a source of

carcinoma-associated fibroblasts (Mishra et al. 2009) and could promote tumor growth

and metastasis (Djouad et al. 2003, Karnoub et al. 2007). In other studies, MSCs had

suppressing effects on tumor growth (Cousin et al. 2009, Khakoo et al. 2006). Culturing

MSCs in vitro makes  them susceptible  to  cytogenic  abnormalities.  Differentiation  of  the

MSCs into tumor cells after in vivo administration has been shown to occur in rodents

(Tolar et al. 2007). However, it has been demontrated that human MSCs can be safely

cultured in vitro (Bernardo et al. 2007). Hitherto there have been no reports of in vitro

cultured MSC formed tumors in humans (Tikkanen et al. 2010).

3.3.2 The function of osteoblasts

Osteoblasts control most of the functions of bone. They are responsible for bone

formation, extracellular matrix mineralization, osteoclast differentiation, and thereby

indirectly for bone resorption.

3.3.2.1 Osteoblasts form bone

Osteoblasts synthesize the organic constituents of bone. Most of the organic matrix is

highly cross-linked Coll I. Collagen is constituted by three polypeptide -chains that form

a triple-helix structure. Osteoblasts synthesize and secrete collagens in the form of soluble

procollagens. During the secretion, propeptides are enzymatically cleaved, which triggers

spontaneous self-assembly of collagen molecules into fibrils. Fibrils arrange into complex

three-dimensional concentric weaves whose structures are stabilized by several post-

translational modifications that allow intermolecular and interfibrillar crosslinks to take

place (Blair et al. 2002, Viguet-Carrin et al. 2006). Collagen plays a substantial role in the

toughness  of  bone  and  mutations  in  the  genes  that  encode  the  1  or  2  chains  of  Coll  I

have been associated with osteogenesis imperfecta (Marini et al. 2007).
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Mineral is generated within the dense collagen matrix. Osteoblasts regulate

the matrix mineralization by releasing small, membrane-bound matrix vesicles that

contain concentrated calcium and phosphate which may lead to the first CaPO4 deposits.

Initiation of hydroxyapatite crystal formation is facilitated by the activity of phosphatases,

such as ALP, which are enriched in the matrix vesicle membranes. The preformed

hydroxyapatite crystals are released into the extravesicular fluid, which normally contains

homeostatically maintained levels of calcium and PO4 that are sufficient to support

continued nucleation of new hydroxyapatite crystals on preformed hydroxyapatite

templates (Anderson 2003).

ALP is ubiquitously found in plants and animals. In human, four ALP

isoenzymes are encoded by four genes. One of the genes is expressed in all cells, but

especially highly in bone, liver, and kidney, and is designated tissue-nonspecific ALP

(TNSALP). It is essential for skeletal mineralization as its product hydrolyzes inorganic

pyrophosphate, which is an inhibitor of hydroxyapatite formation. In humans, deficiency

of the TNSALP gene leads to hypophosphatasia with skeletal hypomineralization, that

leads to rickets and osteomalacia (Whyte 2010). TNSALP KO mice show skeletal

hypomineralization that mimicks a severe form of hypophosphatasia (Narisawa et al.

1997). Osteoblasts isolated from these mice differentiate normally, but are unable to

initiate matrix mineralization in vitro (Wennberg et al. 2000). Bone-specific ALP (BALP),

which is an isoform of the TNSALP isoenzyme, is used as a biochemical marker for bone

formation. BALP is a relatively specific marker of osteogenesis and elevated levels occur

in conditions such as Paget’s disease, bone cancer, and osteomalacia (Coleman et al.

2008).

Other matrix proteins that are secreted by osteoblasts include BSP, OPN, and

OCN. BSP and OPN are both members of the SIBLING (small integrin-binding ligand N-

linked glycoprotein) family (Fisher et al. 2001). OPN is expressed in osteoblasts and

osteocytes, but also in kidney and epithelial linings, and is secreted in bodily fluids

including milk, blood, and urine. OPN is upregulated at sites of inflammation and tissue

remodeling. The expression of BSP is more restricted as it is mostly produced in cells

associated with mineralized tissues and especially highly in osteoblasts. SIBLINGs

mediate cell migration, adhesion and survival through interactions with cell surface

receptors such as integrins and extracellular matrix constituents including collagen and

hydroxyapatite (Ganss et al. 1999, Lund et al. 2009). BSP enhances osteoblast
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differentiation and matrix mineralization in vitro (Gordon et al. 2007), and the BSP-

collagen interaction has been shown to promote hydroxyapatite formation (Baht et al.

2008). On the other hand, OPN inhibits hydroxyapatite formation (Boskey et al. 1993,

Hunter et al. 1994). BSP KO mouse fetuses and young adults exhibit shorter and

hypomineralized bones. Adult BSP KO mice display a high trabecular bone mass despite

reduced bone formation rate due to impaired bone resorption (Malaval et al. 2008). OPN

KO mice show normal development and bone structure (Rittling et al. 1998). The OPN

deficiency still increases bone fragility possibly due to increased matrix heterogeneity

(Thurner et al. 2010). In human, elevated serum OPN levels have been shown to be

associated with a higher risk of osteoporosis in menopausal women (Chang et al. 2010).

BSP and OPN are also expressed at pathological sites of mineralization such as

microcalcifications in the breast, and they have been suggested to play a role in bone

metastasis (Bellahcène and Castronovo 1995, Bellahcène and Castronovo 1997). Indeed,

BSP and OPN expressions have been associated with bone metastasis and/or reduced

survival in patients with breast (Bellahcène et al. 1996, Rudland et al. 2002), lung (Donati

et al. 2005, Papotti et al. 2006), and prostate cancer (Forootan et al. 2006,  Waltregny et

al. 1998).

OCN is the most abundant noncollagenous protein produced by osteoblasts

and it is a terminal marker of osteoblastic differentiation. It has been suggested to OCN

has an inhibitory role during bone formation as OCN KO  mice  show  increased  bone

formation (Ducy et al. 1996). OCN has a high affinity for mineral ions and hydroxyapatite

(Hauschka and Wians 1989) but its exact role in matrix mineralization is not known as

there are contradictory results on the subject (Boskey et al. 1998, Murshed et al. 2004).

OCN can also be found in the circulation. Both osteolysis and osteogenesis release OCN

into the serum and therefore OCN levels might reflect the overall bone metabolism instead

of just osteogenesis (Coleman et al. 2008).

After completion of bone formation approximately 50 to 70% of osteoblasts

undergo apoptosis whereas the reminder become either osteocytes or inert bone lining

cells. Flattened bone-lining cells are thought to be quiescent osteoblasts found in the

endosteum. They may regulate the flux of mineral ions into and out of bone extracellular

fluid and retain the ability to redifferentiate into functional osteoblasts upon exposure to

stimulus such as PTH or to a mechanical force (Clarke 2008, Dobnig and Turner 1995).

Osteocytes have been long thought to be rather inactive cells, but new information about
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their function has emerged. Osteocytes, for example, regulate bone mass by expressing

high levels of sclerostin, which has been shown to be a negative regulator of bone

formation in human (Balemans et al. 2001, Brunkow et al. 2001). Another protein that is

produced in large quantities in osteocytes is FGF-23. FGF-23 is a key regulator of

phosphorus and vitamin D metabolism, and its excess production can cause

hypophosphatemic diseases that are characterized by impaired renal phosphate

reabsorption and osteomalacia (Wesseling-Perry 2010).

3.3.2.2 Osteoblasts regulate osteoclastogenesis

Another important function for osteoblasts is the regulation of osteoclastic differentiation.

Osteoblasts regulate osteoclastogenesis mainly by expressing macrophage colony-

stimulating factor (M-CSF) and receptor activator of nuclear factor- B ligand (RANKL).

RANKL binds to RANK receptor on osteoclast precursors, which results in the

recruitment of TRAF6 and activation of downstream molecules including NF- B.

Ultimately NFATc1 is induced and activated, which initiates the transcription of

osteoclastic genes and differentiation. In addition to osteoclastogenesis, RANKL

stimulates osteoclast activation and inhibits their apoptosis (Asagiri and Takayanagi 2007,

Kearns et al. 2008). RANKL mutations have been shown to be associated with

osteopetrosis  in  both  mice  (Kong et al. 1999) and humans (Sobacchi et al. 2007).

Moreover, op/op mice that lack functional M-CSF have osteopetrosis because of a severe

deficiency of mature osteoclasts (Yoshida et al. 1990). M-CSF expression by osteoblastic

stromal cells is required for osteoclastogenesis, but M-CSF per se can not complete this

process. M-CSF binds to its receptor c-Fms on osteoclast precursor cells and regulates

their proliferation and survival (Asagiri and Takayanagi 2007, Boyce and Xing 2008,

Kearns et al. 2008). Furthermore, osteoprotegerin (OPG) is an important regulator of

osteoclastogenesis. It is a decoy receptor that binds to RANKL and therefore prevents its

interaction with RANK (Boyce and Xing 2008). OPG KO mice develop early onset severe

osteoporosis (Bucay et al. 1998). In human, the mutations in the OPG gene are associated

with juvenile Paget’s disease (Whyte et al. 2002) and idiopathic hyperphosphatasia

(Cundy et al. 2002). There is a tight regulation of RANKL, OPG and M-CSF expressions

in osteoblasts, in which many external factors such as growth factors, hormones, cytokines

and drugs take part.
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Fig. 11. A simplified model of how osteoblasts regulate osteoclast differentiation.
Osteoblasts express RANKL that can bind to its receptor RANK, which is located on the
surface of the osteoclast precursor. Binding induces a signaling cascade with TRAF-6,
NF- B,  and  NFATc1  and  leads  to  the  activation  of  osteoclastic  genes  and
osteoclastogenesis. Osteoblasts also secrete OPG, which is a decoy receptor for RANKL
and inhibits RANKL/RANK-binding. In addition, osteoblasts express M-CSF that binds to
its receptor c-Fms on osteoclast precursor cells and enhances their proliferation, survival
and osteoclastic differentiation.

3.4 Skeletal homeostasis

Bone  is  a  dynamic  tissue  that  is  constantly  being  renewed  in  a  process  called  bone

remodeling, which is necessary to maintain calcium homeostasis and to remove and

prevent the accumulation of aged or weakened bone. Bone remodeling occurs in a

sequential manner (Fig. 12). Bone surface is activated by unknown signals that attract

osteoclast precursor cells from the circulation (activation phase). These cells fuse and

form multinucleated cells that adhere to the bone surface, differentiate into mature

osteoclasts in response to signals mediated by osteoblasts, and start bone resorption

(resorption phase). The degraded bone proteins and matrix minerals enter the osteoclast by

endocytosis. They cross the cell in vesicles, and undergo exocytosis on the opposite side

of the cell, from where the products diffuse into the nearby blood capillaries. When

osteoclasts finish resorbing, they die by apoptosis, which is followed by the recruitment of
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mononuclear cells, which prepare the bone surface for bone formation, and preosteoblasts

(reversal phase). Preosteoblasts differentiate into functional osteoblasts and fill the cavity

with a collagenous matrix that is finally mineralized (formation phase). Bone resorption is

a much faster process than bone formation. It takes approximately three months to rebuild

the equivalent mass of bone that was resorbed in two to three weeks (Hadjidakis and

Androulakis 2006, Henriksen et al. 2009, Kearns et al. 2008, Tortora and Grabowski

2000).

Fig. 12. Bone remodeling occurs in sequential phases. During the activation phase
osteoclast precursors are recruited and activated to form multinucleated osteoclasts, which
start bone resorption. During the reversal phase mononuclear cells and preosteoblasts are
recruited onto the bone surface. In the formation phase preosteoblasts differentiate into
functional osteoblasts and fill the cavity with new bone.

The control of bone metabolism is a complex and still largely unknown

process. The purpose of having a tight control is to keep the two processes of bone

resorption and formation in balance. It is regulated by endocrine, paracrine and autocrine

actions of diverse hormones, cytokines and growth factors that in concert with numerous

transcription factors act on osteoblast and osteoclast differentiation and function. This

regulation will be discussed next emphasizing its effect on bone formation.

3.4.1 The regulation of bone formation and homeostasis

The rate of bone formation is determined by the number and function of osteoblasts. The

cell number is regulated partly by those factors that regulate osteoblastic differentiation of
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MSCs and pre-osteoblasts already discussed (heading 3.3.1). Many of these factors,

including the Wnt signaling pathway (Westendorf et al. 2004) and FGFs (Fakhry et al.

2005, Valta et al. 2006) also enhance the proliferation of preosteoblasts and osteoblasts

adding to the increase in osteoblast number.

Estrogens evidently play a critical role in the maintenance of bone

homeostasis as exemplified by postmenopausal osteoporosis. The complex effects of

estrogen and other nuclear receptors will be discussed in more detail under the next

heading. However, decreased bone volume can also be detected in late premenopausal

women with normal circulating estrogen levels. Instead, increased bone resorption is

associated with elevated follicle-stimulating hormone (FSH) levels (Ebeling et al. 1996).

FSH has been found to have direct effects on bone as it stimulates osteoclast formation

and function via its G protein-coupled receptor FSHR (Sun et al. 2006). The early

perimenopausal rise in FSH levels in women is attributed to a decrease in inhibin B

secretion (Klein et al. 1996, Welt et al. 1999). Inhibin A and inhibin B are heterodimeric

proteins that belong to the transforming growth factor  (TGF- ) superfamily and are able

to suppress FSH secretion. The function of inhibins is antagonized by the related

homodimeric peptides activin A and activin B that belong to the same TGF-  superfamily

(Nicks et al. 2010). Both activins and inhibins have been shown to regulate

osteoblastogenesis, osteoclastogenesis and bone mass. Activins have been described as

being pro-osteoclastogenic but there are reports of both negative and positive effects on

osteoblast differentiation (Nicks et al. 2009). Inhibins have been shown to repress the

differentiation of osteoblasts and osteoclasts (Gaddy-Kurten et al. 2002). However, the

effect of inhibins seems to be biphasic as continuous Inhibin A exposure in vivo has been

described to have an anabolic effect on osteoblasts (Perrien et al. 2007).

Another biphasic and important regulator of bone mass is PTH. PTH,

parathyroid hormone-related peptide (PTHrP) and vitamin D are the main calcium-

regulating hormones that regulate bone cell differentiation and mineral transport at

multiple  points.  PTH  increases  distal  tubular  calcium  re-absorption  and  increases  the

production of the active form of vitamin D. Continuous administration of PTH increases

osteoclast differentiation, activation and consequently bone resorption by stimulating

RANKL and inhibiting OPG expression in osteoblasts. Nonetheless, intermittent PTH

treatment has an anabolic effect on bone as it increases osteoblast proliferation and

differentiation and inhibits osteoblast apoptosis. PTHrP shares amino acid homology with
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PTH and binds the same G protein-coupled receptors (Datta and Abou-Samara 2009,

Goltzman 2010). PTHrP KO mice show widespread abnormalities in endochondral bone

development with decreased chondrocyte proliferation, premature chondrocyte maturation

and accelerated bone formation (Karaplis et al. 1994). PTHrP has also been reported to

increase osteoblast proliferation (Du et al. 2000).

Mechanical stimulus is another regulator of bone mass. Increased

mechanical loads stimulate bone formation and suppress resorption, whereas unloading

has the opposite effect. The exact mechanisms remain unknown but calcium channels,

Wnt/ -catenin signaling, integrins, prostaglandin E2, and nitric oxide are some of the

proposed mediators (Harada and Rodan 2003, Papachristou et al. 2009).

The central nervous system can also regulate bone formation. In mice,

factors such as neuropeptides cocaine- and amphetamine-regulated transcript (CART) and

neuromedin U (NMU) have been shown to associate with low bone mass with increased

bone resorption (Elefteriou et al. 2005) and high bone mass with increased bone formation

(Sato et al. 2007), respectively. The most studied of the centrally affecting factors is

leptin. Leptin is a hormone produced by adipose cells that binds to its receptor in the

hypothalamus and suppresses appetite and increases energy expenditure (Hamrick and

Ferrari 2008, Kawai et al. 2009, Takeda 2008). Ob/ob mice that lack functional leptin and

leptin-receptor deficient db/db mice have a high bone mass despite hypogonadism and

hypercortisolism (Ducy et al. 2000). The suggested mechanism for this phenomenon

involves leptin binding to its receptor in the hypothalamus and stimulating the release of

noradrenaline from the sympathetic nerve fibers that project into the bone. Noradrenaline

in turn is thought to inhibit bone formation by binding to 2-adrenergic receptors on

osteoblasts (Ducy et al. 2000, Hamrick and Ferrari 2008).

3.4.1.1 The influence of nuclear receptors on bone and osteoblasts

Many NRs regulate bone and osteoblast function. Most important of these are perhaps

VDR, GR, AR and ERs, which will be discussed in more detail.

Vitamin D has long been known as a potent stimulant of calcium absorption.

Vitamin D deficiency leads to rickets in children and osteomalacia and osteoporosis in

adults. VDR mutations that cause complete loss of function of the receptor lead to bone

growth abnormalities (Imai et al. 2009). VDR KO mice have reduced bone mineral density
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(BMD) (Yoshizawa et al. 1997) but increased bone volume. This phenotype can be

corrected by the administration of calcium and phosphate supplements (Amling et al.

1999) and therefore vitamin D seems to regulate bone mass mainly by controlling the

systemic calcium-phosphate metabolism. Despite this, there is increasing evidence

showing that VDR is capable of regulating bone cells directly during bone metabolism

(Anderson and Atkins 2008). VDR has been found to inhibit osteoblast differentiation and

mineralization in vitro (Shi et al. 2007, Sooy et al. 2005). VDR also induces the

expression of RANKL by chondrocytes and osteoblasts, which increases

osteoclastogenesis (Kitazawa et al. 2003, Masuyama et al. 2006, Takeda et al. 1999).

Glucocorticoids increase bone resorption and decrease bone formation,

which leads to decreased bone mass and osteoporosis as manifested by prolonged steroid

therapy and Cushing’s syndrome (Imai et al. 2009). Glucocorticoids have complex effects

on bone and although extensively studied, consensus has yet to be achieved.

Glucocorticoids have been shown to induce accelerated apoptosis in osteoblasts

(Weinstein et al. 1998). However, they increase the ability of osteoprogenitors to form

mineralized bone nodules in vitro (Jaiswal et al. 1997) and dexamethasone, a synthetic

glucocorticoid, is commonly used to induce osteoblastic differentiation in MSC cultures.

The bones of males have higher mineral density and a lower risk of

osteoporosis and fracture than those of females. This is thought to be due to the anabolic

effects of androgenic hormones (Imai et al. 2009). Testosterone and other androgens act

through AR. Indeed, patients suffering from complete androgen insensitivity syndrome

due to a mutation in AR have decreased BMD (Bertelloni et al. 1998). Ar KO male mice

have osteopenia with increased trabecular and cortical bone resorption and formation

(Kawano et al. 2003). It is still somewhat controversial, which cells in bone are the targets

of androgen-AR signaling and whether the effect is systemic or direct (Imai et al. 2009).

It has been long known that the decline in circulating estrogen in menopausal

women triggers high bone turnover and a decrease in BMD. Ovariectomy induces similar

bone defects in experimental animals. This suggests that estrogens and ERs have bone-

protective effects (Frenkel et al. 2010, Imai et al. 2009). Estrogens have both direct and

indirect effects on bone. For instance, immune cells participate indirectly in conducting

the proskeletal effects of estrogen (Lorenzo et al. 2008). In humans and mice, cortical

bone expresses mainly ER  but little or no ER , whereas trabecular bone contains both

receptors (Bord et al. 2001, Mödder et al. 2004). Despite the clear anti-resorptive and



Review of the Literature

50

anabolic effect of estrogen in humans, ER  (Esr1) KO female and male mice exhibit

increased trabecular bone volume with a decreased number of osteoclasts. This could be

explained by the increased testosterone concentration in these mice (Lindberg et al. 2001,

Parikka et al. 2005, Sims et al. 2002). Results from studies on cortical bone are conflicting

with reports of both increased (Lindberg et al. 2001) and decreased (Sims et al. 2002)

cortical BMD in ER  KO mice. Deletion of Esr2 (the gene that encodes ER ) in male

mice has no impact on their skeleton. In female mice, ER  seems to have a repressive

effect on bone as a deletion of Esr2 increases cortical bone mass at the age of 3 months

(Windahl et al. 1999) and protects them from age-related bone loss as aged animals have

an increased trabecular and cortical bone mass at the age of one year (Windahl et al.

2001). ER /ER  double KO male mice show similar but milder bone phenotype than ER

KO mice but females have decreased trabecular bone mass (Sims et al. 2002). Although

estrogens have been reported to promote osteoblast commitment (Okazaki et al. 2002,

Dang et al. 2002) and to prevent apoptosis of MSCs and osteoblasts (Almeida et al. 2007,

Zhou et al. 2001), in postmenopausal women, both bone resorption and bone formation

have been found to be increased (Garnero et al. 1996). However, this can be explained by

osteoblast-osteoclast coupling mechanisms. Accordingly, an acute estrogen deficiency of

three weeks is associated with a fall in markers of bone formation in both men (Falahati-

Nini et al. 2000) and women (Charatcharoenwitthaya et al. 2007). It also appears that the

effects of estrogen on osteoblast differentiation and function may be stage and cell type

specific and can vary greatly between individuals (Leskelä et al. 2006). Estrogen has been

shown to stimulate osteoblastic differentiation in some studies (Qu et al. 1998, Waters et

al. 2001) but not to have any effect or to inhibit differentiation in others (Keeting et al.

1991, Robinson et al. 1997). Estrogen inhibits osteoclastic differentiation, inter alia, by

increasing OPG (Hofbauer et al. 1999) and decreasing RANKL (Eghbali-Fatourechi et al.

2003) production by osteoblastic cells. Estrogen also induces apoptosis in osteoclasts by

activating the expression of the Fas ligand. Female mice with osteoclast specific ablation

of Esr1 have low trabecular bone mass, which suggests that the osteoprotective effects of

estrogen are partly mediated by osteoclastic ER  in trabecular bone (Nakamura et al.

2007). All of these results show that estrogen can function on multiple levels and has both

direct and indirect effects on different compartments and cell types of bone, but also

reflects the difficulty and complexity of bone research.
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Table 2. Summary of the bone phenotypes of different ER KO mice (adapted from Vico
and Vanacker 2010). ER KO mice manifest different phenotypes in their trabecular and
cortical bone with either increased ( ), decreased ( ), or unaffected (-) bone mass. Some
putative effects are still under debate as there are conflicting results ( ).

In addition to the classical NRs, many orphan NRs regulate the function of

bone and osteoblasts. These include NR3B and NR4A families, which will be discussed

next.

3.4.1.1.1 The NR3B family in bone and mesenchymal stem cell differentiation

There are several published studies that address the role of NR3B family in bone and

osteoblast differentiation. ERR  is expressed in several human and mouse osteoblastic cell

lines that include TE85 and SaOS (Bonnelye et al. 1997b). ERR  is also expressed in the

ossification zones of the mouse embryo during the onset of bone formation (Bonnelye et

al. 1997a). In bone the expression of ERR  is not only restricted to osteoblasts as MSCs,

chondrocytes, mature osteocytes and osteoclasts all express ERR  (Bonnelye and Aubin

2002a). ERR  is not expressed in osteoblastic cell lines SaOs, TE85 or primary human

osteoblasts (Bonnelye et al. 1997b). ERR  is expressed in osteoblastic cell line MC3T3-

E1 and in primary mouse osteoblasts but very modestly (Jeong et al. 2009).

ERRs regulate several bone-related genes. One of these is OPN, which is

regulated by ERR  in a cell context dependent manner. The expression of OPN is up-

regulated by ERR  in HeLa cells but repressed in ROS17/2.8 cells (Vanacker et al. 1998,

Zirngibl et al. 2008). ERR  also regulates lactofferin (Yang et al. 1996), aromatase (Yang

et al. 1998), and endothelial nitric oxide synthase (Sumi and Ignarro 2003) expression.

ERR  is expressed during osteoblast differentiation and it has a positive effect on bone

formation in vitro in rat calvarial osteoblasts (Bonnelye et al. 2001). However, recently

there has been some controversy on the subject. Delhon et al. showed that ERR  KO mice

have slightly increased femoral cancellous BMD and that the absence of ERR  in human

Genotype Female

 Trabecular         Cortical

Male

  Trabecular         Cortical

ER  KO

ER  KO  (one year)  (3 months) - -

ER /ER  KO
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MSCs increases their BMP-2 induced osteoblastic differentiation (Delhon et al. 2009).

Another independent ERR  KO mouse model was shown to be resistant to bone loss

induced by age or estrogen deficiency. However, the younger 14 week old female ERR

KO mice had significantly lower trabecular bone volume and trabecular number, which is

in contradiction with that found in the ERR  KO mouse model of Delhon et al. (Teyssier

et al. 2009). In the same study MSCs obtained from the female mice had increased

osteoblastic differentiation, which can explain the resistance to estrogen deficiency but not

the lower trabecular bone volume in normal state. Wei and colleagues reported

osteopetrosis in ERR  KO mice that was mostly explained by decreased bone resorption

due to a diminished number of osteoclasts. Osteoblast surface and number were also

increased although OCN levels were not significantly altered (Wei et al. 2010). Delhon et

al. and Teyssier et al. also studied osteoclast number and function in their ERR  KO

models but did not see any significant differences to the wild-type mice (Delhon et al.

2009, Teyssier et al. 2009). Laflamme and others discovered an association between a

frequent regulatory variant of ESRRA and BMD. French-Canadian premenopausal women

who carried the long ESRRA genotype,  which  increases  the  expression  of  ERR ,  had  a

3.9%  higher  lumbar  spine  BMD  than  those  who  carried  the  short ESRRA genotype

(Laflamme et al. 2005). A similar study was performed in another population of

premenopausal women and no correlation between ESRRA variants and bone density was

detected (Giroux et al. 2008). All of these studies show that ERR  plays a role in bone

metabolism, but the mechanism could be more complex than first anticipated and may

involve different cell types of bone.

A silent variant of ESRRG has been associated with multiple bone

measurements, which could indicate that ERR  plays a role in bone cell biology (Elfassihi

et al. 2010). ERR  expression is increased by BMP-2 in primary osteoblasts, C2C12 and

MC3T3-E1 cells and ERR  physically interacts with Runx2 and represses its

transcriptional activity. Intramuscular overexpression of adenoviral ERR  in mice did not

affect intramuscular bone formation by itself in vivo but it inhibited BMP-2-induced

ectopic bone formation (Jeong et al. 2009).

NR3B  receptors  have  been  shown  to  affect  other  differentiation  routes  of

MSCs. ERR  appears to function in adipogenesis as the underexpression of ERR  inhibits

adipogenesis of 3T3-L1 and human MSCs (Delhon et al. 2009, Ijichi et al. 2007). On the

other hand, there is also a study that shows that the underexpression of ERR  increases
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adipogenesis in rat calvarial osteoblasts (Bonnelye et al. 2002b). The expression of ERR

increases in mouse mesenchyme-derived cells under the adipogenic differentiation

conditions and in the brown and white adipose tissue of mice fed a high-fat diet. ERR

knockdown by siRNA resulted in down-regulation of adipogenic marker gene expression

that implies that ERR  positively regulates the adipocyte differentiation (Kubo et al.

2009). ERR  is also expressed in fetal and adult rat chondrocytes in growth plate and

articular cartilage. The overexpression of ERR  in chondrocytic C5.18 cell cultures

increases the expression of Sox9 (SRY-related HMG-box 9), which is a master gene in

cartilage formation. Reduced expression of ERR  by antisense oligonucleotides led to an

inhibition of cartilage formation that was associated with decreased Sox9 and Indian

hedgehog expression (Bonnelye et al. 2007).

3.4.1.1.2 The NR4A family in bone and mesenchymal stem cell differentiation

The NR4A family members are expressed in bone and osteoblasts. Their expression is

induced in osteoblasts by PTH (Pirih et al. 2003, Pirih et al. 2005, Tetradis et al. 2001a,

Tetradis et al. 2001b) and FGF-8b (Lammi and Aarnisalo 2008). FGF-8b stimulates the

proliferation of MC3T3-E1 cells, which is at least partly mediated by Nurr1 and NGFI-B

(Lammi and Aarnisalo 2008). NR4A receptors have been shown to regulate some bone

related genes. They transactivate the OPN promoter directly which increases OPN

expression in osteoblastic cells (Lammi et al. 2004). Nurr1 also regulates the expression of

the OCN gene by directly binding to its promoter (Pirih et al. 2004). Intermittent PTH

administration to mice induces NR4A expression in calvaria, long bones and kidney.

Intermittent PTH also increases the expression of OPN and OCN mRNAs in osteoblasts

(Pirih et al. 2005). Nurr1 is also involved in osteoblast differentiation as Nurr1 siRNA

decreases OCN and Coll I A1 expression and ALP activity in MC3T3-E1 cells. The

expression of osteoblastic markers is also reduced in calvarial osteoblasts derived from

Nurr1 KO mice (Lee et al. 2006).

It has been suggested that NR4A receptors influence adipogenic

differentiation. The expression of these receptors is rapidly induced in response to

adipogenic cocktail used to induce differentiation in 3T3-L1 preadipocytes (Au et al.

2008, Chao et al. 2008, Fu et al. 2005, Fumoto et al. 2007). The role of NR4A receptors in

adipogenic differentiation is still controversial with reports of both negative and positive



Review of the Literature

54

effects in addition to the absence of effects (Au et al. 2008, Chao et al. 2008, Fumoto et

al. 2007). Nurr1 is also thought to have a protective function in cartilage homeostasis as

Nurr1 selectively represses the expression of matrix metalloproteinases during

inflammation. Matrix metalloproteinases digest components of the extracellular matrix,

which leads to the degradation of cartilage, tendon and bone (Mix et al. 2007).

3.4.2 Osteoporosis and other bone related diseases

Osteoporosis is a major health problem that affects approximately 400 000 people in

Finland. It has been estimated that 30 000 to 40 000 bone fractures are associated with

osteoporosis every year (Duodecim 2007). Osteoporosis is characterized by the loss of

bone mass and strength due to an imbalance between bone resorption and formation that

leads to an increased risk of fractures. Osteoporosis is a heterogenous disease caused by

complex interactions among local and systemic regulators of bone cell function (Canalis

2010, Raisz 2005). Many factors, including age, sex, diet, physical activity, medication

use, positive family history and menopausal status, influence the risk of osteoporosis. To

date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK,

RANKL, COLL I A1, OPN, ITGA1, OSX, and SOX6) have been assigned as osteoporosis

susceptibility genes and over 30 genes have been identified as promising candidates.

These susceptibility and candidate genes are clustered in three biological pathways of

which the first one is the estrogen pathway (Li et al. 2010). As discussed before, estrogen

and its receptors obviously play a critical part in the development of osteoporosis in

women (Raisz 2005) and also in men (Falahati-Nini et al. 2000, Khosla et al. 2008). The

other two gene clusters include the Wnt/ -catenin and the RANKL/RANK/OPG pathways

(Li et al. 2010).

The primary treatment for osteoporosis are bisphosphonates.

Bisphosphonates include alendronate, risedronate, and etidronate, which are stable

analogues of pyrophosphate and they have strong affinity for hydroxyapatite.

Bisphosphonates decrease bone turnover and enhance bone mass by inhibiting the

function and recruitment of osteoclasts and by increasing their apoptosis. Estrogen

replacement therapy prevents bone loss in postmenopausal osteoporosis. However, the

hormone replacement therapy is not suitable for all patients as it increases the risk of

uterine and breast cancer, stroke, thrombotic events, and cardiovascular diseases. On the
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other hand, a selective estrogen receptor modulator raloxifene lacks most of these

undesirable side effects and has been approved for the prevention and treatment of

postmenopausal osteoporosis. Raloxifene, which acts on bone as estrogen, diminishes the

differentiation and activity of osteoclasts while it maintains the function of osteoblasts,

which reduces the occurrence of vertebral fracture. Calcitonin is a peptide produced by

thyroid, that inhibits osteoclast activity and therefore bone resorption. It is not as efficient

as bisphosphonates in inhibiting bone loss but it has an analgesic effect on bone pain not

shared by other antiresorptive therapies. Teriparatide (1-34 PTH) is a synthetic PTH

analog and is the only accepted anabolic medication available for osteoporosis. The

teriparatide treatment is expensive but effective in increasing the BMD, in improving bone

microstructure, and in decreasing fracture incidence by stimulating new bone formation by

osteoblasts. Teriparatide is approved to treat severe osteoporosis for a maximum of 18

months (Duodecim 2007, Gass and Dawson-Hughes 2006, Migliaccio et al. 2007).

Bone is quite a rare place for a primary tumor to occur. In Finland, 50 to 60

cases of malignant primary tumors are found per year, which constitutes only 1/80 of all

malignant tumors. The most common primary bone malignancies are myeloma,

osteosarcoma, chondrosarcoma, and Ewing sarcoma (Mäkelä 2001). Whereas the

incidence  of  chondrosarcoma  and  myeloma  peaks  in  adults,  osteosarcoma  and  Ewing

sarcoma mainly occur in pediatric patients and young adults and usually develop in the

extremities or in the pelvis (Mäkelä 2001, Heare et al. 2009).

Instead of primary tumors, cancer metastases commonly develop in the

skeleton. For example, breast and prostate cancers preferentially metastase in the bone.

The bone microenvironment is highly favourable for tumor invasion and growth. To

facilitate the interactions of tumor and bone cells, the bone metastasizing tumor cells often

mimic the bone cells. For example, metastatic breast cancer cells have been shown to

express BSP and Runx2 (Barnes et al. 2003). Physical properties of the bone matrix, such

as low oxygen content and acidic pH, promote tumor growth. There are two types of bone

metastases, osteoblastic and osteolytic lesions, which result from the imbalance between

bone formation and resorption. Osteoblastic lesions are a characteristic of prostate cancer,

whereas  osteolytic  lesions  are  found  in  80%  of  patients  with  stage  IV  breast  cancer.  In

osteolytic lesions, tumor cells secrete factors that stimulate osteoclast function. This, in

turn, helps the release of growth factors such as TGF-  and insulin-like growth factors I

and II that are immobilized within the bone matrix, which favours tumor growth. In
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osteoblastic lesions, tumor cells secrete pro-osteoblastic factors, including Wnt, BMPs and

endothelin-1 that stimulate various steps in osteoblast proliferation, differentiation and

mineralization. Activated osteoblasts in turn secrete growth factors, such as TGF- , BMPs

and vascular endothelial growth factor, which favor tumor cell survival and proliferation.

However, bone lesions are often mixed and show both osteoblastic and osteoclastic

elements. Bone metastases lead to many skeletal complications, such as bone pain,

hypercalcemia and fractures, which increase morbidity and diminish quality of life

(Kingsley et al. 2007, Mundy 2002, Virk and Lieberman 2007).
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AIMS OF THE STUDY

The members of the orphan NR families NR3B and NR4A are expressed in osteoblasts.

However, the regulation of their transcriptional activity and function in osteoblasts is

largely  unknown.  Therefore,  the  aim  of  this  study  was  to  address  the  signaling  and

function of NR3B and NR4A receptors in osteoblasts with the following specific aims:

• To identify new signaling pathways able to regulate the transcriptional activity of

NR3B and NR4A receptors in osteoblasts

• To identify possible new ligands for NR3B receptors

• To study how NR3B and NR4A orphan nuclear receptors affect Wnt signaling

pathway in osteoblasts

• To analyze the role of ERR  in osteoblastic differentiation of mesenchymal stem

cells
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MATERIALS AND METHODS

Short descriptions of the materials and methods are presented here. For more detailed

descriptions, the reader is referred to the original publications.

Table 3. The methods used in original publications.

Method Original publication

1. Plasmid construction and recombinant DNA technology I, II, III, IV

2. Site-directed mutagenesis I, II, III, IV

3. Cell culture and reporter gene assays I, II, III, IV

4. Electrophoretic mobility shift assay (EMSA) I

5. SDS-PAGE and immunoblotting II, III

6. Partial proteolysis assay II

7. Cell growth assay II

8. Molecular modeling II

9. Primary mesenchymal stem cell isolation and osteoblastic and
    adipogenic differentiation

IV

10. Primary osteoblast isolation and culture IV

11. 3H-thymidine incorporation IV

12. Alizarin red S and Oil Red O stainings IV

13. RNA extraction and RT-PCR II, III, IV

14. Statistical analysis II, III, IV

1. Plasmid construction and recombinant DNA technology

Expression vectors, reporter constructs, and probes were prepared using standard

recombinant DNA techniques. The luciferase reporter constructs NBRE3tk-LUC,

MH100tk-LUC and ERRE3tk-LUC, and the pCMX- gal, pCMX-PL1, and pCMX-Gal4

vectors were provided  by Dr. Ronald M. Evans (Howard Hughes Medical Institute, The

Salk  Institute  for  Biological  Studies,  La  Jolla,  CA).  The  expression  vectors  for  pCMX-

Nurr1, pCMX-NGFI-B, pCMX-Nor1, pCMX-Gal4-Nurr1 NTD, pCMX-Gal4-Nurr1 LBD,

pCMX-Nurr1 1-84, pCMX-Nurr1D589A, pCMX-Nurr1 1-84/D589A, and pCMX-Nurr1
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DN  were  gifts  from  Dr.  Thomas  Perlmann  (Ludwig  Institute  for  Cancer  Research,

Sweden). pCMX-ERR , pCMX-ERR , and pCMX-ERR  were provided by Dr. Vincent

Giguère (McGill University Health Center, Canada). pM-GRIP1(563-1121) was a gift

from Dr. Jorma Palvimo (University of Kuopio, Finland) and pCI-Gal4-RIP140 from Dr.

Malcolm Parker (Imperial College London, UK). pCDNA3-hPGC-1  was received from

Dr.  Anastasia  Kralli  (Scripps  Research  Institute,  La  Jolla,  CA)  and  pCMX-Flag-ERR

from Dr. Toren Finkel (NHLB, NIH, Bethesda, MD). The pGL3-OT reporter and the

expression vector for S33Y -catenin (pCl-neo- -catenin-S33Y) were gifts from Dr. Bert

Vogelstein (The John Hopkins Oncology Center, Baltimore, MD) and the -927 BSP-LUC

reporter  from  Dr.  Yorimasa  Ogata  (Nihon  University  School  of  Dentistry  at  Matsudo,

Chiba, Japan). The expression vector for VP16-S33A- -catenin (pCS2+/ S33A-VP16)

was provided by Dr. Edward P. Gelmann (Lombardi Cancer Center, Washington, DC).

2. Site-directed mutagenesis

Mutant plasmids were created by using the QuickChange® Site-Directed Mutagenesis kit

(Stratagene) according to the manufacturer’s instructions. The nucleotide sequences of the

mutants were confirmed by sequencing.

3. Cell culture and reporter gene assays

All cells were received from the American Type Culture Collection (ATCC). U2-OS,

SaOS-2 and 293T cells were maintained in DMEM supplemented with penicillin (25

U/ml), streptomycin (25 U/ml), 10% FBS (v/v) and L-glutamine. HeLa cells were

maintained in DMEM supplemented with penicillin (25 U/ml), streptomycin (25 U/ml),

10% FBS (v/v), and non-essential amino acids. PC-3 cells were maintained in F-12

medium supplemented with penicillin (25 U/ml), streptomycin (25 U/ml), and 10% FBS

(v/v). MC3T3-E1 subclone 14 cells were maintained in -MEM supplemented with

penicillin (50 U/ml), streptomycin (50 U/ml) and 10% FBS (v/v), and the osteogenic

differentiation was induced by adding 50 µg/ml ascorbic acid and 10 mM sodium -

glycerophosphate to the medium.

For reporter assays the cells were seeded on 12-well plates (5 x 104 or 6 x

104 cells/well) and 24 h later were transfected with FuGENE (Roche Molecular
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Biochemicals), FuGENE HD (Roche Molecular Biochemicals) or Lipofectamine 2000

(Invitrogen) according to manufacturer’s recommendations with 300 ng of the luciferase

reporter plasmid, 100 ng of the pCMX- gal internal control plasmid, and 50 ng of the

expression vectors or empty vector. When indicated, at 20 h after the transfection the cells

received fresh medium containing either 2% charcoal-stripped FBS and different

hormones, synthetic ligands and phytoestrogens or 10% FBS and LiCl. 24 h later, the cells

were harvested, lysed, and assayed for luciferase and -galactosidase activities.

Transfections were performed in triplicate dishes and repeated two to six times.

4. Electrophoretic mobility shift assay (EMSA)

Proteins were produced by coupled in vitro transcription and translation in reticulocyte

lysates (TNT® Quick Coupled Transcription/Translation Systems, Promega) and incubated

with 32P-labeled double-stranded oligonucleotide probes (ERRE, NBRE, OPN S1). The

protein-DNA complexes were resolved by electrophoresis on 4% non-denaturing

polyacrylamide gel, after which the gel was dried for autoradiography.

5. SDS-PAGE and immunoblotting

PC-3 and U2-OS cells and were transfected on 6-well plates with 2 µg and 1.5 µg of

expression or empty vectors, respectively, using FuGENE or Lipofectamine 2000

transfection reagents. When indicated, the cells were treated with vehicle (DMSO), equol,

GSK4716 or 4-OHT 20 h after transfection. The cells were harvested 48 h after

transfection and protein samples were prepared in Laemmli sample buffer. Proteins were

resolved by electrophoresis on a 10% polyacrylamide gel under denaturing conditions.

Proteins were then transferred onto Hybond enhanced chemiluminescence nitrocellulose

membrane (Amersham Biosciences). Detections of specific proteins were carried out by

using  the  following  antibodies:  anti-ERR  antibody  (1  µg/ml,  Perseus  Proteomics  Inc.),

Lamin B C-20 antibody (0.2 µg/ml, Santa Cruz Biotechnology), anti-Gal4 DBD RK5C1

antibody (0.28 µg/ml, Santa Cruz Biotechnology), and -catenin antibody 9562 (1:2000,

Cell Signaling). The immunocomplexes were visualized by using horseradish peroxidase-

conjugated secondary antibodies and ECL Western blotting detection reagents (Amersham

Biosciences).
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6. Partial proteolysis assay

Flag-ERR  was produced by coupled in vitro transcription and translation (TNT® Quick

Coupled Transcription/Translation Systems, Promega). [35S]methionine-labeled

translation mixture was incubated with equol, enterodiol or 4-OHT and digested by trypsin

(30 µg/ml or 50 µg/ml). The digestion products were resolved on SDS-PAGE and the

radioactive peptides were visualized by autoradiography.

7. Cell growth assay

PC-3  cells  were  plated  on  12-well  plates  (4.5  x  104 cells/well)  and  24  h  later  were

transfected with 300 ng of pCMX-FLAG-ERRγ or empty pCMX-FLAG vector using the

FuGENE HD reagent. Five hours later, the cells received fresh medium containing 10%

charcoal-stripped FBS supplemented with DMSO (vehicle), equol, or GSK4716 when

indicated. At 5 h and 72 h post transfection, cells were trypsinized and the cell numbers

counted by a Coulter® Particle Counter (Beckman Coulter).

For  siRNA experiments,  PC-3  cells  were  plated  on  12-well  plates  (6  x  104

cells/well). Subsequently, at 24 h after plating the cells were transfected with 30 pmoles of

siRNA  duplexes  targeted  for  human  ERR  or  non-targeting  Luciferase  GL2  control

siRNA (Qiagen) using the Lipofectamine 2000 reagent. Four hours later, the cells received

fresh medium that contained 10% charcoal-stripped FBS supplemented with DMSO or

equol. At 4 h and 72 h post transfection, the cells were trypsinized and the cell numbers

counted by a Cedex XS semi-automated cell counter (Roche Innovatis AG).

8. Molecular modeling

The binding of equol in the ERR  ligand-binding pocket was studied by generating a

computer  model  of  ERR  LBD  in  a  complex  with  equol.  Geometric  analysis  and

superposition of ERRγ X-ray structures were performed with Maestro 7.0 (Schrödinger,

LLC: Portland, OR).
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9. Primary mesenchymal stem cell isolation and osteoblastic and adipogenic

differentiation

The ERR  KO mice, in which the Esrra gene locus was targeted to delete ERR  amino

acids 28-89, were obtained from Amgen Inc. All animals were housed in the animal

facility of the University of Helsinki. Male ERR  KO mice (n=3) aged between 8 – 12

weeks and their wild-type littermates (n=3) were euthanized by carbon dioxide followed

by cervical dislocation, after which primary mesenchymal stem cells were isolated from

their bone marrow. The diaphysis of tibiae and femuri were flushed with -MEM and the

cells were collected by centrifugation. The cells were counted in 2% acetic acid and plated

1 x 106 cells/cm2 in -MEM containing 10% FCS (v/v), penicillin (50 U/ml) and

streptomycin (50 g/ml). Six days later, the cells were trypsinized and seeded on six-well

plates  (5  x  103 cells/cm2)  and  the  media  was  supplemented  with  10  mM  sodium  -

glycerophosphate, 10 nM dexamethasone and 50 g/ml ascorbic acid to initiate

osteoblastic differentiation. To initiate adipogenic differentiation, the cells were seeded on

six-well plates (2 x 104 cells/cm2) and the media were supplemented with 5 g/ml insulin,

1 M rosiglitazone and 1 M dexamethasone.

10. Primary osteoblast isolation and culture

Primary mouse osteoblasts were sequentially digested with collagenase from the tibiae and

the femuri of 8-12 week old ERR  KO male mice and their wild-type littermates. Cells

from the digestions 2-6 were collected and cultured in -MEM supplemented with 15%

FCS (v/v), 10 nM dexamethasone, penicillin (200 U/ml), streptomycin (200 µg/ml), and

amphotericin  B  (2.5  µg/ml)  until  confluent.  For  proliferation  assays,  the  cells  were

replated (2.5 x 103 cells/cm2).

11. 3H-thymidine incorporation

Cell proliferation was studied using mouse mesenchymal stem cells and osteoblasts after 3

and 5 days in culture. After a 6 hour 1 µCi [3H]thymidine pulse the cells were rinsed with

ice cold PBS and 5% TCA. The cells were lysed in 0.3 M NaOH and incorporated

radioactivity was measured using Wallac 1409 Liquid Scintillation Counter
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(PerkinElmer). The proliferation experiments were performed three times in triplicate

dishes.

12. Alizarin red S and Oil Red O stainings

Mineralized bone nodules were detected by Alizarin red S staining and lipid accumulation

by Oil Red O staining. In Alizarin red S staining, the cultures were washed with PBS,

fixed  with  3% PFA-PBS,  and  washed  again  with  PBS and  sterile  water.  The  cells  were

covered with 2% Alizarin red S solution (pH 4.0) for 3 min. The Oil Red O staining was

performed by washing the cells with PBS, fixing with 10% formaldehyde, and finally by

staining with a filtered 0.3% Oil Red O solution in 60% isopropanol for one hour. After

staining the cells were washed extensively and left to dry.

13. RNA extraction and RT-PCR

The PC-3 cells, primary mesenchymal stem cells and osteoblasts, and MC3T3-E1 cells

were harvested and RNA samples collected in Trizol (Invitrogen) for RNA extraction.

Total RNA was isolated according to the manufacturer’s protocol. 1 g of RNA was used

for cDNA synthesis with Superscript II (Invitrogen). Quantitative real-time PCR was

performed with LightCycler 480 instrument (Roche Applied Science) and SYBR Green I

(Roche Applied Science) according to manufacturer’s recommendations. The RT-PCR

reactions were performed in duplicate for at least three independent experiments. The

results were normalized to G3PDH or TBP and the resulting values were compared with

the basal level (=1) and computed as fold inductions. Alternatively, the PCRs were

performed with Taq DNA polymerase (GE Healthcare) and the products fractioned on 1%

agarose gel.

14. Statistical analysis

All experiments with calculated statistical significances were performed at least three

times. The statistical significance of the differences between two groups were assessed by

the two-tailed Student’s t test, unless the reference group was standardized to a constant

value (=1) with no variability. In this case, a one-sample t test  was used. When several t
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tests were performed, the p-values were corrected by the Bonferroni correction. Multiple

groups  were  compared  by  one-way  ANOVA  followed  by  Scheffe’s  post  hoc  test  to

determine the significant differences among groups. A p-value of <0.05 was considered to

represent a statistically significant difference. All the statistical analyses were performed

by using SPSS software (version 15.0).
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RESULTS AND DISCUSSION

1. The transcriptional activity of the NR4A family can be regulated by cross-talk

with other nuclear receptors and transcription factors in osteoblasts (I, III)

The LBP of NR4A receptors is tightly packed with bulky, hydrophobic amino acid side

chains (Wang et al. 2003) and thus it is incapable of binding ligands. Therefore it is

important to know which other mechanisms are used to regulate the transcriptional activity

of NR4A receptors. The activity of NR4A receptors can be regulated by modifying their

expression  and  post-translational  status  but  also  by  cross-talk  with  other  signaling

pathways (Aarnisalo et al. 2002, Martens et al. 2005, Song et al. 2004). Our goal was to

identify new signaling pathways that could potentially regulate NR4A receptors in

osteoblasts.

1.1 NR3B orphan nuclear receptors repress the transcriptional activity of Nurr1

NR3B and NR4A receptors are co-expressed in many tissues such as the central nervous

system and bone (Bonnelye et al. 1997a, Bookout et al. 2005, Tetradis et al. 2001a,

Zetterström et al. 1996b). To study if ERR receptors can regulate the transcriptional

activity of NR4A family, we performed reporter assays in U2-OS osteosarcoma cells. The

cells were transfected with the expression plasmids for Nurr1, NGFI-B and Nor1 alone or

in combination with ERR  plasmid along with the NBRE3tk-LUC or OPN-LUC reporters.

NBRE3tk-LUC has three NBRE binding sites and OPN has been described as a target

gene for NR4A receptors (Lammi et al. 2004). ERR  had only a small repressive effect on

the transcriptional activity of NGFI-B and Nor1 but it abolished the activity mediated by

Nurr1. ERR  was also able to repress Nurr1, whereas ERR  had no apparent effect.

1.1.1 The DNA-binding domains of ERR  and Nurr1 are essential for the repressive effect

of ERR  on Nurr1 transcriptional activity

Next we studied the structural requirements needed for the repressive effect of ERR  on

Nurr1.  Mutant  plasmids  were  created  in  which  Nurr1  LBD  and  NTD  were  fused  to  the

Gal4 DNA-binding domain (Gal4-Nurr1 LBD and Gal4-Nurr1 NTD, respectively). ERR
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failed to inhibit the transcriptional activity of these mutant receptors lacking DBD.

However, ERR  was capable of inhibiting a Nurr1 deletion mutant that lacked AF-1 but

contained DBD and LBD (Nurr1 NTD) and a mutant that contained the DBD and NTD

but lacked LBD (Nurr1 LBD). These results suggest that the repressive effect of ERR  is

dependent upon Nurr1 DBD, but not upon either LBD or NTD.

Table 4. Representation  of  the  functional  domains  present  (x)  or  absent  (-)  in  different
Nurr1 and ERR  expression constructs.

Construct NTD DBD LBD

pCMX-Nurr1 x x x

Gal4-Nurr1 LBD - - x

Gal4-Nurr1 NTD x - -

Nurr1 NTD - x x

Nurr1 LBD x x -

ERR NTD - x x

ERR  LBD - - x

Gal4-ERR LBD - - x

To study which ERR domains were required for the repression of Nurr1, ERR  mutants

were created. ERR  mutant that lacked most of the NTD (ERR NTD) was still able to

repress  Nurr1,  whereas  the  ERR  LBD  construct  that  lacked  the  entire  NTD  and  DBD

failed to repress Nurr1.  The lack of inhibition was not due to the altered expression or

reduced nuclear localization as the expression level was similar to that of the wild-type

ERR  and as Gal4-ERR LBD that contains a nuclear localization signal failed to repress

Nurr1.  Therefore,  the  repressive  effect  of  ERR  on  Nurr1  is  dependent  on  ERR  DBD.

This was confirmed by introducing point mutations in ERR  DBD. ERR  C125G and

ERR  R176A in which the mutations are located in the first zinc finger and A-box,

respectively, failed to repress Nurr1-mediated OPN-LUC activation.

As DBDs of both Nurr1 and ERR  were determined to be crucial for the repressive

effect, we then studied whether the repression involved competition of DNA binding by

EMSA. DNA binding was studied by using the NBRE element and the S1 element of the

OPN promoter as the probe. In vitro translated ERR  and ERR  proteins bound to these

elements very weakly and were unable to prevent Nurr1 protein from binding. This subject
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was also studied indirectly in a reporter assay. U2-OS cells were transfected with

NBRE3tk-LUC reporter and a dominant negative Nurr1 (Nurr1 DN) variant in which the

Drosophila repressor protein Engrailed is fused with the DBD of Nurr1. Nurr1 DN had

been reported to inhibit transactivation of the NR4A receptors (Castro et al. 2001) and

accordingly in our study it inhibited the basal NBRE3tk-LUC reporter activity. ERR  did

not diminish the repressive effect of Nurr1 DN, which indicates that it does not directly

compete with Nurr1 DN for the DNA binding. This supports the result of the EMSA

binding experiments.

1.1.2 The dimerization interface of ERR  is needed for the repression of Nurr1

Most NRs form homo- or heterodimers. NR4A receptors form heterodimers with RXR

(Perlmann and Jansson 1995, Zetterström et al. 1996a) that can either inhibit or stimulate

the transactivation mediated by NGFI-B and Nurr1 (Aarnisalo et al. 2002, Perlmann and

Jansson 1995). Therefore, we studied if dimerization could be involved in the repressive

effect of ERR  on Nurr1 transcriptional activity. We introduced mutations to the I-box of

ERR , a domain mediating receptor dimerization (Aarnisalo et al. 2002, Huppunen et al.

2004). ERR  ML(394,395)AA, R390A, and L398A were not able to repress Nurr1

mediated transactivation, which implies that the dimerization interface of ERR  is

important for the repressive effect. The heterodimerization between NR3B and NR4A

receptors was studied by using a mammalian two-hybrid assay for which Nurr1 LBD was

fused to the yeast Gal4 DNA-binding domain and ERR  LBD was fused to the herpes

simplex virus VP16 activation domain. MH100tk-LUC that is driven by four Gal4-binding

sites was used as a reporter. VP16-ERR  LBD was not able to stimulate transactivation by

Gal4-Nurr1 LBD which indicates that the receptors do not interact. We could not detect

any dimers between full length Nurr1 and ERR  proteins in either the EMSA or the co-

immunoprecipitation experiments. Therefore, the repression does not involve

heterodimerization between Nurr1 and ERR . Instead I-boxes might have auxiliary roles

in the repression perhaps by stabilizing the receptor conformation or by mediating

interaction with other proteins.

Co-activators play an important role in NR transactivation. NR4A and NR3B

families have been found to bind to the same co-activators (Hong et al. 1999, Wansa et al.

2002, Xie et al. 1999) and therefore competition for these factors could be one mechanism
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by which receptors exert effects on each other’s transcriptional activities. Many of the co-

activators interact with the AF-2 and to address the potential role of the co-activator

competition in repression, the repressive effect of ERR  AF-2 mutant E429A was studied.

ERR  E429A was able to repress Nurr1 as effectively as the wild-type ERR  in U2-OS

cells and therefore the repression does not involve competition for co-activators that

interact with the ERR  AF-2. However, co-activators can also bind to other NR domains.

An example of this is PGC-1  which does not require AF-2 in order to co-activate ERR

(Huppunen et al. 2004). PGC-1  has been reported to enhance both NR3B and NR4A

mediated transactivation (Huppunen et al. 2004, Nervina et al. 2006). In our experimental

conditions,  PGC-1  was  not  found  to  co-activate  Nurr1  but  rather  to  repress  it.  Thus,

competition for PGC-1  can not explain the repression mediated by ERR  on Nurr1.

1.2 Wnt signaling pathway represses the transcriptional activity of NR4A receptors in

osteoblasts

Recently, a regulatory circuit between Nurr1 and the Wnt signaling pathway was found.

The transcriptional activity of Nurr1 was enhanced by different Wnt signaling cascade

activating factors, including -catenin, lithium chloride (LiCl) and Wnt1 in 293F cells

(Kitagawa et al. 2007). Both the Wnt/ -catenin signaling pathway and NR4A receptors

function in the bone. Therefore, we studied if the proteins influence each other in

osteoblasts. U2-OS cells were transfected with NBRE3tk-LUC reporter and the expression

vectors for Nurr1, NGFI-B and Nor1 with or without S33Y -catenin, which is a

constitutively active form of -catenin. Surprisingly, the transcriptional activation induced

by all of the NR4A family members was repressed by S33Y -catenin. This finding was

contrary to the results reported by Kitagawa et al. (2007) from 293F cells. To confirm the

differential regulation of Nurr1 signaling, we transfected 293T cells with NBRE3tk-LUC

reporter and the expression vector for Nurr1 and S33Y -catenin. Indeed, as Kitagawa et

al. reported, S33Y -catenin had a small but significant increasing effect on the

transcriptional activity of Nurr1 in 293T cells. However, in HeLa cells the transfection of

S33Y -catenin with Nurr1 repressed the transcriptional activity of Nurr1 as in the U2-OS

cell line. Therefore, Wnt signaling pathway can have both activating and inhibiting effects

on  the  transcriptional  activity  of  NR4A receptors  depending  on  the  cell  type.  In  U2-OS

cells, the repressive effect of S33Y -catenin on Nurr1 induced NBRE-activation was
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dose-dependent. Moreover, 20 mM LiCl modestly repressed Nurr1 mediated

transactivation. LiCl is evidently quite an inefficient inducer of -catenin signaling in U2-

OS cells as it produced a very small activation of the pGL3-OT reporter compared to the

overexpressed -catenin itself, which could explain the modest repression of Nurr1. S33Y

-catenin also repressed the transcriptional activation induced by Nurr1 on OPN-LUC

reporter.

1.2.1 The repressive effect of -catenin on Nurr1 transactivity involves the ligand-binding

domain of Nurr1

We studid which protein domains are important for NR4A family to be able to be

repressed by -catenin. Therefore, U2-OS cells were co-transfected with expression

vectors Gal4-Nurr1 LBD and Gal4-Nurr1 NTD with or without S33Y -catenin. S33Y -

catenin failed to repress the transactivation induced by Gal4-Nurr1 NTD but did repress

the transcriptional activity of Gal4-Nurr1 LBD. Nurr1 LBD is therefore needed for the

repression. The importance of AF-1 and AF-2 domains was studied on OPN-LUC reporter

with Nurr1 AF-1 (Nurr1 1-84) and AF-2 (Nurr1D589A) mutants, which lack functional

activation functions but are still able to activate OPN-LUC. The Nurr1 AF-1 and AF-2

mutants induced transactivation on the OPN-LUC reporter, which S33Y -catenin

significantly repressed. Therefore AF-1 and AF-2 domains seem to be irrelevant for -

catenin mediated NR4A-repression.

1.2.2 The repressive effect of -catenin on Nurr1 transactivity is not dependent on direct

interaction between the proteins, nor alterations in Nurr1 DNA binding or expression

Kitagawa and colleagues reported that Nurr1 interacts with -catenin and Lef1 in 293F

cells at a site that was mapped to amino acids 363-598 where LBD and AF-2 are situated

(Kitagawa et al. 2007). In addition, other NRs modulate Wnt signaling pathway by direct

interactions and, for example, AR, RAR, VDR, RXR, PPAR, ER, GR and TR interact

with -catenin (Easwaran et al. 1999, Guigon et al. 2008, Kouzmenko et al. 2004, Liu et

al. 2006, Pálmer et al. 2001, Truica et al. 2000, Xiao et al. 2003). We could not detect an

interaction between -catenin and Nurr1 or NGFI-B in mammalian one- and two-hybrid

experiments or in the co-immunoprecipitation experiments in U2-OS cells. In the two-
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hybrid experiments VP16-S33A- -catenin failed to induce the activity of Gal4-Nurr1

LBD, Gal4-Nurr1 NTD or Gal4-NGFI-B LBD expression plasmids on MH100tk-LUC

reporter. In one-hybrid experiments full length pCMX-Nurr1 and pCMX-NGFI-B

plasmids were transfected in U2-OS cells alone or with VP16-S33A- -catenin along with

the NBRE3tk-LUC reporter. Again, VP16-S33A- -catenin did not stimulate Nurr1 and

NGFI-B activities. In co-immunoprecipitation assays overexpressed Flag-tagged Nurr1

protein was immunoprecipitated from the U2-OS cells but no specific binding between

Nurr1 and -catenin was detected. Co-immunoprecipitation experiments were also

conducted by precipitating endogenous or overexpressed -catenin protein but again no

specific binding between -catenin and Nurr1 was detected. Therefore, we were not able

to show that the repressive effect of NR4A family on -catenin would be dependent on

direct interaction between the proteins in U2-OS cells.

We also studied whether -catenin affects DNA binding of the NR4A

receptors. Nurr1 DN and S33Y -catenin expression plasmids were co-transfected in U2-

OS cells. S33Y -catenin could not abolish the repressive effect of Nurr1 DN on the basal

NBRE3tk-LUC reporter activity, which implies that -catenin does not interfere with the

ability of Nurr1 to bind DNA.

Recently,  it  was  shown  that  the  colonic  carcinogen  deoxycholic  acid

increases the expression of NGFI-B in colon cancer cells. The mechanism involved

stabilization of -catenin, which formed a complex with the activator protein-1 (AP-1)

thas was capable of binding to the AP-1 sites on the NGFI-B gene  promoter  (Wu et al.

2011). We did not detect any alteration in the amount of Nurr1 mRNA in U2-OS cells

transfected with S33Y -catenin. Furthermore, the expected result of an increase in protein

expression would be its enhanced function rather than the repression observed in our

experiments.

In conclusion, we identified two new pathways, NR3B orphan NRs and Wnt

signaling pathway, which repress the transcriptional activity of NR4A receptors in

osteoblasts. The repressive effect of ERR  on Nurr1 is dependent on Nurr1 and ERR

DBDs, but does not involve competition for DNA binding. The repression also involves

intact dimerization interfaces but no heterodimerization or competition for co-activator

binding. -catenin repressed transcriptional activation mediated by all of the NR4A

receptors by a mechanism dependent on the LBD. As the Wnt signaling pathway has an

activating effect on Nurr1 transcriptional activity in 293F (Kitagawa et al. 2007) and 293T
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cells, it seems that the Wnt signaling pathway can function both as an activator and a

repressor of Nurr1 transcriptional activity according to the prevailing cellular

circumstances and therefore forms an interesting regulatory mechanism for Nurr1. This is

also true for other NRs. For most of the NRs, including AR, RARs, VDR and ERs, Wnt/ -

catenin signaling functions as a stimulator of their transcriptional activity (Mulholland et

al. 2005). However, AR can also be inhibited by the Wnt signaling pathway as AR binds

Tcf4 through its DNA-binding domain, which decreases its transcriptional activity (Amir

et al. 2003). Wnt signaling represses or activates ER activity according to the dominating

cellular  Tcf  factors.  When ERs directly  interact  with  Tcf1,  the  effect  on  the  promoter  is

synergistic, when ERs interact with Tcf4, the effect is antagonistic (El-Tanani et al. 2001).

The  exact  mechanisms  of  both  ERR  and  -catenin  repression  on  NR4A  receptors  still

remain to be solved. The biological significance of the repression should also be further

studied in natural NR4A target genes. Both ERR  and -catenin are highly expressed in

the central nervous system and Wnt/ -catenin has been shown to regulate dopaminergic

differentiation (Cajánek et al. 2009) where Nurr1 also has an essential role. Kitagawa and

others  showed that  Nurr1,  -catenin  and  Lef1  can  associate  on  the  same DNA elements

and regulate each other’s co-factor recruitment in SK-N-MC neuroblastoma cells. In

addition, Nurr1 inhibited the nuclear accumulation of -catenin in these cells (Kitagawa et

al. 2007). Therefore, it is of potential interest to study further how these pathways

converge in neural tissue.

2. The transcriptional activity of NR3B family can be regulated by ligands and cross-

talk with other nuclear receptors (I, II)

2.1. Identification of the phytoestrogen equol as an ERR  and ERR  ligand

NR3B receptors constitute another family of orphan NRs for which a natural ligand has

not been found. However, it was shown that certain isoflavones can bind to ERRs and act

as their agonists (Suetsugi et al. 2003). Furthermore, phenolic acyl hydrazones GSK4716

and DY131 function as selective ERR  and ERR  agonists (Yu and Forman 2005,

Zuercher et al. 2005). Certain flavonoids were reported to inhibit transcriptional activity of

ERR  by suppressing the interaction between ERR  and co-activator PGC-1  (Huang et

al. 2010, Wang et al. 2009b). Therefore, we wanted to study how phytoestrogens affect
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the transcriptional activity of ERR . The subject was studied in U2-OS, SaOS-2 and PC-3

cells, where ERR  is transcriptionally active (Huppunen et al. 2004 and our unpublished

results). In accordance with earlier reports, DES and 4-OHT efficiently inhibited the

transcriptional activity of ERR  in PC-3 cells (Coward et al. 2001, Tremblay et al. 2001b)

and GSK4716 increased the activity by a maximum of 3-fold. Estradiol had no effect on

the transcriptional activity of ERR  as previously reported (Giguère et al. 1988, Yang et

al. 1996).

PC-3, U2-OS and SaOS-2 cells were transfected with Gal4-ERR LBD

expression vector along with MH100tk-LUC reporter and treated with genistein, daidzein,

equol, enterodiol, and enterolactone to study the effects of phytoestrogens on ERR . The

only substance that influenced the activity of ERR  was equol, which had agonistic

potential. Equol increased the transcriptional activity of ERR  in a dose-dependent manner

in PC-3 cells transfected with the ERRE3tk-LUC reporter driven by three ERRE binding

sites. The maximum stimulation was approximately 2-fold at the concentration of 20 µM.

The effect of equol on ERR  seemed to be selective as equol did not increase

the activity of ERR  or ERR  above the level of control vector (PL1) in PC-3 or SaOS-2

cells. Equol increased the basal activity of the ERRE3tk-LUC reporter, which is most

likely due to the endogenous ERR  present in PC-3 and SaOS-2 cells. ERR  and ERR

showed  no  transcriptional  activity  in  PC-3  or  SaOS-2  cells  and  equol  might  have  a

different effect in a situation in which these receptors would be more active. Therefore the

ERR expression vectors were transfected in PC-3 cells together with PGC-1  that has

been shown to stimulate the activity of these receptors (Huss et al. 2002). Equol

stimulated the activity induced by ERR  and ERR  together with PGC-1 . Equol was not

able to significantly increase the activity induced by ERR  and PGC-1 . These results

suggest  that  equol  is  selective  for  ERR  and  ERRβ as has been reported for GSK4716

(Zuercher et al. 2005).

2.1.1 Equol increases ERR  co-activator binding

Some phytoestrogens have been shown to inhibit the activity induced by ERRs and PGC-

 by decreasing the interaction between the proteins. The phytoestrogens that have this

effect fall into three categories, flavones, flavonols and flavanones. On the other hand,

isoflavones genistein and daidzein have either no effect at all or a small stimulating effect
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on the transcriptional activity of ERR  and PGC-1  (Huang et al. 2010). Equol falls into

the category of isoflavone, which is in accordance with its ability to increase the

transcriptional activity of ERR /ERR  and PGC-1 . ERRs have also been shown to bind

other co-factors. For example, ERR  has been reported to interact with GRIP1 (Hong et

al. 1999), which functions as a co-activator. Moreover, ERR  interacts with RIP140,

which in many cases functions as a transrepressor (Castet et al. 2006, Wang et al. 2006a).

A mammalian two hybrid experiment was performed to study whether equol enhances the

interaction between ERR LBD and GRIP1 or RIP140. PC-3 cells were co-transfected with

the expression vectors for Gal4-GRIP1 or Gal4-RIP140 and VP16-ERRγ LBD along with

the MH100tk-Luc reporter. Equol enhanced the interaction between ERR LBD and

GRIP1  but  had  no  effect  on  the  interaction  between  ERR LBD  and  RIP140.  Therefore,

equol was found to increase the transcriptional activity of ERR  at least partly by

increasing  the  co-activator  binding  of  ERR .  On the  other  hand,  the  effect  of  equol  was

not due to an effect on ERR  protein stability as equol and GSK4716 did not influence the

expression level of ERR  protein in PC-3 cells. In contrast, 4-OHT treatment slightly

increased ERR  expression.

2.1.2 Equol binds to the ERR  ligand-binding pocket

Next we studied the binding of equol to the ERR  LBP. Equol decreased the inhibitory

effect of 4-OHT on the transcriptional activity of ERR  in a dose-dependent manner. On

the other hand, 4-OHT decreased the stimulatory effect of equol. These results suggest

that equol and 4-OHT compete for binding to the LBP. Equol also induced a

conformational change in the ERR  LBD in an assembly assay described by Pissios et al.

(2000), where helix 1 of the LBD is fused to the yeast Gal4 DNA-binding domain and

helices 3-12 are fused to herpes simplex virus VP16 activation domain. The interaction of

H1 and H3-12 is measured as the activation of a MH100tk-LUC reporter gene driven by

Gal4-binding sites. This interaction has been reported to be influenced by ligand binding,

co-repressors,  and  other  signals  that  modulate  the  transcriptional  activity  of  LBD

(Huppunen et al. 2004, Pissios et al. 2000, Wang et al. 2003). Equol, GSK4716, DES and

4-OHT increased the interaction thus indicating that these ligands induce a conformational

change in the ERR  LBD. In contrast, estradiol and enterodiol had no effect. In partial

proteolysis assay, in vitro translated  ERR  or  ERR  LBD  proteins  were  treated  with
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vehicle, equol, enterodiol and 4-OHT and then with trypsin. Trypsin digested vehicle or

enterodiol treated proteins completely whereas equol and 4-OHT treated proteins were

able to resist digestion. The binding mode of equol to the ERR  LBP was studied by

molecular modeling and compared to the models in which ERR  was bound to 4-OHT,

DES and GSK4716. The apo-ERR  structure could not adopt the equol molecule.

Nevertheless, GSK4716 binds to an enlarged cavity at which H12 is in its agonistic

conformation. This structure allowed equol binding which correlates well with the

agonistic effects of equol observed in experiments. The binding mode was further studied

by introducing point mutations in the LBP of ERR  and by studying the effects of

different ligands on these mutants in reporter assays. PC-3 cells were transfected with

Gal4-ERR  LBD expression vector and its mutated variants along with the MH100tk-

LUC reporter and subsequently treated with equol, GSK4716, 4-OHT and DES. A272,

which is in close proximity with all four ligands, was mutated into a larger phenylalanine

with the intention to block the cavity. Indeed, Gal4-ERR  LBD A272F did not

significantly respond to any of the tested ligands. Next F435 was mutated to a smaller

leucine to create more space in the binding pocket. Mutating F435 did not affect the

inhibitory effect of 4-OHT but changed DES into a weak agonist. This finding is in

accordance with an earlier study in which the antagonistic effect of DES on ERR  was

shown to involve a change in the conformation of F435, which then leads to a

displacement of H12 (Greschik et al. 2002). Equol and GSK4716 remained as agonists

and the stimulatory effect of equol was slightly enhanced by the F435L mutation. V313W

and Y326W mutations abolished the inhibitory effects of DES and 4-OHT on ERR  and

decreased the agonistic effect of GSK4716. However, equol remained as an agonist which

suggests that equol binds to the ERR  LBP in a slightly different manner than the other

ligands studied.

Based on these experiments we identified equol as a new ERR  ligand. More

than that, we showed that in addition to the previously identified synthetic ligands

GSK4716 and DY131, there are natural compounds that can function as ERR  agonists.

The equol concentration that was needed to stimulate ERR  activity was fairly high (5

µM). However, plasma concentrations of phytoestrogens in soya-consuming populations

can reach levels as high as 1 µM (Adlercreutz et al. 1993, Bloedon et al. 2002).

Furthermore, phytoestrogens have been shown to concentrate in prostate fluid and tissue

where  they  can  reach  concentrations  up  to  10-fold  those  of  serum (Gardner et al. 2009,



Results and Discussion

75

Hedlund et al. 2005). In addition, modulation of the transcriptional activity of NRs in

transient transactivation assays often requires ligand concentrations that exceed those

required in vivo. Therefore, the concentrations needed to stimulate ERR  in our

experiments may well be possible to attain in humans. What should be further studied is

the effect of equol on ERR  target genes. We analyzed the mRNA expression of

previously reported ERR  target genes (ESRRA, PGC-1A, PGC-1B, p21, p27, PDK2,

PDK4, GR, PLK2, MAOB, and APOD) (Park et al. 2007, Wang et al. 2008, Wang et al.

2009b, Wang et al. 2010a, Wang et al. 2010b, Xie et al. 2009, Yu et al. 2007, Zhang et al.

2006) in GSK4716 or ERR  siRNA treated PC-3 cells by RT-PCR. None of these genes

were induced by GSK4716 or repressed by ERR  siRNA. We were thus unable to study

the role of equol as an ERR  agonist by analyzing its effect on these previously suggested

ERR  target genes.

2.2 Orphan nuclear receptor NGFI-B represses the transcriptional activity of ERR

In addition  to  ligands,  ERR receptors  can  also  be  regulated  by  other  NRs.  For  example,

ERs have been shown to inhibit the transcriptional activity of ERRs on monoamine

oxidase B promoter (Zhang et al. 2006). SHP interacts with ERR receptors and inhibits

the transcriptional activity of ERR  (Sanyal et al. 2002). As already discussed, NR3B and

NR4A receptors are co-expressed in many tissues and therefore we studied if NR4A

receptors can regulate ERR function. HeLa cells were transfected with the expression

vector  for  ERR  along  with  the  ERRE3tk-LUC reporter. Co-expression of NGFI-B

efficiently repressed the activity induced by ERR . Nor1 had a modest repressive effect on

ERR  whereas Nurr1 had no effect. The repressive effect of NGFI-B was dose-dependent

and  NGFI-B  totally  abolished  the  activity  of  ERR  when  NGFI-B  and  ERR  were

transfected in equal amounts. The repressive effect of NGFI-B was dependent on the

DBD, as NGFI-B DBD mutant C252G was not able to repress ERR . The repression also

involved dimerization interfaces as NGFI-B I-box mutant NGFI-B GKL(522-524)AAA

repressed ERR  less efficiently than the wild-type vector. However, the exact mechanism

and the biological relevance of this phenomenon remains to be solved

In conclusion, we identified two new mechanisms capable of regulating the

function of ERR  in osteoblasts. Of these, equol had a positive effect on the transcriptional

activity of ERR  whereas NR4A receptors had a negative effect.
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3. NR4A and NR3B families repress the transcriptional activity of Wnt signaling

pathway in osteoblasts (III)

3.1 NR4A receptors repress the transcriptional activity mediated by -catenin

Both -catenin and the NR4A family are expressed in osteoblasts (Lammi et al. 2004,

Monaghan et al. 2001). -catenin is essential for skeletal development and maintenance

and thus it is important to know which factors regulate the function of the Wnt signaling

pathway.

To study if NR4A receptors regulate -catenin mediated transcriptional

activity, U2-OS cells were transfected with pGL3-OT reporter that contains three binding

sites for Tcf4, a constitutively active S33Y -catenin and either Nurr1, NGFI-B or Nor1

expression vectors. S33Y -catenin induced a very high activation on the pGL3-OT

reporter  that  all  members  of  the  NR4A  family  significantly  repressed.  LiCl  is  a  known

inhibitor of GSK3  (Klein and Melton 1996, Stambolic et al. 1996) and it increases the

amount of active nuclear -catenin. 10 mM LiCl treatment was able to induce pGL3-OT

reporter and Nurr1 also repressed this induction. The effect of Nurr1 on S33Y -catenin

induced pGL3-OT activity was dose-dependent.

Nurr1 and NGFI-B mutants were used to study the structural requirements of

the NR4A receptors needed for -catenin repression. Nurr1 1-84 that lacks AF-1 (AF1

mut), Nurr1 D589A that lacks a functional AF-2 (AF2 mut), and a Nurr1 mutant 1-

84/D589A in which the function of both activation functions is abolished (AF1/AF2 mut)

were transfected to U2-OS cells together with S33Y -catenin and pGL3-OT reporter. All

the mutants were able to repress the S33Y -catenin induced pGL3-OT activity at the

same level as the Nurr1 wild-type. Therefore, AF-1 and AF-2 domains are not needed for

the repression of -catenin. The NGFI-B I-box mutant NGFI-B GKL(522-524)AAA was

expressed in U2-OS cells to study if dimerization is involved in the repression. NGFI-B

dimerization mutant was still capable of repressing the S33Y -catenin induced pGL3-OT

activation. Therefore homo- or heterodimerization of the NR4A receptors with themselves

or  with,  for  example,  RXR  receptors,  does  not  influence  the  repressive  effect  of  NR4A

receptors on -catenin. This is in agreement with the notion that Nor1, which does not

bind RXR (Zetterström et al. 1996a) is also capable of repressing -catenin. The role of

DBD was studied by a NGFI-B DBD mutant C252G. Interestingly, NGFI-B C252G could
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not repress the -catenin mediated pGL3-OT activation, which implies that an intact

DNA-binding domain is needed for the repression.  Similar results were obtained with

Nurr1 DNA-binding mutant C283G.

To investigate if the repression also occurs on the level of -catenin target

genes, the expression of Axin2 mRNA was studied. Axin2 is a negative regulator of the

Wnt signaling pathway, as it promotes the phosphorylation and degradation of -catenin,

and a known Wnt/ -catenin/Tcf target gene (Jho et al. 2002). The expression of Axin2 is

stimulated by canonical Wnt signaling in many different cell types, including the

preosteoblastic MC3T3-E1 cell line (Reinhold and Naski 2007). We noted an increase in

Axin2  mRNA  in  S33Y  -catenin  transfected  MC3T3-E1  cells.  When  the  cells  were  co-

transfected with Nurr1, the expression of Axin2 mRNA decreased by 40%. Therefore

Nurr1 is capable of repressing the mRNA expression of -catenin target genes.

NR4A receptors are immediate early genes whose expression is strongly and

rapidly induced by various stimuli that include PTH (Pirih et al. 2003, Tetradis et al.

2001a, Tetradis et al. 2001b) and FGF-8b (Lammi and Aarnisalo 2008). PTH has also

been reported to modulate the canonical Wnt signaling pathway (Kulkarni et al. 2005).

Moreover, FGFs and the Wnt pathway intertwine as FGF signaling antagonizes Wnt-

induced transcription (Ambrosetti et al. 2008). NR4A receptors thus potentially serve as a

link between these signaling pathways in osteoblasts. Wnt signaling is also an important

determinant of the osteoblastic and adipogenic differentiation of MSCs (Hill et al. 2005,

Ross et al. 2000). The NR4A family has also been reported to be induced during

adipogenic differentiation (Au et al. 2008, Chao et al. 2008, Fu et al. 2005, Fumoto et al.

2007) and Nurr1 increases osteoblast differentiation (Lee et al. 2006). Therefore, it would

be interesting to study if the pathways are linked in these processes.

3.2 NR3B receptors repress the transcriptional activity mediated by -catenin

In addition to NR4A receptors, NR3B receptors are also expressed in several of the same

tissues and cells that express -catenin. Therefore we studied whether NR3B receptors

influence Wnt signaling pathway. U2-OS cells were transfected with expression plasmids

for S33Y -catenin, ERR  and ERR  along with the pGL3-OT reporter plasmid. ERR

inhibited S33Y -catenin mediated activity efficiently, whereas the inhibition elicited by

ERR  was more modest (Fig. 13A). The ERR  DBD mutant ERR  C125G was used to
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study if the DNA binding was needed for the repression. ERR  C125G was not able to

repress S33Y -catenin mediated transactivation (Fig. 13B). The result is similar to that

obtained  with  NR4A  receptors,  which  implies  that  orphan  NRs  could  use  the  same

mechanisms to repress -catenin. As already discussed, PGC-1  is an important co-

activator of the ERR receptors. When U2-OS cells were transfected with PGC-1  along

with the expression vector for S33Y -catenin and pGL3-OT reporter, PGC-1  had a

repressive effect on S33Y -catenin mediated activity. PGC-1  was also able to increase

the repressive effect of ERR  (Fig. 13C). On the other hand, the repressive effect of ERR

on -catenin was abolished by 4-OHT treatment (Fig. 13D). This finding and also the

Fig. 13. U2-OS cells were transfected with the pGL3-OT reporter (300 ng) along with the
expression plasmids (a total of 50 ng) for -catenin S33Y, ERR  and ERR  (A); -catenin
S33Y, ERR  and ERR  C125G (B); or -catenin S33Y, PGC-1  and ERR  (C) as
indicated. (D) U2-OS cells were transfected with the pGL3-OT reporter along with the
expression plasmids for -catenin S33Y and ERR  and subsequently treated with 1 µM 4-
OHT for 24 h as indicated. The experiments were performed in triplicate dishes and
repeated at least twice with essentially identical results. The mean ± S.D. of one
representative experiment is shown.
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dependence of the repressive effect on DBD are in accordance with a mechanism by

which  ERR  represses  the  transcriptional  activity  of  Nurr1  (Lammi et al. 2004).

Therefore, NR3B receptors could have a repressive mechanism dependent on their DBD

and LBD that they use to repress NR4A receptors, Wnt signaling and possibly also other

signaling pathways.

Very recently, a study that reported a cross-talk between ERR  and Wnt

signaling pathway was published. Wnt signaling pathway and ERR  potentiated each

other’s transcriptional activity in SKBR3 and MDA-MB-436 breast cancer cells. In

addition, both ERR  and -catenin were involved in the migration of breast cancer cells

by inducing the expression of Wnt11 (Dwyer et al. 2010). In U2-OS cells, ERR  and

ERR  had an inhibitory effect on Wnt/ -catenin signaling pathway. Therefore, ERRs seem

to have both negative and positive effects on Wnt signaling depending on the cell type.

In conclusion, NR4A and NR3B receptors were discovered to repress the

function of the Wnt signaling pathway in osteoblasts. As Wnt signaling pathway has an

important role in many biological processes and tissues in which NR4A and NR3B

receptors also function, this repressive effect is of potential importance. In addition, by

regulating the Wnt signaling pathway, NR3B and NR4A receptors may be involved in the

pathogenesis of different Wnt signaling pathway related diseases. The biological relevance

and mechanisms of the regulation should be further examined by, for example, exploring

the repression on -catenin/Tcf target gene promoters and by studying if the function of

Wnt signaling pathway and the processes it regulates are altered in NR3B and NR4A KO

mice.

4. NR3B family participates in the growth of osteoblasts and prostate cancer cells

and in the differentiation of mesenchymal stem cells (II, IV)

4.1. NR3B receptors regulate the growth of osteoblasts and prostate cancer cells

NR3B  receptors  have  been  shown  to  regulate  the  proliferation  and  growth  of  cells  with

both positive and negative effects in different cell types (Ijichi et al. 2011, Yu et al. 2008).

Therefore, we studied the effect of NR3B receptors on the proliferation and growth of

osteoblasts, MSCs and prostate cancer cells.
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4.1.1 ERR  increases the proliferation of osteoblasts and mesenchymal stem cells

Blocking the expression of ERR  diminishes the proliferation of rat calvarial osteoblasts

dose-dependently (Bonnelye et al. 2001). To investigate further the impact of ERR  on

proliferation, we studied the proliferation of osteoblasts and MSCs isolated from ERR

KO and wild-type mice by the 3H-thymidine incorporation method on days 3 and 5 of the

proliferation phase. ERR  KO MSCs proliferated significantly less than the cells derived

from wild-type littermates on both days. ERR  KO osteoblasts also proliferated less but

the results did not reach statistical significance. The results were ascertained by cell cycle

analysis, which showed that on day 5 there were 14% fewer MSCs and 45% fewer

osteoblasts in the S-phase in the ERR  KO cultures. Our results are consistent with the

earlier results from rat calvarial osteoblasts and the MSCs derived from another ERR  KO

line (Bonnelye et  al. 2001, Teyssier et al. 2009). In contrast, Delhon and colleagues did

not detect any difference in the proliferation of ERR  deficient mouse calvarial

osteoblasts (Delhon et al. 2009).  ERR  has  also  been  linked  to  the  regulation  of  tumor

growth and proliferation of breast cancer cells (Deblois et al. 2009). The function of

ERR  in cell proliferation in different cell types should therefore be further studied.

4.1.2 ERR  and equol decrease the growth of prostate cancer cells

ERR  regulates the proliferation of cancer cells in, inter alia, breast (Ijichi et al. 2011) and

prostate cancer (Cheung et al. 2005). In prostate cancer cells ERR  has a negative effect

on their proliferation (Cheung et al. 2005). Equol has also been shown to decrease the

growth of prostate cancer cells in vitro (Magee et al. 2006, Mitchell et al. 2000).

Therefore, we examined whether equol was able to enhance further the growth inhibitory

effect of ERR . PC-3 cells were transfected with the expression vector for ERR  and

treated with equol. Treatment of the mock-transfected cells with equol reduced the cell

number 72 h post transfection. The number of cells was further decreased when the cells

were transfected with ERR . We transfected the cells with siRNA targeted for ERR  to

study if the growth-inhibitory effect of equol in mock-transfected cells was mediated by

the endogenous ERR . ERR  siRNA reduced the expression of endogenous ERR  mRNA

to about 50% and abolished the growth-inhibitory effect of equol. GSK4716 also reduced

the number of ERR  transfected PC-3 cells. These results indicate that ERR  is involved
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in mediating the antiproliferative effects of equol. Reciprocally, equol enhances the

antiproliferative effects of ERR . The ability to produce equol and high serum equol levels

have been associated with a reduced prostate cancer risk (Yuan et al. 2007) and ERR  has

been indicated as a marker of favourable prognosis in prostate cancer (Fujimura et al.

2010). Therefore, the function of ERR  and equol in prostate cancer cells is potentially of

clinical importance and should be further studied by exploring the mechanisms behind the

growth inhibition and by investigating if the effect is also obtained in vivo. Furthermore, it

would be interesting to study if ERR  also participates in mediating equol effects in ERR

expressing cells and tissues other than the prostate.

4.2 ERR  regulates the osteoblastic and adipogenic differentiation of mesenchymal stem

cells

It has been suggested that ERR  plays a role in bone formation. ERR  has been shown to

increase osteoblastic differentiation in vitro in rat calvarial osteoblasts (Bonnelye et al.

2001).  Recently,  conflicting  results  have  been  obtained.  ERR  KO mice  were  shown to

have slightly increased cancellous BMD and primary osteoblasts isolated from these mice

showed increased differentiation in vitro (Delhon et al. 2009). Therefore the effects of

ERR  on osteoblastic differentiation and function need more clarification. Osteoblasts and

adipocytes differentiate from the same multipotent precursor cells, MSCs. On this

account, we also studied the influence of ERR  on adipogenic differentiation.

4.2.1 ERR  increases the osteoblastic differentiation of mesenchymal stem cells

MSCs were isolated from the bone marrow of 8-12 week old ERR  KO male mice and

their wild-type littermates. After 6 days in culture the cells were counted, equal numbers

were replated and osteogenic differentiation was induced by Na- -glycerophosphate,

dexamethasone and ascorbic acid. ERR  KO mesenchymal cultures had decreased

mineralization compared to the wild-type cells on day 20 of differentiation when detected

by Alizarin red S staining. The expression of osteoblastic maker genes was determined on

days 20 and 25 by RT-PCR to analyze the possible mechanism of ERR  in osteoblast

differentiation. The ERR  KO cultures had significantly diminished expression of BSP

and OCN mRNA, which might well explain the difference seen in mineralization. The
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expression of OPN and ALP was also decreased in every experiment performed but these

differences  were  not  statistically  significant.  The  expression  of  Runx2  was  relatively

similar in both wild-type and KO cultures. We also studied ERR  mRNA expression and

found it to be fairly constant throughout the differentiation process (Rajalin et al.

unpublished results).

To study how the overexpression of ERR  affects mineralization in

preosteoblastic MC3T3-E1 cell line, we transiently transfected cells with empty (pCMX-

Flag) or ERR  (pCMX-Flag-ERR ) expression vectors. The overexpression of ERR

increased the mineralization of MC3T3-E1-cells as determined by Alizarin red S staining.

Overexpression of ERR  also increased the expression of BSP, Runx2 and ALP mRNAs.

The expressions of OPN and OCN were not significantly altered.

The disparity between our results and the results reported by Delhon et al.

(2009) may be due to the different mouse models, cells used in the experiments and also

other differences between the experimental conditions. Delhon and colleagues

differentiated mouse calvarial cells in contrast to our MSCs and used BMP-2 in the

osteogenic  medium.  The  expression  of  osteoblastic  markers  BSP  and  OCN  was  also

analyzed  at  a  rather  early  time  point  (10  d)  by  Delhon  and  colleagues  compared  to  our

study (20d and 25d). In the study by Teyssier and others MSCs isolated from the ERR

KO female mice had increased osteoblastic differentiation capacity when compared to

wild-type cells (Teyssier et al. 2009). Again, there were many experimental differences

between our studies. Teyssier and others did not use dexamethasone in the osteogenic

medium and plated cells isolated from the bone marrow directly in differentiation cultures,

whereas we started our differentiation cultures only after expanding MSCs first in an

initiation culture. Cell density is a major determinant of the mineralization capacity

(Jaiswal et al. 1997). Therefore, alterations in factors that affect cell density, such as the

number of MSCs in the bone marrow and cell adherence, can affect mineralization in the

experimental setting of Teyssier et al (2009). Indeed, Wei et al. (2010) reported a decrease

in the number of bone marrow cells in ERR  KO mice compared to ERR  heterozygous

controls. There is also a potential gender-dependent effect of ERR , which might affect

the results. As ERR  has been reported to impinge on the estrogen signaling pathway

(Bonnelye et al. 2002b), the gender-dependent effects of ERR  are of interest. In addition,

the in vitro results reported by Teyssier and colleagues do not explain the decreased bone
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volume fraction and diminished trabecular number observed in their female mice at the

age of 14 weeks (Teyssier et al. 2009).

4.2.2 Bone sialoprotein is a target gene for ERR  and ERR

As  the  expression  of  BSP  mRNA  was  altered  in  ERR  KO  MSCs  and  also  ERR

overexpressing MC3T3-E1 cultures, we next investigated whether the NR3B family can

directly control the BSP gene promoter. Because MC3T3-E1 cells did not transfect

efficiently enough for reporter assays, we decided to use human cervical cancer HeLa cells

in which the ERR family is transcriptionally active (Lu et al. 2001). HeLa cells were co-

transfected  with  the  expression  plasmids  for  ERR ,  ERR  or  ERR  and  PGC-1  when

indicated along with the human BSP-LUC reporter. ERR  and ERR  together with PGC-

 activated BSP-LUC reporter efficiently. ERR  could not activate BSP-LUC reporter.

To study the regulation of BSP promoter by ERR  further, point mutations were

introduced into the ERR  expression vector in order to abolish ERR  DNA-binding

(C99G) or to disrupt AF-2 (E413A). Although the expression level of both mutants was

comparable to that of the wild-type ERR , both mutations abolished the transactivation of

BSP-LUC. Therefore, the regulation of BSP seems to depend upon ERR  DNA-binding

and transcriptional activity. The reporter assays together with the mRNA expression

analysis show that BSP is a target gene for ERR . In a study by Bonnelye and colleagues

the expression of BSP was inhibited in cultures deficient of ERR  and increased in

cultures that overexpressed ERR  (Bonnelye et al. 2001). In addition to ERR , ERR

stimulated BSP-LUC activity when co-transfected with the co-activator PGC-1 .

Interestingly, the activation of the BSP-LUC reporter by ERR  and PGC-1  was not

responsive to 1 µM 4-OHT treatment (Fig. 14A) whereas 4-OHT was able to abolish

ERR  driven transactivity on ERRE3tk-luc reporter (Fig. 14B). In contrast to our results,

ERR  was shown to repress Runx2-dependent BSP promoter activation in a recent report

(Jeong et al. 2009). Therefore, ERRs may play different roles in BSP regulation depending

on the stage of osteoblastic differentiation. BSP is also expressed in breast and prostate

cancer cells in which it possibly plays a major role in mineral deposition and preferred

bone homing (Ganss et al. 1999). ERR  and ERR  are expressed in many cancer cell lines

and ERR  functions as a prognostic marker of breast and endometrial cancer (Ariazi et al.
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2002, Deblois et al. 2009). Therefore the relationship between ERRs and BSP should be

further studied in cancer cells.

Fig. 14. HeLa cells were transfected with 300 ng of the BSP-LUC (A) or ERRE3tk-luc (B)
reporter along with the expression plasmids for PGC-1  (25 ng) and pCMX-ERR  (25 ng)
as indicated. After 24 h the cells were treated with vehicle (EtOH) or 1 µM 4-OHT for
another 24 h. The experiments were performed in triplicate dishes and repeated three times
with essentially identical results. The mean ± S.D. of one representative experiment is
shown.

4.2.3 ERR  increases the adipogenic differentiation of mesenchymal stem cells

To study whether ERR  can affect adipogenic differentiation of MSCs, we induced wild-

type and ERR  KO MSCs towards the adipocytic differentiation with a cocktail that

contained insulin, dexamethasone and rosiglitazone. After 14 days we stained the cultures

with Oil Red O to detect lipids. ERR  KO cultures had diminished numbers of adipocytes

compared to the wild-type cultures. In addition, the mRNA expression of adipogenic

markers aP2 and PPAR  showed a statistically significant decrease in the ERR  KO

cultures on day 7. Therefore, according to our results ERR  has a positive effect on

adipogenic differentiation. In line with our result ERR  siRNA was reported to inhibit

adipogenesis and overexpression of ERR  by stable transfection up-regulated adipogenic

marker genes and promoted triglyceride accumulation during the adipogenic

differentiation in 3T3-L1 cells (Ijichi et al. 2007). Recently, it was also found that an

inverse agonist of ERR , XCT-790, reduced the expression of PPAR  and aP2, lowered

triglyceride content and decreased the size of lipid droplets in a dose-dependent manner in

3T3-L1 cells (Nie and Wong 2009). Silencing ERR  in human MSCs has been shown to
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result in decreased adipogenic differentiation and adipocytic marker gene expression

(Delhon et al. 2009). ERR  KO mice also have reduced fat mass and they are resistant to

high-fat diet-induced obesity due to derangements in white adipocyte lipid metabolism

(Luo et al. 2003) and in lipid absorption from the intestine (Carrier et al. 2004). In

contrast, silencing ERR  by the antisense method increased the differentiation of rat

calvarial osteoblasts into adipocytes (Bonnelye et al. 2002b). This potentially stems from

the use of cells that are more committed to the osteoblastic lineage.

In conclusion, ERR  controls the differentiation of mouse MSCs by

increasing both the adipogenic and osteoblastic differentiation. There are also opposing

results about the role of ERR  in osteoblastogenesis, which could indicate that ERR  has

cell type-, differentiation stage- and gender-dependent effects that need more clarification.

Moreover, the identification of BSP as a new target gene for ERR  and ERR  suggests a

new mechanism for their bone related effects. ERR  could thus function in normal bone

homeostasis and participate in the pathology of bone related diseases, such as osteoporosis

by regulating osteoblast proliferation and differentiation.
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CONCLUSIONS

• The activity of NR4A receptors is regulated by NR3B receptors and Wnt signaling

pathway in osteoblasts. ERR , ERR  and -catenin repress the transcriptional

activity of NR4A receptors in U2-OS cells.

• The phytoestrogen equol was identified as a new agonist for ERR  in PC-3, U2-

OS and SaOS-2 cells. ERR  increases the growth inhibitory effect of equol on PC-

3 cells and could therefore mediate some of the beneficial health effects of equol.

• The activity of NR3B receptor ERR  is regulated by NR4A receptors as NGFI-B

and Nor1 repress its transcriptional activity in HeLa cells.

• NR3B and NR4A receptors regulate the canonical Wnt signaling pathway as they

repress the transcriptional activity mediated by -catenin in U2-OS cells.

• ERR  increases the proliferation of mesenchymal stem cells and osteoblasts.

ERR  enhances osteoblastic differentiation and increases the expression of bone

sialoprotein in mouse mesenchymal stem cells and MC3T3-E1 preosteoblastic cell

line. Bone sialoprotein was identified as a direct target gene for ERR  and ERR .

ERR  also increases adipogenic differentiation of mesenchymal stem cells
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