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Abstract 

Enzymes offer many advantages in industrial processes, such as high specificity, 
mild treatment conditions and low energy requirements. Therefore, the industry 
has exploited them in many sectors including food processing. Enzymes can 
modify food properties by acting on small molecules or on polymers such as 
carbohydrates or proteins. Crosslinking enzymes such as tyrosinases and sulfhy-
dryl oxidases catalyse the formation of novel covalent bonds between specific 
residues in proteins and/or peptides, thus forming or modifying the protein net-
work of food. 

In this study, novel secreted fungal proteins with sequence features typical of 
tyrosinases and sulfhydryl oxidases were identified through a genome mining 
study. Representatives of both of these enzyme families were selected for heter-
ologous production in the filamentous fungus Trichoderma reesei and biochemi-
cal characterisation. 

Firstly, a novel family of putative tyrosinases carrying a shorter sequence 
than the previously characterised tyrosinases was discovered. These proteins 
lacked the whole linker and C-terminal domain that possibly play a role in cofac-
tor incorporation, folding or protein activity. One of these proteins, AoCO4 from 
Aspergillus oryzae, was produced in T. reesei with a production level of about 
1.5 g/l. The enzyme AoCO4 was correctly folded and bound the copper cofac-
tors with a type-3 copper centre. However, the enzyme had only a low level of 
activity with the phenolic substrates tested. Highest activity was obtained with 
4-tert-butylcatechol. Since tyrosine was not a substrate for AoCO4, the enzyme 
was classified as catechol oxidase. 

Secondly, the genome analysis for secreted proteins with sequence features 
typical of flavin-dependent sulfhydryl oxidases pinpointed two previously un-
characterised proteins AoSOX1 and AoSOX2 from A. oryzae. These two novel 
sulfhydryl oxidases were produced in T. reesei with production levels of 70 and 
180 mg/l, respectively, in shake flask cultivations. AoSOX1 and AoSOX2 were 
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FAD-dependent enzymes with a dimeric tertiary structure and they both showed 
activity on small sulfhydryl compounds such as glutathione and dithiothreitol, 
and were drastically inhibited by zinc sulphate. AoSOX2 showed good stability 
to thermal and chemical denaturation, being superior to AoSOX1 in this respect. 
Thirdly, the suitability of AoSOX1 as a possible baking improver was elucidat-
ed. The effect of AoSOX1, alone and in combination with the widely used im-
prover ascorbic acid was tested on yeasted wheat dough, both fresh and frozen, 
and on fresh water-flour dough. In all cases, AoSOX1 had no effect on the fer-
mentation properties of fresh yeasted dough. AoSOX1 negatively affected the 
fermentation properties of frozen doughs and accelerated the damaging effects 
of the frozen storage, i.e. giving a softer dough with poorer gas retention abilities 
than the control. In combination with ascorbic acid, AoSOX1 gave harder 
doughs. In accordance, rheological studies in yeast-free dough showed that the 
presence of only AoSOX1 resulted in weaker and more extensible dough where-
as a dough with opposite properties was obtained if ascorbic acid was also used. 
Doughs containing ascorbic acid and increasing amounts of AoSOX1 were 
harder in a dose-dependent manner. Sulfhydryl oxidase AoSOX1 had an enhanc-
ing effect on the dough hardening mechanism of ascorbic acid. This was as-
cribed mainly to the production of hydrogen peroxide in the SOX reaction which 
is able to convert the ascorbic acid to the actual improver dehydroascorbic acid. 
In addition, AoSOX1 could possibly oxidise the free glutathione in the dough 
and thus prevent the loss of dough strength caused by the spontaneous reduction 
of the disulfide bonds constituting the dough protein network. Sulfhydryl oxi-
dase AoSOX1 is therefore able to enhance the action of ascorbic acid in wheat 
dough and could potentially be applied in wheat dough baking. 
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1. Introduction 

1.1 Industrial enzymes 

Enzymes are protein molecules responsible for the catalysis of the majority of 
the reactions occurring in living organisms. The wide variety of enzymes availa-
ble in nature provides a rich reservoir of reactions that can be potentially ex-
ploited for industrial purposes. A large number of enzymes are known and each 
catalyses efficiently a specific reaction. Enzymes offer a wide range of ad-
vantages in industrial applications (Figure 1). 

Enzymes can replace harsh 
chemical treatments

Enzymes work under 
mild conditions 

Enzymes catalyse 
reactions with high 

specificity

Enzymes are 
efficient catalysts

Enzymes are 
biodegradable and 

environmentally friendly

Advantages 
offered by 
the use of  
enzymes

Enzymes are natural 
components of food 

raw materials

 

Figure 1. Schematic summary of the advantages offered by the use of enzymes in indus-
trial processes. 
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The use of enzymes can affect both the economical and environmental aspects of 
the application. For example in detergents, enzymes provide a faster and im-
proved cleaning effect at lower temperature and with less water required (Olsen, 
2004). Additionally, enzymes working in similar conditions, e.g. pH and tem-
perature, but catalysing different transformations can be utilised simultaneously 
(Olsen, 2004). The first enzyme commercialised for cleaning purposes was tryp-
sin in 1913, although with limited success (Aunstrup & Andresen, 1972). En-
zymes caught on in the detergent industry only in the 1960s when a more effi-
cient and alkaline tolerant protease was isolated from Bacillus (Aunstrup & An-
dresen, 1972). Various classes of enzymes are nowadays included in detergents, 
including proteases, lipases, amylases and cellulases. 

Due to their high specificity and rate of catalysis, enzymes are not needed in 
large amounts and their action can easily be controlled by changing the process 
conditions, e.g. temperature and pH. The decreased need for chemicals and the 
lower costs associated with energy consumption and waste treatment can be the 
main economical reasons for using enzymes. Finally, the production of enzymes 
in recombinant form, the isolation of more robust enzymes (Zamost et al., 1991) 
or their optimisation for the process by protein engineering have made them 
available at an economically feasible cost. 

It is noteworthy that some enzymes can also work in organic solvents and in a 
wide range of pH and temperatures, for example the production of the antibiotics 
ampicillin and cephalosporin involves the use of an acylase in the presence of 
organic cosolvents (Illanes et al., 2009, Illanes et al., 2004). Enzymes have also 
found application in industrial organic synthesis, in which their regio- and stere-
ospecificity, ensures the resolution of racemic solutions, e.g. production of the 
L-isomer of the amino acids serine and valine, without undesired secondary 
products (Iborra et al., 1992, Chibata et al., 1976). 

1.1.1 Industrial enzymes in food applications 

The use of enzymes in food applications dates back to more than 7000 years ago, 
when the first cheese was produced using the gastric chymosin solution of 
calves. The advantages offered by the use of enzymes have long been exploited 
by the food industry in many fields such as the production of cheese and other 
dairy products, starch processing, brewing, and fruit and wine processing (Table 1). 

Nowadays enzymes are applied to different stages of food production in order 
to modify the raw material, facilitate the processing steps or improve the quality 
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of the final product with respect to colour, aroma, texture or stability (Finkel-
stein & Christopher, 1992). Enzymes can be added directly to the product, as in 
the case of rennet in cheese production (Kumar et al., 2010), or indirectly, by 
using suitable enzyme-producing microbial strains, as in the case of fungi of the 
Penicillium genus in cheese production, e.g. P. roqueforti. 

Table 1. Some examples of enzymes of commercial importance in food applications and 
their main features. 

Enzyme  Classification Organism Mode of action Application Reference 

glucose 
oxidase 

EC 1.1.3.4 Aspergillus niger, 
Penicillium spp. 

production of 
hydrogen 
peroxide and 
gluconic acid 
from glucose  
and oxygen 

baking,  
egg 
processing 

(Bonet et al., 
2006,  
Sisak et al., 
2006) 

trans-
glutaminase 

EC 2.3.2.13 Streptomyces spp., 
Bacillus subtilis 

incorporation  
of amines in 
proteins, 
crosslinking, 
deamidation 

meat, fish, 
dairy, wheat 
and soybean 
products 

(Motoki & 
Seguro, 1998)

fructosyl-
transferase 

EC 2.4.1.9 Aspergillus 
oryzae, Bacillus 
spp. 

fructosyl  
group  
transfer 

production 
of 
sweeteners  

(Nam et al., 
2000, 
Sangeetha  
et al., 2005) 

lipase EC 3.1.1.3 Candida rugosa, 
Aspergillus spp., 
Rhizopus niveus 

hydrolysis of 
triglycerides and 
transesterification 
of lipids 

olive oil, 
aromas, 
cholesterol-
lowering 
additives  

(Meyer, 2010, 
Contesini  
et al., 2010, 
Weber et al., 
2002, Liu  
et al., 2009) 

cellulase endoglucanase 
EC 3.2.1.4 

Trichoderma 
reesei, Aspergillus 
oryzae 

hydrolysis of 
cellulose 

fruit juices 
coffee  

(Kapasakalidis 
et al., 2009, 
Delgado  
et al., 2008, 
Szakacs-
Dobozi et al., 
1988, Ghorai 
et al., 2009) 
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Enzyme  Classification Organism Mode of action Application Reference 

xylanase EC 3.2.1.8 Trichoderma spp., 
Aspergillus spp. 

hydrolysis  
of xylan 

baking juice 
and wine  

(Haros et al., 
2002, Polizeli 
et al., 2005, 
Marron et al., 
2001, Hilhorst 
et al., 2002) 

β-
galactosidase 

EC 3.2.1.23 Streptococcus 
thermophilus, 
Kluyveromyces 
spp, Aspergillus 
spp. 

hydrolysis  
of lactose 

dairy, 
digestive 
supplement  

(Rhimi et al., 
2010, 
O’Connell & 
Walsh, 2007, 
O’Connell & 
Walsh, 2008, 
Husain, 2010)

amylolytic 
enzymes 

α-amylase  
EC 3.2.1.1,  
glucoamylase  
EC 3.2.1.33 

Aspergillus 
oryzae, 
Aspergillus 
awamori, 
Aspergillus niger, 
Rhizopus spp. 

degradation  
of starch 

baking, 
brewing 

(Bamforth, 
2009, Mondal 
& Datta, 
2008) 

protease endopeptidases 
EC 3.4 21-99,  
exopeptidases  
EC 3.4.11-19 

Aspergillus 
oryzae, 
Rhizomucor spp. 

hydrolysis of 
proteins and  
peptides  

cheese,  
beer,  
cookies 

(Kirk, 2002, 
Kennedy & 
Pike, 1981, 
Kara et al., 
2005) 

pectinolytic 
enzymes 

polygalacturonase 

EC 3.2.1.15, 
pectate lyase 

EC 4.2.2.2,  
pectin lyase  

EC 4.2.2.10 

Aspergillus spp, 
Rhizopus spp. 

degradation  
of pectin from  
plant biomass 

fruit juice, 
coffee and  
tea  

(Whitaker,  
et al., 2002, 
Whitaker, 
1984,  
Hoondal  
et al., 2002) 

glucose 
isomerase 

EC 5.3.1.5 Streptomyces spp., 
Bacillus spp., 
Aspergillus  
oryzae 

isomerization  
of  D-glucose  
to D-fructose  
and D-xylose  
to D-xylulose 

high  
fructose  
corn syrup  

(Bhosale  
et al., 1996, 
Bennett & 
Yeager, 2010, 
Asboth & 
Naray-Szabo, 
2000) 

 
Enzymes from almost all EC-classes have found potential application in the food 
industry (Table 1). Oxidoreductases (EC 1) such as hexose oxidases and glucose 
oxidase are used in baking as dough improvers. Members of the transferase class 
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(EC 2) such as fructosyltransferase can be employed in the production of sweet-
eners, and transglutaminase is utilised in the preparation of fish and meat prod-
ucts. The class of hydrolases (EC 3) includes proteases, α-amylases and glu-
coamylases that are used in bread and beer production in order to increase the 
amount of fermentable sugars and peptides and boost yeast fermentation (Table 1). 
Proteases and pectinases are also applied in brewing to clear the cloudiness of 
chilled beer and remove the haze or to improve the yield in juice making, respec-
tively. The class of isomerases (EC 5) is represented by glucose isomerase that is 
used for the production of D-fructose, a sweetener suitable for people with dia-
betes (Asboth & Naray-Szabo, 2000). Recently, L-arabinose isomerase has been 
suggested for application in the production of the sweetener D-tagatose (Rhimi 
et al., In press). 

The addition of enzymes to food raw materials can aim at decreasing the de-
gree of polymerization of the substrates present, e.g. polypeptides and polysac-
charides, or at modifying the food components, as in the case of crosslinking 
enzymes (see next section) or to make a specific conversion, e.g. glucose iso-
merase. 

1.1.2 Enzymes with crosslinking activity in food applications 

The use of crosslinking enzymes represents a novel approach to the improvement 
of the structure and texture of food by increasing the number of covalent bonds 
between its polymeric components, i.e. carbohydrates or proteins (Table 2). 

Crosslinking enzymes such as transglutaminase, tyrosinase, laccase, peroxi-
dase and sulfhydryl oxidase have been investigated in cereal, dairy, meat and 
fish processing (Table 2, for a review see Buchert et al., 2010). The enzyme 
glucose oxidase has also been reported to have crosslinking activity on wheat 
proteins, although not acting directly on proteins but through the production of 
hydrogen peroxide (Rasiah et al., 2005). 

The modification of food proteins via crosslinking affects not only the texture 
of food but also their digestibility (Monogioudi et al., 2011). Crosslinking has 
also been reported to decrease the allergenicity of certain proteins (Tantoush et 
al., 2011, Chung et al., 2004, Stanic et al., 2010, Monogioudi et al., 2011, Ger-
rard & Sutton, 2005, Tan et al., 2011). 
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Table 2. Enzymes with reported protein crosslinking activity and examples of their application. 

Enzyme  Classification Organism  
Mode of 
action 
(target aa) 

Application  References 

sulfhydryl 
oxidase 

EC 1.8.3.3 Aspergillus 
niger, 
Penicillium sp. 
K-6 

formation 
of disulfide 
bonds 
(C) 

baking  (Kusakabe et al., 
1982, Haarasilta 
et al., 1991, 
Haarasilta & 
Vaisanen, 1989) 

laccase  EC 1.10.3.2 Trametes 
hirsuta, 
Polyporus 
pinsitus 

oxidation of 
aromatic 
compounds 
and cysteine
(W, Y, C) 

baking, juice 
and brewing, 
dairy, 
reduction of 
allergenicity  

(Selinheimo  
et al., 2008, 
Whitehurst & 
Van Oort, 2009, 
Faergemand et 
al., 1998, Ercili 
Cura et al., 2009, 
Tantoush et al., 
2011) 

peroxidase EC 1.11.1.7 Coprinus 
cinereus, 
Cochlearia 
armoracia 
(horseradish) 

oxidation  
of aromatic 
compounds
(Y) 

baking, dairy, 
reduction of 
allergenicity 

(Faergemand  
et al., 1998, 
Takasaki et al., 
2005, Matheis & 
Whitaker, 1984, 
Chung  
et al., 2004) 

tyrosinase EC 1.14.18.1 Agaricus 
bisporus, 
Neurospora 
crassa and 
Trichoderma 
reesei 

oxidation of 
phenolic 
compounds
(Y) 

dairy, baking, 
meat, 
reduction of 
allergenicity  

(Lantto et al., 
2007, Onwulata 
& Tomasula, 
2008; 2010, 
Selinheimo et al., 
2007, Stanic  
et al., 2010, 
Selinheimo, 
2008) 

trans-
glutaminase 

EC 2.3.2.13 Streptomyces 
spp. and 
Bacillus 
subtilis 

formation of 
isopeptide 
bonds 
(Q, K) 

dairy, meat 
and cereal 
products  

(Yokoyama et 
al., 2004, Santos 
& Torne, 2009, 
Hamada, 1994) 
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1.1.3 Enzymes for the production of bakery products 

The bakery industry has taken advantage of enzymes to improve the properties 
of the dough and of the final baked product, i.e. dough handling properties, 
bread volume, crumb structure, and shelf life. The most common raw material 
for bakery products is wheat flour, the major components of which are starch 
(70–75%), proteins involved in the formation of the gluten structure (10–15%), 
non-starch polysaccharides (2–3%) and lipids (1.5–2.5%) (Goesaert et al., 2005). 
The quality of wheat-based products is highly dependent on the behaviour of 
these components of flour during the dough preparation and the baking phase 
(Goesaert et al., 2005). 

Exogenous enzymes can be added to modify the flour components and thus 
the rheological properties of dough and bread. The most used enzymes in baking 
belong to the family of hydrolases (EC 3) and are active on the starch, the pro-
teins or the cell wall polysaccharides. For example, polysaccharide-degrading 
enzymes such as α-amylase and pentosanases have been shown to significantly 
improve the volume and the firmness of bread, and have an anti-staling effect 
(Goesaert et al., 2005, Lagrain et al., 2008, Caballero et al., 2007). 

The use of a single enzyme is rarely able to bring about the desired effect on 
bread and therefore a combination of different enzymes is generally used (Cabal-
lero et al., 2007, Caballero et al., 2006). The actions of the different types of 
enzymes used in the preparation of bakery products are summarized in Table 3. 
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Table 3. Enzymes with potential or existing applications in breadmaking, their mode of 
action and some of their effects on dough. 

Enzyme Organism Mode of action Effect Reference 

amylase Aspergillus 
oryzae, 
Bacillus spp. 

degradation of 
starch, produc-
tion of sugars  
for yeast 

improves bread  
volume, softness, 
firmness  

(Goesaert et al., 
2005, Kim et al., 
2006, Cherl-Ho, 
2009) 

hemi-
cellulase 

Trichoderma 
spp., Aspergil-
lus spp., Bacil-
lus spp. 

hydrolysis of 
arabinoxylans  

improves bread  
volume and dough 
strength  

(Dagdelen & 
Gocmen, 2007, 
Morita et al., 1998) 

lipase Aspergillus 
oryzae, 
Aspergillus 
niger 

hydrolysis of 
triglycerides 

increases dough 
stability, bread  
volume, texture  
and shelf-life 

(Whitehurst & Van 
Oort, 2009, Gélinas 
et al., 1998) 

tyrosinase Trichodserma 
reesei, 
Agaricus  
bisporus 

oxidation of 
small phenolic 
compounds, 
crosslinking of 
gluten proteins 

strengthens the 
dough, softens the 
bread crumb and 
increases the bread 
volume  

(Selinheimo et al., 
2007, Takasaki  
et al., 2001) 

laccase Trametes  
hirsuta 

probable cross-
linking of water-
extractable arab-
inoxylans 

increases dough 
strength and firmness 
of oat bread, reduces 
dough extensibility  

(Selinheimo et al., 
2007, Flander  
et al., 2008) 

glucose 
oxidase 

Aspergillus 
niger, 
Aspergillus 
oryzae 

formation  
of protein cross-
links and oxida-
tive gelation of 
pentosans 

increases dough 
strength and the 
bread specific  
volume, decreases 
crumb hardness  

(Rosell et al., 2003, 
Bonet et al., 2006, 
Vemulapalli et al., 
1998, Hanft & 
Koehler, 2006) 

lipoxy-
genase 

Glycine max 
(soybean) 

not clear, oxida-
tion of proteins 
by the lipid oxi-
dation products 

whitens bread  
colour, improves 
dough rheology and 
bread volume 

(Junqueira et al., 
2007, Tsen &  
Hlynka, 1963)  

sulfhydryl 
oxidase 

Aspergillus 
niger 

oxidation of 
glutathione, 
possible  
formation of 
crosslinked  
gluten fractions 

increases bread  
volume and  
strengthens the 
dough if combined  
to glucose oxidase  
or hemicellulase 

(Haarasilta & Vai-
sanen, 1989, 
Kaufman &  
Fennema, 1987, 
Souppe, 2000) 

protease Aspergillus 
oryzae, 
Aspergillus 
niger 

hydrolysis of 
proteins 

enhances biscuit 
flavour and colour, 
decreases dough-
strength 

(Kara et al., 2005, 
Mathewson, 2000) 
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The baking properties are also affected by the endogenous enzymes of the flour, 
i.e. α-amylases, β-amylases, proteases, peptidases, hemicellulases and oxidases, 
even if present at low concentrations (Sproessler, 1993). The endogenous en-
zymes of the flour also play a key role in the improving effect of exogenous 
chemical additives, as in the case of ascorbic acid (Every, 1999a, Every, 1999b). 
Ascorbic acid (vitamin C) is currently used as a dough improver. Potassium 
bromate was previously widely used but was withdrawn due to its possible car-
cinogenic effect (Kurokawa et al., 1990). The action of ascorbic acid mainly 
relies on the enzymatic activity of two endogenous enzymes present in the flour, 
i.e. ascorbic acid oxidase and glutathione dehydrogenase (Grosch & Wieser, 
1999). At first, ascorbic acid is oxidised to dehydroascorbic acid either non-
enzymatically, by the action of iron and copper ions, or by the endogenous 
ascorbic acid oxidase. Subsequently, the enzyme glutathione dehydrogenase has 
been shown to use the dehydroascorbic acid as electron acceptor in the oxidation 
of the reduced glutathione present in the flour (Walther & Grosch, 1987). The 
level of reduced glutathione available to attack the inter-glutenin disulfide bonds 
and weaken the gluten structure is thus decreased. 

Enzymes and additives are generally utilised not alone but in different combi-
nations in order to tailor their improving effect on the characteristics of the flour 
to be utilised and to guarantee constant quality of the final product (Joye et al., 
2009). 

1.2 Tyrosinase and catechol oxidase 

Tyrosinase (EC 1.14.18.1) and catechol oxidase (EC 1.10.3.1) are structurally 
similar enzymes belonging to the type-3 copper proteins, a group also including 
the oxygen carrier protein haemocyanin (Halaouli et al., 2006). 

Tyrosinases catalyse the o-hydroxylation of monophenolic (monophenolase 
activity, Figure 2 reaction 1) and diphenolic compounds (diphenolase activity or 
catechol oxidase activity, Figure 2 reaction 2) to the corresponding o-quinones 
and concomitantly reduce molecular oxygen to water. Enzymes catalysing only 
the second reaction (Figure 2 reaction 2) are called catechol oxidases and only 
the catalytic activity allows their distinction from tyrosinases. 
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Reaction 1
(tyrosinase)

L-tyrosine L-DOPA                                                            L-dopaquinone

H2O½O2 ½O2

Reaction 2
(tyrosinase and

catechol oxidase)  

Figure 2. Reactions catalysed by tyrosinase (reactions 1 and 2) and catechol oxidase 
(reaction 2). 

The term ‘polyphenol oxidase’ is sometimes used to designate tyrosinases and 
catechol oxidases, as well as laccases, without distinction between these en-
zymes (Marusek et al., 2006, Flurkey et al., 2008, Gerdemann et al., 2002, 
Flurkey & Inlow, 2008). This is due to the overlap of their substrate specificities. 
For example, some plant catechol oxidases have a weak monooxygenase activity 
although they do not accept tyrosine as a substrate (Gerdemann et al., 2002, 
Mayer & Harel, 1979, Walker & Ferrar, 1998). 

Tyrosinases have been investigated in many applications, e.g. in the produc-
tion of plant-derived food products such as fermented tea leaves, cocoa, and 
raisins (Seo et al., 2003), in baking (Selinheimo et al., 2008, Lantto et al., 2007), 
in dairy products (Ercili Cura et al., 2010) and in meat processing (Lantto et al., 
2007). Furthermore, tyrosinases have been used for the grafting of silk proteins 
onto chitosan (Anghileri et al., 2007, Freddi et al., 2006) and for the determina-
tion of phenols in wine (Jewell & Ebeler, 2001). 

1.2.1 Distribution and physiological role 

Tyrosinases and catechol oxidases are widely distributed enzymes and have been 
isolated from a wide range of organisms from mammals to bacteria (Mayer and 
Harel, 1979, Mayer, 2006, van Gelder et al., 1997, Lerch, 1983, Halaouli et al., 
2006, Kwon et al., 1987, Claus & Decker, 2006). Representative tyrosinases and 
catechol oxidases identified from various sources are listed in Table 4. 
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Table 4. Examples of tyrosinases (TYR), catechol oxidases (CO) and polyphenol oxidas-
es (PPO) characterised from different species of various organisms. 

Source Enzyme 
Identifier, 
length (aa) 

Organism Features References 

bacterium TYR Q83WS2, 
273  

Streptomyces 
castaneoglo-
bisporus 

crystal structure in 
complex with caddie 
protein ORF378 
(PDB: 1WX5)  

(Matoba et al., 
2006, Kohashi  
et al., 2004) 

bacterium TYR NP659960, 
609  

Rhizobium 
etli  

involved in resistance 
against ROS and 
phenolic compounds 
of plant defensive 
response  

(Pinero et al., 2007, 
Cabrera-Valladares 
et al., 2006) 

bacterium TYR ZP_0292521
4, 518  

Verrucomicro
bium 
spinosum 

the first bacterial 
tyrosinase with a  
C-terminal domain  

(Fairhead & 
Thony-Meyer, 
2010) 

fungus TYR CAL90884, 
561  

Trichoderma 
reesei 

the first secreted 
fungal tyrosinase,  
C-terminally 
processed, has 
crosslinking activity  

(Selinheimo et al., 
2006, Mattinen  
et al., 2008) 

fungus TYR C11562, 
556; 
C59432,  
568  

Agaricus 
bisporus 
(button 
mushroom) 

isolated from fruiting 
bodies, C-terminally 
processed  

(Wichers et al., 
1996, Wichers et 
al., 2003) 

plant TYR B21677,  
593  

Malus x 
domestica 
(apple) 

solubilized and 
proteolyzed during 
ripening and storage  

(Haruta et al., 
1998, Murata et al., 
1997) 

plant PPO  P93622,  
607  

Vitis vinifera 
(grapes) 

catechol oxidase 
activity, crystal 
structure available 
(PDB: 2P3X1),  

(Virador et al., 
2010) 

plant CO Q9ZP19, 
496  

Ipomoea 
batatas 
(sweet 
potato) 

involved in wound 
response, crystal 
structure available 
(PDB: 1BT1),  

(Klabunde et al., 
1998, Eicken et al., 
1998, Gerdemann 
et al., 2001) 

animal TYR AAB60319, 
548  

Homo 
sapiens 

involved in albinism, 
vitiligo, melanoma  

(Kwon et al., 1987, 
Jin et al., 2010, 
Chintamaneni  
et al., 1991) 
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Tyrosinases have been reported as both intracellular and secreted enzymes. Ex-
amples of intracellular enzymes are those involved in melanogenesis, such as the 
mammalian (Jimbow et al., 2000), the two fungal enzymes from Agaricus bispo-
rus (Wichers et al., 1996, Wichers et al., 2003) and the enzyme from apple that 
is localised in the plastids (Murata et al., 1997). The bacterial tyrosinases from 
Streptomyces species (Claus & Decker, 2006) and the fungal enzyme from 
Trichoderma reesei (Selinheimo et al., 2006) are secreted (Table 4). 

The physiological role of tyrosinases is related to melanin biosynthesis, espe-
cially in fungi (Schallreuter et al., 2008, Olivares & Solano, 2009). In fungi, 
melanins are involved in defence mechanisms against stress factors such as UV 
or gamma radiation, free radicals, dehydration and extreme temperatures (Hala-
ouli et al., 2006, Riley, 2003, Butler & Day, 1998, Nosanchuk & Casadevall, 
2003, Bell & Wheeler, 1986). The stability of fungal spores also benefits from 
the protective role of melanins (Mayer & Harel, 1979). In addition, tyrosinases 
are associated with wound healing, with the immune response in plants (van 
Gelder et al., 1997, Cerenius & Söderhäll, 2004, Muller et al., 2004) and with 
sclerotization of the cuticle in insects (Terwilliger, 1999, Marmaras et al., 1996). 
In humans, tyrosinase is involved in the pigmentation in melanocytes (Jin et al., 
2010, Schallreuter et al., 2011). Tyrosinase has also been tested as a marker in 
melanoma patients (Gradilone et al., 2010, Schweikardt et al., 2007) and as a 
target for the activation of pro-drugs (Jawaid et al., 2009). 

1.2.2 Biochemical and molecular properties 

Tyrosinases are typically composed of three main domains comprising an N-
terminal domain, a central catalytic domain, containing the two copper binding 
sites (CuA and CuB) and a C-terminal domain connected to the catalytic domain 
by an unstructured linker region (Figure 3). 

Tyrosinases are generally described as monomeric enzymes. The secreted 
tyrosinases identified from Streptomyces species are monomeric (Claus & Deck-
er, 2006), whereas the recently resolved structure of the tyrosinase from Bacillus 
megaterium revealed a dimeric quaternary structure (Sendovski et al., 2011). 
Evidence for a multimeric structure is available for the tyrosinase from 
A. bisporus that was reported to be a tetramer of 120 kDa, although this has re-
cently been debated (Flurkey & Inlow, 2008, Kim & Uyama, 2005). 
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V. vinifera PPO*

I. batatas CO*

A. bisporus TYR

T. reesei TYR

S. castaneoglobisporus TYR*

B. megaterium TYR*

V. spinosum TYR

Human TYR

N- -C

Central domain
~ 45 kDa ~ 20 kDa

CuA CuB

proteolytic 
cleavage site

Transmembrane regionSignal sequence 
or transit peptide

ORF378

Plant

Fungi

Bacteria

Animal

Linker region  

Figure 3. Domain organisation of representative tyrosinases and catechol oxidases from 
different organisms.The N-terminal domain is in blue and diagonal lines indicate the pres-
ence of a signal sequence or transit peptide. The central domain is in orange and vertical 
lines indicate the CuA and CuB sites. The C-terminal domain is in green and a checkered 
box indicates the presence of a transmembrane region. An arrow indicates the cleavage 
site for the release of the C-terminal domain. The caddie protein ORF378 co-crystallised 
with the TYR from S. castaneoglobisporus is boxed. Proteins for which the three-
dimensional structure is available are marked by an asterisk (for references see Table 4). 
The molecular masses are approximate (Flurkey & Inlow, 2008) and the relative sizes are 
not to scale. 

Tyrosinases and catechol oxidases isolated in an active form generally have a 
molecular weight around 40 kDa, whereas enzymes in the inactive latent form 
generally have a MW about 60 kDa (Flurkey & Inlow, 2008). The difference in 
molecular weight has been ascribed to N- or C-terminal proteolytic processing 
during activation and to the release of the C-terminal domain (Marusek et al., 
2006, Flurkey & Inlow, 2008). 

The role of the C-terminal domain of tyrosinases and catechol oxidases has 
long been debated and often supposed to be essential for copper incorporation 
and correct folding. The first three-dimensional structure of a tyrosinase was that 
of the enzyme isolated from S. castaneoglobisporus (Matoba et al., 2006). This 
enzyme lacks the C-terminal domain and could be produced in active from only 
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when co-expressed with a second protein of the same operon that favoured the 
incorporation of copper (Matoba et al., 2006); a similar role was thus suggested 
for the C-terminal domain of other tyrosinases. In contrast, the tyrosinases from 
B. megaterium and Rhizobium etli, both lacking the C-terminal domain, could be 
produced in an active form without the assistance of a caddie protein (Kohashi et 
al., 2004, Cabrera-Valladares et al., 2006, Sendovski et al., 2011). The lack of 
the C-terminal domain is not common to all bacterial tyrosinases and Verru-
comicrobium spinosum tyrosinase has been reported to contain the C-terminal 
domain (Fairhead & Thony-Meyer, 2010). 

The type-3 copper protein haemocyanin from Octopus dofleini is structural-
ly similar to the catechol oxidase from Ipomoea batatas, except for the presence 
of a C-terminal domain that is absent in the active crystallised form of the cate-
chol oxidase (Gerdemann et al., 2002). In haemocyanins such as that from 
O. dofleini, the C-terminal domain covers the active site, preventing the binding of 
substrate molecules and any catalytic activity but allowing the binding of molecu-
lar oxygen (Cuff et al., 1998). Haemocyanins have been reported to acquire poly-
phenol oxidase activity after proteolytic treatment (Decker & Tuczek, 2000). 

Some tyrosinases have been isolated in an inactive form that can undergo 
activation upon loosening of their structure by controlled denaturation, e.g. by 
temperature (Gest & Horowitz, 1958), sodium dodecyl sulphate or proteases 
(Wan et al., 2009, Wittenberg & Triplett, 1985, Cabanes et al., 2007, Gandia-
Herrero et al., 2005b, Gandia-Herrero et al., 2005a, Gandia-Herrero et al., 2004, 
Lai et al., 2005, Laveda et al., 2001). Tyrosinases characterised both in the latent 
and active form include those from A. bisporus (Flurkey & Inlow, 2008), Vicia 
faba (Robinson & Dry, 1992, Flurkey, 1989) and Vitis vinifera (Rathjen & Rob-
inson, 1992). 

Tyrosinases and catechol oxidases are active on a wide range of phenolic sub-
strates (Table 5). Tyrosinases and catechol oxidases oxidise diphenolic com-
pounds such as D/L-DOPA, catechol, dopamine, caffeic acid and ortho-diphenols, 
whereas monophenolic compounds such as D/L-tyrosine, phenol, guaiacol, p-
coumaric acid and tyramine, can be substrates only for tyrosinases (Table 5). 
The reaction products are ortho-quinones that may further react non-enzymatically 
towards the formation of melanins (Prota, 1988).  
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Table 5. Biochemical and molecular properties of some tyrosinases and catechol oxidas-
es from different organisms. 

Source Enzyme Organism Substrate References 

bacterium TYR Streptomyces 
castaneoglob
isporus 

Monophenols: L-tyrosine. 
Diphenols: L-DOPA. 
Others: NR. 

(Matoba et al., 
2006, Kohashi et 
al., 2004, Ikeda 
et al., 1996) 

bacterium TYR Rhizobium 
etli  

Monophenols: L-tyrosine, n-acetyl-
L-tyrosine. Diphenols: L-DOPA, 
catechol, caffeic acid. Others: NR. 

(Cabrera-
Valladares et al., 
2006) 

bacterium TYR Verruco-
microbium 
spinosum  

Monophenols: L-tyrosine. 
Diphenols: L-DOPA. 
Others: NR. 

(Fairhead, 
Thony-Meyer, 
2010) 

fungus TYR Trichoderma 
reesei 

Monophenols : tyramine, phenol, 
L-tyrosine, p-cresol, p-tyrosol,  
p-coumaric acid. Diphenols:  
L-DOPA, caffeic acid, catechol. 
Others: pyrogallol, caseins, (−)-
epicatechin, (+)-catechin, gliadins, 
peptides. 

(Selinheimo  
et al., 2009, 
Selinheimo  
et al., 2006) 

fungus TYR Agaricus 
bisporus 
(button 
mushroom) 

Monophenols L-tyrosine, phenol, 
p-cresol, tyramine, p-tyrosol. 
Diphenols: D/L-DOPA, caffeic 
acid, catechol. Others: ellagic acid, 
(−)-epicatechin, (+)-catechin, 
pyrogallol, peptides 

(Selinheimo, 
2008, 
Selinheimo  
et al., 2009, 
Selinheimo  
et al., 2007) 

plant TYR Malus x 
domestica 
(apple) 

Monophenols: L-tyrosine, p-cresol, 
tyramine, p-tyrosol. Diphenols:  
L-DOPA, catechol, methylcatechol, 
caffeic acid. Others: chlorogenic 
acid, (+)-catechin, (−)-epicatechin, 
pyrogallol. 

(Selinheimo  
et al., 2009, 
Janovitz-Klapp 
et al., 1989, 
Selinheimo  
et al., 2007) 

plant PPO Vitis vinifera 
(grapes) 

Monophenols: NR. Diphenols: 
catechol, 4-tert-butylcatechol,  
4-methylcatechol. Others: NR. 

(Virador et al., 
2010, Sanchez-
Ferrer et al.,  
1988) 

plant CO Ipomoea 
batatas 
(sweet 
potato) 

Monophenols: NR. Diphenols: 
catechol, caffeic acid,  
4-methylcatechol, L-DOPA. 
Others: NR. 

(Eicken et al., 
1998) 

animal TYR Homo 
sapiens 

Monophenols :L-tyrosine. 
Diphenols: L-DOPA.Others: NR. 

(Takara et al., 
2008, Okombi  
et al., 2006) 

Abbreviations: NR, not reported 
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The tyrosinases from T. reesei and A. bisporus are also active on tyrosine-
containing peptides and moreover the former enzyme is able to polymerize ran-
dom coil proteins such as α- and β-caseins from milk and gliadin from wheat 
(Selinheimo, 2008, Mattinen et al., 2008, Monogioudi et al., 2009). 

The crosslinking activity of tyrosinases is due to the non-enzymatic reaction 
of the oxidised products of tyrosine and other substrate phenols with lysyl, tyro-
syl, cysteinyl and histidinyl residues in proteins. As a result, di-tyrosine, tyro-
sine-cysteine and tyrosine-lysine couplings are produced (Bittner, 2006, Ito & 
Prota, 1977, Ito et al., 1984, Land et al., 2004, McDowell et al., 1999). Tyrosi-
nases can crosslink peptides and proteins in milk, meat and cereals (Lantto et al., 
2007, Selinheimo et al., 2007, Ercili Cura et al., 2010, Freddi et al., 2006, Mat-
tinen et al., 2008, Aberg et al., 2004, Halaouli et al., 2005). 

Tyrosinases and catechol oxidases with various physico-chemical features 
have been reported from various organisms. These enzymes generally have a pH 
optimum in the neutral or slightly acidic range (Figure 4). The tyrosinase from 
T. reesei and the catechol oxidase from I. batatas have a basic pH optimua of 9 
and 8, respectively (Selinheimo et al., 2006, Eicken et al., 1998). 

3 4        5        6        7         8       9        10      12     13

Optimum pH

S. castaneoglobisporus TYR
(Kohashi et al., 2004; Ikeda et al.,1996)
S. castaneoglobisporus TYR
(Kohashi et al., 2004; Ikeda et al.,1996)

R. etli TYR (Cabrera-Valladares et al., 2006)

V. spinosum  TYR (Fairhead et al., 2010)

M. domestica TYR (Janovitz-Klapp et al., 1989)

I. batatas CO (Eicken et al., 1998)

T. reesei TYR
(Selinheimo et al., 2006)

A. bisporus  TYR (Wichers et al., 2003)

N. crassa TYR (Horowitz et al., 1970)

V. vinifera PPO (Sanchez-Ferrer et al., 1988)

H. sapiens TYR (Kong et al., 2000)

Plant

Fungi

Bacteria

Animal

B. megaterium  TYR
(Shuster and Fishman, 2009)

 

Figure 4. Optimum pH values of catechol oxidases and tyrosinases from different sources. 
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Generally, tyrosinases are assayed for phenol oxidation activity at a temperature 
of 25–30°C. However, tyrosinases and catechol oxidases with significantly high-
er temperature optima have also been reported (Figure 5). For example, tyrosi-
nases with optima at 65°C and 75°C have been isolated from Pycnoporus san-
guineus and Bacillus thuringiensis, respectively. 

10      20      30     40       50      60      70      80     90

Optimum temperature (˚C)

R. etli TYR 
(Cabrera-Valladares et al., 2006)

M. domestica TYR (Janovitz-Klapp et al., 1989)

T. reesei TYR (Selinheimo et al., 2006)

A. bisporus  TYR (Wichers et al., 2003)

V. vinifera PPO
(Sanchez-Ferrer et al., 1988)

H. sapiens TYR (Kong et al., 2000)

Plant

Fungi

Bacteria

Animal

S. castaneoglobisporus TYR
(Kohashi et al., 2004; Ikeda et al.,1996)

B. megaterium TYR
(Shuster and Fishman, 2009)

S. castaneoglobisporus TYR
(Kohashi et al., 2004; Ikeda et al.,1996)

B. megaterium TYR
(Shuster and Fishman, 2009)

B. thuringiensis TYR (Liu et al., 2004)

P. sanguineus TYR (Halaouli et al. 2005)P. sanguineus TYR (Halaouli et al. 2005)

 

Figure 5. Optimum temperature of representative tyrosinases and catechol oxidases from 
different sources. 

1.2.3 Sequence features 

Sequence analysis studies and the available three-dimensional structures of type-3 
copper proteins have allowed identification of the key primary structure features 
necessary for the correct folding and activity of tyrosinases. 

A thioether bridge found in the proximity of the cofactor binding site has been 
proposed to confer rigidity to the structure (Matoba et al., 2006, Decker et al., 
2006). This link has been detected between a cysteine residue (underlined in 
Table 6 and shown in Figure 6) and the second histidine residue of the CuA site 
in the haemocyanin from Octopus dofloeini, the tyrosinase from Neurospora 
crassa and the catechol oxidase from Ipomoea batatas (Klabunde et al., 1998, 
Cuff et al., 1998, Merkel et al., 2005, Lerch, 1982). 
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Figure 6. Ribbon representation of the three-dimensional structure of the catechol oxi-
dase from Ipomoea batatas highlighting α-helices in blue, β-strands in red and disulfide 
bonds in yellow. In the inset, the red atom between the two copper binding sites is proba-
bly a hydroxide ion from the solvent (modified from Klabunde et al., 1998). 

The main sequence feature of type-3 copper proteins such as tyrosinases and 
catechol oxidases (Decker & Tuczek, 2000) is the presence of two groups of 
three histidines in a conserved motif; these residues are involved in the binding 
of the two copper ion cofactors at the CuA and CuB sites (Decker, 2006) (Figure 6, 
inset). A summary of these features and the corresponding residues in the cate-
chol oxidase from Ipomoea batatas is presented in Table 6. 

Flurkey and co-authors (Flurkey & Inlow, 2008) identified in type-3 copper 
proteins the motifs marking the central globular domain left after N- and C-
terminal processing. Their study suggested a key role for a conserved N-terminal 
arginine residue and for the C-terminal tyrosine motif (Table 6). These land-
marks interact with each other, thus joining the N-terminal and the C-terminal 
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ends of the protein, and are located in a short β-strand both in O. dofleini haemo-
cyanin and Ipomoea batatas catechol oxidase (Marusek et al., 2006, Flurkey & 
Inlow, 2008). 

A closer look at the catalytic centre of the three-dimensional structures of 
type-3 copper proteins identified residues that could be involved in the determi-
nation of the different substrate specificities of tyrosinases and catechol oxidas-
es. In tyrosinases, monophenolic compounds are docked to the CuA site and in 
the catechol oxidase from Ipomoea batatas the space surrounding the CuA is 
occupied by a phenylalanine residue (F261, gate residue, Table 6). In haemocya-
nins the active site is completely occupied by a leucine or a phenylalanine in the 
protein from O. dofleini (L2830) and Limulu polyphemus (F49), respectively. 

Table 6. Key conserved residues characteristic of type-3 copper proteins such as tyrosi-
nases and catechol oxidases. 

Sequence motif 
Position in 
Ipomoea batatas CO 

Function References 

N-terminal region 

R R49 
interacts with the 
tyrosine motif 

(Marusek et al., 2006, 
Flurkey & Inlow, 2008) 

Central region 
H1A-X(n)-C-X(n)-
H2A-X(8)-H3A 

H88-X(3)-C92-X(16)-
H109-X8-H118 

CuA binding  
site 

(Merkel et al., 2005, 
García-Borrón & Solano, 
2002) 

H1B-X(3)-H2B-X(n)-
H3B 

H240-X(3)-H244- 
X(29)-H274 

CuB binding  
site 

(Merkel et al., 2005, 
García-Borrón & Solano, 
2002) 

HA3-X(n)-B-P---
(D/N)- and HB3-
X(n)G-Y-X-Y 

H118-X(21)-L140- 
P-F-W-N-W145 and 
H247-X(55)-G330- 
Y-K-Y333 

necessary for  
the globular 
structure 

(García-Borrón & 
Solano, 2002) 

F or L F261 gate residue (Eicken et al., 1998) 
RHA3+1, EHA3+8,  
DHB3-7, DHB3+4,  
BHB3+3, BHB3+6 

R119, E126, D267,  
D278, V277, M280 

possibly necessary 
for the folding  

(García-Borrón & 
Solano, 2002) 

HA1-7, FHA3-4,  
HA3-1, H3+3,  
LHA3+4, HA3+7,  
FHB3-4, HHB3-1, HB3+7,  

F81, F114, F117,  
Y121, L122, Y125,  
F270, H273, W281  

aromatic shell 
around CuA  
and CuB  

(García-Borrón & 
Solano, 2002) 

C-terminal region 
Y/F-X-Y orY-X-Y/F Y331-K-Y333 tyrosine motif (Marusek et al., 2006) 
Abbreviations: X, any residue, , aromatic residue; B, hydrophobic residue. 
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1.3 Sulfhydryl oxidase 

Sulfhydryl oxidases (glutathione oxidase, EC 1.8.3.3) are enzymes catalysing the 
oxidation of thiol groups to disulfide bonds with the reduction of one molecule 
of oxygen to hydrogen peroxide (Figure 7). The classification of these enzymes 
is not well established and thiol oxidases (EC. 1.8.3.2) are also sometimes de-
nominated sulfhydryl oxidases although their reaction produces water (Neufeld 
et al., 1958, Aurbach & Jakoby, 1962). Characteristic of the active site of thi-
ol:disulfide oxidoreductases such as sulfhydryl oxidases is a reactive di-cysteine 
C-X-X-C motif, in which X is any amino acid. 

 

Figure 7. Oxidation of glutathione catalysed by sulfhydryl oxidase (EC 1.8.3.3). 

Typical substrates for sulfhydryl oxidases are small thiol compounds, such as 
cysteine, dithiothreitiol and β-mercaptoethanol, and cysteine-containing pep-
tides. Sulfhydryl oxidases are generally flavoenzymes, binding one molecule of 
FAD per subunit. Metal-dependent sulfhydryl oxidases have also been reported 
but the presence of metal ions has recently been attributed to adventitious bind-
ing (Brohawn et al., 2003). Whereas dithiothreitiol is a product of chemical syn-
thesis (Evans et al., 1949, Cleland, 1964), glutathione is the most abundant small 
thiol compound produced in the cell (Forman et al., 2009). In the cell, glutathi-
one is found in the cytoplasm in a 1–10 mM concentration (Meister, 1988). Glu-
tathione at high concentration can become toxic and in organisms such as yeast 
and fungi a specific glutathione transporter is responsible for its secretion. Gluta-
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thione is also secreted, mainly in the reduced form (Meister, 1988). The presence 
of surfactants and a low pH value of 3.5 induce the fungus S. cerevisiae to acti-
vate the secretion of glutathione (Perrone et al., 2005). Extracellular glutathione 
plays a protective role against reactive oxygen species and in humans low levels 
of glutathione are associated with tissue inflammation for example in cystic fi-
brosis patients (Winterbourn & Brennan, 1997, Kelly, 1999, Roum et al., 1993). 
Secreted glutathione has been reported to constitute a source of cysteines for 
mouse fibroblasts (Hanigan & Ricketts, 1993) and a defence mechanism in fungi 
for the chelation of metals such as cadmium and nickel (Joho et al., 1995, Cour-
bot et al., 2004). 

1.3.1 Distribution and physiological role 

Enzymes with sulfhydryl oxidase activity have been reported both intracellular-
rly and in secreted form from bacterial, viral, fungal, plant and animal sources 
(Table 7). 

Intracellular sulfhydryl oxidases of the Ero1 and Erv families are localised in 
the endoplasmic reticulum or mitochondrial intermembrane space and are in-
volved in the oxidative folding of proteins. They are flavin-dependent and pos-
sess a di-cysteine motif either in the C- or N-terminal region, in addition to the 
central di-cysteine motif at the catalytic site (Fass, 2008). Multi-domain sulfhy-
dryl oxidases have also been described and belong to the QSOX family. These 
enzymes comprise a thioredoxin and an Erv-type domain and can be involved in 
the intracellular oxidative folding of proteins or are secreted (Table 7). 

Secreted sulfhydryl oxidases comprising one single domain have also been re-
ported from fungi, but they do not share significant similarity with the other 
reported enzymes of the quiescin-sulfhydryl oxidase (QSOX) and Erv-families. 
They are more related to pyridine nucleotide–disulfide oxidoreductases (Thorpe 
et al., 2002, Hoober, 1999). 
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Table 7. Representative sulfhydryl oxidases from the literature, their localisation and 
possible physiological role. 

Source Enzyme Organism Location Physiol. role References 

virus E10R Vaccinia virus cytosol oxidative 
folding of 
virion 
proteins  

(Senkevich  
et al., 2000) 

bacterium FAD-dependent 
pyridine 
nucleotide-
disulfide 
oxidoreductase 

Chromobacterium 
violaceum 

cytoplasm biosynthesis 
of the 
anticancer 
agent FK228 

(Wang et al., 
2009, Cheng  
et al., 2007) 

fungus GSH oxidase Fusarium spp. extracellular NR  (Kusakabe  
et al., 1983) 

fungus SOX Aspergillus niger extracellular NR  (de la Motte 
&Wagner, 
1987, Vignaud 
et al., 2002, 
Hammer  
et al., 1990) 

fungus thiol oxidases 
eroA and ervA 

Aspergillus niger ER oxidative 
protein 
folding  

(Harvey et al.,  
2010) 

fungus GSH oxidase Penicillium sp.  
K-6-5 

extracellular NR  (Kusakabe  
et al., 1982) 

fungus Erv1 Sacchar-myces 
cerevisiae 

IMS oxidative 
protein 
folding  

(Bien et al., 
2010, Ang & 
Lu, 2009, 
Lange, 2001, 
Lee, 2000) 

fungus Erv2 Saccharomyces 
cerevisiae  

ER oxidative 
protein 
folding  

(Wang et al., 
2007, Vala  
et al., 2005, 
Gross et al., 
2002, Gerber 
et al., 2001) 
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Source Enzyme Organism Location Physiol. role References 

fungus Ero1 Saccharomyces 
cerevisiae  

ER oxidative 
protein 
folding  

(Vitu et al., 
2010, Gross  
et al., 2004, 
Frand  & 
Kaiser, 1999, 
Hiniker & 
Bardwell, 
2004) 

plant Erv1 Arabidopsis 
thaliana 

IMS promotes the 
import and 
oxidative 
folding of 
proteins 

(Allen et al., 
2005) 

animal QSOX Rattus norvegicus extracellular 
(seminal 
vesicle) 

NR  (Ostrowski & 
Kistler, 1980, 
Ostrowski  
et al., 1979) 

animal QSOX Rattus norvegicus extracellular 
(skin) 

sulfhydryl 
oxidation of 
proteins of 
epidermis  

(Matsuba  
et al., 2002, 
Hashimoto  
et al., 2001, 
Hashimoto  
et al., 2000) 

animal QSOX Homo sapiens Golgi 
apparatus 

oxidative 
protein 
folding  

(Chakravarthi 
et al., 2007, 
Heckler et al., 
2008) 

animal QSOX Bos taurus extracellular 
(milk) 

oxidative 
protein 
folding  

(Jaje et al., 
2007, Zanata 
et al., 2005) 

animal QSOX Gallus gallus extracellular 
(egg) 

protein 
disulfide 
bond 
formation  

(Thorpe et al., 
2002, Hoober 
et al., 1996, 
Hoober et al., 
1999) 

Abbreviations: ER, endoplasmic reticulum, IMS, mitochondiral intermembrane space. 

 
No clear role has yet been established for extracellular sulfhydryl oxidases. 
However, sulfhydryl oxidases have been suggested to be involved in the matura-
tion of proteins along the secretory pathway (Tury et al., 2006) and in the for-
mation of the extracellular matrix (Hoober, 1999, Tury et al., 2006). In addition, 
the production of hydrogen peroxide by sulfhydryl oxidases could have antimi-
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crobial functions (Ostrowski & Kistler, 1980). Moreover, sulfhydryl oxidases 
might be involved in the synthesis of bioactive compounds such as non-
ribosomal peptides (Wang et al., 2009). 

1.3.2 Biochemical and molecular properties 

Sulfhydryl oxidases have been reported from various sources, and different cel-
lular compartments and secreted sulfhydryl oxidases such as that from A. niger 
(de la Motte & Wagner, 1987) have also been isolated. Few secreted sulfhydryl 
oxidases have been reported and thus the knowledge of their biochemical fea-
tures, optimal activity conditions and physiological roles is rather limited. The 
most studied secreted sulfhydryl oxidases (Table 8) are the enzymes from Peni-
cillium spp. and from Aspergillus niger (Kusakabe et al., 1982, de la Motte & 
Wagner, 1987). 

Despite the evident similarities between the sulfhydryl oxidases that are se-
creted and the well-characterised enzymes of the QSOX family, e.g. both are 
secreted FAD-dependent and catalyse the oxidation of thiols, they have been 
reported to have a distinct evolutionary origin (Hoober, 1999). Moreover, the 
QSOX enzyme from chicken egg prefers reduced proteins as substrates whereas 
the fungal enzyme from A. niger (de la Motte & Wagner, 1987) is preferably 
active on small thiol compounds. The secreted fungal enzyme has a molecular 
weight of 53 kDa (de la Motte & Wagner, 1987) whereas enzymes belonging to 
the quiescin-sulfhydryl oxidase group (QSOX) have higher molecular weight 
around 80 kDa (Hoober, 1999) and are composed of two domains, e.g. a thiore-
doxin and an domain with structural similarities to ERV/ALR proteins. 

The secreted fungal sulfhydryl oxidases reported in the literature are mainly 
active on small thiol compounds such as dithiothreitol, whereas the enzymes 
isolated from chicken egg and bovine milk also exhibit activity on peptides and 
protein-associated sulfhydryl groups (Table 8). The optimum pH conditions for 
the activity of these secreted sulfhydryl oxidases is in the neutral range, except 
for the enzyme from A. niger (Table 8). 
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Table 8. Secreted flavin-dependent sulfhydryl oxidases reported in the literature and their 
physico-chemical characteristics. 

Organism Enzyme  
Biochemical features 

Reference MW 
(kDa) 

pH 
optimum

Substrates 

Aspergillus 
niger  

SOX  53 
(dimer) 

5.0–5.5 DTT, GSH, cysteine, 
homocysteine,  
β-mercaptoethanol, reduced 
proteins (ribonuclease A), 
peptides (CG, EG) 

(de la Motte & 
Wagner, 1987, 
Vignaud et al., 
2002) 

Bos taurus 
(bovine 
milk) 

QSOX  62 7.5 DTT, D/L-cysteine,  
N-acetyl-L-cysteine, 
cysteamine 

(Jaje et al., 
2007, 
Sliwkowski  
et al., 1984) 

Gallus 
gallus 
(egg white) 

QSOX  80 
(dimer) 

7.0–8.0 GSH, DTT, cysteine,  
β-mercaptoethanol, proteins 
(ribonuclease A, lysozyme, 
riboflavin-binding protein, 
ovalbumin, aldolase, 
pyruvate kinase, insulin  
A and B chains), peptides  
(N-acetyl-EAQCGTS) 

(Hoober et al., 
1996, Hoober 
et al., 1999) 

Penicillium 
sp. K-6-5 

GSH 
oxidase 

47 7.0–7.8 GSH, D/L-cysteine,  
N-acetyl-L-cysteine,  
L-cysteine methylester, 
thiophenol, DTT 

(Kusakabe  
et al., 1982) 

Abbreviations: MW, molecular weight of the subunit. 

 
Concerning catalytic and structural stability, the sulfhydryl oxidase secreted by 
A. niger is reported to bind tightly the flavin cofactor since only irreversible 
denaturation allowed its release. This enzyme is also characterised by significant 
stability in acidic conditions (overnight at pH 3) (de la Motte & Wagner, 1987). 
The enzyme isolated from Penicillium cultures retained full activity after incuba-
tion for 30 minutes at temperatures up to 55°C (Kusakabe et al., 1982). 

1.3.3 Sequence features 

Flavin-dependent sulfhydryl oxidases have various conserved sequence features 
important for cofactor binding and catalytic activity. Sulfhydryl oxidases are 
thiol:disulfide oxidoreductases and their active site is characterised by two reac-
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tive cysteine residues forming a C-X-X-C motif (Quan et al., 2007, Chivers et 
al., 1997). 

The reported secreted sulfhydryl oxidases (Table 8) are flavin-dependent en-
zymes. Proteins binding nucleotides such as FAD or NAD are generally charac-
terised by the α/ß fold named after Michael Rossmann (Rossmann et al., 1974, 
Rao & Rossmann, 1973). The Rossmann fold was first described in lactate de-
hydrogenase and indicates a nucleotide-binding domain found mainly in oxi-
doreductases (Kleiger & Eisenberg, 2002). This fold is formed by α and ß struc-
tures in a ß-α-ß-α-ß arrangement where the interaction between the first ß-strand 
and the following α-helix is stabilised by a G-X(3)-G/A (Table 9) sequence mo-
tif in the helix and a G-X(3)-G-X-X-G sequence motif in the connecting loop 
(Kleiger & Eisenberg, 2002). The sequence features characteristic of flavin-
dependent sulfhydryl oxidases are summarised in Table 9. 

Table 9. Conserved sequence motifs characterising flavin-dependent thiol:disulfide oxi-
doreductases and their position in the model enzyme from A. niger. 

Residues 
Position in the 
SOX from 
Aspergillus niger 

Description  Reference 

V/I-X-G-X(1-2)- G-
X(2)-G-X(3)-G/A 

V31-V-G-G-G-P-A-
G-L-S-V-L42 

motif of the Rossman fold  (Kleiger & 
Eisenberg, 2002, 
Vallon, 2000) 

R-X-G-G-R-X(2)-
S/T 

-- GG motif immediately after 
the dinucleotide binding site

(Kleiger & 
Eisenberg, 2002, 
Vallon, 2000) 

O-O-B(3)-A-T-G R132-K-V-V-L-G-T-
G139 

ATG motif found in 
flavoproteins with two 
dinucleotide binding 
domain  

(Vallon, 2000) 

T-X(4)-B--B(2)-G-
D 

T309-S-L-S-G-V-Y-
A-V-G-D319 

typical of FAD-binding 
proteins of the GSH 
reductase family 

(Eggink et al., 
1990) 

C-X-X-C C161-P-W-C164 active site of thiol:disulfide 
oxidoreductases  

(Chivers et al., 
1997) 

Abbreviations: X, any residue, B hydrophobic residue, ,aromatic residue, O, charged 
residue. 
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1.4 Production of enzymes in filamentous fungi 

The saprobic lifestyle of fungi has led to their ability to secrete enzymes at a 
high level. Fungi naturally secrete enzymes of industrial interest such as the 
cellulose-degrading enzymes produced by T. reesei, e.g. cellulases and hemicel-
lulases, and the amylolytic enzymes produced by Aspergilli (Finkelstein & 
Christopher, 1992). The efficient secretory machinery of fungi has been exploit-
ed for the production of both homologous and heterologous enzymes. With the 
development of gene technology, the promoter and terminator regions of highly 
expressed genes have been exploited to drive the production of heterologous 
protein candidates in high amounts, e.g. the cellobiohydrolase I cbhI promoter in 
T. reesei (Keranen & Penttila, 1995) and the glucoamylase glaA promoter in 
A. niger are examples of heavily used promoters (Finkelstein & Christopher, 
1992, Fowler et al., 1990). 

The cultivation of fungi can be performed in inexpensive media in large cul-
ture volumes and give high production levels in optimal conditions. The produc-
tion of hydrolases by T. reesei can reach amounts exceeding 100 grams per litre 
(Cherry & Fidantsef, 2003) and a production level of more than 20 grams of 
glucoamylase per litre has been obtained in A. niger (Berka et al., 1991). The 
secretion of the target protein by fungi has the benefit of facilitating downstream 
processing since neither breakage of the cells nor separation of the target protein 
from the intracellular proteins are required. 

However, production levels may be much lower for non-fungal proteins, even 
only milligrams per litre, making the system in some cases not suitable for large-
scale industrial production (Gouka et al., 1997). Different approaches have been 
developed in order to improve the production of heterologous proteins by fungal 
hosts, such as (a) use of a stronger host-specific promoter (Marui et al., 2010), 
(b) engineering of the promoter to enhance the binding of positive transcriptional 
regulators (Liu et al., 2003), (c) increasing the gene copy number (Shiba et al., 
2001), (d) use of a fusion construct with a highly expressed secreted native pro-
tein (Nyyssonen et al., 1993) such as the cellulose cbhI from T. reesei and the 
A. niger glucoamylase gluA, (e) codon optimisation of the gene of interest 
(Shumiao et al., 2010, Tokuoka et al., 2008), (f) selection of a protease-free host 
(Yoon et al., 2011), (g) control of fungal morphology and fermentation condi-
tions to reduce culture viscosity (Dai et al., 2004, Talabardon & Yang, 2005). 

The production of enzymes, especially those aimed at the food industry, in fil-
amentous fungi is a well established process. Fungi from different genera are 
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exploited and many have been shown to be non-pathogenic for healthy individu-
als and have been given the GRAS status (Generally Regarded As Safe), e.g. 
A. oryzae and T. reesei. Some of them do however secrete low levels of toxic 
secondary metabolites under certain cultivation conditions, e.g. A. niger, 
A. oryzae and Fusarium venenatum (Olempska-Beer et al., 2006). 
 

Knowledge of the physiology of filamentous fungi is continuously improving, 
as is understanding of the molecular basis of enzyme production. The use of 
enzymes and their production using filamentous fungi are already widely used in 
industrial scale. However, well-known enzymes can be employed in new appli-
cations and new enzymatic activities can be discovered, opening the doors to 
completely new production processes. 
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2. Aims of the study 

The aim of the study was to discover novel oxidative enzymes potentially able to 
crosslink proteins. The target enzymes were tyrosinases and sulfhydryl oxidases, 
enzymes with a potential application in the industrial food production. By ana-
lysing the fungal genomes available, proteins with sequence features characteris-
tic of tyrosinases and sulfhydryl oxidases were identified and several representa-
tives were selected for heterologous production in the filamentous fungus 
Trichoderma reesei. The novel enzymes produced were then biochemically 
characterised with regard to activity and stability. The potential industrial appli-
cation of the enzymes was evaluated. 
 

The detailed aims of the study are: 

1. Identification of novel tyrosinases and sulfhydryl oxidases through analy-
sis of the available fungal genomes (Publications I and II) 

2. Heterologous production of a potential tyrosinase in the filamentous fungus 
T. reesei and biochemical characterisation of the enzyme (Publication I) 

3. Heterologous production of two potential sulfhydryl oxidases in the fila-
mentous fungus T. reesei and their biochemical characterisation (Publica-
tions II and III) 

4. Evaluation of the application potential of one sulfhydryl oxidase as an im-
prover in wheat dough alone and in combination with ascorbic acid (Pub-
lication IV). 
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3. Materials and methods 

Table 10. Methods employed in this study, purpose of their utilization and the publication 
in which they are presented in more detail. 

Method Aim 
Described 

in 
Analysis of the fungal 
genomes 

- identification of candidate proteins 
- evaluate the distribution of a target 

protein 

I, II 

Alignment of protein 
sequences 

- determination of the level of identity; 
prediction of the signal peptide and 
identification of conserved residues 

I,II,III 

Extraction of genomic DNA 
and polymerase-chain reaction 

- target gene amplification and cloning  
- selection of positive Trichoderma reesei 

transformants 

I, II, III 

I, II, III 

Transformation of 
Trichoderma reesei and 
selection of the antibiotic-
resistant transformants 

- heterologous expression of the target 
protein and isolation of positive 
transformants 

I, II, III 

Cultivation of Trichoderma 
reesei transformants on plates 
containing tyrosine 

- selection of the transformant with highest 
tyrosinase/catechol oxidase production  

I 

UV-vis spectroscopy - measurement of tyrosinase/catechol 
oxidase activity 

I 

 - detection of sulfhydryl oxidase activity 
by colorimetric assay with Elman’s 
reagent (DNTB) 

II, III 

 - determination of the flavoenzymatic 
nature of the sulfhydryl oxidases and 
identification of the cofactor 

II, III 

 - measurement of ascorbic acid oxidation IV 
 - measurement of sulfhydryl content of 

wheat flour 
IV 
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Fluorescence spectroscopy - measurement of sulfhydryl oxidase 

activity by HVA-peroxidase coupled 
assay 

II, III 

 - determination of protein intrinsic 
fluorescence 

I, II, III 

 - monitoring of protein unfolding in the 
presence of denaturant 

II, III 

(with HPLC chromatography) - conversion of the results of HVA-
peroxidase coupled assay to nkatals  
per millilitre  

II 

Oxygen-consumption 
measurement 

- measurement of sulfhydryl oxidase 
activity  

II, III 

 - inhibition study of sulfhydryl oxidases II, III 

SDS PAGE analysis - evaluation of the level of expression of 
the heterologous protein and of the level 
of purity of protein solutions 

I, II, III 

Western Blot - detection of the protein tag II, III 

Isoelectrofocusing - determination of the isoelectric point I 

Ion-exchange and size-
exclusion chromatography 

- purification of AoSOX1 and AoSOX2 II, III 

Circular dichroism - evaluation of the secondary structure of 
the enzyme and determination of the 
melting temperature 

I, II, III 

Moisture-air oven method - determination flour moisture IV 

Farinograph - determination of optimal water 
absorption of the flour 

IV 

Kjeldahl-method - protein content determination of the flour IV 

Data analysis and graphics 
(Origin 7.5 software) 

- linear and non-linear fitting of data for 
determination of kinetic constants of the 
enzymes 

I, II, III 
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4. Results and discussion  

4.1 Discovery of tyrosinases (Publication I) 

4.1.1 Fungal genome analysis for the identification of potential 
tyrosinases 

The distribution of genes coding for potentially secreted tyrosinases was ana-
lysed in the genome sequences of fungi in order to identify novel candidate en-
zymes with biochemical features of interest for industrial use. 

An in-house database containing the publicly available genome sequences of 
30 fungi (Arvas et al., 2007) was searched for families of proteins containing at 
least a tyrosinase Interpro entry (IPR002227) and 134 such proteins with an N-
terminal signal sequence were retrieved. Two conserved three-histidine motifs, 
characteristic of type-3 copper proteins such as tyrosinases and catechol oxidas-
es (HA1-X(n)-HA2-X(8)-HA3 and HB1-X(3)-HB2-X(n)-HB3 pattern for the 
CuA and CuB site), were present in 114 of the sequences retrieved. The align-
ment of the sequences allowed the identification of conserved residues previous-
ly reported in the literature as typical of tyrosinases (Table 6) (Gerdemann et al., 
2002, Flurkey & Inlow, 2008, Klabunde et al., 1998, Cuff et al., 1998, García-
Borrón & Solano, 2002). 

All the sequences analysed carried the landmarks of the central globular do-
main of tyrosinases such as the C-terminal tyrosine motif Y/FXY and a con-
served N-terminal arginine residue aligning to the residue R40 of the tyrosinase 
from Trichoderma reesei (Flurkey et al., 2008). The length of the sequences 
retrieved as described above and in Publication I, was first analysed in order to 
find extremely long or short sequences due to a incorrect ORF prediction during 
genome analysis. The length distribution of the sequences retrieved clearly sug-
gested the existence of two major groups of proteins with average lengths of 
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approximately 400 and 560 residues and carrying a suitable histidine pattern for 
copper binding (Figure 8). 
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Figure 8. Length distribution of the sequences retrieved carrying a predicted tyrosinase 
domain (IPR0002227) and an N-terminal signal sequence. Sequences bearing a con-
served histidine pattern (coloured bars) are divided into two groups with length of 300–
500 amino acids (pink bars) and 500–800 amino acids (blue bars). 

4.1.2 Analysis of sequences of long tyrosinases 

Proteins with a length between 500 and 800 residues were named ‘long tyrosi-
nases’ (Publication I Table 1) and they showed sequence similarities with the 
tyrosinases previously reported in the literature (Table 5), e.g. with the intracel-
lular enzymes from Agaricus bisporus (556 and 568 amino acids of CAA59432 
and CAA11562, respectively), Neurospora crassa (542 aa, EAA35696) and the 
tyrosinase from T. reesei (561 aa). The level of sequence identity between long 
tyrosinases and the tyrosinase from T. reesei ranges from 22.7% (Q1DQ30 from 
Coccidioides immitis) to 47% (NECHA0066755 from Nectria haematococca) 
(Publication I Table 1). 

These proteins carried the highly conserved histidine pattern in the two cop-
per binding regions, i.e. HA1-X(20-23)-HA2-X(8)-HA3 and HB1-X(3)-HB2-
X(n)-HB3, in which n varies from 20 to 33 residues (Table 5 and Publication I 
table 1). Moreover, a conserved C-terminal tyrosinase motif was found and the 
YG motif, suggested to be a signature for the C-terminal cleavage site, was con-
served in all the sequences except for TRIRE0050793 from T. reesei (Flurkey & 
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Inlow, 2008). Long tyrosinases were characterised by a low cysteine content, 
since only one cysteine was conserved in position HA2-2 and was possibly in-
volved in the formation of a thioether bond with the nearby residue HA2, simi-
larly to the tyrosinase from N. crassa, the catechol oxidase from Ipomoea bata-
tas and the haemocyanin from Octopus dofloeini (Klabunde et al., 1998, Cuff et 
al., 1998, Lerch, 1983, Lerch, 1982). This thioether bond is thought to be formed 
post-translationally and to be involved in enzyme activation, more efficient cop-
per binding, enzyme maturation and tuning of the redox potential (Lerch, 1983, 
Lerch, 1982, Lerch, 1978, Nakamura et al., 2000). This thioether bond has how-
ever not been detected in the tyrosinase from Streptomyces spp., mouse and hu-
man (Marusek et al., 2006). 

The length of the region following the C-terminal tyrosine motif of long tyro-
sinases varied between the 346 residues of the sequence Q7S218 from N. crassa 
and the 85 residues of the sequence TRIRE0050793 from T. reesei. The align-
ment of long tyrosinases and the analysis of this C-terminal stretch evidenced 
few sequence features conserved in all the long tyrosinases. The function of 
these residues is not known. In 13 out of 27 long tyrosinases retrieved the tyro-
sine motif was followed by a proline-glutamic acid dipeptide, whereas in the 
other sequences these residues could be replaced by an amino acid of small size 
such as glycine or alanine. As an exception, the tyrosinase from T. reesei was the 
only one with a glutamine-glycine dipeptide. Generally, the analysis of the C-
terminal region of long tyrosinases showed an overall low level of conservation. 

4.1.3 Analysis of sequences of short tyrosinases 

A novel finding of this study was the identification of a second major group of 
sequences with the features of tyrosinases and with a length of 300–500 amino 
acids (Publication I Table 1). 

These ‘short tyrosinases’ had a lower level of sequence identity to the tyrosi-
nase from T. reesei, i.e. between 10 and 20%, and they had several unique se-
quence features: (a) The presence of a stop codon a few residues after the 
C-terminal tyrosine motif Y/F-X-Y and thus the lack of the whole linker and 
C-terminal domain, similarly to the tyrosinase from S. castaneoglobisporus; (b) 
a novel histidine pattern HA1-X(7)-HA2-X(8)-HA3 of the CuA site with a sev-
en-residue distance between the residues HA1 and HA2 (Publication I Table 1). 
This distance was significantly shorter than in the long tyrosinases, for example 
23 residues in the Trichoderma reesei tyrosinase and 15 residues in the S. casta-
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neoglobisporus tyrosinase that lacked the C-terminal domain but was associated 
with a caddie protein. (c) A novel conserved pattern of six cysteines, absent in 
the previously characterised enzymes (Lerch, 1983, Wichers et al., 2003, Lerch, 
1982). Two of these cysteines were located in the N-terminal region (aligning to 
C72 and C100 in the sequence Q2UNF9 from Aspergillus oryzae named AoCO4), 
three between the copper binding regions (C159, C223 and C261 in AoCO4) and 
one adjacent to the C-terminal tyrosine motif (C404 in AoCO4). The conserved 
N-terminal arginine corresponding to R40 in T. reesei tyrosinase was located 
between the first two conserved cysteine residues, e.g. R80 in AoCO4. In addition, 
short tyrosinases lacked the cysteine residue candidate for the formation of a thi-
oether bridge with the histidine residue HA2 (Figure 9, Publication I Table 1). 

Figure 9. Schematic repre-
sentation of the distribution 
of some conserved resi-
dues between long (A) and 
short (B) tyrosinases. The 
histidines of the CuA and 
CuB sites as are in blue. 
The N-terminal conserved 
arginine (R) is in purple and 
the tyrosine (Y) motif is in 
light green (Flurkey & Inlow, 
2008). Conserved cysteine 
(C) residues are in olive 
green. The signal sequence 
is in red. The relative distanc-
es are in proportion and 
tyrosinase from T. reesei and 
Q2UNF9 (later called cate-
chol oxidase AoCO4) from 
A. oryzae were used as 
models. 
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4.1.4 Phylogenetic analysis of sequences of long and short 
tyrosinases 

The majority of sequences retrieved were in the subphylum Pezizomycotina of 
Ascomycetes, but short putative tyrosinases were also found in Basidiomycota, 
Agaricomycotina species, and in Chytridiomycota, genus Batrachochytrium 
(Figures 10 and 11). 
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Figure 10. Averaged species distribution of the sequences of long (green) and short 
(blue) tyrosinase among the fungal families analysed. Sequences from Batrachochytrium 
dendrobatidis are marked by a purple bar. 

The two groups of short and long tyrosinases showed different phylogenetic 
origins and separated clearly into two branches of the phylogenetic tree (Figure 
11 and Publication I Online Resource 1). 
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A
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A

B

 

Figure 11. Phylogenetic analysis of potential secreted tyrosinase sequences. Fungal 
classes are indicated by a coloured dot at the end of each branch. On the right, a line 
represents the length of the protein and the computationally predicted domains (coloured 
region). Numbers indicate proteins of specific interest: (1) TRIRE0045445 from T. reesei 
(Selinheimo et al., 2006), (2): tre50793 from T. reesei; (3) Q2UCH2 from A. oryzae, (4) 
Q2UFM6 from A. oryzae and (5) Q2UNF9 (AoCO4) from A. oryzae. A more detailed tree 
is provided as a supplementary file in Publication I. 
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A large majority of sequences retrieved belonged to the short tyrosinase group 
(Figure 11, Publication I Table I). Numerous members of the group of long tyro-
sinases were found in the Ascomycota families of Sclerotiniaceae, Nectriaceae 
and Hypocreaceae and no representatives were found in the genomes of Basidi-
omycota species belonging to the subphylum Agaricacomycotina, and in the 
only representative of Chytridiomycota, which was the species Batrachochytrium 
dendrobatidis with four putative tyrosinase sequences (Figure 10, 11 and 13). By 
contrast, short tyrosinase sequences were predominantly found in Tricho-
comaceae and Nectriaceae and a few representatives also in Basidiomycota 
(Figure 10, 11 and 13). 

Since some fungal families possessed both short and long tyrosinases (Figure 11) 
it is reasonable to deduce that both forms were probably present in the common 
ancestor of fungi. 

The phylogenetic analysis revealed the existence of two groups of long tyro-
sinases, clades A and B (Figure 11) that were both present in the common ances-
tor of Ascomycota and probably produced by gene duplication. This also sug-
gested possibly different physiological roles for the two groups, since species 
possessing genes for long tyrosinases usually have a member of each group. For 
example T. reesei (Hypocreaceae family in Figure 10) has the protein model 
TRIRE0050793 in addition to the characterised protein TRIRE0045445 (Selin-
heimo et al., 2006), belonging to the different group of long tyrosinases (se-
quences 1 and 2 in Figure 11 and in Publication I Online Resource 1). 

Detailed sequence analysis of the predicted proteins belonging to the clade A 
of long tyrosinases in the phylogenetic tree in Figure 11 and Publication I Online 
Resource 1, e.g., FGSG.05628 from Fusarium graminearum, TRIRE00050793 
from T. reesei and Q7SFK3 from N. crassa, indicated the presence of an addi-
tional tyrosine motif Y-X-Y in the N-terminus (residues 55–58 in the alignment 
in Figure 12). However, this motif is located between the predicted cleavage site 
of the signal peptide and putative Kex-2 cleavage site (K-R and R-R in position 
69–70 in Figure 12) and might be removed during the protein maturation pro-
cess. Additionally, only in this sub-group of proteins an additional arginine resi-
due is conserved a few residues after that corresponding to R40 of T. reesei tyro-
sinase whereas it is replaced by an asparagine in the long tyrosinases of the clade 
B (residue 108 in the alignment in Figure 12). No role for these conserved motifs 
has hitherto been established. 
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            1        10        20        30        40        50        60        70         80       90   
         ׀         ׀         ׀         ׀         ׀         ׀         ׀         ׀         ׀         ׀             
FVEG.06859   -----------------------MRVILAWLLFAAVTAQ----------SYNYGGVDIDSLTRRQDP-------DAPIVVKALPQTRNGTTPLRLEIR 
FOXG.09259   -----------------------MRIILAWLLFAAVTAQ----------SYNYGGVDIDSLTRRQDP-------DASIVVKALPQTRNGTTPLRLEIR 
FGSG.05628   --------------------MQCQVVWLVTLFFAFATAQ----------SYSYG-VDIDSLTRRQD--------TGRIVVKPLPQTRNGTVPLRPEIR 
NECHA0047204 ---------------------MRGILLLGGLFGILATAQ----------PYNYG-ADIQSLTRRQDT-------SDRVVIKPLPIIRNGTMPLRYEIR 
TRIRE0050793 ------------------MGFLARLTWVFHLVLLLVAAQ----------DYDFG-VDVISITRRRDT-------DAPIVVGRLPSASNGSTPLRLEIR 
Q7SFK3       -----------MPMARFRLPLALLFLAVFVAHFVLAQYG----------AYNYG-FDAAKLIKRQLAS----QEPVPVVTGAEGGE---TIRPRQEIR 
Q2HEC0       -------------MAHLRLPLLLAFICLAN-TLVVAQYS----------AYNYG-FDVKKRVKRQLG-----RRSTMVVQEKIGG----DIQVRQEVR 
A4RK91       -------------MPPATTLLLLSIIGAACLVPSVIAAS----------AYDYG-FDTGPLIRRQVSENGNNPRNRIVAKGARRSNDSKSVPLRREIR 
SS1G.13364.1 -------------MVIFQRASIVSIITIAGKLLSQTAQAIPTPQDQRLSGYDYG-LDIGALLKRDVPH----MPTTGVSYTGSNS----SIPLRQEIR 
BC1G.14990   -------------MVFFRGASIVSILTIAGSFLSQTAQAIPRPHDHRPRGYDYG-VDIGAILKRDVTP----IPTTGVSFNSSNS----SIPVRQEIR 
SS1G.01576.1 -----------------MASHLINWLGALTFLLSSVIAS--------------------PLSKT-------GNLKARADTFAITGVQDGGIQPRLEIR 
BC1G.04092   -----------------MAPSLIRRLGALSLLLSSVVAS--------------------PLSIP-------EFLESRADTLAITGVQDGGLQPRLEIR 
Q0UNZ8       --------------MKSFFSQLAGVTATLSLLATVQAAS--------------------NSSTAPSCG---VLQYTDDSYFSVVGVQGTGVHPRMEIR 
FVEG.04071   -----MLGKF-----LVAALAVIGGVNPVEAQQQNIF---------------------------------------VTGVPVT---GGAAVPARKNIN 
FOXG.06218   -----MLGKF-----LVAALAVVGGVNPVEAQQQNIF---------------------------------------VTGVPVT---GGAAVPARKNIN 
FGSG.09522   MAQLLYLGAFPTSFLLVAALAVVAGVNPAEAQQQNIF---------------------------------------VTGVPVT---GGSAVPARRNIN 
NECHA0066755 ----MFLGKF-----FIAALAVVGGVNPVEAQTQNIF---------------------------------------ITGVPVS---GGGAVPARKSIN 
TRIRE0045445 ----MLLSAS------LSALALAT-VSLAQG-TTHIP---------------------------------------VTGVPVS---PGAAVPLRQNIN 
A4REP6       ---------------MIGRRILAVALLPLACMAQQIP---------------------------------------IVGIPS---SNGQAPPPRKNIN 
Q7S218       -----MVTST----LLPLLLLINTFASLAAAQTTPIP---------------------------------------VVGVKTGVDSNTGQRPIRRNIN 
Q2GSG2       ----MWRAAI----CVTAALSWAGVQSAPAPTATPFP---------------------------------------VVGAKTGINKNTGQTPARLNIN 
UREG.07700.1 -----------MLVLGARLLAALSCIS--ILQTYAY---------------------------------------DITGVQTGVK-PSGERPARQDLI 
Q1DQ30       -----------MAAKGAWLWAVLQVIACITFQAHAY---------------------------------------DIRGVRGGVQ-ASGERPARQNLE 
HCAG.04262.1 --------------MGAFRWKVLLLLNVLLGVASAV---------------------------------------TISGVKDGVNRQTGERPARKDIN 
SS1G.04725.1 ----MVIKYP-----NVPWIFLAVFVFISHSNAQYYP---------------------------------------ITGVTTGINSNTKARPFRQNIN 
BC1G.00048   ----MIVKYP-----YIPWGFLACSIFITYCNAQYYP---------------------------------------IAGVTTGINSNTKARPFRQDIN 
MYCGR0084888 --------------MRFFTSLAALSLAFSSTFAAPVEQNE-------------------------------HTLETRQSGIVLTTGAQGNILVRKEIR 
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FGSG.05628   --------------------MQCQVVWLVTLFFAFATAQ----------SYSYG-VDIDSLTRRQD--------TGRIVVKPLPQTRNGTVPLRPEIR 
NECHA0047204 ---------------------MRGILLLGGLFGILATAQ----------PYNYG-ADIQSLTRRQDT-------SDRVVIKPLPIIRNGTMPLRYEIR 
TRIRE0050793 ------------------MGFLARLTWVFHLVLLLVAAQ----------DYDFG-VDVISITRRRDT-------DAPIVVGRLPSASNGSTPLRLEIR 
Q7SFK3       -----------MPMARFRLPLALLFLAVFVAHFVLAQYG----------AYNYG-FDAAKLIKRQLAS----QEPVPVVTGAEGGE---TIRPRQEIR 
Q2HEC0       -------------MAHLRLPLLLAFICLAN-TLVVAQYS----------AYNYG-FDVKKRVKRQLG-----RRSTMVVQEKIGG----DIQVRQEVR 
A4RK91       -------------MPPATTLLLLSIIGAACLVPSVIAAS----------AYDYG-FDTGPLIRRQVSENGNNPRNRIVAKGARRSNDSKSVPLRREIR 
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BC1G.14990   -------------MVFFRGASIVSILTIAGSFLSQTAQAIPRPHDHRPRGYDYG-VDIGAILKRDVTP----IPTTGVSFNSSNS----SIPVRQEIR 
SS1G.01576.1 -----------------MASHLINWLGALTFLLSSVIAS--------------------PLSKT-------GNLKARADTFAITGVQDGGIQPRLEIR 
BC1G.04092   -----------------MAPSLIRRLGALSLLLSSVVAS--------------------PLSIP-------EFLESRADTLAITGVQDGGLQPRLEIR 
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FVEG.04071   -----MLGKF-----LVAALAVIGGVNPVEAQQQNIF---------------------------------------VTGVPVT---GGAAVPARKNIN 
FOXG.06218   -----MLGKF-----LVAALAVVGGVNPVEAQQQNIF---------------------------------------VTGVPVT---GGAAVPARKNIN 
FGSG.09522   MAQLLYLGAFPTSFLLVAALAVVAGVNPAEAQQQNIF---------------------------------------VTGVPVT---GGSAVPARRNIN 
NECHA0066755 ----MFLGKF-----FIAALAVVGGVNPVEAQTQNIF---------------------------------------ITGVPVS---GGGAVPARKSIN 
TRIRE0045445 ----MLLSAS------LSALALAT-VSLAQG-TTHIP---------------------------------------VTGVPVS---PGAAVPLRQNIN 
A4REP6       ---------------MIGRRILAVALLPLACMAQQIP---------------------------------------IVGIPS---SNGQAPPPRKNIN 
Q7S218       -----MVTST----LLPLLLLINTFASLAAAQTTPIP---------------------------------------VVGVKTGVDSNTGQRPIRRNIN 
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HCAG.04262.1 --------------MGAFRWKVLLLLNVLLGVASAV---------------------------------------TISGVKDGVNRQTGERPARKDIN 
SS1G.04725.1 ----MVIKYP-----NVPWIFLAVFVFISHSNAQYYP---------------------------------------ITGVTTGINSNTKARPFRQNIN 
BC1G.00048   ----MIVKYP-----YIPWGFLACSIFITYCNAQYYP---------------------------------------IAGVTTGINSNTKARPFRQDIN 
MYCGR0084888 --------------MRFFTSLAALSLAFSSTFAAPVEQNE-------------------------------HTLETRQSGIVLTTGAQGNILVRKEIR 

 

Figure 12. Sequence Multiple alignment of the N-terminal sequence of the long tyrosinases in the order in which they appear in the phyloge-
netic tree in Figure 11 and in Publication I Online Resource 1 (sequence identifiers as in Publication I Table 1). The only characterised pro-
tein is TRiRE0045445 (TrTyr2, Selinheimo et al., 2006). Tyrosine and arginine residues are highlighted in green and blue, respectively. 
Predicted signal sequences are underlined. 
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4.1.5 Analysis of the putative tyrosinase sequences from 
Batrachochytrium dendrobatidis 

The sequence features of the four sequences retrieved from B. dendrobatidis 
were separately analysed (Figure 13) and were ascribed to the group of short 
tyrosinases (Publication I Table 1). Interestingly, these proteins showed se-
quence similarities to both short and long tyrosinases since they presented (a) the 
conserved six cysteine pattern and (b) the histidine pattern typical of short tyro-
sinases, but their sequence presents a C-terminal stretch following the tyrosine 
motif. However, the copper binding sites A and B are separated by a shorter 
distance in the sequences from B. dendrobatidis, e.g. 46 amino acids shorter in 
BDEG06104 than in the short tyrosinase AoCO4 (Q2UNF9) (Figure 13). 



 

 

        1                 20              40              60                  80                 100                 120
׀                   ׀                   ׀                   ׀                   ׀                   ׀                   ׀           
BDEG.06870  ---MLFWLSVAAFN-ALLVIGAP-LNNTCTTP--SVRSEWRELNST--QQHDYIQAVVCMMNKPS-IYTDNRT--QSRHADFGWL--------HFQMMNTVHQSASFLPWHRVFLHAYEV
BDEG.02913  ---MLFSVIVFLVQLYTFVYGATNATDSCINS--LTRLEWRELSTD--HQQQYIKAVLCLMKKPS-LTPKRPA--ISRYAEFGEL--------HFQMASTFHQSALFLPWHRSFLNAFES
BDEG.01791  ---MLFSSILALAI----AIPSALVAGTCTNP--LIRREWRELTEN--QQIDYLNAVICLKMAPSKLGPTINS--PSRYDDVSRT--------HFQMLDIAHGSAIFLPWHRLFLSTYEK
BDEG.06104  SPAPRSGFTLPPKYKPETFPALAPSTAACTKP--TIRKEVRSLTAK--QQANYINGIKCLHKAPSRFPSNLGT--VSLYDDLVYV--------HFQMGDLAHLSAQLLPWHRVFTLNFEH
Q2UNF9      SQLDQLANFAYNVTTDSVAGGSESKRGGCTLQNLRVRRDWRAFSKT--QKKDYINSVLCLQKLPSRTPA--------HLAPGARTRYDDFVATHINQTQIIHYTGTFLAWHRYFIYEFEQ
Trtyr2      LSALALATVSLAQGTTHIPVTGVPVSPGAAVP---LRQNINDLAKSGPQWDLYVQAMYNMSKMDSHDPYSFFQIAGIHGAPYIEYNKAGAKSGDGWLGYCPHGEDLFISWHRPYVLLFEQ
                             140                 160                 180                 200  220        240
׀                   ׀                   ׀                   ׀                   ׀                   ׀                   ׀           
BDEG.06870  SLKTECN-YKGFLPFWDWTVDSQ-----------------------APEKSMVWSNTFIGGDGDPSTDTHCL----------------IDGPFVNYTI----TVPETVCISR---TISQ-
BDEG.02913  ALKTECN-YPGSLPYWDWTIDSQ-----------------------APEKSMVWSNTFIGGNGNPNTPQHCL----------------VDGPFKNYRI----IIPQKLCLSR---NYSKN
BDEG.01791  VLRTECG-YTGTLPYWDWTVDSQ-----------------------APEKSMVWSNTFIGGDGDSSTQDNCI----------------TDGPFMYFYS----EFAFEACLSR---TIGGN
BDEG.06104  LLRTACG-YTDPLPYWDWSIDSQ-----------------------APEKSMVWSNTFIGGDG--AANTDCI----------------ATGPFANFQV----NVPSRHCIKRRFELKSDN
Q2UNF9      ALRDECS-YTGDYPYWNWGADADNMEKSQVFDGSETSMSGNGEYIPNQGDIKLLLGNYPAIDLPPGSGGGCVTSGPFKDYKLNLGPAALSLPGGNMTAAANPLTYNPRCMKRSLTTEILQ
TRTYR2      ALVSVAKGIANSYPPSVRAKYQAAAASLRAPYWDWAADSSVPAVTVPQTLKINVPSGSSTKTVDYTNPLKTYYFPRMSLTGSYGEFTGGGNDHTVRCAASKQSYPATANSNLAARPYKSW
                             260                 280                  300                320                 340                360 
׀                   ׀                   ׀                   ׀                   ׀                   ׀                   ׀           
BDEG.06870  LTTYSSYYSPESVHQIISSSHNFSEFSTSLEFGP--HAVVHVG-MVGGSMSEVIISAHDPIFYLHHANVDRIWSLWQKRYPK-LANTYFGQLPDGKNVNVTDSLELLSVSNTLKDPTVS-
BDEG.02913  FTSRASSYSPENIQRIIASQKNYADFRFTLEGGP--HAIVHSS-MIGGCMSLIPLSAQDPIFYLHHANVDRIWYLWQKR----HGNAYGGLRSNNSPSKTTDILSMFKVTN---QPDLSV
BDEG.01791  LGRTVNFYTPEAIFRMVSTTKTYDAFRHSIEEGP--HNNVHVG-MVGGDMGIVSMSANDPIFMLHHANVDRMWTIWQSLNPK-LANTYGGFNSDGSPARPTDPISVYGLTI---SPVYKV
BDEG.06104  GSMMGALYSPAELATIFSTAIDYDSFRMTIEDNP--HNSIHGG-MVGGDMDDPITSANDPVFFLHHANIDRLWWIWQNSKPA-HMHSYGGNRNPDSSFKFASPSDHVFMWGMGENFRVDQ
Q2UNF9      RYNTFPKIVELILDSDDIWDFQMTMQGVPGSGSIGVHGGGHYS-MGGDPGRDVYVSPGDTAFWLHHGMIDRVWWIWQNLDLRKRQNAISGTGTFMNNPASP-NTTLDTVIDLGYANGGPI
Trtyr2      IYDVLTNSQNFADFASTSGPGINVEQ---------IHNAIHWDGACGSQFLAPDYSGFDPLFFMHHAQVDRMWAFWEAIMPSSPLFTASYKGQSRFNSKSGSTITPDSPLQPFYQANGKF
                             380                 400                 420                 440                 460        480
׀                   ׀                   ׀                   ׀                   ׀                   ׀                   ׀           
BDEG.06870  --MSLSTTGSTPFCYVYSNSVRPNQSPSKSSRQLMPRSPISFKSTVQMIIAAKRIASAVDKYAYGIEQGITPKTSDRDDRKRLRCPPRIGESMSQQLKMSPEQKVENHHREDMNCAFIHF
BDEG.02913  SQV-LNTTSSAYICYTYSNSVRPVPASASLRKSVSESVRNTSAHISKLPSMPILTPAIISAVKKIAAANDSFSYGTEHKITPKANDRIDKKKLRCPPRVPMSMITQMRLNSTELKLIRQK
BDEG.01791  SDM-FSTTSDAPLCYKYSNSIMPGISSTGRQLQKRNYLLEVDQSCNATEIATAPNAYTHGVSKNWTPHSLDRENKRKVRCASRTPEHFALQMKYDKATMKRMRKSENDHCAFTNYINARY
BDEG.06104  VLD---IAGGGRFCYGYDSISVPTATRPSHFSAASLMAANAPGSVLVNATIVPVVNNSFPVAVKPLNGSLPSPGAFDRTDKFHLRHHKPLNETWLRMMKYSDSAIARVRANEAKVNKIVD
Q2UNF9      AMRDLMIATAGPFCYVYL------------------------------------------------------------------------------------------------------
TRTYR2      HTSNTVKSIQGM-GYSYQGIEYWQKSQAQIKSSVTTIINQLYGPNSGKKRNAPRDFLSDIVTDVENLIKTRYFAKISVNVTEVTVRPAEINVYVGGQKAGSLIVMKLPAEGTVNGGFTID
                500                 520                 540                  560 
                 ׀                   ׀                   ׀                   ׀                   ׀           
BDEG.06870  VNSNATQYQSPVSLEFTGPSMGYHSVSESEFEEEYQFVQKLHDIFGDAFKQAV----------------------------------- 
BDEG.02913  ENENCAFVNFLNLEDVGYQSRASLRSIEGAVSYRSVTQEEYDATENMFDQLYNSYQAAIRA--------------------------- 
BDEG.01791  PNYQSPCSLNNVEKQTFVPMSDADVAENNLIYASMINDYHSSIGK------------------------------------------- 
BDEG.06104  LLNAETDMGNFLSGSALTIKENSQVKFVASKPNDVTESAFITKQFASKLMKAVGPFVQ------------------------------ 
Q2UNF9      ----------------------------------------------------------------------------------------  
Trtyr2      NPMQSILHGGLRNAVQAFTEDIEVEILSKDGQAIPLETVPSLSIDLEVANVTLPSALDQLPKYGQRSRHRAKAAQRGHRFAVPHIPPL  

Figure 13. Partial alignment of sequences from B. dendrobatidis with a representative short tyrosinase Q2UNF9 (AoCO4) from A. oryzae 
and the long tyrosinase TRIRE0045445 (TrTyr2) from T. reesei (Selinheimo et al., 2006). The putative N-terminal conserved arginine resi-
due is in green, histidine residues of the copper binding sites are in red and the whole regions are in bold, the conserved cysteine residues 
are in blue, and the putative C-terminal tyrosine motif is underlined. 
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4.2 Catechol oxidase AoCO4 from Aspergillus oryzae 
(Publication I) 

4.2.1 Production and purification of the catechol oxidase AoCO4 
from Aspergillus oryzae 

A new group of short putative tyrosinases lacking the whole linker and C-
terminal region was characterised. No information was available on the three 
short tyrosinase genes of A. oryzae retrieved in our study, although the industri-
ally exploited filamentous fungus A. oryzae has been reported to produce mela-
nin (Te Biesebeke & Record, 2008), and three genes encoding long tyrosinases 
have previously been characterised, i.e. MelB (Obata et al., 2004), MelD (Ma-
sayuki et al., 2004) and MelO (Fujita et al., 1995). 

Three novel putative short tyrosinases from A. oryzae (Machida et al., 2005) 
were retrieved, i.e. sequences Q2UCH2, Q2UFM6 and Q2UNF9 (numbers 3, 4 
and 5 in Figure 11 and in Publication I Online Resource 1). Only the last one of 
these had a complete histidine pattern for a type-3 copper centre and was thus 
selected for heterologous expression and biochemical characterisation. This pro-
tein, named AoCO4, has the common central domain of tyrosinases and a level 
of sequence identity to known tyrosinases between 12 and 20% (Table 11). In-
terestingly, two histidine residues, H111 and H127 were candidates as the copper 
ligand residue HA1 and thus the histidine pattern for short and long tyrosinases 
could be identified (Publication I, Figure 1). 

The gene Q2UNF9 coding for AoCO4 was amplified by PCR from the ge-
nomic DNA of A. oryzae and cloned to an expression vector for heterologous 
expression in T. reesei. The resulting expression construct was transformed into 
a T. reesei production strain, and transformants were selected for resistance to 
hygromycin. The transformants were subsequently screened for tyrosinase activ-
ity on plates containing L-tyrosine (55.2 mM) and copper (0.1 mM). The ap-
pearance of a black colouration around the colonies indicated oxidation of tyro-
sine. Positive transformants were purified to uninuclear clones through single 
spore cultures and were grown in shake flask (medium volume 50 ml) in medi-
um supplemented with copper (1 mM). Enzyme activity was measured with 
catechol as substrate and the best transformants were selected for further studies. 
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Table 11. Amino acid sequence identity of the protein AoCO4 to selected characterised 
and non-characterised proteins. 

Source Organism Protein Reference  
Identity 

(%) 

Biochemically characterised 

bacterium Streptomyces 
castaneoglobisporus 

TYR  (Ikeda et al., 1996, 
Machida et al., 2005) 

20.4 

fungus Trichoderma reesei TYR (Selinheimo et al., 2006) 14.7 

bacterium Verrucomicrobium 
spinosum 

TYR (Fairhead &  
Thony-Meyer, 2010) 

14.4 

fungus Neurospora crassa TYR (Lerch, 1978) 13.3 

plant Ipomoea batata CO (Eicken et al., 1998) 13.0 

fungus Agaricus bisporus TYR (AbPPO1) (Flurkey et al., 2008, 
Wichers et al., 1996, 
Espin & Wichers, 1999) 

12.5 

fungus Agaricus bisporus TYR (AbPPO2) (Flurkey et al., 2008, 
Wichers et al., 2003, 
Espin & Wichers, 1999) 

12.4 

Non-characterised proteins (best hits) 

fungus Aspergillus niger An01g09220 (Pel et al., 2007) 72.4 

fungus Penicillium 
chrysogenum 

Pc22g18500 (van den Berg et al., 
2008) 

68.8 

fungus Talaromyces stipitatus putative TYR 
EED15869.1 

direct annotation  
(J. Craig Venter  
Institute, USA) 

68.3 

fungus Coccidioides immitis hypothetical 
CIMG07314 

direct annotation  
(Broad Institute of MIT 
and Harvard, USA) 

64.0 

 
The production of AoCO4 was optimised by growing the transformant giving 
the highest activity in shake flasks (volume 50 ml) at different copper concentra-
tions (0–6 mM); the maximum activity was produced at 1 mM copper concentra-
tion (Figure 14). The level of activity detected when AoCO4 was produced in 
shake-flask cultivation was however low, since a loss of activity was detected 
along with decrease of the pH in the culture (Figure 12). Either the AoCO4 en-
zyme was inactivated by low pH or it was degraded by acidic proteases emerg-
ing in the culture. The highest activity produced in shake flasks corresponded to 
approximately 230 mg/l of AoCO4 protein. The production of AoCO4 in a 10 L 
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bioreactor in inducing medium at pH 5.5 supplemented with 0.5 mM copper led 
to a seven-fold higher yield than obtained in shake flask cultures (approx. 
1.5 g/l). AoCO4 was purified from the culture medium after removal of the cells 
by filtration and buffer exchange to 20 mM sodium acetate buffer pH 4.8. Purifi-
cation was performed by chromatography (Publication I Table 2). 
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Figure 14. Production of AoCO4 in shake flask culture in the presence of different con-
centrations of copper. The maximum activity (filled circles) was reached on the 5th day 
and a sharp decrease was observed as the pH of the culture medium (empty circles) 
decreased below 4.5. 

Two forms of AoCO4 with molecular masses of 39349 and 40482 could be par-
tially separated during purification since they eluted at different salt concentra-
tions during the first separation step, i.e. 60 and 90 mM NaCl. N-terminal se-
quencing of both forms of AoCO4 indicated different proteolytic processing 
during maturation (Table 11, Publication I). The form of AoCO4 eluting at a salt 
concentration of 60 mM started at residue Q25 and the major activity was eluted 
at 90 mM and corresponded to a more extensively processed form that started at 
R69, after a potential recognition site for KEx2-like proteases (K68-R69). This 
form was thus lacking 51 residues after the signal peptide cleavage site (A18-F19). 
Both forms were active but only the latter major form of AoCO4 was biochemi-
cally characterised. 
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4.2.2 Biochemical characterisation of the catechol oxidase AoCO4 
from Aspergillus oryzae 

The activity of the purified AoCO4 was tested on different phenolic compounds. 
The enzyme was active on both mono and diphenolic substrates with highest 
activity on the diphenolic compound 4-tert-butylcatechol (TBC), which was 
further selected as the substrate for the biochemical characterisation (Publication 
I). In all conditions tested, the purified enzyme had no activity on the typical 
substrates for tyrosinases such as L-tyrosine and L-DOPA. According to its sub-
strate specificity (Table 12) AoCO4 could not be classified as a tyrosinase (EC 
1.14.18.1) but instead was ascribed to the catechol oxidase family (EC 10.3.1). 

Table 12. Summary of the biochemical properties of the purified catechol oxidase AoCO4 
from A. oryzae. 

Feature Technique Result 

Molecular weight Calculation, SDS PAGE, 
MALDI TOF-MS and 
N-terminal sequencing  

42716 Da, 53 kDa, two forms of 
39.3 kDa (from R69) and 40.5 kDa 
(from Q25) 

Substrate specificity Activity measurement Monophenols: aminophenol, guaiacol, 
phenol, tyrosol, p-creasol. Diphenols: 
4-tert-butylcatechol, catechol, caffeic 
acid and hydrocaffeic acid.  
Others: aniline, catechins; 

pI Isoelectric focusing 5.2 

pH optimum  Activity measurement pH 5–7 

pH stability Activity measurement, 
circular dichroism 

>75% activity retained in a 5–9 pH 
range 

Temperature stability Activity measurement T½ at 50°C at pH 7: 20 hrs; T½ at 
60°C at pH 7: 2 hrs, Tm: 70°C 

Cofactor binding UV-vis spectroscopy absorption maxima at 280 nm and  
330 nm  

Presence of aromatic 
residues 

Fluorescence maximum at 330 nm when excited  
at 280 nm  

Secondary structure  Circular dichroism negative peaks at 200 nm and  
220 nm in the far-UV spectrum 

 
As suggested by circular dichroism, absorbance and fluorescence analyses (Ta-
ble 12, Publication I Figures 3 and 4), the purified AoCO4 was correctly folded 
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and incorporated the copper ions required for the catalytic activity. AoCO4 was 
characterised by a significant temperature stability of the secondary structure, 
with a melting temperature of 70°C (Table 12, Publication I Figure 4b). This 
might be related to the presence of the six cysteine residues and the possible 
formation of disulfide bonds that have been shown to improve the temperature 
stability of many proteins, e.g. xylanases (Yang et al., 2007) and ribonuclease A 
(Pecher & Arnold, 2009). 

The phylogenetic analysis and the fact that AoCO4 could be produced in an 
active form suggested that the evolutionary process allowed the loss of the C-
terminal extension found in long tyrosinases (Masayuki et al., 2004), and partial-
ly in sequences from Batrachochytrium dendrobatidis. The results of this study 
do not support the hypothesis that the C-terminal domain is required for correct 
protein folding in terms of copper incorporation and secondary structure for-
mation. However, it cannot be excluded that the C-terminal domain in long tyro-
sinases would keep the enzyme inactive during the secretion process and prevent 
its action on intracellular elements. The recent characterisation of a tyrosinase 
from the bacterium Verrucomicrobium spinosum supports the suggested role of 
the C-terminal domain in copper incorporation and that its removal activates the 
enzyme (Fairhead & Thony-Meyer, 2010). In the case of AoCO4, it might not be 
necessary to keep the enzyme inactive inside the cell since it has no activity on 
tyrosine and thus might constitute no harm to other proteins and the cell metabo-
lism. On the other hand, since no activity was detected on tyrosine the physio-
logical role of AoCO4 is probably not related to melanin synthesis, as for canon-
ical tyrosinases, but it could possibly be involved in detoxification of the extra-
cellular environment, since it is active on aminophenol and it is a secreted pro-
tein. 

4.3 Discovery of sulfhydryl oxidases (Publication II) 

4.3.1 Fungal genome analysis for the identification of novel 
potential sulfhydryl oxidases 

The publicly available fungal genomes were searched for secreted sulfhydryl 
oxidases, e.g. proteins carrying a predicted disulfide oxidoreductase domain of 
class II and, in particular, FAD-dependent protein signatures (InterPro entry 
IPR000103 and IPR013027) and a signal peptide. The 48 protein sequences 
retrieved were aligned and 18 of them had the di-cysteine motif C-X-X-C char-
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acteristic of thiol:disulfide oxidoreductases such as sulfhydryl oxidases (Publica-
tion II, Table 1). 

Predicted sulfhydryl oxidases were abundant in Aspergillus spp. and the close-
ly related species Neosartorya fischeri; the only characterised protein detected 
was the sulfhydryl oxidase from A. niger (AnSOX, CAK40401) (de la Motte & 
Wagner, 1987). The proteins retrieved presented, as expected, conserved se-
quence motifs typical of a nucleotide-binding domain such as the Rossmann fold 
(Table 13). The C-terminal stretches of the sequences analysed were character-
ised by a predicted intrinsic disorder (Table 13). 

A previously uncharacterised proline-tryptophan pair was found in the di-
cysteine C-X-X-C motif of 12 of the predicted sulfhydryl oxidases identified. 
The influence of the dipeptide located between the two conserved cysteine resi-
dues has been studied in DsbA, a protein of E. coli required for disulfide for-
mation in proteins (Quan et al., 2007). The presence of an aromatic amino acid 
in the C-terminal position has been related to catalytic efficiency (Quan et al., 
2007, Lundstrom et al., 1992). An aromatic residue in the C-terminal position of 
the dipeptide within the C-X-X-C motif is found also in the motif CLFC charac-
terising four sequences that grouped on top of the alignment in Publication II 
Figure 1, i.e. A4QYP9 from Magnaporthe grisea, A1DN23 from Neosartorya 
fischeri, Q0CME9 from A. terreus and Q5MBU7 from A. fumigatus. Protein 
Q4WQJ0 from A. fumigatus, with 21.8% identity to AnSOX, had a previously 
uncharacterised dipeptide alanine-valine in the di-cysteine motif (bottom se-
quence in the alignment in Figure 1 Publication II). Conserved sequence motifs 
and their suggested roles are reported in Table 13. 
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Table 13. Conserved sequence features found in the putative sulfhydryl oxidase carrying 
a signal peptide and di-cysteine C-X-X-C motif. 

Sequence feature Position* Description Reference 

N-terminal region 

(V/I)-(V/I)-G-X-G-X(2)-G-X(3)-
A/L 

38–49 typical of the 
Rossmann fold  

(Rossmann et al., 
1974, Wierenga  
et al., 1986) 

Central region 

R-K-B-B-L-A-T-G 153–155 common to FAD and 
NADPH-binding 
proteins  

(Vallon, 2000) 

R-K-B(2)-L-(A/G)-T-G-X(2)-D-
X(&)-G-X-X-(E/D)-X--(G/A)-X-
G-X-(2)-C-X-X-C-(D/H)-G--E

177–180 typical of thi-
ol:disulfide oxidore-
ductases with a thi-
oredoxin fold 

(Fass, 2008) 

C-terminal region 

T-X-B-X-G-B--(A/G)-B-G-D 340–350 GD motif involved in 
the binding of the 
ribityl moiety of FAD

(Vallon, 2000) 

A-B-X-X-G  362–366  G-helix located with-
in the flavin-binding 
domain  

(Vallon, 2000, 
Eggink et al., 1990) 

C-terminus, after E350 in AnSOX 
and K349 in AoSOX1 

380–430 rich in glutamic acid 
and characterised by 
intrinsic disorder 

- 

Abbreviations: X, any residue; B. hydrophobic residue; , aromatic residue. 
*position relative to the alignment in Publication II Figure 1 

 

4.4 Sulfhydryl oxidases AoSOX1 and AoSOX2 from 
Aspergillus oryzae (Publications II–III) 

4.4.1 Production and purification of the sulfhydryl oxidases 
AoSOX1 and AoSOX2 from Aspergillus oryzae 

Two of the secreted putative sulfhydryl oxidases identified were selected to be 
heterologously expressed in a fungal host. Proteins AoSOX1 (Q2UA33) and 
AoSOX2 (Q2U4P33) from A. oryzae shared 50.6% sequence identity and 68% 
sequence similarity and had the sequence features of flavin-dependent sulfhydryl 
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oxidases (Table 11 and Figure 1 Publication II). Proteins AoSOX1 and AoSOX2 
had 64.7 and 47.3% levels of sequence identity to the characterised sulfhydryl 
oxidase from A. niger. The proteins with the highest level of amino acid identity 
to AoSOX1 and AoSOX2 were all from fungal origin and, since only a few stud-
ies have been conducted on secreted sulfhydryl oxidases, they were all not char-
acterised in the literature but annotated from the genome sequence (Table 14). 

Table 14. Level of amino acid identity of AoSOX1 and AoSOX2 to fungal characterised 
and non-characterised protein models. 

Organism  
Protein  

Reference 
Identity 

(%) Annotation Identifier 

AoSOX1 homologs 

Aspergillus 
flavus 

thioredoxin 
reductase 

EED47993 direct submission (J. Craig 
Venter Institute, USA) 

99.5 

Neosartorya 
fischeri 

thioredoxin 
reductase 

XP_001266180 direct submission           
(The Institute for Genomic 
Research, USA 

69.9 

Aspergillus 
fumigatus 

thioredoxin 
reductase 

XP_747990 (Nierman et al., 2005) 68.9 

AoSOX2 homologs 

Aspergillus 
flavus 

thioredoxin 
reductase  

ABY86217 direct submission (J. Craig 
Venter Institute, USA) 

97.7 

Penicillium 
chrysogenum 

- Pc12g03690 (van den Berg et al., 2008) 67.4 

Neosartorya 
fischeri 

cytoplasmic 
thioredoxin 
reductase 

XP_001258605 direct submission            
(The Institute for Genomic 
Research, USA) 

65.5 

 
Following the isolation of the genomic DNA of A. oryzae, the genes coding for 
the predicted proteins AoSOX1 and AoSOX2 (Q2UA33 and Q2U4P3, respec-
tively) were amplified by polymerase chain reaction and cloned to an expression 
vector for heterologous expression in T. reesei. The resulting constructs were 
transformed into a T. reesei production strain. Transformants were selected first 
for resistance to hygromycin, then purified to uninuclear clones through single 
spore cultures, and eventually analysed by polymerase chain reaction to detect 
the presence of the gene of interest. The cloning was planned in order to intro-
duce a C-terminal six-histidine tag to facilitate the subsequent purification step. 
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Positive transformants were grown in shake flasks (culture volume 50 ml) and 
assayed the activity on the substrate glutathione in the medium. The maximum 
production level was reached after 5 days of cultivation and AoSOX1 and 
AoSOX2 was produced in sufficient amounts for the next steps of purification 
and biochemical characterisation (Table 15). 

Table 15. Production levels of AoSOX1 and AoSOX2 in T. reesei after 5 days of cultiva-
tion in shake-flask and percentage of the total secreted proteins in the culture medium. 

Protein Production level (mg/l) Relative amount (%) 

AoSOX1 70 5 

AoSOX2 180 8 

 
First attempts to purify AoSOX1 and AoSOX2 were based on His-tag affinity 
chromatography, but no significant binding to the copper-chelated resin was 
detected. To detect the presence of the histidine-tag, Western blot analysis with 
specific anti-histidine tag antibody was carried out in order to reveal whether the 
histidine tag was buried within the protein molecule. According to the analysis 
the tag was not detected. It was thus concluded that both AoSOX1 and AoSOX2 
were subjected to proteolysis in the C-terminal region during secretion. Accord-
ingly, the C-terminal peptide containing the tag was not detected by MALDI 
TOF-MS analysis of the tryptic peptides. A more careful analysis of the amino 
acid sequences of AoSOX1 and AoSOX2 detected potential cleavage sites for 
Kex2-like proteases just before the tag (K337K338, K358R359, K368R369 in AoSOX1 
and K357R358, K384R385 and R388R389 in AoSOX2, Figure 15). 

Both sulfhydryl oxidases AoSOX1 and AoSOX2 were purified in a two-step 
chromatographic procedure comprising a first separation by anion exchange and 
second by size-exclusion chromatography. A good yield and level of purification 
were achieved for AoSOX1, whereas poorer results were obtained for AoSOX2 
(Table 2 Publication II, Table 1 Publication III). 

Proteins AoSOX1 and AoSOX2, both in the culture medium and in the puri-
fied form, were in-gel digested with trypsin after being subjected to SDS PAGE 
analysis and were identified with a sequence coverage of 24.5% for AoSOX1 
and 23.1% for AoSOX2 by peptide-mass fingerprinting performed with a 
MALDI TOF-MS instrument (Figure 15). 

The second step of purification based on size-exclusion chromatography was 
also used to determine the molecular weights of AoSOX1 and AoSOX2 in na-
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tive conditions. Both AoSOX1 and AoSOX2 appeared to be dimeric proteins 
with a molecular weights in solution of approximately 89 and 78 kDa (Table 16) 
migrating in SDS PAGE as a double band of approx. 45 kDa (Table 16 and Pub-
lication II and III). The presence of a double band was possibly due to heteroge-
neous glycosylation. Various N-glycosylation sites were predicted in both pro-
teins (Figure 15). Since the peptides containing them were not detected during 
protein identification, it was suggested that the sites may be occupied by gly-
cans. This hypothesis is supported by the higher molecular weight detected by 
SDS PAGE and MALDI TOF-MS than the calculated value (Table 16). Moreo-
ver, in the case of AoSOX1 the removal of the glycans by treatment with 
PNGase F resulted in a single protein band of lower molecular weight (Publica-
tion I Figure 2a). 

Dimeric enzymes with sulfhydryl oxidase activity and non-covalently bind-
ing a flavin cofactor have been reported, e.g. from the filamentous fungus 
A. niger (de la Motte & Wagner, 1987), from the plant Arabidopsis thaliana 
(Levitan et al., 2004) and the yeast Saccharomyces cerevisiae (Lee, 2000) 
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AoSOX1    1 MAPKSLFYT---------LFSSLTVALAASVPQTDYEVIVVGGGPAGLTA   41 
                 :.:|         |.|.|:|.: |.:|||:|:||::||||:||:| 
AoSOX2    1 -----MMFTCNWTALLCALLSILSVCV-ADIPQTNYDVIIIGGGPSGLSA   44 
 
AoSOX1   42 LSGLSRVRRKTALFDSHEYRNAATRNMHDVIGNDGTVPSEFRGLAREQIS   91 
            .|.||||.||:.||||.||||..||:||||||||..||:|||..|||||| 
AoSOX2   45 ASALSRVLRKSVLFDSGEYRNNPTRHMHDVIGNDHVVPAEFRKTAREQIS   94 
 
AoSOX1   92 RYDTATFIDKRVNTIETVSDEATNTSYFRAQDADGKAYTARKVVLGTGLV  141 
            .|:..||||::|..:|...|.|     |:|...| :.||||||:||:|:. 
AoSOX2   95 FYNMTTFIDQKVTKLEKTGDNA-----FQATVGD-QQYTARKVILGSGVK  138 
 
AoSOX1  142 DILPDVPGLQEAWGKGVYWCPWCDGYEHRDQPFGILGALPDVVGSVLEVY  191 
            |.|||||||||.:|||::|||||||:|||:|..|:||.:.:..|:|.|:: 
AoSOX2  139 DDLPDVPGLQEGFGKGIFWCPWCDGFEHRNQSMGVLGDISEAYGAVRELH  188 
 
AoSOX1  192 -TLNTDIIAFVNGTQTPDQEAELAKKYPNWEAQLEAYNVRLENETIASFE  240 
            |||.||..:.|||.|.:|.|.|.|.:|||....:||||.:.|:.|.:.. 
AoSOX2  189 PTLNKDIRIYANGTNTTEQIAILDKNHPNWRKVFQAYNVTVNNKPILNIT  238 
 
AoSOX1  241 RIQDGSWVKDRNGTRQIDIFRVHFTNGSSVDRNAFITNYPSEQRSDLPKQ  290 
            |||||:.|.|.....:.|.|:::|.:.||..|.||||||.:.||||||.| 
AoSOX2  239 RIQDGAVVNDPAIRLEFDKFQIYFADNSSEVRGAFITNYGTSQRSDLPAQ  288 
 
AoSOX1  291 LGLAMLGNKIDATTNPGMRTSLPGVWAIGDCNSDNSTNVPHAMFSGKKAA  340 
            ||:.|||:||: |...|::||:||||.:||.||||||||||.|.|||.|| 
AoSOX2  289 LGVEMLGSKIN-TLRKGLQTSVPGVWGVGDANSDNSTNVPHGMSSGKSAA  337 
 
AoSOX1  341 VFAHVEMAKEE--SNTAIDKR------DDFVKEVEKRMGNDMEKIYNR-SRGL 384 
            |:.|||:|:||  .:..::||      :.|.:..|::||::::.:|.| ||. 
AoSOX2  338 VYCHVELAQEELDRDAGLEKRETEFDAESFHETTERQMGSEIQDLYKRLSRR- 389  

Figure 15. Alignment of AoSOX1 and AoSOX2 amino acid sequences. The signal peptide 
(italic), the conserved di-cysteine motif (blue), the C-terminal potential cleavage sites for 
Kex2-like proteases (green) and the predicted N-glycosylation sites (bold) are shown. 
Identical amino acids are connected by a vertical line and similar ones by dots. Tryptic 
peptides detected by MALDI TOF-MS and used for protein identification are underlined. 

4.4.2 Biochemical characterisation of the sulfhydryl oxidases 
AoSOX1 and AoSOX2 from Aspergillus oryzae 

Solutions containing the purified enzymes AoSOX1 and AoSOX2 had a charac-
teristic bright yellow colour and the flavoenzymatic nature of both AoSOX1 and 
AoSOX2 was confirmed by the UV-Vis absorbance spectrum (Figure 16, Table 16), 
similarly to the glutathione oxidase from Penicillium spp. (Kusakabe et al., 
1982). The flavin cofactor was removed from AoSOX1 after denaturation with 
SDS (0.2%) and heat treatment (10–30 minutes at 95°C in the dark) and an ex-
tinction coefficient at 450 nm of 12160 M-1 cm-1 could be calculated, Figure 4 
Publication II). 
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Figure 16. The flavin cofactor bound to 
AoSOX2 is indicated in the absorbance 
spectrum of the purified enzyme by the 
peaks at approx. 370 and 440 nm. The 
dotted line is a 5X magnification of the 
absorbance spectrum. 

 
The best reducing substrates for AoSOX1 and AoSOX2, among the tested, were 
glutathione and DTT, respectively (Table 16). These compounds are however 
improbable natural substrates for these enzymes, the physiological role of which 
have not yet been established. 

Inhibition studies of AoSOX1 and AoSOX2 by different salts showed a dras-
tic inhibition by zinc sulphate, similarly to the glutathione oxidase isolated from 
Penicillium (Kusakabe et al., 1982). Cysteine residues are able to chelate diva-
lent metal ions such as zinc and considering the paucity of cysteine residues in 
AoSOX1 and AoSOX2, the inhibition by zinc might confirm the presence of 
reactive cysteine residues at the catalytic centre, i.e. the di-cysteine motif 
CPWC. Only minor inhibition was caused by the other compounds tested (Pub-
lication II Table 4, Publication III, Table 3). 

Both AoSOX1 and AoSOX2 showed good stability in different pH and tem-
perature conditions (Table 16). However, the melting temperature of AoSOX2, 
as assayed by circular dichroism, was about 20˚C higher than for AoSOX1 and 
AoSOX2 also retained activity after one hour of incubation at 60˚C (Table 16, 
Publication II and III). The key biochemical features of AoSOX1 and AoSOX2 
are reported in Table 16. 
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Table 16. Summary of the biochemical features of the purified enzymes AoSOX1 and 
AoSOX2 from A. oryzae. 

Feature Technique AoSOX1 AoSOX2 

Molecular 
weight 

Calculation, SDS 
PAGE, MALDI 
TOF-MS and 
N-terminal 
sequencing  

42.5 kDa,45 kDa,: 
43.96 kDa, 89 kDa 

41.5 kDa, 45 kDa,  
42.41 kDa, 78 kDa 

Substrate 
specificity  

Activity 
measurement 

(Vmax/Km,s-1) 

Monothiols: GSH 
(55010), L-Cys (364), 
D-Cys (163), ß-ME (219); 
Dithiols: DTT (5451). 

Monothiols: GSH (370), 
L-Cys (106), D-Cys 
(116), ß-ME (136); 
Dithiols: DTT (1342). 

pH optimum  Activity 
measurement 

7.5–8.0 7.5–8.0 

Stability to pH Activity 
measurement 

>80% activity retained 
after 24 h incubation at 
pH 5–8.5, activity loss 
pH<4 

>80% activity retained 
after 24 h incubation at 
pH 4–8, activity loss 
pH<3 

Stability to 
temperature 

Activity 
measurement 

>70% activity retained 
after 24 h incubation at 
40°C 

>65% activity retained 
after 1 h incubation at 
60°C 

Cofactor 
binding 

UV-Vis 
spectroscopy  

absorption maxima at 
275, 370 and 440 nm,  
a shoulder at 365 nm 

absorption maxima at 
275, 354 and 445 nm,  
a shoulder at 470 nm 

Presence of 
aromatic 
residues/ 
flavin cofactor 

Fluorescence 
spectroscopy 

fluorescence maximum 
at 334 nm when excited 
at 290 nm and at  
525 nm when excited  
at 450 nm 

fluorescence maximum 
at 337 nm when excited 
at 290 nm and at  
525 nm when excited  
at 450 nm 

Secondary 
structure 

Circular dichroism negative peaks at 210 
and 220 nm in the  
far-UV spectrum 

negative peaks at 210 
and 225 nm in the  
far-UV spectrum 

Stability to 
denaturation 

Circular dichroism, 
fluorescence 
spectroscopy 

Tm: 57ºC 
Cm: 2.5 M GndHCl 

Tm: 75ºC 
Cm: 4 M GndHCl 

Abbreviations: Tm, melting temperature; Cm, melting concentration. 

 
Fluorescence studies confirmed the presence of aromatic residues in the primary 
structure of AoSOX1 and AoSOX2 and circular dichroism revealed α-helical 
elements in their secondary structure (Table 16 and Publication II and III). In 
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order to briefly characterise the flavin binding site of AoSOX2, the purified en-
zyme was incubated in the presence of sulfite and the absorbance spectrum of 
AoSOX2 showed a decrease in the absorbance peaks of the cofactor with a max-
imum variation at 445 nm (Publication III Figure 4). The formation of the cova-
lent colourless complex between the flavin and sulfite ion (Massey et al., 1969) 
has long been considered specific of oxidases and recently found characteristic 
of proteins with a positively charged residue near the flavin (Leferink et al., 
2009). 

4.5 Application of the sulfhydryl oxidase AoSOX1 in 
wheat dough (Publication IV) 

The sulfhydryl oxidase AoSOX1 was evaluated as a possible improver in fresh 
and frozen wheat doughs. The experiments were carried out with flours contain-
ing ascorbic acid (42 ppm, 24 x 10-8 moles/g flour) and without ascorbic acid. 
One unit (U) of sulfhydryl oxidase activity was defined as the amount of enzyme 
able to catalyse the reduction of 1 nanomole of oxygen per second. The effects 
caused by sulfhydryl oxidase were evaluated with respect to the development of 
fresh and frozen yeasted dough and to the strength and extensibility of non-
yeasted fresh dough. 

4.5.1 Effect of sulfhydryl oxidase on yeasted frozen dough with and 
without ascorbic acid 

The addition of AoSOX1 had no detectable effect on the development of fresh 
doughs prepared either with flour containing ascorbic acid or without any im-
prover (Publication IV Figure 2 and 3). On the other hand, the activity of the 
sulfhydryl oxidase was evident in doughs subjected to a long frozen storage. 

Frozen doughs containing ascorbic acid in combination with the sulfhydryl 
oxidase had a clear reduction in maximum dough height, Hm, and time of max-
imum development T1 and T’2 after six weeks of frozen storage (Figure 17 and 
Publication IV Supplementary data 3 and Publication IV Figure 1A, B and E). The 
presence of AoSOX1 did not affect the gas retention properties of the dough and 
the tolerance (time the dough has the maximum height, Publication IV Figure 
1C, D, F). 
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Figure 17. Development curves of fresh (black lines) and frozen (red lines) doughs made 
from commercial flour containing ascorbic acid with (continuous line) and without (dotted 
line) addition of 100 U/g sulfhydryl oxidase in flour. Fermentation was monitored by 
Rheofermentometer F3. 

Doughs prepared with flour not containing ascorbic acid and treated with differ-
ent amounts of sulfhydryl oxidase were significantly softer than the control 
dough after frozen storage. AoSOX1 at high concentration accelerated the dele-
terious effects caused by freezing, and the characteristics found after 4 weeks of 
frozen storage in the control doughs were detected already after 1 week in 
doughs containing 100 U/g of AoSOX1, e.g. gas retention properties (H’m, Pub-
lication IV Figure 2C) and total volume (Publication IV Figure 2D). Dough tol-
erance was however not affected. 

4.5.2 Effect of sulfhydryl oxidase on non-yeasted fresh dough with 
and without ascorbic acid 

In order to evaluate the effects of the sulfhydryl oxidase AoSOX1 on the exten-
sibility and strength of wheat dough, further studies were carried out in a simpli-
fied system, i.e. yeast-free water-flour dough. Measurements were performed 
with a Kieffer dough and gluten extensibility rig fitted onto a TA.XT2 texture 
analyzer. 

When the ascorbic-acid free flour was used, loss of strength and increase in 
dough extensibility were observed with increase of enzyme dosage (Figure 18A 
and Publication IV Figure 3A). A concentration of 100 U/g of AoSOX1 resulted 
in a reduction in strength of 22% and an increase in extensibility of 23% after 20 
minutes of relaxation time. Opposite effects were observed when the sulfhydryl 
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oxidase was added to dough prepared with flour containing ascorbic acid (Figure 
18B and Publication IV Figure 3B), and stronger and less extensible doughs 
were obtained. In a dough containing 100 ppm ascorbic acid, a sulfhydryl oxi-
dase concentration of 100 and 1000 U/g increased the strength by 7 and 43% and 
reduced the extensibility by 15 and 57% after 50 minutes, respectively. 

The results suggested a clear interaction between the sulfhydryl oxidase and 
the ascorbic acid system in the flour. In order to clarify whether this was de-
pendent on the amount of ascorbic acid, a constant amount of sulfhydryl oxidase 
(1000 U/g) was added to doughs containing increasing amounts of ascorbic acid 
(0–1000 ppm). The synergistic effect was not dependent on the concentration of 
ascorbic acid and a constant ca. 10–15% increase in strength after 20 and 40 
minutes of relaxation time was measured. (Figure 18C and Publication IV Figure 
3C). About 10% reduction of extensibility was observed after 40 minutes in 
doughs containing ascorbic acid (Publication IV Figure 3C). 
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Figure 18. Effect of AoSOX1 and ascorbic
acid (AA) on wheat dough. Increasing dos-
ages of AoSOX1 were added to non-
yeasted dough without (A) and with 100 ppm
ascorbic acid (B). The effect of 1000 U/g of
sulfhydryl oxidase on the properties of
dough containing increasing concentrations
of ascorbic acid is shown in (C). Dough
properties were measured in terms of
strength (black line) and extensibility (green
line) after 20 (square), 40 (circle) and 50
minutes (triangle) by Kieffer rig. In panel C,
control doughs are indicated by a continu-
ous line and doughs containing sulfhydryl
oxidase by a dashed line. 
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4.5.3 Mechanism of action of the combined use of sulfhydryl 
oxidase and ascorbic acid 

On the basis of the results obtained, suggestions for the mechanism of action of 
AoSOX1 in wheat dough were made and evaluated. Sulfhydryl oxidase could 
potentially affect the ascorbic acid system in many ways. Sulfhydryl oxidase 
could act directly (1) by converting the ascorbic acid to dehydroascorbic acid, 
the actual improver, or (2) by acting similarly to the enzyme glutathione dehy-
drogenase of flour, e.g. coupling the oxidation of glutathione with the reduction 
of dehydroascorbic acid to ascorbic acid (Walther & Grosch, 1987). The effect 
due to the sulfhydryl oxidase could also be indirect, (3) by producing reactive 
species such as hydrogen peroxide able to affect the action of the ascorbic acid. 

Ascorbic acid and dehydroascorbic acid were not substrates for this enzyme 
(Publication IV) and therefore AoSOX1 could not be directly affecting the 
mechanism of the ascorbic acid. 

In order to test the influence of the reaction catalysed by AoSOX1 on ascor-
bic acid and dehydroascorbic acid, the oxidation of glutathione by sulfhydryl 
oxidase was carried out in the presence of these compounds. It was possible to 
monitor the concentration of ascorbic acid in the reaction mixture spectrophoto-
metrically as absorbance at 265 nm. 

Increasing concentrations of sulfhydryl oxidase incubated in the presence of 
glutathione and dehydroascorbic acid negatively affected the spontaneous reduc-
tion of the latter compound to ascorbic acid (dotted line in Publication IV Figure 
4A). This suggested that a reactive species produced by the enzymatic reaction, 
i.e. hydrogen peroxide, was able to remove the ascorbic acid formed by convert-
ing it into a UV-transparent compound such as dehydroascorbic acid. High con-
centrations of sulfhydryl oxidase in the reaction mixtures were also reflected in 
lower final absorbance values at 265 nm after 2 minutes (Publication IV Figure 
54, inset). 

In order to directly evaluate the effect of the hydrogen peroxide produced by 
the sulfhydryl oxidase on the oxidation of ascorbic acid, ascorbic acid was incu-
bated in the presence of glutathione and different amounts of enzyme for two 
hours at pH 6. A progressive decrease in the concentration of ascorbic acid was 
detected indicating its oxidation by the hydrogen peroxide produced by 
AoSOX1-catalysed reaction (Publication IV, Figure 4). 

After combining the results obtained, a mechanism of action of the sulfhy-
dryl oxidase in wheat dough containing ascorbic acid was suggested (Figure 19). 
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The sulfhydryl oxidase promoted the action of the ascorbic acid in the dough by 
two indirect ways: firstly, by contributing to removal of reduced glutathione able 
to loose the protein network by reducing the disulfide bonds between gluten 
proteins, and secondly, by producing hydrogen peroxide that is able to oxidise 
the ascorbic acid to the actual improver, dehydroascorbic acid (Figure 19). 
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Figure 19. Proposed interaction between the mechanism of action of ascorbic acid in 
wheat dough and the reaction catalysed by the sulfhydryl oxidase AoSOX1. Abbrevia-
tions: GSH and GSSG, reduced and oxidised glutathione respectively, AA, ascorbic acid, 
dhAA, dehydroascorbic acid. 

The positive effect of the reaction catalysed by AoSOX1 on the hardening of 
wheat dough caused by ascorbic acid indicates the potential of this enzyme and 
AoSOX1 for industrial applications. The combined use of AoSOX1 and ascorbic 
acid could constitute a valid tool for improvement of the properties of baked 
wheat products. Similar positive effects in wheat dough have been obtained by 
combining ascorbic acid and potassium bromate, a substance currently consid-
ered to be health-hazardous (Kurokawa et al., 1990) and withdrawn from the 
market in many countries. The use of AoSOX1 from A. oryzae could thus pro-
vide a healthier alternative to the use of potassium bromate in baked products.
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5. Conclusions and future prospects  

A wide variety of different enzymes is available in nature, each catalysing a 
specific reaction in a highly efficient manner. The use of enzymes in industrial 
processes offers many advantages such as low energy requirements, high reac-
tion specificity and possibilities for more environmentally friendly processes. 
This study aimed at the discovery of novel tyrosinases and sulfhydryl oxidases 
with a potential crosslinking activity and possible application potential, especial-
ly in the food industry. 

In the first part of the study, a search of the available fungal genomes identi-
fied a novel family of proteins with the sequence features of tyrosinases but 
shorter in length and lacking the linker and C-terminal domain. A member of 
this family, the enzyme biochemically characterised as catechol oxidase AoCO4, 
was produced in Trichoderma reesei (production level 1.5 g/l) and biochemical-
ly characterised. AoCO4 was active on mono and diphenolic compounds such as 
catechol, caffeic acid and tyrosol, but showed a relatively low level of activity 
on the tested substrates. AoCO4 had no activity on the typical substrates of tyro-
sinases and was thus classified as a catechol oxidase. Despite the lack of the C-
terminal domain, AoCO4 was active and produced in correctly folded form 
binding the copper cofactor and thus contributed to the ongoing discussion con-
cerning the role of the C-terminal domain of tyrosinases with regard to enzyme 
activation, correct folding and cofactor incorporation. Future structural studies 
will address the resolution of the three-dimensional structure of AoCO4 and 
characterisation of other members of the novel family of short protein sequences 
with the sequence features of tyrosinases. 

A second genome search led to the identification of numerous potential se-
creted sulfhydryl oxidases in fungi. This study reports the heterologous produc-
tion and biochemical characterisation of two of them, AoSOX1 and AoSOX2 
from Aspergillus oryzae (production levels 70 and 180 mg/l, respectively). 
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AoSOX1 and AoSOX2 were FAD-dependent enzymes active on small thiol 
compounds such as glutathione, dithiothreitol and cysteine, and analysis by cir-
cular dichroism revealed the presence of α-helical elements in their secondary 
structure. The activity of AoSOX1 and AoSOX2 was drastically inhibited by 
zinc, suggesting the presence of reactive cysteine residues at the active site. 
AoSOX1 and AoSOX2 showed good pH and temperature stability and thus good 
potential for industrial applications. 

The application of the enzyme AoSOX1 was tested for improving the proper-
ties of fresh and frozen wheat dough. AoSOX1 showed no effect on the fermen-
tation of fresh yeasted dough either in the presence or absence of ascorbic acid. 
However, the presence of AoSOX1 in frozen doughs without ascorbic acid re-
sulted in doughs softer than the control, whereas the combined use of AoSOX1 
and ascorbic acid led to a dough harder than the control. Tests in yeast-free wa-
ter-flour doughs confirmed that sulfhydryl oxidase had a weakening effect on the 
dough when used alone, i.e. it increases the extensibility and lowers the strength. 
The presence of the sulfhydryl oxidase enhanced the hardening effect of the 
ascorbic acid in a dose-dependant manner by increasing the dough strength and 
reducing the extensibility. This effect was ascribed to an increased formation of 
dehydroascorbic acid, the actual improver, by the action of the hydrogen perox-
ide produced in the reaction catalyzed by AoSOX1. In addition, the activity of 
the sulfhydryl oxidase possibly contributed to a more efficient removal of the 
reduced glutathione that is able to weaken the dough protein network. 

AoSOX1 had a possible application in the baking industry as an alternative to 
potassium bromate, a bread improver currently withdrawn from the market due 
to the hazardous effects on human health. Further studies will be performed in 
order to evaluate the effects of the combined use of AoSOX1 and ascorbic acid 
on the final baked product. 

This study reported the discovery and production of three novel enzymes and 
showed that genome analysis can be a powerful tool for this task. In the near 
future the crosslinking activity of all the three novel enzymes identified in this 
study, i.e. AoCO4, AoSOX1 and AoSOX2, should be assessed on model pro-
teins as substrates. The potential applications of sulfhydryl oxidases are numer-
ous and not limited to their potential crosslinking activity. Sulfhydryl oxidases 
can be utilised by the food industry either to act on protein complex structures as 
crosslinking enzymes or to oxidise small thiol compounds. The action of sulfhy-
dryl oxidases on small thiol compounds indicates their potential use to tailor the 
flavour of food and beverages, for example of fermented products such as wine 
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and beer. Moreover, these enzymes have a potential utilization in the removal of 
off-flavours either from industrial products or residual by-products such as 
wastewaters. In the beverage and milk industry, the hydrogen peroxide produced 
by sulfhydryl oxidases can be used to control undesired microbial contamina-
tions and thus produce safer products. The high specificity of the reaction cata-
lysed by sulfhydryl oxidases makes them useful for the production of thiol-
containing bioactive and pharmaceutical compounds, and wherever the oxidation 
of sulfhydryl groups is required but harsh oxidising conditions are not suitable 
for the process, e.g. folding of therapeutic proteins and antibodies. 
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