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e2F1, a Novel Regulator of 
Metabolism
Pierre-Damien Denechaud, Lluis Fajas and Albert Giralt*

Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland

In the past years, several lines of evidence have shown that cell cycle regulatory proteins 
also can modulate metabolic processes. The transcription factor E2F1 is a central player 
involved in cell cycle progression, DNA-damage response, and apoptosis. Its crucial role 
in the control of cell fate has been extensively studied and reviewed before; however, 
here, we focus on the participation of E2F1 in the regulation of metabolism. We summa-
rize recent findings about the cell cycle-independent roles of E2F1 in various tissues that 
contribute to global metabolic homeostasis and highlight that E2F1 activity is increased 
during obesity. Finally, coming back to the pivotal role of E2F1 in cancer development, 
we discuss how E2F1 links cell cycle progression with different metabolic adaptations 
required for cell growth and survival.
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iNTRODUCTiON: A CeLL CYCLe PROTeiN wiTH New SKiLLS

The E2F transcription factors were first identified as proteins that were able to bind to the promoter 
of the adenoviral gene E2 (1). Eight E2F genes (E2F1-8) have been described to date, which can 
be classified based on their protein structures, their interaction partners, and their transcriptional 
properties (2). E2F1 was the first member of the E2F family to be identified because of its ability 
to bind the retinoblastoma protein (pRB), a tumor suppressor mutated in many types of cancer (3, 
4). The activity of E2F1 is dependent on its binding partners, which include dimerization proteins 
(DP) and the retinoblastoma family proteins (also known as “pocket proteins”), composed by pRB 
(RB1), p107 (RBL1), and p130 (RBL2) (5). E2F1–pRB interaction blocks the transcriptional activa-
tion domain of the E2F1–DP complex and prevents the recruitment of transcriptional co-activators 
to the promoters of its target genes (6). During cell cycle progression, cyclin-dependent kinases 
(CDKs) phosphorylate pRB, releasing E2F1, which is then available to promote the expression of 
genes involved in S-phase entry, DNA synthesis, and mitosis (7–9).

Three decades after its discovery, it is now clear that the control of cell cycle represents only 
a subset of the E2F1 roles, which include the regulation of apoptosis (10), senescence (11), and 
DNA-damage response (12). Indeed, genome-wide location studies have revealed that E2F1 binds 
to hundreds of promoter regions of genes involved in a myriad of cellular pathways (13–16). What 
ultimately determines E2F1 distinct biological functions are its protein levels, the combination of 
several posttranscriptional modifications and its interaction with different partners (17). The intri-
cate role of E2F1 as a master regulator of cell fate has been extensively examined before and is out of 
scope for this review (17, 18). Instead, here, we want to focus on the recent research evidencing that 
E2F1 is a master regulator of metabolism both in normal and pathological conditions.
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FigURe 1 | Main roles of E2F1 in metabolic tissues. E2F1 participates in the differentiation of several tissues, but also in the regulation of specific metabolic functions 
in fully differentiated organs, thus contributing to global metabolic homeostasis. Moreover, during obesity, E2F1 activity is increased and it contributes to some of the 
comorbidities of this pathological condition. Pathways activated by E2F1 are represented in green while pathways repressed by E2F1 are in red.
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regulators of adipocyte fate and differentiation (25, 26). Moreover, 
in mature adipocytes E2F1 can form a repressor complex with 
TRIP-Br2—a transcriptional co-regulator—which inhibits lipoly-
sis and mitochondrial β-oxidation (27). Interestingly, CDK4, the 
main E2F1 upstream activator during cell cycle progression, also 
promotes adipogenesis though PPARG activation and in mature 
adipocytes it sustains insulin signaling by phosphorylation of the 
Insulin Receptor Substrate 2(28, 29). Altogether, these findings 
show that the canonical CDK4-pRB-E2F1 axis is essential for 
adipogenesis and to maintain adipocyte function.

In contrast to white adipose tissue, E2F1 represses mouse 
myogenic differentiation by inhibiting the transcription factors 
MyoD and Myogenin (30, 31). MyoD in turn, promotes the 
expression of the Kelch Repeat and BTB Domain Containing 
Protein 5 (Kbtbd5), which represses E2F1 activity in a negative 
feedback loop by the ubiquitination and degradation of DP1 
(32). Conversely, in Drosophila, depletion of the dE2F1 blunts the 
expression of late myogenic markers during muscle differentia-
tion, which is critical for survival (33). The differences between 
the two organisms are puzzling and require further exploration, 
but they may rely on the fact that in Drosophila there are only two 
E2F isoforms, dE2F1 and dE2F2, which work as activators and 
repressors of transcription, respectively.

Chromatin immunoprecipitation (ChIP) analysis revealed 
that in basal conditions E2F1 and pRB form a repressor complex 
in the promoters of several genes involved in oxidative metabo-
lism and mitochondrial biogenesis in muscle, but also in brown 
adipose tissue (34). In response to exercise or cold exposure, pRB 
is phosphorylated in muscle and brown adipose tissue, respec-
tively, and mitochondrial and thermogenic genes are expressed  

e2F1 RegULATeS MeTABOLiSM iN  
NON-PROLiFeRATive CONDiTiONS AND 
CONTRiBUTeS TO gLOBAL MeTABOLiC 
HOMeOSTASiS

Role of e2F1 in Normal Physiology
Despite the critical function of E2F1 in cell proliferation, 
E2f1−/− mice undergo normal development, likely due to the 
compensation by other E2F family members (19, 20). However, 
E2f1−/− mice present some metabolic perturbations that highlight 
its specific role in the regulation of metabolism independently 
from cell cycle control. E2F1 participates in the development and 
the differentiation of several tissues involved in global metabolic 
homeostasis, but it is also implicated in specific metabolic func-
tions of fully differentiated organs like pancreas, adipose tissues, 
muscle and liver (Figure 1).

E2f1/E2f2 mutant mice show severe exocrine atrophy of 
pancreatic β cells, primarily resulting from E2F1 mutation, 
which leads to insulin-dependent diabetes (21). E2F1 promotes 
β cell proliferation and differentiation through the regulation 
of the endocrine markers PDX-1 and Neurogenin 3 (22, 23). In 
addition, in fully differentiated β cells, E2F1 directly controls the 
expression of the major subunit of the ATP-sensitive K+ channel 
Kir6.2, hence promoting glucose-stimulated insulin secretion 
(24). These studies show that E2F1 participates in pancreas 
development, maintenance, and endocrine function, hence 
contributing to global glucose homeostasis.

In the adipose tissue, E2F1 promotes adipogenesis though the 
regulation of PPARG and RIP140 gene expression, two master 
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(34, 35). As a consequence, deletion of E2F1 in mice results 
in better resistance to fatigue during exercise and higher body 
temperature upon cold stimulation due to increased oxidative 
metabolism (34). Strikingly, E2F1 depletion in a dystrophic 
mouse model significantly improved muscle performance by 
increasing muscle oxidative metabolism (36).

Some studies using pRB lack of function models support the 
role of the E2F1–pRB complex as a negative regulator of oxidative 
metabolism. For instance, adipose-specific RB1-deficient mice 
are resistant to high-fat diet (HFD)-induced obesity and display 
increased mitochondrial activity in white and brown adipose tis-
sues (37). This was reproduced in RB1-haplosufficient mice (38). 
However, the HFD-resistant phenotype of RB1-deficient mice 
could also be attributed to the role of pRB in promoting white 
versus brown fat cell differentiation (35, 39), as evidenced by the 
increased expression of the thermogenic protein UCP1 in both 
white and brown adipose tissue depots (37, 38). Additionally, 
acute loss of pRB or depletion of p170 increased mitochondrial 
content and activity in muscle cells (40, 41). Conversely, other 
studies report that pRB may in fact promote mitochondrial bio-
genesis. Deletion of RB1 led to impaired mitochondrial function 
in myocytes (42) and erythrocytes (43). More recently, it was 
shown that acute pRB loss in adult mice results in a decreased 
content of oxidative phosphorylation proteins in the lung and in 
the colon (44), while RB1 depletion blocked muscle differentiation 
due to an impairment in oxidative metabolism (45). The above 
confounding studies evidence the relevance of the E2F1-pRB 
complex in the control of oxidative metabolism in highly meta-
bolic tissues, but they highlight that its specific function may be 
context dependent. It should also be taken into account that pRB 
loss of function also leads to multiple E2F1-independent effects 
(4). Moreover, the fact that E2F1 can activate or repress its target 
genes often complicates the understanding of the phenotype of 
E2f1 knockout models.

Role of e2F1 in Metabolic Diseases
Obesity is associated with increased risk of developing cardiovas-
cular diseases, type 2 diabetes, and cancer (46). As we will discuss 
in this section, E2F1 expression and activity are increased during 
obesity in several tissues involved in metabolic homeostasis, sug-
gesting that E2F1 could contribute to some of the comorbidities 
of this condition.

E2f1 mRNA and protein levels are increased in the visceral 
white adipose tissue of obese human subjects and positively cor-
related with insulin resistance and circulating free-fatty acids (47). 
E2F1 expression was also increased in the visceral adipose tissue 
of two widely used mouse models of obesity: mice fed a HFD and 
leptin-deficient (ob/ob) mice (48). This effect was reversed when 
HFD-fed mice were treated with resveratrol, which in parallel 
decreased body weight gain and the levels of pro-inflammatory 
cytokines levels in white adipose tissue (49). In addition, pRB lev-
els and repressor activity decrease in white adipose tissue during 
obesity both in rats and in humans (50), which is consistent with 
increased E2F1 activity. These evidences are supported by ChIP 
analysis in human white adipose tissue that revealed increased 
E2F1 binding to the promoters of stress signaling genes during the 
progression of obesity (51). Interestingly, E2F1 has been shown 

to enhance NF-κB-mediated inflammatory response (52, 53). 
However, the contribution of E2F1 to the inflammation of white 
adipose tissue during insulin resistance remains to be explored.

Obesity is a well-known inducer of cardiac hypertrophy, 
which often contributes to heart failure (54). Pathological cardiac 
hypertrophy occurs in parallel with the development of metabolic 
inflexibility and a re-activation of the cell cycle machinery (55). 
Similar to the effects observed in the white adipose tissue, HFD 
increased E2F1 levels and increased RB phosphorylation in 
mouse heart. This correlated with elevated expression of the E2F1 
transcriptional target pyruvate dehydrogenase kinase 4 (PDK4) 
(56, 57). PDKs inhibit pyruvate dehydrogenase, blocking pyruvate 
conversion into acetyl-CoA, which results in decreased glucose 
oxidation. Hence, upregulation of the E2F1–PDK4 axis during 
obesity may account for the impairment in glucose oxidation that 
characterizes cardiomyopathy. Moreover, through the regulation 
of PINK1 translation via miR-421 expression, E2F1 promotes 
mitochondrial fragmentation in cardiomyocytes, which can lead 
to myocardial infarction (58). Additionally, E2F1 has been shown 
to suppress cardiac neovascularization by downregulating VEGF 
and PIGF expression. Consequently, E2f1−/− mice present better 
cardiac function after myocardial infarction than their wild-type 
littermates (59). Altogether, these studies suggest that increased 
E2F1 activity occurring during obesity contributes to the devel-
opment of cardiomyopathy through the re-entry in the cell cycle 
and the re-wiring of cardiac metabolism.

Some laboratories, including ours, have recently dem-
onstrated the importance of E2F1 in the physiopathological 
context of non-alcoholic fatty liver disease (NAFLD), which is 
highly related to the epidemic of obesity. NAFLD is a progres-
sive disease that starts with a benign accumulation of lipids in 
the liver (hepatic steatosis) that can develop to non-alcoholic 
steatohepatitis (NASH) which, in its worst prognosis, can lead to 
liver fibrosis, cirrhosis, and hepatocarcinoma (60). Hepatic E2F1 
levels are increased in steatotic liver in mice but also in humans 
(16). Additionally, NAFLD correlated with the phosphorylation 
of pRB in the liver in different mouse models of obesity and 
diabetes (16, 61), altogether consistent with increased E2F1 
activity in these conditions. One major contributor to NAFLD 
is an increase in hepatic de novo lipogenesis, a process in which 
E2F1 plays an important role. Indeed, E2F1 directly activates 
the expression of key glycolytic and lipogenic genes and E2F1 
depletion protects against NAFLD (16). Remarkably, hepatic 
E2F1 expression is increased in patients with NASH and in 
different mouse models of liver fibrosis (62, 63). Perturbed bile 
acid metabolism and/or cholesterol homeostasis are major con-
tributors to NASH. The importance of E2F1 in bile acid synthesis 
was found in a mouse model of NASH—bile duct ligation and 
3, 5- diethoxycarbonyl-1, 4-dihydrocollidine (DCC) feeding—in 
which bile acid accumulation in the liver contributes to fibrosis. 
Indeed, knockout of E2F1 in mice reduced bile acid synthesis, 
which protected from the development of biliary fibrosis under 
DCC feeding (62). We also recently revealed that E2F1 partici-
pates in cholesterol homeostasis by enhancing the expression of 
PCSK9, a negative regulator of the LDL receptor and cholesterol 
uptake (63). Importantly, anti PCSK9 antibodies were recently 
approved for the treatment of cardiovascular diseases due to 
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TABLe 1 | E2F1 contributes to the metabolic reprograming of cancer cells.

e2F1-target genes Reference

Nucleotide synthesis DHFR, TK (85,86)
Lipid synthesis FAS (89)
Glycolysis PFKB, Sirt6, PDK (71,72,73,75)
Oxidative metabolism TOP1MT, EVOVL2, NANOG (76–78)
Autophagy v-ATPase, ATG1, DRAM1, MAP1LC3 (91,92)

E2F1 regulates the expression of several genes that have an impact on cancer 
metabolism.
DHFR, dihydrofolate reductase; TK, thymidine kinase; FAS, fatty acid synthase; 
PFKB, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase; PDK, pyruvate 
dehydrogenase kinase; Sirt6, Sirtuin 6; TOP1MT, mitochondrial topoisomerase I; 
EVOVL2, ELOVL fatty acid elongase 2; ATG1, autophagy-related gene-1; MAP1LC3, 
microtubule-associated protein-1 light chain-3; DRAM, damage-regulated autophagy 
modulator.
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their capacity to lower LDL cholesterol levels (64). E2f1−/− mice 
present decreased circulating levels of cholesterol as a conse-
quence of increased cholesterol uptake by several tissues, includ-
ing the liver. However, when subjected to a high cholesterol diet, 
E2f1−/− mice presented increased liver fibrosis, likely due to the 
combination of exacerbated cholesterol uptake and a defect in 
bile acid secretion (63). Taken together, these studies imply that 
the convenience of targeting E2F1 to treat liver fibrosis could 
be context dependent and that this approach requires further 
investigation. Nevertheless, in humans, the increase of E2F1 dur-
ing NASH was more substantial than the induction of standard 
fibrosis markers such as α-SMA and α1-collagen, which suggest 
that E2F1 could be potentially used as a new diagnostic marker 
for increased risk of developing liver fibrosis and cirrhosis (62).

Long-term HFD also increased E2F1 protein levels and pRB 
phosphorylation in hypothalamic Arcuate nucleus neurons, 
which are involved in global energy balance (65). This in turn 
led to a de-repression of E2F1-target genes involved in cell cycle 
regulation and apoptosis. Lu et  al. found that the E2F1–pRB 
repressor complex is necessary for POMC neuron maintenance, 
whereas specific RB1 depletion in these neurons led to hyper-
phagia, obesity and diabetic syndrome in an E2F1-dependent 
manner (65). These results indicated that dysregulation of E2F1 
at the central level also contributes to the development of the 
metabolic syndrome during the progression of obesity.

Altogether, recent work has highlighted the importance of the 
pRB-E2F1 pathway in the pathophysiology of obesity.

e2F1 CONTRiBUTeS TO THe MeTABOLiC 
RePROgRAMMiNg OF CANCeR CeLLS

Cancer cells adapt their metabolism in order to promote growth, 
proliferation, survival, and metastasis. The specific metabolic 
profile of a tumor ultimately depends on the tissue of origin, the 
oncogenic alterations, the tumor stage, and the tumor microenvi-
ronment. Metabolic reprogramming is now considered one of the 
hallmarks of cancer and selectively targeting tumor metabolism 
has been proposed in the recent years as a therapeutic strategy 
to treat cancer (66, 67). Remarkably, some oncogenes such as 
p53 and Myc regulate cancer metabolism (68, 69) and, as we will 
discuss in this section, so does E2F1 (Table 1).

e2F1 Contributes to the warburg effect
One metabolic feature of many cancer cells is the so-called 
Warburg effect, which consists on increased aerobic glycolysis 
and decreased glucose oxidation, resulting in high rates of 
glucose utilization and lactate production (66, 70). It has been 
shown that, against the assumption of Otto Warburg, who first 
described this phenomenon almost a century ago, in most 
cancers this is not caused by defective mitochondria. Several 
hypotheses have been proposed on how the Warburg effect ben-
efits cancer cells, including higher rates of ATP synthesis, the 
generation of glycolytic intermediates for biosynthetic reactions 
or the remodeling of the tumor microenvironment; however, 
this phenomenon is still not fully understood (70). It has been 
shown that E2F1 can promote this metabolic switch by both 
enhancing glycolysis and by repressing glucose oxidation in 
the mitochondria (Figure 2). During the development of HCC, 
increased E2F1 levels progressively recruit Pontin and Reptin 
(two putative DNA helicases) to promote the expression of genes 
involved in glycolysis and in lactate export, which contributes 
to the Warburg effect (15). During cell division, E2F1 also 
promotes the expression of the F-type isoform of the enzyme 
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, which 
results in the synthesis of fructose-2,6-bisphosphate, a potent 
stimulator of glycolysis (71, 72). Moreover, E2F1 also enhances 
glycolysis in bladder and prostate cancer cell lines through 
the suppression of the expression of Sirtuin 6, a NAD(+)-
dependent deacetylase that inhibits the transcription of several 
key glycolytic genes (73, 74). Besides enhancing glycolytic gene 
expression, as previously mentioned, E2F1 also blocks glucose 
oxidation in the mitochondria by promoting the expression 
of the PDK enzymes. While in the heart E2F1 regulates PDK4 
(57), in pancreatic cancer cells E2F1 enhances the expression of 
PDK1 and PDK3 isoforms, which results in increased aerobic 
glycolysis and proliferation (75).

e2F1 and Oxidative Metabolism
In addition to regulating oxidative metabolism in non-
proliferative conditions (34), E2F1 also repress mitochondrial 
biogenesis during proliferation. Like in the muscle, knocking 
down E2F1 in HeLa cells led to increased expression of several 
genes involved in mitochondrial biogenesis and oxidative 
phosphorylation, which resulted in increased ATP production 
(76). E2F1 depletion in Mesenchymal Stem Cells also increased 
mitochondrial biogenesis and oxygen consumption (77). 
Additionally, it has been shown that E2F1-mediated repression 
of oxidative metabolism results in a self-renewal of tumor-
initiating stem-like cells that contributes to the progression of 
HCC (78). Some evidences show that mitochondrial function, 
in turn, also impacts E2F1 activity. For instance, inhibition of 
ATP synthase or of the electron transport chain leads to the 
downregulation of E2F1 activity and to cell cycle arrest (79, 
80). On the other hand, mitochondrial ROS production can 
promote E2F1-mediated apoptosis (81, 82). For a more detailed 
perspective of the complex interplay between E2F transcription 
factors and the mitochondrial function, we address you to recent 
specific reviews about the topic (83, 84).
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FigURe 2 | E2F1 contributes to the Warburg effect. E2F1 participates in the characteristic aerobic glycolysis observed in many tumors by different mechanisms. 
E2F1 promotes glycolysis by repressing the expression of Sirtuin 6 (Sirt6), a negative regulator of glycolytic gene expression and by promoting the expression of the 
F-type isoform of 6-phosphofructo-2-kinase/fructose-2,6-bissphosphatase (PFKB). E2F1 also recruits a Pontin/Reptin complex to promote the expression of genes 
involved in glycolysis and lactate export. Additionally, E2F1 blocks glucose oxidation in the mitochondria by promoting the expression of pyruvate dehydrogenase 
kinase (PDK) enzymes, which inhibit the pyruvate dehydrogenase complex (PDH).
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e2F1 and Anabolic Metabolism
Cancer cells undergo different anabolic processes to fulfill the 
high demand of macromolecules required for proliferation. 
E2F1 participates in DNA synthesis by regulating the expres-
sion of several genes involved in nucleotide metabolism such as 
Thymidine kinase and Dihydrofolate reductase (85, 86). Tumors 
also normally present high rates of lipid synthesis, which are used 
both for membrane production and as signaling molecules (87). 
Lipogenesis is not only important during proliferation; it also 
contributes to the metastatic capacity of cancer cells (88). Besides 
promoting lipogenesis in the liver (16), in medulloblastoma E2F1 
enhances fatty acid synthase expression in response to Sonic 
hedgehog signaling (89).

mTORC1 is a master regulator of cell growth and survival, 
and it is involved in the progression of many cancers (90). It 
was recently shown that E2F1 promotes mTORC1 activity by 
enhancing the expression of lysosomal v-ATPase. This in turn, 
blocked autophagy, one of the main metabolic processes regu-
lated by mTORC1 (91). Conversely, it was shown that E2F1 can 
also stimulate upregulation of genes involved in autophagy in 
response to DNA damage (92). Hence, the contribution of E2F1 
to autophagy is still a matter of debate. Additionally, numerous 
studies have highlighted the crosstalk between E2F1 activity and 
other signaling pathways involved in cancer metabolism, such as 
the AKT or the HIF pathways (93–95). Whether E2F1 promotes 
anabolic reprogramming in cancer cells through the interaction 
with these signaling pathways remain to be explored.

Overall, these studies show that the transcription factor E2F1 
plays a pivotal role integrating the cell cycle regulatory machinery 

with metabolic pathways essential for cell growth and survival. 
This, in turn, determines cell fate by affecting cell stemness, pro-
liferation rate, or apoptosis. Therefore, inhibiting E2F1 activity 
could potentially impact tumor development at different levels 
simultaneously by blocking cell cycle progression and by impair-
ing metabolic flexibility in cancer cells. In this regard, CDK4/6 
inhibitors that block pRB phosphorylation and that are currently 
used for treating hormone-positive breast tumors have been 
reported to block proliferation, in part, by inducing a metabolic 
reprogramming in cancer cells (96, 97).

CONCLUSiON AND PeRSPeCTiveS

Here, we have collected the current and emerging evidence 
showing that E2F1 regulates metabolism in non-proliferating 
conditions and, more importantly, that dysregulation of E2F1 
activity leads to complications associated with obesity. Many 
studies have focused on the mitogenic signals that drive E2F1 
activation in cancer cells, but how E2F1 is activated in other 
pathological conditions such as obesity is just beginning to be 
understood. The CDK4-pRB-E2F1 pathway can be stimulated 
both by glucose and by insulin in different tissues involved in 
global metabolic homeostasis (16, 24, 29, 95, 98). One possibility 
is that during obesity, hyperglycemia and/or hyperinsulinemia 
render pRB hyperphosphorylated (50, 61, 65). This in turn, would 
increase E2F1 activity and, in a positive feedback loop, E2F1 
could promote its own expression (99). Other possible candidates 
for exacerbated E2F1 activation during obesity could be chronic 
inflammation or increased ROS production due to mitochondrial 
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stress, two factors that promote E2F1 activity in other contexts 
(52, 82). Despite the specific mechanisms that lead to E2F1 
hyperactivation during obesity, targeting E2F1 could potentially 
be used to ameliorate some of the deleterious effects of this condi-
tion. Notably, E2f1−/− mice present increased insulin sensitivity 
and are resistant to HFD-induced obesity (25, 34). However, it 
should be considered that systemically inhibiting E2F1 activity 
would likely impair insulin secretion (100), which could be det-
rimental in the initial phases of insulin resistance, when insulin 
production is enhanced to maintain normoglycemia.

Given its dual role in proliferation and metabolism, it is 
tempting to speculate that E2F1 might be a central actor in the 
interplay between obesity and some types of cancer. One of 
those cases could be HCC, for which there is an increased risk 
in obese patients (101). We have recently shown that hepatic 
E2F1 expression is augmented during obesity (16), while numer-
ous studies have demonstrated that increased E2F1 activity 
promotes the development of HCC (15, 78, 102, 103). Notably, 
it was also recently reported that E2F1 mediates the proliferative 
effects of insulin in hepatocytes (95). Indeed, obesity-associated 
hyperinsulinemia is one mechanism proposed to explain the 
epidemiological observations of increased HCC in obese patients 
(104). Therefore, under obesity conditions, enhanced hepatic 
E2F1 activity—maybe in response to hyperinsulinemia—may 
first lead to enhanced de novo lipogenesis, NAFLD development 

and fibrosis (16, 62). Subsequently, E2F1 may contribute to HCC 
progression by promoting the expression of genes involved in cell 
cycle machinery and cancer metabolism (15).

In conclusion, research over the past 15  years has given an 
increasingly complex picture of the multiple roles of E2F1. 
Beyond being a mere cell cycle regulator, this transcription factor 
has emerged as a novel player in the control of metabolism not 
only in normal physiology but also under pathological conditions 
such as obesity and cancer.
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