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Abstract 
 
This study examines the intraday and weekend volatility on the German DAX. The 
intraday volatility is partitioned into smaller intervals and compared to a whole day’s 
volatility. The estimated intraday variance is U-shaped and the weekend variance is 
estimated to 19 % of a normal trading day. The patterns in the intraday and weekend 
volatility are used to develop an extension to the Black and Scholes formula to form a 
new time basis. Calendar or trading days are commonly used for measuring time in 
option pricing. The Continuous Time using Discrete Approximations model (CTDA) 
developed in this study uses a measure of time with smaller intervals, approaching 
continuous time. The model presented accounts for the lapse of time during trading 
only. Arbitrage pricing suggests that the option price equals the expected cost of 
hedging volatility during the option’s remaining life. In this model, time is allowed to 
lapse as volatility occurs on an intraday basis. The measure of time is modified in 
CTDA to correct for the non-constant volatility and to account for the patterns in 
volatility. 
 
Keywords: Option pricing, Intraday volatility patterns, Weekend volatility, Continuous 
time. 
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1 Introduction 
 

A debated issue in option pricing is how to account for the lapse of time. A major 

question is whether an option buyer should pay for the decrease in time value over a 

weekend or not. The time value left can be seen as the volatility expected to occur 

during the option’s remaining life. The argument for not paying any time value over the 

weekend is that price discovery is made only when markets are open, which gives no 

value to holidays and weekends in option pricing. Under this argument, only the time 

value caused by interest rates calculated in calendar time should be accounted for. 

On the other hand, the argument for paying time value over the weekend is that 

floods, draughts and other pertinent news do happen during weekends, too. This means 

that on Monday the market would be reacting to three days of information released 

over the weekend. This gives us unobserved holiday volatility, as assets on most 

exchanges do not trade during the weekend. Under the calendar time hypothesis one 

would expect the mean and variance to be three times as high from Friday close to 

Monday close. Under this assumption, we expect to have holiday volatility from Friday 

close to Monday open. Fama (1965) found that the variance from Friday close to 

Monday close was only 22 % higher than between two subsequent trading days. French 

(1980) found the variance to increase by only 19 % in a similar test on more recent 

data. The findings in Sundkvist and Vikström (2000) reveal that the weekend variance 

on the German DAX was 54 % during 1990-1999, but only 17 % during the subperiod 

1995-1999. French and Roll (1986) provide possible explanations and testing of the 

phenomenon that prices are more volatile during exchange trading hours. 

The need for taking the time-basis argument one step further is most evident in 

the pricing of shorter-term options. Pricing of shorter term options raises the question 

whether days that elapse, let it be trading or calendar days, is a sufficiently small time 

interval. Shorter maturity options are often more actively traded and the bid-ask spreads 

are smaller, thus pricing is believed to be more exact. The time decay is also greater for 

shorter maturity options, making the discrete time interval of whole days even more 

prominent. Stoll and Whaley (1990) reported that intraday volatility is higher than the 

overnight volatility on NYSE. It is also a fact that volatility intraday is not realized 

linearly, but is higher at open and close producing a U-shaped function of volatility. 

Several authors have documented that the volatility and volume is higher at open and 

close, for which Admati and Pfleiderer (1988) provide possible explanations. This 
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phenomenon seems to exist on all equity markets and through time, as it has been 

documented on NYSE by Wood et al. (1985) and Chan et al. (1991), and by Shiyun and 

Guan (1999) on NIKKEI. Berry and Howe (1994) provided an explanation for the 

patterns of intraday volatility by measuring the information flow. Public information 

arrival was shown to be non-constant, displaying distinct intraday patterns.1 Chang, 

Chang and Lim (1998) models time as stochastic according to information arrival. 

Given the phenomena in intraday volatility, at the extreme one can model the option 

price in continuous time to account for the seemingly predictable patterns of volatility 

intradaily.  

To correct for the unrealistic use of a constant volatility in option pricing, using 

a model with stochastic volatility should be considered. However, such models are 

somewhat complex. To get a reasonably simple model from a computational 

standpoint, we attack the problem by changing the time unit. The change in the time 

unit should capture the patterns in volatility. This is the central theme of this study. The 

resulting model will then automatically adjust for the patterns of varying volatility that 

can be fairly well predicted. This leaves the trader with one task less to concentrate on 

– the trader now needs to adjust the volatility parameter only when there is some 

fundamental reason shifting the level of expected volatility. 

 This paper continues in section two by presenting the Black and Scholes (1973) 

formula and the two most common methods for counting days in option pricing; trading 

days and calendar days. Section three develops a methodology in option pricing for 

accounting for the patterns in volatility, which is accomplished by adjusting the passage 

of time. Section four provides the results from the estimation of the model on the 

German market. First overnight and intraday volatility is estimated in relation to each 

other on a longer period. This is done as comparison for the intraday intervals estimated 

on a shorter period and to check the robustness of the relationship between overnight 

and intraday volatilities. The volatility during a holiday is also estimated. Section five 

demonstrates the impact of choosing the new method instead of one of the old methods. 

Option prices are compared for shorter and longer maturities with the three different 

methods of time lapse. Perhaps this is the most interesting section where it is shown 

                                                           
1 However, no significant relationship was found between public information arrival and volatility. This 
is argued by Berry and Howe (1994) to be expected as public information is available to the whole 
market and does not require trading to impact prices, whereas private information affects prices only 
through trading. 
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how the model works and how prices compare in trading time, CTDA time and 

calendar time. Section six summarizes the paper. 

 

 

2 Time in option pricing 
 

Time to maturity is critical in estimating the theoretical price of an option. The option 

premium is higher for longer maturities2, which corresponds to the higher possibility of 

the option ending in-the-money with longer maturities. 

The Black and Scholes formula is dependent on time as shown in equations (1, 

2 and 3) and accounts for time to expiry in the parameter t. The price of a European call 

option is estimated as 

 

(1) 

 

(2) 

 

(3) 

 

and C is the price of the call option with strike X and underlying S, r is the interest rate, 

σ is the volatility and t is time to maturity. 

 In option pricing, it is common practice to use either calendar or trading days to 

count the days to maturity of an option. Normally there are 365 calendar days during a 

year and t is given as a fraction of a year like 

 

(4) 

 

where cd is calendar days left. The other commonly used measure is trading days, of 

which there are about 252 during a year and thus we would use 

 

(5) 

 

                                                           
2 This holds for assets that do not pay any dividend before the maturity of the option. 

,
)2/()/ln( 2

1 t
trXSd

σ
σ++

=

,12 tdd σ−=

),()( 21 dNXedSNC rt−−=



 5

where td is trading days left. However, the number of trading days is not necessarily 

proportional to the number of calendar days left over time, as there are more holidays 

during some seasons of the year. Therefore, one should consider using a different 

denominator during different times of the year, at least for pricing options with time to 

expiry less than a year. 

 When pricing options with trading days, an inconsistency becomes apparent. 

The volatility is generated over trading time during approximately 252 days of the year, 

but interest rate is accumulated over calendar time 360 or 365 days of the year. 

Obviously, we now have two different time bases. French (1984) suggests using the 

Black and Scholes formula on a composite-time basis. His model allows for different 

time units for the interest rate and volatility. As this study is aiming at developing a 

model with a time basis different from calendar days, we use the idea in French’s study 

and adjust the Black and Scholes formula in equations (2) and (3) as demonstrated in 

equations (6) and (7) to have two different time bases. 

 

(6) 

 

(7) 

 

where τ is time to expiration on a new time basis that has yet to be estimated. French 

used in his study 252 days per year corresponding to volatility only during trading time. 

French still used t as calendar days in equation (1) in order to count interest rate on a 

daily basis. 

 One of the empirical findings of French’s study (1984) was that options seem to 

be priced under the trading day hypothesis but with interest rate accrued during 

calendar days. This means that holidays would cause no extra volatility, if we were to 

believe the pricing of options on the market. However, as shown in various articles 

already mentioned, holidays do cause an unobserved volatility. 

 With longer maturity options, the difference between using trading and calendar 

days is minimal. Being consistent in the choice of basis of time usually yields 

acceptable results. However, with shorter maturity options the difference is 

increasingly important. The extreme example would be an option with four days left 

and during three of those days; the market is closed because of a three-day weekend. 

The option priced on the basis of calendar days has 4/365 days left, but only 1/252 days 

,
2/)/ln( 2

1 τσ
τσ

τ

τ++
=
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d
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left priced on the basis of trading days. The time remaining with trading days is 2.76 

times that of calendar days in this example. 

Now assume that there is some volatility during holidays, but that this volatility 

is less than during trading days. Using calendar days would make the options too cheap 

on Mondays and too expensive on Fridays. To adjust for this in practice, an options 

trader using calendar days as time basis can gradually decrease the volatility in the 

pricing model during the week just to increase it on Monday morning. The volatility of 

actual option prices on Friday close could then be observed at a level corresponding to 

a point in calendar time that may be somewhere between Saturday and Sunday. 

Changing the volatility or time like this seems like a somewhat cumbersome rule of 

thumb. 

 With trading days, it is the other way around - volatility has to be increased on 

Friday and decreased on Monday morning. This kind of manipulation with the 

volatility is necessary in order to adjust for the imperfect assumptions of the option-

pricing model. The holiday volatility is the cause of this inconsistency with implied 

volatility in both trading time and calendar time. Hence the need to develop a third 

measure of time. Furthermore, one assumption of the Black and Scholes formula is that 

trading is continuous, but it is a fact that markets are closed most of the time. 

Therefore, we need to implement discrete time in pricing as well. Discrete time is in a 

way already implemented in Black and Scholes if we let time decrease by a whole day 

at a time, but a jump of a whole day at a time would be justifiable only with an intraday 

volatility of zero. 

It should also be noted that the implied volatility is dependent on the time basis 

used. Hence, adapting a time basis with a variable lapse can eliminate the patterns in 

implied volatility. This implies that the time is ticking faster under higher volatility and 

that time stands still during non-trading. This leaves the volatility parameter in option 

pricing to be altered only for fundamental changes in the expected volatility. The time 

parameter substitutes the trader’s rule of thumb that is used with the original Black and 

Scholes formula. This way any patterns in implied volatility should diminish. 

Patterns in the variation of the implied volatility can be seen as a problem in the 

specification of the model. An extension to the Black and Scholes to correct for the 

assumption of continuous trading and constant volatility is developed in the next 

section. This is done in order to get around the need for systematic adjustments to the 

implied volatility because of time lapsing. Volatility should change only when the 
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expected volatility during the option’s remaining life changes. First some preliminary 

tests on the market studied. 

 

 

3 Methodology 
 

In this section, a model is developed to obtain a theoretical price accounting for the 

volatility of the underlying on an intraday basis. The model should also take care of the 

weekend effect in volatility, which has been reported by French (1980), Gibbons and 

Hess (1981), Lakonishok and Levi (1982), French (1984), Dubois and Louvet (1986) 

and on the DAX by Sundkvist and Vikström (2000). Given rules of no arbitrage, we 

expect the time value of an option to equal the expected cost of hedging the volatility 

during the option’s remaining life. Thus, the model will produce option prices under the 

assumption that volatility is expected to be realized in the same pattern as historically 

during different hours of the day. The model developed below uses this argument and 

this implies the assumption that news causing volatility arrives at a similar rate also in 

the future. Under this assumption, volatility is expected in a similar pattern during all 

days of the week. For simplicity, variance is used instead of volatility in the 

development of the methodology. The variance left is expressed in days. How to use 

this new extension in option pricing is best demonstrated using examples as will be 

done at the end of next section. First, the weekend and intraday volatilities are 

estimated. 

 

3.1 Preliminary tests 
 

The no-arbitrage pricing rule suggests that the option premium equals the expected cost 

of hedging volatility during the option's remaining life. The cost of hedging is 

proportional to the variance. In a trending market, the variance estimated with a mean 

is lower than the variance without a mean. As any trends should be unpredictable, the 

expected mean should be used in the estimation of the variance and not the realized 

mean. 

Let us begin by dividing variance into intraday and overnight variance. As a 

first test, compare the intraday portion of variance with the overnight portion of 

variance. This will result in an observed variance during trading and an unobserved 
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variance during non-trading. These partial volatilities defined as intraday variance IV 

and overnight variance OV are calculated as 

 

(8) 

 

and 

 

(9) 

 

where o and c are logarithms of the open and close prices respectively. The overnight 

returns obtained should first be subtracted by the expected return µ before taking the 

power of two. As the settlement system allows all trades during one day to be settled on 

the same day, we see no reason for expecting an intraday return as there is no foregone 

interest for holding an asset from open to close. 

To get a strictly overnight variance, only observations with a single night are 

considered in equations (8) and (9). Holidays are left out and estimated separately 

below. The inclusion of holidays in the estimation of equation (9) would lead to an 

unobserved variance with more than overnight variance in it. The portion of variance of 

the total variance during twenty-four hours that passes intradaily PIV is then 

 

(10) 

 

and the portion of overnight variance of total variance is 

 

 (11) 

 

Because the portions of volatility can be very different from day to day, a moving 

average will be used for presenting the portions of intraday and overnight volatility 

over time. 

 

3.2 Modeling intraday and weekday volatility 
 

Under the trading time hypotheses, no volatility exists during holidays. Under the 

calendar time hypotheses volatility is just as high during non-trading days as on trading 
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days and is accumulated just to be realized at the open the next trading day. Taking the 

results of Sundkvist and Vikström (2000) for the DAX during 1990 – 1994 and 1995-

1999, Mondays had a variance that was respectively 54.50 % and 16.65 % higher than 

for the other weekdays. This implies that a model in trading time is not pricing options 

optimally, neither is a model in calendar time. Therefore, the holiday volatility is to be 

accounted for. 

The variance accumulated during the holiday is expected to be realized when 

the market opens. In this study the excess variance for a holiday EHVh of h days of 

non-trading is estimated as 

 

 (12) 

 

where OVh is estimated as OV but with h days of non-trading between ct-1 and ot. This 

excess variance is added to the variance of the day succeeding the holiday. EHV is a 

measure of how much additional variance is realized after a non-trading period of h  

days. This additional variance is measured in proportion to the total variance (IV + OV) 

for subsequent trading days. Consequently, a trading day that is preceded by another 

trading day is expected to have variance 1 or 100 %, but a trading day after a holiday of 

h days is expected to have variance 1 + EHVh. The total overnight volatility to be 

realized on Monday morning is thus EHV + OV. 

 Once we have estimated the portions of variance that is realized intradaily and 

overnight, we can take a closer look at the intraday variance. The largest portion of 

variance is intraday variance (Lockwood and Linn [1990]). The intraday variance is 

observable as it is subject to continuous trading. This observed variance is realized 

during a longer time span than the unobserved overnight variance, which is to be 

realized at the open of the market. 

 To get a measure of the magnitude of intraday variance, a measure that is easy 

to grasp, 30-minute intervals of returns are used to calculate variance. This means that 

the continuous time is approximated using 30-minute discrete time intervals. Let us 

look at an example where the market opens at 9:00 AM. The variance for the first half-

hour is calculated in the same way as IV and OV from the return from the previous 

close to 9:30 AM. The variance for the second interval is the squared return from 9:30 

AM to 10:00 AM, thus using a zero mean. The average variance for the respective time 

intervals during the estimated period are the parameters for how fast “time” is ticking 

,
OVIV
OVOVEHV h

h +
−=
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during the trading, measured in discrete time intervals of 30 minutes each. The variance 

for each interval is then presented in proportion to the variance for the whole day, i.e. 

the close-close variance. Thus, in the CTDA model, time appears to be ticking faster 

during intervals of higher volatility. 

 

3.3 The data 
 

The data used in this study consists of daily open, close and intraday returns for the 

future on the German DAX-index. The returns were calculated as differences in log 

prices, Rt = 100*(ln(Pt)–ln(Pt-1)) where Pt denotes the price at time t. Intraday data is 

available for two periods of 65 and 57 trading days respectively. During the first period 

of intraday data, the future on the DAX was traded until 5:00 PM. For the second 

period the market closed 30 minutes later. Daily data is available for 993 days. 

Descriptive measures for the data are presented in Table 1. The daily return is on 

average 0.10 % and the intraday return 0.02 %, although 0 % was expected intradaily. 

 

Table 1 
Descriptive data 
1/1/1996-12/30/1999 N Mean Variance Skewness Kurtosis 

 Close-close returns 961 0.0993 2.1044 -0.3625      2.3066 
 Close-open returns 961 0.0862 0.8273 -0.9596    11.1538 
 Open-close returns 977 0.0161 1.6134 -0.4514      2.1104 

10/1-12/30/1998 N Mean Variance Skewness Kurtosis 
 30-minute returns  991 0.0078 0.3623 -0.3645      5.9324 

9/1-11/19/1999 N Mean Variance Skewness Kurtosis 
 30-minute returns  969 0.0088 0.0725 -0.9079      7.2907 

Close-close are daily returns, close-open are overnight returns and open-close are intraday returns. 
Returns are in percentage and were calculated as differences in log prices, Rt = 100*(ln(Pt)–ln(Pt-1)) 
where Pt denotes the price at time t. 
 

The descriptive data from the first half of Table 1 implies that the sum of overnight 

variance (0.82727) and intraday variance (1.61344) is not the same as the close-close 

variance (2.10439). The correlation between overnight and intraday variance is then –

0.146. The fact that the sum of variances in smaller intervals is higher than a daily 

variance supports the pricing-error hypothesis proposed by French and Roll (1986), but 

can also be due to negative autocorrelation. 
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The future expires once every three months, so from the data have been 

excluded returns involving the expiration day. During the four years of data, there are 

16 expiration days for the future. This excludes 32 observations for every return 

spanning two days, and 16 observations for intraday returns. For the most recent 

sample of 30-minute intervals there was no expiration of the future, but one futures 

expiration for the less recent period. 

 The problem of lagging observations and thus positive autocorrelation arises 

when using indexes as the underlying. When using the future as the underlying, 

negative autocorrelation may be present in the data due to the bid-ask bounce. 

However, the bid-ask spread in the DAX future is minimal, normally a fraction of a 

percentage. Thus, the impact of the bid-ask bounce is also minimal, but might vary 

during the day under different levels of liquidity. The effect can however be canceled 

out if the lower liquidity leads to less volatility and thus smaller bid-ask spreads, which 

is in fact observed during the middle of the trading day. The autocorrelation in the 30 

minute returns is –0.04. 

 

 

4 Results 
 

As discussed in the beginning of the previous section, the cost of hedging is 

proportional to the variance around the expected mean. Thus, estimation of the variance 

calls for estimation of the expected mean. We estimated the annual mean return on the 

DAX index to 13.64 % during the years 1988-1999. This translates into a daily mean 

return of 0.06 % which is included in the estimation of the overnight variance. In the 

estimation of the intraday variance, a mean of zero is used throughout the estimation in 

this study as there should be no opportunity cost on an intraday basis. The intraday 

variance IV was estimated using equation (12). The overnight variance OV for 

consecutive trading days was estimated using equation (13). The results are presented 

in Table 2. The portion of variance that was realised during continuous trading, i.e. 

PIV, was 69.30 % of the total variance during twenty-four hours. POV was on average 

30.70 %3. However, the partial volatilities are not constant and PIV varies between 

                                                           
3 Remember that the total variance is the sum of overnight and intraday variance. 
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44.02 % and 81.29 % in a moving average with 100 observations in it.4 This means that 

in general the intraday variance stands for the major part of variance during a twenty-

four hour period, but is occasionally less than 50 %. 

 

Table 2 
Portions of intraday and overnight volatility 
 IV OV 

Mean 1.6696 0.7450 
Minimum 0.2579 0.0982 
Maximum 5.0326 1.7816 

 PIV POV 

Mean 69.30 % 30.70 % 
Minimum 44.02 % 18.71 % 
Maximum 81.29 % 55.98 % 

IV is estimated as intraday (open-close) and OV as overnight (close-open) variance for consecutive 
trading days on percentage returns 1/1/1996 – 12/30/1999. 
 

The mean variance ratio between IV and OV in Table 2 is 2.24. 

 By comparing the results in Table 1 that includes all observations and Table 2 

that includes observations only between subsequent trading days, we find that there is 

some variance missing. The IV of 1.6696 in Table 2 is a bit higher than the intraday 

variance in Table 1 of 1.6134, implying that the variance during trading on the day 

following a holiday was a bit lower than on subsequent trading days. The difference is 

however small and hereby only stated. The difference between OV in Table 2 and the 

overnight variance in Table 1 is a bit greater and caused by the holiday volatility. This 

will now be taken into account. 

The excess variances EHV for holidays of different lengths are estimated using 

equation (12) and presented in Table 3. For a one-day holiday, the excess variance 

turns out to be 20.27 %, but the number of observations is only 15. This means that a 

one-day holiday should be followed by a day that is 1.2027 days “long” as far as 

variance is concerned. A two-day holiday leads to a trading day that is 1.1689 days 

long, which is very close to the 1.1665 estimated by Sundkvist and Vikström (2000). 

We have small samples for one-day, three-day and four-day holidays, but using an 

average of all holidays gives us a larger sample. Taking the average excess volatility 

for a holiday of any length gives us an EHV of 19.26 %, which will be used in the final 

model. This means that a holiday of any length is expected to be followed by a trading 

                                                           
4 PIV and POV are of course dependent on the length of the moving average window as these ratios 
varies a lot from day to day. 
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day that has a variance 19.26 % higher than subsequent trading days. However, 

Lockwood and McInish (1990) show that the variances of overnight and intraday 

returns are different during bull and bear markets. Thus, the weekend variance, which 

is also one form of overnight volatility, is not necessarily stable either. 

 

Table 3 
Excess holiday volatility 
 

Type of holiday N Excess holiday variance 

One-day holiday 15 20.27 % 
Weekend (two days) 193 16.89 % 
Three-day weekend 10 20.73 % 
Four-day weekend 6 84.48 % 
Average (2.03 days) 224 19.26 % 

 

EHV or excess holiday variance is measured in relation to the total one-day variance for subsequent 
trading days. 
 

The variance that was realized intradaily is U-shaped and is presented in 30-minute 

intervals in Table 4. This is the variance realized for a trading day proceeded by another 

trading day. However, it should be noted that the pattern of intraday volatility is not 

stable over time and the results presented here should be used on another period with 

due consideration. The estimated variances are presented to make the idea of the model 

clear. The overnight variance OV was estimated to 30.70 % on the period with four 

years of data. This is in line with that reported in Table 4 at 9:00 where the overnight 

variances for the intraday periods tested were 30.0 % and 29.6 % respectively. 

The U-shaped intraday volatility is quite evident in this sample in line with the 

findings in Högnäsbacka et al. (2000) on the same market. However, the U-shaped 

pattern is perhaps not as evident as for the S&P 500 studied by Chan et al. (1991). The 

intraday volatilities for this short period are very sensitive to outliers. In addition, the 

intraday volatilities probably change over time and may need re-estimation at the 

discretion of the user. However, the results in Andersen and Bollerslev (1996) and 

Anderson et al. (1998) indicate that the intraday patterns for currencies are reasonably 

stable. 

 
 
 
 
 
 
 
 



 14

Table 4 
Intraday variance in 30-minute intervals 
 

 10/1-12/30/1998 9/1-11/19/1999 

9:00 AM 30.0 % 29.6 % 
9:30 AM 9.9 % 6.9 % 

10:00 AM 6.2 % 4.8 % 
10:30 AM 5.3 % 3.4 % 
11:00 AM 4.2 % 3.7 % 
11:30 AM 2.1 % 2.6 % 
12:00 PM 4.8 % 2.2 % 
12:30 PM 3.5 % 3.9 % 

1:00 PM 2.0 % 3.5 % 
1:30 PM 4.5 % 1.7 % 
2:00 PM 5.1 % 6.5 % 
2:30 PM 3.8 % 9.2 % 
3:00 PM 1.6 % 3.8 % 
3:30 PM 4.2 % 4.2 % 
4:00 PM 5.4 % 4.1 % 
4:30 PM 7.4 % 3.1 % 
5:00 PM - 6.8 % 

 

The realized intraday variance in 30-minute intervals was estimated as squared returns. The 
number in each cell represents the equivalent amount of time lapsing to correspond to the 
variance in the respective interval. 
 

The intraday seasonal patterns in volatility from Table 4 are visualized in Figure 1. 

During the more recent period, trading hours where 30 minutes longer as seen in the 

figure. 
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Figure 1 
U-smile in intraday volatility 
The intraday volatility is higher around open and close. The bold line shows the intraday 
volatilty for the period 10/1-12/30/1998 with the market closing 4:30 PM and the dotted line 
shows the intraday volatility for the period 9/1-11/19/1999 with the market closing 5:00 PM. 
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There is an obvious spike in volatility around 2:30 PM during the more recent period. 

This is when some financial markets open in the USA, and the volatility is perhaps due 

to uncertainty where the market will go the minutes before and after opening. Another 

possible and related cause for volatility in these two intervals is the release of 

significant economic reports at the same time. Such news announcements have been 

found to affect volatility by Burghardt and Hanweck (1993). The volatility spike 

around 2:30 PM appeared also in the study by Andersen and Bollerslev (1996). 

The estimation of the model is now complete. Henceforth we will be using the 

estimated variances for the more recent period in the discussion of the model. The time 

left at different points is shown in Table 5 for the last few days before expiration. 

 

Table 5 
Time left during the last few days before expiration 
 Friday Monday Tuesday Wednesday Thursday Friday 

Calendar days: 7.00 4.00 3.00 2.00 1.00 0.00

Trading days: 5.00 4.00 3.00 2.00 1.00 0.00

CTDA-days:      
9:00 AM 6.19 5.19 4.00 3.00 2.00 1.00
9:30 AM 5.90 4.70 3.70 2.70 1.70 0.70

10:00 AM 5.83 4.64 3.64 2.64 1.64 0.64
10:30 AM 5.78 4.59 3.59 2.59 1.59 0.59
11:00 AM 5.75 4.55 3.55 2.55 1.55 0.55
11:30 AM 5.71 4.52 3.52 2.52 1.52 0.52
12:00 PM 5.68 4.49 3.49 2.49 1.49 0.49
12:30 PM 5.66 4.47 3.47 2.47 1.47 0.47
1:00 PM 5.62 4.43 3.43 2.43 1.43 0.43
1:30 PM 5.59 4.39 3.39 2.39 1.39 0.39
2:00 PM 5.57 4.38 3.38 2.38 1.38 0.38
2:30 PM 5.50 4.31 3.31 2.31 1.31 0.31
3:00 PM 5.41 4.22 3.22 2.22 1.22 0.22
3:30 PM 5.37 4.18 3.18 2.18 1.18 0.18
4:00 PM 5.33 4.14 3.14 2.14 1.14 0.14
4:30 PM 5.29 4.10 3.10 2.10 1.10 0.10
5:00 PM 5.26 4.07 3.07 2.07 1.07 0.07

The figures are number of days left using different time bases. For CTDA-days there are 30-minute 
intervals representing time to expiration at different moments of the day. 
 

For pricing an option in calendar time, we would use the first row and divide it by 365 

to arrive at the t parameter for equation 1. Using trading time we choose the second row 

and divide it by, let us say, 251 to get the time parameter. Using the CTDA-time model 

we obtain a time parameter that is changing for every half-hour of trading in this 

example. In one year, there are about 262 CTDA-days on the German market, 



 16

depending on the number of holidays. To arrive at the number of CTDA-days, take the 

number of trading days and add the EHV for every holiday.5 

The number of CTDA-days in Table 5 should be interpreted as time to 

expiration prior to this point in time. This means that at Monday morning time to 

maturity is 5.19/262, which is reduced to 4.70/262 as soon as the market opens in order 

to account for the excess holiday volatility and the normal overnight volatility. Both of 

which are to be realized at open. Using discrete intervals of 30 minutes the time is 

reduced by 0.49/262 at the opening on Monday morning. As the German DAX future 

normally expires on Fridays at 1:00 PM, we would like to set the time to expiration to 

zero at 1:00 PM on Friday. This could be accomplished by subtracting 0.43 days from 

all the values prior to that point in Table 5. 

Also, note that when using calendar or trading days, we have stated that there is 

zero time left on the last Friday. This can obviously cause a problem in trying to obtain 

a theoretical price. With no time left the option price is only the intrinsic value. At open 

the last trading day, the theoretical prices will not reflect any time value, whereas there 

surely is going to be volatility during the few hours left until expiration. To price 

options on the expiration day using one day left also causes a problem – option 

premiums are then too high. This is where the CTDA-model might come in handy. 

 

 

5 The effect on option pricing 
 

We now demonstrate the differences in option prices using the three time units; 

calendar time, trading time and the continuous time discrete approximation (CTDA) 

presented in this paper. The option prices are calculated using the different time 

measures τ for the volatility component, but t is still calendar days as in the Black and 

Scholes formula in order to count interest rate on a daily basis in calendar time. We use 

options on the DAX for three different strikes and show differences between the 

models in simulated prices as time to maturity decreases. Table 6 presents the prices for 

a given volatility. The time to maturity starts at 106 days in calendar time, 70 days in 

trading time and 73.85 days using CTDA. 

 

                                                           
5 Please note that several subsequent days of non-trading are treated as only one holiday, which is 
justified by the results reported in Table 3. 
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Table 6 
Simulated call option prices using the three different measures of time 
 In-the-money At-the-money Out-of-the-money 

Date A B C A B C A B C 
4/6/2000 798.72 793.75 795.37 381.18 373.58 376.07 146.09 139.56 141.70

4/13/2000 788.08 782.78 784.43 367.39 359.09 361.69 135.03 128.05 130.23
4/20/2000 777.31 771.68 773.35 353.17 344.11 346.83 123.85 116.38 118.62
4/27/2000 766.41 763.68 765.26 338.48 333.99 336.60 112.53 108.91 111.01
5/4/2000 755.39 754.00 755.54 323.24 320.88 323.50 101.09 99.24 101.29

5/11/2000 744.26 742.59 744.14 307.40 304.43 307.20 89.55 87.30 89.39
5/18/2000 733.05 731.10 732.66 290.86 287.21 290.15 77.92 75.27 77.40
5/25/2000 721.78 719.57 721.14 273.49 269.07 272.21 66.25 63.20 65.37
6/1/2000 710.52 709.68 710.88 255.15 253.34 255.91 54.60 53.43 55.10
6/8/2000 699.35 698.28 699.45 235.61 233.03 235.84 43.08 41.55 43.21

6/15/2000 688.43 688.65 689.72 214.59 215.18 218.07 31.85 32.17 33.72
6/22/2000 677.99 679.31 680.00 191.61 196.01 198.20 21.23 23.22 24.24
6/29/2000 668.43 669.32 669.89 165.91 170.09 172.64 11.74 13.17 14.07
7/6/2000 660.39 660.83 661.21 136.04 140.05 143.15 4.32 5.11 5.78

7/13/2000 654.62 654.70 654.80 98.45 102.50 106.69 0.43 0.61 0.86
7/14/2000 653.99 654.01 654.07 91.94 93.48 98.39 0.22 0.26 0.43
7/15/2000 653.39 653.45 653.49 84.97 93.17 96.46 0.10 0.26 0.37
7/16/2000 652.81 652.89 652.93 77.42 92.86 96.15 0.03 0.26 0.36
7/17/2000 652.24 652.26 652.28 69.10 82.91 86.94 0.01 0.08 0.13
7/18/2000 651.68 651.68 651.69 59.70 71.66 76.71 0.00 0.01 0.03
7/19/2000 651.12 651.12 651.12 48.61 58.37 64.95 0.00 0.00 0.00
7/20/2000 650.56 650.56 650.56 34.24 41.15 50.65 0.00 0.00 0.00
7/21/2000 - - 650.00 - - 30.50 - - 0.00
Simulated call option prices using the three different measures of time; calendar days (A), trading days 
(B) and continuous time discrete approximation (C). The underlying is at 6500, volatility is 25.0 % and 
constant across strikes for comparability, interest rate is 3.5 % and always accrued in calendar time. The 
strike for the in-the-money call is 5850 and the strike for the out-of-the-money call is 7150, i.e. 
approximately 10 % away from at-the-money. Dates in italic are holidays. Expiration date is 7/21/2000. 
All three models accrue interest in calendar time, hence the change in option prices also for (B) and (C) 
during the weekend, shown in italics. On the expiration date there is zero time left using the calendar and 
trading time bases, hence there is no price available. 
 

Table 6 gives an indication of the comparative properties of alternative option pricing 

formulas. However, the simulated prices are just a few arbitrary examples. Option 

pricing has many dimensions and the pricing dynamics cannot justifiably be described 

in a two-dimensional table. Changing any parameter also changes the differences using 

the three different time units, but the pattern is evident. With options being priced 

according to realized volatility, using either calendar or trading days as time basis may 

not produce prices under non-arbitrage rules. The major issue is that there is a jump in 

prices whenever there is a holiday, a jump that is not properly caught in prices in either 

calendar or trading time. Using CTDA in pricing options we should arrive at the 
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theoretical non-arbitrage price, but using calendar days will produce a price that is too 

high prior to a holiday and too low after a holiday. When using trading days as time 

basis the sign of the bias is the opposite and also smaller. In the leap year 2000 there 

are 366 calendar days, 252 trading days and 262.59 CTDA days for the DAX. Thus, the 

choice of time basis will indeed affect prices. 

The differences in prices shown in Table 6 are in practice avoided by changing 

the implied volatility, possibly according to a rule of thumb such as described in section 

two. The CTDA-time model provides a systematic way of accounting for the patterns 

in volatility, which can easily be implemented in the pricing software. 

 In-the-money options in Table 6 has an intrinsic value of 650, the rest is time 

value. These options have a vega close to zero, which implies that the differences in 

prices are small under different implied volatilities. At-the-money options have a larger 

sensitivity to volatility and the differences are clear. The two rows in italic in Table 6 is 

a holiday where the option premium changes by only the effect of the interest in trading 

and CTDA time. Furthermore, it is obvious that the volatility has to be set higher for 

the calendar-time model on the following Monday because time left (4/365) is 

significantly less than for the two other models (4/252 and 5.19/262 respectively). In 

percentage, the prices for out-of-the-money options are most sensitive to a change in 

volatility. 

When time to maturity is less, we will also want to look at intraday time 

intervals. The price of at-the-money options with only a few days to maturity is shown 

in Table 7 priced on the three different time bases. The Appendix shows two similar 

tables for a 5 % out-of-the-money put and call respectively. The differences are 

somewhat more accentuated in percentage with out-of-the-money options and also for 

higher levels of implied volatility. 

Tables 6 and 7 show relevant differences in the pricing of options depending on 

the choice of time unit. This suggests that also the partial derivatives of the option price 

are different using the three methods of measuring time. It is therefore also important to 

choose the correct measure of time when watching the Greeks as time passes. This is 

relevant in the surveillance of a derivatives portfolio, i.e. in risk management. 

 Table 5 and Table 7 show only one price for the trading and calendar time 

models for each day, while the CTDA-time model provides updated prices every half 

hour. This may not be a fair comparison, because in practice the trader is likely to 

adjust either the time parameter or implied volatility during the day. In order to 
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demonstrate how this is possibly done, Figure 1 reports the implied volatilities iterated 

from CTDA-prices in Table 7 but using trading and calendar days. This demonstrates 

the systematic changes to implied volatility during the day with time specified as in 

equations (1), (2) and (3) for calendar days and as in equations (1), (6) and (7) for 

trading days. 

 

Table 7 
Simulated at-the-money call option prices close to expiration 
 Friday Monday Tuesday Wednesday Thursday Friday 

Calendar days: 91.94 69.10 59.70 48.61 34.24 -
Trading days: 93.48 82.91 71.66 58.37 41.15 -

CTDA-days:  
9:00 AM 98.31 88.65 76.61 64.84 50.51 30.26
9:30 AM 95.81 84.04 73.41 61.03 45.53 21.00

10:00 AM 95.22 83.37 72.64 60.10 44.29 18.18
10:30 AM 94.80 82.90 72.10 59.45 43.41 15.92
11:00 AM 94.51 82.57 71.72 58.99 42.77 14.10
11:30 AM 94.19 82.20 71.30 58.48 42.07 11.81
12:00 PM 93.96 81.94 71.00 58.12 41.56 9.89
12:30 PM 93.77 81.73 70.75 57.81 41.13 7.91
1:00 PM 93.43 81.34 70.30 57.26 40.36 -
1:30 PM 93.12 80.99 69.89 56.76 39.65 -
2:00 PM 92.97 80.81 69.69 56.52 39.31 -
2:30 PM 92.39 80.16 68.93 55.58 37.95 -
3:00 PM 91.57 79.22 67.84 54.22 35.93 -
3:30 PM 91.23 78.82 67.38 53.65 35.07 -
4:00 PM 90.85 78.39 66.87 53.01 34.08 -
4:30 PM 90.48 77.96 66.37 52.38 33.09 -
5:00 PM 90.20 77.64 65.99 51.89 32.33 -

The simulated prices during the last six days before expiration are at-the-money options with the 
underlying at 6500. Volatility is 25.0 %, interest rate is 3.5 % and always accrued in calendar time. 
Saturday and Sunday are the only non-trading days in this example. Time to expiration is as in Table 5, 
but with 0.43 subtracted from the CTDA-days to adjust for the expiration of the DAX options at 1:00 PM 
instead of at 5:30 PM. 
 

On the Friday with one week until maturity in Figure 2, calendar and trading time 

yields approximately the same results (5/252 ≈ 7/365). The implied volatility is also 

close to 25 % at the end of this Friday, but prior to this day and especially after this day 

the three models diverge. Starting at open on Monday, the implied volatility is 27.1 % 

for the trading-time model and 23.8 % at close. The differences increase until 

expiration. 
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Figure 2 
Simulated at-the-money call option implied volatilities close to expiration 
The prices are taken from the CTDA-time model in Table 7 and implied volatilities are iterated for 
trading and calendar days. The underlying is at 6500. Volatility is 25.0 % for the CTDA-time model, 
interest rate is 3.5 % and always accrued in calendar time. Saturday and Sunday are the only non-trading 
days in this example. The last Friday is left out, as we in this case have zero time left on the expiration 
day. Time to expiration is as in Table 5, but with 0.43 subtracted from the CTDA-days to adjust for the 
expiration of the DAX options at 1:00 PM instead of at 5:30 PM. 
 

In this study we demonstrate the model using 30-minute intervals. This corresponds to 

a trader with the opportunity to hedge his position in 30-minute intervals. The model 

can be used with other intervals as well and the results should not change significantly. 

However, with very short intervals the variance estimates will probably be affected by 

autocorrelation in the data. Another possible modification to the model is to account for 

the different days of the week, adjusting for any possible differences in volatility 

between weekdays as well. Approaching a methodology for predicting volatility, we 

could also insert dummies for news (mainly statistical reports) to be announced at pre-

specified points in time. 

 

 

6 Summary 
 

This paper discusses briefly the fact that volatility is non-constant during the day and 

over weekdays. As presented in numerous studies, volatility is higher during trading, 

especially at the beginning, and at the end of the trading day. This implies that volatility 
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is lower during holidays, but not necessarily negligible. Furthermore, the intraday 

volatility exhibit clear patterns. These two phenomena of volatility should be 

considered in option pricing as the cost of the option should be equal to the expected 

cost of hedging it. The expected cost of hedging in turn is proportional to the expected 

volatility. 

 The weekend volatility in excess of a normal night’s volatility was estimated in 

section four. The reported holiday volatility is approximately 19 % of a whole trading 

day, which is of the same magnitude as in earlier studies. Furthermore, the intraday 

volatility was estimated in 30-minute intervals. As expected, the intraday volatility 

follows a U-shaped pattern with a spike around the point of time when important 

statistics in general are announced. 

 Observing the patterns in volatility, a brief discussion is provided on the 

implications in option pricing. The implications are demonstrated using a model that 

accounts for the reported patterns of volatility intradaily and daily. The correction for 

the patterns in volatility is conducted by adjusting the rate at which time is ticking. 

Time is allowed to tick faster at the beginning and end of the day, while time is ticking 

very slowly during weekends and holidays. 

The model developed in this paper should eliminate the weekly patterns 

observed in the implied volatility when using calendar or trading days as time basis. 

Furthermore, the model adjusts for the intraday seasonal volatility, obviously altering 

the time value but also the other greeks. Whether options are traded in accordance with 

the model remains to be tested on transactions data. French (1984) found that options 

are traded on a trading time basis with interest accrued on a calendar time basis. If this 

still holds, one would expect this model not to correspond to market prices. However, 

the market efficiency may have improved during the last two decades and actual option 

prices may well correspond to volatility intradaily and over days. 
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Appendix 
 

Table A1 
Simulated out-of-the-money call option prices close to expiration 
 Friday Monday Tuesday Wednesday Thursday Friday 

Calendar days: 14.13 4.24 1.92 0.46 0.01 -
Trading days: 15.01 9.71 5.15 1.71 0.11 -

CTDA-days:  
9:00 AM 17.93 12.63 7.02 3.14 0.65 0.00
9:30 AM 16.39 10.26 5.78 2.23 0.28 0.00

10:00 AM 16.04 9.94 5.50 2.04 0.22 0.00
10:30 AM 15.79 9.71 5.31 1.91 0.18 0.00
11:00 AM 15.62 9.55 5.17 1.82 0.16 0.00
11:30 AM 15.43 9.38 5.03 1.73 0.13 0.00
12:00 PM 15.29 9.26 4.93 1.66 0.12 0.00
12:30 PM 15.18 9.16 4.84 1.61 0.11 0.00
1:00 PM 14.98 8.98 4.69 1.51 0.09 -
1:30 PM 14.80 8.82 4.56 1.43 0.07 -
2:00 PM 14.72 8.74 4.50 1.39 0.06 -
2:30 PM 14.39 8.44 4.26 1.24 0.04 -
3:00 PM 13.92 8.03 3.92 1.05 0.02 -
3:30 PM 13.73 7.86 3.79 0.98 0.02 -
4:00 PM 13.52 7.67 3.64 0.90 0.01 -
4:30 PM 13.31 7.49 3.50 0.82 0.01 -
5:00 PM 13.16 7.36 3.39 0.77 0.01 -

The simulated prices during the last six days before expiration are out-of-the-money call 
options. The strike is 5 % out-of-the-money with the underlying at 6500. The strike is rounded 
to the nearest multiple of 50 and is 6850 for this call. Volatility is 30.0 %, interest rate is 3.5 % 
and always accrued in calendar time. Saturday and Sunday are the only non-trading days in this 
example. Time to expiration is as in Table 5, but with 0.43 subtracted from the CTDA-days to 
adjust for the expiration of the DAX options at 1:00 PM instead of at 5:30 PM. 
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Table A2 
Simulated out-of-the-money put option prices close to expiration 
 Friday Monday Tuesday Wednesday Thursday Friday 

Calendar days: 16,26 5,62 2,81 0,82 0,04 -
Trading days: 17,19 11,87 6,78 2,58 0,24 -

CTDA-days:  
9:00 AM 20.27 15.08 8.95 4.42 1.13 0.01
9:30 AM 18.65 12.48 7.51 3.27 0.54 0.00

10:00 AM 18.28 12.12 7.19 3.02 0.44 0.00
10:30 AM 18.02 11.87 6.96 2.85 0.37 0.00
11:00 AM 17.83 11.69 6.80 2.73 0.33 0.00
11:30 AM 17.63 11.50 6.63 2.60 0.29 0.00
12:00 PM 17.49 11.37 6.51 2.52 0.26 0.00
12:30 PM 17.37 11.25 6.41 2.44 0.24 0.00
1:00 PM 17.16 11.05 6.24 2.32 0.20 -
1:30 PM 16.97 10.87 6.08 2.20 0.17 -
2:00 PM 16.88 10.79 6.00 2.15 0.16 -
2:30 PM 16.53 10.46 5.71 1.95 0.11 -
3:00 PM 16.03 9.99 5.31 1.68 0.06 -
3:30 PM 15.83 9.80 5.15 1.58 0.05 -
4:00 PM 15.61 9.59 4.97 1.46 0.03 -
4:30 PM 15.39 9.38 4.80 1.36 0.02 -
5:00 PM 15.22 9.23 4.67 1.28 0.02 -

The simulated prices during the last six days before expiration are out-of-the-money put 
options. The strike is 5 % out-of-the-money with the underlying at 6500. The strike is rounded 
to the nearest multiple of 50 and is 6200 for this put. Volatility is 30.0 %, interest rate is 3.5 % 
and always accrued in calendar time. Saturday and Sunday are the only non-trading days in this 
example. Time to expiration is as in Table 5, but with 0.43 subtracted from the CTDA-days to 
adjust for the expiration of the DAX options at 1:00 PM instead of at 5:30 PM. 
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