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ABSTRACT

A repetitive sequence collection is a set of sequences which are small variations of each
other. A prominent example are genome sequences of individuals of the same or close
species, where the differences can be expressed by short lists of basic edit operations.
Flexible and efficient data analysis on such a typically huge collection is plausible using
suffix trees. However, the suffix tree occupies much space, which very soon inhibits in-
memory analyses. Recent advances in full-text indexing reduce the space of the suffix tree to,
essentially, that of the compressed sequences, while retaining its functionality with only a
polylogarithmic slowdown. However, the underlying compression model considers only the
predictability of the next sequence symbol given the k previous ones, where k is a small
integer. This is unable to capture longer-term repetitiveness. For example, r identical copies
of an incompressible sequence will be incompressible under this model. We develop new
static and dynamic full-text indexes that are able of capturing the fact that a collection is
highly repetitive, and require space basically proportional to the length of one typical
sequence plus the total number of edit operations. The new indexes can be plugged into a
recent dynamic fully-compressed suffix tree, achieving full functionality for sequence
analysis, while retaining the reduced space and the polylogarithmic slowdown. Our exper-
imental results confirm the practicality of our proposal.
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1. INTRODUCTION

1.1. Motivation

Self-indexing (Navarro and Mäkinen, 2007) is a new proposal for storing and retrieving sequence data. It

aims to represent the sequence (a.k.a. text or string) compressed in such a way that not only random

access to the sequence is possible, but also efficient pattern searches are supported (Grossi and Vitter, 2006;

Ferragina and Manzini, 2005; Sadakane, 2003).

The self-indexing approach becomes especially interesting when applied to collections of texts. Consider

for example a file system that is automatically kept self-indexed. Files can be accessed without decom-

pressing, and searched by content in real time as queries use the index rather than scanning through the
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files. Such retrieval functionalities have been available for long time on natural language texts by the well-

known inverted indexes, but now self-indexes make such retrieval possible, within reasonable memory

space, for arbitrary texts such as biological sequences that do not consist of separable words.

A special case of a text collection is one which contains several versions of one or more base sequences.

Such collections are not uncommon. For example, a version control system (e.g., for collaborative docu-

ment editing or software development) needs to store several versions of the same file with only small edit

differences between the consecutive entries. If the entries are stored independently of each other, the

version control system will end up spending unnecessarily large amounts of memory. If the system stores

only the edits, queries on the content of one specific version becomes non-trivial.

An analogy to the storage and retrieval of version control data is soon becoming reality also in the field

of molecular biology. As the DNA sequencing technologies become faster and more cost-effective, the

sequencing of individual genomes will become a feasible task (Church, 2006; Hall, 2007; Pennisi, 2007).

This is likely to happen in the near future, see for example the 1000 Genomes project.1 With such data in

hand, many fundamental issues become of top concern, like how to store, say, 1000 Human Genomes, not

to speak about analyzing them. For the analysis of such collections, one would clearly need to use some

variant of a generalized suffix tree (Gusfield, 1997), which provides a variety of algorithmic tools to do

analyses in linear or near-linear time. The memory requirement of such a solution, however, is unimag-

inable with current random access memories, and also challenging in permanent storage.

Self-indexes should, in principle, cope well with genome sequences, as genomes contain high amounts of

repetitive structure. In particular, as the main building blocks of compressed suffix trees (Sadakane, 2007;

Russo et al., 2008a,b; Fischer et al., 2008), self-indexes enable compressing sequence collections close to

their high-order entropy while enabling flexible analysis tasks to be carried out.2

A very successful direction in the practical use of self-indexes for genome sequences has been the short

read mapping problem that stems from the new high-throughput sequencing technologies; instead of trying

to assemble a genome from sequencing reads, the goal is just to map a set of short fragments to their best

occurrences in the reference genome. The short reads are specific to the experimental setup and enable

analyzing for example alternative splicing or individual genetic variation. Mapping the reads to the genome

can be done efficiently using suffix tree (or compressed suffix tree), but the backtracking functionality

required for the task is already supported by the underlying base self-index (Lam et al., 2008). This ob-

servation has led to several carefully tailored practical tools for the short read mapping problem (Langmead

et al., 2009; Li and Durbin, 2009).

The above approaches have been successful in bringing down the space requirement of a powerful index

structure for one Human Genome to fit the capabilities of a desktop computer. However, even the most

compressed self-indexes up-to-date suffer from a fundamental limit: The high-order entropies they achieve

are defined by the frequencies of symbols in their fixed-length contexts, and these contexts do not change at

all when more identical sequences are added to the collection. Hence, these self-indexes are not at all able

to exploit the fact that the texts in the collection are highly similar, and therefore do not scale up to solve

the problem of managing repetitive sequence collections.

1.2. Content

In this article, we propose a new family of self-indexes that are suitable for storing highly repetitive

collections of sequences, and a new compressed suffix tree based on it. Our scheme can also be thought of

as a self-index for a given multiple alignment of a sequence collection, where one can retrieve any part of

any sequence as well as make queries on the content of all the aligned sequences. This is an extension of the

classical objective of DNA compression in the vertical mode (Grümbach and Tahi, 1993, 1994; Giancarlo

et al., 2009), namely, where the goal is to compress a collection of genomes such that each sequence is

compressed by making use of information contained in the entire set.

Our main technical contributions are (1) adaptations of existing self-indexes so that their compression

performance goes beyond the high-order entropy model; (2) a new strategy to store suffix array samples

1www.1000genomes.com.
2For a concrete example, the SUDS Genome Browser at www.cs.helsinki.fi=group=suds=cst runs a compressed suffix

tree of the Human Genome using 8.8 GB of main memory.
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that uses and improves a classical solution for persistent selection; (3) an analytical proof that the expected

space requirement of our new self-indexes improves upon the existing ones on highly repetitive collections;

and (4) a proof-of-concept implementation that demonstrates the practicality of our results. We provide

experiments on a collection of resequenced yeast genomes showing that our indexes behave in practice as

predicted by our analysis.

The article is structured as follows. Section 1.3 introduces the basic concepts and defines formally the

problems to be studied. Section 2 contains the structural analyses showing where compression can be

achieved in the context of repetitive collections. Section 3 introduces three different base structures that

exploit the analyzed structural properties to achieve compression. Section 4 adds the standard suffix array

sampling scheme on top of the new base structures to give a practical solution to the storage and retrieval of

repetitive collections. Section 5 develops an advanced suffix array sampling scheme to achieve a better

theoretical solution. Section 6 discusses how the new structures can be used as backbones of recent fully-

compressed suffix trees. Section 7 describes the implementations and shows that the new structures achieve

good space bounds on real data sets. Section 8 concludes by discussing the extensions and possible

directions for future research.

1.3. Definitions and background

1.3.1. Basic notions. A string S¼ S1, n¼ S[1, n]¼ S[1]S[2] . . . S[n]¼ s1s2 . . . sn is a sequence of

symbols (a.k.a. characters or letters). Each symbol is an element of an alphabet R¼f1, 2, . . . , rg. A

substring of S is written si, j¼ s[i, j]¼ sisiþ 1 . . . sj. A prefix of S is a substring of the form S1,j, and a suffix is

a substring of the form Si,n. If i> j then Si,j¼ e, the empty string of length jej ¼ 0. A text string T¼ T1,n is a

string terminated by the special symbol tn ¼ $ =2S, smaller than any other symbol in S. The symbol ‘‘<’’

among strings denotes the classical lexicographical order.

We use the standard notion of empirical k-th order entropy Hk(T) (Cover and Thomas, 1991; Manzini,

2001). The zero-order entropy is defined as H0(T)¼R1�c�r
nc

n
log n

nc
, where nc is the number of occurrences

in T of character c. (We write log for log 2 throughout this article.) For k> 0 we define Hk(T)¼
1
n
RS2RkjTSjH0(TS), where TS is a string formed by the characters following the occurrences of substring S in

T. It holds 0 � Hk(T) � Hk� 1(T) � . . . � H0(T) � log r.

1.3.2. Suffix array and Burrows-Wheeler transform. The suffix array (Manber and Myers, 1993)

SA[1,n] of a text T[1,n] is a permutation of the positions f1, . . . , ng such that the suffixes T[SA[i], n] are

listed in lexicographic order as i increases. Because every substring of T is a prefix of a suffix of T, and the

suffixes prefixed by a string P form a lexicographic range in SA, it turns out that the starting positions of all

the occurrences of a string P in T are found within an interval SA[sp,ep], which can be found by binary

search.

The compressors to be discussed are derivatives of the Burrows-Wheeler transform (BWT) (Burrows and

Wheeler, 1994). The transform produces a permutation of T, denoted by T bwt, as follows: (i) build the suffix

array SA of T; (ii) the transformed text is T bwt¼ L, where L[i]¼ T[SA[i]� 1], taking T[0]¼ T[n]. The BWT

is reversible, that is, given T bwt¼ L we can obtain T as follows: (a) compute the array C[1,s] storing in C[c]

the number of occurrences of characters f$, 1, . . . , c� 1g in the text T; (b) define the LF mapping as

follows: LF(i)¼C[L[i]]þ rankL[i](L,i), where rankc(L,i) is the number of occurrences of character c in the

prefix L[1,i]; (c) reconstruct T backwards as follows: set s¼ 1, for each i 2 n� 1, . . . , 1 do ti/ L[s] and

s/LF[s]. Finally, put the end marker tn/ $.

We study a generalization of the following problem:

Definition 1. The basic (compressed) indexing problem is to store text T in as small space as possible,

so that the following retrieval queries on any given pattern string P¼ p1p2 . . . pm can be solved as effi-

ciently as possible:

count(P): How many times P appears as a substring of T?

locate(P): List the occurrence positions of P in T.

display(i,j): Return Ti,j.

We call a solution to the basic indexing problem a self-index if the index does not need to access T to solve

the three queries above.
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A comprehensive solution to the basic indexing problem uses the suffix array SA[1, n]. Then two binary

searches are enough to find the interval SA[sp, ep] such that count and locate are immediately solved

(Manber and Myers, 1993). The solution is not as space-efficient as possible, since array SA requires n log

n bits, and the solution is not yet a self-index, since T is needed in order to solve the display query.

1.3.3. Self-indexing. A more space-efficient solution to the basic indexing problem exploits the

connection of SA and BWT: The FM-index (Ferragina and Manzini, 2005) is a self-index that solves

counting queries by finding the interval SA[sp, ep] just based on the BWT. The solution uses the array C

and function rankc(L, i) in the so-called backward search algorithm, calling function rankc(L, i) O(m) times.

Its pseudocode is given next:

The correctness of the above algorithm is easy to see by induction: At each phase i, [sp,ep] gives the

maximal interval of suffix array SA pointing to suffixes prefixed by P [i,m].

The two other basic indexing problem queries are solved, e.g., using a sampling of SA and its inverse,

and LF-mapping to derive the unsampled values from the sampled ones. Many variants of the FM-index

have been derived that differ mainly in the way the rankc(L,i)-queries are solved (Navarro and Mäkinen,

2007). For example, on small alphabet sizes, it is possible to achieve nHkþ o(n) bits with constant time

support for rankc(L,i) (Ferragina et al., 2007).

The backward search algorithm above can be extended to backward backtracking (Lam et al., 2008). The

idea is to alter the backward search to branch recursively to different ranges [sp0, ep0] representing the

suffixes of the text prefixes (i.e. substrings). This is done simply by computing sp0c¼C[c]þ
rankc(L, sp� 1)þ 1 and ep0c¼C[c]þ rankc(L, ep) for all c [ S at each step and recursing on each [ sp0c,

ep0c]. Then the pattern can be compared against all substrings of the text, allowing to search for approximate

occurrences (Lam et al., 2008). The running time becomes exponential in the number of errors allowed, but

different branch-and-bound techniques can be used to obtain practical running times (Langmead et al.,

2009; Li and Durbin, 2009). Hence, any FM-index variant can in practice be used to solve slightly more

complex search problems than the basic indexing problem.

A dual approach to solving the basic indexing problem uses the compressed suffix array (CSA) (Sada-

kane, 2003), which is a self-index based on an earlier succinct data structure (Grossi and Vitter, 2006). In

the CSA, the suffix array SA[1, n] is represented by a sequence of numbers c(i), such that SA[c(i)]¼
SA[i]þ 1.3 The sequence c is differentially encoded, c (iþ 1)�c(i). Note that the c values are increasing

in the areas of SA where the suffixes start with the same character c, because cX< cY if and only if X< Y in

lexicographic order. It is enough to store those increasing values differentially with a method like Elias

coding to achieve O(nH0) overall space (Sadakane, 2003). Some additional information is stored to permit

constant time access to c. This includes the same C array used by the FM-index.

1.3.4. Repetitive collections. Let a point mutation denote the event of a symbol changing into

another symbol inside a string.

We are now ready to introduce the problems studied in this paper.

Algorithm Count (P[1 . . . m], L[1 . . . n])

(1) i/m;

(2) sp/ 1; ep/ n;

(3) while (sp� ep) and (i� 1) do

(4) s/P[i];

(5) sp/C[s]þ ranks(L,sp� 1)þ 1;

(6) ep/C[s]þ ranks(L,ep);

(7) i/ i� 1;

(8) if (ep< sp) then return ‘‘not found’’

else return ‘‘found (ep� spþ 1) occurrences’’.

3Since SA[1]¼ n because T [n,n]¼ $ is the smallest suffix, it should hold SA[c(1)]¼ nþ 1. For technical conve-
nience we set c(1) so that SA[c(1)]¼ 1, which makes c a permutation of [1, n].
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Definition 2. Given a collection C of r sequences Tk 2 C such that jTjj ¼ n for each 1� k� r andPr
k¼ 1 jTkj ¼N, where T2, T3, . . . , Tr contain overall s point mutations from the base sequence T1, the

repetitive collection indexing problem is to store C in as small space as possible such that the following

operations are supported as efficiently as possible:

count(P): How many times P appears as a substring of the texts in C?
locate(P): List the occurrence positions of P in C, i.e., pairs (k,i) such that ! Tj½i; iþ jPj � 1� ¼P.

display(k,i,j): Return Tk
i, j.

We also study an extended version of the problem, where the sequences do not need to be of the same

length, and the differences can also be insertions and deletions in addition to point mutations.

Definition 3. Let C be a collection of r sequences Tk 2 C such that jT1j ¼ n,
Pr

k¼ 1 jTkj ¼N and

Xr

i¼ 2

min
1�ai�bi�jT1j

fdL(Ti, T1
ai, bi

)g¼ s,

where dL(T,T 0) is the Levenshtein distance (Levenshtein, 1966) between strings T and T 0. The repetitive

substring collection indexing problem is to store C in as small space as possible such that the operations

count(P), locate(P), and display(k,i,j) of Def. 2 are supported as efficiently as possible.

These collection indexing problems can be solved easily using the normal self-indexes for the concat-

enation T ¼ T1#T2# … Tr$, where # is a special symbol not appearing in S.

However, the space requirements achieved even with the high-entropy compressed self-indexes are

not attractive for the case of repetitive collections. For example, the solution by Ferragina et al. (2007)

requires NHk(T )þ o(N log r) bits. Notice that with the collection of Def. 2 and with s¼ 0, Hk(T ) �
Hk(T1), and hence the space is about r times more than what the same solution uses for the basic indexing

problem.

In the sequel, we derive solutions whose space requirements depend on nHk (instead of NHk) and on s

(instead of o(N log s)). Let us first consider a natural lower bound that takes into account these specific

problem parameters. Consider a two-part compression scheme that first compresses T1 with a high-order

compressor and then the rest of the sequences by encoding the edit operations needed to convert each other

sequence into a substring of T1. A lower-bound for any such compressor is

nHk(T1)þ 2(r� 1) log nþ log
N� nþ s

s

� �
þ s log (2r), (1)

where the first part is the lower bound of encoding T1 with any high-order compressor, the second part is the

lower bound for telling which substrings of T1 the r� 1 other sequences correspond to, the third part is the

lower bound for telling the positions of the edit operations among the N� n possible (with repetitions, for

insertions), and the fourth part is the lower bound for listing the s edit operations (s� 1 possible mutations,

s possible insertions, 1 deletion).

Notice that it is not difficult to achieve just plain compression approaching the bound of Eq. (1), but we

aim higher: Our goal is to solve the repetitive collection indexing problems within the same space. We do

not yet achieve that goal, but the space of our indexes can be expressed in similar terms; we encourage the

reader to compare our final result with Eq. (1) to see the connection.

We also show how to apply the collection indexes as building blocks to turn the new (dynamic) fully-

compressed suffix trees (Russo et al., 2008a,b; Fischer et al., 2008) into a space expressed in the framework

of the lower bound of Eq. (1).

The abstract problem with point mutations and indels studied here is much simpler than the real

variations occurring in the case of genome sequences. However, we emphasize that the chosen model is

sufficient in representing any collection in question, as the mutations spanning larger regions (transloca-

tions, reversals) can always be represented as runs of insertions or deletions. In this case, s is just much

larger than if the global operations were taken into account in the data structures directly. Proper extensions

to the complete set of mutations are discussed in the analyses when applicable and summarized in

Section 8.
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2. ANALYSIS OF RUNS

2.1. Combinatorial properties

Self-repetitions are the fundamental source of redundancy in suffix arrays, enabling their compression. A

self-repetition is a maximal interval SA[i,iþ l] of suffix array SA having a target interval SA[j,jþ l] such

that SA[jþ r]¼ SA[iþ r]þ 1 for all 0� r� l. Let c(i)¼ SA�1[SA[i]þ 1]. The intervals of c corre-

sponding to self-repetitions in the suffix array are called runs. The name stems from the fact that

c(iþ 1)¼c(i)þ 1 when both c(i) and c(iþ 1) are contained in the same run (Mäkinen and Navarro, 2005;

Navarro and Mäkinen, 2007).

Let Rc(T) be the number of runs in c for text T[1,n] and Rbwt(T) the number of equal-letter runs in T bwt,

the BWT of T. If T is evident from the context we will write just Rc and Rbwt. The two types of runs are

almost equal. If we restrict the definition of self-repetitions to allow only suffixes starting with the same

character, then Rbwt is also the number of runs in c, and hence Rc�Rbwt�Rcþ s (Mäkinen and Navarro,

2005). Thus we can simplify the notation further by denoting just R¼Rbwt(T).

In addition to the trivial bound R� n, we also have R� nHkþ sk for all k (Mäkinen and Navarro, 2005).

We will now prove some further bounds for texts obtained by repeating and mutating substrings of a base

sequence. We will make use of the character # we have introduced to separate texts in the collection,

assuming #< $< c for all c [ S. We also assume that the ordering between two occurrences of character #

is decided by their positions in the sequence, making each occurrence of # a different character in practice.

Hence, we never have to continue a comparison between two suffixes after the first # or $ encountered.

Definition 4. The r-times repeated collection of base text S¼ S1,n is Sr ¼ S1 . . . Sr, where Sr¼ S¼ S 1,n-1$

and Si¼ S1,n-1# for all i< r.

Definition 5. Let T r be a collection of r texts, each derived by mutations from a base sequence T¼ T1.

The significant prefix SPi,j is the shortest prefix of Ti
j, n not occurring anywhere else in T r as a substring

except possibly as a prefix of some Tk
j, n, k=i.

Notice that the significant prefix concept is well-defined also in a repeated collection, i.e., a collection

with no mutations. In that case, significant prefixes are identical to those of a collection consisting only of

the base text. Note also that the significant prefix of a suffix defines its position in the suffix array. Figure 1

illustrates the definitions.

Lemma 6. For all texts S and all r� 1, R(S)¼R(Sr).

Proof. Let SA be the suffix array of S and SAr the suffix array of the repeated collection Sr. The

suffixes of Sr are first sorted by their significant prefixes. As #< $, the suffixes sharing the same significant

prefix are further sorted by their starting positions in ascending order. Hence

FIG. 1. An example of the significant prefix concept. Let (a repeated collection with) base text S1¼ T1 contain a

significant prefix X. Substring X becomes repeated in the mutated copies T2,T3,T4,T5, and T7, of T1. Text T6 has a

mutation inside X. Due to other mutations, texts T5 and T7 now contain X in some other positions, and hence X is no

longer a significant prefix of the mutated collection. However, extending X with string a makes X a unique to the

original position of X, while the other two occurrences of X are succeeded by string b=a. Hence, X a is a significant

prefix, being a the shortest extension having the required property. The significant prefixes starting at the effect zones

shown are affected by the mutations.
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SAr[r(i� 1)þ j]¼ (j� 1)nþ SA[i] for all 1 � j � r:

By the definition of self-repetitions, SA[i] and SA[iþ 1] are contained in the same self-repetition of SA if

and only if the range SAr[r (i� 1)þ 1, r(iþ 1)] is contained entirely in a self-repetition of SAr. Hence there

is one-to-one correspondence between the self-repetitions of SA and SAr. &

Lemma 7. Let Sr ¼ S1S2 . . . Sr be a repeated collection and T r the collection created by transforming

si
j, for some 1< i� r and 1� j< n, into another character. Then R(T r) � R(Sr)þO(c)¼R(S)þO(c),

where c is the number of significant prefixes covering ti
j.

Proof. Let SA be the suffix array of Sr and SA0 the suffix array of T r. We call a suffix starting at si
j

moved if its original significant prefix is no longer its prefix after the mutation. Hence the relative position

of a moved suffix in SA0 may differ from its position in SA.

A moved suffix appearing inside a self-repetition of SA or its target interval can break the self-repetition

into two pieces in SA0. Each moved suffix can also create a new self-repetition and a new target interval by

itself. Finally, a moved suffix can leave a hole in its original self-repetition or target interval, splitting it into

two parts. Thus at most 6 new runs can appear for each moved suffix. As there are c moved suffixes, up to

6c new runs can be created in SA0.
The remaining suffixes are first sorted by their significant prefixes. The mutation may affect the ordering

of suffixes sharing the same significant prefix, yet does so in a consistent way creating no new self-

repetitions. Hence a single mutation can create no more than O(c) new runs. In Appendix A, we show that

the upper bound for new runs is at most 2cþ 3. &

The proof immediately generalizes to other types of mutations. Table 1 summarizes some of them.

An insertion adds one new suffix corresponding to no position in the base sequence. The new suffix behaves

as a moved suffix in the analysis. When a substring is copied, the suffixes starting at range S
j
a, b are

duplicated. Of these, only the duplicates corresponding to the newly inserted substring can become moved

suffixes.

With respect to the number of runs, insertions and deletions are no worse than point mutations, while

copying a substring creates no more new runs than two point mutations. When deleting a prefix of some

sequence in the collection, no new runs are created, as no remaining significant prefix contains any part of

the deleted prefix.

2.2 Expected case properties

Lemma 8 (Karlin et al., 1983). Let S¼ S1,n be a random text. The expected length of the longest

repeated substring is O(logs n).

Lemma 9. Let Sr be the repeated collection of random text S¼ S1,n with total length N¼ nr. Let T r be

Sr after s point mutations at random positions in S2S3 . . . Sr. The expected value of R(T r) is at most

R(S)þO(s logs N).

Proof. By Lemma 8, significant prefixes of the initial collection are of length O(logs n). For a fully

random sequence of length N, the expected length of significant prefixes would be O(logs N). If we apply

random mutations to a repeated collection, the collection gradually turns into a fully random sequence.

Hence, O(logs N) is an upper bound for the expected length of significant prefixes in the final collection.

Table 1. Generalizing Lemma 7 for Other Types of Mutations

Type of mutation New Si Suffix moved if

Insertion of character c after si
a Si

1, acSi
aþ 1, n si

aþ 1 in significant prefix

Deletion of Si
a, b Si

1, a� 1Si
bþ 1, n si

ain significant prefix

Copying of S
j
a, b after Si

c Si
1, cS

j
a, bSi

cþ 1, n si
cþ 1or s

j
bþ 1in significant prefix

The number of moved suffixes limits the number of new runs created by the mutation.
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As in the proof of Lemma 7, we call a suffix Ti
j, n moved if its significant prefix is not a prefix of Si

j, n. This

means that at least one mutation has occurred in the significant prefix of Ti
j, n. As there are s mutations, there

are at most O(s logs N) moved suffixes in the expected case. The result follows by the same reasoning as in

the proof of Lemma 7. &

The results generalize to other types of mutations as well, as noted in the previous section after Lemma 7.

2.2.1. Substring-repeated collections. Instead of a repeated collection, we could use a somewhat

more general model.

Definition 10. The r-times substring-repeated collection of base text S¼ S1,n is Sr ¼ S1S2 … Sr, where

S1¼ S1,n-1#, Si¼ Sai,bi# for all i< r, and Sr¼ Sar,br$, where 1� ai� bi< n for all i.

Note that any repeated collection of S is also a substring-repeated collection of S. The theorems of

previous subsections can be generalized for substring-repeated collections in a straightforward manner.

Theorem 11. Let r� 1 and Sr be a substring-repeated collection of S¼ S1,n with total length N. Then,

R(Sr) � R(S)þO(r logr N).

Proof. By Lemma 6, the corresponding repeated collection has R(S) runs. As noted after Lemma 7,

the deletion of a prefix creates no new runs and the deletion of a suffix is no worse than a point mutation.

Hence the result follows by similar arguments as in the proof of Theorem 9. &

By similar reasoning, we get the following theorem.

Theorem 12. Let Sr be a substring-repeated collection of a random text S¼ S1,n with total length N.

Let T r be Sr after s� r mutations at random positions in s2S3 . . . Sr. Then the expected value of R(T r) is at

most R(S)þO(s logs N).

In the sequel, we assume w.l.o.g. s� r, since the case of texts in collection identical to substrings of T1 is

non-interesting, and also easy to handle separately within the same space and time bounds that will be

achieved.

3. BASE STRUCTURES FOR COUNTING QUERIES

Next we will describe three different solutions to support counting queries, whose space will depend on

the number of runs in the BWT.

3.1. Run-length encoded wavelet tree

The wavelet tree (Grossi et al., 2003) is a binary tree structure that can be used to solve rankc(L,i) queries

for a string L and any c [ S during backward searching (see Section 1.3). Given a string L1,n from an

alphabet of size s, its wavelet tree is defined recursively as follows. The root corresponds to the whole

sequence L1,n. In a balanced wavelet tree, the left child (resp. right child) of the root is a wavelet tree of the

sequence L< (resp. L�) obtained by concatenating all symbols li< s=2 (resp. li� s=2). This subdivision is

represented by a bit vector B1,n that has value B[i]¼ 0 if symbol li belongs to the left subtree, and B[i]¼ 1

otherwise. Recursion stops when the concatenated sequence is a repeat of one symbol. Entropy-bound

dictionary structures for bit vectors (Pagh, 2001; Raman et al., 2002) can be used to represent the wavelet

tree of L¼ Sbwt in nHk(S)þ o(n log s) bits of space for any k� a logsn� 1 and any constant 0< a< 1

(Mäkinen and Navarro, 2007).

Function rankc(L,i) gives the number of times the symbol c appears in prefix L1,i. It can be solved by

traversing the wavelet tree starting from the root and calculating rank on bit vectors: at each step, choose

the left subtree if c< s=2, or the right subtree otherwise, and update i/ rank0(B,i) or i/ rank1(B,i),

respectively. When reaching a leaf, the current i value is the answer. In the balanced wavelet tree, this
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happens after O(log s) steps. Since rank for binary sequences takes constant time (Pagh, 2001; Raman et al.,

2002), rankc(L,i) is solved in O(log s) time. In a similar manner, it is possible to recover any symbol si from

the wavelet tree: We descend left or right depending on B[i] and updating i as before; the leaf reached

corresponds to si.

To make wavelet trees more suitable for repetitive sequence collections, we introduce a data structure

that we call Run-Length encoded Wavelet Tree (RLWT). Let R be the number of runs in the BWT L1,n. Let

Ball be a level-wise concatenation of all bit vectors in the wavelet tree of L. In the worst case, each run in L

corresponds to one 0=1-bit run on each of the log s levels of the wavelet tree, thus there are at most R log s
0=1-bit runs in Ball. Let b�d1

2
R log re be the number of 1-bit runs in Ball. The RLWT encodes Ball into two

separate bit vectors B1 and Brl such that the number of 1-bits in both bit vectors is exactly b: bit vector B1

marks all the starting positions of 1-bit runs in Ball, and bit vector Brl encodes the run-lengths of these runs

in unary coding. More precisely, B1[i]¼ 1 only if Ball[i]¼ 1 and Ball[i� 1]¼ 0 for all 1< i�N log s, and

B1[1]¼ 1 if Ball[1]¼ 1. The unary code for a run of length j contains j� 1 zero-bits concatenated with one

1-bit. The length of Brl is the sum of the length of 1-bit runs in Ball, which is at most N log s bits.

The value of rank1(Ball, i) can be computed from the bit vectors B1 and Brl as follows. Notice that

rank1(Ball, i)¼ rank1(Ball, i� rank1(Ball, j� 1)þ rank1(Ball, j� 1)

holds for any j. Let r¼ rank1(B1,i) be the run that precedes, or starts at, position i, and let j be its starting

position, say j¼ select1(B1, r), which denotes the position of the rth 1 in B1 and can be solved in constant

time within the same space of rank (Raman et al., 2002). From the definition of Brl follows that the number

of 1-bits preceding position j equals

rank1(Ball, j� 1)¼ 0 if r = 1 ,

select1(Brl, r� 1) otherwise

�

It remains to compute rank1(Ball,i)� rank 1(Ball,j� 1): Let k be the length of the rth run, say k¼
select1(Brl,r)� rank 1(Ball,j� 1). The number of 1-bits in the closed interval [j, i] of the bit vector Ball is

rank1(Ball, i)� rank1(Ball, j� 1)¼ k if i� j � k,

i� jþ 1 otherwise:

�

Finally, the sum of values rank1(Ball,j� 1) and rank1(Ball,i)� rank1(Ball,j� 1) gives the answer for

rank1(Ball,i). Of course rank0(Ball,i)¼ i� rank1(Ball,i).

With a similar reasoning, select1(Ball,i)¼ select1(B1,r)þ i� select1(Brl,r), where r¼ rank1(Brl,i). For

select0(Ball,i) we would need analogous structures B1
0 and Brl

0 , but this is not needed for our indexes.

Thus, we only need to provide binary rank and select on B1 and Brl. The following theorem gives a way

to represent them succinctly.

Theorem 13 (Gupta et al., 2006). Given a bit vector B of length u containing b 1-bits, a binary

searchable dictionary representation (BSD) requires gap(B)þO(b log log(u=b)) bits of space where gap(B)

is at most b log(u=b) bits. It supports rank and select queries in O(log b) time, or rank in tBSD(b,u) time and

select in O(log log b) time by adding O((b log(u=b))= log b) further bits of space, for a total of b

log(u=b)(1þ o(1))þO(b log log(u=b)þ log u). Here

tBSD(b, u)¼O min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log b

log log b

s
,

log log u � log log b

log log log u
, log log bþ log b

log log u

 ! !

which is, for example, O(
ffiffiffiffiffiffiffiffiffiffiffi
log b
p

) and o(log log u)2.

For the bit vectors B1 and Brl, we have strict upper bounds of u�N log s and b�
�

1
2

R log r

�
, thus we

obtain the following theorem:

Theorem 14. Given a collection C and the concatenation T [1, N] of all the sequences Ti 2 C, let R be

the number of runs in the BW-transformed sequence T bwt of T . The RLWT data structure for the collection

takes
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R log r log
2N

R
(1þ o(1))þO R log r log log

2N

R

� �
þO(r log N)

bits of space, where s is the alphabet size. It can compute LF(i) in time tLF¼ tBSD(R log s, N log s) � log s
and supports operation count(P) in time O(jPjtLF).

Proof. Solving rank(Ball, i) requires tBSD time on the compressed representations of B1 and Brl, thus

wavelet tree operations rankc and tbwt
i are supported in tLF¼O(tBSD log s) time. Backward searching

requires O(jPj) applications of these operations, as well as s log N additional bits for table C (see Section

1.3). For simplixity, the O(log(N log s)) terms from the BSD structures are rounded to O(s log N). &

The RLWT structure can be made dynamic by using dynamic bit-vector representations for B1 and Ball.

To retain a space usage almost independent of N, we use the following representation.

Theorem 15. Given a bit vector B of length u containing b 1-bits, the operations rank, select, insert(B,

i, j) and delete(B, i) can be supported in b log(u=b)(1þ o(1))þO(b log log(u=b)) bits of space and in

tDynB(b, u)¼O log bþ log u � log H u

log bþ log log u

� �

time, where insert(B, i, j) inserts j 2 f0, 1g between B[i] and B[iþ 1] and delete(B, i) deletes B[i].4

Proof. We build on top of the dynamic gap-encoded structures presented in previous work (Mäkinen

and Navarro, 2008). Distances of consecutive 1-bits are d-encoded (see Section 3.3), and partitioned into

superblocks of b¼ log u � log* u bits so that no code is broken. Superblocks are then stored as the leaves of

a red-black tree that is augmented to support rank=select queries (Mäkinen and Navarro, 2008). The tree

requires O((b log(u=b)=b) log u)¼ o(b log(u=b)) bits of space. To process superblocks in O(log u � log*

u=(log bþ log log u)) time, we use lookup tables that process chunks of 1
2

( log bþ log log (u=b)�
log log log (u=b)) bits (whose size is sublinear in b log(u=b)). &

Plugging the dynamic bit vector representation inside the RLWT leads to the following theorem.

Theorem 16 Given a collection C and the concatenation T [1, N] of all the sequences Ti 2 C, let R be

the number of runs in the BW-transformed sequence T bwt of T . The dynamic RLWT data structure for the

collection takes

R log r log
2N

R
(1þ o(1))þO R log r log log

2N

R

� �
þO(r log N)þO(r log N)

bits of space, where s is the alphabet size. It computes LF(i) within time tLF¼ tDynB(R log s, N log s) � log

s, and supports operations count(P) in time O(jPjtLF), and insert(T) and delete(T) in time O(jTjtLFþ log r).

Proof. Again, since binary rank and select on B1 and Brl are supported in time O(tDynB), we have

binary rank on Ball within the same time, and hence operations rankc and tbwt
i in time tLF¼O(tDynB log s),

from where backward search achieves time O(jPjtDynB log s). The results for inserting and deleting texts

are inherited from Chan et al. (2007) and Mäkinen and Navarro (2008), who show how to maintain a

dynamic text collection by modifying the dynamic representation of T bwt. The dynamic RLWT can be

plugged in their construction to obtain the time bounds above. Additional O(s log N) bits are needed for

a binary search tree replacing table C. The handle-mechanism (Mäkinen and Navarro, 2008) occupies

O(r log N) bits (another search tree) and stores the mapping of the texts into Tbwt. This structure is accessed

on insertions and deletions, adding (negligible) O(log r) time. &

4Here log* u denotes the iterated logarithm of u, that is, the number of times we have to take log to u successively to
make it � 1.
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3.2. Improved run-length FM-index

Recall that the FM-index requires table C and function rankc(L, i) on the Burrows-Wheeler transform

L¼ Tbwt to support pattern search. The Run-Length FM-Index (RLFM) (Mäkinen and Navarro, 2005) uses a

reduction such that the starts of equal letter runs of L are marked in a bit-vector E[1, N], where E[i]¼ 1 iff

L[i] starts a run, and a reduced sequence L0[1, R] is formed, where L0[rank1(E, i)]¼ L[i] for i such that

E[i]¼ 1. Another bit-vector D is formed that encodes the LF-mapping of entries of L marked in E:

D[LF(i)]¼ 1 iff E[i]¼ 1. It also uses array CE[1, s], where CE[c] stores the number of runs of symbols

smaller than c in L. It can be shown (Mäkinen and Navarro, 2005) that

LF(i)¼C[L[i]]þ rankc(L, i)

¼ select1(D, CE[L[i]]þ rankL[i](L
0, rank1(E, i)))

þ (i� select1(E, rank1(E, i))):

Value rankc(L, i) can derived from above (the formula is slightly different when L[i]= c (Mäkinen and

Navarro, 2005)), and also L[i]¼ L0[rank1(E, i)]. This enables FM-index functionality.

The original proposal (Mäkinen and Navarro, 2005) uses 2Nþ o(N) bits for E and D, s log N bits for CE,

and R log s (1þ o(1)) bits for the wavelet tree of L0. This can now be improved using the BSD repre-

sentation for E and D (Theorem 13), giving immediately the following result, called RLFMþ.

Theorem 17. Given a collection C and the concatenation T [1, N] of all the sequences T i 2 C, and R be

the number of runs in the BW-transformed sequence T bwt of T . The RLFMþ data structure for the

collection takes

R log rþ 2R log
N

R

� �
(1þ o(1))þO R log log

N

R

� �
þO(r log N)

bits of space, where s is the alphabet size. It computes LF(i) in tLF¼ log s = log log Rþ tBSD(R, N) time,

and count(P) in time O(jPjtLF), by using the multiary wavelet tree representation for R (Ferragina et al.,

2007).

We can replace all static structures with dynamic ones to obtain the following.

Theorem 18. Given a collection C and the concatenation T [1, N] of all the sequences T i 2 C, let R be

the number of runs in the BW-transformed sequence T bwt of T . Then the dynamic RLFMþ data structure

for the collection takes

R log rþ 2R log
N

R

� �
(1þ o(1))þO R log log

N

R
þ r log Nþ r log N

� �

bits of space, where s is the alphabet size. It computes LF(i) within time tLF¼ log R log s = log log

Rþ tDynB(R, N), supports operation count(P) in time O(jPjtLF), and operations insert(T) and delete(T) in

time O(jTjtLFþ log r).

Proof. Using the most efficient dynamic wavelet tree representation (González and Navarro, 2008) we

have rankc and tbwt
i (and selectc) on L0 in time O(log Rdlog s=log log Re) and R log s(1þ o(1)) bits of

space. We have binary rank and select on E and D in time O(tDynB(R, N)) using Theorem 15, using

2R log N
R

(1þ o(1))þO R log log N
R

� �
bits of space. Arrays C and CE are replaced by binary search trees

occupying O(s log N) bits and giving access in O(log s) time. This gives tLF and the counting complexity.

The mechanism to maintain a dynamic collection via dynamic Tbwt is identical to the one in the proof of

Theorem 16, explaining the remaining space=time bounds. &

3.3. Run-length compressed suffix array

The Run-Length Compressed Suffix Array (RLCSA) is based on the CSA of Mäkinen et al. (2004).

Function C is stored in a compressed form by run-length encoding the differences C(i)�C(i� 1). Fast
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access to C is implemented by sampling absolute C(i) values at a rate depending on the desired time-space

trade-off.

To encode the run W(i)W(iþ 1) � � �W(iþ l), we write two integers: the gap since the previous run (or a

sampled value) C(i)�C(i� 1) and the length of the run, lþ 1. We use delta codes (Elias, 1975) to encode

the integers. Let b( p) be the binary representation of p and b�( p) the same representation without the most

significant bit. The encoding of a positive integer p is the binary string 0jb(t)j�1b(t)b�( p), where t¼ jb( p)j.
The length of the code is

d(p)¼ log0 pþ 2 log0 log0 p� 2 (2)

bits, where log0 x¼ jb(x)j ¼ dlog(xþ 1)e.
Let Cc be the range of SA corresponding to the suffixes starting with character c. Within the range, the

values of C form a strictly increasing sequence. To bound the total length of the codes, we note that the

sum of differences C(i)�C(i� 1) inside each range Cc is at most N. Hence the sum of all the R gaps

between the runs of C is at most sN. Similarly, the total length of the R runs is N. Hence the C array

requires

jWj ¼R d
rN

R

� �
þ d

N

R

� �� �
(3)

bits of space in the worst case to encode the gaps and the run lengths, respectively. This is is justified by the

concavity of logarithm, making the worst case to be the one where the gaps are all � sN=R and the lengths

of runs are all � N=R.

We sample the first C(i) value of each B-bit block of the compressed C array. As we also start a new

block whenever the first character of the suffix changes, we have nB� jCj=Bþ s blocks in the array. As

each sample is a pair (i, C(i)), the samples take a total of O(nB log N) bits. We also need the array C used

for the LF-mapping to determine the ranges Cc.

For counting queries, we use the backward search algorithm in Section 1.3 with the following modifi-

cations:

(50) sp minfi 2 Ws, W(i)�spg;
(60) ep maxfi 2 Ws, W(i)�epg;

These lines are implemented by binary searching the samples and decoding the correct block. This takes

O(log nB) time for the binary search and O(B) time for the decoding. As the lines are repeated for each

character of the pattern, the query takes O(jPj(log nBþB)) time.

Theorem 19. Given a collection C the concatenation T [1, N] of all the sequences T i 2 C, let R be the

number of runs in the BW-transformed sequence T bwt of T . Then the RLCSA data structure for the

collection takes

R log
rN

R
þ log

N

R
þO log log

rN

R

� �� �
1þ O( log N)

B

� �
þO(r log N)

bits of space, where s is the alphabet size and B the block size in bits. It supports count(P) in time O(jPjtLF),

where tLF¼O(log NþB) is the time required to binary search C.

Proof. The first term in the size bound come from Equations 2 and 3. Multiplier 1þO(log N=B) covers

the size of the samples. The second term covers array C and the extra samples when the first character of

the suffix changes. The O(log N) term in the time bound is an upper bound for O(log nB). &

We can adapt the techniques used in the dynamic C of Chan and colleagues (Hon et al., 2007; Chan et

al., 2007) to construct a dynamic RLCSA. The resulting structure requires s updates per inserted or deleted

character, which is clearly worse than the log s updates in the dynamic RLWT. This is a fundamental

difference between the wavelet tree-based indexes and the compressed suffix arrays.

As the C values form a strictly increasing sequence in each range Cc, any presentation of those values

can be considered a bit vector. This bit vector marks the occurrences of character c in the BWT by 1-bits
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(Sirén, 2009). Hence a CSA is essentially a representation of the BWT by s individual bit vectors, whereas

a wavelet tree-based index uses only log s bit vectors to represent the BWT. Because of this difference, a

CSA requires O(1) bit vector operations per character for counting and O(s) operations per character for

updates, while a wavelet tree-based index requires O(log s) operations per character for both counting and

updates.

4. STANDARD SUFFIX ARRAY SAMPLING

To support the other two functions of the repetitive collection indexing problem, namely display and

locate, we need to be able to map the suffixes of the text into suffix array indexes and vice versa. The

standard solution (Navarro and Mäkinen, 2007) in self-indexes is to sample every d-th suffix of each text in

the collection in an array L[1, N=dþ 1], such that L[i]¼ SA�1[i � d], mark the locations L[i] into a bit-vector

B[1, N], such that B[L[i]]¼ 1 for all 1� i�N=dþ 1, and store the samples in the suffix array order in a

table S[1, N=dþ 1], such that S[rank1(B, L[i])]¼ i � d.

Then display(k, i, j) works as follows. Let Pos[k] be the starting position of Tk in the concatenated

sequence T ¼ T1T2 � � � Tr. Value L[d(Pos[k]þ j� 1)=de]¼ e tells us that the nearest sampled suffix after

TPos[k]þ j� 1, N is stored at suffix array index SA[e]. Following the LF-mapping starting at position e reveals

us backwards a substring that covers Tk
i, j in time O(tLF(dþ j� i)).

Function locate(P) works in a similar fashion; first backward search is applied to find the range SA[sp,

ep] containing the occurrences of the pattern P and SA[i] is computed for each sp� i� ep as follows. If

suffix SA[i] is not sampled (B[i]¼ 0), then the LF-mapping is applied until an index j is found where SA[j]

is sampled (B[j]¼ 1). Then SA[i]¼ S[rank1(B, j)]þ c, where c< d is the number of times LF-mapping was

applied. This takes time tSA¼O(tLFd). To finalize locate, we can use a table K such that k¼K[rank1(B, j)]

gives the text Tk containing the sampled suffix. Then j0 ¼ S[rank1(B, j)]�Pos[k]þ 1 is the starting position

of the sampled suffix inside Tk and i0 ¼ j0 þ c is the starting position of the suffix SA[i] inside Tk, unless we

have spanned some border of two texts during the c steps of LF-mapping. In case we have, since the borders

are marked with special characters #, we can nevertheless easily compute the correct text Tk0 and index i0

inside it. Table Pos can be replaced by the BSD structure of Theorem 13 as follows: Pos[k]¼ select(D, k),

where D is a bit-vector with a bit set at the starting position of each text in the concatenation. Bit-vector D

can also be used to directly give mapping from SA[i] to the relative text position, but the above strategy

gives better time=space tradeoff.

These operations are slightly different in compressed suffix arrays. Instead of using LF-mapping to move

backward in the sequence, function C is used to move forward. This changes display and locate in the

obvious way.

The space required by the standard solution is O(r log Nþ (N=d) log NþN) bits, which can be reduced

to O r log N
r
þ (N=d) log N þ (N=d) log N

r

� �
¼O(r log nþ (N=d) log N) by using Theorem 13; this changes

the time for locate into tSA¼O((tLFþ tBSD(N=d, N))d) plus O(log log r). The following theorem sum-

marizes a simplified result relevant to our context, where table Pos is stored as is.

Theorem 20 Given a collection C and the concatenation T [1, N] of all the r sequences T i 2 C, let R be

the number of runs in the BW-transformed sequence T bwt of T . Then there is a data structure for the

repetitive substring collection problem taking the space of any of the static solutions of Section 3 (i.e.,

Theorems 14, 17, or 19), plus O(r log Nþ (N=d) log N) bits of space, where d is a parameter. It supports

count(P) in the time of the corresponding theorem of Section 3, locate(P) in the time for count(P) plus

O(tSA) per occurrence, and display(k, i, j) in time O((dþ j� i)tLF), where tLF is the time to compute an LF-

step in the solution for counting, and tSA¼ d(tLFþ tBSD(N=d, N)). The structure also supports SA[i] in

O(tSA) time, SA�1[(k, j)] (which is a form of SA�1 where we give text number k and relative position j)

within the time to display a symbol, and T [SA[i]] in time O(tBSD(s, N)).

Proof. To compute SA[i] and to locate, we carry out the described process of computing up to d LF-

steps and checking whether B[i]¼ 1 in the BSD representation. To finalize locate, we map SA[i] to pair (k,

j) as described earlier using tables Pos and K. To compute SA�1[(k, j)] and to display, we follow the next

sampled text position to suffix array index and compute up to d LF-steps (this time it is known how many

steps to compute). For T [SA[i]] we could binary search C for SA[i]. A faster solution within O(s log N)
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bits of space is to represent C as a BSD-compressed bitmap G[1, N] where G[C[c]]¼ 1 for all c 2 R,

otherwise zero. &

The result can be made dynamic by using the data structure of Theorem 18 and dynamic sampling as

described in previous work (Chan et al., 2007; Mäkinen and Navarro, 2008): Instead of tables S and L the

samples are stored in binary search trees and the bit-vector B and table C are replaced by dynamic bit-

vectors as in Theorem 15. No representation of array Pos is required since it is subsumed by the structure

supporting insert and delete. We obtain the following result.

Theorem 21. Given a collection C and the concatenation T [1, N] of all the r sequences T i 2 C, let R

be the number of runs in the BW-transformed sequence T bwt of T . Then there is a data structure for the

dynamic repetitive substring collection problem taking the same space of the static structure in Theorem

20. Now the space for counting and the achieved time tLF correspond to a dynamic structure of Section 3, in

particular to Theorems 16 or 18. The structure computes locate(P) in the time of count(P) plus O(tSAþ log

r) per occurrence, display(k, i, j) in time O(log rþ (dþ j� i)tLF), and insert(T) and delete(T) in time

O(jTj(tLFþ tDynB(N=d, N))þ log r), where tSA¼ d(tLFþ tDynB(N=d, N)). The structure also computes

SA[i] in time O(tSA), SA�1[(k, j)] within the time to display one character, and T [SA[i]] in time

O(tDynB(s, N)).

5. ADVANCED SUFFIX ARRAY SAMPLING

Our objective is to have locate and display times within O( polylog(N)). With the standard sampling

approach of the previous section, this holds only if we assume r¼O( polylog(N)); then d can be chosen as r

log N to achieve space O((N=d) log N)¼O(n), i.e., independent of N as we wish.

We will now show that by exploiting the repetitiveness of the collection, it is possible to achieve better

space with time requirements less dependent on r.

5.1. Improving space and time for display

We will store samples only for T1, that is, table L[1, n=dþ 1] has the suffix array entry of every d-th

suffix T1
i�d, n stored at L[i]¼ SA�1[i � d].

To be able to use the same samples for other texts in the collection, we align the other texts

T2, T3, . . . , Tr to substrings of T1 and encode the alignment space-efficiently. Let us redefine Pos[k] as the

occurrence position of T k inside T1 with sk differences, where
Pr

k¼ 2 sk ¼ s, i.e., Pos[k]¼ ak of Def. 3. Let

Tk
del be the string T k where we have inserted special symbols ; at the positions where a character of T1 was

deleted in order to convert T1 into Tk. If there are dk� sk deletions in this transformation, then

jTk
delj ¼ jTkj þ dk. Let Dk[1, jTk

delj] be a bit-vector where the positions of the corresponding deletions op-

erations are marked, Ek[1, jTkj] a bit-vector where the positions of the inserted and mutated positions of Tk

are marked, and Mk[1, sk� dk] a bit-vector where the mutations are distinguished from the insertions. Thus

Dk[i]¼ 1 iff Tk
del[i]¼;; Ek[i]¼ 1 iff Tk[i] is obtained from an insertion or a mutation from T1; and if it is,

then Mk[rank1(Ek,i)]¼ 1 iff the edit operation is a mutation. The inserted (mutated) symbols are stored in

another array IMk[1, sk� dk] in their order of occurrence in Tk.

Consider now a query display(k, i, j). The position j0 of T1 aligned to tk
j can be computed by

j0 ¼Pos[k]þ select0(Dk, j)� rank0(Mk, rank1(Ek, j)) (4)

where the number of deletions minus insertions is computed up to position j in Tk. The same is done for

value i, and next the substring T1
i0 , j0 is extracted using the samples just like in the standard approach. It is

easy to see that while extracting T1
i0 , j0 , the edit operations stored for Tk can also be extracted using rank on

the corresponding bit-vectors. More precisely, we set a finger at the end of the virtual string

Tk
del[select0(Dk, i), select0(Dk, j)]. Each time we advance backwards in T1

i0, j0 , we consider the current position

p in Tk
del. If Dk[p]¼ 1, we ignore the character extracted from T1, and shift p and compute LF on T1. Else, let

p0 ¼ rank0(Dk, p). If Ek[p0]¼ 0, we output the extracted symbol from T1, and shift p and compute LF. Else,

let p@¼ rank1(Ek, p0), we output IM[p@] and shift p. If Mk[p@]¼ 1, then we also compute LF.
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Note the amount of work is proportional to j� iþ 1, plus the number of deletions made to obtain Tk[i, j]

from T1. A way to avoid this is to extract each symbol of Tk[i, j] individually, which requires locating each

relevant character in T1. We have obtained the following partial result.

Theorem 22. Given a collection C and the concatenation T [1, N] of all the sequences T i 2 C, let R be

the number of runs in the BW-transformed sequence T bwt of T . Then there is a data structure for the

repetitive substring collection problem taking the space of any solution of Section 3 for counting, plus

2s log
N� nþ s

s
(1þ o(1))þO s log log

N� nþ s

s

� �
þ s log rþO((n=d) log n)þO(r log n)þO(r log N)

bits of space, where s is the alphabet size, n¼ jT1j, s is the number of edit differences to align

T2, T3, . . . , Tr within T1, and d is a parameter. Besides counting, the structure supports display(k, i, j) in

time O( min ((j� iþ 1) d, (dþ j� iþ sk
i, j)) tLF), where tLF is that of the counting structure and sk

i, j is the

number of deletions to align Tk
i, j within T1.

Proof. The largest of the new structures are the bit-vectors Dk. All together, they contain at most s 1-

bits out of N� nþ s, so they can each be represented using BSD, leading to the space reported (we assumed

the same space for the Ek vectors, which are only slightly smaller). Vector Mk requires only O(s) bits. We

also store the edited symbols in IM, adding s log s bits. The other terms correspond to the usual sampling of

T1. The time requirement corresponds to either extracting each symbol of T1 individually or to traversing

the whole area of T1 consecutively. &

5.2. Improving space and time for locate

We use the same strategy as for display, sampling only T1 regularly, but this time we need to sample also

parts of the other texts as discussed next.

Let us first consider the case of r identical texts. We know that the suffixes T1
p, n, T2

p, n, . . . , Tr
p, n will all be

consecutive and in the same order in SA. Hence, once every d-th suffix of T1 is sampled, we can reveal any

SA[i] by applying LF-mapping at most d times until finding an entry j such that SA[j0] is sampled for some

j0< j and j� j0 � r. Checking for this is identical to j� select1(B,rank1(B, j))� r, where B is the bit-vector

marking the locations of the sampled suffixes of T1 in SA. Then SA[j] corresponds to suffix

Tk
S[rank1(B, j0)]þ c, n, where S is the table storing the sampled suffixes in the order they appear in SA, c< d is the

number of times the LF-mapping was applied, and k¼ j� select1(B, rank1(B, j))þ 1.

Generalizing the scheme to work under different length texts and with edit differences is non-trivial. We

introduce a strategy that splits the suffixes into two classes A and B such that class A suffixes are computed

via T1 samples and for class B we add new samples from all the texts. Recall Theorem 12; class B contains

the suffixes whose significant prefixes cover the edit operations and ends of the texts, respectively. Class A

contains all other suffixes.

Let us first consider the case when SA[i] is a class B suffix. Class B suffixes form at most sþ r disjoint

regions in texts T k, 2� k� r. We sample every d-th suffix inside each of these regions. The suffix array

indexes containing these sampled suffixes are marked in a bit-vector B0[1, N], table S0[1, rank1(B0, N)]

stores these sampled suffixes in the order they appear in SA, and table K0[1, rank1(B0, N)] stores the

sequence numbers where the sampled suffixes belong to. Retrieving SA[i] is completely analogous to the

standard sampling scheme by using S0, K0, and B0 in place of S, K, and B, and some representation for array

Pos (for mapping SA[i] to the relative position). We simply apply LF until B0[i]¼ 1 and then find the

answer at S0[rank1(B0, i)] (as we cannot know whether we are in a class-B or class-A zone, this test is done

in parallel to that for solving class-A suffixes, see next). The average space for the samples is bounded by

O(((s logs N)=d) log N) by Theorem 12.

Computing SA[i] for class-A suffixes is more challenging than in the case of r identical texts, since now

some sampled suffixes of T1 will not have counterparts in all the other texts. We would need somehow

access to a list Q[rank1(B, SA� 1[i � d])]¼ k1k2 � � � kp denoting texts Tk1 , Tk2 , . . . , Tkp , p � r, which have a

suffix aligned to T1
i�d, n occurring consecutively around T1

i�d, n in the suffix array. The exact positions in-

side the texts can be easily restored using the structures storing the alignment for display queries (see

Section 5.1).
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Before facing the space issue with the lists, let us first consider how to use them if available. In addition

to the lists, we need to have for each sampled suffix T1
i�d, n its lexicographic rank e among the suffixes in the

list Q[rank1(B, SA� 1[i � d])]¼ k1k2 � � � kp, that is, e such that ke¼ 1. Now, consider again the situation

where SA[i] belongs to class A and LF mapping has brought us to entry SA[j]. Let us compute

prev¼ select1(B, rank1(B, j)), succ¼ select1(B, rank1(B, j)þ 1), dprev¼ j� prev, and dsucc¼ succ� j. Let

Q[rank1(B, prev)]¼ k1k2 � � � kp and e be such that ke¼ 1. If dprev� p� e then keþ dprev is the number of the

text where suffix SA[j] belongs. This follows directly from the definition of lists Q[�]. Analogously, one can

check whether SA[j] belongs to the list Q[rank1(B, succ)]¼ k1k2 � � � kp0 of SA[succ]: if dsucc< e0, then

ke0 � dsucc, where e0 is such that ke0 ¼ 1. These are the two cases that can happen, and after at most d steps of

LF-mapping the correct Q-list is found.

Now we are left with a space problem: the lists Q[1], Q[2], . . . , Q[n=d] occupy in total O((n=d)r log r)

bits. We will next improve the space to O(s log s) bits by modifying a classical solution by Overmars

(1981) to kth element=rank searching in the past. Let us first review the original solution (with slight

changes to suite our purposes) and then show how to make the solution more space-efficient and confluental

persistent (for background on persistent data structures, see Kaplan, 2005).

Definition 23. Let E(t)¼ et
1et

2 � � � et
pt
2 R� ¼f1, 2, . . . , rg� be a sequence of elements at time point

t 2 H, where H � H¼f1, 2, . . . , hg, such that E(t) can be constructed from E(tprev),

tprev¼maxft0 2 H, t05 tg, by deleting some e
tprev
k or inserting a new element e 2 R between some e

tprev
k� 1

and e
tprev
k (or before e

tprev
1 or after etprev

pt
). Let E(0) be an empty sequence. The persistent selection problem is

to construct a static data structure D on fE(t), t 2 Hg that supports operation access(t, k)¼ et
k. The online

persistent selection problem is to maintain D such that it supports insert(t, e, k) and delete(t, k), where

value t must be at least max(H); if t¼max(H), then tprev is taken as t and sequence E(t) is modified

accordingly without retaining its previous version. The confluental persistent selection problem allows

value t to be any t 2 H also for insertions and deletions; if also t 2 H, then tprev is taken as t and sequence

E(t) is modified accordingly without retaining its previous version.

The online persistent selection problem allows online updates, but the past remains static, whereas in the

confluental selection problem the insertions and deletions can be understood as changes to the past; the

effect cumulates to all time points that take place after the change.

Theorem 24 (Overmars, 1981). There is a data structure D for the online persistent selection problem

occupying O(x(log x log hþ log r)) bits of space and supporting access(t, k) in O(log x) time, and insert(t,

e, k) and delete(t, k) in amortized O(log x) time, where x is the number of insert and delete operations

executed during the lifetime of D.

Proof. The structure D is a variant of balanced binary tree that stores subtree sizes in its internal nodes,

enhanced with path copying and fractional cascading to supports persistence: Consider a tree T (t) for

storing elements of E(t) in its leaves and having subtree sizes stored in its internal nodes. Selecting the k-th

leaf equals accessing et
k. It is easy to find that leaf by following the path from the root and comparing k with

the sum of subtree sizes of left children of traversed nodes. Now, consider an insertion to produce E(t) from

E(tprev). To produce T (t) one can add a new leaf to T (tprev) and increment the subtree sizes by one on the

path to the new leaf. To make this change persistent, the idea of Overmars (1981) is to copy the old subtree

size information into a new field on each node on the path and increment that field. The field is labeled with

the time t and also pointers are associated to the corresponding fields on the left and right child of the node,

respectively. Here corresponding means a field whose time-stamp is the largest t0 such that t0 � t. Analogous

procedure is executed for deletions, except that the corresponding leaf is not deleted, but only the subtree

sizes are updated accordingly. This procedure is repeated over all time points and the tree is rebalanced

when necessary. The rotations to rebalance the tree require merging the lists of fields storing the time-

stamped information. The cost of rebalancing can be amortized over insertions and deletions (Overmars,

1981). The root of the tree stores the time-stamped list as a binary search tree to provide O(log x) time

access to the entries. The required space for the tree itself is O(x log x log h) bits as each of the x updates

creates a new field occupying O(log h) bits for each of the O(log x) nodes on the path from root to the leaf.

In addition, each leaf contains a value of size log r bits. &
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Theorem 25. There is a data structure D for the persistent selection problem occupying O(x(log

xþ log hþ log r)) bits of space and supporting access(t, k) in O(log x) time, and insert(t, e, k) and delete(t,

k) in amortized O(log x) time. There is also an online=confluental version of D that occupies the same

space, but access(t, k) takes O(log 2x) time, and insert(t, e, k) and delete(t, k) take amortized O(log2 x) time.

Proof. We modify the structure of Theorem 24 by replacing the time-stamped lists of fields in each node

of the tree with two partial sums that can be represented succinctly. Let Sv¼ sv
0sv

1sv
2, � � � sv

kv be the list of

subtree sizes stored in some node v, where sv
0¼ 0. Let ŜS

v¼ (sv
1� sv

0)(sv
2� sv

1) � � � (sv
kv � sv

kv � 1). We represent

ŜS
v

via a succinct data structure for (dynamic) partial sums to support operations sum(ŜS
v
, i)¼

Pi
j¼ 1 ŝsv

j ¼ sv
i .

In addition, we construct a bit-vector Bv[1, kv] where Bv[i]¼ 1 if and only if the change sv
i came from the

right child of v. Notice that we do not need the explicit fractional cascading links anymore (that is, the

pointers to children associated to each new field), as we have the connection sum(ŜS
v
, i)¼ sum(ŜS

l
, i� i0)þ

sum(ŜS
r
, i0), where i0 ¼ rank1(Bv, i), and l and r are the left and right children of v. That is, sum(ŜS

l
, i� i0) and

sum(ŜS
r
, i0) are the subtree sizes of nodes l and r, respectively, at the same time point of sv

i . In the root of the

tree we keep the original binary search tree to map the parameter t to its rank i and after that the formulas

above can be used to compare subtree sizes to value of parameter k. Notice also that confluental insert and

delete are immediately provided if we can support dynamic sum on ŜS
v

and dynamic rank on Bv.

Let us consider how to provide sum(ŜS
v
, i)¼ sv

i . First notice that
P

v2T
Pkv

j¼ 1 ŝsv
j ¼O(x log x) because each

insertion or deletion changes the subtree size by one on O(log x) nodes. Hence, we can afford to use unary

coding for these values. We represent each ŜS
v

by a bit-vector Fv¼ f (ŝsv
1)f (ŝsv

2) � � � f (ŝsv
kv ), where f (x)¼ 1x if

x> 0 otherwise f (x)¼ 0�x, and by a bit-vector Gv¼ 10f (ŝsv
1)� 110f (ŝsv

2)� 1 � � � 10f (ŝsv
kv )� 1. Then sum(ŜS

v
, i) equals

2 � rank1(Fv, j� 1)� (j� 1), where j¼ select1(Gv, iþ 1). That is,
P

v2T (jFvj þ jGvj)(1þ o(1))¼O(x log x)

bits is enough to support constant time access on all subtree sizes, when the tree is static. In the dynamic

case, access takes O(log x) time (Blanford and Blelloch, 2004). Same analysis holds for bit-vectors Bv.

In summary, the tree in the root takes O(x log h) bits, and support rank for t in O(log x) time. The bit-

vectors in the main tree occupy O(x log x) bits and their operation costs O(1) or O(log x) per node

depending on the case. The associated values in the leaves occupy O(x log r) bits. &

Combining Lemma 9 and the RLFMþ structure of Section 3.2 with Theorem 25 applied to sampling

gives us the main result of the paper:

Theorem 26. Given a collection C and the concatenation T [1, N] of all the r sequences Ti 2 C, there is

a data structure for the repetitive substring collection indexing problem taking

R log rþ 2R log
N

R

� �
(1þ o(1))þO R log log

N

R

� �

þ 3s log
N� nþ s

s
(1þ o(1))þO s log log

N� nþ s

s

� �
þ s log rþO((n=d) log N)þO(r log n)þO(r log N)

þO(((s logr N)=d) log N)þO(s log s)

bits of space in the average case, where s is the alphabet size, n¼ jT1j, s� r is the number of edit

differences to align aligning T2, T3, . . . , Tr within T1, and d is a parameter. The structure computes LF

within time tLF¼ log s = log log Rþ tBSD(R, N) and supports count(P) in time O(jPjtLF), locate(P) after

count(P) in time O(d(tLFþ tBSD(N=d,N))þ log s) per occurrence, and display(k, i, j) in time

O( min ((j� iþ 1)d, (dþ j� iþ sk
i, j)) tLF). It also computes SA[i] and SA�1[(k, d)] in time tSA¼

O(d(tLFþ tBSD(N=d, N)þ log s), and T [SA[i]] in time O(tBSD(s, N)).

Proof. The first line of the space corresponds to the counting structure of Theorem 17, and the next two

lines, essentially, to the display structures of Theorem 22. These provide the stated time complexities for

LF, count and display. The time for T [SA[i]] is shown in Theorem 20.

According to the discussion preceding persistent selection, we have a bitmap B with n=d bits set out of N

for suffixes of type A and a bitmap B0 with (s logsN)=d expected bits set out of N for suffixes of type B.

Both BSD representations are considered in the space requirements and in the time for locate, as we must
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check both B and B0 after each LF step. After at most d steps, we have either fell close to a sampled suffix of

T1, or we have definitely entered a B-zone, all of which are d-sampled (we have chosen a worst-case upper

bound for both BSD times). For sampled B-zone suffixes, we use BSD representation D for the array Pos,

to obtain better space (its slower access time will be subsumed by other terms).

What is left is how to complete the locate operation for type-A suffixes once we fall close to a sampled

suffix of T1. This is what is provided with the Q-lists Q[1], Q[2], . . . , Q[n=d], which Theorem 25 represents

using persistent select: We can regard T1 as a right-to-left timeline. Assume its final position is sampled,

then E(n) is just a list with the single element 1. As we read backwards, the r� 1 texts aligned to T1 appear

and disappear from the lists, generating 2(r� 1)¼O(s) insertions=deletions. Each of the s edit operations

makes the text disappear from the list, as its suffixes become of type B; and the text reappears when the

significant prefix does not cover the mutation anymore. These are the other 2s insertions=deletions that

arise (Fig. 2). Thus the theorem applies with h¼ n=d, x¼O(s), r¼ r� s, hence the space is O(s(log

sþ log(n=d)) and the access time to an element of any list is O(log s). This is the time to select the k-th text

aligned to a sampled suffix, which is done as the final step when locating a suffix of type A.

Computation of SA[i] is identical to locate, but computation of SA�1[(k, j)] needs some interplay with

the structures of Theorem 25, considered next.

In the case tk
j belongs to an area where a sampled position is at distance d, computation of SA�1[(k, j)]

resembles the display operation. Thus the first attempt is to try up to d LF-steps looking for a sampled

position in B or B0. This covers the cases where tk
j is within a B-zone or in T1, which have their own explicit

sampling. Otherwise we are within an A-zone, and therefore can map j to the corresponding position j0 in T1

using the structures of Section 5.1. Now we find SA�1[(1, j0)] in at most d LF-steps, as T1 is regularly

sampled. The desired answer SA�1[(k, j)] is now very close, at most r positions away. The final problem is

how to find it nearby SA�1[(1, j0)]. Since we explicitly store, for the Q list under consideration, the rank e of

text T1 in the list, our problem is equivalent to finding the rank of text Tk in the persistent tree of Theorem

25.

Whenever a new leaf is added to the persistent tree, we associate to that text position a pointer to this

leaf. These pointers can be stored in O(s log s) bits and their locations can be marked in a bitmap aligned to

T2 . . . Tr, using s log N � n
s

(1þ o(1))þO(s log log N� n
s
þ log N) bits, so that one can find the closest location

to (k, j) having a pointer, using rank in tBSD(s, N) time. Following this pointer to the persistent tree leaf, and

continuing to the root of the tree (and back), one can compute the rank of the leaf (text T k) in O(log s) time.

This rank is valid at the latest edit position j� in T k preceding j. Several edits at other texts may occur

between these two positions in the persistent structure, so we wish to update the rank of T k in the persistent

FIG. 2. Persistent selection and changes in the lexicographic order of sampled suffixes. Text T1 has been sampled

regularly and the pointers to the sampled suffixes are stored with respect to the BWT sequence. Each such pointer is

associated a range containing the occurrences of the same significant prefix in the mutated copies of T1. The relative

lexicographic order of these aligned suffixes (shown below the sampled positions) change only when there is a mutation

effect zone between the sampled positions; when an effect zone starts, the corresponding text is removed from the list,

and when it ends (with the mutation), the text is inserted to the list with a new relative lexicographic order.
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structure between j� and j. This rank is indeed the sum of O(log r) subtree sizes. The evolution of the

subtree size of each such node v can be tracked by using select1 on Gv and rank1 on Fv, the bit-vectors of

Theorem 25. Thus the time to find this position is O(log sþ tBSD(s, N)þ log r)¼O(log s). The overall time

is the same as for computing SA[i]. &

We recall that on average R¼ n min(1, Hk(T
1))þ skþO(s logs N) for any k, thus the following sim-

plified upper bound holds for the space of our structure:

n( log rþ 2 log r)(1þ o(1))þO(n( log (N)=dþ log log r)þO(r log N)

þO s log N 1þ log rþ log (N)=d

log r

� �� �
:

By replacing static with dynamic structures we obtain the following result.

Theorem 27. Given a collection C and the concatenation T [1, N] of all the sequences Ti 2 C, there is a

data structure for the dynamic repetitive substring collection problem taking the same space of the static

structure in Theorem 26. The structure computes LF in time tLF¼ log Ndlog s = log log Ne, and supports

count(P) in time O(jPjtLF), locate(P) after count(P) in time O(d(tLFþ tDynB(N=d, N))þ log 2s) per oc-

currence, display(k, i, j) in time O( min ((j� iþ 1)d, (dþ j� iþ sk
i, j)) tLF), insert(T) (given the alignment to

T1) in average time O(jTj(tLFþ tDynB(N=d, N))þ sT logs N log 2 s), and delete(T) in time

O(jTj(tLFþ tDynB(N=d, N))þ sT log2 s), where sT is the number of edit operations to align T with some

substring of T1. The structure also supports SA[i] and SA�1[(k, j)] in time tSA¼O(d(tLFþ tDynB(N=d,

N))þ log2 s), and T [SA[i]] in time O(tDynB(s, N)).

Proof. For the absolute samples, the construction is analogous to Theorem 21. The alignment is easy to

store in dynamic data structures to support display. For locate we need the confluental persistent select of

Theorem 25. The insertions to the structure take average time O(sT logs N log2 s), because one has to access

the structure on each suffix of class B to determine the class; once the first suffix of class A is found

preceding a mutation, the checking can be omitted until the next mutation. The deletions to the structure

take O(sT log2 s) time as the boundaries between class A and class B suffixes are known. &

6. FULLY-COMPRESSED SUFFIX TREES

In this section, we introduce a fully-compressed suffix tree for repetitive sequence collections. Let us

start with the basic definitions and with the original solution.

The suffix tree S of a text T1,n is a compact trie storing all the suffixes Ti,n where the leaves point to the

corresponding i values (Apostolico, 1985; Gusfield, 1997). For technical convenience, we assume that T is

terminated with a special symbol, so that all lexicographical comparisons are well defined. For a node v

inS, p(v) denotes the string obtained by reading the edge-labels when walking from the root to v, or the

path-label of v (Russo et al., 2008a). The string-depth of v is the length of p(v). We will simulate suffix tree

behaviour by an implementation of the following abstract data structure, which supports more functionality

than the concrete suffix tree.

Definition 28. A suffix tree representation supports the following operations:

	 Root(): the root of the suffix tree.
	 Locate(v): the suffix position i if v is the leaf of suffix Ti,n, otherwise null.
	 Ancestor(v, w): true if v is an ancestor of w.
	 SDepth(v)=TDepth(v): the string-depth=tree-depth of v.
	 Count(v): the number of leaves in the subtree rooted at v.
	 Parent(v): the parent node of v.
	 FChild(v)=NSibling(v): the alphabetically first child=next sibling of v.
	 SLink(v): the suffix-link of v; i.e., the node w such that p(w)¼ b if p(v)¼ ab for a a 2 R.
	 SLink

i(v): the iterated suffix-link of v; (node w such that p(w)¼ b if p(v)¼ ab for a 2 Ri).
	 LCA(v,w): the lowest common ancestor of v and w.
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	 Child(v,a): the node w such that the first letter on edge (v,w) is a 2 R.
	 Letter(v, i): the ith letter of v’s path-label, p(v)[i].
	 LAQs(v, d)=LAQt(v, d): the highest ancestor of v with string-depth=tree-depth �d.

We call a suffix tree dynamic when can be maintained on a dynamic collection C.

6.1. Original solution

Russo et al. (2008a) described a suffix tree representation that needs only o(n log s) bits of space on top

of a compressed suffix array and supports operations in Def. 28 in polylogarithmic time. The solution is

based on a sampled suffix tree.

Theorem 29 (Russo et al., 2008a). Using a compressed suffix array CSA that supports the functions c,

ci, T[SA[v]] and LF in times O(tc), O(tF), O(1) and O(tLF), respectively, a suffix tree for the string T1,n can

be represented in jCSAj þO((n=d) log n)þ o(n log s) bits of space and with the time complexities given in

Table 2.

The sampled suffix tree S chooses O(n=d) nodes from S, ensuring that for each node v 2 S there is an

i< d such that the node SLink
i(v) 2 S (Russo et al., 2008a). The sampled tree S can be constructed space-

efficiently (see Section 6.3). Sampled nodes store pointers and information about SDepth and TDepth, and

the tree is augmented to support LCAS in constant time.

Mapping from the suffix tree S to the d-sampled tree S is done via two operations: The operation LSA(v)

for a node v 2 S maps into the lowest sampled ancestor of v in S. The operation LCSA(v, v0) for nodes

v, v0 2 S maps into the lowest common sampled ancestor of v and v0 in S. For any leaf node v 2 S, LSA

(v)can be calculated in constant time using a bit vector B1,n that contains O(n=d) 1-bits, and an array of

O(n=d) values (Russo et al., 2008a). Thus, both operations LSA and LCSA can be solved in O((n=d) log

n)þ o(n) bits of space and in constant time for leaf nodes in S.

Mapping internal nodes, as well as solving the other operations, is done by carrying out O(d) steps

involving LCSA computation on leaves plus accessing some data explicitly stored at sampled nodes.

Operations TDepth, LAQt and LAQs, require another set of O(n=d) sampled nodes (Russo et al.,

2008a): for any v 2 S, there must be a j< d such that Parent
j(v) 2 S. It is not known how to generate this

sampling space-efficiently; they currently require O(n log n) construction space. If LAQs is not supported,

operations FChild and NSibling take the same time as operation Child.

Computing Child requires that sampled nodes store a list of child-nodes and first letters of their edges.

To avoid storing O(sn=d) integers, they mark one out of d leaf nodes and consider only the children whose

subtree contains marked leaves (Russo et al., 2008a). The amortized space is then O((n=d) log n) bits, and

Child can be computed in O(log sþ tF log dþ (tcþ tLF)d) time.

Table 2. Time Complexities for the Original FCST

FCST Ours

SDepth=Locate tcd (tcþ tBSD)d
Count=Ancestor 1 1

Parent (tcþ tLF)d (tcþ tBSDþ tLF)d
FChild=NSibling (tcþ tLF)d (tcþ tBSDþ tLF)d
SLink (tcþ tLF)d (tcþ tBSDþ tLF)d
SLink

i tFþ (tcþ tLF)d tFþ (tcþ tBSDþ tLF)d
Letter tF tF
LCA (tcþ tLF)d (tcþ tBSDþ tLF)d
Child log sþ tF log dþ (tcþ tLF)d log sþ tF log dþ (tcþ tBSDþ tLF)d
TDepth (tcþ tLF)d2 (tcþ tBSDþ tLF)d2

LAQt log nþ (tcþ tLF)d2 log Nþ (tcþ tBSDþ tLF)d2

LAQs log nþ (tcþ tLF)d log Nþ (tcþ tBSDþ tLF)d

Time complexities for the original FCST (Russo et al., 2008a) for a string T1,n, and our version for a repetitive collection of length N,

where tBSD¼ tBSD(N=d,N).
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The overall space of the fully-compressed suffix tree is jCSAj þO((n=d) log n)þ o(n)¼ jCSAj þ o(n log

s) bits if d¼o(logs n). Using the FM-index of Ferragina et al. (2007) as the compressed suffix array, the

space required is nHkþ o(n log s) bits. Table 2 summarizes the time complexities of the suffix tree

operations.

6.2. Indexing repetitive sequence collections

We build on the data structure just described. The space requirement of the sampled tree is O((N=d) log

N) bits, which can be made arbitrary small by growing d (thus trading time for space). To support LSA and

LCSA we represent bit vector B (see Section 6.1) using Theorem 13 in O((N=d) log d) bits, thus avoiding

the large o(N) term. Now computing LSA and LCSA takes tBSD(N=d, N) time. All the rest is inherited

verbatim.

Theorem 30. Given a collection C and a compressed suffix array that requires jCSAj bits of space and

supports the functions c, ci, T[SA[v]] and LF in times O(tc), O(tF), O(tBSD(s, N)) and O(tLF), respectively,

a suffix tree S for a concatenated sequence T of all the r sequences Ti 2 C can be represented in

jCSAj þO((N=d) log N) bits of space with the time complexities given in Table 2 (right). Here we assume

tBSD(s, N)¼O(tF).

By combining the above with Theorems 20 and 17, we immediately obtain the following.

Corollary 31. Given a collection C and the concatenation T [1, N] of all the r sequences Ti 2 C, let R

be the number of runs in the BW-transformed sequence T bwt of T . Then the suffix tree for T can be

represented in

R log rþ 2R log
N

R

� �
(1þ o(1))þO R log log

N

R

� �
þO((rþ rþN=d) log N)

bits of space, where s is the alphabet size and d is a parameter. The structure achieves the time com-

plexities in Table 2 (right), with tLF¼ log r
log log R

þ tBSD(R, N), tw¼ log r
log log R

þ tBSD(R, N)þ tBSD(r, N), t/¼

d log r
log log R

þ tBSD(R, N)þ tBSD(N=d, N)
	 


, and T [SA[v]] in O(tBSD(s, N)) time.

Proof. Theorems 20 and 17, with d¼ d, provide directly tLF and T [SA[v]]. Also,

t/¼ d log r
log log R

þ tBSD(R, N)þ tBSD(N=d, N)
	 


as ci[j]¼ SA�1[SA[j]þ i]. Finally, for C we use the formula

(Lee and Park, 2007) W(i)¼ selectT [SA[i]](T bwt, i�C[T [SA[i]]]). Operation select is supported by our

wavelet tree in time O log r
log log R

	 

(Ferragina et al., 2007), and the RLFM scheme (Mäkinen and Navarro,

2005) can be easily adapted to compute select on L¼T bwt via select on the (standard) wavelet tree of L0

plus a constant number of accesses to bit-vectors D and E, recall Section 3.2.

A simplified formula is, for example, tc¼ tLF¼O(log Rþ log s), tF¼O(d log N), and T [SA[i]] in time

O(log s). Notice that if r¼ polylog(N), one can choose d¼ r log N log log N to make term O((N=d) log N)

disappear, and still all suffix tree operations are supported in polylog(N) time. &

6.3. Dynamic fully-compressed suffix tree

A dynamic suffix tree representation that needs o(n log s) bits of space on top of a dynamic CSA was

described by Russo et al. (2008b). It supports operations in Def. 28 excluding TDepth, LAQt and LAQs,

in polylogarithmic time. The solution is based on a dynamic version of the d-sampled suffix tree described

in Section 6.1. The operations stay the same.

Theorem 32 (Russo et al., 2008b). Given a dynamic CSA that supports functions c, ci, T [SA[v]] and

LF in times O(tc), O(tF), O(log N) and O(tLF), respectively, a suffix tree for a dynamic collection of length

N can be represented in jCSAj þ o(N log s) bits of space and with the time complexities given in Table 3.

Updating the sampled tree. The d-sampled tree S of the suffix tree S is represented with a dynamic

parentheses structure by Chan et al. (2007). This structure supports LCAS and ParentS in O(log N) time
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and can be augmented to support SDepth in O(log N) time. The d-sampled tree is maintained while

inserting the text to the CSA: at every step for any v 2 S, there is an i< d such that SLink
i(v) is sampled

(Russo et al., 2008b). Hence, space-efficient construction of the d-sampled tree is done by inserting a

text into a empty collection. These structures require O((N=d) log N) bits of space, and the time to

Insert=Delete nodes to=from S is dominated by the time to compute SLink.

Operations LSA and LCSA are supported in O(log N) time and O((N=d) log d)þ o(N) bits of space. This

is achieved by using a dynamic bit vector to represent B[1, N], which contains O(N=d) 1-bits (Russo et al.,

2008b). The operations TDepth, LAQt and LAQs are not supported in the dynamic FCST. The operation

Child is computed by generalized branching in time O((tcþ tLF)dþ tF log dþ (log N) log(N=d)) (Russo

et al., 2008b). Because LAQs is not supported, operations FChild and NSibling take the same time as the

operation Child.

Indexing repetitive collections. We only need to replace their dynamic bit vector representation by that

of Theorem 15, so that it takes O((N=d) log N) bits of space while supporting operations LSA and LCSA in

tDynB(N=d,N)¼O(log N) time. The time complexities of the original solution do not worsen.

Corollary 33. Given a collection C, a dynamic suffix tree for a concatenated sequence T of all the

r sequences Ti 2 C can be represented within the same space of Corollary 31. The structure achieves

the time complexities in Table 3, with tLF¼ log r
log log R

, log Rþ tDynB(R, N), tw¼ log r
log log R

log Rþ tDynB(R, N)þ
tDynB(r, N), t/¼ log rþ d log r

log log R
log Rþ tDynB(R, N)þ tDynB(N=d, N)

	 

, and T [SA[v]] in O(tDynB(s,N))

time.

Proof. Theorems 21 and 18 provide the running times analogously as in the proof of the static

version. &

Simplified formulas are obtained using tDynB(�, N)¼O(log N).

7. IMPLEMENTATION AND EXPERIMENTS

We have implemented the static base structures considered in this paper for solving the repetitive

substring collection problem.5 Some preliminary versions of the dynamic structures exist as well, but here

we limit the experiments to the static structures. The compressed suffix trees considered in this paper use

almost verbatim the mechanisms developed in the original papers, so once those implementations are

available, it will be easy to plug in our base structures.

We first experiment with the static base structures for counting (Section 3) coupled with the standard

sampling techniques (Section 4). These combinations can be used to add reasonably efficient support for

Table 3. Time Complexities for the Dynamic FCST

Dynamic FCST and ours

SDepth=Locate tcd
Count=Ancestor 1

Parent (tcþ tLF)d
SLink (tcþ tLF)d
SLink

i tFþ (tcþ tLF)d
Letter tF
LCA (tcþ tLF)d
Child=FChild=NSibling (tcþ tLF)dþ tF log dþ (log N)log(N=d)

Insert(T)= Delete(T) jTj(tcþ tLF)d

Time complexities for the dynamic FCST (Russo et al., 2008b) and our version for a dynamic collection C of length N.

5See www.cs.helsinki.fi=group=suds=rlcsa for the source code of the RLCSA structure that turns out to offer the best
time=space tradeoffs.
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the repetitive substring collection problem, as shown in Table 4 and Figure 3. The Compressed Suffix Array

(CSA) (Sadakane, 2003), Succinct Suffix Array (SSA) (Mäkinen and Navarro, 2005; Ferragina et al.,

2007), and Run-Length FM-index (RLFM) (Mäkinen and Navarro, 2005) are existing indexes similar to

our RLCSA, RLWT, and RLFMþ, respectively.

The experiments were performed on a 2.66 GHz Intel Core 2 Duo system with 4 GB of RAM (3.2 GB

visible to OS) running Fedora Core 8 based Linux. Counting and locating times are averages over 1000

patterns of length 10. Displaying times were calculated by extracting the whole text from the indexes.

The new structures for display and locate (Section 5) require the alignment of each sequence with the

base sequence to be given. Our implementation supports alignments with insertions, deletions, and sub-

stitutions as described in the theory part. In addition, runs of don’t cares (i.e., Ns) are treated separately so

that the display structure does not grow too big with these artificial substitutions.

The main component required is the static structure supporting persistent selection. For its construction,

we implemented also the dynamic structure supporting online persistent selection (with minor modifica-

tions it would support confluental persistent selection as well). Once it is constructed for the given

alignment, it is converted into a static structure. The static structure is in fact more space-efficient than the

one described in Theorem 25, as we discard completely the tree structure and instead concatenate levelwise

the two bit vectors stored at the nodes of the tree; a third bit vector is added marking the leaves, which

enables us to navigate in the tree whose nodes are now represented as ranges. The time-to-rank mapping in

the root of the persistent tree can be stored space-efficiently using the BSD representation. The space

requirement is 6x log x(1þ o(1))þ x log h
x

(1þ o(1))þO x log log h
x

� �
þ x log r bits, where 6x log x(1þ o(1))

comes from the 3 bit vectors of length x supporting rank and select on each of the at most 2 log x levels of

Table 4. Base Structure Sizes and Times for Count and Display

Index Size (MB) count display

CSA 95.51 2.86 0.41

SSA 121.70 0.48 0.40

RLFM 146.40 1.21 1.38

RLCSA 41.34 1.24 0.70

RLWT 35.06 4.49 3.01

RLFMþ 53.08 2.10 1.55

Base structure sizes and times for count and display for various self-indexes on a collection of genomes of multiple strains of

Saccharomyces paradoxus (36 sequences, 409 MB). The genomes were obtained from the Durbin Research Group at the Sanger

Institute (www.sanger.ac.uk=Teams=Team71=durbin=sgrp=). C sampling rate was set to 128 in CSA and to 32 bytes in RLCSA.

Reported times are in microseconds=character.

0 50 100 150 200 250 300 350

0
50

10
0

15
0

Size (MB)

T
im

e 
(µ

s)

CSA
SSA
RLFM
RLCSA
RLWT
RLFM+

FIG. 3. Sizes and times for locate for self-indexes on the S paradoxus collection. Each index was tested with

sampling rates d¼ 32, 128, and 512. Reported times are in microseconds=occurrence.
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the red-black balanced tree, x log h
x

(1þ o(1))þO x log log h
x

� �
comes from the BSD representation, and x log

r from the values stored at leaves.

The interesting question is at which mutation rates the persistent selection approach will become

competitive with the standard sampling approach. With the mutation rates occurring in yeast collection of

Figure 3, the persistent selection approach does not seem to be a good choice; it occupied 8.49 MB on the

36 strains of S.paradoxus chromosome 2 (28.67 MB), while RLWT with standard sampling occupied

3.97 MB.6 The sampling parameters were chosen so that both approaches obtained similar time efficiency

(403 versus 320 microseconds for one locate, respectively). To empirically explore the turning point where

the persistent selection approach becomes competitive, we generated a DNA sequence collection with 100

copies of a 1 MB reference sequence and applied different amounts of random mutations on it. Table 5

illustrates the turning point by giving the space requirements for RLWTþsampling versus RLWTþ
persistent selection on two different mutation rates, where their order changes. We used sampling rate

d¼ 512 for standard sampling, and d¼ 64 (d¼ 32) for persistent selection approach on mutation rate 0.001

(0.0001). This made the running times reasonably close; for example, one locate took 172 versus 184

microseconds on 0.0001 mutation rate, respectively.

In order to test our indexes in other applications where repetitive collections arise, we focus on version

control systems. We test our indexes on the source code for portable versions of OpenSSH,7 namely, on a

4.44 MB tar archive containing the source code for version 4.7p1, as well as on another 176.55 MB archive

containing the source code for all 75 versions up to version 4.7p1. The latter contains multiple copies of the

Table 5. Standard Sampling versus Persistent Selection

Mutation rate 0.001 Mutation rate 0.0001

Approach=size Standard Persistent Standard Persistent

Base (MB) 4.06 4.06 2.19 2.19

Samples (MB) 1.24 0.28 1.02 0.25

Display (MB) 0.32 0.07

Persistent (MB) 3.22 0.31

Total size (MB) 5.30 7.89 3.21 2.82

The rows give the size of the base structure (RLWT), size of suffix array samples, size of display structures, size of persistent

selection structure including bookkeeping of zones, and the total size.
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FIG. 4. Compression results for OpenSSH sources.

6We observed that the given multiple alignments were not the best possible; the size would be reduced significantly
by the choice of better consensus sequences.

7www.openssh.com.
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same files as well as many highly similar files, making it highly compressible. We compare our indexes

with existing self-indexes as well as plain compressors. In addition to the state-of-the-art compressor

p7zip,8 we use the well-known gzip9 and bzip210 compressors with parameter �9. Due to their small block

sizes, gzip and bzip2 give an idea of the traditional entropy-based compressibility of the collection. As seen

in Figure 4, our indexes clearly outperform the existing self-indexes. Again RLWT outperforms RLFMþ
even with this larger alphabet size, indicating that the average RLWT space requirement is better than the

worst case.

8. CONCLUSIONS

We have studied the problem of representing highly repetitive sequences in such a way that their

repetitiveness is exploited to achieve little space, yet at the same time any part of the sequences can be

extracted and searched without decompressing it. This problem is becoming crucial in computational

biology, due to the cheaper and cheaper availability of sequence data and the interest in analyzing it.

We have shown that the current compressed text indexing technology is not well suited to cope with this

problem, and have devised both theoretical and practical variants that have shown to be much more

successful.

We have focused on the base structures that support only limited functionality themselves, but on top of

which one can build more flexible structures. In particular, we have demonstrated that compressed suffix

trees can exploit the new base structures to achieve improved space for highly repetitive sequence col-

lections.

Our base structures can also be used directly to support more advanced search functionalities such as

regular expression search and approximate search, using the general backward backtracking framework

(Lam et al., 2008; Langmead et al., 2009; Li and Durbin, 2009) as discussed in Section 1.3.

The experiments showed that the theoretically best solution for the display and locate operations (Section

5) is inferior to the solution that uses standard sampling (Section 4), on mutation levels expected across

individual genomes. Still, our development on persistence has independent interest and could find appli-

cations in other areas where lower mutation rates are common. The good part in the superiority of the

standard sampling approach is its universality; the data structures do not need to know what and where the

mutations are, nor to identify any base sequence; the mutations just become part of the analysis. The

structures can hence be used on any sequence collection without knowing their alignment. The analysis

captures most of the typical mutation types such as insertions, deletions, substitutions, and translocations.

Reversals can be captured by the analysis by adding the reverse complement of the chosen base sequence to

the collection.

It is hence a plausible scenario to have a massive highly repetitive collection of sequences, such as 1000

Human Genomes, represented as one self-index residing in main memory. Such tool could support very fast

extraction of any part of any sequence and very fast exact search with any given pattern. In addition, the

tool would support approximate searching to the extent required e.g. in the current short read mapping

applications.

An important challenge for future work is to look for schemes achieving further compression. For

example, LZ77 algorithm is an excellent candidate to compress repetitive collections, achieving space

proportional to the number of mutations. For example, the 409 MB collection of Saccharomyces paradoxus

strains studied here can be compressed into 4.93 MB using an efficient LZ77 implementation (p7zip). This

is over 7 times less space than what the new self-indexes studied in this paper achieve. Yet, LZ77 has defied

for years its adaptation to a self-index form. Thus, there is a wide margin of opportunity for such a

development.

8http:==p7zip.sourceforge.net.
9www.gzip.org.

10www.bzip.org.
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9. APPENDIX

A. Number of runs created per mutation

We are going to improve the R(T r)�R(S)þ 6c bound for the number of runs in Lemma 7 to

R(S)þ 2cþ 3. To do this, we assume there are c moved suffixes, starting at positions i to j in the con-

catenated sequence T . We denote these suffixes as T i to T j. We will present a run as two ranges of suffix

array values,

( . . . , a, b, c, . . . )! ( . . . , aþ 1, bþ 1, cþ 1, . . . ),

where the left side is the self-repetition and the right side is its target interval.

As noted in the proof, there are six ways a moved suffix can create new runs:

1. Split a self-repetition into two pieces by moving inside it.

2. Create a new self-repetition by itself.

3. Split a target interval into two pieces by moving inside it.

4. Create a new target interval by itself.

5. Leave a hole in the self-repetition in its original position.

6. Leave a hole in the target interval in its original position.

Each moved suffix can create at most one new run for each of the cases.

Consider the following run in the suffix array before the mutation:

( . . . , a, i� 1, b, . . . )! ( . . . , aþ 1, i, bþ 1, . . . )

As T i moves while T i� 1 does not, we end up with three runs: ( . . . , a)! ( . . . , aþ 1) as the original run,

(i� 1)? (i) from case 4 for T i, and (b, . . . )! (bþ 1, . . . ) from case 6 for T i.

Case 6 does not happen for other moved suffixes. If T kþ 1 leaves a hole in a target interval, T k leaves a

corresponding hole in the self-repetition. Hence, a run like

( . . . , c, k, d, . . . )! ( . . . , cþ 1, kþ 1, dþ 1, . . . )

becomes

( . . . , c, d, . . . )! ( . . . , cþ 1, dþ 1, . . . ):

Symmetrically, case 5 can happen only for T j, and if it happens, we also get case 2 for T j. Hence we get at

most 4 new runs from the cases covered so far.

Consider next cases 2 and 4 for the rest of the moved suffixes. Assume T k moves and does not become a

part of either of the self-repetitions surrounding its new position. This makes T k a new self-repetition of

length 1. But that means T kþ 1 becomes the target interval of the newly created run. Hence the new run

created by case 2 for T k is the same run as the one created by case 4 for T kþ 1. As we are left with case 2

for suffixes T i to T j� 1, and case 4 for suffixes T iþ 1 to T j, we can get at most c� 1 new runs from them.

This makes the total so far at most cþ 3.

Finally, we have cases 1 and 3. Recall that we are dealing with runs in BWT, which translates into

restricted runs in C, where a self-repetition can only contain suffixes starting with the same character.

Assume we have the run ( . . . , a, b, . . . )! ( . . . , aþ 1, bþ 1, . . . ). Suffix T k moves inside the run, and

the self-repetition becomes ( . . . , a, k, b, . . . ). As we are dealing with restricted runs, suffixes T a and T b

must start with the same character. This means that T k must also start with the same character. But in that

case, we must have T aþ 1 5 T kþ 1 5 T bþ 1, so the target interval becomes ( . . . , aþ 1, kþ 1, bþ 1, . . . ),

and case 1 does not happen for T k.

We get at most c new runs from case 3. As case 1 cannot happen, and we get at most cþ 3 new runs from

the other cases, a point mutation can create at most 2cþ 3 new runs.
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