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Abstract 
Several occupational exposure models are recommended under the EU’s REACH legislation. 
Due to limited availability of high-quality exposure data, their validation is an ongoing process. It 
was shown, however, that different models may calculate significantly different estimates and 
thus lead to potentially dangerous conclusions about chemical risk. In this paper, the between-
model translation rules defined in TREXMO were used to generate 319,000 different in silico 
exposure situations in ART, Stoffenmanager and ECETOC TRA v3. The three models’ 
estimates were computed and the correlation and consistency between them were investigated. 
The best correlated pair was Stoffenmanager–ART (R2, 0.27–0.81), whereas the ART–TRA and 
Stoffenmanager–TRA correlations were either lower (R2, 0.13–0.47) or no correlation was 
found. Consistency varied significantly according to different exposure types (e.g. vapour vs 
dust) or settings (near-field vs far-field and indoors vs outdoors). The percentages of generated 
situations for which estimates differed by more than a factor of 100 ranged from 14–97%, 37–
99% and 1–68% for Stoffenmanager–ART, TRA–ART and TRA–Stoffenmanager, respectively. 
Overall, the models were more consistent for vapours than for dusts and solids, near-fields than 
for far-fields, and indoor than for outdoor exposure. Multiple linear regression revealed how 
different exposure parameters influenced the models’ consistency. The findings emphasize the 
need for a multiple-model approach to assessing critical exposure scenarios under REACH. 
They also provide guidance to users wishing to select the right model(s) for assessing a wide 
range of exposure situations and model developers seeking future improvements.  

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 
Under the regulations of the REACH (Registration, Evaluation, Authorisation and restriction of 
CHemicals) framework, occupational exposure models are an indispensable element with which 
to assess and recommend conditions for the safe use of a wide range of different chemicals and 
applications in the workplace. The European Chemicals Agency (ECHA) recommends using a 
tiered approach (Tielemans et al., 2007; ECHA, 2016) to aid exposure model selection. Tier 1 
models, such as ECETOC Target Risk Assessment (TRA) (ECETOC, 2012)-the preferred Tier 1 
tool (ECHA, 2016)-or EMKG-EXPO-TOOL (BAuA, 2015), are intended to provide a conservative 
result and discriminate between chemicals which are of some concern to workers’ health and 
those which are not. Higher tier models are recommended when the risk to human health 
cannot be discounted based on Tier 1 assessment(s) (ECHA, 2016). These include, for 
example, Stoffenmanager (Marquart et al., 2008) (Tier 1.5) and the Advanced REACH Tool 
(ART, Tier 2) (Fransman et al., 2013). These consider more exposure factors (ECHA, 2016) and 
are therefore expected to be more accurate and precise.  

However, the popularity of different exposure models is also driven by the fact that 
measurement data of adequate quality is only available for a limited number of exposure 
situations. This limitation raises concerns about their performance over a wide range of different 
workplace situations. Several studies have investigated the performance of TRA (Kupczewska 
et al., 2011), Stoffenmanager (Schinkel et al., 2009; Kopisch et al., 2012) and ART (Donnel et 
al., 2011). They found either acceptable model performance or they refined the model 
calibration (Schinkel et al., 2009). A more extensive study, known as the eteam project (BAuA, 
2015), recently showed that the conservatism of Tier 1 tools varies according to different 
exposure conditions (Lamb et al., 2015). Overall, the study showed that the models tended to 
overestimate the measured exposure, although in some cases they were found to be 
insufficiently conservative. TRA, for example, was not conservative enough for volatile liquids 
(vapours) (35% of the measurements were underestimated), whereas Stoffenmanager was 
considered to be sufficiently conservative for this exposure type. 

Different occupational exposure models are based on different concepts (Hesse et al., 2015) 
and calibrated against different exposure data. Using the same exposure conditions, the models 
will therefore usually calculate different exposure estimates (Hoffstetter et al., 2012). The 
difference between the estimates should remain within a reasonable range and align with the 
defined tiered approach. A recent sensitivity study (Riedmann et al., 2015), however, showed 
that the estimates provided by the ART 1.5, Stoffenmanager 4.5 and ECETOC TRA 3 models 
could differ by up to several orders of magnitude, leading to significantly mismatched exposure 
estimates for the same exposure situation. Different conclusions about risk are thus possible 
because users lack instructions as to which exposure assessment model is the best choice for a 
given scenario. The results of the eteam project present an important basis for further model 
refinement and should be considered when selecting an appropriate tool for exposure 
assessment. However, a significant fraction of exposure conditions and situations that have still 
not been investigated and assessed using multiple models. The present study, therefore, 
provides a more in-depth analysis in order to systematically examine the differences between 
three well-known occupational exposure models-ART, Stoffenmanager and TRA. 



Savic et al. (2016) recently developed the TRanslation of EXposure MOdels (TREXMO) tool in 
order to reinforce best practices in the use of existing occupational exposure models. A test 
version is available, free of charge, at http://trexmo.unige.ch, and the authors are preparing the 
first end-user version (for release in summer 2017). The six models applied in TREXMO (ART 
v1.5; Stoffenmanager (algorithm published in Schinkel et al,.2009); ECETOC TRA v3; MEASE 
v1.02.01; EMKG-EXPO-TOOL; and EASE v2.0) require less data to be in-put than if the 
investigator were to use the six corresponding exposure estimate tools separately (Savic et al., 
2016). As referenced in the guidance to ECHA’s Chapter R.14 on occupational exposure 
assessment (ECHA, 2016), TREXMO assumes that parameters can be translated between 
models. Its translation system assists users in the selection of appropriate parameters for a 
given exposure situation (ES). Its aim is to improve between-user reliability, save time and 
promote the use of multiple models for the assessment of the same ES. 

The present study conducted a systematic comparison of the exposure estimates provided by 
three frequently used models ART, Stoffenmanager (algorithm in Schinkel et al., 2009), and 
ECETOC TRA v.3. We generated a wide and representative number of ESs, in silico, for the 
three models under investigation. TREXMO’s translation system allowed the same ESs to be 
applied to all three models. We calculated and analysed the correlations and the degrees of 
consistency between the estimates generated for each ES by each model. This comparative 
study highlights the ESs where model selection plays an important role in further risk 
characterisation. Also, when assessing a wide range of ESs the investigator is more effectively 
guided through the models and towards the selection of a more conservative approach. Using 
the TREXMO multiple model is therefore encouraged for the assessment of critical exposure 
scenarios under REACH. 
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METHODOLOGY 
Study design 

Using the statistical and graphic R software, version 3.3.1 (R development core team, 2008) we 
coded a programme to generate a wide range of different combinations of model parameters to 
be applied to ART (v1.5), the Stoffenmanager (SM) version published in Schinkel et al. (2009) 
and ECETOC TRA v3. Each combination of model parameters represented one ES. The 
parameters were first combined for ART and subsequently translated into the corresponding 
parameters of the two other models. The translation rules were extracted from TREXMO and 
recoded in R. Finally, the corresponding exposure estimates were calculated for each of the 
generated ESs. Every ES was therefore represented by the three different parameter 
combinations and three exposure estimates, one for each model. 

ESs were only generated if they were applicable to all three models. Parameter combinations 
that lead to non-applicable ESs (e.g. “glove boxes and bags” for localised controls (LCs) or 
vapour pressure above 30,000 Pa) were therefore not considered. The comparison study was 
performed for vapours (volatile liquids, P > 10 Pa, as defined in ART and SM), dusts and solids 
(abrasive dusts). Mists (non-volatile liquids, P ≤ 10 Pa) were not translated to TRA since it only 
calculates this type of exposure for vapour pressures below 0.01 Pa (ECETOC, 2012). Thus, 
only ART and SM were compared for mists. The results obtained are presented in 
Supplementary Material 1, available in the Annals of Work Exposures and Health online. 

In addition, ART was not used for generating ESs involving activity coefficients or respiratory 
protective equipment (RPE). Activity coefficients were omitted because, in reality, properly 
describing this concept is rather problematic (Tongeren et al., 2011) and a comparison with 
models that do not use this concept becomes difficult to interpret. Hence, the parameterisation 
of substance emission potential in ART was only performed with vapour pressures and 
substance concentrations, whereas the activity coefficient was set to 1.0 for all the ESs. 
Furthermore, RPE was not used because ART only applies this determinant after Bayesian 
interference (see Fransman et al., 2013). None of the three models therefore involved the use of 
RPE.  

Indoor and outdoor settings were treated separately since different sets of parameters apply for 
each situation. For example, indoor exposure includes parameters to address ventilation rates 
and workplace volumes, whereas outdoor exposure is parameterised by the source–building 
and source–worker distances (in far-field settings only). Furthermore, near-field (NF) and far-
field (FF) exposure were also differentiated in order to address the different influences of the 
source–worker distances on exposure.   

The correlations and consistencies between the exposure estimates were calculated for each 
pair of models (i.e. SM–ART, TRA–ART and TRA–SM) and for exposure types and settings. 
Furthermore, a multiple linear regression analysis was applied to determine how and to what 
extent the individual determinants (e.g. vapour pressure) affected the consistencies between the 
three pairs of models. 

 



Exposure Calculation and Parameter Translations 

ART and SM calculate exposure at different percentiles, i.e. 50th, 75th, 90th, 95th and 99th (only 
ART). TRA’s estimate, though, is intended to reflect the 75th percentile (ECETOC, 2012). 
However, for this study, only the 50th percentile estimates of ART (Schinkel et al., 2011) and SM 
(Schinkel et al., 2009) were further analysed because both of these studies used geometric 
mean exposure levels to calibrate the models. It has also been shown that using a higher 
percentile (i.e. 75th or 90th percentile, see Supplementary Material 4, available online) for ART 
and SM does not change the consistency results significantly in comparison to TRA. For 
vapours, the TRA exposure estimates in parts-per-million (ppm) were converted into mg/m3 in 
order to be able to compare its results directly with ART and SM. For this purpose, a list of 
3,162 registered liquid substances and their corresponding molecular weights (MWs) was 
requested from ECHA. A log-normal distribution function was then defined based on the MWs 
provided. Finally, a MW value was assigned to each of the generated ESs according to the 
distribution function to convert the units into mg/m3. 

A translation from ART to the other models can result in either straightforward or multiple 
translation outcomes. For the latter, TREXMO defines two types of different translation options: 
“recommended” and “uncertain”. The “recommended” translation pathway is considered to be of 
low uncertainty with respect to its validity, whereas the “uncertain” translation option must be 
considered with greater caution before applying it to an ES. Although most cases of translation 
(Savic et al., 2016) from ART to SM are straightforward (62–74%), the user will usually have to 
choose between multiple translation outcomes when moving from ART to TRA. A typical 
instance of multiple translation options is the translation of activity parameters to the Process 
Categories (PROCs) of TRA. For example, the “transfer of liquids” activity class may require the 
user to select between six different PROCs. A semi-random selection was therefore coded in R 
so as to adequately address these multiple translation outcomes. The “recommended” 
translation was preferred to the “uncertain” pathway with a probability of 0.75. For example, for 
the “fracturing of powders” activity class in ART, PROC 14 (production by tabletting, 
compression, extraction or palletisation) was selected in 75% of cases over PROC 15 (user of 
laboratory reagents in a small-scale laboratory) for TRA. A sensitivity analysis was also 
conducted to investigate the impact of different probabilities (i.e. 0.60 and 0.90) on the results 
for consistency. However, for the recommended translation pathway, different probabilities of 
> 0.5 showed only a negligible impact on the consistencies between the three models. The 
selected probability of 0.75 may, therefore, be considered as representative. The detailed 
results of the sensitivity analysis are given in Supplementary Material 1, available online. 

Correlation and Consistency 

The calculated exposure estimates were compared for pairs of models (e.g. ART and SM) and a 
regression line and a 1:1 line were plotted to illustrate the deviation from “ideal” consistency. 
Furthermore, Pearson coefficients of determination, R2, were calculated between the log-
transformed exposure estimates of two models in comparison.  



Log differences between their estimates, log(𝑚𝑚1) − log(𝑚𝑚2), were calculated to compare the 
consistencies between the two models. Based on the magnitude of the log differences obtained, 
the generated ESs were classified into one of the three defined consistency classes: 

1. High: |log(m1)− log(m2)| < 1; 
2. Medium: 1 ≤ |log(m1)− log(m2)| < 2; 
3. Low: |log(m1)− log(m2)| ≥ 2. 

Thus, a log difference of less than one refers to a difference in exposure estimates of less than 
one order of magnitude, and this is assigned to the high-consistency class. Similarly, a 
difference of greater than one but less than two orders of magnitude is assigned to the medium-
consistency class, and a difference of greater than two orders of magnitude is assigned to the 
low-consistency class. For each ES generated, the percentage distributions over the three 
defined consistency classes were calculated separately for the three exposure types, the four 
settings and the three pairs of models. More detailed information about the percentage 
distributions are presented in Supplementary Material 1, available online. 

Computing the consistencies between the three models was done through a sequence of 
iteration cycles. In a first step, for ART, each cycle generated different parameter combinations 
for a set of 1,000 ESs. Next, the ESs were translated to the two other models. Finally, for each 
pair of models, the corresponding exposure was calculated with the respective consistency 
results. For a given exposure determinant in ART, each parameter had an equal probability of 
being selected to represent an ES. For example, the five dustiness categories were each given 
a probability of 0.2 of being selected for an ES. After an iteration cycle was completed, 1,000 
new ESs were added to the previous set and the consistency results were recalculated 
accordingly. These iterations were stopped at the point where an additional set of 1,000 ESs did 
not change the consistency results by more than 1%. For example, 24,000 ESs had to be 
generated to stabilise the consistency results for vapours in NF–indoor settings. 

Multiple linear regression 

A multiple linear regression analysis was performed to investigate how the exposure 
determinants and parameters of ART affect the log differences (the consistency) of the model 
estimates. The parameter combinations generated for consistency were also used for the 
regression analyses. As above, the regression analysis was applied to each of the three 
exposure types and the four settings, separately. Three different equations were defined for the 
three model pairs, i.e. SM–ART, TRA–ART and TRA–SM: 

log(𝑆𝑆𝑆𝑆) − log(𝐴𝐴𝐴𝐴𝐴𝐴) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖 ∙ log 𝑑𝑑𝑖𝑖𝑖𝑖=1 + ∑ 𝛽𝛽𝑘𝑘 ∙ 𝑑𝑑𝑘𝑘𝑘𝑘=1   (1) 

log(𝐴𝐴𝐴𝐴𝐴𝐴) − log(𝐴𝐴𝐴𝐴𝐴𝐴) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖 ∙ log 𝑑𝑑𝑖𝑖𝑖𝑖=1 + ∑ 𝛽𝛽𝑘𝑘 ∙ 𝑑𝑑𝑘𝑘𝑘𝑘=1   (2) 

log(𝐴𝐴𝐴𝐴𝐴𝐴) − log(𝑆𝑆𝑆𝑆) = 𝛽𝛽0 +∑ 𝛽𝛽𝑖𝑖 ∙ log 𝑑𝑑𝑖𝑖𝑖𝑖=1 + ∑ 𝛽𝛽𝑘𝑘 ∙ 𝑑𝑑𝑘𝑘𝑘𝑘=1   (3) 

where β0 is the intercept, βi and βk are the estimated coefficients for ART’s continuous (e.g. 
vapour pressure), di, and categorical (e.g. LC), dk, determinants. Note that the log differences, 
as described in Eq. 1–3, correspond to the three defined consistency classes. The regression 
intercept (β0) and the coefficients (βi and βk) therefore determine in which consistency class a 



given ES will be classified. For example, high-consistency is only reached if the sum of the 
elements on the right-hand side of the Eq. 1–3 add up to a result between -1 and 1. The size of 
a regression coefficient is therefore important in order to identify how the corresponding 
parameter affects the log difference, whereas its sign determines which model (in Eq. 1-3) 
calculates a higher estimate. 

Vapour pressure and substance concentration were continuous determinants. Since Eq. 1–3 
calculate the log differences, the regression variance was better explained with the logarithms of 
the continuous determinants. The categorical determinants, however, correspond to a limited 
number of categorical parameters (e.g. “low-level containment” for the LC determinant). A 
separate regression coefficient (βk) was calculated for every categorical parameter, whereas the 
parameters, dk, were represented by dummy values (dk=1 for each parameter). For example, 
regression coefficients were estimated for all of the 14 LC parameters for a vapour ES. For each 
of the determinants, one of the parameters was used as a referent point (βk=0) to calculate the 
regression coefficients for the other parameters of the same determinant. The individual impact 
of each parameter on consistency can therefore be compared with the referent parameter. 

In addition, R2 was calculated to quantify the statistical significance of the regression models 
(Eq.1–3) and to determine how ART’s determinants explain the variance in the consistency of 
each pair of models.  

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 
We generated and translated 319,000 ART parameter combinations into the two other models. 
Fig. 1–3 illustrate the correlations and consistencies between the models’ estimates for vapours, 
dusts and solids. The high-, medium- and low-consistency classes are coloured dark blue, 
bright blue and red, respectively. The figures also show the range of model estimates (shaded 
area) where they fall into either the medium- or high-consistency class. The plotted regression 
line illustrates the deviation from the ideal 1:1 consistency line. At the point where the 
regression line crosses the 1:1 line, the two models calculate the same estimates and are thus 
considered ideally consistent. The consistency of the results decreases as the distance from the 
ideal line increases. 

Correlation and Consistency 

Vapours (Fig. 1). SM and ART were strongly correlated (R2, 0.62–0.81), whereas their 
correlation with TRA was moderate (R2, 0.27–0.47). Note that the strongest correlation (R2, 
0.81) was observed for NF–indoor (SM-ART), representing ESs often evaluated under REACH.  

SM-ART were either highly or moderately consistent for 86% of the NF-indoor situations 
computed. Furthermore, for any ART NF–indoor estimate within the range of 0.32–160 mg/m3 
(Fig. 1), SM was either highly or moderately consistent. These consistencies between the two 
models, though for fewer ESs, were also found when SM calculated estimates of higher than 
96 mg/m3. Furthermore, TRA–SM results were more consistent than TRA–ART results, with 32–
90% versus 1.5–63% of estimates in the two higher classes, respectively. Overall, the 
consistency between the model estimates was higher for NF than for FF and for indoor than for 
outdoor settings. For example, for SM–ART, the NF to FF and indoor to outdoor situation ratios 
classified in the high- or moderate-consistency classes, were 2:1 and 3:2, respectively. 

Dusts (Fig. 2). Compared to vapours, estimates were less correlated in all the model pairs (R2, 
0.16–0.46), whereas the most correlated, SM–ART, were only moderately correlated, with R2 
ranged from 0.32 for FF–outdoor to 0.46 for the NF–indoor setting. 

For any ART NF–indoor estimate in the range of 0.61–890 mg/m3 (Fig. 2), SM was either highly 
or moderately consistent. Concentration ranges for TRA–ART and TRA–SM were impossible to 
define, meaning that there were no specific concentration ranges for which the two higher 
consistency classes were guaranteed. Compared to vapours, ART’s consistency with the other 
two models was significantly lower, with 64–99.6% of estimates in the low-consistency class. 
Conversely, TRA–SM were highly consistent in 37–66% of situations; only a minority of 
situations were attributed to the lowest class. As for vapours, consistency decreased from the 
NF-indoor to FF-outdoor cases.   

Solids (Fig. 3). SM–ART were moderately correlated (R2, 0.27–0.38) across all the settings. For 
outdoor situations, TRA–ART were moderately correlated (R2, 0.25 for NF and 0.22 for FF), 
whereas for indoor settings, this model pair was weakly correlated (R2, 0.13 for NF and 0.14 for 
FF). No correlation was found for TRA–SM. 

For any ART NF-indoor estimate higher than 0.83 mg/m3 and within the range from 0.2–
410 mg/m3, when compared to SM and TRA, respectively, the generated ESs are either highly 
or moderately consistent. This range was narrower in SM (0.16–3.2 mg/m3, see Fig. 3) when 



compared to ART’s consistency with TRA. In general, the consistency percentages found for 
this exposure type varied by 10% from that calculated for dust exposure, which mostly 
demonstrated higher consistencies. As with the two previous exposure types, more consistent 
ESs were found for NF than for FF and for indoor than for outdoor. 

Overall, we observed a systematic deviation of the regression line (Fig. 1-3) from the ideal (1:1) 
line. Where calculation was possible, the regression slopes were always lower than 1, with 
those calculated for SM–ART (0.21–0.38) and TRA–ART (0.12–0.31) being lower than for TRA–
SM (0.48–0.79). A regression slope below 1 means that moving along the x-axis (e.g. ART) 
causes a smaller change on the y-axis (e.g. SM). In other words, for example, an increase in the 
ART estimate (e.g. due to fewer controls) is, in general, not followed by a corresponding 
increase in the SM estimate. This was confirmed by the different ranges of estimates possible in 
the three models. Fig. 1–3 illustrate wider ranges (12–15 orders of magnitude) of the estimates 
covered in ART and lower ranges for SM (4–7) and TRA (2–8). Consequently, the three models 
were only consistent within a limited range of exposure concentrations, typically, at 
concentrations above 0.1 mg/m3.  

For a higher fraction of the generated ESs, SM was found to calculate higher estimates than 
ART for all exposure types (see Supplementary Material 1 and 4). For NF-indoor settings, for 
example, SM gave higher estimates for 66% of vapour and 97% of dust and solid ESs. Similar 
results were obtained for TRA–ART, where, for NF-indoor, for 80% of vapour ESs and 94% of 
dust and solid ESs, TRA calculates higher estimates than ART. Furthermore, for 88% of vapour 
ESs, TRA was found to calculate higher NF-indoor estimates than SM, however, for 56% of dust 
and 59% of solid ESs, SM’s calculated estimates were, higher. More detailed results of the 
percentages (and a detailed distribution) of ESs where one model calculated higher exposure 
than another are provided in Supplementary Material 1 (for 50th percentile) and 4 (for 75th and 
90th percentiles), available online. 

Multiple Linear Regression 

Table 1 shows the extent to which ART determinants (e.g. vapour pressure) individually 
contributed to multiple R2 for the three multiple regression models (Eq. 1–3). Here, we present 
only the NF-indoor results—the other results are given in Supplementary Material 2 and 3, 
online. Tables 2–4 show the regression coefficients (β in Eq. 1–3) estimated for vapours, dusts 
and solids, respectively. 

Substance properties. For vapours, the consistencies of the SM–ART and TRA–ART pairs 
were almost equally sensitive to the vapour pressure and substance concentration (Table 1). 
Due to their negative coefficients (-0.46, Table 2), increasing the two determinants increases 
ART’s estimate more strongly than SM’s and may, due to the small intercept (0.20), further 
increase the difference between SM–ART, in favour of ART. On the other hand, the consistency 
of TRA–ART improved as vapour pressure and substance concentration increased, due to the 
highly positive intercept (1.93). The two determinants were, however, less significant (Table 1) 
in explaining the consistency of TRA–SM. 

For dusts and solids, substance concentration and moisture content (Table 1) were the key 
factors in explaining ART’s consistency with the two other models; dustiness was a less 
significant factor. Given the high, positive, intercepts (Tables 3–4), high consistency was rarely 
reached with low substance concentrations and high moisture content (e.g. the “wet products” 



parameter). In addition to substance concentration, dustiness (for dusts, see Table 3) also 
contributed significantly to the consistency of TRA–SM, with consistency improving as the 
concentration (Tables 3–4) and dustiness potential increase. For this model pair, the impact of 
moisture content is negligible. 

Activity (sub)classes. For vapours, a trend was observed in the SM–ART and TRA–ART 
model pairs, where activities that generated higher exposures had lower coefficients (β, Table 
2). In other words, higher consistency was more likely to be reached with these activities, such 
as “spraying of liquids in a space” (β, -0.39; Table 2), whereas lower consistency was observed 
with the activities that produced less exposure, such is “handling of contaminated objects” (β, 
1.43). On the contrary, the TRA–SM model pair’s consistency was higher with the activities that 
led to lower exposure concentrations. In addition, the activity parameters explained the 
consistency more significantly for vapours than for dusts and solids, especially for SM–ART 
(Table 1). 

Similarly to vapours, activities that generated higher dust exposures increased the consistency 
of SM and TRA, individually, with ART. However, for TRA–SM, no clear conclusion could be 
drawn since the regression coefficients, shown in Table 3, defined a narrower range (β, -0.54–
0). This was also supported by the results shown in Table 1, where activity parameters had little 
significance in explaining the consistency between the two models. Overall, the consistency for 
dust exposure modelling was generally better explained by substance properties and LCs (see 
below). 

No results were calculated for solids since only one activity each for wood and stone were 
applicable in the models.  

Localised controls (LC). For vapours (Table 2), containment categories reduced consistency 
more significantly than Local Exhaust Ventilation (LEV) systems. Considering the intercepts for 
SM–ART and TRA–ART (β0, 0.2 and 1.93, respectively), for example, “high-level containment” 
(β, 2.31 and 2.77) could generate estimates for SM and TRA that were two and four orders of 
magnitude higher than for ART, respectively. Also, for TRA–SM, due to the high intercept (β0, 
1.73) and the positive coefficients for containments, a difference of two orders of magnitude was 
possible, in favour of TRA. Comparing ART to the other two models, better consistency was 
obtained with LEV systems than with containment, although some LEV parameters, for example 
“fume cupboard”, could significantly reduce the consistencies of the two model pairs. For TRA–
SM, consistency was increased with all the LEV categories.  

As for vapours, for dusts (Table 3) and solids (Table 4), mostly the same conclusion for LC can 
be drawn for SM–ART and TRA–ART. The containment categories may significantly increase 
the exposure in favour of SM and TRA, whereas the LEVs did not lead to pronounced changes 
between the models. One exception was the “fume cupboard “ LEV parameter; this generated 
significant differences between ART and the other models. Unlike for vapours, and given the 
negative intercepts for dusts and solids (β0, -0.51 and -0.98, respectively), the selection of 
containment categories may increase the consistency of TRA–SM, whereas LEV such as 
“canopy hoods”, generated some differences up to one order of magnitude, in favour of SM. 

Workplace volume and Ventilation. For vapours (Table 2) and dusts (Table 3), the 
consistency of SM–ART decreased as workplace volumes and ventilation rates increased. 
However, no such trend was observed for solids (Table 4). For all exposure types, the 
consistency of TRA–ART was lower with higher workplace volumes and lower ventilation rates.  



For TRA–SM, due to the positive intercept for vapours and negative intercept for dusts/solids, 
consistency is decreased for the former and increased for the latter as workplace volume 
increases. However, for volumes of 100, 300 and 1,000 m3 consistency was constant since 
these volumes are covered by the same SM parameter (100–1,000 m3). Furthermore, TRA–SM 
may only be affected at higher ventilation rates (10 and 30 ACH), which increases the 
consistency for vapours and reduces it for dusts and solids.  

Overall, the importance of the workplace volume and ventilation (Table 1) was significantly 
smaller than for other determinants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISCUSSION 
This paper presents the results of a theoretical assessment of the correlations and 
consistencies between the exposure estimates of three well-known REACH exposure models. 
The TREXMO translation system allowed us to compare models for a wide range of different 
ESs, without field exposure data. Furthermore, we conducted a multiple regression analysis to 
explain how the different exposure parameters affected the three exposure models’ estimates 
and thus their consistency. To the best of our knowledge, this is the first study of its kind, where 
a systematic, in silico, comparison was conducted, to use occupational exposure models. 

Several generic exposure models are recommended under the REACH framework, although the 
limited number of studies available on their relative performance hampers the selection of the 
best one for each assessment. Our results show that the correlations and consistencies 
between the models’ estimates vary significantly depending on the different exposure types and 
settings. For a given situation, model estimates can differ by several orders of magnitude. 
Unfortunately, such significant differences cannot be considered to reflect the idea of the tiered 
assessment approach promoted by ECHA (2016). The conclusions about risk may therefore 
vary significantly depending on the exposure assessment model used. This underlines the 
necessity of selecting the best model for assessment. 

Different factors described in this study may affect the correlation and consistency between 
models. These include the conceptualisation of the models themselves, their size (number of 
determinants), resolution (number of parameters per determinant), calibration (method and 
database) and translation efficiency (Savic et al., 2016). However, the individual impact each 
factor is not easy to quantify; the differences in correlations and consistencies between the 
models are usually due to a combination of different factors.  

ART and SM are source-receptor models (Cherrie et al., 1996; Tielemans et al., 2008) which 
describe the substance’s transport from its source to the recipient. The exposure pathway is 
divided into several theoretical compartments (e.g. source), where exposure is determined with 
one or more exposure determinants (e.g. vapour pressure) (Marquart et al., 2011). In addition, 
linear mixed-effect regression was used to calibrate both ART and SM against measured 
exposure. Further, the translations from ART into SM were mostly straightforward (83–99% of 
the cases for indoor and outdoor exposure site; see Savic et al., 2016), which limited the 
possibility of variances due to the translation step. These conceptual similarities and the high 
translation efficiency from ART to SM explain the strong correlations found between these two 
models for all the exposure types. However, different exposure data were used to calibrate SM 
(Schinkel et al., 2009) and ART (Schinkel et al., 2011) which partly explains the differences in 
consistency between the two models. Furthermore, the differences in consistencies are also 
driven by ART’s greater size and resolution than SM (see also Hesse et al., 2015). Since ART 
applies more determinants (29) than SM (17; Hesse et al., 2015), not all of them have 
corresponding analogues in SM. Typical examples are moisture content and substance 
concentration in ART; these are not used for dusts and solids in SM. This implies that for ESs 
with different parameter combinations (e.g. with different moisture contents) and thus different 
estimates in ART, SM calculates the same exposure. The higher model complexity (size and 
resolution) of ART may, therefore, result in greater variations in exposure estimates than SM or 
other lower tier models. This may also explain the higher consistency found for vapours, where 
the source emission term represented by vapour pressure and concentration is a continuous 



scale for both ART and SM. For dusts and solids, however, no analogues exist for moisture 
content and concentration in SM.  

Moreover, model sizes and resolutions of ART and SM differ further for FF settings. Although 
ART can incorporate both the separation of the worker and segregation of the exposure source, 
SM only defines the former (named “immission”). The two models thus differ by the additional 
determinant (and its five parameters), which explains the weaker correlation and consistency 
found in FF situations. Furthermore, different levels of model complexity exist for different 
exposure sites, with ART and SM’s determinants overlapping more in indoor than in outdoor 
settings. For indoor settings, both models use workplace volume and type of ventilation. 
However, ART also applies the ventilation rate in order to account for the dilution of exposure. 
The outdoor setting in SM, on the other hand, is restricted to one parameter of general 
ventilation, whereas ART defines a set of different parameters to address the distance of the 
source from the building and the worker’s distance from the outdoor source (for FF). 
Consequently, this results in a higher variation of exposure estimates in ART than in SM, and 
thus may lead to lower correlations and consistencies in outdoor settings than in indoor settings. 

TRA’s conceptual framework deviates significantly from the source-receptor approach used in 
ART and SM. First, PROC, dustiness or volatility bands, types of settings and the presence of 
LEV are used to extract an initial exposure estimate from a constrained set of quantified 
exposure values. The EASE model is used as a basis for deriving the initial values, which are 
continually refined with new exposure data (ECETOC, 2004; ECETOC, 2009; ECETOC, 2012). 
Second, this initial value is further modified by multipliers of concentration, general ventilation, 
RPE and task duration in order to obtain the final TRA exposure estimate. Furthermore, TRA’s 
size is generally smaller than SM and ART (9 determinants), its resolution is lower (e.g. 3 
dustiness parameters vs 5 in ART), and the definition and application of its determinants are 
generally different (e.g. activity concept). For example, where ART and SM use a continuous 
scale for vapour pressure (high resolution), TRA introduces a limited number of volatility bands 
(i.e. low, medium and high) for this determinant. This implies that despite the wide range of 
estimates obtained with different vapour pressures in ART and SM, TRA will compute one of 
only three different estimates. Moreover, TRA does not differentiate between NF and FF 
settings and thus calculates the same exposure for both settings. This further increases the 
variance and thus results in weaker correlations when compared to ART and SM.  

For solids, TRA showed a weak correlation with ART and no correlation at all with SM. This is 
mainly because the translation from ART into TRA only allows two PROCs (21 and 24) as 
possible outcomes. Consequently, only a limited range of possible estimates (2–4 orders of 
magnitude) can be calculated in TRA in comparison to the wider range of estimates in ART and 
SM, leading to an even lower correlation for solids.  

Consistency between the three models was further affected by each model’s different ranges of 
exposure estimates. Compared to the wide range of possible estimates in ART (12–15 orders of 
magnitude), SM and TRA’s estimates covered significantly narrower ranges (4–7 and 2–8 
orders of magnitude, respectively). Hence, it is more likely that SM and TRA show more 
consistent estimates, whereas ART, due to its wide range of potential exposure estimates, 
accounts for more distanced estimates than the two other models. Note, however, that for ART, 
upper cut-off exposure values were used for both vapours (104 mg/m3) and non-vapours 
(103 mg/m3); if not applied, even wider exposure ranges would have been found. 

 



Multiple linear regression 

Regression analysis allowed us to reveal the most influential sets of exposure parameters 
determining the consistencies between the three models. For NF–indoor settings, three 
exposure factors prominently affected consistency: substance properties, activity (sub)classes 
and LCs. This was in accordance with the sensitivity analysis performed in Riedmann et al. 
(2015), which showed that these factors had the most significant effect on ART’s estimates. In 
the other settings (NF–outdoor and FF, see Supplementary Material 2 and 3), other 
determinants, such as source segregation (for FF), could also significantly affect consistency. 

In general, parameters that described a low exposure potential (e.g. low concentration, 
“handling of contaminated objects” etc.) were likely to lead to lower consistency between ART 
and the two other models. These ESs are dominant in the left-hand (red) areas of Fig. 1–3, 
where ART calculated significantly lower estimates. This is mainly a result of ART’s complexity 
and the model’s wide range of potential estimates, where very low exposures (e.g. 10-11 mg/m3 
in Fig. 2) can be computed. However, increasing the exposure potential (e.g. higher 
concentration, less efficient LC) should, in general, improve consistency. This means that the 
estimates of ART, indicated by negative regression coefficients (Tables 1–3), increase by 
greater increments than the estimates of the two other models. Furthermore, for a sufficiently 
high vapour pressure (P), concentration (c) and activity emission potential (e.g. P = 1,000 Pa, 
c = 90%, when used in a spraying application), ART’s estimates may exceed those of the other 
models, thus increasing inconsistencies between them. These situations are illustrated in the 
right-side, red areas in Fig. 1–3. 

Limitations 

This study was based on the theoretical comparison of three different occupational exposure 
models and not on field measurements. Although this enabled us to compare a large number of 
ESs (n = 319,000), no recommendations can be provided on the accuracy and precision of the 
different models.  

Although TREXMO’s translation design has been reviewed by several external experts (Savic et 
al., 2016), the translation of specific ESs may still be uncertain, especially for those situations 
where several translation outcomes are possible. Translation rules, however, could be updated 
in the future due to, for example, the availability of new information on models or a different 
interpretation of the coding and translation of specific ESs by experts. Depending on the number 
of modifications to TREXMO’s translation rules, the results for consistency may change. 
However, they are not expected to change the general findings and conclusions, but rather 
some specific aspects of the study results.  

This study used the SM algorithm published in Schinkel et al. (2009). However, the model’s 
online platform has been updated to version 6. Since its newer versions have not yet been 
published in a peer-reviewed journal, the present study’s authors cannot guarantee the same 
results with Stoffenmanager’s potentially updated algorithm. 

Conclusion and Recommendations 

This study investigated the correlation and degree of consistency between three occupational 
exposure models often used and studied in the framework of REACH. We showed that for the 
same ES, the models could compute significantly different exposure estimates, which could lead 



to very distinct conclusions about necessary safety measures, with potentially serious 
consequences to workers’ health. The study’s results suggest the need to use multiple models 
in any assessment of ESs, particularly for cases where consistency between the models cannot 
be guaranteed. These results also provide useful guidance on choosing the most appropriate 
models for a wide range of different ESs. Furthermore, the results highlighted the ESs for which 
significantly different estimates (two orders of magnitude or more) were calculated and thus the 
future improvements which model developers should consider. 

When critical exposure scenarios need to be assessed under REACH (e.g. for substances of 
very high concern subject to authorization) the authors recommend beginning by checking 
which consistency class the ES falls into, and then deciding which model could be used to best 
control the risks in this specific scenario. When the ESs fall into the high-consistency class, the 
models will probably lead to similar conclusions, whereas the medium and especially the low-
consistency class ESs could lead models to produce different outcomes and thus different 
recommendations on relevant safety measures. The use of several models could, therefore, 
lead to a more cautious assessment of critical ESs. Alternatively, the user could also select the 
model that is expected to give the most conservative exposure estimates. For example, ART 
generates higher estimates for high-exposure concentrations, whereas when dealing with well-
contained low vapour-pressure substances (e.g. < 100 Pa), a more conservative approach 
would be achieved by using Stoffenmanager and/or TRA. Furthermore, this study gives insights 
into how the models’ consistencies change when different parameter combinations are applied 
to them. The model user’s assessment capabilities will thus be strengthened when different 
exposure scenarios need to be evaluated.  

Future studies should investigate whether these models’ applicability ranges should be 
narrowed or their algorithms revised. The results of this study may provide some support to 
model developers in that regard. 
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TABLES and FIGURES 
Table 1. Increase in multiple R2 by the ART’s determinants for the regression models in Eq. 1–
3, the three exposure types, i.e. vapours, dusts and solids, only in NF–indoor setting. 

Vapours 
Eq. Fug. log(c) Moist. H LC Vol ACH Su Multiple R2 

1  
(SM-ART) 

0.12 0.11  0.27 0.24 0.03 0.03 < 0.01 0.79 

2 
(TRA-ART) 0.11 0.09  0.14 0.32 0.03 < 0.01 < 0.01 0.70 

3 
(TRA-SM) 0.02 0.01  0.10 0.24 0.01 0.05 < 0.01 0.40 

Dusts 
1 

(SM-ART) 0.02 0.31 0.27 0.09 0.14 < 0.01 < 0.01 < 0.01 0.83 

2 
(TRA-ART) 0.02 0.07 0.19 0.08 0.26 0.01 < 0.01 < 0.01 0.65 

3 
(TRA-SM) 0.13 0.14 < 0.01 0.04 0.21 0.01 0.04 < 0.01 0.59 

Solids 
1 

(SM-ART) 0.03 0.44 0.22  0.16 < 0.01 < 0.01 < 0.01 0.86 

2 
(TRA-ART) 0.02 0.10 0.18  0.37 0.01 0.01 < 0.01 0.69 

3 
(TRA-SM) < 0.01 0.23 < 0.01  0.36 0.03 0.07 < 0.01 0.69 
Fug: the logarithm of vapour pressure for vapours, dustiness for dusts or kind of dust (wood or stone) for solids; c: 
product concentration; Moist.: moisture content; H: activity classes; LC: localised controls; Vol: workplace volume; 
ACH: determinant of ventilation rate (air-exchanges per hour); Su: surface contamination/fugitive emission sources.  

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Estimated regression coefficients (β) for the three regression analyses (defined in Eq. 
1–3) for vapours. 

Determinant Parameters SM–ART 
(Eq. 1) 

TRA-ART 
(Eq. 2) 

TRA–SM 
(Eq. 3) 

 Intercept 0.20 1.93 1.73 
Vapour pressure log (𝑃𝑃) -0.46 -0.57 -0.12 

Concentration log (𝑐𝑐) -0.46 -0.55 -0.09 

Activity 
(sub)classes* 

Surface spraying of liquids 0 0 0 
Spraying of liquids in a space -0.39 -0.49 -0.09 
Activities with open surfaces—
undisturbed 

1.03 0.41 -0.62 

Activities with open surfaces—agitated 0.57 0.15 -0.42 
Handling of contaminated objects 1.43 0.65 -0.78 
Spreading of liquid products 0.96 0.97 0.01 
Application in high-speed processes -0.03 -0.23 -0.20 
Transfer of liquids: bottom loading 1.43 1.31 -0.13 
Transfer of liquids: falling liquids 1.50 1.45 -0.05 

Localised 
controls* 

No LC 0 0 0 
Low-level containment 0.72 0.94 0.22 
Medium-level containment 1.31 1.94 0.64 
High-level containment 2.31 2.77 0.45 
LEV: canopy hoods 0.02 -0.58 -0.60 
LEV: other receiving systems 0.44 -0.13 -0.57 
LEV: fixed capturing hoods 0.72 0.14 -0.58 
LEV: movable capturing hoods 0.04 -0.57 -0.61 
LEV: on-tool extraction 0.71 0.12 -0.59 
LEV: fume cupboard 1.31 1.12 -0.18 
LEV: horizontal/downward flow booths 0.71 0.13 -0.58 
LEV: other enclosing systems 0.32 0.15 -0.17 
LEV: other systems 0.04 -0.54 -0.58 
Vapour recovery systems 0.43 -0.15 -0.58 

Workplace 
volume (m3)* 

30 0 0 0 
100 0.14 0.37 0.22 
300 0.34 0.56 0.22 
1000 0.53 0.74 0.22 
3000 0.56 0.82 0.25 

Ventilation 
(ACH)* 

0.3 0 0 0 
1 0.04 0.22 0.18 
3 0.27 0.31 0.04 
10 0.44 0.10 -0.34 
30 0.52 0.18 -0.34 

*Parameters used as categorical (dummy) values for the multiple regression analyses. 
 
 
 



Table 3. Estimated regression coefficients (β) for the three regression analyses (defined in Eq. 
1-3) for dusts. 

Determinant Parameters SM–ART 
(Eq. 1) 

TRA–ART 
(Eq. 2) 

TRA–SM 
(Eq. 3) 

 Intercept 2.18 1.68 -0.51 

Dustiness* 

Firm granules, pellets or pelletised 
material 

0 0 0 

Granules, pellets or pelletized material -0.15 -0.50 -0.34 
Coarse dust -0.32 -0.08 0.24 
Fine dust -0.47 0.31 0.79 
Extremely fine dust -0.64 -0.21 0.43 

Concentration log(c) -1.00 -0.55 0.45 

Moisture* 
< 10% 0 0 0 
10–90% 1.02 1.02 0.01 
> 90% 2.00 2.02 0.01 

Activity 
(sub)classes* 

Impaction on contaminated solid objects 0 0 0 
Handling of contaminated objects or paste 0.35 0.39 0.04 
Spraying application of powders -0.45 -0.96 -0.47 
Moving and agitation -0.58 -0.66 -0.41 
Transfer of powders: falling powders 0.09 -0.27 -0.36 
Transfer of powders: vacuum transfer 1.07 0.60 -0.47 
Compression of material 0.07 -0.41 -0.48 
Fracturing of material 0.07 -0.47 -0.54 

Localised 
controls* 

No LC 0 0 0 
Low-level containment 0.68 1.00 0.33 
Medium-level containment 1.14 2.01 0.87 
High-level containment 2.11 2.96 0.85 
LEV: canopy hoods -0.03 -0.54 -0.50 
LEV: other receiving systems 0.36 -0.13 -0.49 
LEV: fixed capturing hoods 0.66 0.16 -0.51 
LEV: movable capturing hoods -0.03 -0.51 -0.49 
LEV: on-tool extraction 0.69 0.21 -0.48 
LEV: fume cupboard 1.13 1.19 0.07 
LEV: horizontal/downward flow booths 0.67 0.18 -0.49 
LEV: other enclosing systems 0.12 0.15 0.03 
LEV: other systems -0.04 -0.51 -0.47 

 Suppression: knockdown technique -0.17 0.13 0.31 
 Suppression: wetting at point of release 0.66 0.96 0.30 

Workplace 
volume (m3)* 

30 0 0 0 
100 -0.05 0.24 0.29 
300 0.10 0.42 0.32 
1000 0.20 0.51 0.31 
3000 0.16 0.52 0.35 

 
 
 



Table 3. continued. 
Determinant Parameters SM–ART 

(Eq. 1) 
TRA–ART 

(Eq. 2) 
TRA–SM 

(Eq. 3) 

Ventilation 
(ACH)* 

0.3 0 0 0 
1 -0.11 0.10 0.21 
3 -0.01 0.04 0.05 
10 0.08 -0.22 -0.30 
30 0.12 -0.17 -0.29 

*Parameters used as categorical (dummy) values for the multiple regression analyses. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Estimated regression coefficients (β) for the three regression analyses (defined in Eq. 
1-3) for solids. 

Determinant Parameters SM–ART 
(Eq. 1) 

TRA–ART 
(Eq. 2) 

TRA–SM 
(Eq. 3) 

 Intercept 1.83 0.85 -0.98 
Kind of dust Stone 0 0 0 

 Wood 0.45 0.49 0.04 
Concentration log(c) -1.00 -0.55 0.45 

Moisture* 
< 10% 0 0 0 
10–90% 0.53 0.52 -0.01 
> 90% 1.53 1.53 0.01 

Localised 
controls* 

No LC 0 0 0 
Low-level containment 0.60 1.00 0.39 
Medium-level containment 0.86 2.04 1.18 
High-level containment 1.83 2.97 1.15 
LEV: canopy hoods -0.10 -0.37 -0.27 
LEV: other receiving systems 0.30 0.04 -0.26 
LEV: fixed capturing hoods 0.62 0.36 -0.26 
LEV: movable capturing hoods -0.10 -0.37 -0.27 
LEV: on-tool extraction 0.58 0.30 -0.28 
LEV: fume cupboard 0.86 1.35 0.49 
LEV: horizontal/downward flow booths 0.60 0.34 -0.26 
LEV: other enclosing systems -0.14 0.34 0.48 
LEV: other systems -0.12 -0.41 -0.29 

 Suppression: knockdown technique -0.24 0.18 0.42 
 Suppression: wetting at point of release 0.61 1.03 0.42 

Workplace 
volume (m3)* 

30 0 0 0 
100 -0.14 0.23 0.37 
300 0 0.34 0.35 
1000 -0.14 0.47 0.37 
3000 0.07 0.50 0.44 

Ventilation 
(ACH)* 

0.3 0 0 0 
1 -0.20 0.09 0.29 
3 -0.08 0.07 0.15 
10 0 -0.24 -0.24 
30 -0.08 -0.16 -0.22 

*Parameters used as categorical (dummy) values for the multiple regression analyses 

.



Figure 1. Correlation and consistency between the logarithms of the estimates of the three models for the generated vapour ESs. 

NF–indoor, 24,000 ESs NF–outdoor, 23,000 ESs FF–indoor, 33,000 ESs FF–outdoor, 24,000 ESs 

    

    

    

 



Figure 2. Correlation and consistency between the logarithms of the estimates of the three models for the generated dust ESs. 

NF–indoor, 23,000 ESs NF–outdoor, 37,000 ESs FF–indoor, 28,000 ESs FF–outdoor, 21,000 ESs 

    

    

    



Figure 3. Correlation and consistency between the logarithms of the estimates of the three models for the generated solid ESs. 

NF–indoor, 23,000 ESs NF–outdoor, 26,000 ESs FF–indoor, 31,000 ESs FF–outdoor, 26,000 ESs 
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