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A transcribed enhancer dictates mesendoderm
specification in pluripotency
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Enhancers and long noncoding RNAs (lncRNAs) are key determinants of lineage specification

during development. Here, we evaluate remodeling of the enhancer landscape and modula-

tion of the lncRNA transcriptome during mesendoderm specification. We sort mesendo-

dermal progenitors from differentiating embryonic stem cells (ESCs) according to Eomes

expression, and find that enhancer usage is coordinated with mesendoderm-specific

expression of key lineage-determining transcription factors. Many of these enhancers are

associated with the expression of lncRNAs. Examination of ESC-specific enhancers inter-

acting in three-dimensional space with mesendoderm-specifying transcription factor loci

identifies MesEndoderm Transcriptional Enhancer Organizing Region (Meteor). Genetic

and epigenetic manipulation of the Meteor enhancer reveal its indispensable role

during mesendoderm specification and subsequent cardiogenic differentiation via

transcription-independent and -dependent mechanisms. Interestingly, Meteor-deleted ESCs

are epigenetically redirected towards neuroectodermal lineages. Loci, topologically asso-

ciating a transcribed enhancer and its cognate protein coding gene, appear to represent

therefore a class of genomic elements controlling developmental competence in pluripotency.
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A complex molecular program controls cardiac differ-
entiation and morphogenesis during development1.
Understanding the gene regulatory networks (GRNs)

governing cardiac organogenesis could lead to innovations for the
treatment of both inherited and acquired heart disease1,2. In
addition, induction of cardiac regeneration via either cell-based
therapies or reactivation of dormant endogenous mechanisms has
engendered considerable interest over the past decade3. Both
approaches require a deep knowledge of the molecular and cel-
lular events regulating cardiac specification and differentiation.
However, transcriptional profiling of individual transient cellular
intermediates in the developing heart is extremely challenging
and requires the use of in vitro cellular systems4. During gas-
trulation, epiblast cells undergo epithelial-to-mesenchymal tran-
sition (EMT) and ingress through the primitive streak (PS)5. This
transient precursor cell population, referred to as the mesendo-
derm (ME), is the source of the definitive endoderm and the
mesoderm. Nascent mesoderm cells then rapidly migrate from
the posterior side of the embryo to the anterior side, become
specified to the cardiac lineage, and ultimately generate the
embryonic heart6. Mesendodermal precursors are characterized
by the expression of genes such as Eomesodermin (Eomes),
Goosecoid (Gsc), and LIM-homeobox1 (Lxh1)7. In particular,
Eomes, a T-box transcription factor (TF), is critical for ME spe-
cification between embryonic day 6.5–7.5 in the mouse. Eomes
expression marks the earliest cardiac mesoderm and dictates the
formation of cardiac precursors through regulating the master TF
Mesoderm posterior 1 (Mesp1)8. The transient formation of the
ME is under the control of a specialized GRN consisting of cell-
fate determining TFs that interact at target sequences known as
enhancers7. Moreover, enhancers are an important class of distal
regulatory elements that are key information processing units
within the genome, controlling the precise spatiotemporal
expression of their target protein-coding genes (PCGs)9. Recently,
regions of the mammalian genome comprising multiple enhan-
cers have been identified and termed super-enhancers (SEs)10,11.
SEs are typically an order of magnitude larger than typical-
enhancers (TEs) and are highly enriched with regulatory TFs and
chromatin marks (i.e., H3K27ac). They are master regulators of
developmental and cell identity genes, which are critical for cell
fate determination and differentiation10. Through integrating
upstream context-specific developmental signals, TF-bound TEs
and SEs mediate appropriate gene programs required to mark
and specify mesendodermal fate7,9,11.

Progress in high-throughput sequencing has advanced our
understanding of genome organization and regulation. Only 2%
of the genome appears to code for proteins. The remaining 98%
represents the noncoding fraction of the genome. Most of the
noncoding genome is transcribed into RNAs12. In particular, long
noncoding RNAs (lncRNAs) represent an important class of
regulatory molecules. LncRNAs are typically transcribed by RNA
polymerase II and are usually multiexonic and polyadenylated13.
Interestingly, lncRNAs have been shown to be expressed in
unique cell types, for instance across various stages of differ-
entiation, suggesting their involvement in regulating cell fate13.
An important subset of RNAs is associated with enhancers, and
named enhancer RNAs (eRNAs)14,15. They exist as two different
transcripts: bidirectional non-polyadenylated transcripts; and
unidirectional, multiexonic, spliced, polyadenylated transcripts.
Recent studies have demonstrated that targeted degradation of
eRNAs is sufficient to reduce expression of adjacent PCGs14. In
particular, eRNAs appear to be involved in the formation and
stabilization of the loop between the enhancer and the promoter
in a typical Cis-regulatory manner14. In addition, chromatin
conformation capture approaches have shown that the genome
is hierarchically organized into larger domains known as

topologically associating domains (TADs)16. TADs are linear
DNA segments that form independent units in nuclear three-
dimensional space. Importantly, TAD boundaries are well con-
served across species and cell-types. Disrupting boundaries results
in spurious interactions between promoters and enhancers nor-
mally residing in different TADs, leading to transcriptional dys-
regulation17. Interestingly, transcribed DNA elements, including
enhancers, are emerging as potential regulators of TAD forma-
tion18. However, an important debate revolves around the nature
of lncRNA functions. Whether the simple act of transcription
from the lncRNA locus or the mature lncRNA transcript results
in observed phenotypes is still unclear19.

Within this context, mouse embryonic stem cells (mESCs)
harboring reporter genes transcribed from developmental TF
promoters represent a unique system to model the formation of
cellular intermediates such as the ME precursors. More precisely,
the enhancer and the lncRNA landscapes governing ME specifi-
cation, and thereby cardiac differentiation has not been investi-
gated. Here, we use an Eomes reporter mESC line to assess
remodeling of the enhancer landscape and to profile the lncRNA
transcriptome during ME specification20. We identify a large
number of previously uncharacterized enhancer-associated
lncRNAs. Examination of ESC-specific enhancer-associated
lncRNA loci within mesendodermal TADs identified an Eomes-
interacting locus, which was named MesEndoderm Transcrip-
tional Enhancer Organizing Region (Meteor). Interestingly, the
lncRNA associated to the Meteor enhancer corresponds to a
previously described pluripotency associated lncRNA21,22. Meteor
deletion and epigenetic manipulation reveals its indispensable
role during ME determination and subsequent cardiogenic dif-
ferentiation, supporting a predetermined role for this class of
genomic elements in programming developmental competence
and ESC specification during development.

Results
Early cell fate specification in mesendodermal progenitors. We
utilized an Eomes reporter mESC line engineered to carry an
EGFP cassette inserted into the transcriptional start site of the
endogenous Eomes gene (EomesEGFP ESCs) (Supplementary
Fig. 1a)20. These cells were induced to differentiate using the
hanging drop model23. This method allows the stepwise differ-
entiation of ESCs towards the cardiogenic lineage, generating
mesendoderm precursor cells (MEPC), cardiac precursor cells
(CPCs) and ultimately differentiated cardiomyocytes (CMs)
(Supplementary Fig. 1b). Initially, embryoid bodies (EBs) were
harvested every 12 h during a 10-day period. Differentiation was
accompanied by the downregulation of pluripotency-associated
genes, the transient induction of ME and cardiac mesoderm
specifying TFs Eomes, T and Mesp1, and finally the expression of
markers of cardiac differentiation including Myh6 and Myh7
(Supplementary Fig. 1c). Terminal differentiation resulted in a
significant number of beating EBs at both day 8 and 10 (Sup-
plementary Fig. 1d). Importantly, the EomesEGFP reporter was
able to mark Eomes-expressing cells at day 3 of differentiation, a
time point at which Eomes is maximally expressed and specifies
the nascent mesoderm (Supplementary Fig. 1e). Flow cytometry
analysis indicated that half of the differentiating cells at day 3
commit to ME (Supplementary Fig. 1f, g).

We next isolated Eomes-positive (Eo+) and Eomes-negative
(Eo−) cells at day 3 using fluorescence-activated cell sorting
(FACS) (Supplementary Fig. 2a) and measured the expression of
pluripotency genes (Nanog, Sox2, Oct4), markers of ME (Eomes,
Lhx1, Mixl1), cardiac mesoderm (Mesp1, Gata4, Nkx2-5) and
neuroectoderm (Pax6, Nkx6-3, Neurog3) (Supplementary Fig. 2b).
As compared to undifferentiated ESCs, significant expression of
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Fig. 1 Global assessment of the transcriptome during mesendoderm specification. a Pie chart showing composition of the Poly (A)+ transcriptome, Protein
Coding Genes (PCG, blue), Ensembl lncRNAs (yellow) and non-annotated lncRNAs (red). b Kernel density plot of coding potential (Gene ID score) of
PCGs, Ensembl lncRNAs and non-annotated lncRNAs. c Box plot whiskers of transcript abundance (FPKM) of PCGs (blue), Ensembl lncRNAs (yellow) and
non-annotated lncRNAs (red). p values were calculated using a two-tailed t test. (****P< 0.0001). d Expression heatmap of representative PCGs in ESC,
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e Hierarchical clustering of Ensembl lncRNA expression across ESC, Eo− and Eo+. Enriched GO terms and example PCGs are shown to the right. f
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Kernel density plot of the specificity of PCG and lncRNA assessed by quantifying the normalized difference of expression in the three conditions (ESC, Eo−,
Eo+). h Co-activation of selected PCGs and divergent lncRNAs involved in ME specification. i RNAseq reads in ESC, Eo− and Eo+ at the Lhx1 locus. A
divergent lncRNA (Lhx1os) is shown
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mesendodermal and cardiac mesodermal genes was measured in
Eo+ cells. In addition, neuroectoderm gene expression was higher
in Eo− cells than in Eo+ cells. To validate these subpopulations for
subsequent genome-wide chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-Seq) analysis, we performed ChIP-
qPCR using antibodies against H3K4me3 (associated with active
promoters) and H3K27Ac (associated with active enhancers).
Primers were designed within known promoter and enhancer
regions associated with pluripotency (Nanog) and ME (Eomes)
(Supplementary Fig. 2c)24. As expected, the Nanog promoter and
the associated distal enhancer were enriched with H3K4me3 and
H3K27Ac respectively in pluripotent ESCs. On the other hand,
the Eomes promoter and enhancer were enriched with the
H3K4me3 and H3K27Ac marks in the Eo+ sorted cells
(Supplementary Fig. 2d). Our data thus indicates that Eo+ cells
express a unique transcriptional and enhancer signature reflecting
their potential to become ME-derived lineages, including cardiac
mesoderm.

Transcriptome assessment during mesendoderm specification.
To characterize the transcriptome, and in particular the long
noncoding transcriptome, in pluripotent ESCs and in sorted Eo+

and Eo− cells at day 3 of differentiation, we performed very deep
sequencing (>500 million reads per sample) coupled to ab initio
reconstruction (Supplementary Fig. 3a). We integrated our
reconstructed transcripts with the Ensembl gene annotation.
Using this pipeline, we reconstructed 22,187 transcripts of which
16,440 corresponded to annotated PCGs. In addition, 5747
lncRNAs were identified. This included 1913 previously anno-
tated lncRNAs and 3834 multiexonic non-annotated lncRNAs
(Fig. 1a; Supplementary Data 1). The non-annotated lncRNAs
encode minimal and comparable protein coding potential to
Ensembl-annotated lncRNAs (Fig. 1b). At the end, we dis-
regarded any transcripts with a coding potential score greater
than 4. Ensembl and non-annotated lncRNAs were globally
expressed at significantly lower levels than PCGs (Fig. 1c).
Unsupervised hierarchical clustering of all PCGs, Ensembl
annotated lncRNAs and non-annotated lncRNAs identified three
distinct clusters in ESCs, Eo− and Eo+ cells (Supplementary
Fig. 3b), demonstrating that the transcriptome was representative
of the developmental events associated with ME specification.

LncRNA exons were determined to be less conserved than
PCG exons. In contrast, promoters of both annotated and non-
annotated lncRNAs were significantly more conserved than the
neutrally evolving genomic background (Supplementary Fig. 3c).
We proceeded to determine whether this reflected evolutionary
constraint at lncRNA promoters impacting on specific develop-
mental cellular intermediates during cardiac mesoderm differ-
entiation. We used in this analysis the current RNA-Seq datasets
and two previously generated datasets for cardiac precursor cells
and the adult heart25,26. We first identified the proximal
promoter DNA sequences for PCGs, Ensembl and non-
annotated lncRNAs in each of these five populations, i.e., ESCs,
Eo−, Eo+, CPC, and adult heart, defining four inferred branch
points. We next calculated the mean level of evolutionary
constraint for each set of promoters (Supplementary Fig. 3d).
We found that promoters of ME-associated transcripts were
significantly more constrained than those specific to populations
at other stages of cardiac differentiation. Furthermore, non-
annotated lncRNA promoters specific to Eo+ cells were
significantly more constrained than promoters of non-
annotated lncRNAs expressed in Eo− cells with this difference
not detectable for Ensembl lncRNAs. Interestingly, promoter
conservation at non-annotated lncRNAs recapitulates the hour-
glass model of development27, and supports therefore an

evolutionary conserved role for non-annotated lncRNA loci with
respect to ME specification.

We next analyzed the expression of a series of PCGs that are
typically associated with pluripotency, primitive streak/ME,
cardiac mesoderm, early ectoderm and neuroectoderm. ME and
cardiac mesoderm TFs, including for instance Eomes, T, and
Mesp1, were highly enriched in Eo+ cells while pluripotency TFs
were enriched in ESCs (Fig. 1d). In contrast, the Eo− cells were
not associated with a well-defined transcription signature.
Importantly, PCG expression was characterized by stage-specific
induction or repression of key lineage-determining TFs (Supple-
mentary Fig. 4a). Unsupervised clustering yielded specific groups
of PCGs expressed specifically within each cell population
(Supplementary Fig. 4b). These cell population-specific clusters
were associated to expected gene ontology (GO) terms (Supple-
mentary Data 2). For example, PCGs enriched in Eomes-
expressing cells were strongly associated with processes linked
to gastrulation and mesoderm formation. Extending this analysis
to the long noncoding transcriptome, we found that both
Ensembl and non-annotated lncRNAs, encompassing all known
biotypes (Supplementary Fig. 4c), exhibited striking stage-specific
expression (Fig. 1e, f; Supplementary Data 3). We determined GO
terms for the nearest PCGs relative to Ensembl and non-
annotated lncRNAs enriched in Eomes-expressing cells (Fig. 1e,
f). Interestingly, non-annotated lncRNAs enriched in Eo+ cells
were proximal to PCGs specifically linked to heart processes,
implicating non-annotated lncRNAs as potentially important and
specific regulators of cardiac mesoderm specification and
differentiation. Furthermore, non-annotated lncRNAs exhibited
greater cell type-specific expression as compared to PCGs and
annotated lncRNAs (Fig. 1g). Recently, it has been demonstrated
that the expression of the lncRNA biotype known as divergent
lncRNAs strongly correlates with that of their cognate develop-
mental PCGs28,29. We therefore selected and assessed the
expression of six key ME and ectoderm TFs, in addition to their
divergently expressed lncRNAs (Fig. 1h). A prototypic example is
Lhx1 and its divergent noncoding transcript Lhx1os (Fig. 1i). In
agreement with previous findings, divergent lncRNAs were
exquisitely correlated in their expression with their paired PCG
(Supplementary Fig. 4d)28,29.

Tissue-enrichment characteristics of mesendodermal lncRNAs.
Very deep sequencing of RNA samples obtained from defined cell
subpopulations allows the identification of noncoding transcripts
that usually escape previous annotation30. These transcripts are
more likely to demonstrate high cell-type and tissue specificity.
Many of the non-annotated lncRNAs exhibited particular
enrichment in ME-committed cells (Fig. 1f). We therefore sus-
pected that these transcripts could also be enriched in ME-
derived tissues, including the heart. To evaluate this possibility,
we selected all transcripts that were significantly expressed in
either the Eo− or Eo+ cells. We then computationally mapped
twelve mouse ENCODE RNA-Seq datasets31 obtained from the
heart and eleven non-cardiac tissues using the Ensembl and our
non-annotated lncRNA annotations. Expression data in Fig. 2a
identify heart-enriched transcripts in Eo− and Eo+ cells, high-
lighted in red. Importantly, when we directly compared heart
enrichment in Eo− and Eo+ cells populations, we found that non-
annotated lncRNAs exhibited greater heart enrichment than that
of PCGs and Ensembl lncRNAs (Fig. 2b, c). These findings sug-
gest that non-annotated lncRNAs enriched in Eo+ cells may
mediate important regulatory functions for cardiogenic differ-
entiation. To further explore tissue specificity, we repeated this
enrichment analysis individually for the eleven non-cardiac tis-
sues derived from mesoderm, endoderm, and ectoderm, and
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directly compared each individual score to that found for the
heart (Fig. 2d). Strikingly, the heart is preferentially associated
with Eo+-enriched previously non-annotated lncRNAs, dis-
covered within the frame of this study, whereas this is not the case
for PCGs and Ensembl lncRNAs. These findings emphasize again
the exquisite cell and tissue-specificity of non-annotated lncRNA
expression, and support the notion that these noncoding tran-
scripts represent important cardiogenic factors. An example of an
Eo+ cell-enriched transcript that is exclusively expressed in the

adult heart as compared to other adult tissues is given in Fig. 2e.
Mesendodermal transcripts presenting such a pattern of expres-
sion might therefore be involved in the maintenance of cardiac
identity in the adult heart.

Enhancer landscape remodeling during mesendoderm specifi-
cation. Enhancer elements are marked by H3K27Ac, H3K4me1
and by Mediator occupancy. Since these marks largely overlap in
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previous ChIP-Seq studies10, we used H3K27Ac for the identifi-
cation of enhancers in pluripotent ESC and in Eo+ and Eo− cells.
To identify SEs, we used the ROSE algorithm10, which stitches
together individual enhancers within 12.5Kb of each other to
identify a single continuous genomic locus. Stitched enhancers
with a H3K27Ac value above a cut-off defined as the point where
the slope of the distribution plot of H3K27Ac ChIP-Seq intensity
is 1 are designated SEs10 (Fig. 3a). Using this distribution plot all
remaining genomic loci with ChIP-Seq signal intensity below 1
are classified as TEs. Examples of TE and SE regions are depicted

in Supplementary Fig. 5a, b, respectively. As expected, SEs were
globally more enriched with H3K27Ac as compared to TEs
(Fig. 3b) and spanned much larger genomic regions (Fig. 3c).

To dissect the enhancer state transition that governs mesen-
dodermal gene expression programs, we clustered TE and SE
according to their activity across the three cell populations
(Fig. 3d, e; Supplementary Fig. 5c, d). A larger set of both TEs and
SEs was active in pluripotent ESCs than in the two committed
populations. Consistent with previous observations32, a gradual
restriction in enhancer usage during differentiation was observed,
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with Eomes-fated cells exhibiting the smallest enhancer repertoire
(Supplementary Fig. 5e, f). Moreover, a small percentage of TEs
and SEs were uniquely active in either Eo+ or Eo− cells (Fig. 3f).
Next, we performed a GO analysis of PCGs adjacent to TEs and
SEs in each of the three subpopulations (Supplementary Data 4).
TEs specific to Eo+ cells were associated with PCGs linked to
relevant terms such as mesoderm formation and heart develop-
ment (Fig. 3d; Supplementary Fig. 5g). Interestingly, active
enhancers in this cell population were adjacent to master
regulators of ME and cardiac mesoderm specification, such as
Eomes and Mesp1. SEs identified in ESCs were linked to key
regulatory TFs associated with pluripotency, in particular Sox2
and Klf4. Moreover, six SEs were found uniquely activate in Eo+

cells. Although this small number did not allow a GO analysis to
be performed, PCGs adjacent to these SE were master lineage
determining TFs such as Id3, Pitx2, and Otx2 (Fig. 3e;
Supplementary Fig. 5h). We then quantified the expression of
PCGs proximal to either TEs or SEs across the three cell
populations. In ESCs, PCGs proximal to SEs were typically more
expressed than TE-associated PCGs (Fig. 3g). In addition, we
investigated the dynamic changes in PCG expression during cell
fate determination by measuring expression of PCGs adjacent to
TEs or SEs modulated during ESC specification in to Eo+ cells
(Fig. 3h). Interestingly, the transition from ESC to mesendoder-
mal specification was accompanied by a greater downregulation
in expression of PCGs linked to inactivated SEs than to
inactivated TEs (Fig. 3h; top panel). Finally, a significant
activation in expression was observed for PCGs associated to
TEs and SEs inactive in ESCs and activated in Eo+ cells (Fig. 3h;
bottom panel). Altogether, these results demonstrate that
dynamic remodeling at enhancer loci during ME specification is
accompanied by a corresponding modulation of cognate PCGs.

Enhancers are typically associated with the production of
lncRNAs, which are believed to contribute to enhancer function.
We therefore categorized lncRNAs according to their association
with regions marked by either H3K4me3 or H3K27Ac. LncRNAs
were classified as being associated with either a canonical
promoter signature (H3K4me3, denominated plncRNAs) or an
active enhancer (H3K27Ac, TE or SE lncRNAs) (Fig. 4a). Non-
annotated lncRNAs were found to be more associated with both
TE (60%) and SE (10%) signatures when compared to annotated
Ensembl lncRNAs (18 and 4% associated with TE and SE,
respectively) (Fig. 4b). Enhancer-associated lncRNAs were
expressed at lower levels as compared to promoter-associated
lncRNAs (Fig. 4c). We then visualized plncRNA, TE lncRNA and
SE lncRNA expression across the three cell populations (Fig. 4d;
Supplementary Data 5). LncRNA expression segregates in defined
cell-specific patterns. Moreover, the number of cell-specific
enhancer-associated lncRNAs expressed in Eo+ cells, both TE

lncRNAs and SE lncRNAs, is much lower than in the two other
populations. Interestingly, both TE and SE associated lncRNAs
exhibit greater cell-type specificity as compared to plncRNAs
(Fig. 4e). Examples of the three classes of lncRNAs are depicted in
Fig. 4f–h. These highly specialized expression profiles support
specific transcriptional functions for enhancer-associated lncRNA
loci during cell-fate determination and differentiation.

Mesendoderm-specifying loci in pluripotent ESCs. In addition
to the enhancer landscape, chromatin structure and topology is
emerging as a critical regulatory feature in pluripotent stem cells
that subsequently dictates cell-fate determination and lineage
specification17. Recently, it emerged that lncRNAs associated with
Cis-regulatory sequences could play important roles in the
nuclear organizing processes that dictate cell fate18. We hypo-
thesized that enhancers associated with lncRNAs expressed spe-
cifically in pluripotent ESCs, and distal to mesendodermal TFs,
may represent critical functional elements dictating develop-
mental competence and ultimately ME specification. We manu-
ally selected three mesendodermal TFs, namely Eomes, Sox17 and
Gsc, based on their location adjacent to an active enhancer
expressing an associated lncRNA exclusively in pluripotent ESCs
(Table 1). Interestingly, both the enhancer activity, marked by
H3K27Ac, and the expression of the associated lncRNA were
specific to the ESC stage, and neither the enhancer nor expression
of the lncRNA was activated in Eo+ cells (Fig. 5a–d). Conversely,
the adjacent TFs were lowly expressed in ESCs and significantly
upregulated in Eo+ cells. At the pluripotent stage, cell-type
invariant topologically associating domains (TAD) are estab-
lished, which are critical for configuring the chromatin structure
ensuring correct temporal and spatial communication between
distal enhancers and their cognate cell-fate determining TFs. We
thus utilized publicly available high-throughput conformation
capture (Hi-C) datasets from murine ESCs to interrogate the
topological nature of the different loci containing Eomes, Sox17,
and Gsc. All three regions were encompassed within highly
interacting chromatin domains (Fig. 5e–g). These data indicated
the presence in pluripotent ESCs of chromatin loops that place
the enhancers and the mesendodermal TF promoters in close
proximity within the three-dimensional nuclear architecture.
Altogether, this suggested these loci could play fundamental roles
in subsequent Cis-regulatory events occurring during ME lineage
specification.

The Meteor locus dictates mesendoderm specification. To
evaluate the importance of the identified loci for mesendodermal
cell fate determination, we selected the enhancer locus upstream
of Eomes for a detailed analysis. We named the enhancer Meteor

Fig. 3 Characterization of the enhancer landscape during mesendoderm specification. a Distribution of H3K27Ac identifies TEs and SEs in ESC, Eo− and
Eo+. Sox2 SE and Id3 SE are indicated as representative SEs b H3K27Ac signal (normalized by length) at constituent enhancers within TEs and SEs. Box plot
whiskers show median value and 10–90 percentiles. p values were calculated using a one-way ANOVA test. (****P< 0.0001). c Length (Kb) of active
TE and SE regions in ESC, Eo− and Eo+. Median value and 10–90 percentiles are represented. p values were calculated using a two-tailed t test.
(****P< 0.0001). d Heatmap showing active (blue) and inactive (white) TEs across ESC, Eo− and Eo+. GO terms linked to biological processes of PCGs
associated to TEs shared in all three conditions and TEs uniquely active in Eo+ are shown. Examples PCGs are shown to the right. e Heatmap showing
active (dark red) and inactive (white) SEs across ESC, Eo− and Eo+. GO terms linked to biological processes of PCGs associated to SEs uniquely active in
ESC are shown. Examples PCGs in this cluster are shown to the right. The PCGs associated to the six SEs uniquely active Eo+ are shown. f Percentages of
uniquely active TEs and SEs in ESC, Eo− and Eo+. g Box plot whiskers of PCG expression (FPKM) of genes proximal to inactive TEs, active TEs and active
SEs in ESC, Eo− and Eo+. Box plot whiskers show median value and 10–90 percentiles. p values were calculated using a one-way ANOVA test. (****P<
0.0001). h Schematic of the transition from ESCs to Eo+. Cluster A: PCGs associated to TEs switched-off during the transition. Cluster B: PCGs associated
to SEs switched-off during the transition. Cluster C: PCGs associated to TEs switched-on during the transition. Cluster D: PCGs associated to SEs switched-
on during the transition. Cluster E: PCGs associated to TEs active during the transition. Box plot whiskers with LogFC of expression between Eo+ and ESCs
are shown to the right. Median value and 10–90 percentiles are represented. p values were calculated using a two-tailed t test. (****P< 0.0001)
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for MesEndoderm Transcriptional Enhancer Organizing Region.
The enhancer was highly active in ESCs, coupled with high
expression of its associated lncRNA, while Eomes was not sig-
nificantly expressed at this pluripotent stage. Conversely, Eomes
was enriched and the Meteor lncRNA was depleted in Eo+ cells
(Supplementary Fig. 6a, b). The expression kinetics during car-
diogenic differentiation confirmed the downregulation of the
Meteor lncRNA during differentiation concomitant with the
transient induction of Eomes (Supplementary Fig. 6c).Meteor was
bound in pluripotent ESCs by Oct4 and Sox2 but not Nanog
(Supplementary Fig. 6d). To probe the molecular and cellular
function of this locus, we utilized CRISPR-Cas9 to delete the
Meteor enhancer in EomesEGFP ESCs (Fig. 6a). The deleted
fragment included the transcriptional start site of the Meteor
lncRNA (Supplementary Fig. 6e), and resulted in a complete loss
of Meteor lncRNA expression (Fig. 6b). Importantly, Meteor
knockout (KO) cells exhibited normal expression of pluripotency
markers such as NANOG/SSEA-1, and high alkaline phosphatase
activity, demonstrating that these cells maintain stemness prop-
erties comparable to wild-type (WT) ESCs (Supplementary
Fig. 6f–h). Meteor KO cells were next analyzed following induc-
tion of differentiation. On day 3, approximately fifty percent of
wild-type ESC-derived cells expressed EGFP as assessed by flow
cytometry (Fig. 6c). In sharp contrast, no EGFP expression was
detected in differentiating Meteor KO cells (Fig. 6c, d). Further-
more, cell surface analysis of PDGFRα expression, a marker of
early mesodermal cells, demonstrated the lack of mesodermal
specification during differentiation of Meteor KO ESCs (Supple-
mentary Fig. 6i). Consistent with the observed phenotype, dif-
ferentiating Meteor KO ESCs exhibited a major transcriptional
defect in the induction of mesendodermal PCGs (Eomes, T,
Mixl1, Gsc, Foxa2, Lhx1), and consequently of cardiac mesoderm
(Mesp1), cardiac precursor (Gata4, Nkx2-5, Mef2c) and cardio-
myocyte (Myh7) PCGs (Fig. 6e; Supplementary Fig. 6j).

To gain deeper molecular insights into the mechanisms
governing this lineage-specifying defect, we performed RNA-
Seq on WT and Meteor KO ESCs at day 0 (undifferentiated state)
and day 3 of differentiation (Supplementary Data 6). Compared
to controls, 1267 PCGs were differentially expressed in Meteor
KO cells of which 871 were downregulated and 396 upregulated
(Supplementary Fig. 7a). Furthermore, at day 3, 1667 PCGs were
modulated of which 1101 were downregulated and 566
upregulated (Supplementary Fig. 7b). Core pluripotency factors
were not impacted in Meteor KO ESCs (Fig. 6f). However, key
regulators of primitive streak and ME were strikingly down-
regulated in differentiating Meteor KO cells. As a result, markers
linked to cardiac mesoderm were also downregulated (Fig. 6f;

Supplementary Fig. 7c). Consistent with this observation, GO
analysis of PCGs downregulated in Meteor-deleted cells at day 3
of differentiation revealed terms linked to gastrulation and
mesoderm formation, supporting that these biological processes
are primarily affected in Meteor-deficient cells (Supplementary
Fig. 7b; Supplementary Data 7). Importantly, Lhx1 and Nkx6-3
were respectively the most downregulated and upregulated PCGs
in Meteor-KO ESCs at day 0 (Fig. 6g). These data indicate Meteor
deletion during pluripotency is associated with a global
transcriptional reprogramming favoring an ectodermal fate while
blocking subsequent mesendodermal specification. Accordingly,
Mesp1 was the most downregulated PCG at day 3 while Neurog3
was the most upregulated (Supplementary Fig. 7d). As a
consequence, Meteor KO cells were unable to initiate their
cardiogenic program and did not generate any beating EBs
(Supplementary Fig. 7e). Considering the topological nature of
the Meteor locus, PCGs encompassed both within and proximal
to the TAD harboring Meteor may be impacted by Meteor
deletion in a Cis-dependent manner. We examined the expression
of PCGs within a 4Mb region centered on the Meteor locus in
wild-type and Meteor-KO undifferentiated ESCs. Only two of the
twenty-six PCGs within this region were significantly down-
regulated in deleted cells, specifically Scn5a and Mobp (Supple-
mentary Fig. 7f). Globally, Meteor deletion was not associated
with a large scale transcriptional dysregulation of local gene
expression. In particular, Eomes was not modulated in Meteor-
KO ESCs.

Increased neurogenic differentiation in Meteor-deleted ESCs.
Interestingly, regulatory factors linked to early ectoderm and
neuroectoderm were upregulated both at day 0 and day 3 in
Meteor-KO cells. In particular, Nkx6-3 was the most upregulated
gene in undifferentiated KO cells, and Neurog3 was the most
upregulated PCG at day 3 of differentiation (Fig. 6g; Supple-
mentary Fig. 7d). Early ectoderm markers, i.e. Otx2, Pax6, Gbx2,
were also significantly induced upon differentiation in Meteor-
deleted cells, suggesting that, while losing their ability to be
specified towards ME, these cells were redirected towards the
ectoderm lineage (Supplementary Fig. 7g). To investigate whether
Meteor-KO cells could harbor greater propensity for differ-
entiating into ectoderm-derived tissues, WT and Meteor-KO cells
were differentiated using a neurogenic differentiation protocol.
Consistent with the induced ectodermal gene program, Meteor-
KO cells were able to produce increased numbers of TUBB3
positive neurons (Fig. 6h). Enhanced expression of Nestin and
Nefm, two other markers of neuronal differentiation, demon-
strated the increased production of mature neurons. The tran-
scriptional reprogramming leading to a blockade of ME
specification and activation of a neuroectodermal gene network in
Meteor-deleted ESCs suggests that Meteor may enact a more
global Trans-regulatory role, either directly via the lncRNA
produced from this locus or indirectly by regulating the expres-
sion of nearby genes. We therefore investigated whether repro-
gramming was associated with modifications on chromatin at
specific PCG promoters and distal enhancers (Fig. 6i). ChIP-
qPCR was performed against H3K4me3 and H3K27Ac using
primers targeting promoters and enhancers of PCGs exhibiting
the greatest fold changes between WT and Meteor KO cells. For
example, for both Nkx6-3 and Neurog3, the promoters and the
closest distal enhancers were significantly enriched in H3K4me3
and H3K27Ac respectively in Meteor-deficient cells. Conversely,
both the promoters and enhancers of the ME TFs, Eomes and
Lhx1, were significantly depleted of these respective marks in
Meteor KO cells. We also assessed the chromatin state at pro-
moters and enhancers of other relevant ectoderm and ME PCGs

Table 1 Pluripotency enhancer-associated lncRNA loci distal
to ME TFs

Mesendoderm PCGs Enhancer expressing an associated lncRNA
exclusively in ESCs

Tbx3 NO
Gsc YES
Eomes YES
T NO
Mixl1 NO
Foxa2 NO
Sox17 YES
Bmp4 NO
Kdr NO
Cxcr4 NO
Pdgfr-a NO
Evx1 NO
Lhx1 NO
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and confirmed that significant epigenetic remodeling occurred
in the absence of the Meteor locus (Supplementary Fig. 7h).
Finally, we repeated and validated these findings using an

alternative, independently generated, Meteor-deleted clone (Sup-
plementary Fig. 8a–e). These results support therefore an
important role for Meteor during pluripotency in controlling the
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developmental competence to commit into ME and
neuroectoderm.

RNA-independent Meteor function in pluripotency. Genetic
deletion of the Meteor enhancer and its associated lncRNA led to

a global transcriptional reprogramming that abrogated the
developmental competence of pluripotent ESCs for subsequent
ME specification. The functionality of the enhancer can therefore
depend on mechanisms that involve the DNA element (e.g.,
recruiting TFs), the RNA transcript itself and/or processes asso-
ciated with its production, including the process of transcription
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and splicing of the transcript. As a first step, we utilized a
CRISPR-based gain-of-function approach (CRISPR-On) to boost
transcription at the locus and increase Meteor lncRNA expres-
sion. Embryonic stem cell-like P19CL6 cells were transfected with
components of the synergistic activator mediator (SAM)33, in
combination with a guide-RNA targeting sequences upstream the
transcription start site (TSS) of the Meteor lncRNA. Induced
Meteor lncRNA expression was associated with increased
expression of key putative downstream ME target genes including
Eomes, T, Gsc, in addition to cardiogenic regulators including
Gata4 and Isl1 (Fig. 7a). This result formally demonstrates that
the activation of a pluripotent-specific enhancer such as Meteor is
sufficient to stimulate downstream pathways controlling cardio-
genic differentiation. Of note, early ectoderm and neuroectoderm
markers were not affected following Meteor activation (Supple-
mentary Fig. 8f). To determine whether Meteor enhancer acti-
vation was mediated by the Meteor lncRNA or was purely a
consequence of increased transcription at this locus, we utilized
both siRNA and modified antisense oligonucleotides (ASOs) to
deplete Meteor lncRNA in ESCs (Fig. 7b, c). Both approaches
were able to decrease Meteor lncRNA levels by ~50%. However,
transcript depletion was not associated with perturbed expression
of target ME or neuroectodermal genes as observed in Meteor KO
ESCs (Fig. 7b, c; Supplementary Fig. 8g, h). These data support an
RNA-independent mechanism in transcriptional programming of
developmental competence occurring in pluripotency.

To confirm these observations, we utilized genetically modified
ESC lines engineered to incorporate an early polyadenylation
signal (pAS) 1.1 kb downstream of the Meteor lncRNA TSS
(previously described as linc1405)21. Genetic modifications were
performed in 129/Castaneus (Cas) F1 hybrid mouse ESCs that
contain a polymorphic site every 140 bp, enabling to distinguish
allele-specific expression. Importantly, ~90% of Meteor lncRNA
was transcribed from the 129 allele (Fig. 7d). Insertion of a pAS in
the 129 allele (pAS/Cas), therefore, completely abrogated the
expression of the Meteor lncRNA in engineered ESCs while
keeping the Meteor enhancer intact (Fig. 7e). Depletion of Meteor
lncRNA in pluripotent ESCs had no impact on expression of
target genes. Altogether, these data demonstrate that the effects of
the Meteor locus on ME specification in pluripotent cells is RNA-
independent and thus likely secondary to enhancer activity.

Probing Meteor functionality during differentiation. We next
investigated the importance of Meteor lncRNA transcription
during ESC differentiation into cardiomyocytes. Upon differ-
entiation, the pAS-modified hybrid cells (pAS/Cas ESCs) lacking
Meteor lncRNA expression demonstrated a defect in the activa-
tion of the ME and cardiogenic gene programs (Fig. 7f). Speci-
fically, the absence of transcript production from theMeteor locus

abolished expression of key mesendodermal genes such as Eomes,
T and Lhx1, and of cardiac mesoderm and cardiac genes, for
instance Mesp1,Myh6, and Myh7, resulting in reduced number of
beating EBs (Supplementary Fig. 8i). Interestingly, the dynamic
downregulation of pluripotency genes were not affected (Sup-
plementary Fig. 8j). Therefore, despite the RNA being dispensable
for the programming of ME competence during pluripotency,
these data highlighted a dependence on lncRNA transcription
during the process of cardiogenic differentiation.

Considering the importance of the Meteor locus, we aimed at
identifying whether the Meteor enhancer was associated with the
production of a lncRNA in human (h) ESCs. Publically available
RNA and ChIP Seq data suggested transcription at the locus was
indeed conserved. As a consequence, the associated transcript
(METEOR lncRNA) was determined to be highly expressed in
hESCs (Fig. 7g). Using an efficient differentiation protocol for ME
specification and cardiac differentiation (Fig. 7h; Supplementary
Fig. 8k)34, we next demonstrated that the human METEOR
lncRNA was dynamically modulated in an evolutionarily
conserved manner during cardiogenic differentiation (Fig. 7i).
In particular, the METEOR lncRNA was downregulated at the
mesendodermal stage, coinciding with the upregulation of key
ME markers including EOMES, T and downstream cardiogenic
markers such as ISL1 and TMEM88.

Discussion
The enhancer landscape is pivotal in establishing the develop-
mental competence of pluripotent ESCs, in particular during the
response to inductive signals for ME specification7,13. Enhancers
are also emerging as key determinants governing both cell fate
and identity during the development of the cardiovascular sys-
tem1,9. In this context, the small subset of enhancers associated
with the production of multiexonic lncRNAs is of particular
importance during commitment to specific fates14,15. We there-
fore disregarded bidirectional eRNAs in the present study.
Indeed, enhancers producing multiexonic and polyadenylated
lncRNAs exhibit greater chromatin accessibility and are asso-
ciated with increased binding of key developmental TFs14. They
are also more likely to elicit formation of promoter-enhancer
loops and show greater enhancing activity on target PCGs than
non-transcribed enhancers14. LncRNA loci are unique in their
ability to spatially amplify regulatory information encoded by
their underlying DNA19. Based on these observations, we char-
acterized the activity of enhancers, profiled the lncRNA tran-
scriptome during ME formation, and finally identified the Meteor
locus encompassing an enhancer element lying upstream the
Eomes gene. The Meteor enhancer appears crucial to control cell
fate determination between the ME and the neuroectoderm, and
is essential for cardiac differentiation. An important finding is the

Fig. 6 The Meteor locus controls the cell fate decision between mesendoderm and neuroectoderm. a Genomic deletion in Meteor KO cells. b Expression of
Meteor lncRNA in WT and Meteor KO ESCs. Bars represent average of fold change normalized to WT. p value was calculated using a two-tailed t test.
(****P< 0.0001). c GFP profile at day 0 and day 3 of differentiation in WT and Meteor KO. Percentage of GFP+ cells at day 0 and day 3 in WT and Meteor
KO are shown to the right. Bars represent average of GFP + cells. p values were calculated using a two-tailed t test. (****P< 0.0001). d Anti-GFP antibody
staining on day 0 colonies and day 3 EBs in WT and Meteor KO (GFP: green; DAPI: blue). Scale bar represents 50 μm. e Expression of Meteor lncRNA,
Eomes, T, Mixl1, Gsc, Mesp1 and Myh7 in WT and KO cells during cardiogenic differentiation. Trends represent average of fold change normalized to WT
ESC. p values were calculated using a two-way ANOVA test. (*P< 0.05; **P< 0.01; ***P< 0.001; ****P< 0.0001). f Heatmap of expression of
representative PCGs in d0-d3 WT and Meteor KO cells. g Volcano plot representation of expressed PCGs in d0 WT and d0 Meteor KO. FPKM values of
Lhx1 and Nkx6-3 are shown. Bars represent mean expression± SEM. p values were calculated using a two-tailed t test. (*P< 0.05; ****P< 0.0001). h
TUBB3 staining in neuronal-like day 14 WT andMeteor KO cells. (TUBB3: green; DAPI: blue). Scale bar represents 50 μm. Percentage of the TUBB3 positive
area is shown below. Bars represent average of percentage. p value was calculated using a two-tailed t test. Expression of Nestin and Nefm in d0-d14 WT
and Meteor KO cells. Bars represent average of fold change normalized to day0 WT. p values were calculated using a two-tailed t test. (**P< 0.01; ***P<
0.001). i H3K27Ac and H3K4me3 enrichment at enhancers and promoters of Nkx6.3, Lhx1, Neurog3 and Eomes in d0-d3 WT and Meteor KO cells. Bars
represent average of percentage of input. p values were calculated using a two-tailed t test. (*P< 0.05; ***P< 0.001)
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fact that the mesendodermal competence of ESCs, for which
Meteor seems indispensable, is hardwired in pluripotency. These
findings are summarized visually in Supplementary Fig. 9.

ChIP-Seq analysis allowed us to map the TE and SE landscapes
during mesendodermal commitment. Both TEs and SEs undergo
significant restriction during cell fate determination and differ-
entiation. Furthermore, a concomitant activation of a small
number of lineage-specific enhancers is observed. This is

compatible with a gradual narrowing of the spectrum of cell-fate
competence32. Importantly, ME-specific TEs were linked to PCGs
associated with relevant biological processes such as gastrulation
and mesoderm formation. Only six SEs were found uniquely
activated in mesendodermal cells. Although this number reflects
in part the smaller number of SEs as compared to TEs, this
finding is consistent with SEs representing a limited but crucial
class of Cis-regulatory elements that defines cell identity10. Along
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this vein, global SE activation was associated with significantly
greater changes in target PCG expression during differentiation,
supporting an important role in controlling dynamics of gene
expression. Transcriptomic profiling revealed that the enhancer
landscape was associated with the transcription of thousands of
multiexonic lncRNAs. This large number of non-annotated
transcripts is in part a result of the extreme depth of sequen-
cing utilized in this study30. Nevertheless, non-annotated
lncRNAs demonstrated interesting characteristics when com-
pared to previously annotated transcripts. In particular, they
exhibited more restricted and specialized expression patterns.
This is likely a consequence of their enriched association with
stage-specific TEs and SEs. Importantly, both TE and SE-
associated lncRNAs exhibited significant lineage restriction of
expression during differentiation, while plncRNAs exhibited less
restricted profiles. SE-associated lncRNAs displayed the greatest
restriction, suggesting again such transcripts may mediate
important roles during specification and differentiation. Several
lncRNAs associated with SEs, including Carmen35,36, CCAT-1L37,
MyoD-eRNA38, and Wisper39, have recently emerged as impor-
tant modulators of cell fate determination and maintenance of
cell identity, notably in the heart. Globally, non-annotated
lncRNAs expressed in mesendodermal precursors were shown
to be enriched in the adult heart. The model used to induce ME
specification, which favors cardiac differentiation and not defi-
nitive endoderm, may partially explain this characteristic.
Nevertheless, a significant fraction of the identified lncRNAs may
mediate specialized functions in cardiac homeostasis. We also
observed a significant difference in the evolutionary character-
istics of non-annotated lncRNAs expressed in ME-specified cells.
Conservation at promoter regions of those lncRNA loci was
greater than that of lncRNAs expressed in other cellular inter-
mediates during cardiogenic differentiation, and greater than that
measured in cells not committed to ME. ME formation is a key
evolutionary branch point that is represented by Eo+ cells in our
experiments. This point has been termed the phylotypic stage and
has given rise to the hourglass model of development27. Inter-
estingly, our evolutionary analyzes are in accord with this model
and indicate that the hourglass phenomenon may be associated
with selection of discrete sets of enhancer-associated lncRNA
promoters.

Developmental competence is typically mediated by chromatin
states at lineage specifying enhancer and promoter loci40. In this
context, transcribed enhancers are emerging as key elements for
modulating chromatin architecture, in particular as regulators of
TAD formation18,19. TADs are typically established in ESCs and
critical for developmental competence and subsequent germ layer
specification17. We identified three ESC-specific enhancer asso-
ciated lncRNA loci highly interacting in three-dimensional space

with key ME-specifying TFs, and examined the functional
requirements of one specific locus, Meteor, containing a tran-
scribed enhancer highly interacting with the Eomes promoter.
Deleting this single genomic locus in ESCs led to the complete
abolition of Eomes expression, ME specification and subsequent
differentiation into the cardiomyocyte fate. Eomes has been pre-
viously deleted in ESCs and resulted in perturbed ME specifica-
tion8. However, Eomes-deleted cells do not exhibit absolute lack
of ME formation. Some ME-specifying TFs such as Gsc and T are
not impacted by Eomes deficiency while Meteor deletion com-
pletely disrupts the mesendodermal gene program. This suggests
Meteor occupies an upstream position within the GRN regulating
ME specification. Importantly, Meteor-deleted cells appear to
maintain core stemness features suggesting this locus is not
required for self-renewal. Meteor lncRNA is transcribed from its
associated enhancer in a convergent orientation to another
enhancer that is activated during ME specification. The impor-
tance of this second distal enhancer for Eomes expression should
be examined in future studies. Interestingly, different proximal
enhancers dictating the induction of Eomes in the anterior visc-
eral endoderm, primitive streak and definitive endoderm have
been recently investigated41. A poised preformed chromatin
architecture at the Eomes locus appears permissive for rapid
transcriptional induction in response to nodal signaling during
gastrulation via SMAD2/3 binding at these enhancers. The role of
Meteor and its associated lncRNA in modulating the activity of
these proximal enhancers remains to be demonstrated. Never-
theless, based on these results, it is tempting to speculate that this
preformed chromatin compartment may be established byMeteor
during pluripotency. Finally, Meteor-deleted ESCs appear to lose
their competence for ME specification while maintaining their
capacity to produce neuroectodermal lineages. This was already
evident at the ESC stage suggesting that Meteor is able to epi-
genetically prime pluripotent cells at key lineage-determining loci
prior to commitment into the three germ layers. As a con-
sequence, Meteor KO cells give rise to increased number of
neurons upon induction of neurogenic differentiation. This is in
accordance with previously published studies identifying mole-
cular mechanisms controlling a binary cell fate decision between
the mesoderm and the neurectoderm4,7,42,43.

Mechanistically, the Meteor locus encodes both an enhancer
and a lncRNA. Transcription at the locus and/or the RNA itself
may be involved in remodeling the local chromatin topology,
thereby priming the epigenome for developmental signals13,19.
However care needs to be taken when interpreting the roles of the
enhancer and of its associated lncRNA44. A number of tran-
scribed enhancers have been shown to mediate multifunctional
roles. For instance, the Haunt45, Hand246, and Nanog47 enhan-
cers have been shown to encode both RNA-dependent and

Fig. 7 Assessment ofMeteor functionality. a Expression measured by qRT-PCR ofMeteor lncRNA and ME/Cardiac Mesoderm-related genes in P19CL6 cells
following CRISPR-On-mediated Meteor lncRNA induction. Mean± SEM (n= 6). p values were calculated using a two-tailed t test. (*P< 0.05; **P< 0.01;
***P< 0.001). b Expression measured by qRT-PCR of Meteor lncRNA, Nanog, Eomes, T, Gsc and Nkx6-3 in ESCs following transfection with siRNAs targeting
Meteor lncRNA or a control sequence. Mean± SEM (n= 3). p values were calculated using a two-tailed t test. (***P< 0.001). c Expression measured by
qRT-PCR of Meteor lncRNA, Nanog, Eomes, T, Gsc and Nkx6-3 in ESCs following transfection with GapmeRs targeting Meteor lncRNA or a control sequence.
Mean± SEM (n= 3). p values were calculated using a two-tailed t test. (***P< 0.001). d Allelic expression ratios of Meteor lncRNA and Eomes from
targeted RNA sequencing of 63 wild-type 129/Castaneus mESC clones21. Box shows interquartile range. Whiskers show min and max. e Expression
measured by qRT-PCR of Meteor lncRNA, Nanog, Eomes, T, Gsc and Nkx6-3 at day 0 in Ctrl (clone transfected with non-targeted guide RNAs) and Meteor
lncRNA pAS/Cas cells. Mean± SEM (n= 3). p values were calculated using a two-tailed t test. (****P< 0.0001). f Expression kinetic of Meteor lncRNA,
Eomes, T, Lhx1, Mesp1, Myh6 and Myh7 in WT (clone transfected with non-targeting guide RNA) and Meteor lncRNA pAS/Cas cells during cardiogenic
differentiation measured by qRT-PCR. Trends represent average of fold change (n= 3 biological replicates) normalized to Ctrl ESC. p values were
calculated using a two-way ANOVA test. (*P< 0.05; ***P< 0.001; ****P< 0.0001). g RNAseq, H3K4me3 and H3K27Ac reads in human ESCs in the
EOMES and METEOR loci. h Schematic illustration of human iPSC cardiac-directed differentiation using small molecular modulation of Wnt signaling. i
Stage-specific expression kinetic of METEOR lncRNA, NANOG, EOMES, T, ISL1 and TMEM88 assayed by qRT-PCR. Trends represent average of fold change
(n= 3 biological replicates) normalized to iPSC
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–independent functions. Recently, the role of the Meteor lncRNA,
also known as lnc1405, was dissected in ESCs21. In agreement
with our results, the lncRNA and its transcription were dis-
pensable for expression of Eomes in undifferentiated pluripotent
ESCs. Nevertheless, induction of Meteor transcription at a plur-
ipotent stage using a CRISPR-On approach is sufficient to pro-
mote mesendoderm specification and to stimulate subsequent
cardiogenic differentiation. We therefore further evaluated the
role of this locus using ESCs engineered to accommodate a pAS
element downstream of the Meteor lncRNA TSS. This manip-
ulation affects both transcription and production of the Meteor
lncRNA, while maintaining an active enhancer, and abolishes
commitment towards the cardiomyocyte fate. This demonstrates
the crucial importance of transcription at theMeteor locus during
the differentiation process. The Meteor enhancer and its lncRNA
may act in a similar way to Evx1-as, providing a window of
opportunity during pluripotency to prime a permissive, yet
poised, chromatin state28. Specifically, Meteor could lock the
genome into permissive three-dimensional topologies for inter-
preting cell fate-determining inductive signals18. Therefore,
enhancer-associated lncRNA loci exhibiting high frequency
topological interactions with key lineage determining TFs appear
to be particularly important for the acquisition of developmental
competence. In the context of regenerative medicine, enhancer-
associated lncRNA loci like Meteor represent ideal targets for
manipulating the fate of ESCs and facilitate the production of
highly enriched cell populations.

Methods
Culture and differentiation of mouse ES cells. Mouse embryonic EomesEGFP

reporter stem cell line was a kind gift of Elizabeth Robertson (University of Oxford,
UK)20. Cells were cultured on mouse embryonic fibroblast feeders in standard ES
cell medium, which consisted of DMEM high-glucose (Life Technologies #31966-
021), supplemented with 20% Fetal Bovine Serum (FBS) (Invitrogen #16141079),
1% Non-Essential Amino Acids (Life Technologies 11140-035), 0.1 mM β-mer-
captoetanol (Life Technologies #31350-010), Gentamicin (1:500, Gibco #15750-
037) and 1000Uml−1 of Leukemia Inhibitor Factor (ESGRO #ESG1107). Cardiac
differentiation of ES cells was induced by aggregating aliquots containing ~ 1000
cells in hanging drop of 25 µl of differentiation medium: IMDM (Life Technologies
#21980-032) medium supplemented with 200mM L-glutamine (Life Technologies
#25030-024), 20% FBS, 6.5 µl of 1-thioglycerol (Sigma #M6145), 1 M L-ascorbic
acid (Sigma #A4544) and Gentamicin (1:500) to form embryoid bodies. At day 3 of
differentiation, EBs were collected and transferred into 10 cm non-adherent bac-
terial petri dishes for growing in suspension. At day6, EBs were collected and plated
on tissue culture dishes coated with 0.1% gelatine for further differentiation until
day10.

Immunofluorescence analysis. Cells and/or EBs were fixed for 10 min in 4%
paraformaldehyde in PBS and permeabilized with 0.1% Triton × 100 in PBS
(Sigma). After blocking in blocking buffer (PBS containing 0.01% Triton × 100 and
1% BSA) they were incubated overnight at 4 °C with the following primary anti-
bodies: chicken anti-GFP antibody (1:1000, Abcam #AB13970), rabbit anti-
NANOG antibody (1:500, Abcam #AB80892), mouse anti-βIII-TUBULIN (1:500,
R&D Systems), mouse anti-α-ACTININ (1:400, Sigma #7811), rabbit anti-GATA4
(1:200, Abcam #AB134057). The following conjugates antibodies specific to the
appropriate species were used: goat anti-Chicken IgY Alexa Fluor® 488 and Alexa
Fluor® 500 (1:500, Invitrogen A-11039 and A-21437) and donkey anti-mouse
Alexa Fluor® 594 (1:200, Invitrogen A-21203). Nuclei were stained with DAPI
(Invitrogen). An Axiovision fluorescence microscope (Carl Zeiss) and a Nikon
Eclipse Ti microscope were used for these analyzes.

Alkaline phosphatase staining. Wild type ESCs and Meteor KO at day 0 were
stained for the expression of Alkaline Phosphatase with the Alkaline Phosphatase
detection kit (Millipore, #SCR004). An Axioplan microscope (Carl Zeiss) was used
for this analysis.

Flow cytometry. Mouse ES cells and EBs were dissociated using FACS medium
and filtered through a 40-μm cell strainer. Live cells were gated on the basis of side
scatter, forward scatter and propidium iodide exclusion. Undifferentiated ES cells
were gated for the GFP channel to exclude any possible background of GFP signal.
ESCs and day 3 cells were analyzed for EGFP expression using the Gallios analyser
(Beckman Coulter Life Sciences). Cells obtained from the dissociation of the day3
embryoid bodies were sorted for GFP. A total of 12 × 106 of GFP negative (Eo−)

and GFP positive (Eo+) cells were sorted (BD FACSAria IIu, BD Biosciences) for
performing RNA isolation and Chromatin Immuno Precipitation (ChIP) assay.
Day0 WT and day0 Meteor KO were analyzed for SSEA-1 expression (1:10, BD
#560142) using the Gallios analyser. Day0 WT, day0 Meteor KO, day3 WT and
day3 Meteor KO were analyzed for PDGFRα expression (1:10, Miltenyi Biotec
#130-102-473) using the Gallios analyser. Flow cytometry analysis was performed
on day15 human iPSC-derived cardiomyocytes. Cells were stained using cardiac
troponin T antibody (0.2 mg ml−1, Thermo Fisher, MA5-12960) or the corre-
sponding isotype control (0.5 mg ml−1, Thermo Fisher, #14-4714-82). Cells were
analyzed using a BD FACSCANTO II (Beckton Dickinson,) with FACSDiva
software (BD Biosciences). Data analysis for all flow cytometry analyzes was per-
formed using FlowJo (Tree Star).

RNA extraction, RT-PCR and real-time PCR analysis. Total RNA from cultured
cells was extracted using miRNeasy kit (Qiagen) according to the manufacturer’s
instructions and quantified with Nanodrop (Thermo scientific). The quality control
was performed with bioanalyzer Agilent 2100 (Agilent Technologies). Two steps
cDNA synthesis was performed with SuperScript II (Invitrogen), and quantifica-
tion was carried out using QuantStudioTM 6/7 (Thermofisher). Gene expression
was normalized to Gapdh and quantified using the ΔΔCt method. Primers or
probes used in the manuscript are described in Supplementary Table 1.

RNA sequencing and analysis in ESC, Eo− and Eo+. Total RNA was isolated
using the RNeasy isolation kit (Qiagen). Sequencing libraries were prepared
according to Illumina RNA Seq library kit instructions with Poly(A) selection.
Libraries were sequenced with the Illumina HiSeq2000 (2 × 100 bp) using 2 lanes/
sample with a multiplex level of 1 (~5 × 108 reads per sample) for a total of twelve
samples from four different differentiation sets: four ESC, four Eo− and four Eo+.
100 nt paired-end reads were mapped to mm10 reference genome using STAR
software version 2.4.0 g, using Ensembl GRCm38.77 reference genes GTF. An ab
initio transcript reconstruction was performed using Cufflinks, version 2.2.148. As
the RNASeq data is stranded, parameter library-type was set to fr-firststrand. The
other parameters were default. The resulting GTFs were merged using Cuffmerge,
version 2.2.149, using option –g with Ensembl GRCm38.77 GTF as reference,
allowing distinguishing known and non-annotated transcripts. Read counts were
calculated per gene from the alignment bam files using HTSeq (v0.6.1) with options
-m union --stranded reverse. Genes were then filtered for minimal expression (at
least one condition with average> 0.1 FPKM).

Classification of lncRNA. Using the GTF output of Cuffmerge, the transcripts
were classified into 3 categories: known mRNAs, known lncRNAs (using Ensembl
as reference) and non-annotated lncRNAs. Non-annotated transcripts were filtered
for minimal length of 200 bp and at least 2 exons. lncRNA genes were classified
into several categories by comparing the lncRNA exon and gene coordinates with
coordinates of known protein coding genes.

LncRNA analysis. Coding potential: The protein-coding potential of transcripts
was evaluated using the program GeneID50, version v1.4.4, applied to transcript
sequences in FASTA format, with 8 parameters adapted for vertebrates as provided
by the authors in file GeneID.human.070123.param, and with options -s and -G.
Expression heatmaps and gene ontology analysis: Unsupervised clustering of PCGs,
Ensembl lncRNAs and non-annotated lncRNAs was generated using the Euclidian
distance between the FPKM values of the genes. The PCG, Ensembl lncRNA and
non-annotated lncRNA expression heatmaps were generated by clustering the
genes by Pearson correlation of the FPKMs, and clustering using the hclust
function (method= ”complete”). Heatmap.2 was used to generate the heatmaps.
Values were scaled by row. The clusters were manually rearranged.

Differential expression analysis of lncRNAs: Differentially expressed genes were
detected using the limma package in R by first transforming the raw count data to
log2-cpm (counts per million reads) using the voom function. Empirical Bayes
moderated t statistics and corresponding p-values were then computed for the 3
comparisons: Eo−/ESC; Eo+ / ESC and Eo+/Eo−. P values were adjusted for
multiple comparisons using the Benjamini Hochberg procedure51. Genes with an
adjusted p value of<= 0.05 were considered to be differentially expressed.

Transcript cell specificity: The specificity of PCGs and lncRNAs was assessed by
quantifying the Normalized Difference (ND) of expression in the three conditions
(ESC, Eo−, Eo+). The Normalized Difference of a PCG or lncRNA x was quantified
as the maximum difference between its expression gx (FPKM normalized) in the
three conditions, divided by its average gene expression (as normalizing factor).
Formally:

ND xð Þ ¼ max gxð Þ �minðgxÞ
meanðgxÞ

The distributions of the Normalized Difference in the three classes (PCGs,
Ensembl lncRNAs and non-annotated lncRNAs) were formally compared to each
other using the one-tail Wilcoxon rank sum test. Furthermore, the Normalized
Difference was used to measure the specificity of the three classes of lncRNAs
(plncRNA, TE lncRNA and SE lncRNA). The density plots of the distribution of
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normalized difference were generated using the Gaussian kernel density estimator
implemented in the R package.

Analysis of gene conservation. PhastCons: The scores calculated on a multiple
alignments of 60 vertebrate genomes to the mm10 mouse genome by chromosome
were downloaded from the UCSC website52. For each gene, scores per base for
exons, introns and promoters (defined as 1000 bp upstream from TSS) were
summed and divided by the fragment length. This result was used as the score per
fragment. In total 50,000 random intergenic regions were generated (size =
3400 bp± 20%) and the same score was calculated. Log10 of the scores was plotted
by category using R package lattice53. The scores of the intergenic regions were
calculated as a comparison.

PhyloP: The scores calculated on a multiple alignments of 60 vertebrate
genomes to the mm10 mouse genome by chromosome were downloaded from the
UCSC website52. The details of the 60 vertebrate genomes can be visualized at the
following link: http://hgdownload.cse.ucsc.edu/goldenpath/mm10/
phastCons60way/. For each transcript, the maximum per base phyloP score was
taken over 600 bp (500 bp upstream from the TSS, 100 downstream). The
maximum value by transcript was used as value for the gene. In Supplementary
Fig. 3d enriched transcripts for ESCs, Eo− and Eo+ are defined from the
hierarchical clustering of expression in Supplementary Fig. 4b and Fig. 1e, f.
Cardiac Precursor Cells (CPC) enriched transcripts are transcripts significantly
overexpressed (adj.pVal < 0.05; fold change > 2) in day6 differentiating ESCs vs.
day0 undifferentiated ESCs in our previous study26. Adult heart enriched
transcripts are transcripts significantly expressed (FPKM> 0.5) in the mouse adult
heart in our previous study54.

Gene ontology analysis. Gene Ontology (GO) analysis was performed using
GREAT (Genomic Regions Enrichment of Annotations Tool) to analyze biological
processes ontology terms55. The whole mouse genome was used as background.

Gene expression across tissues. Expression of the genes (PCGs, Ensembl
lncRNA and non-annotated lncRNAs) in 12 mouse tissues (Thymus, Liver, Sto-
mach, Colon, Ovary, Spleen, Heart, Kidney, Mammary gland, Frontal lobe, Cortex,
Cerebellum) was measured on ENCODE public data (CSHL Long RNA-seq, PI
Gingeras, Lab CSHL-m) (The ENCODE Project Consortium, 2011). Counts on
plus and minus strands were summed and mean counts were taken for the two
replicates per tissue. Between sample normalization was performed using DESeq
estimateSizeFactors function56. Only genes with minimal expression were kept (at
least 0.1 FPKM in one of the conditions).

Heart Enrichment score (per gene) was defined as:

HS score ¼ μcardiac
μnon�cardiacþ2 ´ σnon�cardiac

Where μ cardiac is the average expression per gene in ENCODE adult heart
tissues, μ non-cardiac is the average expression per gene in the 11 other ENCODE
samples31, and σ is the standard deviation per gene in non-cardiac ENCODE
samples. A gene was considered tissue enriched with enrichment score> 1. The
clustering was performed using hclust, version 1.3.1, using Spearman correlation
and euclidean distance, average linkage clustering. A scaling by row was applied.
The specificity side bars (in red) were generated using the Heart Enrichment score
defined above. Heatmaps were generated using heatmap.2 from the package gplots
in R, version 2.17.057. The analysis was performed in parallel on subsets of genes,
using Eo−, resp. Eo+ enriched genes, defined by comparing the expression in the 2
conditions. The filter for differentially expressed genes was an adjusted p-value for
differential expression < 0.05 and an absolute value of log Fold Change> 1.

Tissue enrichment score (per gene) was defined as:

Tissue Enrichment score ¼ μtissuex
μnon�tissuexþ2 ´ σnon�tissuex

Tissue enrichment ratio for each of the 12 ENCODE tissues was defined as:

Tissue Enrichment ratio ¼ Tissue Enrichment score in Eoþ

Tissue Enrichment score in Eo�

Chromatin immunoprecipitation (ChIP) assay. Cells were cross-linked with 1%
formaldehyde for 10 min at RT. Cross-linking reaction was stopped by addition of
0.125 M glycine for 5 min. Chromatin extracted from 1 × 107 cross-linked cells was
sonicated to an average of 200–700 bp with the Covaris sonicator (S220 Focused-
ultrasonicator). Chromatin Immunoprecipitation (ChIP) was carried out as fol-
lowing: magnetic dynabeads (Dynabeads Protein G, Novex ref #10004D) were pre-
coated with the specific ChIP antibody (Ab) for 4 h in a rotating platform at 4 °C.
The following Abs were used: H3K27Ac (2 μg of Ab with 60 μL of magnetic beads
in 1 mL of total volume, Abcam #4729) and H3K4me3 (4 μg of Ab with 60 μL of
magnetic beads in 1 mL of total volume, Abcam #8580). The fragmented chromatin
and the coated beads were incubated ON at 4 °C under 10 RPM rotation. After the
IP the samples were washed and treated with Proteinase K (500 ng/μL final) and
RNase A (20 mg/mL final) and finally purified with the MinElute PCR Purification
Kit (QIAGEN, cat #28006). Immunoprecipitated DNA was quantified by Quibit
(Life Technologies) and subject to qPCR (primers used in the manuscript are

described in Supplementary Table 2) or high-throughput sequencing analysis. For
ChIP-seq experiments, libraries for sequencing were prepared with MicroPlex v2
kit (Diagenode) using 10 ng of Chromatin without size selection from total input
chromatin and immunoprecipitated DNA. Libraries were subjected to 50-bp sin-
gle-end read analysis on an Illumina HiSeq 2500.

ChIP-sequencing analysis. Calling of Constituent Enhancer (CE) regions: 50 bp
paired-end short reads were aligned to the mm10 mouse genome using Bowtie
(option --non-deterministic was used, the rest was default). Duplicated reads were
removed using picard-tools (V. 1.80), MarkDuplicates function. Sequences were
extended to 200 bp and allocated in 25-bp bins. Counts per bin were generated
using a custom script. Biological replicate whole cell extracts were sequenced for
each time point and combined by time point. A Poissonian model was used to
determine statistically enriched bins with a p-value threshold set at 1 × 10−9 58. In
addition, we required that genomic bins were at least five fold over input to be
considered enriched peaks. To obtain a score by condition, the bins were marked as
positive if both replicates of the condition were positive (intersection). The final list
of constituent enhancers was defined as the union of contiguous marked bins from
the three conditions (so CE existing in at least 1 condition), provided the size was
at least 200 bp long.

Calling of Super Enhancer (SE) and Typical Enhancer (TE) regions: The ROSE
software (Version 0.1, April 2013, http://bitbucket.org/young_computation/rose)
was then run on each replicate of each condition, using the CE defined by
condition. This flagged CEs as SE or TE, for each replicate. The intersection of the 2
replicates was taken in each condition, defining a list of SE per condition. The plots
shown in Fig. 3a have been generated by the ROSE software. They show 1 replicate
for each of the conditions. Then the union of the SE coordinates in the 3 conditions
was taken to define a global list of Super Enhancers. The Typical Enhancers were
defined as the Constituent Enhancers not overlapping with the union of Super
Enhancers in the 3 conditions.

The ChIPSeq scores per SE and TE were then calculated using the same custom
script. The heatmaps of active and inactive H3K27Ac regions (Fig. 3d, e, resp. TE
and SE) were generated by taking the overlap (of any length), coordinate-wise, of
the global list of enhancers (resp. TE and SE) with the list of each individual
condition. If a particular enhancer of one of the conditions overlapped with the
union of the enhancers, it was marked as active in this condition. The clusters of
the heatmaps were then sorted to have the active in 3 conditions on the top, and
the active only in Eo+ on the bottom. The bigWig tracks used in the UCSC genome
browser were generated using the USeq software (V. 8.9.3), Sam2USeq function. It
generates per base read depth stair-step graph files for genome browser
visualization. The values have been scaled per million mapped reads. The useq files
have first been converted to wig, then to bigwig, using USeq2Text and UCSC’s
software, wigToBigWig.

Epigenomic annotation of lncRNAs. The Ensembl and non-annotated lncRNAs
were classified as: (1) Promoter associated lncRNA if the region ± 1 kb around the
TSS was marked positive for H3K4me3 (using the Poissonian model and ratio over
input as described above). (2) Super-enhancer associated lncRNA if the region ±
1 kb around the TSS was not marked as H3K4me3 positive and if any part of the
transcript was marked as Super Enhancer. (3) Typical-enhancer associated
lncRNA: same as above, but with any part of the transcript was marked as Typical
Enhancer. (4) Unmarked lncRNA if no chromatin marked was present on the gene.

Hi-C data. Hi-C plots were generated using the 3D Genome Browser (http://
promoter.bx.psu.edu/hi-c/index.html) using publicly available Hi-C data on mouse
ESCs59.

Genetic deletion with CRISPR-Cas9 nickase. gRNA design and production of
CRISPR-Cas9 nickase constructs: Guide RNAs (gRNAs) and CRISPR Cas9-D10A
nickase were encoded in a modified expression plasmid, pX335 (pX335_G2P)
kindly offered by Phillip Grote (Goethe, Universität Frankfurt). pX335-G2P plas-
mid was digested using BbsI restriction enzyme (Thermofisher, #ER1011) and
gRNA sequences were designed using the web resource http://crispr.mit.edu
(gRNAs used in the manuscript are described in Supplementary Table 3). Pairs of
DNA oligonucleotides harboring variable 20 nucleotide sequences (G + 19 bases)
were annealed and ligated into the modified pX335_G2P plasmid using the rapid
DNA ligation kit (Roche, #11 635 379 001).

ESC transfection and selection: 300,000 ESCs were plated on gelatinized six-well
tissue culture plate the night prior to transfection. The next day, cells were
transfected with gRNAs using lipofectamin 2000 reagent (Invitrogen, #11668-019).
After 4 h of transfection, mESCs were trypzinised and plated at low density in 10-
cm plates and clones grown for 6–7 days in ESC medium supplemented with 2 µg
ml−1 of puromycin (Sigma, #P8833-100MG). Individual ESC clones were picked,
expanded and analyzed by PCR genotyping. Primers spanning different regions of
the deleted region were designed (Supplementary Table 4).

Sequencing of RNA isolated from WT and Meteor KO cells. Total RNA was
isolated from WT d0 (n= 3),Meteor KO d0 (n= 3), WT d3 (n= 3) andMeteor KO
d3 (n= 3) using the miRNeasy kit (Qiagen). Sequencing libraries were prepared
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according to Illumina RNA Seq library kit instructions with PolyA selection.
Libraries were sequenced with the Illumina HiSeq2000 (1 × 100 bp). Purity-filtered
reads were adapter and quality trimmed with Cutadapt (v. 1.3), and filtered for low
complexity with seq_crumbs (v. 0.1.8). Reads were aligned against the Mus mus-
culus.GRCm38.82 genome using STAR60 (v. 2.4.2a). The number of read counts
per gene locus was summarized with htseq-count61 (v. 0.6.1) using Mus musculus.
GRCm38.82 gene annotation. Quality of the RNA-Seq data alignment was assessed
using RSeQC62 (v. 2.3.7). Reads were also aligned to the Mus musculus.
GRCm38.82 transcriptome using STAR60 (v. 2.4.2a), and the estimation of the
isoform abundance was computed using RSEM63 (v. 1.2.19). Statistical analysis was
performed for genes and isoforms independently in R (R version 3.1.2). Genes/
Isoforms with low counts were filtered out according to the rule of 1 count per
million (cpm) in at least 1 sample. Library sizes were scaled using TMM nor-
malization64 (EdgeR v 3.8.5) and log-transformed with limma voom function (R
version 3.22.4). Statistical quality controls were performed through pairwise sample
correlations, clustering and sample PCA. Replicates cluster together and are well
separated between conditions. Differential expression was computed with limma65

by fitting data into a linear model, adding the factor for the batch effect and
comparing GapmeR vs. control conditions. The P-values were adjusted for multiple
comparisons using the Benjamini-Hochberg method51, controlling for false dis-
covery rate (FDR) or adjusted P value.

Neuronal differentiation of ESCs. Mouse embryonic EomesEGFP reporter stem
cells (WT and Meteor KO) were maintained and differentiated into embryonic
stem cell derived neurons (ESNs) in a 37 °C tissue culture incubator at 5% CO2

66.
Briefly, cells were maintained on coated tissue culture flasks (0.1% gelatine, Sigma)
in ES medium consisting of DMEM with Glutamax, 15% fetal bovine serum,
embryonic stem cell-qualified (GIBCO®) supplemented with 100x MEM non-
essential amino acids, 100x penicillin-streptomycin-glutamin, 2-mercaptoethanol
(0.1 mM) as well as leukemia inhibitory factor (LIF) to a final concentration of
1000 Uml−1 (EmdMillipore). Unless otherwise specified, all cell culture supplies
for embryonic stem cell maintenance, ESN differentiation and ESN culture were
obtained from Invitrogen. To elicit embryoid body (EB) formation and induce
differentiation of the mESCs, 1–2 × 106 cells were plated on day 0 in a 10 cm tissue
culture dish and the medium was changed to a differentiation medium (DMNK+)
consisting of a 1:1 mixture of DMEM-F12/Glutamax and Neurobasal medium,
supplemented with ×100 penicillin-streptomycin-glutamin, 2-mercaptoethanol
(0.1 mM) and 15% KnockOutTM serum replacement. After 1 day in culture all
floating EBs were transferred into a 15 ml tube, discarding all adherent aggregates.
EBs were centrifuged at low speed (3 min; 35×g), resuspended in 10 ml of DMNK+

medium and replated in a new 10 cm dish. On day 2 of differentiation, EBs were
supplemented with 1 µM retinoic acid to induce neuralization. The next day, the
medium was supplemented with 1 µM of smoothened Agonist (SAG,Emd Milli-
pore). At day 7, EBs were dissociated using 2 ml of Accumax (Emd Millipore) for
10 min at room temperature, diluted with 2 ml of DMNK+ medium and carefully
pipetted up and down 30 times using a 1000 µl pipette. Cells were filtered through a
cell 100 µm strainer (BD Falcon) to obtain a single cell suspension. This step was
repeated twice to enrich the yield of single cells. The suspension was then cen-
trifuged (3 min; 35×g) and resuspended in 2 ml of DMNK+ medium supplemented
with GDNF (10 ng ml−1), BDNF (10 ng ml−1), CNTF (20 ng ml−1) (all R&D Sys-
tems). In total 2 × 105 cells/ml in DMNK+ medium supplemented with factors were
then plated onto round cover glasses (HUBERLAB, Ø12 mm) which were pre-
viously coated for 30 min at 37 °C with Poly-L-lysine (Sigma) and washed twice
with PBS. The cells were then cultured at 37 °C, 5% CO2 for 7 days, changing
medium every 3 days. The RNA was extracted using miRNeasy kit (Qiagen).

CRISPR-On assay. CRISPR-based gain-of-function was used to activate Meteor
lncRNA expression in P19CL6 cells (RCB2318, RIKEN Cell Bank, Japan). In total
2 × 105 cells were plated and cultured in DMEM with 10% FCS and transfected
(12 h after seeding) with the following components of the synergistic activation
mediator (SAM)33: a nucleolytically inactive Cas9-VP64 fusion (Addgene plasmid
#61425), a MS2-P65-HSF1 activation helper protein (Addgene plasmid #89308)
and the Meteor lncRNA-targeting guide RNA engineered to contain two MS2
aptamers (sgRNAMS2; Addgene plasmid #61424). Plasmids were transfected at a
1:1 ratio using Lipofectamine 2000 (Invitrogen #11668-019) according to manu-
facturer’s instructions. Total RNA was isolated 48 h after transfection using miR-
Neasy kit (Qiagen) and subjected to qRT-PCR.

Post transcriptional silencing of Meteor lncRNA. In total 2 × 105 mouse ESCs
were plated and transfected (24 h after seeding) with 20 nM of a siRNA targeting
Meteor lncRNA: GUU GCU CCG GUC AGA GGU U or a scrambled siRNA
(Thermo Fisher) using RNAimax Lipofectamine (Invitrogen, #13778-150). In total
2 × 105 mouse ESCs were plated and transfected (24 h after seeding) with 100 nM
of a GapmerR (Exiqon) targeting Meteor lncRNA: ATCATGCCTTAAGTGT or a
scrambled GapmeR using Lipofectamine 2000 (Invitrogen #11668-019). For both
experiments total RNA was isolated 48 h after transfection using miRNeasy kit
(Qiagen) and subjected to qRT-PCR.

Meteor lncRNA polyA stop signal in 129/castaneus hybrid ESCs. We took
advantage of a mouse ESC line previously generated in another study21. In this cell
line, a polyadenylation signal (pAS) is placed 1.1 kb downstream of the Meteor
lncRNA transcription start site in the 129 allele. This genetic modification was
performed in 129/Castaneus (Cas) F1 hybrid mouse ESCs that contain a poly-
morphic site every 140 bp, enabling to distinguish allele-specific expression.

Cardiac differentiation of human induced pluripotent stem cells (iPSCs).
WTC11 human iPSCs were plated on Vitronectin XF (Stemcell Technologies
#07180) coated plates and maintained in an undifferentiated state in mTeSR 1
media (Stemcell Technologies #85850)34. All experiments using human cells were
carried out in accordance with human research ethics committee approval at The
University of Queensland (Australia). Small molecule cardiac-directed differ-
entiation using a monolayer platform was performed with a modified protocol
based on previous reports34,67,68. The differentiation set up was initiated by plating
undifferentiated hiPSCs as single cells for 24 h. Cells were induced to differentiate
(designated day 0) with RPMI 1640 media (Invitrogen #11875093) containing 3
µM CHIR-99021 (Stemcell Technologies #72054), 213 µg ml−1 L-ascorbic acid 2-
phosphate, and 500 µg ml−1 bovine serum albumin (all Sigma Aldrich). On day 3,
media was changed to RPMI 1640 media with 1 µM XAV-939 (Stemcell Tech-
nologies #72674), L-ascorbic acid 2-phosphate, and bovine serum albumin (all
Sigma Aldrich). On day 5, media was changed to RPMI 1640 media with L-
ascorbic acid 2-phosphate and bovine serum albumin. From day 7 onward media
was replaced with RPMI 1640 containing B27 supplement with insulin (Invitrogen
#17504001). Total RNA was isolated using the RNeasy Miniprep kit (Qiagen).
First-strand cDNA was synthesized using the Superscript III reverse transcriptase
kit (Invitrogen). Quantitative RT-PCR was performed using SYBR Green PCR
Master Mix (Invitrogen) on a ViiA7 Real-Time PCR System with 384-Well Block
(Applied Biosystems). The gene expression for each transcript is relative to that of
HPRT. Primers used for quantitative RT-PCR are listed in Supplementary Table 5.

Statistical analysis. GraphPad Software was used for statistical analysis. Data
throughout the paper are expressed as mean± SEM. Statistical significance between
two columns was assessed by two-tailed unpaired Student’s t test; for more than
two columns, one-way ANOVA (Fisher’s LSD test) analysis was used. Two-way
ANOVA (Fisher’s LSD test) was used to evaluate statistical significance between
two or more groups. Correlation analysis was performed with Pearson (R or R2
values; 95% confidence interval) or Spearman (R; 95% confidence interval) test. P
values < 0.05 were considered significant in all events.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the corresponding author on reasonable request. The RNA-seq and ChIP-seq
data reported in this paper have been deposited in NCBI GEO under the accession
code: GSE103263 (ESC, Eo− and Eo+) and GSE103583 (WT vs. Meteor KO).
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