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Linguistic Grammars with Very Low
Complexity
ANSSI YLI -JYRÄ

17.1 Introduction
Fifteen years ago, in the COLING-90 in Helsinki, Kimmo Koskenniemi
sketched a finite-state approach to surface syntax (Koskenniemi, 1990): an ap-
proach that later became known by the name Finite-State Intersection Gram-
mar (FSIG). During the subsequent few years this approach was investigated
by Koskenniemi’s associates Pasi Tapanainen, Atro Voutilainen and some
others in the Research Unit of Multilingual Language Technology at the De-
partment of General Linguistics at the University of Helsinki.

A while after Koskenniemi’s proposal, technical problems related to the
state complexity of FSIG grammars became a major challenge in the further
development of the system. However, this was largely due to the fact that
the rules in the first grammars did notsuggest means to exploit the locality
of linguistic constraints. Meanwhile, asimilar but less ambitious constraint
system flourished independently in France as Maurice Gross and his students
had introducedlocal grammars and developed algorithms that apply these to
lexically ambiguous sentences.

In 1995, the current author became involved, for the first time, in investi-
gations that pursued more efficient FSIG parsing strategies and complexity.
These investigations continued in 2000’s and led to a PhD thesis. This chapter
tries to give an overview of the recent discoveries related to the complexity
of FSIG parsing. The chapter is structured as follows: Section 17.2 sketches
a rough background of Kimmo’s approach, relating FSIG to the well known
CG framework, and to finite-state methods in general. Section 17.3 general-
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FIGURE 1 FSIG and its forerunner: Constraint Grammar.

izes the FSIG architecture to non-regular languages and linguistically impor-
tant structures. Section 17.4 explains the star-freeness property of the FSIG
grammars. Section 17.5 approaches FSIG parsing through a layered structure,
essentially improving the compactness of the grammar.

17.2 The Background of FSIG
17.2.1 The Inspiration

Kimmo’s FSIG approach was largely inspired by the Constraint Grammar
(CG) system (Karlsson, 1990) that can be described as follows.

The input of CG is a tokenized sentence with alternative readings listed
at each token. Each CG constraint rule application is a transformation that
removes one or more readings of an ambiguous token in a given context.
Each transformation is a rational transduction. The context conditions tested
by the rules are able to refer to contextual ambiguity and to test bunches of
alternative readings in the token and its context.

As a whole, a CG parser is a combination of a prioritized union of rules
that is applied iteratively up to a fixed point where no rule can reduce any
more ambiguity. The parser works by iteratively selecting a constraint and
an ambiguous token and applying the selected constraint to the selected to-
ken. This process terminates: the maximal number of iterations carried out
by the parser is proportional to the length of the sentence. Furthermore, the
order in which the tokens are processed may require a linear number of back
and forth jumps between token positions. It is thus not generally possible to
characterize a CG parser (Figure 1, left side) as a regular relation.

In 1983, Kimmo Koskenniemi had became an inventor of a parallel con-
straint system, the two-level model of morphology (Koskenniemi, 1983)
(TWOL). TWOL had already been proved a practical alternative to a cascade
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of phonological rules, such as used in generative phonology. As a natural
continuation to this work, Kimmo proposed a similar approach to syntactic
parsing and disambiguation: a system of parallel finite-state constraints that
defined a regular relation (Koskenniemi, 1990). This system presented an al-
ternative for the serial approach of the CG parsing, but was not claimed to be
equivalent to it.

17.2.2 FSIG as a One-Level System

The formal elegance of FSIG was remarkable. It was a one-level system,
while, in contrast, the number of intermediate levels in CG was not bounded
by a constant. Furthermore, FSIG was able to give new insight on possi-
ble parsing approaches by putting into practice a set-theoretic semantics for
grammars. FSIG parsing consists of two phases:

1. generation of a set of potential reading strings, and
2. constraint-driven selection of the grammatical readings.

First, potentialsentence readings of the input sentence — each being a
string of morphemes and word boundaries — are constructed by inserting
annotation codes freely into the sequence of input tokens (in practice, it is
desirable that the insertion is controlled by lexical lookup). This creates a
set of alternatives that is often referred to as anambiguous sentence1. The
generated set is represented by a deterministic finite automaton (DFA) that is
often called thesentence automaton2.

Second, there areconstraint automata each of which implements a lin-
guistic or administrative constraint, originally described using an extended
FSIG notation of regular expressions. When a new ambiguous sentence has
been generated the constraint automata are applied to reduce ungrammatical
sentence readings (strings) in the sentence automaton. This can be carried
out, in theory, by computing a direct product of the sentence automaton and
the constraint automata, or by performing a backtracking search for alterna-
tive analyses. The direct product automaton describes exactly those sentence
readings that are recognized by every constraint automaton.

In contrast to the fixed point semantics of the CG disambiguation process,
the standard FSIG is a one-level constraint system with hard constraints: if
some constraint rejects all potential readings, there will be no readings left
in the output. An alternative FSIG framework with soft constraints would be
desirable for purposes of robust parsing (although we do not want to run into
the practical difficulties of Optimality Theoretic approaches).

1Generation of this set resembles the GEN function in Optimality Theory, but can be already
constrained by the lexicon.

2Earlier, this automaton used to be acyclic, but this restriction is no more maintained in recent
FSIG systems.
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17.2.3 FSIG and State Complexity

In addition to the parallel constraints, the initial developers of the FSIG frame-
work adopted a useful operation from the formalism of the original two-level
morphology: the so-called context restriction operator became a part of the
FSIG notation. This regular operator has an interesting history, and it allows
for further generalizations (Yli-Jyrä and Koskenniemi, 2004).

The FSIG rule formalism is able to specify complex finite-state grammars
in a very compact fashion. In fact, we could estimate that the deterministic
state complexity (the size of the minimal DFA) corresponding to the combi-
nation of all constraint automata of a full-coverage grammar could be some
1010 – 101000 states. The constraints can be applied in linear time to the in-
put sentence, according to the the input size, but linear time complexity alone
does not thus imply a practical implementation.

It is also important to understand how the complexity of the grammar is
related to the way the grammar is designed. A few initial results on state
complexity of bracketing restriction operator – a recent novelty (Yli-Jyrä,
2003c) – andcontext restriction operator (Yli-Jyrä and Koskenniemi, 2004)
have been published. Their complexity grows, in the worst case, exponentially
according to the maximum depth of bracketing.

17.2.4 The Quest for Locality in FSIG

Some FSIG experts, including Kimmo himself, have always maintained the
optimism that an efficient parser for FSIG could be found. The hope is moti-
vated by the fact that the parse result – the reduced set of alternatives – does
not exhibit remarkable state complexity although its computation is difficult.
To be more successful, an efficient parser would need to decompose the gram-
mar in a fashion that maintains compactness during the intermediate parsing
steps. How this should be done has been an open problem, but a recently pre-
sented compilation method for rules (Yli-Jyrä and Koskenniemi, 2004) sheds
some light on how the grammar can be split into almost independent modules.

An informal comparison to a personal computer may be helpful in un-
derstanding compact representations of finite automata and transition func-
tions: CPUs implement predefined state transitions in an immense state space,
without any difficulties. This is possible because (i) the CPUs modify, within
one step, only a small portion of the computer’s memory, making onlylocal
state transitions at a time, and (ii) the next state is often computed in par-
allel, largely independent circuits within the processor (such as the program
counter, the arithmetic logic unit and the cache). If similar design principles
– locality and decomposition – could be used to store the FSIG grammar and
the intermediate results, we could perhaps find an efficient parser.
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17.3 A generalization of Kimmo’s Approach
17.3.1 Anti-Approximations

Constraint grammars (CGs) and local grammars are typically applied to a
flat sequence of lemmas and tags, without any attempts to cope with brack-
eted trees. In contrast to this, Kimmo’s proposal and the first FSIGs included
clausal embedding up to one level of clause boundaries. It was argued by
Kimmo that only a tiny proportion of running-text sentences would contain a
double-center-embedded clause.

The current author (Yli-Jyrä, 2003a) considered explicitly an arbitrary
limit d for center embedding in FSIG. This generalization suggests the pos-
sibility of taking union of the languages of an FSIG grammarsG when its
d-parameter goes to infinite:

L(Ĝ) = ∪d=0..∞L(Gd) = lim
d→∞

L(Gd).

According to the formula, every FSIG grammarG, such as Voutilainen’s
English grammar (Voutilainen, 1997) is infact a parameterized specification
that gives us both

. a series of finite-state grammarsG0, G1, G2, . . ., and. an idealistic generalization, ananti-approximation L(Ĝ).

In the case of Voutilainen’s English grammar, the anti-approximationL(Ĝ)
is context-free, but, in some other cases, it can be non-context-free3.

This view suggests a perspective on how non-regular grammars could be
learned: through a series of regular languages. Furthermore, the view suggests
connections to bracket-based representations of non-regular grammars.

17.3.2 Chomsky-Schützenberger Representations

In early 1960’s, Noam Chomsky and Marcel Paul Schützenberger (1963) dis-
covered a technique to represent the language of any context-free grammarG
as a homomorphic image of an intersection of a Dyck language and a regular
language that depends onG.

FSIG grammars have a close relationship to the Chomsky-Schützenberger
representations. In any FSIG grammarGd, the parameterd actually specifies
an approximation of a Dyck language. By using, in the constraint semantics,
a Dyck language instead of its regular approximation, we get a representation
for the anti-approximated languageL(Ĝ).

This view has been very fruitful. We have been able to specify many
new Chomsky-Schützenberger style representations4 for various classes of

3This is possible if the grammar uses crossing sets of brackets as in (Yli-Jyrä, 2004).
4In some of our representations, the Dyck language is distributed and used as a constant in

the rules. We refer to them loosely as Chomsky-Schützenberger style representations.
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FIGURE 2 A dependency tree.

formal grammars. There are such representations for (i) extended context-
free languages, (ii) projective dependency grammars, and (iii) certain mildly
context-sensitive grammars (MCSGs) that correspond to some families of
non-projective dependency grammars.

A tantalizing opportunity of this approach is to try and develop similar
bracketing-based representations to further examples of MCSGs, such as tree-
adjoining grammars and (multi-modal) combinatorial categorial grammars.
Whether this can be done is an open problem, but a success would greatly in-
crease the relevance of the FSIG framework to Natural Language Processing
(NLP), since a single architecture would allow for both an idealistic general-
ization and a series of finite-state approximations.

17.3.3 A New Bracketed Representation for Dependencies

According to Koskenniemi (1990), his approachdoes not aim to uncover se-
mantically oriented distinctions. This limitation was maintained in the first
FSIG systems that were clearly meant for partial parsing and not for,e.g.
producing an explicit dependency structure.

Dependency links indicate, ideally, how words with predicate-argument
structures are composed in a semantically coherent way. As we saw in the
above, recent developments of FSIG have introduced new sub-frameworks,
including frameworks for projective and non-projective dependency parsing.

For example, the dependency tree in Figure 2 can be represented as a
bracketed string as in Figure 3.

# that det [←
# ]← man subj [←
# ]← ate pred [→
# an det [←
# ]← ]→ apple obj #

FIGURE 3 String with dependency-tree bracketing. The line breaks have been added.

In non-projective dependency structures (Yli-Jyrä, 2003b, 2004), we use
disjoint sets of brackets and follow a non-trivial generalization of the so-
called stack discipline when allocating crossing brackets. Thanks to this, each
non-projective structure has a unique encoding as a bracketed string. The cor-
responding system of stacks is connected to a class of MCSGs (Yli-Jyrä and
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Nykänen, 2004).
The ability of recent FSIGs to cope with dependency trees (and graphs)

under certain performance restrictions suggests that the framework might be
capable of assigning even some semantically coherent structures in terms of
syntactic dependencies.

17.4 A Characterization of the Complexity of FSIG
17.4.1 Background

Thestar-free languages are the smallest class of languages that contains all fi-
nite languages and is closed under concatenation and the Boolean operations.

In Coding Theory, Schützenberger (1965) made a seminal finding by char-
acterizing the star-free languages with aperiodic finite syntactic monoids5.
Mathematics of Coding Theory and in particular the study of star-free lan-
guages are inherently connected to linguistic performance, communication
and error tolerance, but star-free languages are seldom discussed in linguis-
tic literature. As a positive example, Kornai (1985) argues on practical lim-
its in natural language semantics, and how this supports an assumption of
star-freeness of natural language. The relevance of star-free languages to the
language acquisition task has been demonstrated separately by learning algo-
rithms that cope with certain star-free classes of regular languages (Segarra
et al., 2003).

17.4.2 Establishment of Star-Free FSIGs

The property of star-freeness has been recently assigned to the FSIG frame-
work. First, the star-freeness of the annotated language described by Vouti-
lainen’s English FSIG was established through a rewriting approach (Yli-
Jyrä, 2003a). Second, it has become increasingly clearer that the star-freeness
restriction does not imply essential losses in the linguistic applicability of
FSIGs although it is not difficult to construct artificial examples of FSIGs
that fail to be star-free. This is indicated by the flavors of star-free FSIGs
that coped with various syntactic structures, including bracketed string rep-
resentations for unranked constituent trees, projective dependency trees and
restricted non-projective dependency trees.

17.4.3 Definability in the First-Order Logic

Robert McNaughton and Seymour Papert (1971) discovered that star-free lan-
guages are exactly those described inFO[<], a fragment of first-order logic
whose signature contains linear order relation< over string positions. This
result is important because it connects star-free languages, such as described

5Transitions of a minimal DFAA = (Q, i, F, Σ, δ) define forw ∈ Σ∗ the functionδw :
Q → Q. The set of all functionsδw with a composition operator and the identity elementδε is
the transition monoid ofA as well as the syntactic monoid of the languageL(A).
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FIGURE 4 Computational complexity of polynomial-time problems, adapted from
Immerman (1999).

by FSIG grammars, to (i) the locality characterizations of first-order definable
structures, and (ii) to descriptive complexity.

First, we get access to a famous theorem by W. Hanf (Immerman, 1999,
p.102-103). According to this theorem, first-order formulae with abounded
quantifier rank6 cannot distinguish between two graphs of bounded degree if
the graphs have the same number of local neighborhoods of all possible types
where the number of possible types depends exponentially on the quantifier
rank. The definition of locality is here more general than in NLP since it
involves quantification.

Second, we get access to results in Finite Model Theory, where many
computational complexity classes have been characterized using fragments of
first-order logic. The close relationship between the computational complex-
ity of problems and the richness of logical language needed to describe them
— their descriptive complexity — was established when Ron Fagin showed
in 1974 that the problems computable in nondeterministic polynomial time
(NP) are exactly characterized by the problems that can be described in ex-
istential second-order logic. Neil Immerman (1999, p.2) summarizes the role
of descriptive complexity as follows:

It [descriptive complexity] gives a mathematical structure with which to view
and set to work on what had previously been engineering questions.

17.4.4 Parallel Computational Complexity

When the languages definable withFO[<] are placed into the picture of com-
putational complexity classes, we observe that they correspond, as illustrated
in Figure 4,

. to the logarithmic-time hierarchy, and. to the uniform circuit complexity classAC0.

6The quantifier rank of a first-order formula isbasically the number of nested quantifiers.
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A short explanation for some classes in Figure 4 is in place. Thelogarithmic-
time hierarchy (LH) contains languages that can be recognized with an alter-
nating Turing machine (ATM) inlogarithmic time (according to the length of
input) using a bounded number of alternations between existential and univer-
sal states. Thecircuit complexity class AC0 consists languages whose strings
can be recognized using a constant depth, unbounded-fan-in polynomial-size
AND-OR circuits. The circuits in the classNC1 differ from AC0 by having
a logarithmic depth according to the length of the strings, but restricting the
AND and OR gates to ones with two fan-ins.

Star-freeness implies an essential restriction to the parallel computational
complexity and circuit complexity of regular languages. Among all regular
languages, there are some that do not belong toAC0, but all are included in
NC1. AC0 contains all star-free regular languages (Thomas, 1997).

17.5 Structure of Annotated FSIG Languages
17.5.1 The Dot-Depth Hierarchy

Based on the star-freeness of FSIGs, we are able to study the means to rep-
resent and parse these grammars in a compact fashion. Star-free languages
admit representations that are not available to regular languages in general.

A particularly interesting representation of star-free languages is based on
the closure of finite languages, Boolean operations and so-calledconcatena-
tion products. Such a representation of star-free languages generates an infi-
nite sequence or hierarchy of language classes. One of the possible sequences
is the dot-depth hierarchyB0,B1,B2, . . . that was introduced by Brzozowski
and Knast (1978). It defines the set of all star-free languages:

SF = ∪i=0...∞Bi = lim
i→∞

Bi.

The dot-depth hierarchy is defined over an alphabetΣ as follows:

. B0 consists of finite and co-finite subsets ofΣ∗,. Ci consists of concatenations of languages inBi,. Bi consists of Boolean combinations of languages inCi−1.

Thomas (1982) showed that the dot-depth hierarchy corresponds to the
quantifier-alternation and logarithmic-time hierarchies mentioned above. Ac-
cording to Thomas, languageL ∈ Bi can be described by a prenex normal-
form that has a so-calledΣi prefix of quantifiers7.

If we knew the lowest dot-depth levelBi that contains the language (the
set of annotated strings) of a grammar, we could say more about the parallel
computational complexity of the grammar. Unfortunately, the determination

7A formula is in prenex normal-form if it consists of a string of quantifiers applied to a
quantifier free formula.
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of the exact dot-depth of a language is a difficult (open) problem. We can
still easily approximate the level from above because the dot-depth depends
mainly ond, the depth of allowed bracketing. For example, approximations
of the Dyck language can be constructed using a recursive star-free formula
(Yli-Jyrä, 2003a) that specifies a language belonging toBO(d). This can be
shown easily by the structure of the recursive formula.

In summary, understanding of the locality in FSIG grammars can be
largely built around the relationship between descriptive and parallel com-
putational complexity,d, the dot-depth and the size of the quantifier prefix.

17.5.2 Relative State Complexity of FSIGs

Parallel computational complexity of FSIGs is not just about non-
deterministic time. If the minimal DFA equivalent to an ATM could be con-
structed in a straightforward way (the problem is undecidable for arbitrary
ATMs), regular operations applied during the construction would contribute
to thestate complexity of the result. It is imaginable that the alternation be-
tween the existential and universal states would amount for additional steps
in the state complexity.

In an FSIG approximation of non-projective dependency grammars, the
depthd of bracketing corresponds to the number of alternations between con-
catenations and Boolean operations, while the combination ofn disjoint sets
of brackets corresponds to an intersection ofn star-free languages. Both of
these parameters are able to cause an exponential growth in the state com-
plexity of some pathological FSIG grammars.

In the structure of FSIG languages, certain language class distinctions
seem to differ radically from the Chomsky hierarchy. For example, if we
anti-approximate the mentioned FSIG implementations of non-projective de-
pendency grammars,n induces a hierarchy of MCSGs. Such hierarchies of
MCSGs are often seen to exhibit a competence feature, while limited clausal
embedding would be an example of a performance feature. In contrast to this
complexity landscape, both these parameters (n crossings andd embeddings)
appear to be equally important when we determine the state complexity of an
FSIG, and the number of crossing sets of brackets(n) does not have any role,
when we determine the asymptotic bound for the dot-depth.

17.5.3 Parallel Decompositions

Each new dot-depth level makes references to lower dot-depth levels in a
similar fashion as compact parse forest representations pack ambiguity that is
beyond the domain of locality. This observation suggests a compact parallel
representation for FSIG grammars wheren = 1 andd > 0 (an FSIG with
n > 1 is obtained by combining simpler FSIGs under intersection). The use
of such a representation requires the following steps:
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FIGURE 5 FSIG parsing with layers and sub-grammars.

. decomposition of each FSIG constraint into separate constraints each of
which checks one layer,i.e. level of brackets (>sub-grammars),. applying the constraints of each layer into a separate copy of the sentence
automaton, and. combining all the constrained sentence automata to obtain the final result.

These tasks have been discussed more in detail by the author (Yli-Jyrä, 2005).
A rough overview of the proposed parsing strategy is presented in Figure 5.

17.6 Conclusion
We have presented an overview of the FSIG approach and related FSIG gram-
mars to issues of very low complexity and parsing strategy. We ended up with
serious optimism according to which most FSIG grammars could be decom-
posed in a reasonable way and then processed efficiently.
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