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Membrane fusion in eukaryotic cells mediates the biogenesis of 
organelles, vesicular traffic between them, and exo- and endocytosis of 
important signaling molecules, such as hormones and 
neurotransmitters. Distinct tasks in intracellular membrane fusion have 
been assigned to conserved protein systems. Whereas tether proteins 
mediate initial recognition and attachment of membranes, SNARE 
protein complexes are considered as the core fusion engine. They 
provide mechanical energy to distort membranes and drive them 
through a hemifusion intermediate towards the formation of a fusion 
pore1-3. This last step is highly energy-demanding4,5. We combined the in 
vivo and in vitro fusion of yeast vacuoles with molecular simulations to 
show that tether proteins are critical to overcome the final energy barrier 
to fusion pore formation. SNAREs alone drive vacuoles only into 
hemifusion. Tether proteins greatly increase the volume of SNARE 
complexes and deform the site of hemifusion, which lowers the energy 
barrier for pore opening and provides driving force. Thereby, tether 
proteins assume a critical mechanical role in the terminal stage of 
membrane fusion, which is likely to be conserved at multiple steps of 
vesicular traffic. SNAREs and tether proteins should hence be 



 2 

considered as a single, non-dissociable device to drive fusion. The core 
fusion machinery may then be larger and more complex than hitherto 
thought. 
 

SNAREs dock membranes by stepwise assembly into 4-helix bundles. They 

exert mechanical force through their transmembrane domains (TMDs)1,2. This 

induces fusion of the outer leaflets (hemifusion), followed by inner leaflet 

fusion and pore formation. Pore formation can be preceded by full zippering of 

the 4-helix bundle 6. Fusion is often studied with synaptic SNAREs, which use 

unique cofactors to fuse highly curved neurotransmitter vesicles with exquisite 

speed and temporal control7. The membranes in most other fusion reactions 

fuse more slowly, are much less curved, and their SNARE density is lower. 

Fusion driven solely by SNAREs becomes much less effective with increasing 

vesicle diameter and decreasing SNARE density 8,9. Then, multi-subunit 

tether complexes become important. These facilitate membrane contact, 

associate with the SNARE-binding SM proteins10-12 and promote trans-

SNARE pairing. We investigated whether tether complexes enhance the 

fusogenic potential of SNARE complexes, by increasing the force that 

SNAREs transmit to the bilayers, or by lowering the energy barrier for fusion 

pore formation.  

 

HOPS is the tether complex for vacuole and lysosome fusion. Vacuoles from 

cells deleted for the Rab7-GTPase Ypt7 lack HOPS (Extended Data Fig. 1a)13. 

This prevents fusion and pairing between the vacuolar SNAREs Vam3, Vti1, 

Vam7 and Nyv114. Incubating these membranes with soluble, recombinant 

vacuolar Qc-SNARE Vam7 (rVam7) allows to stimulate trans-SNARE pairing. 

Then, the reaction is independent of endogenous Vam7, which must 

otherwise be liberated by Sec18/NSF-dependent disruption of cis-SNARE 

complexes15. Fusion can hence proceed without ATP, avoiding interference 

by the ATP-driven chaperone NSF, which disassembles SNARE complexes 

unless HOPS protects them14. To assay trans-SNARE pairing, we separately 

prepared vacuoles from ypt7D or wildtype strains expressing Nyv1-HA or 

Vam3-myc. We mixed them in fusion reactions with rVam7 and measured 
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trans-SNARE pairing through co-immunoadsorption of Vam3-myc with Nyv1-

HA. Adding rVam7 to ypt7D vacuoles induced similar trans-SNARE pairing as 

in wildtype vacuoles (Fig. 1a,b). We measured content mixing by transfer of a 

45 kDa enzyme between the fusion partners (Extended Data Fig. 2), and lipid 

mixing by fluorescence dequenching through dilution of rhodamine-

phosphatidylethanolamine3,16. The trans-SNARE complexes on ypt7D 

vacuoles failed to induce content mixing (Fig. 1c), whereas lipid mixing was 

similar to wildtype (Fig. 1d,e). Thus, HOPS-free ypt7D vacuoles reached a 

hemifused state but failed to form a fusion pore, or to open it wide enough to 

let the reporter pass. Lipid mixing was sensitive to antibodies targeting the Qa-

SNARE Vam3 or the R-SNARE Nyv1, confirming that the reaction was 

SNARE-dependent. The ypt7D trans-SNARE complexes are probably fully 

zippered, because this is prerequisite for lipid mixing17.  

 

To test the effect of HOPS on pore opening, we accumulated ypt7D vacuoles 

for 60 min in the hemifused state, added purified HOPS or subcomplexes 

thereof (Extended Data Fig. 1b), and assayed content mixing after 15 min of 

further incubation. HOPS is a hexameric complex with a globular SNARE-

binding domain, which contains the SNARE-binding SM-protein Vps33 and its 

interactor Vps16 (Fig. 1f)18. Vps33 (79 kDa) did not stimulate fusion (Fig. 1g), 

whereas the bigger Vps33-Vps16 subcomplex (159 kDa) rescued fusion to 

80% of an untreated wildtype control, which had been incubated under 

standard fusion conditions with ATP. A Vps11-Vps39 subcomplex (240 kDa), 

representing the opposite end of HOPS without a SNARE interaction site, had 

no effect (Fig. 1g). As the biggest structure, HOPS (663 kDa) rescued ypt7D 

fusion to wildtype level. The endosomal CORVET complex, which is of similar 

size as HOPS and shares Vps33 with it11, stimulated fusion as well as HOPS 

(Extended Data Fig. 3). The specificity of these complexes is hence restricted 

to their Rab-GTPase-dependent function in membrane tethering. HOPS had 

not enhanced trans-SNARE pairing beyond the level attained by the 

preincubation with rVam7 (Fig. 1a,b). It did not induce fusion in the absence of 

Vam7, nor upon pre-incubating the vacuoles with antibodies to Vam3 (Fig. 1g, 

Extended Data Fig. 4). Thus, rescue was SNARE-dependent. These results 
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suggest an additional role of HOPS in fusion pore opening, which is 

independent of its known role in facilitating SNARE pairing12,19. 

 

To test whether pore opening might be driven by increased SNARE complex 

volume, we accumulated hemifused ypt7D vacuoles and added CBP-Vps33, 

which does not stimulate pore opening. When we tripled the effective 

molecular mass of Vps33 by adding a monoclonal antibody (150 kDa) to its 

CBP-tag, content mixing increased 5-fold and reached >50% of the wildtype 

signal (Fig. 2a). Antibodies did not stimulate fusion when Vps33 had been 

omitted, nor when Vps33 was used with a non-cognate HA-antibody. CBP-

Vps33 alone decreased content mixing of wildtype vacuoles by 60% and this 

inhibition could be partially overcome by adding CBP-antibodies. This can be 

understood if CBP-Vps33 outcompetes endogenous HOPS for SNARE 

binding but by itself does not add sufficient mass to stimulate fusion.   

 

Next, we replaced HOPS by artificial SNARE-binding proteins, using solely 

polyclonal antibodies to SNAREs (Fig. 2b). When added from the beginning of 

a reaction, SNARE antibodies interfere with trans-SNARE pairing and block 

fusion. To circumvent this block, we first accumulated ypt7D vacuoles in 

hemifusion, with trans-SNARE complexes already formed. Now, anti-Nyv1 or 

anti-Vam3 became strong stimulators. They rescued content mixing to 50% 

when added individually and to 100% when added simultaneously. Wildtype 

vacuoles, which contain sufficient amounts of endogenous HOPS, were 

hardly stimulated by the antibodies. Thus, artificial SNARE ligands substitute 

for HOPS in fusion pore opening in vitro.  

 

Since bivalent antibodies to SNAREs might promote fusion by clustering 

SNARE complexes around a fusion site, we generated monovalent Fab 

fragments from them (Extended Data Fig. 1c). These inhibited fusion and 

trans-SNARE pairing when added before docking (Fig. 2c,d), but they potently 

stimulated content mixing of hemifused vacuoles without affecting trans-

SNARE pairing. Individual use of Fabs to either Vam3 or Nyv1 stimulated 

fusion weakly, probably becaus e Fabs are smaller (56 kDa) than IgGs (150 
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kDa) and their dimensions permit to place no more than two Fabs along a 

SNARE domain. Fabs to a single SNARE may therefore not add sufficient 

volume to SNARE complexes to drive pore opening. Crowding agents20, such 

as Ficoll 400, had no influence, suggesting that bulky SNARE complex 

ligands do not stimulate fusion by molecular crowding (Extended Data Figs. 5, 

3). Thus, HOPS may promote fusion pore formation in vitro by increasing the 

volume of SNARE complexes. 

 

We engineered an in vivo system for recruiting large ligands to SNAREs, 

using FKBP12 and FRB, two domains undergoing rapamycin-induced 

dimerization21. FKBP12 (12 kDa) was attached to the C-terminus of Vam7, 

which is close to the TMDs of the SNARE complex. FRB-GFP (38 kDa) was 

attached to Pfk1, a subunit of the octameric, soluble phosphofructokinase 

(850 kDa), which is unrelated to fusion (Fig. 3a, Extended Data Fig. 1d,e). 

Rapamycin-insensitive tor1-1 cells served as strain background to avoid side 

effects of rapamycin treatment through TOR signaling22. tor1-1 cells have 

multiple vacuoles under normal growth conditions. Rapamycin recruited Pfk1-

FRB-GFP to vacuoles within less than 10 min (Fig. 3b,c). These vacuoles 

fused, significantly reducing their number per cell. Recruitment, but not fusion, 

was observed when FKBP12 was separated from Vam7 by a 35 amino acid 

linker (Fig. 3c). Vam7 lacking FKBP12 induced neither recruitment nor fusion 

(Fig. 3b). Also an FRB-GFP chimera lacking phosphofructokinase did not 

provoke fusion (Extended Data Fig. 6). 

 

HOPS recruitment controls re-fusion of vacuoles following hypertonic shock23. 

Hypertonic shock fragments yeast vacuoles in <5min, Vps41 becomes 

phosphorylated and dissociates into the cytosol, likely together with HOPS24. 

Vacuole recovery requires Vps41 dephosphorylation, reassociation of HOPS 

with vacuoles and fusion. Whereas re-fusion requires >60 min in wildtype 

cells, rapamycin-induced recruitment of Pfk1-FRB-GFP to SNAREs provoked 

premature fusion of these vacuolar fragments, circumventing the physiological 

inactivation of HOPS (Extended Data Fig. 7). Fusion was not observed in cells 

lacking FKBP12 on Vam7, nor when rapamycin was omitted.  
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We explored the influence of bulky SNARE ligands by coarse-grained 

molecular dynamics (Fig. 4a). HOPS features a SNARE-binding domain of 

approximately 12-14 nm diameter, which probably encapsulates the SNARE 

complex11,18 (Fig. 1f). Binding a sphere of the size of this head region to 

SNAREs markedly affects the geometry of the hemifusion stalk (Fig. 4a). The 

stalk restrains the apposed membranes from separating, enforcing strong 

local curvature. We rationalized the acceleration of fusion from the apparent 

work (free energy) required to thin the hemifusion stalk (Fig. 4a,b and SI). 

Progression from hemifusion to pore opening decreases the mutual distance 

of the SNARE C-termini until they associate (Fig. 4a). The presence of a 

HOPS sphere (14 nm) halves the energetic cost of fusion pore opening (from 

67 kBT to 34 kBT) in a tension-less membrane system with 3 SNARE 

complexes (Fig. 4b, Extended Data Fig. 8). Pore nucleation now requires far-

less thinning of the stalk. We attribute the enhanced (non-leaky) fusion pore 

formation to (I) a partial, relative relaxation of the HOPS-induced curvature 

stress (~30 kBT; Fig. 4c, Extended Data Fig. 9), and (II) a geometrical 

advantage because of the pre-existing curvature (Extended Data Fig. 8). 

Smaller contributions can be made by an initial gain in SNARE pulling force 

(Extended Data Fig. 10). HOPS thus stimulates pore opening by steric effects 

on the site of hemifusion. These aspects are elaborated in supplementary 

discussion. 

 

We can understand numerous unexplained findings from this perspective: (1) 

SNARE-associated tether protein complexes (Munc13 and its associated SM 

protein Munc18) are essential for fusion of synaptic vesicles. While this can 

reflect their role in SNARE complex assembly, Munc13/18 might also drive 

fusion itself25. Accordingly, mutations that reduce Munc18 affinity for SNAREs 

change fusion pore dynamics26. (2) Also mutating the yeast Munc18 homolog 

Sec1, which associates with the tether complex exocyst27, reduces exocytosis 

without reducing SNARE complex abundance28,29. (3) On vacuoles, mutations 

compromising Vps33 binding to vacuolar SNAREs impair content mixing more 

than lipid mixing and trans-SNARE pairing16 (4) HOPS also enhances 
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liposome fusion more than trans-SNARE pairing30;  (5) binding to Sec17/a-

SNAP and Sec18/NSF renders trans-SNARE complexes more fusogenic17,31.  

 

Our simulations and experimental observations suggest that bulky SNARE-

ligands can drive fusion irrespective of specific molecular properties, except 

for their size. Since SM proteins and tethering complexes are indispensable 

for fusion in multiple trafficking pathways11, we propose that the driving force 

that they can contribute to fusion is a critical and conserved feature of their 

function. In physiological membranes, SNAREs and the tether/SM protein 

system thus act as an integrated molecular machine, in which tether/SM 

proteins first facilitate SNARE pairing11 and then drive the very last step of 

fusion.  
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Figure Legends 

 

Figure 1: Effect of soluble Vam7 on lipid and content mixing. 
a, b, Trans-SNARE pairing. Vacuoles were isolated from wildtype (BJ3505) or 

isogenic ypt7D cells carrying Vam3-myc or Nyv1-HA. The two vacuole populations 

were mixed and incubated in fusion reactions with ATP, Vam7 and HOPS as 

indicated. Proteins were solubilized, pulled down with anti-HA and analyzed by 

SDS-PAGE and Western blotting (a). Trans-SNARE pairing is assessed by Vam3-

myc co-adsorbed to Nyv1-HA. Bands were quantified (b). c-e, Hemifusion in ypt7D 

vacuoles: Vacuoles from wildtype and ypt7D cells were incubated in ATP-free 

fusion reactions with 600 nM rVam7 and 10 mg/ml BSA. Antibodies (200 nM) had 

been added where indicated. c, Content mixing was determined after 60 min, 

using the activation of pro-alkaline phosphatase by a maturase from the fusion 

partners. d,e, Lipid mixing was followed by dequenching of the fluorescence of Rh-

phosphatidylethanolamine, which had been integrated at self-quenching 

concentrations into one of the fusion partners. f, Structure of HOPS (from18). g, 
Effect of HOPS subcomplexes on content mixing. Vacuoles were incubated in 

fusion reactions as in C for 60 min, with anti-Vam3 where indicated. Then, the 

samples received 400 nM purified (CBP)-tagged HOPS sub-complexes or Vps33 

and were incubated for further 15 minutes before content mixing was assayed. For 

a-e and g, means ± s.d. are shown from n=3 biologically independent experiments. 

  
Figure 2: Fusion pore opening driven by ligands increasing SNARE complex 
size in vitro. 
a, Vps33. Fusion reactions with wildtype and ypt7D vacuoles were started as in Fig. 

1g. After the first 60 min incubation period, samples received recombinant CBP-

Vps33 (400nM), antibodies to CBP or HA (200 nM), or buffer only. After further 15 

min, content mixing was assayed. b, Antibodies. Two-stage fusion reactions were 

performed as in a, but only with rVam7. Antibodies (200 nM) against Vam3, Nyv1 

or Sec18/NSF were added either during the first 60 min incubation (I°) or during 

the second incubation (II°) of 15 min. c, Fab fragments. Experiment as in b, but with 

Fab fragments instead of antibodies. d, Trans-SNARE pairing was assayed using 

tagged strains as in Fig. 1a. Reactions with staged addition of rVam7 and Fabs 
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were run as in c. For all subfigures, means ± s.d. are shown from n=3 biologically 

independent experiments. 

 
Figure 3: Effect of SNARE complex enlargement on vacuole fusion in vivo. 
a, Schematic view of rapamycin-induced FKBP12/FRB-tagged Pfk1-recruitment to 

the SNARE complex without and with a long linker between Vam7 and FKBP12. b, 
c, In vivo vacuole morphology. Logarithmically growing cells, carrying Pfk1-FRB-

GFP and (b) Vam7 or Vam7-2xFKBP12, or (c) Vam7-LL-2xFKBP12 with a 35 

amino acid linker, were stained with the vacuole tracer FM4-64. Cells were 

incubated with 10 µM rapamycin for 10 min where indicated and analyzed by 

spinning disc microscopy. The cells were grouped into three categories according 

to the number of vacuoles visible per cells. 100 cells were analyzed per sample. 

Scale bar: 5 µm. Means and s.d. are shown from n=3 biologically independent 

experiments. 

 

Figure 4: Molecular dynamics simulations on the influence of steric 
constraints at the (hemi-)fusion site.  

a, Simulation setup: Two hemifused membranes in the presence of the SNARE 

complex that is either free or bound to a sphere equivalent to the size of the 

SNARE-binding domain of HOPS (14 nm). The size of 'HOPS' and positioning of 

the SNARE complex are inspired by EM and crystal structures 9,11,18. To enhance 

clarity, only one SNARE complex is illustrated. b, The free-energy of fusion pore 

formation is derived by measuring the work (free energy) required to thin the stalk 

until fusion pore nucleation occurs32 (see Extended Data Fig. 8). Arrows and 

dotted lines indicate the point of pore nucleation. Error bars are calculated via 

Bayesian resampling of 50 overlapping WHAM histograms. Each parental WHAM 

histogram is comprised of >30000 data points (autocorrelation up to ~1500 data 

points).  c, Work distribution reflecting the equilibrium work that HOPS must 

perform to bend the membrane in the presence of a stalk (average work: 115+/- 2 

kBT) or of a fusion pore (average work: 88 +/- 3 kBT), respectively. A reduction of 

~30 kBT indicates that fusion pore formation is associated with release of local 

membrane stress. 
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Methods 
 

Strains and culture conditions 
All strains were grown in either in YPD (yeast extract, peptone, dextrose) 

containing 2% glucose in the presence or absence of G418, or in SC 

(synthetic dextrose) dropout media containing 2% glucose to select for 

auxotrophies. Strains used in this study can be found in Table S1 in 

supplementary information. Primers used can be found in Table S2. Vam7-LL-

2xFKBP12 contains a linker (LL) of 35 amino acids with the sequence 

SGGGGSGGGG SGGGGSGGGG SGGGGSGGGG GAAGG.  

Genetic manipulations: Yeast transformations were carried out using the 

lithium acetate method. Gene deletions and tagging were performed as 

previously established 33,34. Genome-tagging of Vam7 with 2xFKBP12 and LL-

2xFKBP12 was performed starting from the plasmid pTK209, from which GFP 

was removed by double digestion with PacI and AscI restriction enzymes and 

replaced by a 2xFKBP12 coding sequence carrying the same restriction sites. 

The 2xFKBP12 sequence was obtained by gene synthesis (BIOCAT) and 

cloned into a pUC57 vector. pRS415-TEFpr-FRB-GFP was obtained starting 

from a pRS416-S3-FRB-GFP vector (provided by C. Ungermann's group). 

The FRB-GFP coding frame was amplified by PCR using the primers reported 

above and cloned into the pRS415-TEFpr vector using HindIII and SacI 

restriction sites. 

 

Vacuole isolation 
BJ3505 and DKY6281 strains carrying tagged SNAREs were grown in YPD at 

(30°C, 225 rpm) to OD600=1 and harvested (3 min, 5'000 xg). Harvested cells 

were resuspended in reduction buffer (30 mM Tris/Cl pH 8.9, 10 mM DTT) 

and incubated for 5 min at 30°C. After harvesting as described above, cells 

were resuspended in 15 ml digestion buffer (600 mM sorbitol, 50 mM K-

phosphate pH 7.5 in YP medium with 0.2% glucose and 0.1 mg/ml lyticase 

preparation). After 25 min at 30°C, cells were centrifuged (2 min, 5'200 rpm, 

JLA25.5 rotor). The spheroblasts were resuspended in 2 ml 15% Ficoll-400 in 

PS buffer (10 mM PIPES/KOH pH 6.8, 200 mM sorbitol) and 150 µl (for 
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DKY6281-derived strains) or 250 μl (for BJ3505 derivatives) DEAE dextran 

(0.4 mg/ml in PS). After 2 min of incubation at 30°C, the cells were transferred 

to SW41 tubes and overlaid with steps of 8%, 4% and 0% Ficoll-400 in PS. 

Cells were centrifuged for 90 min at 4°C and 30'000 rpm in a SW41 rotor. 

Lyticase had been recombinantly expressed in E.coli RSB805 (provided by Dr. 

Randy Schekman, Berkeley) and prepared from a periplasmic supernatant 3.   

 

Vacuole fusion and content mixing assay 
DKY6281 and BJ3505 vacuoles were adjusted to a protein concentration of 

0.5 mg/ml and incubated in a volume of 30 μl PS buffer (10 mM PIPES/KOH 

pH 6.8, 200 mM sorbitol) with 125 mM KCl, 0.5 mM MnCl2. Note that the 

harvested vacuole suspension contains around 20 mg/ml Ficoll 400, creating 

an environment of moderate molecular crowding 35.  Vacuoles were 

preincubated with inhibitors on ice (5 min) before starting the fusion by 

addition of the ATP-regenerating system (0.25 mg/ml creatine kinase, 20 mM 

creatine phosphate, 500 μM ATP, 500 μM MgCl2) or of 600 nM rVam7 and 10 

mg/ml BSA. Samples were incubated for 60 min at 27°C. In two-stage 

reactions, a second incubation of 15 at 27°C was added, with 200 nM of 

antibodies or 400 nM of purified HOPS subunits. In order to assay fusion, 1 ml 

of PS buffer was added, vacuoles were centrifuged (2 min, 20'000xg, 4°C) 

and resuspended in 500 μl developing buffer (10 mM MgCl2, 0.2% TX-100, 

250 mM Tris-HCl pH 8.9, 1 mM p-nitrophenylphosphate). After 5 min at 27°C, 

the reactions were stopped with 500 μl 1M glycine pH 11.5 and the OD was 

measured at 405 nm. Background activity of pro-Pho8 was assessed through 

a fusion sample kept on ice throughout the incubation period. The value of 

this sample was subtracted from the others. 

 

Lipid mixing assay 
Lipid mixing was assayed as described 3. In brief, 30 µg of unlabeled BJ3505 

vacuoles and 6 µg of rhodamine-labeled phosphoethanolamine DKY6281 

vacuoles were mixed in 190 µl of 0.3 mM MnCl2, 75 mM KCl in PS buffer. 

Inhibitors were pre-warmed to 27°C before being adding to the tubes. Fusion 

reactions were started by adding 9.5 µl of 20x ATP-regeneration system, 

yielding 0.125 mg/ml creatine kinase, 20 mM creatine phosphate, 0.5 mM 
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ATP, 0.5 mM MgCl2. 100 µl were used to assay lipid mixing in a fluorescent 

plate reader at 27°C for 32 min. 80 µl were incubated separately for 60 min 

and then assayed for content mixing by alkaline phosphatase developing 

buffer as described above. 

 

Immunoprecipitations 
Vacuoles from a 1 ml fusion reaction were pelleted (5 min, 6'000 xg,  4°C), 

solubilized for 10 min in lysis buffer (0.5% Triton X-100, 0.5 mM MnCl2, 100 

mM CaCl2, 1 mM PMSF) and centrifuged for 10 min at 12'000 xg and 4°C. 

The supernatant was supplemented with 30 µg of antibody and 25 µl of 

protein-G sepharose and shaken for 60 min at 4°C. The beads were washed 

three times with lysis buffer and suspended in SDS sample buffer. 

 

Gel electrophoresis and Western blot 
Protein samples were dissolved in reducing sample buffer and heated to 

95 °C for 5 minutes. The samples were run on either 10 % or 12.5 % 

polyacrylamide gels. The stacking gels were prepared as follows: 6 % 

acrylamide, 0.16 % bis-acrylamide, 0.1 M Tris pH 6.8, 0.1 % SDS, 0.1 % 

TEMED, 0.05 % ammonium persulfate. Running gels were: 10 % or 12.5 % 

acrylamide, 0.27 % or 0.34 % bis-acrylamide, 0.38 M Tris pH 8.8, 0.1 % SDS, 

0.06 % TEMED, 0.06 % APS. The gels (10 cm/ 8 cm/ 1.5 mm) were run at 

constant current (20-30 mA). Proteins were blotted onto nitrocellulose 

membrane by the semidry method for 80 min at 400 mA. After incubation with 

the primary antibody overnight, signals were detected by secondary 

antibodies coupled to infrared dyes and detected on a LICOR Odyssey 

infrared laser scanner. The files were exported as TIFF and processed in 

adobe illustrator CS3. Band intensity was quantified using densitometry 

software supplied with the Odyssey Infrared Imager. 

 

FM4-64 staining 
Cells were inoculated from a pre-culture in stationary phase and grown 

overnight to logarithmic phase (OD600 between 0.2 and 0.8). After dilution to 

an OD600 of 0.2 in 1 ml culture, FM4-64 (N-(3-Triethylammoniumpropyl)-4-(6-

(4-(Diethylamino) Phenyl) Hexatrienyl) Pyridinium Dibromide) in DMSO was 
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added to a final concentration of 10 µM. Cells were stained for 1 h, followed 

by three washing steps in medium without stain (2 min, 3'000 xg) and a 

subsequent chase of 1 to 2 h in medium without stain, depending on the 

endocytotic capacity of the strain. The cells for microscopy were grown at 

30°C. The temperature was kept constant during staining and visualization. 

Care was taken to analyze cells immediately after their removal from the 

culture tube. 

 

Antibodies and affinity purification 
Sources of monoclonal antibodies were: anti-HA (16B12, MMS-101P, 

Covance); anti-myc (9E11, sc-47694, Santa Cruz Biotechnology). Polyclonal 

antibodies against Vam3, Nyv1, Vam7, Vps39, Ypt7 and GFP had been 

raised by injecting purified recombinant hydrophilic parts of these proteins into 

rabbits. Antibodies were purified from sera. Sera were first heated for 30 

minutes at 56°C to inactivate the complement system, diluted 1:1 in PBS and 

filtered through 0.2μ membranes before being passed onto an activated CH-

sepharose 4B column (GE Healthcare Life Sciences 17-0430-01), which had 

been coupled with the recombinant protein of interest, according to the 

instructions of the manufacturer. The column was washed with 10 bed 

volumes of PBS at 4°C. The antibodies were eluted with 0.2 M glycine-HCl pH 

2.5, 4°C, using a peristaltic pump. Eluted fractions were collected on ice in 1,5 

ml tubes containing 150 μl of 1 M Tris pH 8.8 in order to neutralize the 

samples immediately. Protein concentration in the sample was determined by 

Bradford assay using BSA as a standard. Fractions of interest were pooled, 

transferred into PS buffer (10 mM PIPES-KOH pH 6.8, 200 mM sorbitol) 

containing 150 mM KCl by repeated dilution and re-concentration in  

Amicom®Ultra-15 30K ultrafiltration devices (Millipore). The antibodies were 

finally concentrated to 1-3 mg/ml, aliquoted, flashed frozen in liquid nitrogen 

and kept at -20°C. 

 

Papain digestion and Fab fragment purification 
Antibody digestion with papain was described previously 36. Briefly, 10 mg 

affinity-purified IgG were solubilized in 1 ml buffer A (150 mM NaCl, 1 mM 

EDTA, 25 mM mercaptoethanol, 10 mM NaPi pH 7.3), followed by addition of 
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0.1 mg papain and incubation for 3 h at 37° C. 30 mM iodoacetamide was 

added to inhibit papain (15 min at 37° C). Afterwards, the sample was chilled 

to 4°C and loaded on a protein A agarose column (Pharmacia; 1.5 ml volume), 

which was equilibrated before with buffer B (100 mM KPi, pH 8.0). The Fab-

containing flow-through was dialyzed against H2O and concentrated by 

ultrafiltration through 30 kDa cutoff membranes (Millipore). 

 

Purification of rVam7 
Plasmid pGEX-KT::Vam7 (kind gift from A. Merz, Seattle) was expressed in 

Rosetta 2 (DE3) (Novagen). Bacteria were grown in 2 l LB with 100 µg/ml 

ampicillin and 25 µg/ml chloramphenicol to OD600=1, induced with 1 mM IPTG, 

30°C for 4 h. Cells were harvested and washed with PBSEEG (2 mM EDTA, 1 

mM EGTA, 2 mM DTT, 1 mM PMSF in 1X PBS). The pellet was frozen in 

liquid nitrogen and stored at -80°C. For purification the sample was thawed, 

resuspended in 40 ml PBSEEG, sonicated (2 x 1 min on ice with maximal 

intensity), centrifuged (TI-60 rotor, 64'000 x g, 30 min, 4°C) and the 

supernatant was incubated with 2-3 ml glutathion-sepharose 4B (GE 

Healthcare, 17-0756-01) under gentle rotation overnight, at 4°C and washed 

3-4 x with PBSEEG. The resin was poured into a 10 ml polypropylene column 

(Thermo scientific N°2994), washed with 10 bed volumes of thrombin 

cleavage buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 2.5 mM CaCl2, 0.1 % 

β-mercaptoethanol) at room temperature. 200 Units of thrombin (Sigma T-

1063, 1000 U, dissolved in 0.5 ml thrombin cleavage buffer and 0.5 ml 

glycerol, aliquots had been kept at -20°C) were then added directly onto the 

column, the column was closed on both ends and incubated for 30 minutes at 

room temperature with end over end rotation. A second column with 1 ml p-

aminobenzamidine agarose (Sigma A-8332, 5 ml) was washed with 20 ml 

thrombin cleavage buffer. The glutathione sepharose column was eluted with 

thrombin cleavage buffer directly onto this second column. Fractions of the 

flow-through were collected at the bottom of the second column. Protein 

levels were measured and fractions of interest were pooled. Eluted protein 

was transferred into PS buffer (10 mM PIPES-KOH pH 6.8, 200 mM sorbitol) 

containing 150 mM KCl by repeated dilution and ultrafiltration in Amicon Ultra-
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15 30K (Millipore), finally concentrated to 3 mg/ml, aliquoted, flash-frozen in 

liquid nitrogen and kept at -20°C. 
 

Purification of HOPS, HOPS subcomplexes and CORVET 
These complexes were purified via the TAP protocol, as previously described 

(Ostrowicz, Brocker et al., 2010). In brief, yeast cell lysates were prepared 

from 500 OD600 equivalents of cells by thoroughly vortexing cells in lysis buffer 

[50 mM HEPES/KOH, pH 7.4, 300 mM NaCl, 0.15% NP-40 (Igepal CA-630; 

Sigma-Aldrich), 2 mM MgCl2, 1 mM DTT, 1 mM phenylmethylsulphonyl 

fluoride (PMSF) and 1xFY protease inhibitor mix (Serva)] together with glass 

beads in a Disrupter Genie for 10 min at 2°C, followed by centrifugation at 

20'000 xg at 4°C. The supernatant was centrifuged for 60 min at 100'000 xg 

and the cleared lysate loaded onto 25 μl of prewashed IgG beads. After 1 h of 

incubation at 4°C, the beads were washed 3 times with 1 ml lysis buffer 

containing 0.5 mM DTT, but lacking protease inhibitors. Bound proteins were 

eluted by TEV protease treatment for 1 h at 16°C. TEV eluates were either 

analyzed by SDS–PAGE and Coomassie staining or loaded onto 25 μl of 

prewashed calmodulin–sepharose beads, and incubated for 1 h at 4°C. The 

beads were washed 3 times with 1 ml lysis buffer, bound proteins were eluted 

by incubation with 20 mM EGTA in lysis buffer for 20 min at 30°C, analyzed 

by SDS–PAGE and Coomassie staining and kept in small aliquots at -20°C. . 

Aliquots were thawed and the proteins transferred into lysis buffer without 

DTT and NP-40 by repeated dilution and ultrafiltration (4°C) in Amicon Ultra-

15 30K (Millipore). Re-concentrated proteins were used immediately for the 

experiment and not re-frozen. 

 

Rapamycin-induced protein re-localisation 
Cells were grown in YPD over night at 30°C to early logarithmic phase. Cells 

were diluted to OD600=0.2 for staining with 5 µM FM4-64 and then incubated 

with rapamycin (10 µM) before image acquisition.  

 

Statistics for biological experiments 
When data was averaged, the samples stem from independent experiments 

with independent preparations of vacuoles or cells, i.e. they represent 
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biological replicates. The number of replicates is indicated in all figures as n, 

the variation of their values is characterized by the standard deviation (s. d.). 

Significance of differences has been evaluated through Student's t-test. 

Differences are only mentioned as such and interpreted if p<0.005. 

 
 
Molecular dynamics 
 

Simulation model and settings  
The molecular dynamics simulations were performed with the GROMACS 

simulation package 37, version 4.5.7. We used the MARTINI coarse-grained 

model 38,39 to simulate the lipids, amino acids and solvent. In all simulations, 

the system was coupled to a constant temperature bath using the 'V-rescale' 

algorithm with a relaxation time of 1.0 ps. All simulations were performed at a 

temperature of 293 K. Periodic boundary conditions where applied to simulate 

bulk behavior. The time step used in the simulation was 20 fs. The dielectric 

constant in the simulations was εr = 15. The neighbor-list was updated every 

10 simulation steps. The pressure was weakly coupled 40 to 1 bar with a 

relaxation time of 1.0 ps. Here, only the z-dimension was independently 

coupled to the pressure bath because the x and y-dimension of the simulation 

box were conserved (see Membrane simulation setups).  

 

Modeling the vacuolar SNARE complex 
The vacuole SNARE complex was modeled using the MARTINI model for 

proteins 38, which qualitatively captures the chemical nature of each individual 

amino acid and includes the secondary structure. For NYV1 the modeled 

sequence is 

“IGDATEDQIKDVIQIMNDNIDKFLERQERVSLLVDKTSQLNSSSNKFRRKAV

NIKEIMWW[QKVKN]ITLLTFTIILFVSAAFMFFYLW”, for VAM3: 

“TIIHQERSQQIGRI 

HTAVQEVNAIFHQLGSLVKEQGEQVTTIDENISHLHDNMQNANKQLTRA[DQ

HQRDRNK]CGKVTLIIIIVVCMVVLLAVLS”,  for VTI1: 

“IDDDQRQQLLSNHAILQKSG 
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DRLKDASRIANETEGIGSQIMMDLRSQRETLENARQTLFQADSYVDKSIKTL

KTMTR[RLVANK]FISYAIIAVLILLILLVLFSKFK”, and for VAM7 

“MQMVRDQEQELV 

ALHRIIQAQRGLALEMNEELQTQNELLTALEDDVDNTGRRLQIANKKARHF”. 

Here, the brackets  [] depict the defined juxta-membrane (linker) regions. The 

resolved and previously simulated structure 40 of the neuronal SNARE 

complex was used as a template structure for the vacuolar  SNARE complex. 

To this aim, we applied an external field, using a self-modified version of 

Gromacs, to drive the structure of the vacuole SNARE complex toward the 

known structure of the neuronal SNARE complex based on the known 

alignment. All residues are defined alpha-helical except for the defined 

SNARE linkers. The linkers are either modeled as a random coil '~' (in case of 

unstructured) or alpha helical 'H' (in case of structured). We modeled all of the 

three SNARE linkers as being structured because such a scenario maximizes 

the force which a partly-assembled SNARE complex, by itself, can exert on 

the formed stalk. 

 

Membrane simulation setups 
In total three different ‘HOPS’ systems were simulated: 

(1) A system with 3 SNARE complexes (10'158 POPC, 6'771 POPE, 663'000 

water molecules, dimension 48x64x37 nm3, teq=1µs), used in Fig. 4b and 

Extended Data Fig. 8); 

(2) A system with 1 SNARE complex (10'983 POPC, 400'000 water molecules, 

dimension 48x40x33 nm3, teq=1µs), used in Fig. 4a, Extended Data Figs. 9b, 

10); 

(3) A system with 1 SNARE complex (13'621 POPC, 500'000 water molecules, 

dimension 67x40x40 nm3, teq=2µs), used in Fig. 4a, Extended Data Fig. 9b). 

For studying the fusion pore, the system was made slightly larger in order to 

avoid a too close distance between the fusion pore and the free membrane 

edges (see the description below). 

 

It is important to emphasize that the two opposing membranes must be able 

to freely adopt their (local) separation distance in order to realistically mimic a 

scenario where two vacuoles fuse. To this aim, we cut the periodicity of the 
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membrane along the x-dimension (thus preventing that solvent is 'trapped' in 

the space between the two opposing leaflets). The latter creates four free 

membrane edges (e.g., see Extended Data Fig. 8) which facilitate rapid flip-

flop between the leaflets and thereby ensure that the spontaneous curvature 

of the membrane vanishes when the membrane is bent (preventing finite size 

effects). Furthermore, the ability to freely adapt the area of the membrane 

ensures that the membrane minimizes its shape under tension-less conditions 

in the presence of HOPS and thus the work performed by HOPS is only 

determined by membrane bending energy. Finally, to prevent that the large 

line tension of the free membrane edges would strongly deform the simulation 

box (it prefers to minimize the y-dimension while maximizing the x-dimension) 

the x- and y dimension of the simulation box were kept constant. Hence, 

pressure coupling along these dimensions is redundant for a membrane cut in 

one dimension because the membrane area can independently adjust with 

respect to the (corresponding) area of the simulation box (the system is 

isotropic). 

 

Model and setup of the HOPS simulations 
In our simulations, 'soluble' HOPS is modeled by a soft harmonic repulsive 

potential (Kforce = 50 kJ nm-2mol-1). The 'attractive' HOPS is modeled by the 

potential function, V(d)=Kforced2(d2-C), where V(d) is the potential energy as a 

function of the penetration depth d, i.e. the distance beyond the surface of 

'HOPS'. Here, Kforce and C (the width of the well) are set to  Kforce = 20 kJ nm-

2mol-1  and  C=0.4 nm2. Because the additional presence of attractions 

reduces the apparent radius of HOPS we compensated for this by slightly 

increasing its radius (7.4 nm versus 7.0 nm). The 'HOPS' potential only acted 

on the carbon tails and glycerol parts of the lipids. To mimic a SNARE 

complex which is slightly embedded by HOPS  11 we modeled a slight overlap 

between HOPS and the SNARE complex, i.e. the SNARE complex is located 

within HOPS about 2 nm away from its surface (see Extended Data Figs. 

8/10). In reality, the depletion of solvent interactions upon binding will be 

compensated by competitive interactions with the binding pocket of HOPS. In 

our model, solvent was allowed to freely enter and pass  'HOPS'  in order to 

conserve ongoing interactions within the coiled-coil complex of the SNAREs. 
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The main advantage of modeling HOPS by an effective potential is that this 

allows direct quantification of the work which HOPS must perform to conserve 

the corresponding membrane shape of minimal free energy. The HOPS 

simulations were setup via the slow growth method, i.e., the radius of HOPS 

was gradually increased from 0 to the target radius over 80ns. During this 

procedure, the SNARE complex was restrained by restraining only a single 

bead within the SNARE complex (the backbone bead of residue GLY218 

within VAM3) via a harmonic potential (Kforce = 1000 kJ nm-2 mol-1).  After 

equilibrium was reached – equilibrium was characterized by the pressure 

(bending work) and the resultant force on HOPS - we restrained 15 additional 

backbone atoms within VAM3 (GLY218 - ASP232) to simulate a torsional 

restraining effect of the binding pocket on the SNARE complex. 

Finally, the stalk in all of the setups is generated by applying an external field. 

Here, we applied a harmonic potential (50 kJ nm-2 mol-1) to induce a 

cylindrically shaped 'void' of 1.0 nm radius in the solvent layer between the 

bilayers. The hydrophobic nature of the void attracts the lipid tails in the 

adjacent leaflets and results in the formation of a stalk. Notable, this whole 

process occurs on a timescale of a few nanoseconds only. The external 

potential is removed prior to subsequent equilibration and introduction of the 

HOPS sphere. 

 

Free energy of fusion and SNARE forces 
We performed two different types of so-called umbrella sampling protocols 

with different goals:  

(A) How does HOPS binding affect the free energy landscape of fusion pore 

opening? To this end, we used simulation system 1 (see above) with probe to 

probe distance (stalk thickness) as a reaction coordinate. 

(B) How does HOPS binding affect the force that the bound SNARE complex 

exerts on a fusion intermediate. To this end, we used simulation system 2 

(see above) with the distance between the C-termini of Nyv1 and Vam3 as a 

reaction coordinate. 

 

In protocol A, we pull two hydrophilic 'beads' (probes) through the stalk center 

in order to estimate the free energy required to open the fusion pore. Each 
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probe is comprised of 8 clustered solvent beads. The “stalk thickness” is 

defined by the distance between the two probes. The rationale is to bring the 

system close to the nucleation barrier until that barrier can be crossed 

spontaneously within the simulation time scales. The work required to enforce 

nucleation provides an estimate of the height of the barrier. For more detailed 

information see our previous work 32. 

 

In protocol B, we study how HOPS binding alters the force that the C-termini 

of Nyv1 and Vam3 exert on the stalk intermediate. We rationalize such an 

effect from the relative change in work required to slightly pull the SNARE C-

termini (Nyv1 and Vam3) in closer proximity in the presence or absence of 

HOPS. Slightly implies that we only indent/squeeze the stalk such that the 

stalk will recover if no active pulling force is applied anymore 

(thermodynamically reversible).   

 

To derive the associated free energies in both of these protocols, we applied 

umbrella simulation techniques (Kforce = 1000 kJ nm-2mol-1) in combination 

with the weighted histogram method. We generated independent states along 

the reaction coordinate (50 for protocol A, 15 for protocol B) by performing a 

stirred molecular dynamics simulation over the entire reaction coordinate (pull 

rate: -5x10-5 nm/ps) in a pre-equilibrated system. Equilibrium was 

characterized by the pressure (bending work) and the resultant force on 

HOPS. For protocol A, a separate, independent stirred MD run must be 

performed for each different system (e.g., the attractive HOPS case) because 

the generated states will embed information about the nature of the barrier. 

The umbrella simulations were performed after the systems were equilibrated 

for ~1.6 us, i.e., the last snapshot was used for a stirred MD simulation, from 

which the different umbrella windows were generated. Equilibrium was 

characterized by the pressure (bending work) and the resultant force on 

HOPS. Each umbrella window was simulated over an effective time of 400-

600 ns to obtain overlapping distributions from which the total free energy 

profile was constructed. We discarded the first 40 ns of the simulation to 

ensure equilibration of the measured biased force. All of the free energy 

profiles and the error bars herein were obtained by using the Weighted 
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Histogram Analysis Method (WHAM) in combination with the Bayesian 

bootstrapping method41. The bootstrapping method exploits the WHAM 

equations to reconstruct a large multiple of free energy profiles from re-

sampled bootstrap histograms. The errors within the final free energy profile 

are estimated from the statistical fluctuations herein. Each re-sampled 

histogram of the biased force is reconstructed from the data which comprise 

the original histogram (an umbrella window) by random selection with 

replacement. This resampling procedure respects the (on the fly estimated) 

integrated autocorrelation time within the biasing force and adds an additional 

random weight to the histogram within the WHAM equations (Bayesian 

bootstrapping). An excellent detailed description of this procedure has been 

given41. 

 

Bending energy and force 
The bending work is estimated from the total (equilibrium) force that the 

membrane exerts on the surface of HOPS after it adopts its shape of minimal 

free energy. The work (Weq) that HOPS must perform to bend the membrane 

is given by the relationship Weq=1/3 Σfeq,av•r, where  Σfeq,av is the total average 

force that acts on the surface of the HOPS sphere during growth from radius 

r=0 to r=r.  Our continuum elastic calculations revealed that Σfeq  rather 

linearly increases with r. Therefore, we approximated Σfeq,av from r=0 to r=r by 

1/2Σfeq  at r=r. This linear approximation enables (instantaneous) calculation 

of Weq  by averaging over a single simulation (at r=r). For a purely repulsive 

sphere these relationships approximate the concomitant bending energy of 

the adopted membrane shape. We expect, however, to slightly systematically 

overestimate the bending energy (by a few kBT) since the force on the HOPS 

sphere will in reality vanish slightly before r=0 (r ≈0.5 nm). This is due to the 

approximately 1.0 nm inter-membrane separation resulting from the presence 

of the stalk. Notable, HOPS bends the membrane by actively pressing against 

the membrane surface (indentation). This additional stress term (e.g., thinning 

of the membrane) is omitted within the Hamiltonian of the continuum model 

but is not expected to largely contribute to the surface free energy. The 

peristaltic force (fd) on HOPS (see Extended Data Fig. 9) is calculated from 

projecting the resultant force on HOPS (a 3-vector) on the vector connecting 
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the center of HOPS with the stalk center. Here, the stalk center is defined as 

the geometrical center between the C-terminus of NYV1 and VAM3. Finally, 

the average values of bending work and fd are obtained by averaging over 1 - 

2 μs equilibrium simulations. The error in the average value is obtained by 

block averaging. 

 

Continuum model 
Continuum models were performed by minimizing the Helfrich hamiltonian 

within the de Monge representation z(x,y) subjected to two constraints: (i) The 

inter-membrane constraint (a stalk or partly-assembled SNARE complex) and, 

(ii) a solid sphere (HOPS). The membrane was described by a discretized 

sheet consisting of 100 grid elements in the y, and 200 in the x dimension. For 

reasons of symmetry we only model a quarter of the actual system and 

recover the full surface free energy by multiplication with a factor of 4 (for the 

projected area by a factor of 2). Reflecting boundary conditions were used in 

the y-dimension (the symmetry axis), periodic in the x-dimension. The actual 

membrane contact surface in vacuole fusion is of microscopic dimension 42-44, 

indicating that a large multiple of constraints must be present and that the 

membrane is not 'free standing' even over large distances. All dimensions are 

based on the positions of the C4 lipid tail beads (the mid-plane of the 

membrane) within the MD simulations. Finally, HOPS embeds the SNARE 

complex non-symmetrically 11 and will therefore induce torque. Torque (a 

three body force) does not occur when the distance (d) between the center of 

HOPS and the stalk (the two constraints) is used as a reaction coordinate but 

can be additionally derived/constructed by scaling the here-presented force 

(fd) with a sin(θ) term.    

 

The Hamiltonian for each surface element, Ftotal, is given by Fbending + Fconstraint 

+ FHOPS, with Fbending being the Helfrich bending energy,  Fconstraint the energy of 

the inter-membrane constraint (a stalk, fusion pore or partly-assembled 

SNARE complex) and FHOPS the energy of the HOPS' sphere. Fbending is given 

by 2κH2 with H being the mean curvature, and κ the bending modulus (24 kBT, 

see citation 9.).  The constraint Fconstraint is modeled by a set of stiff springs 

which restraints the membrane at a height of zequ = 2 nm and which imposes 
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a circular 'stalk' region with a radius of dstalk=2 nm. Fconstraint depends on the 

distance d between a surface element and the center of the 'stalk' region, and 

the height of the membrane z. Fconstraint =  0 if d > 2 nm and 1/2kstalk (z-zeq)2(d-

dstalk) otherwise, with kstalk being the force constant  

(kstalk =100 kBT/nm5). Here, the term (d-dstalk) ensures a smooth (differentiable) 

transition of the 'stalk' region. HOPS was modeled as a sphere with a 

diameter DH. The center of the sphere is located within the x,y plane at z=0. 

Surface elements overlapping with the HOPS sphere experience an harmonic 

repulsion, FHOPS=1/2kHOPS(2r-DH)2 if 2r<DH  and FHOPS=0 otherwise, with r 

being the distance of a surface element from the center of the sphere. The 

force constant kHOPS was chosen to be 100 kBT/nm4. The example of a 

(moderately) attractive HOPS was modeled using FHOPS=KHOPSd2(d2-C) with 

C=0.5 nm2, and KHOPS = 20  kBT/nm6. Finally, the total surface free energy  

ΣFtotaldA was minimized using an over-damped deterministic minimization 

scheme. We emphasize that the values predicted by the continuum model are 

subject to simplification of the characteristics of the system (e.g. exact spatial 

dimensions, and the nature of the inter-membrane restraint). They also rely on 

the estimation of the  bending modulus of the membrane. 
 

Code availability 
The molecular dynamics simulations were performed with a self-modified 

version of the open source software Gromacs-4.5.5. The implementation of 

the here-used HOPS potentials is described in detail in the supplement. The 

code is publically available under http://nlor.theorie.physik.uni-

goettingen.de/~hrissel/code/ 

 

 

Data availability 
All original data will be made available by the authors upon request. 
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Extended Data Figure Legends: 
 
Extended Data Fig. 1: Reagents. 

a, HOPS is lacking on ypt7D vacuoles. HOPS and Ypt7 content of total cell 

extracts and purified vacuoles from wildtype and ypt7D mutants in BJ3505 

and DKY6281 cells, representing the background strains used for the content 

mixing assay. b, Purified HOPS, HOPS subcomplexes and CORVET. The 

complexes used for the in vitro experiments were analyzed by SDS-PAGE 

and Coomassie staining. The gel represents the preparations, which followed 

published routine procedure, used for the experiments in Fig. 1 and Extended 

Data Figs. 3 and 4. c, Production of Fab fragments from polyclonal antibodies 

to Vam3 and Nyv1. Schematic view of papain cleavage sites for Fab fragment 

generation on the left. Affinity-purified antibodies and Fab fragments extracted 

after papain digestion were analyzed by non-reducing SDS-PAGE and 

Coomassie staining. The gel shows the preparation used in Fig. 2. d, 
Expression of FKBP and FRB fusion proteins. Total cell extracts were 

prepared from 0.1 OD600nm units of logarithmic cultures of  yeast strains 

expressing Vam7-2xFKBP12 and/or Pfk1-FRB-GFP. Proteins were analyzed 

by SDS-PAGE and Western Blotting against Vam7, Vam3 and GFP. e, Same 

as in d, but for cells expressing Vam7-LL-2xFKBP12, containing the 35 aa 

linker (LL). For a and c-e, similar results were obtained from two independent 

preparations.  

 
 
Extended Data Fig. 2: Kinetics and efficiency of in vitro vacuole fusion, 
measured by content mixing. 
Vacuoles are prepared from two different strains, which contain either the 

soluble 45 kDa maturase Pep4 (contained in DKY6281) or the pro-alkaline 

phosphatase p-ALP (contained in BJ3505). Formation of a sufficiently large 

fusion pore allows Pep4 to transfer into the p-ALP containing fusion partner, 

leading to proteolytic cleavage of its pro-sequence and activation of the 

enzyme (m-ALP). This activity is measured as a readout for fusion. Note that 
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proteolytic maturation of p-ALP is fast and not limiting for the development of 

the content mixing signal 45. Standard fusion reactions have been started. At 

the indicated time points, aliquots were withdrawn and set on ice. a, At the 

end of the 60 min period, m-ALP activity was determined for all samples. 

Means ± s.d. are shown for n=3 biologically independent experiments. b, 
Aliquots from one of the experiments in (a) were TCA-precipitated and 

analyzed by SDS-PAGE and Western blotting against ALP and Vam3. Signals 

were detected on a LICOR infrared scanner (left) and quantified (right) as the 

ratio m-ALP / (m-ALP + p-ALP). Vam3 has been decorated as a loading 

control. Note that after one round of fusion, only a maximum of 50% of p-ALP 

can be matured, because half of the fusion events in the suspension will occur 

between like vacuoles (i.e. Pep4/Pep4 or p-ALP/p-ALP) and will not produce a 

signal. 

 
 
Extended Data Fig. 3: HOPS and CORVET complexes stimulate fusion to 
similar degrees. 

Two-stage fusion reactions with ypt7D vacuoles were run as in Fig. 1g, in the 

absence of ATP. rVam7 had been added in the first phase of the incubation, 

0.4µM HOPS subcomplexes or 0.4µM CORVET only in the second. Half of 

the samples received an addition of 6% of Ficoll 400 in the second incubation, 

an agent mimicking molecular crowding 35. At the end of the 75 min incubation 

period, content mixing was assayed. Fusion activity of a standard wildtype 

reaction performed in the presence of ATP served as 100% reference. Means 

± s.d. are shown for n=3 biologically independent experiments. 

 
 
Extended Data Fig. 4: ypt7D vacuoles require both Vam7 and HOPS for 

content mixing. 
Two-stage fusion reactions were run as in Fig. 1g in the presence or absence 

of ATP. rVam7 had been added in the first (Io) phase of the incubation, HOPS 

only in the second (IIo). At the end of the 75 min incubation period, content 

mixing was assayed. Means ± s.d. are shown for n=3 biologically independent 

experiments. 
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Extended Data Fig. 5: A molecular crowding agent cannot stimulate 
fusion in the absence of bulky SNARE ligands.  

Two-stage fusion reactions with ypt7D vacuoles were run as in Fig. 2b, in the 

absence or presence of ATP. rVam7 had been added in the first phase of the 

incubation where indicated, antibodies and various concentrations of the 

crowding agent Ficoll 400 only in the second. At the end of the 75 min 

incubation period, content mixing was assayed. Fusion activity of a wildtype 

reaction performed in the presence of ATP served as 100% reference. Means 

± s.d. are shown for n=3 biologically independent experiments. 

 
 
Extended Data Fig. 6: Effect of rapamycin-induced dimerization on in-
vivo vacuole fusion using the small fusion protein FRB-GFP. 
a, Schematic view of rapamycin-induced FKBP12/FRB-tagged protein 

dimerization between Vam7-2xFKBP12 and FRB-GFP. b, Logarithmically 

growing cells, expressing tagged Vam7-2xFKBP12, were stained with the 

vacuole tracer FM4-64 and analyzed by spinning disc microscopy before and 

10 min after the addition of 10 µM rapamycin. Scale bar: 5 µm. Similar results 

were obtained in 3 biologically independent repetitions. 

 

 
Extended Data Fig. 7: Fusion can be prematurely triggered by protein 
recruitment after osmotically induced vacuole fragmentation. 
a, Logarithmically growing cells, carrying Vam7-2xFKBP12 and Pfk1-FRB-

GFP as indicated, were stained with the vacuole tracer FM4-64. Vacuole 

fission was induced by adding 0.5 M NaCl. Cells were analyzed by spinning 

disc microscopy before and 10 and 60 min after salt addition. The cells were 

grouped into three categories according to the number of vacuoles visible per 

cell. 100 cells were analyzed per sample. Values represent the means and s.d. 

from n=3 biologically independent experiments. Scale bar: 5 µm. b, As in a, 

but 10 µM rapamycin was added before the salt shock. c, As in b, but with 

cells expressing non-tagged Vam7. 
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Extended Data Fig. 8: Effect of HOPS on the free energy barrier of fusion 
pore formation. This plot complements Fig. 4 in the main manuscript.  

a. The free energy barrier of fusion pore opening is derived for a simulated 

system consisting of 3 SNARE complexes (panels on the right side) and a 

POPC membrane that contains 40% POPE (colored orange). To this aim, we 

pull two hydrophilic probes (colored purple) towards the center of the stalk 

and estimate the work (ΔG) as a function of probe – probe distance (the stalk 

thickness)32. The arrows in the free energy profile indicate the nucleation 

barrier for the fusion pore. Beyond this stage, subsequent pore opening 

proceeds in the absence of additional work (the plateau region). Tethering 

proteins such as HOPS are attracted to the membrane through Rab-GTPases 

or direct lipid interaction10,46. An attractive 'HOPS' surface (green line) 

conserves the lowered nucleation barrier, even when the surface attractions 

fully compensate the membrane bending energy (no net bending work; 

Extended Data Fig. 9). Error bars are calculated via Bayesian resampling of 

50 overlapping WHAM histograms [43]. Each parental WHAM histogram is 

comprised of  >30000 data points (autocorrelation up to ~1500 data points).  b,  

Pore formation in the absence of HOPS. A defect is frequently formed in the 

vicinity of the SNARE TMDs (black arrow), illustrating the presence of a high 

stress (the defect likely decreases the bending stress). Fusion pore formation 

is associated with a sudden reduction of the sharp curvature near the stalk's 

circumference (dashed lines). Fusion pores tend to adopt a teardrop shape 
47,48. c, Fusion pore formation in the presence of HOPS. The pre-existing 

teardrop membrane shape imposed by HOPS likely provides a geometrical 

and therefore an energetic advantage for pore formation. d,  Setup where we 

artificially enforced formation of a leakage pore/defect in the direct vicinity of 

the stalk (the rationale behind this has been explained 32). The induced defect 

(Between 3.2 and 1.8 nm the probe pierced through the membrane) 

instantaneously recovers. This suggests that the stress that HOPS imposes 

on the fusion site does not poise fusion to become leaky.  
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Extended Data Fig. 9: Detailed analysis of HOPS-mediated membrane 
bending in the presence of an inter-membrane restraint.  
a, Simulation snapshot illustrating the geometry of the system. Shown is the 

central plane of the membrane (the lipid tail ends), the stalk, and HOPS. The 

SNARE complex present in the simulation setup is not illustrated. This setup 

serves as a motivation for the elastic continuum model. b, Bending work 

required to place HOPS at the (hemi-)fusion site and peristaltic force 

experienced by HOPS. Simulations were run to measure the work required to 

place HOPS-like spheres of 10-14 nm diameter at the site of hemifusion or at 

a fusion pore (FP). HOPS could be detached from the SNARE complex by a 

long spacer (link.). The influence of a SNARE complex with an unstructured, 

non-helical juxta-membrane region (unstr.) and of a HOPS mimic that was 

attractive to the membrane surface (attr.) was also analyzed. The lower panel 

shows averages obtained from the simulations. fd is the (peristaltic) force that 

pushes HOPS away from the inter-membrane restraint (e.g., a stalk, fusion 

pore, or trans-SNARE complex). Note that surface attractions or Rab-GTPase 

interactions of HOPS (modeling the tethering of membranes) 10,46 can yield a 

negative value of the average work required to bend the membrane (bending 

occurs spontaneously). Fusion pore formation reduces the required bending 

work – it moves HOPS away from the restraint because of additional SNARE 

association up into the TMD region. The errors in the averages are derived 

from block averaging over >10000 data points until the error becomes 

independent of block size (autocorrelation up to ~300 data points). The errors 

in the averages are derived from block averaging over >10'000 data points 

until the error becomes independent of block size (autocorrelation up to ~300 

data points).  c, Elastic continuum model. The coordinate system is based on 

the snapshot of the molecular dynamics simulation shown in panel a. 

Because of symmetry along the xy-plane and xz-plane, we only model a 

quarter of the original system. The cartoon illustrates the shape of minimal 

free energy for a membrane (modeled by a single sheet), subjected to two 

constraints: (i)  A local constraint on the position (height) of the membrane 

illustrated by the black arrow at z=2 nm. This mimics the inter-membrane 

constraint (stalk, fusion pore or partly-assembled SNARE complex), (ii) The 

presence of a hemisphere. This mimics HOPS. The color code illustrates the 
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height of the membrane (the z-axis) relative to the two constraints. d, 

Prediction of bending energies by the elastic continuum model. The bending 

energy is shown as a function of the size and distance of HOPS to the inter-

membrane restraint. Upper panel: Bending energy decreases steeply when 

HOPS moves away from the restraint. The predicted values are about a factor 

of two lower than the “bending work” predicted by the simulations (see 

Methods). Middle panel: the corresponding peristaltic force fd on HOPS (the 

derivative of bending energy). At short distances, fd becomes substantial (tens 

of pN). Note that making the surface of HOPS moderately attractive to the 

membrane affects fd only weakly, i.e. it does not result in an attraction towards 

the 'stalk'. Lowest panel: The relative reduction of membrane area as a result 

of HOPS-induced membrane bending. This property reflects the tension that 

HOPS induces by curving the membrane near the contact zone. In contrast to 

bending energy and force, tension only weakly depends on the distance (d) to 

the restraint.  

 

Extended Data Fig. 10: Effect of HOPS on the force exerted by a single 
SNARE complex.  

a, One way of rationalizing the acceleration of fusion pore formation by a 

SNARE complex is to consider it as a mechanical device that exerts force on 

the luminal leaflets through its TMDs, thereby compressing the stalk. This can 

happen through a peristaltic force that pulls the SNARE complex away from 

the stalk, or through the elastic bending of the SNAREs. This latter mode of 

force transmission requires the juxta-membrane regions, which connect the 

coiled-coil domains of the SNAREs to their TMDs, to be structured and rigid. 

The compressing force that the SNARE complex exerts on the stalk can be 

rationalized from the apparent work (free energy) that one needs to perform in 

order to force the luminal C-termini of Vam3 and Nyv1 in closer proximity. We 

estimated how HOPS binding affects the force that the C-termini of the 

SNAREs Vam3 and Nyv1 exert on the stalk. b, The work required to slightly 

indent the stalk in the presence of repulsive or attractive HOPS-spheres of 

different diameter has been determined. It is shown relative to the situation 

without the sphere. Error bars are calculated via Bayesian resampling of 15 
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overlapping WHAM histograms 41. Each parental WHAM histogram is 

comprised of  >30'000 data points (autocorrelation up to ~1200 data points). 

The lines shown result from fitting a power expansion (up to the 4th power) 

through the average of each data point. Error bars are calculated via 

Bayesian resampling of 15 overlapping WHAM histograms [43]. Each parental 

WHAM histogram is comprised of  >30'000 data points (autocorrelation up to 

~1200 data points). The lines shown result from fitting a power expansion (up 

to the 4th power) through the average of each data point. c, The 

corresponding forces on the SNARE TMDs were derived from this work. 

Apparent gains in the force exerted by the SNARE C-termini (left panel) are 

shown as a function of their distance in the hemifusion structure. HOPS 

binding can double or triple the magnitude of the apparent force (10-20 pN) 

that a SNARE complex exerts on a stalk 49. The gain dissipates, however, as 

zipping of the SNARE TMDs progresses and their C-termini approach each 

other. d, Snapshots of three special scenarios. Highest panel: The HOPS 

sphere is placed at a distal location with respect to the stalk (e.g., via 

attachment with a flexible linker). This abolishes the force gain. Middle panel: 

A sphere that favorably attracts (and bends) the membrane. This conserves 

the force gain. Lowest panel: Unstructured, flexible SNARE juxta-membrane 

regions partially disrupt the mechanical coupling between the coiled-coil 

domains and the TMDs. They decrease the apparent gain in SNARE pull 

force induced by HOPS. Structured (a-helical) SNARE juxta-membrane 

regions result in a high initial force gain which gradually reduces. In contrast, 

unstructured, flexible juxta-membrane regions, which impair vacuole fusion 50, 

result in a near-constant force gain of only about 8 pN. Both cases converge 

to similar force values when the C-termini of Vam3 and Nyv1 come in closer 

proximity. Since the SNARE complex is unable to exert bending force on the 

membrane when the connection between its transmembrane anchors and the 

SNARE domains is completely flexible, we relate the remaining gain to an 

effective 'softening' of the stalk because of the induced membrane curvature 

and to the peristaltic force generated by the interaction of the HOPS sphere 

with the SNAREs. 
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Supplementary Discussion: How do SNARE ligands enhance opening of the 
fusion pore? 
 

Membrane curvature as a driving force 
HOPS appears to contribute two separable functions to vacuole fusion. It catalyzes 

SNARE complex assembly 1-4, which is necessary for membrane docking and the 

induction of hemifusion. However, it also binds to the assembled SNARE complex 5 

and, as we show here, this interaction promotes the formation or expansion of the 

fusion pore. This second function can explain why Vps33 with amino acid 

substitutions can support normal trans-SNARE pairing and lipid mixing but not 

content mixing6. It is also compatible with subsequent studies on liposome fusion, 

which found that the addition of the Vps33-containing HOPS complex not only 

increased SNARE complex formation several-fold, but also led to a 

disproportionately higher increase in content mixing 7. While there is a priori no 

reason to assume that SNARE complex density should be linearly related to the rate 

of content mixing, this result is consistent with the steric effects of HOPS on the 

fusion site that we describe here.  

 

Another unexplained finding is that SNARE ligands such as Sec17/a-SNAP and 

Sec18/NSF, which are normally involved in SNARE complex disassembly, can 

stimulate liposome fusion under certain conditions8. They are particularly effective 

when used in conjunction with a non-hydrolysable ATP-analog, which stabilizes 

SNARE/a-SNAP/NSF complexes 9. Also the fusion of intact vacuoles can be 

stimulated by Sec17/a-SNAP, but only if complete SNARE complex zippering is 

prevented by a C-terminal truncation of the Qc-SNARE Vam7 10. On vacuoles with 

wildtype SNAREs, release of Sec17 from the membrane is necessary for fusion 11 

and addition of Sec17 is even inhibitory 12. It has been argued that binding of Sec17 

might stimulate fusion by stabilizing or ordering incompletely zippered SNAREs 10. 

This raises the question whether binding of HOPS or of SNARE antibodies might 

promote fusion by favoring the transition from partially zippered to fully zippered 

SNARE complexes. We consider this as unlikely for several reasons. First, full 

zippering of SNAREs is necessary to efficiently reach lipid mixing 10. Since vacuoles 

reach a hemifused state in our experiments, we can expect them to have zippered 

SNARE complexes. Second, HOPS binds SNARE complexes through Vps33 and in 

our experiments Vps33 alone acts as a competitive inhibitor of fusion (Figs. 1,2). But 
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when the effective size of Vps33 is increased by addition of monoclonal antibodies to 

a C-terminal peptide tag of this protein, fusion is strongly stimulated. Since this 

monoclonal antibody does not recognize the SNAREs, it is difficult to conceive how it 

might have a structuring or ordering effect on partially zippered SNARE complexes. 

Third, in vivo vacuole fusion can be triggered by recruiting the bulky 

phosphofructokinase to the SNARE complex, which is completely unrelated to fusion 

and unlikely to undergo any direct interaction with SNAREs. Thus, stimulation by a 

simple increase in SNARE complex volume remains the most suitable interpretation.  

By analogy, we propose that also Sec17/a-SNAP and Sec18/NSF, of which several 

units can bind the SNARE complex at a time 13, stimulate liposome fusion by acting 

as bulky ligands that deform the fusion site. This model is also consistent with the 

observation that the membrane-intercalating sequences of Sec17/a-SNAP are 

dispensable for fusion as long as full-length, wildtype SNAREs are used 9. 

 
Since we can stimulate the transition from hemifusion to full fusion by bulky SNARE 

ligands, the SNARE domains must be sterically accessible in these intermediates. 

We posit that the hemifusion zone behaves like a Brownian ratchet. Spontaneous 

shape fluctuations of the apposed membranes might liberate the space for bulky 

SNARE ligands, which, once bound, fix the system in this spontaneously created, 

highly curved or "tense" state. Thereby, they will increase the probability of pore 

opening or expansion relative to the "relaxed" state, in which fluctuations into the 

highly curved state would be short-lived and the probability for pore formation would 

remain low.  

 
Electron microscopy structures of HOPS feature a SNARE-binding domain (head 

region) of approximately 12-14 nm diameter, which probably encapsulates the 

SNARE complex 14,15. Binding this head region to SNAREs will markedly affect the 

geometry of the hemifusion stalk, which restrains the apposed membranes from 

separating and thereby enforces strong local membrane curvature. On first sight, it 

may seem trivial to relate the HOPS-induced high curvature to enhanced fusion 

activity. Inducing curvature-stress is a well-accepted mechanism to accelerate fusion 
16 and small vesicles are more 'fusogenic' than large ones 17.  However, fusion does 

not relax the curvature-stress that HOPS imposes on the two flat membranes in an 

immediately apparent way (Fig. 4a & Extended Data Fig. 8) and other factors, such 

as peristaltic forces and increased pulling on the SNARE transmembrane domains 
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might play major roles. The driving force that HOPS contributes to fusion pore 

opening is thus not obvious – necessitating theory and simulations in order to 

explore its sources.  

   

The energy stored in the imposed membrane curvature 
To gain insights into the bending energy (stress) imposed on the fusion site by the 

HOPS-SNARE complex, we performed both molecular dynamics (MD) simulations 

and elastic continuum modeling (see Methods). Although a recent study reported the 

existence of extended hemifusion diaphragms between yeast vacuoles fusing in vitro 
18, our own studies by light and electron microscopy did not reveal extended 

hemifusion zones at a sufficient frequency to permit their quantification and 

interpretation (D'Agostino and Mayer, in preparation). Therefore, our models assume 

a stalk as the hemifused structure. Our conclusions would not qualitatively change if 

the hemifused structure were a diaphragm. In the MD simulations, we derived the 

work that HOPS must perform to bend the membrane and counteract the (partial) 

pressure that the membrane exerts on the surface of HOPS. In mechanical 

equilibrium, the bending work, which HOPS must perform to conserve the membrane 

shape of minimal free energy, equals the exerted pressure (P) times the volume (V) 

of HOPS. For a purely repulsive sphere this will approximate the bending energy of 

the adopted shape. The elastic continuum model underestimates the actual bending 

work by about a factor of two (see Methods for a detailed explanation). This bending 

energy (equilibrium bending work) amounts to about 75 kBT (12 nm HOPS sphere) to 

115 kBT (14 nm HOPS sphere) (Extended Data Fig. 9b). These values are, however, 

subject to the approximation of shape, the location with respect to the stalk (e.g. 

Extended Data Fig. 9c), and the location within the vacuole-vacuole contact zone (at 

the curved periphery of the contact zone, called the vertex ring 19, these values will 

likely be lower). Since HOPS catalyzes SNARE complex assembly, we expect that a 

substantial fraction of the bending work will be overcome by SNARE complex 

formation (~65 kBT per SNARE complex 20). Furthermore, HOPS tethers membranes 

through Rab-GTPases and direct lipid interaction 21,22. To discern whether the 

acceleration of fusion might rely on the absence or presence of tether activity, we 

additionally modeled a HOPS with tether activity (coined '14 nm HOPS attractive') by 

including weak attractions between the surface of HOPS and the membrane. These 

surface attractions can render the average performed bending work negative (Figure 

S9b; green line). This implies that the bending energy is fully compensated by the 
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favorable surface attraction and that the presence of HOPS will spontaneously curve 

the membrane also in the absence of the stalk. However, these attractions do not 

imply that the bending energy and thus the stress imposed on the adherent 

membranes vanishes (see Fbending  in Extended Data Fig. 9b,d). 

 

The peristaltic force on HOPS 
To gain insight into the force required to restrain HOPS at the fusion site, we 

estimated the peristaltic force fd, which pushes HOPS away from a stalk, a fusion 

pore, or a SNARE complex. It originates from the induced membrane curvature and 

may be enhanced by osmotic pressure of the fusing vesicles. Both our MD 

simulations and the elastic continuum model estimate the curvature-induced 

component of this force to be several 10s of pN, up to 60 pN, when HOPS binds 

close to the fusion site (Extended Data Fig. 9b,d). Intuitively, we expect fd to 

decrease when HOPS is located at the vertex, i.e. at the already curved periphery of 

the vacuole-vacuole contact zone. However, while surface attractions (membrane 

tethering) reduce fd by half in the MD simulations (Extended Data Fig. 9b), they do 

not give rise to a free energy minimum near the constraint, as shown by our 

continuum model (Extended Data Fig. 9d). Therefore, HOPS can only be kept near 

the constraint by binding to the SNARE complex, which counteracts fd.  

 

Influence of HOPS on the pulling force of SNARE transmembrane domains 
Vice versa, HOPS will exert a pulling force on the SNARE C-termini, which are 

thought to approach each other during the progression from hemifusion to pore 

opening until they closely associate as observed in the neuronal SNARE complex 23. 

To estimate to which degree bulky SNARE complex ligands, such as HOPS, may 

alter the force that SNARE TMDs exert on the luminal leaflets (Extended Data Fig. 

10a), we performed coarse-grained molecular dynamics simulations. We rationalized 

the gain in force from the reduction in relative work (ΔΔG) (Extended Data Fig. 10b) 

required to slightly bring the luminal C-termini of Vam3 and Nyv1 into closer 

proximity. The corresponding forces on the SNARE TMDs were derived from this 

relative work (Extended Data Fig. 10c). With slightly we emphasize that the here-

imposed stalk indentation is reversible, meaning that the stalk will recover upon 

removal of the external force (no fusion barrier is being crossed).  

 



 6 

HOPS reduces the relative work that the SNARE complex must perform to (slightly) 

indent the stalk by up to 12 kBT (Extended Data Fig. 10b). The corresponding 

apparent 'force gain' is given by the derivatives of this work function (Extended Data 

Fig. 10c). Its magnitude of 10-30 pN suggests that HOPS binding would gain the 

equivalent of one SNARE complex 20,24,25. Its magnitude shows a high offset value 

which gradually converges as the C-termini approach each other. In contrast, 

simulations where the juxta-membrane regions between the coiled-coil and 

transmembrane domains were modeled as fully flexible (unstructured) - rendering 

the SNARE complex mechanically ineffective for transmitting bending force to its 

TMDs - showed a lower but constant 'force gain' (8 pN for 14 nm "HOPS", Fig S10c). 

This illustrates that the initial apparent force gain largely depends on the mechanical 

stiffness of the SNARE linkers. It likely originates from a projection of the peristaltic 

force on the SNARE C-termini. This is not necessarily intuitive since the stalk 

imposes an inter-membrane constraint and therefore one might expect that the 

imposed stress tends to stretch the stalk rather than ease its indentation.  

 

The observed force gain is compromised by positioning "HOPS" more distally with 

respect to the stalk (Extended Data Fig. 10b,c; HOPS 12 nm (linker)). This suggests 

that the force gain is mediated by direct steric effects of HOPS on the site of 

hemifusion. Although the force gain is substantial with respect to the inherent force 

exerted by a SNARE complex  – doubling or even tripling the effective SNARE force 

-- the concomitant gain in free energy, i.e., the  driving force of fusion, remains (I) 

relatively small (~10 kBT) and (II) largely relies on the mechanical stiffness and thus 

the adopted secondary structure of the HOPS-bound SNAREs. 

 

HOPS-induced membrane tension 
The curvature induced by HOPS reduces the effective, projected area of the 

proximal leaflets via corrugation of the membrane surface. This may result in a 

concomitant surface tension. It is unclear whether such a (local) tension could relax 

(dissipate) via lipid diffusion, solvent efflux and/or lipid flip-flops (in case of 

asymmetric leaflet tension or spontaneous curvature). We used our continuum 

model to estimate the membrane area (A-A0) that would be required to compensate 

for this tension induced by the presence of HOPS (Extended Data Fig. 9c). A single 

HOPS sphere, which is closely restrained to the fusion site, will reduce the area of 

the membrane-membrane contact zone by ~70 nm2. Although this may in principle 
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generate significant tension at high densities of HOPS on the membrane, we can 

effectively rule out tension as a main cause of accelerated fusion due to our 

experimental observations: Displacing bulky SNARE ligands from the SNARE 

complex via a flexible linker of 35 amino acids abolishes the stimulation of fusion by 

them (Fig. 3). But the required excess membrane area (A-A0), and thereby the 

tension that HOPS might induce, depends only weakly on the distance of HOPS (d) 

from the inter-membrane constraint – quite in contrast to Fbending and fd (Figure 

S9c,d). Therefore, tension should not provide the main driving force for the observed 

acceleration of fusion.  

 

Effect on the free energy barrier of the fusion pore  
We explored the effect of 'HOPS' on the free energy barrier of fusion pore formation 

using a previously published method 26. In order to estimate the free energy required 

to open the fusion pore, we pull two hydrophilic 'beads' (probes; colored purple in 

Extended Data Fig. 8b-d) towards each other near the center of the stalk. Each 

probe is comprised of 8 clustered solvent beads. Bringing the probes in closer 

proximity exerts a squeezing force on the stalk which enforces its expansion 

(evolution). The “stalk thickness” is defined by the distance between the two probes. 

The idea of this approach is that one brings the system close to a nucleation barrier 

until the barrier can be crossed spontaneously within the simulation time scales. The 

work required to enforce nucleation gives an estimate of the height of the barrier. An 

advantage of this approach is that we can use the same reaction coordinate to test 

whether there is a propensity for 'leaky' fusion (coined leakage pore mediated stalk 

elongation 26). For more detailed information see our previous work 26. 

 

The membrane system that we simulated consists of a POPC:POPC mixture (40% 

POPE) with a fusion site comprised of one HOPS-bound SNARE complex and two 

additional unbound SNARE complexes (see Extended Data Fig. 8a and Methods). 

Tension-less membrane conditions are ensured by the presence of free membrane 

edges which allow fast spontaneous lipid flip-flops between the leaflets and free 

adaptation of membrane area. The presence of the HOPS sphere substantially 

reduces the free energy barrier of fusion pore formation, from 67 kBT to 34 kBT 

(Extended Data Fig. 8a). A striking barrier of 67 kBT – despite the presence of three 

SNARE complexes – illustrates how ‘trapped’ the fusion reaction is after stalk 

formation. Furthermore, metastable hemifusion diaphragms, i.e., hemifusion states 
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of the thickness of a single membrane, have not been observed in the simulations, 

suggesting that the stalk to fusion pore transition faces only a single free energy 

barrier. Since HOPS is assumed to tether membranes in vivo 21,22,27, it is important to 

test whether the observed ‘fusion acceleration’ is conserved (if not enhanced) even 

in the presence of membrane tethering, which we have approximated by making 

HOPS membrane-attractive (no net bending work; Extended Data Fig. 9b). This is 

the case. The pronounced reduction of work required to open the fusion pore can 

thus be attributed to a substantial shift in the nucleation barrier towards larger probe 

to probe distances (the arrows in Extended Data Fig. 8a). In other words, opening of 

the fusion pore requires way less squeezing of the stalk – and thus less work – in the 

presence HOPS. This results in a more than 30 kBT decrease of the fusion barrier 

and thereby a dramatic acceleration (>e30) of the subsequent fusion reaction.   

 

Acceleration of fusion pore formation 
Based on the preceding considerations, we propose two possible sources for the 

observed acceleration of fusion pore formation by HOPS:  

 

(I) Relaxation of curvature stress. The progression of SNARE zippering into the 

juxta-membrane and transmembrane domains upon fusion pore opening moves 

HOPS further away from the fusion site – it increases the distance d (Extended Data 

Fig. 9) by about 1 nm. HOPS thereby imposes less of a steric constraint. The 

continuum model illustrates that the bending energy (Fbending) features a sharp, initial 

reduction when a nearby located HOPS complex moves slightly away from the stalk. 

From the MD simulations, we estimate that fusion pore formation reduces the 

bending work that HOPS performs by about 30 kBT. This partial, relative release of 

bending stress may very well drive subsequent fusion pore opening.  

 

(II) Geometrical compatibility. Fusion pore formation involves the formation of 

pronounced ‘wings’ resulting in a teardrop shape 28,29 in order to reduce the 

curvature of the pore interface. A stalk opposes this rearrangement because it forces 

the trans-leaflets to remain largely parallel/horizontal 30. The dashed lines in Figure 

S8b illustrate a fast decrease in curvature upon initial fusion pore opening. Here, the 

pre-existing curvature induced by HOPS (essentially a teardrop shape) is 

geometrically more compatible with a fusion pore than a stalk. This provides a 

relative free energy advantage for fusion pore formation. 
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In the absence of HOPS, the local curvature associated with nucleation of a fusion 

pore in flat membranes is so high that it seemingly becomes advantageous to form 

membrane defects near the transmembrane domains of the SNAREs (Extended 

Data Fig. 8b). Such 'leaky' transitions are not observed in the presence of HOPS, 

probably because it lowers the threshold for fusion pore nucleation and thereby 

channels the reaction towards non-leaky fusion. We have also tested directly 

whether HOPS might render the fusion site prone to membrane rupture. To this end 

we placed the two probes such that pulling them together would locally disrupt the 

membrane near the stalk (see Extended Data Fig. 8d).  Enforcing such a membrane 

defect does not result in membrane rupture but the defect self-heals.  
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Supplementary Tables 
 
Table S1: Yeast strains used in this study 

Strain Genotype Reference 
BJ3505 MATa pep4::HIS3 prb1-Δ 1.6R lys2-208 trp1-Δ 

101 ura3-52 gal2 can 
31 

DKY6281 MATα  pho8::TRP1 leu2-3 leu2-112 lys2-801 
suc2-Δ 9 trp1-Δ 901 ura3-52 

32 

   
BY4742 MATa his3-1 leu2-0 met15-0 ura3-0 Lab stock 
BJ Vam3-myc BJ3505; Vam3-His6(myc)2::URA 6 
BJ Nyv1-HA BJ3505; Nyv1-His6(HA)3::URA 6 
BJ ypt7Δ   BJ3505; ypt7::G418 Lab stock 
DKY ypt7Δ   DKY6281; ypt7::G418 Lab stock 
BJ ypt7Δ Nyv1-HA BJ3505 ypt7Δ; Nyv1-His6(HA)3::URA This study 
BJ ypt7Δ Vam3-myc BJ3505 ypt7Δ; Vam3-His6(myc)2::URA This study 
BY tor1-1 Vam7-
2xFKBP12 

BY4742; Vam7-2xFKBP12::URA This study 

BY tor1-1 Vam7-
2xFKBP12 Pfk1-
FRB-GFP 

BY4742; Vam7-2xFKBP12::URA ; Pfk1-FRB-
GFP::G418 

This study 

BY tor1-1 Pfk1-
FRB-GFP 

BY4742; Pfk1-FRB-GFP::G418 This study 

BY tor1-1 Vam7-LL-
2xFKBP12 

BY4742; Vam7-LL-2xFKBP12::URA This study 

BY tor1-1 Vam7-LL-
2xFKBP12 

  

Pfk1-FRB-GFP BY4742; Vam7-LL-2xFKBP12::URA ; Pfk1-
FRB-GFP::G418   

This study 

BY tor1-1 Vam7-
2xFKBP12 + FRB-
GFP 

BY4742; Vam7-2xFKBP12::URA ; pRS415-
TEFpr-FRB-GFP (LEU) 

This study 

CUY2675 GAL-
HOPS Vps41-TAP 

MATa/alpha his3∆200 leu2D0/leu2D0 lys2D0 
met15D0/met15D0 trp1D63/trp1D63 
ura3D0/ura3D0 VPS11pr::HIS3-GAL1pr 
VPS16::natNT2-GAL1pr VPS18::KanMX-
GAL1pr-3HA VPS33::TRP1-GAL1pr 
VPS41::TRP-GAL1pr-TAP-URA3 
VPS39::HIS3-GALpr 

33 

   
CUY3238 GAL-
Vps33-16 Vps16-
TAP 

MATa his3D200 leu2D0 lys2D0 met15D0 
trp1D63 ura3D0 VPS33::HIS3-GALpr 
Vps16::TRP-GAL1pr-TAP-URA3 

33 

   
CUY4307 GAL-
Vps39-11 Vps39-
TAP 

MATa/alpha his3D200 leu2D0/leu2d0 lys2D0 
met15D0/met15d0 trp1D63/trp1D63 
ura3D0/ura3D0 VPS11pr::HIS3-GAL1pr 
VAM6pr::KanMX-GAL1pr VAM6::TAP-URA3 

33 
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CUY4895 GAL-
CORVET Vps8-TAP 

MATa/alpha his3D200 leu2D0/leu2D0 lys2D0 
met15D0/met15D0 trp1D63/trp1D63 
ura3D0/ura3D0 VPS11pr::HIS3-GAL1pr 
VPS16::natNT2-GAL1pr VPS18::KanMX-
GAL1pr-3HA VPS33::TRP1-GAL1pr 
VPS8::TRP-GAL1pr-TAP-URA3 VPS3::HIS3-
GALpr 

33 

   
CUY8919 GAL-
Vps33-TAP 

MATa his3D200 leu2D0 lys2D0 met15D0 
trp1D63 ura3D0 VPS33::HIS3-GALpr-TAP-
URA3 

33 

 
 
 
 
Table S2: Primers used for genetic manipulations 

Primer Sequence 
Fw Vam3-myc ATTATAATAGTTGTGTGCATGGTGGTATTGCTTGCTGTATTAAGTTCCC

ACCACCATCATCATCAC 
Rv Vam3-myc TAATCTCCTTAAACGCGCATTGAGCACAGACTTTCTGGTAGACCCACTA

TAGGGAGACCGGCAGATC 
Fw Nyv1-HA ATTATACTATTTGTAAGTGCTGCTTTCATGTTTTTCTATCTGTGGTCCCA

CCACCATCATCATCAC 
Rv Nyv1-HA GTAAATAAAAAAAAAGGGGAGCTGTCCCACGACAATAACATTAATACTA

TAGGGAGACCGGCAGATC 
Fw Pfk1 FRB-
GFP 

GGTAGATTAAAGTTGAGAGCTGAGGTAGCCGCTTTAGCCGCTGAAAAC
AAAGGTGGTGGTGGTGCTAGCATCCTCTGGC 

Rv Pfk1-FRB-
GFP 

CATGCCATTTTTACCTCCTTTTGCTTAACTTAAACTTTTCATTGCAATCAT
TCGATGAATTCGAGCTCG 

Fw Vam7-
2xFKBP12 

GGAGGTTACAGATAGCCAACAAGAAGGCTAGACATTTTAACAACAGTG
CTGGTCGACGGATCGGTGACGGTGCTGGT 

Rv Vam7-
2xFKBP12 

TAGTACAAATATACTCTCAGGATTTGTAACCCGGATAGTAACTCATTAAT
TCGATGAATTCGAGCTCG 

Fw Vam7-LL-
2xFKBP12     

GGAGGTTACAGATAGCCAACAAGAAGGCTAGACATTTTAACAACAGTG
CTAGTCTAAGTGGTGGTGGTGGTTCTGGAGGAGGAGGATCCGGTGGT
GGAGGAAGTGGAGGTGGAGGTGCTGCCGCAGGTGACGGTGCTGGTTT
AATT 

Fw FRB-GFP CCCAAGCTTATGATCCTCTGGCATGAGATGTGGC 
Rv FRB-GFP CGAGCTCTTATTTGTATAGTTCATCCATGCCAT 
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Supplementary Figures 
 
Figure S1: Full scans of blots shown in the manuscript 
 
Red boxes indicate the cropped regions. Molecular weight markers are indicated in 
the respective figures.

 

Ext. Data Fig. 1a

Ext. Data Fig. 1d Ext. Data Fig. 1e Ext. Data Fig. 2b

Ext. Data Fig. 1a
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