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Abstract In recent years, whole-genome sequencing (WGS)
has been perceived as a technology with the potential to rev-
olutionise clinical microbiology. Herein, we reviewed the lit-
erature on the use of WGS for the most commonly encoun-
tered pathogens in clinical microbiology laboratories:
Escher ich ia col i and othe r Ente robac te r iaceae ,
Staphylococcus aureus and coagulase-negative staphylococci,
streptococci and enterococci, mycobacteria and Chlamydia
trachomatis. For each pathogen group, we focused on five
different aspects: the genome characteristics, the most com-
mon genomic approaches and the clinical uses of WGS for (i)
typing and outbreak analysis, (ii) virulence investigation and
(iii) in silico antimicrobial susceptibility testing. Of all the
clinical usages, the most frequent and straightforward usage
was to type bacteria and to trace outbreaks back. A next step
toward standardisation was made thanks to the development
of several new genome-wide multi-locus sequence typing sys-
tems based onWGS data. Although virulence characterisation
could help in various particular clinical settings, it was done
mainly to describe outbreak strains. An increasing number of
studies compared genotypic to phenotypic antibiotic suscepti-
bility testing, with mostly promising results. However, routine
implementation will preferentially be done in the workflow of
particular pathogens, such as mycobacteria, rather than as a
broadly applicable generic tool. Overall, concrete uses of
WGS in routine clinical microbiology or infection control
laboratories were done, but the next big challenges will be

the standardisation and validation of the procedures and bio-
informatics pipelines in order to reach clinical standards.
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Introduction

Over the last decade, whole-genome sequencing (WGS) has
been identified as one of the most promising techniques in
clinical microbiology [1, 2]. Since the first bacterial genomes
sequenced in 1995 [3, 4], it has come a long way and genome
sequencing is now broadly implemented in research laborato-
ries thanks to the rise of high-throughput sequencing [5].
Although its use in clinical microbiology increases, WGS is
differentially implemented depending on the pathogen or the
intended uses. Generally, clinical microbiology aims to provide
a rapid detection and identification of a microorganism, for
bacteria, combined or not with antimicrobial susceptibility test-
ing (AST). Recent improvements of sequencing technologies
with higher speed and output-to-cost ratios render WGS appli-
cable for many aspects of clinical microbiology, including in-
fectious disease control and epidemiology of pathogens [6, 7].

Even if WGS can be applied to all microorganisms (viruses,
bacteria, parasites or fungi), this review focuses on clinical bac-
teriology. Very good review articles focusing on sequencing
technologies or quality control have been published [5, 8, 9].
Herein, we aim to review the applications of WGS in clinical
bacteriology focusing on the recent advances in terms of geno-
mic approaches, applications for typing and outbreak, and in
silico virulence-associated genes detection and antimicrobial
susceptibility prediction for the most common pathogens en-
countered in blood cultures in our clinical microbiology labo-
ratory [10], as well as for several intracellular bacteria of
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particular interest (Table 1). For antimicrobial susceptibility pre-
diction based on genomic data, our review is aligned with the
in-depth report of the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) by Ellington et al. that
reviewed the literature on WGS prediction of phenotypic AST
from genotypes [11]. We hope that our review will be useful for
the clinical microbiologist wishing to obtain an update on the
broad applications of WGS for very common pathogens.

Escherichia coli and other Enterobacteriaceae

Genome characteristics

Escherichia coli is one of the most studied organisms in the
world. Its genome size ranges from 4.6 Mb to 5.9 Mb for a
median GC content of 50.6%, with 4200 to 5500 genes [12].
Overall, Enterobacteriaceae are characterised by a large vari-
able genomewith various intra-family horizontal gene transfer
(HGT) or recombination, sometimes increased by the host’s
medical conditions [13].

Genomic approach

So far, WGS was applied mainly on extracted DNA from
cultivated bacterial isolates. However, metagenomic shotgun
amplification allowed the identification of foodborne patho-
gens directly from food samples [14–16]. Interestingly, Loman
et al. used metagenomic shotgun amplification to investigate
an outbreak of Shiga toxin-producing E. coli, but sensitivity
remained low (67%) compared to cultures [17]. Hasman et al.
performed WGS directly on clinical urine samples and suc-
cessfully identified E. coli, and complete congruence with the
regular microbiology work-up was observed [18].

Typing and outbreak

Escherichia coli strains have been historically grouped into
serotypes, biotypes, pathotypes and sequence types [12].
Serotypes (O and H antigens), pathotypes and sequence
types [like multi-locus sequence typing (MLST) based on
7–8 housekeeping genes] can be inferred from WGS data
[12, 19–21]. Moreover, WGS allows discrimination up to

the single nucleotide polymorphisms (SNPs) level for
real-time or retrospective investigation of outbreaks of
E. coli [22–25], Salmonella enterica [26–31] or
Klebsiella spp. [32–35]. Although variants detection al-
lows the most sensitive discrimination between isolates
based on DNA sequences, it is limited by the need for a
reference genome or whole-genome alignment [36].
Moreover, they lack standardisation and usually do not
allow straightforward comparison between studies [20].
New sequence typing methods, such as ribosomal MLST
(rMLST, 53 loci) [37], core-genome MLST (cgMLST,
>500 loci) or whole-genome MLST (wgMLST, all loci)
have arisen since the era of WGS and allow typing up to
the strain or clone levels [20]. The use of wgMLST was
recently demonstrated by typing extended-spectrum beta-
lactamase-producing Enterobacteriaceae [38]. These re-
cent typing tools are available on EnteroBase (https://
enterobase.warwick.ac.uk), an online database gathering
metadata and genotypes infer red f rom genome
assemblies for four gamma-proteobacteria (Escherichia/
Shigel la , Salmonel la , Yersinia and Moraxel la) .
Moreover, EnteroBase integrates a tool for Salmonella in
silico serotyping developed by Yoshida et al. [39]. For K.
pneumoniae, a cgMLST scheme was developed to type
hypervirulent and multi-resistant strains [40]. Although
there is controversy about differentiating the genus
Shigella from Escherichia due to its genome similarities
with enteroinvasive E. coli [41], a k-mer analysis coupled
to MLST from inferred WGS data seems to be an effec-
tive discriminative approach [42].

Virulence

Robins-Browne et al. raised the question of the relevance
of pathotypes for intestinal pathogenic E. coli (IPEC) in
the era of WGS [12]. Although pathotypes remain the
subtyping system that is the most clinically relevant,
WGS is able to: (i) predict pathotypes with accuracy
(Table 2) and (ii) overcome the limitations of this classi-
fication, for instance with the emergence of strains with
new pathogenic features, such as the enteroaggregative
Shiga toxin-producing E. coli [12, 43]. Contrary to the
obligate pathogen IPEC, extraintestinal pathogenic

Table 1 Items investigated in
this review for each pathogen Items Pathogens

Genome characteristics Escherichia coli and other Enterobacteriaceae

Genomic approach Staphylococcus aureus and coagulase-negative staphylococci

Typing and outbreak Streptococci and enterococci

Virulence Pseudomonas aeruginosa and Acinetobacter baumannii

Antimicrobial susceptibility Mycobacterium tuberculosis complex and other mycobacteria

Chlamydia trachomatis
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E. coli (ExPEC) are opportunistic pathogens and infec-
tions arise from the commensal microbiota. Therefore,
an identification based on the presence/absence of
virulence-associated genes in ExPEC genomes is not
straightforward since host medical predispositions also
play a major role in the pathogenesis, despite the descrip-
tion of many virulence-associated genes [44]. For
K. pneumoniae, several plasmidic and chromosomal
genes have been identified as virulence genes associated
with community-acquired pyogenic liver abscesses [45,
46]. WGS can identify hypervirulent clones in a rapid
manner, which can be of great use to prevent a clonal
spread [40, 45, 47].

Antimicrobial susceptibility

Overall, several studies reported more than 95% concor-
dance between genotypic and phenotypic antimicrobial
resistances for Enterobacteriaceae, such as E. coli and
K. pneumoniae [48–50]. However, in a significant propor-
tion of carbapenem-resistant K. pneumoniae and
E. cloacae isolates, no carbapenemase could be detected,
showing the presence of other resistance mechanisms
[51]. Indeed, particular resistance mechanisms, such as
modification in the membrane permeability or up-
regulation of efflux pumps, will be harder to predict,
and further studies are required to improve accuracy
among heterogeneous datasets [11]. Furthermore, impor-
tant limitations with short-read technologies remain for
plasmid assemblies due to the inability of assemblers to
deal with repeats [11]. They can be overcome using long-
read sequencing to improve their detection [51–54] but
the cost remains too high for most clinical laboratories.
Finally, the particular case of Salmonella spp. needs to be
further assessed due to the limited number of studies [11].

Staphylococcus aureus and coagulase-negative
staphylococci

Genome characteristics

Staphylococcus aureus has a genome size that ranges
from 2.6 to 3.1 Mb, with a median GC content of
32.8%. Coagulase-negative staphylococci (CoNS) have
similar genome features to S. aureus. Mobile genetic ele-
ments represent 15–20% of the S. aureus genome,
emphasising the important transfer of virulence factors
and/or antimicrobial resistances that can happen between
strains [55] or even between species [56–58].

Genomic approach

The most common approach for S. aureus is WGS applied
on extracted DNA from cultivated bacterial isolates. To
our knowledge, no study reported culture-independent ge-
nome sequencing. Besides S. aureus, there are a limited
number of studies on WGS application for CoNS in a
clinical setting.

Typing and outbreak

In terms of discriminatory power, WGS and SNP-based
methods overcome all previous methods used for typing, such
as pulsed-field gel electrophoresis (PFGE), 7-loci MLST and
spa typing [59]. To ensure backward compatibility with tradi-
tional genotyping, spa types could be inferred from genome
assemblies with 97% [60] and 99.1% [61] accuracy, although
spa typing is based on the number and order of repeats, which
can theoretically impair reliable genome assemblies from
short reads. For SCCmec—a mobile genetic element carrying
the methicillin resistance gene in S. aureus [62] that shows a
great diversity and a high rate of recombination—typing can

Table 2 Virulence-associated
genetic determinants of the main
Escherichia coli pathotypes

Gene/genomic region/plasmid Functional role Comments

LEE PAI Genomic island containing eae (encoding gene
for an adhesin) as well as effectors and
structural proteins associated with a type III
secretion system

EPEC defining region

pINV Encodes for a type III secretion system and for
effectors allowing intracellular survival

EIEC/Shigella defining
plasmid

est, elt Heat-stable (ST) and heat-labile (LT) enterotoxins ETEC defining genes

stx1, stx2 Shiga toxins (verotoxins) 1 and 2 EHEC defining genes

aggR, aatA, aaiC Transcriptional regulator, transporter protein
and secreted protein

Associated with EAEC
phenotype

Adapted from Robins-Browne et al. [12]

LEE PAI, Locus of enterocyte effacement pathogenicity island; EPEC, enteropathogenic E. coli; EIEC,
enteroinvasive E. coli; ETEC, enterotoxigenic E. coli; EHEC, enterohaemorrhagic E. coli; EAEC,
enteroaggregative E. coli
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also be done using WGS and has the advantage to allow the
detection of new types or subtypes, although multiplex poly-
merase chain reaction (PCR) and DNA microarray remain
widely used [63]. During outbreak investigations, many stud-
ies could rule in or out a direct transmission of closely related
isolates using SNP-based approaches [64–67]. As for
Enterobacteriaceae, rMLST, cgMLST, wgMLST or even
pan-genome MLST show high discriminatory power and, if
used more often, could be of great use for standardisation and
inter-study comparisons [20, 68, 69].

Virulence

Staphylococcus aureus is a highly adapted pathogen and a
number of its genes are related to virulence. WGS provides
the possibility to screen the genomes for specific genes of
interest, such as Panton–Valentine leucocidin (PVL) or
superantigens encoding genes (Table 3), involved in severe
clinical presentations, such as necrotising pneumonia or staph-
ylococcal toxic shock syndrome [73]. Commercial multiplex
PCRs or DNA microarrays are available and can already
screen for some antibiotic resistance genes or particular viru-
lence factors in a culture-independent manner. Their clinical
utility remains controversial, although some authors recom-
mend the adjunction of a clindamycin regimen for PVL+

necrotising pneumonia [73]. Thus, in the context of patient
care, the use of WGS for virulence investigation remains lim-
ited if not done in a shorter time-to-result. Most of the CoNS
virulence-associated genes known are genes related to biofilm
or adherence to surface [74]. However, the pro-inflammatory
and cytolytic phenol-soluble modulin (PSM) combined with
the methicillin resistance island could play a critical role in
CoNS sepsis pathogenesis [71].

Antimicrobial susceptibility

Several studies report a high efficiency for in silico antimicro-
bial susceptibility testing [64, 75–78]. Mykrobe predictor, an
online tool allowing a rapid discrimination between S. aureus
and other staphylococci, predicts antimicrobial susceptibility
with high sensitivity (99.1%) and specificity (99.6%) [79].
Moreover, the predictions are made from raw sequences and
can be achieved in less than 3 min, thanks to a de Bruijn-based
method. However, limitations for the antimicrobial suscepti-
bility prediction remain (i) because of gaps in the knowledge
and the important number of mechanisms of resistance
existing for particular antibiotics such as aminoglycosides or
glycopeptides [80, 81], as well as (ii) due to genetic instability
with the loss of some mobile genetic elements such as erm(C)
or the SCCmec cassette while passaging the isolate [11]. On
the other hand, for mupirocin, mismatches between genotypic
predictions and AST could be explained by laboratory varia-
tions. Indeed, those predicted resistant genotypes concerned
isolates with a diameter of inhibition of 29 mm, whereas ep-
idemiological cut-off (ECOFF) for the wild type is more than
30 mm for mupirocin. Therefore, it implies that the mupirocin
zone diameter ECOFF needs to be revised [11]. For CoNS,
studies comparing genotypic to phenotypic correlation remain
limited.

Streptococci and enterococci

Genome characteristics

The median lengths are 1.8 Mb and 2.1 Mb for Streptococcus
pyogenes and S. pneumoniae, respectively. Enterococci of
medical importance, such as Enterococcus faecalis and

Table 3 Main Staphylococcus
aureus toxins encoded on the
accessory genome

Gene/genomic
region/plasmid

Functional role Comments

PVL locus
(lukF-PV,
lukS-PV)

Pore-forming toxin targeting
polymorphonuclear leucocytes

Phage-encoded toxin associated with
necrotising pneumonia or severe skin
and soft tissue formation

lukD/E, lukG/H Pore-forming toxins targeting
polymorphonuclear leucocytes

Located on a pathogenicity island
(LukDE), they act synergistically with
PVL

psm-mec locus Cytolytic capacity, biofilm formation,
methicillin resistance, cell spreading and
expression of other virulence factors [70]

This locus may also be found in CoNS
and could play a major role in CoNS
sepsis [71]

eta, etb, etd Exfoliative toxin A, B and D Toxins involved in the pathogenesis of
bullous impetigo and staphylococcal
scaled-skin syndrome

se(a-e), se(g-j),
se(r-t), sel(k-q),
sel(u-w), tsst-1

Staphylococcal enterotoxins and
enterotoxin-like toxins

Superantigens associated with S. aureus
food poisoning and toxic shock
syndrome

Adapted from Grumann et al. [72]

2010 Eur J Clin Microbiol Infect Dis (2017) 36:2007–2020



E. faecium, have larger genomes, ranging from 2.6 to 3.4 Mb.
The GC content for these two genera varies from 35% to 40%.
Overall, streptococci and enterococci display high genome
plasticity. HGT and homologous recombination can drive se-
rotype modifications, as well as the spread of virulence factors
and antibiotic resistance genes [82–84].

Genomic approach

Regular WGS from bacterial culture is the standard. To our
knowledge, no study reports a culture-independent WGS ap-
proach for streptococci detection. Hasman et al. could suc-
cessfully identify E. faecalis by WGS directly from urine
samples [18]. In addition, the E. faecalis complete genome
sequence could be obtained directly by a metagenomic ap-
proach from stool samples by Morowitz et al. [85].

Typing and outbreak

Molecular typing of S. pyogenes is classically done with the
M-protein encoding gene (emm), as well as with the 7-loci
MLST [86, 87]. However, for outbreak investigation, studies
have shown the added value of WGS thanks to its high dis-
criminatory power compared to other typing techniques
[88–91]. Streptococcus pneumoniae serotypes are wildly used
and important for epidemiological studies and vaccine devel-
opment [92]. Interestingly, MLST is highly congruent with
strain serotypes [93] and can be easily inferred from WGS
data. Serotype prediction from WGS reads is possible thanks
to PneumoCaT, a recently developed automated pipeline [94].
It holds the advantage of recognising particular cases of mixed

serotypes or in the presence of new subtypes, possibly masked
by regular methods. For enterococci, 7-loci MLST and SNP-
based approaches are often used for epidemiological studies or
outbreak investigations [95–101]. A cgMLST scheme for
E. faecium was recently published by de Been et al. and
reaches the same resolution as SNP-based approaches, which
could facilitate standardisation and comparisons between lab-
oratories [102].

Virulence

Genomes of streptococci hold many genes related to virulence
(Table 4) [103, 105]. However, in addition to the presence or
absence of virulence-related genes, mutations in regulators,
such as two-component systems, are often involved in in-
creased virulence. Due to the complexity of the paths regulat-
ing virulence in streptococci, WGS data could benefit from
being combined with RNA sequencing and in vivo study for
outbreak investigations [89]. However, we hypothesise that
having pipelines and databases of virulence-associated genes
and mutations in regulators of virulence would be useful for
public health surveillance or to prevent further complications
of particular clinical presentations, for example by adding
clindamycin to patients at risk of developing toxic shock syn-
drome for S. pyogenes based on the strain genotype.

Antimicrobial susceptibility

Many studies focus on antimicrobial resistance and rely to
some extent on genomic data [11, 106, 107]. For instance,
Howden et al. used WGS to investigate the transmission in

Table 4 Main Streptococcus
pyogenes virulence factors Gene/genomic region/plasmid Functional role Comments

hasA, hasB, hasC Hyaluronic acid capsule
synthesis

Prevention of phagocytosis

emm Antiphagocytic protein
(M protein)

Sequence used for typing S. pyogenes
isolates

spyCEP Interleukin-8 protease Inhibition of PMN leucocytes
diapedesis

sda1 Streptodornase D (extracellular
DNase)

Degradation of PMN DNA nets

sagA, sagB, sagC, slo Streptolysin S and O Lysis of red blood cells, epithelial
cells, macrophages and PMN

speA, speC, speH, speI, speJ,
speL/M, ssa, SMEZ

Superantigens Involved in the pathogenesis of toxic
shock syndrome or scarlet fever

speB Cysteine protease Tissue invasion and dissemination

fbaA, sclA Adhesins

Adapted from Cole et al. [103] and Reglinski and Sriskandan [104]

Many low-/non-virulent isolates hold virulence factors in their genome but their expression is under strong down-
regulation. Mutations in two-component systems, such as covR/S or other regulators, have been associated with a
dramatic up-regulation of most of those virulence-associated genes

PMN, Polymorphonuclear.

Eur J Clin Microbiol Infect Dis (2017) 36:2007–2020 2011



hospitalised patients of vancomycin-resistant E. faecium
(VREfm), which is, in fact, mainly driven by de novo gener-
ation and not only by nosocomial transmission as previously
thought [108]. To extend the example of VRE, gene clusters
involved in vancomycin resistance in enterococci such as
vanA and vanB can be routinely screened using multiplex
PCRs with a good correlation with phenotypic AST [109,
110]. By extension, WGS could be used to screen and detect
all known van gene clusters. However, to our knowledge, no
large studies compared WGS-based genotypic AST to pheno-
typic AST for streptococci or enterococci, despite the increas-
ing knowledge on the genomic basis of antimicrobial resis-
tances and the rise of multidrug-resistant streptococci and
enterococci.

Pseudomonas aeruginosa and Acinetobacter
baumannii

Genome characteristics

The P. aeruginosa genome size ranges from 6.1 to 7.5 Mb,
with a median GC content of 66.2%. For A. baumannii, its
genome size is shorter and varies from 3.7 to 4.3 Mb, with a
median GC content of 39%. HGT and genome-wide homolo-
gous recombination plays a major role in these two successful
and often multidrug-resistant opportunistic pathogens
[111–114]. Plasmid-mediated antibiotic resistances play a ma-
jor role in the transmission of antimicrobial resistances be-
tween isolates and species, which may be hard to assess based
only on short reads sequencing, as discussed already for
Enterobacteriaceae.

Genomic approach

Most studies that investigated outbreaks used a regular
culture-based approach for WGS. Nevertheless, culture-
independent shotgun WGS was performed to investigate the
composition of the microbiota of sputa sampled from patients
with cystic fibrosis, without broad-range 16S rRNA PCR to
avoid bias [115].

Typing and outbreak

Recent studies showed the added value of WGS for outbreak
investigation retrospectively or prospectively compared to
other typing techniques for P. aeruginosa [116–121] and
A. baumannii [122–126]. Thrane et al. made public a web tool
(https://cge.cbs.dtu.dk/services/PAst-1.0/) for in silico
determination of the P. aeruginosa serotype, which can be
useful to detect or characterise outbreak clones [120]. A
real-time WGS investigation of an outbreak in a neonatal in-
tensive care unit was performed and could be used to trace

back the index patient and the source of the outbreak [127].
Although it has not been used for P. aeruginosa so far,
cgMLST was recently carried out for typing A. baumannii
and successfully differentiated a clonal spread among other
isolates [128].

Virulence

WGS allowed indubitably a better understanding of acute or
chronic P. aeruginosa and A. baumannii infections, and helps
the development of new therapeutic approaches [129, 130].
However, besides its use for research or outbreak strain char-
acterisation, a clinical application for the detection of viru-
lence determinants to individualise treatments is currently
too preliminary.

Antimicrobial susceptibility

A large study comparing phenotypic and genotypic AST for
P. aeruginosa reports 91% sensitivity and 94% specificity for
both meropenem- and levofloxacin-resistant phenotypes pre-
diction [131]. However, for amikacin, only 60% of non-
susceptible isolates based on AST were congruent with the
genomic findings. In contrast, Wright et al. observed high
concordance with AST for predicted aminoglycoside and car-
bapenem susceptibility using 75 isolates of A. baumannii
[132]. ARG-ANNOT (Antibiotic Resistance Gene-
ANNOTation), a downloadable tool for the detection of anti-
microbial resistances, was validated using 174 isolates of
A. baumannii with 100% sensitivity and 100% specificity
for the genes analysed, even when querying partial sequences
[133]. Although good sensitivity/specificity may be reached
based on the presence or absence of genes or point mutations
in antibiotic target genes, major challenges remain in the pre-
diction of chromosomal alterations, resulting in the modifica-
tion of expression of genes, such as efflux pumps or intrinsic
beta-lactamases [11]. More studies starting from strain collec-
tions remain to be done to compare phenotypic and genotypic
methods for AST.

Mycobacterium tuberculosis complex and other
mycobacteria

Genome characteristics

Mycobacterium tuberculosis complex (MTBC) has a clonal,
monomorphic genome of approximately 4.3 to 4.4 Mb. HGT
or recombination do not occur in MTBC, whereas it is an
important driving force for evolution in other mycobacteria
(M. canetti or non-tuberculosis mycobacteria, NTM) [134].
Thus, antimicrobial resistances can only occur from SNPs or
insertion–deletion events in MTBC.

2012 Eur J Clin Microbiol Infect Dis (2017) 36:2007–2020
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Genomic approach

Although many genomic studies have been performed on
c la s s i ca l mycobac t e r i a l cu l tu r e , ve ry conc re t e
implementations were attempted in high-income countries
[135, 136]. By performing WGS on positive MGIT, a com-
plete report including species identification, in silico ASTand
calculation of genetic distance to detect outbreaks could be
sent a median of 21 days faster than the final reference labo-
ratory report [135]. Moreover, costs were 7% cheaper than the
regular workflow for mycobacteria. Public Health England
reports to be close to a broad implementation of WGS for
the routine diagnosis of mycobacterial infections [137].
Finally, culture-independent WGS was performed directly
on sputa. One study performed a proof of concept [138] and
the other reported a high-quality sequencing for 20 out of 24
samples and highly concordant genotypic–phenotypic AST
[139]. The time-to-AST was 14 days shorter than with other
WGS workflows using MGIT. In addition, two sequenced
samples did not grow in regular culture, emphasising the
added value of WGS performed directly on clinical samples
[139].

Typing and outbreak

Recent studies showed a higher resolution of WGS compared
to other molecular typing techniques [140–143], such as re-
striction fragment length polymorphism (RFLP) [144],
spoligotyping [145] or variable-number tandem repeats of
mycobacterial interspersed repetitive units (MIRU-VNTR)
[146]. Although, spoligotypes and MIRU-VNTR types can
be determined fromWGS, it is not a straightforward approach
due to the repeats in the regions of interest, thus rendering
assemblies difficult to make from short reads [147]. For public
health, WGS was used to trace back outbreaks with high res-
olution, giving the possibility to identify clonal transmission
between patients [148–150]. However, as discussed before,
SNP-based approaches lack standardisation and inter-
laboratory reproducibility. To tackle this issue, a cgMLST
scheme was recently designed for MTBC [151].

Virulence

Lessons from M. tuberculosis genomics allowed the identifi-
cation of a large number of virulence genes, such as catalases,
superoxide dismutase, as well as effectors of the type VII
secretion system (ESAT-6, CFP10, recently renamed EsxA
and EsxB) [152, 153]. However, the relevance to search for
specific virulence genes is limited since MTBC populations
are mainly clonal and assessment of virulence based on line-
ages holds more promise. There are seven lineages of MTBC
of human health relevance [147]. Lineages 2 (particularly the
modern Beijing sublineage) and 4 are the most widespread

and are more virulent than lineages 1 and 6, with more severe
clinical presentations, more transmissibility and less immuno-
genicity [154–157]. Given their restrictive geographic distri-
bution, lineages 3, 5 and 7 are also likely to be less virulent
[156]. Thus, knowing lineage informs on virulence and is of
public health interest. In addition, automatic web tools can
type and assign lineage to a strain from WGS raw data very
quickly [158, 159].

Antimicrobial susceptibility

Recent large studies compared ASTwith the detection of var-
iants associated to antimicrobial resistances [160–162].
Moreover, several web-based automated tools, taking raw
reads as input, are available [79, 158, 159, 163, 164].
Although sensitivity and specificity were high with the dataset
used in these studies, the EUCAST study group identified
several limitations [11]. (a) Low sensitivity for hetero-
resistance is reported for molecular techniques [165] and cov-
erage needs to be increased to overcome that, which, currently,
would increase the cost and, thus, may not be suitable for a
clinical microbiology laboratory setting. Moreover, most of
the current pipelines are not designed to detect insertion–de-
letion events [166]. (b) Systematic errors may arise from poor-
ly defined cut-offs for phenotypic AST that are used as stan-
dard for the validation of in silico AST. (c) Finally, genetic
basis for antimicrobial resistance is not completely under-
stood, particularly for non-essential genes involved in antimi-
crobial resistance, which means that WGS can mainly rule in
rather than rule out antimicrobial resistance [11]. However, it
is clear that WGS can improve the mycobacterial AST
workflow and patient care by reducing dramatically the time
to an effective antimicrobial regiment, despite it being unlike-
ly that laboratories will dispense completely with phenotypic
AST in the near future [11].

Chlamydia trachomatis

Genome characteristics

Chlamydia trachomatis has a small genome size, as a conse-
quence of the adaptation to its intracellular habitat [167], of
1.0 Mb to 1.1 Mb, with a median GC content of 41.2%.
Although there are evidences for HGT and especially for ho-
mologous recombination, these mechanisms seem to play a
smaller role than point mutations for driving the evolution of
C. trachomatis [168].

Genomic approach

Culture-dependant approaches are time- and resource-con-
suming, due to the intracellular lifestyle of C. trachomatis.

Eur J Clin Microbiol Infect Dis (2017) 36:2007–2020 2013



To tackle this issue, several studies successfully performed
WGS directly on clinical samples by using various tech-
niques: (i) immunomagnetic separation for targeted bacterial
enrichment with multiple displacement amplification, (ii) cap-
ture RNA bait set, (iii) whole-genome amplification before
WGS and (iv) multiplexed microdroplet PCR enrichment
technology [169–172]. A limitation for the clinical use of
the first technique could be the lysis buffer, which is present
in some commercial devices, and may prevent the binding of
antibodies to the major outer membrane protein (MOMP)
[173].

Typing and outbreak

Chlamydia trachomatiswas historically classified byMOMP-
based serology. Serovars are clinically important because they
determine the tissue tropism of the infection (serovars A–C,
ocular; D–K, urogenital and ocular; L1–L3, lymph nodes)
[168]. In recent years, PCR of the ompA, the gene encoding
for the MOMP, was developed for typing but exhibited very
low epidemiological resolution [174]. The multi-locus vari-
able-number tandem repeat (VNTR) analysis (MLVA) system
and various MLST schemes as well as the multi-locus typing
DNA array were developed, which provide more reliable to-
pologies [175–177]. WGS was shown to have a higher reso-
lution than regular phylogenies based on MLST [178].

Virulence

Numerous genes and variants were associated with specific
tissue tropism or pathogenic effect [168]. However, besides a
straightforward use ofWGS to build robust core-genome phy-
logenies and to infer serovar from ompA to predict tropism,

there is currently not enough knowledge on specific virulence
factors that could have a clinical value.

Antimicrobial susceptibility

Although treatment failures have been reported, they are not
likely due to antimicrobial resistance, which will hopefully
remain rare [179]. Thus, there is currently a limited need for
in sil ico antimicrobial resistance predictions for
C. trachomatis.

Discussion

For all the major pathogens investigated during this review,
we can observe an increasing number of publically available
genomes (Fig. 1). Along with this trend, our review shows the
development of various WGS-based approaches, as well as
attempts of their implementation in a clinical microbiology
routine. Knowledge on the genomics of the pathogens is a
prerequisite before any clinical use and important features
need to be kept in mind for each microorganism. Although
horizontal gene transfer or recombination events are very fre-
quent in most pathogens, they do not occur inM. tuberculosis.
This is critical because HGT and recombination have a large
impact on the transmission of virulence factors, antimicrobial
resistance genes and on serovar modifications. Concerning the
genomic approaches, WGS is regularly performed on cultivat-
ed isolates, but an increasing number of studies report culture-
independent WGS, which could speed up the clinical labora-
tory workflow, particularly to decrease the time to genotypic
AST. A straightforward and broadly recognised use ofWGS is
for the investigation of outbreaks and is nowadays broadly
implemented in clinical microbiology and infection control

Fig. 1 Number of genome assemblies available in the National Center for Biotechnology Information (NCBI) database per year
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laboratories. Although SNP-based methods have shown great
successes, new typing approaches such as rMLSTor cgMLST
schemes, which offer standardisation and comparability be-
tween laboratories, are available for an increasing number of
organisms.Moreover, they were shown to be highly reproduc-
ible and accurate [180]. Mellmann et al. used cgMLST to
monitor prospectively the transmission of methicillin-
resistant S. aureus, VRE, multidrug-resistant E. coli and
multidrug-resistant P. aeruginosa. This approach was efficient
and cost-effective in the setting of a majority of multi-bed
rooms and because of the possibility to reduce a systematic
isolation recommended by German guidelines [181]. Diseases
pathogenesis is extremely diverse and complex. For most
pathogens, there is no straightforward approach to predict an
isolate’s virulence based on its genotype. Indeed, host factors
as well as modification of the expression of virulence-
associated genes add another layer of complexity. However,
WGS can provide a map of the virulome, which can some-
times be determining for a patient’s care, for instance, by pre-
cisely determining the E. coli pathotype. The EUCAST sub-
committee reports that there is currently not enough evidence
to support clinical decision-making based on genotypic AST
[11]. However, for mycobacteria, WGS implementation for
diagnosis, in silico AST and outbreak investigation was
shown to be successful and cost-effective, with a rapid turn-
around time, saving weeks or even months of cultures [135].

Finally, for an implementation in clinical microbiology,
WGS-based methods will need standardised and validated
(i) procedures, (ii) quality control and (iii) subsequent bioin-
formatics pipelines. Moreover, they will need to be in line
with the clinical requirements for data protection.
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