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Abstract 
 

Listening to music involves a widely distributed bilateral network of brain regions that 

controls many auditory perceptual, cognitive, emotional, and motor functions. Exposure 

to music can also temporarily improve mood, reduce stress, and enhance cognitive 

performance as well as promote neural plasticity. However, very little is currently 

known about the relationship between music perception and auditory and cognitive 

processes or about the potential therapeutic effects of listening to music after neural 

damage. This thesis explores the interplay of auditory, cognitive, and emotional factors 

related to music processing after a middle cerebral artery (MCA) stroke. In the acute 

recovery phase, 60 MCA stroke patients were randomly assigned to a music listening 

group, an audio book listening group, or a control group. All patients underwent 

neuropsychological assessments, magnetoencephalography (MEG) measurements, and 

magnetic resonance imaging (MRI) scans repeatedly during a six-month post-stroke 

period. The results revealed that amusia, a deficit of music perception, is a common and 

persistent deficit after a stroke, especially if the stroke affects the frontal and temporal 

brain areas in the right hemisphere. Amusia is clearly associated with deficits in both 

auditory encoding, as indicated by the magnetic mismatch negativity (MMNm) 

response, and domain-general cognitive processes, such as attention, working memory, 

and executive functions. Furthermore, both music and audio book listening increased 

the MMNm, whereas only music listening improved the recovery of verbal memory and 

focused attention as well as prevented a depressed and confused mood during the first 

post-stroke months. These findings indicate a close link between musical, auditory, and 

cognitive processes in the brain. Importantly, they also encourage the use of listening to 

music as a rehabilitative leisure activity after a stroke and suggest that the auditory 

environment can induce long-term plastic changes in the recovering brain. 
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Tiivistelmä 

 

Musiikin kuuntelu aktivoi aivoissa laajaa, molemmille aivopuoliskoille ulottuvaa 

hermoverkkoa, joka säätelee useita auditiivisia, kognitiivisia, emotionaalisia sekä 

motorisia toimintoja. Musiikki voi hetkellisesti kohentaa mielialaa, vähentää stressiä ja 

tehostaa kognitiivista suoriutumista sekä myös saada aivoissa aikaan neuroplastisia 

muutoksia. Vielä ei kuitenkaan tiedetä, miten musiikin havaitseminen liittyy muihin 

auditiivisiin ja kognitiivisiin toimintoihin ja voiko musiikin kuuntelulla olla positiivisia 

vaikutuksia kuntoutumiseen aivovaurion jälkeen. Tässä väitöskirjassa tutkittiin 

auditiivisten, kognitiivisten ja emotionaalisten tekijöiden yhteyttä musiikin käsittelyyn 

keskimmäisen aivovaltimon (MCA) akuutin aivoinfarktin jälkeen. Tutkimukseen 

osallistui 60 aivoinfarktiin sairastunutta potilasta, jotka jaettiin satunnaistetusti musiikin 

kuunteluryhmään, äänikirjojen kuunteluryhmään ja verrokkiryhmään. Kaikille potilaille 

tehtiin neuropsykologiset tutkimukset sekä aivojen magnetoenkefalografiamittaukset 

(MEG) ja magneettikuvaukset (MRI) toistetusti kuuden kuukauden seuranta-ajan 

kuluessa. Tulokset osoittivat, että amusia, musiikin havaitsemisen vaikeus, on yleinen ja 

usein pysyvä häiriö aivoinfarktin jälkeen, erityisesti jos vaurio on oikean aivopuoliskon 

ohimo- tai otsalohkolla. Amusia on myös selvästi yhteydessä häiriöihin varhaisessa 

kuuloinformaation käsittelyssä, jota mitattiin ns. poikkeavuusvasteella (MMNm), sekä 

yleisissä kognitiivisissa toiminnoissa, kuten tarkkaavaisuuden säätelyssä, työmuistissa 

ja toiminnanohjauksessa. Sekä musiikin että äänikirjojen päivittäinen kuuntelu voimisti 

MMNm-vastetta, kun taas ainoastaan musiikin kuuntelu paransi kielellisen muistin ja 

tarkkaavaisuuden suuntaamisen toipumista sekä ehkäisi masentuneisuutta ja sekavuutta 

ensimmäisten aivoinfarktin jälkeisten kuukausien aikana. Tulokset viittaavat siihen, että 

musiikilliset, auditiiviset ja kognitiiviset toiminnot ovat aivoissa läheisesti kytköksissä 

toisiinsa. Mikä tärkeintä, tulokset myös kannustavat musiikin kuuntelun käyttöön 

kuntouttavana vapaa-ajantoimintona aivoinfarktin jälkeen sekä osoittavat, että 

ääniympäristön virikkeet voivat saada aikaan pitkäkestoisia plastisia muutoksia 

toipuvissa aivoissa. 
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1 Introduction 
 

1.1 Stroke 
 

A stroke is caused by a disruption of the blood supply to the brain, resulting from either 

blockage (an ischemic stroke) or rupture (a haemorrhagic stroke) of a blood vessel, 

which cuts off the supply of oxygen and nutrients to the brain tissue and causes 

permanent damage. Approximately 70–80 per cent of all stroke cases are caused by an 

ischemic brain infarction (Feigin et al., 2009), most often in the areas supplied by the 

middle cerebral artery (MCA) (Ng et al. 2007). According to a recent systematic review 

of 56 population-based studies (Feigin et al., 2009), approximately 80 out of 100,000 

persons worldwide suffer an ischemic stroke each year. In Finland, there were 17,000 

cases of ischemic stroke in the adult population in 2007 (Kansanterveyslaitos, 2007). 

Globally, it has been estimated that roughly one-third of stroke patients die and one-

third are left permanently disabled due to the physical, emotional, cognitive, and social 

impairment caused by the stroke (Mackay & Mensah, 2004). Many stroke patients who 

regain their functional independence still continue to experience physical, emotional, 

and social deficits months after the stroke (Lai et al., 2002), leading to clearly reduced 

quality of life (QOL) (Carod-Artal & Edigo, 2009). 

Although improvements in prevention have led to a decline in stroke incidence in 

many developed countries (Feigin et al., 2009), the incidence of stroke in Europe is 

expected to increase by as much as 30 per cent between 2000 and 2025 owing to the 

ageing of the population and other demographic changes (Truelsen et al., 2006). Also 

the World Health Organization (WHO) predicts that the disability-adjusted life years 

lost to stroke will rise from 38 million in 1990 to 61 million in 2020 (Mackay & 

Mensah, 2004), almost doubling the burden on the society caused by the disease. 

Overall, stroke is an enormous physical and emotional affliction on the patient as well 

as an increasing social and economic burden for society, making it a major global public 

health issue now and in years to come. 
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1.1.1 Cognitive and emotional consequences of strokes 

 

In addition to motor deficits, which affect approximately 80 per cent of stroke patients 

(Rathore et al., 2002), cognitive dysfunction is a common consequence (Hochstenbach 

et al., 1998; Nys et al., 2007; Rasquin et al., 2002; Tatemichi et al., 1994). Evidence 

from large neuropsychological group studies, which have compared stroke patients to 

matched control subjects, indicates that during the first post-stroke month 

approximately 50 per cent of patients with an ischemic stroke show signs of impairment 

in one or more cognitive domains, most often in attention and executive functioning 

(39–50%), visuospatial cognition (31–38%), language (26%), reasoning (26%), and 

memory (22–26%) (Nys et al., 2005, 2007; Rasquin et al., 2002). The number of 

impaired cognitive domains has been shown to decrease during the first ten months of 

recovery (Nys et al., 2005). Yet, three to ten months after a stroke, a considerable 

percentage of patients still suffer from deficits in attention and executive functioning 

(13–39%), visuospatial cognition (9–35%), language (15–36%), reasoning (18%), and 

memory (8–20%) (Hochstenbach et al., 1998; Nys et al., 2005; Rasquin et al., 2002; 

Tatemichi et al., 1994). 

Suffering an acute stroke is a dramatic experience, which is often characterized by 

feelings of extreme shock, fear, uncertainty, and loss of control (Hafsteinsdottir & 

Grypdonck, 1997). During the first days after a stroke, patients typically exhibit strong 

and varying emotional reactions, including sadness, disinhibition, lack of adaptation, 

environmental withdrawal, crying, being unaware of the impairment caused by the 

stroke (anosognosia), passivity, and aggressiveness (Bogousslavsky, 2003). Emotional 

and behavioural disturbances are also frequent after the acute stage in stroke survivors 

(Ferro et al., 2009). According to a recent meta-analysis of 51 studies, post-stroke 

depression affects approximately 33 per cent of stroke patients (Hackett et al., 2005). In 

a Finnish longitudinal study of 100 stroke patients (Berg et al., 2003), 29 per cent of the 

patients suffered from at least minor depression during the first two post-stroke months, 

and 46 per cent also continued to be depressed 18 months post-stroke, suggesting that 

symptoms of depression are frequent and often have a chronic course. Another typical 

emotional complaint after a stroke is fatigue, which is experienced by 29–68 per cent of 

stroke patients (Annoni et al., 2008). Other, slightly less common neuropsychiatric 
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symptoms, which can often accompany depression, include anxiety, posttraumatic 

stress, personality changes (e.g., apathy), and disorders of emotional expression control 

(Ferro et al., 2009). 

 

 

1.1.2 Stroke recovery and the environment 
 

In most stroke patients, some degree of spontaneous behavioural recovery is usually 

seen in the first weeks and months after the stroke. Converging evidence from animal 

and human studies indicates that most spontaneous recovery tends to occur within the 

first three months after stroke onset, although cognitive deficits can show spontaneous 

gains beyond the three-month post-stroke stage (Cramer, 2008). Experimental animal 

studies have demonstrated that a brain infarct is associated with a number of plastic 

growth-related events, including structural changes in axons, dendrites, and synapses; 

increased activation and migration of neural stem cells; and changes in the extracellular 

matrix, glia cells, and blood vessels (Carmichael, 2006; Cramer, 2008; Komitova et al., 

2006). In the human brain, functional recovery after stroke correlates with a remapping 

of the cognitive operations in areas surrounding the infarct as well as in the 

contralesional hemisphere and other remote regions connected to the lesion site. Within 

these regions, axons sprout new connections and establish novel projection patterns, and 

newly-born immature neurons migrate into areas of damage (Carmichael, 2006), leading 

to increased neural activity. During recovery, the brain becomes more excitable, for 

example, showing increased N-methyl-D-aspartate (NMDA) receptor binding (Que et 

al., 1999), γ-aminobutyric acid (GABA) receptor downregulation (Redecker et al., 

2002), and increased growth factor levels (Finklestein et al., 1990). Crucially, the brain 

also becomes more susceptible to environmental influence. 

The environment in which recovery takes place has a major influence on the outcome 

after a stroke (Johansson, 2004; Nithianantharajah & Hannan, 2006). Animal studies 

have shown that housing animals after an ischemic stroke in an enriched environment 

(EE), which provides motor and cognitive stimulation, improves the functional recovery 

of motor and cognitive skills, decreases infarct volume, and increases dendritic spine 

density, neurotrophic factor levels, stem cell proliferation, and neurogenesis (Biernaskie 
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& Corbett, 2001; Dahlqvist et al., 1999, 2004; Gobbo & O’Mara, 2004; Hicks et al., 

2002; Johansson, 1996; Johansson & Belichenko, 2002; Komitova et al., 2002, 2005; 

Risedal et al., 2002). Interestingly, adding multimodal stimulation (e.g., auditory, visual, 

and olfactory stimuli) to the standard EE has been shown to reduce lesion volume as 

well as enhance motor and cognitive recovery more than the standard EE alone 

(Maegele et al., 2005a, 2005b). Thus, environmental stimuli play an important role in 

shaping the brain after neural damage. 

In human stroke patients, most of the evidence supporting the therapeutic role of the 

environment on stroke recovery comes from studies that have assessed the effectiveness 

of specialized stroke units (Stroke Unit Trialists’ Collaboration, 2007) or specific stroke 

rehabilitation methods targeted for motor (Langhorne et al., 2009), speech (Bhogal et 

al., 2003), and cognitive functions (Cicerone et al., 2005). However, owing to their low 

supply and high cost, these rehabilitation services are usually not available for most 

stroke patients or they are provided too late or in insufficient quantity to meet the true 

rehabilitation needs of the stroke population. Furthermore, studies examining the daily 

time use of stroke patients have found that even in stroke units and rehabilitation centres 

the patients typically end up spending the best part of their days in their beds, alone, 

inactive, and without interaction (Bernhardt et al., 2004; De Wit et al., 2005; Huijben-

Schoenmakers et al., 2009). In their survey of 434 stroke victims, Mayo et al. (2002) 

also found that 72 per cent of the patients lacked an important and meaningful activity 

to fill the day. Together with the evidence from animal studies supporting the role of the 

EE in enhancing stroke recovery, these findings suggest that stroke patients would 

benefit from a more stimulating recovery environment that could promote well-being 

and aid recovery. However, this topic has not been systematically studied. 

 

 

1.2 Music in the human brain 

 

One of the most powerful sources of sensory stimulation for the human brain comes 

from music (Sacks, 2006; Trainor, 2008; Zatorre, 2005). Although the adaptive function 

of music in human evolution is still unclear (Patel, 2008), music, like language, can be 

considered as a human universal that reaches deep into our species’ past (Nettl, 2000). 
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Recent archaeological findings suggest that playing music has been part of human 

culture for over 30,000 years (Conard et al., 2009). The ability to sing may be even 

older, possibly even pre-dating the development of speech about 200,000 years ago 

(Mithen, 2005). Developmental and cross-cultural studies also suggest that the 

enjoyment and capacity for music develops early in life (Trehub, 2003) and spans all 

known human cultures (Merriam, 1964). But what is the biological and neural basis for 

our ability to perceive, feel, and understand music? 

 

 

1.2.1 Processing music in the healthy brain 
 

During the past twenty years, the neural basis of music processing in the normal brain 

has been extensively studied using brain imaging methods, such as 

electroencephalography (EEG), magnetoencephalography (MEG), positron emission 

tomography (PET), and functional magnetic resonance imaging (fMRI). Regarding the 

perception of basic acoustical features in music, evidence from fMRI and PET studies 

suggests that that the auditory cortex (AC) and other temporal lobe areas, especially in 

the right hemisphere, are active during passive listening to melodies (Brown & 

Martinez, 2007; Patterson et al., 2002; Zatorre et al., 1994) and respond to small pitch 

changes (Hyde et al., 2008; Jamison et al., 2006; Schönwiesner et al., 2005; Zatorre & 

Belin, 2001). Similarly, perception of the timbre of sounds and voices activates superior 

temporal lobe areas, primarily in the right hemisphere (Belin et al., 2000; Warren et al., 

2005). By contrast, sound duration seems to be processed in the AC in a more left-

lateralized or bilateral fashion (Jamison et al., 2006; Schönwiesner et al., 2005; Zatorre 

& Belin, 2001). Corroborating evidence for the involvement of the AC in encoding 

basic acoustical features (e.g., pitch and duration) in music also comes from EEG and 

MEG studies using the mismatch negativity (MMN) response (e.g., Tervaniemi, 2003). 

In addition to the perception of basic acoustical cues, listening to music triggers a 

series of cognitive, emotional, and motor responses involving neural activity that 

extends well beyond the AC and adjacent temporal lobe areas. First of all, the 

processing of more complex musical attributes (e.g., chords, harmony, and tonality), 

which requires a rule-based analysis of simultaneous and sequential pitch structures, 
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engages the inferior frontal cortex, the medial prefrontal cortex, the premotor cortex, 

and the anterior superior temporal gyrus (Janata et al., 2002a; Koelsch et al., 2002, 

2005; Levitin & Menon, 2003; Maess et al., 2001; Tillmann et al., 2003; for a review, 

see Koelsch & Siebel, 2005). Second, a similar frontoparietal network, including 

inferior frontal, dorsolateral prefrontal, precentral, anterior cingulate, and intraparietal 

areas, is also activated when we follow a melody and keep it in mind for a short period 

of time, activities requiring attention and working memory (Brown & Martinez, 2007; 

Gaab et al., 2003; Griffiths et al., 1999; Janata et al., 2002b; Zatorre et al., 1994). Third, 

recognising or imagining familiar tunes involves the participation of many prefrontal 

regions, especially the inferior frontal gyrus (IFG) and the supplementary motor area, as 

well as the left angular and middle temporal gyri (Halpern & Zatorre, 1999; Peretz et 

al., 2009; Platel et al., 2003). Fourth, music that evokes emotions engages virtually the 

entire limbic/paralimbic system, including the amygdala, the hippocampus, the 

parahippocampal gyrus, the nucleus accumbens (NAc), the ventral tegmental area 

(VTA), the anterior cingulate, and the orbitofrontal cortex (Baumgartner et al., 2006; 

Blood et al., 1999; Blood & Zatorre, 2001; Brown et al., 2004; Eldar et al., 2007; 

Koelsch et al., 2006; Menon & Levitin, 2005; Mitterschiffthaler et al., 2007; for a recent 

review, see Koelsch, 2010). Finally, the perception of rhythm involves areas in the 

cerebellum, the basal ganglia, and the motor cortex (Grahn & Brett, 2007; Popescu et 

al., 2004; Rao et al., 2001; Sakai et al., 1999; Xu et al., 2005). 

 

 

1.2.2 Acquired and developmental deficits of music perception 

 

Our ability to perceive music, especially the fine-grained pitch changes in melodies, can 

be selectively impaired in a condition known as amusia or tone (tune) deafness (e.g., 

Ayotte et al., 2002). It has been estimated that congenital amusia caused by abnormal 

brain development occurs in about four per cent of the population (Kalmus & Fry, 

1980), while acquired amusia due to cerebral damage is relatively more common 

(Ayotte et al., 2000; Liégeois-Chauvel et al., 1998; Peretz, 1990; Schuppert et al., 

2000). Since the 1960s, there have been approximately 65 published case or group 

studies of patients with acquired amusia caused by brain infarction, haemorrhage, 
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tumour, atrophy, sclerosis, meningitis, trauma, or neural surgery (for recent reviews, see 

Peretz & Zatorre, 2005; Stewart et al., 2006). Evidence from the case studies suggests 

that impaired perception of the spectral acoustical features in music (pitch intervals, 

pitch patterns, or timbre) is most often caused by damage to the primary AC, the 

planum temporale, the anterior superior temporal gyrus, the temporoparietal junction, 

the insula, or the frontal lobe in the right hemisphere (Stewart et al., 2006). Group 

studies also indicate that damage to the right AC and other right temporal lobe areas 

leads to impaired discrimination of pitch, melody, and timbre (Johnsrude et al., 2000, 

Liégeois-Chauvel et al., 1998; Milner, 1962; Peretz, 1990; Samson & Zatorre, 1988, 

1994; Zatorre, 1988). Similarly, recent morphometric studies suggest that cortical 

anomalies in the IFG, the superior temporal gyrus, and the superior temporal sulcus of 

the right hemisphere could also underlie the musical pitch perception deficit in 

congenital amusia (Hyde et al., 2006, 2007). By contrast, a deficit in perceiving the 

temporal acoustical features in music (e.g., duration, rhythm, and tempo) is associated 

with damage beyond the AC in many temporal, frontal, and temporal-parietal areas in 

both the left and the right hemispheres (Milner, 1962; Robin et al., 1990; Schuppert et 

al., 2000; Shapiro et al., 1981; Stewart et al., 2006). 

In addition to the impaired perception of the acoustical features in music, cerebral 

damage can also lead to an impaired memory for music or to a loss of emotional 

reactivity to music. Case and group studies indicate that deficits in recognising familiar 

tunes or novel melodies usually occur after damage to the anterior superior temporal 

gyrus, the insula, the middle or inferior temporal cortex, or the frontal lobe in either 

hemisphere (Ayotte et al., 2000; Samson & Zatorre, 1992; Stewart et al., 2006). Right 

anterior temporal lobe resections have also been associated with impaired working 

memory for pitch (Zatorre & Samson, 1991). Loss of emotional reactivity to music is 

most consistently associated with damage involving the posterior temporal lobe as well 

as medial temporal lobe structures, such as the insula, the amygdala, or the 

parahippocampal cortex (Gosselin et al., 2005, 2006; Griffiths et al., 2004; Stewart et 

al., 2006). 

In summary, converging evidence from studies of both healthy subjects and amusic 

patients suggests that listening to music involves distributed cortical systems extending 

well beyond the AC and includes a vast network of temporal, frontal, parietal, 
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subcortical, and cerebellar areas. This raises the question of the relationship between the 

cortical systems processing music and other cognitive functions, such as speech, 

attention, and memory. Although approximately half the patients with acquired amusia 

have at least minor aphasia (Stewart et al., 2006), there have also been documented 

cases of amusia without impaired perception of speech or of other familiar sounds as 

well as cases of auditory agnosia (verbal or non-verbal) without amusia (Griffiths et al., 

1997; Mendez, 2001; Peretz et al., 1994; Takahashi et al., 1992; for a review, see Peretz 

& Coltheart, 2003). Based on these observed double dissociations, it has been proposed 

that there are mental modules in the brain specific to the processing of music (Peretz & 

Coltheart, 2003). 

However, recent behavioural evidence from congenital amusia suggests that amusic 

people can also have deficits in basic auditory discrimination (Jones et al., 2009a), pitch 

memory (Gosselin et al., 2009; Tillmann et al., 2009; Williamson et al., 2010), 

phonological and phonemic awareness (Jones et al., 2009b), speech intonation 

processing (Jiang et al., 2010; Liu et al., 2010; Patel et al., 2005, 2008), emotional 

prosody perception (Thompson, 2007), and spatial processing (Douglas & Bilkey, 2007; 

however, see Tillmann et al., 2010 for conflicting results). These findings suggest that 

the impairment in amusia may not be entirely specific to music perception. Current EEG 

evidence also indicates that congenital amusics have relatively normal early responses 

(N2, MMN), but abnormal later attention-modulated responses (P3, P600) to small pitch 

changes within tone sequences or melodies (Moreau et al., 2009; Peretz et al., 2005, 

2009; however, see Braun et al., 2008, for conflicting results). Also in a recent fMRI 

study (Hyde et al., 2011), congenital amusics showed reduced activity in the right IFG 

to small pitch changes, whereas the activity in their left and right AC was comparable to 

that of the control subjects. Collectively, these results suggest that domain-general 

auditory and cognitive processes, mediated by neural structures beyond the AC, are 

linked to the music perception deficit in congenital amusia. However, little is currently 

known about the contribution of auditory and cognitive factors to acquired amusia. In 

the present thesis, this topic is addressed in Studies I–III. 
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1.3 Music in rehabilitation 
 

Throughout human history, music has been associated with well-being and used in 

healing rituals and ceremonies. Today, most people interact with music on a daily basis, 

either by listening, singing, dancing, or playing, and music is valued by many, 

especially for its capacity to evoke and regulate emotions, provide enjoyment and 

comfort, and relieve stress (e.g., Juslin & Laukka, 2004; Saarikallio, in press; Sloboda 

& O’Neill, 2001). But what effects do musical activities have on our mood, cognition, 

and brain? 

 

 

1.3.1 Effects of music listening, training, and therapy 
 

Music is tightly coupled with emotions and mood, and many listeners report using 

music especially for mood regulation (Chamorro-Premuzic & Furnham 2007; 

Saarikallio, in press). Listening to music has been shown to evoke strong, subjectively-

felt emotions, such as happiness, joy, peacefulness, and nostalgia (Juslin & Laukka, 

2004; Zentner et al., 2008). These emotions are often accompanied by physiological 

reactions, such as changes in heart rate, respiration, skin temperature and conductance, 

and hormone (e.g., cortisol and testosterone) secretion (Fukui & Yamashita, 2003; 

Khalfa et al., 2003; Krumhansl, 1997; Lundqvist et al., 2009; Suda et al., 2008). By 

inducing positive affect and heightened arousal (Thompson et al., 2001), listening to 

pleasant and enjoyable music can also temporarily enhance performance in many 

cognitive domains, including psychomotor or information processing speed (Clark & 

Teasdale, 1985; Pignatiello et al., 1986; Schellenberg et al., 2007; Wood et al., 1990), 

reasoning (Chabris, 1999; Rauscher et al., 1993; Rowe et al., 2007; Thompson et al., 

2001), attention and memory (Beh & Hirst, 1999; Greene et al., 2010; Hallam et al., 

2002; Mammarella et al., 2007; Thompson et al., 2005), and creativity (Schellenberg et 

al., 2007). Listening to music has also been shown temporarily to improve arithmetic 

performance in children with attention-deficit hyperactivity disorder (Abikoff et al., 

1996), autobiographical recall in Alzheimer’s disease patients (Foster & Valentine, 

2001; Irish et al., 2006), and visual awareness of the left side of the environment in 
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stroke patients suffering from unilateral spatial neglect (Hommel et al., 1990; Soto et 

al., 2009). These findings suggest that the transient stimulating effect of music is not 

limited to the healthy brain. Evidence from learning studies also indicates that words 

presented in a musical context (such as song lyrics) are learned and recalled better than 

spoken words, both in healthy subjects (Schön et al., 2008; Wallace, 1994; however, see 

Racette & Peretz, 2007, for conflicting results) and in patients with multiple sclerosis 

(Thaut et al., 2005) or Alzheimer’s disease (Simmons-Stern et al., 2010). 

In addition to the short-term enhancement of mood and cognition, music can also 

induce long-term plasticity changes in the brain. Experimental animal research has 

shown that exposure to an auditory EE, which contains complex sounds or music, 

enhances evoked potentials, gating, discrimination, and glutamate expression in the AC 

(Engineer et al., 2004; Nichols et al., 2007; Percaccio et al., 2005; Xu et al., 2007, 2009) 

and increases the dendritic length and spine density of AC neurons (Bose et al., 2010). 

Notably, exposure to music can also improve non-auditory learning and memory 

(Angelucci et al., 2007a; Chikahisa et al., 2006; Kim et al., 2006), increase dopamine 

(DA) levels in the striatum (Sutoo & Akiyama, 2004), and enhance neurogenesis and 

neurotrophin production in the hippocampus, the hypothalamus, and the neocortex 

(Angelucci et al., 2007a, 2007b; Chaudhury & Wadhwa, 2009; Chikahisa et al., 2006; 

Kim et al., 2006). 

Corroborating evidence for the neural plasticity induced by music comes from 

studies of musical training in children and adult musicians. Active musical training has 

been shown to enhance auditory skills (Fujioka et al., 2004, 2006; Koelsch et al., 1999, 

2003; Pantev et al., 1998; Schneider et al., 2002; Tervaniemi et al., 2001), motor skills 

(Elbert et al., 1995; Jäncke et al., 1997, 2000; Meister et al., 2005), and cognitive skills, 

such as reasoning, memory, and language (Anvari et al., 2002; Chan et al., 1998; 

Gardiner et al., 1996; Moreno et al., 2008; Schellenberg, 2004; for a recent review, see 

Hannon & Trainor, 2007). Furthermore, such training can also lead to increased grey 

and white matter volume in many cortical and subcortical areas controlling these skills 

(Amunts et al., 1997; Bengtsson et al., 2005; Gaser & Schlaug, 2003; Hyde et al., 2009; 

Schlaug et al., 1995; Sluming et al., 2002). 

During the past fifty years, music therapy has been actively used and studied in the 

treatment and rehabilitation of many somatic, psychiatric, and developmental disorders. 
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Based on recent meta-analyses of music intervention studies, there is now evidence that 

music listening or therapy can relieve anxiety and pain in many chronic illnesses and 

surgical procedures (Bradt & Dileo, 2009; Cepeda et al., 2006; Galaal et al., 2007); it 

can have a positive effect on depression, anxiety, and global functioning in patients with 

severe mental disorders (e.g., depression, schizophrenia, and bipolar disorder) (Gold et 

al., 2005, 2009; Maratos et al., 2008); improve communication skills in autistic children 

(Gold et al., 2006); and also temporarily decrease agitation in dementia patients 

(Livingston et al., 2005). 

 

 

1.3.2 Use of music in neurological rehabilitation 
 

Given that music widely engages brain regions involved in emotion, cognition, and 

motor functions and that music therapy is used in many other clinical fields, it is 

surprising that the potential rehabilitative effects of musical activities in patients with 

neural damage have received relatively little scientific attention. Rhythmic Auditory 

Stimulation (RAS) and other interventions, which utilise the rhythm embedded in music 

to entrain motor behaviour, have been shown to improve the recovery of gait and arm 

movements in hemiparetic stroke patients (Jeong & Kim, 2007; Schauer & Mauritz, 

2003; Thaut et al., 1997, 2002, 2007). Similarly, training with musical instruments can 

improve the speed, precision, and smoothness of arm movements after a stroke 

(Altenmüller et al., 2009; Schneider et al., 2007, 2010). Another application of music in 

rehabilitation is Melodic Intonation Therapy (MIT) (Albert et al., 1973; Norton et al., 

2009), which uses the musical elements of speech (melody and rhythm) to train speech 

production in non-fluent aphasic patients. Although there are currently no clinical trials 

about the effectiveness of MIT, case studies suggest that MIT may improve spontaneous 

speech output, articulation, and naming in aphasic patients (Schlaug et al., 2008, 2009; 

Sparks et al., 1974; Wilson et al., 2006). Different forms of active music therapy can 

also improve mood and emotional adjustment, reduce depression and anxiety, and 

increase social interaction and participation in rehabilitation after a stroke or traumatic 

brain injury (Baker et al., 2005; Guétin et al., 2009; Magee & Davidson, 2002; Nayak et 

al., 2000; Thaut et al., 2009). 
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In summary, converging evidence suggests that specific elements of music, such as 

rhythm and melody, as well as its emotional power can be used to promote the recovery 

of motor skills, speech, and mood after neural damage. However, very little is currently 

known about the potential rehabilitative effects of music listening as an everyday leisure 

activity. This topic is addressed in Studies IV and V. 
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2 Aims of the study 
 

The present thesis explores the interplay of auditory, cognitive, and emotional factors 

related to music processing in the recovering brain after an acute MCA stroke. The 

specific purpose was to examine the relationship between music perception and non-

musical cognitive functions in acquired amusia one week after the stroke (Study I) and 

during a six-month follow-up (Study II), explore the relative contribution of auditory 

encoding deficits and non-musical cognitive deficits in acquired amusia (Study III), and 

to determine the effects of daily listening to music and speech on the recovery of 

cognitive functions and mood (Study IV) and auditory encoding (Study V). 
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3 Methods 
 

3.1 Subjects and procedure 
 

The study was carried out at the Departments of Neurology and Radiology and the 

BioMag laboratory of the Helsinki University Central Hospital (HUCH). The study was 

approved by the HUCH Ethics Committee, and all subjects signed an informed consent. 

The subjects (n = 60) were stroke patients recruited between March 2004 and May 2006 

from the HUCH Department of Neurology. All patients had been admitted to the 

hospital for treatment of an acute ischemic stroke in the left or right MCA territory. The 

following additional inclusion criteria were used: (1) no prior neurological or 

psychiatric disease, (2) no drug or alcohol abuse, (3) no hearing deficit, (4) right-

handed, (5) ≤ 75 years old, (6) Finnish-speaking, and (7) able to cooperate. As soon as 

possible after their hospitalization, the recruited patients were randomly assigned to one 

of three groups: a music group, an audio book group, or a control group (n = 20 in 

each). All patients received standard treatment for stroke in terms of medical care and 

rehabilitation. All patients underwent neuropsychological assessments and 

magnetoencephalography (MEG) measurements one week (a mean of 6.2 days, a range 

of 1–15 days), three months (a mean of 96.5 days, a range of 64–150 days), and six 

months (a mean of 186.9 days, a range of 160–229 days) post-stroke. In addition, 

magnetic resonance imaging (MRI) scans were taken within two weeks of stroke onset 

and at the six-month follow-up. All measures were performed and analysed blind to the 

group allocation of the patients. 

Of the 60 patients originally recruited for the study, five dropped out before the 

three-month follow-up (due to a false diagnosis, a new stroke, dementia, or refusal) and 

one died before the six-month follow-up. In addition, two aphasic patients were unable 

to perform the Montreal Battery of Evaluation of Amusia (MBEA) used to diagnose 

amusia at the one-week post-stroke stage. As a result, data from 53 patients (52 at the 

six-month stage) were used in the analyses of Studies I–III, and data from 55 patients 

(54 at the six-month stage) were used in the analyses of Studies IV and V. 
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3.2 Interventions 
 

As soon as possible after their hospitalization (a mean of 8.6 days, a range of 3–21 

days), all patients were contacted by a music therapist who interviewed them about their 

pre-stroke leisure activities and hobbies, such as music listening and reading, and 

informed them about the group allocation. In the music group, the therapist provided the 

patients with portable CD players and CDs of their own favourite music in any musical 

genre. Similarly, the therapist provided the audio book group with portable cassette 

players and narrated audio books on cassette selected by the patients from a collection 

of the Finnish Celia library for the visually impaired (http://www.celia.fi). The control 

group was not given any listening material. Patients in the music and audio book groups 

were trained in using the players and were instructed to listen to the material by 

themselves daily (for a minimum of one hour per day) for the following two months 

while still in the hospital or at home. During this time, the music therapist kept close 

weekly contact with the patients to encourage listening and to provide more material 

and practical aid. The nursing staff of the hospital wards and relatives of the patients 

were also informed of the study and were asked to help the patients in using the 

equipment if needed. After the two-month period, the patients were encouraged to 

continue listening to the material on their own. Patient participation was verified from 

listening diaries, which the music and audio book groups kept during the intervention 

period, and from questionnaires on leisure activities, including music and audio book 

listening, which all patients filled in after the intervention period and at the six-month 

follow-up. Analysis of the listening diaries kept by the music group patients showed 

that 62 per cent of all music selections were popular music (pop, rock, or rhythm and 

blues), 10 per cent was jazz, 8 per cent was folk music, and 20 per cent was classical or 

spiritual music. All in all, 63 per cent of the music material contained lyrics. 

 

 

3.3 Neuropsychological assessment 
 

Neuropsychological assessments were performed at the HUCH Department of 

Neurology, using an extensive neuropsychological testing battery (duration three hours) 
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that included tests of short-term and working memory, verbal memory, orientation, 

language skills, visuospatial cognition, music perception, executive functions, and 

attention (Table 1). Parallel versions of the memory tests were used in different testing 

occasions to minimise practice effects. Reaction time (RT) tests were always performed 

using the non-paretic hand. The assessments were carried out in one to three testing 

sessions in a quiet room. In analysing the data, individual test scores were used in 

Studies I–III and V, and summary scores of the tests measuring each cognitive domain 

in Study IV. In addition to the cognitive functions, mood and QOL after the stroke were 

also evaluated, using the Finnish version (Hänninen, 1989) of the Profile of Mood 

States (POMS; McNair et al., 1981) and the Stroke and Aphasia Quality Of Life Scale-

39 (SAQOL-39; Hilari et al., 2003). 

 

 
Table 1. Neuropsychological tests performed 1 week, 3 months, and 6 months post-stroke 
Test Task of the subject Reference 

Short-term and working memory 
Digit span (WMS-R) Recall number sequences Wechsler, 1987 
Memory interference Recall sets of 3 words after interfering tasks Lezak et al., 2004 
Verbal memory 
Word-list learning Recall 10 words (3 trials + delayed recall) Lezak et al., 2004 
Story recall (RBMT) Recall a narrated story (immediate + delayed) Wilson et al., 1985 
Orientation 
Orientation (RBMT)a Answer questions about time and place Wilson et al., 1985 
Language 
Repetition (BDAE) Repeat words and sentences Goodglass & Kaplan, 1983 
Reading (BDAE) Read words and sentences Goodglass & Kaplan, 1983 
Semantic fluency (CERAD) List animals within 60 seconds Morris et al., 1989 
Naming (CERAD) Name objects from line drawings Morris et al., 1989 
Short Token test Follow verbal instructions De Renzi & Faglioni, 1978 
Visuospatial cognition 
Clock task Recognise time and draw clock hands Lezak et al., 2004 
Copying designs Draw copies of 4 geometric designs Lezak et al., 2004 
Shortened BVRT Draw 5 geometric designs from memory Benton, 1974 
Balloons test Cancel targets in a visuospatial array Edgeworth et al., 1998 
Music perception 
Shortened MBEAb Detect changes in melodies Peretz et al., 2003 
Executive functions 
FAB Perform a set of short mental and motor tasks Dubois et al., 2000 
Focused attention 
Subtraction task (CS) Press key after mental subtraction Revonsuo & Portin, 1995 
Stroop task (CS) Press key in a colour response conflict situation Revonsuo & Portin, 1995 
Sustained attention 
Simple reaction time (CS) Press key when visual target appears Revonsuo & Portin, 1995 
Vigilance task (CS) Press key when target letter appears (15 min.) Revonsuo & Portin, 1995 

BDAE: Boston Diagnostic Aphasia Examination, BVRT: Benton Visual Retention Test, CERAD: The Consortium to Establish a 
Registry for Alzheimer’s Disease, CS: CogniSpeed© reaction time software, FAB: Frontal Assessment Battery, MBEA: Montreal 
Battery of Evaluation of Amusia, RBMT: Rivermead Behavioural Memory Test, WMS-R: Wechsler Memory Scale – Revised. 
a performed at the 1-week post-stroke stage (included in Study II) 
b performed at the 1-week and 3-month post-stroke stages 
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3.3.1 Assessment of music perception 
 

Music perception was evaluated one week and three months post-stroke using a 

shortened version of the MBEA (Peretz et al., 2003). The original MBEA includes six 

subtests (each with 30 items), which measure different components of music cognition 

(scale, contour, interval, rhythm, and metre perception as well as recognition memory). 

For the purpose of the present study, a shortened version of the MBEA was created 

using the same stimuli and structure as in the original test. The shortened MBEA 

included only 14 items per subtest and thereby reduced the length of the test from 1.5 

hours to 45 minutes, making it possible to include it as a part of the larger 

neuropsychological testing battery (using the full-length test would not have been 

possible owing to time constraints, patient fatigue, and the severity of cognitive deficits 

at the acute post-stroke stage). As it turned out, 53 patients were able to perform the 

Scale and Rhythm subtests, but only 44 were able to complete all six subtests one week 

after the stroke. Since the Scale and Rhythm subtests were highly correlated with most 

other subtests (r ≥ .50, p < 0.001) as well as with each other (r = .68, p < 0.001), their 

average (referred to hereafter as the MBEA average score) was used in determining the 

presence of acquired amusia. Based on the distribution of the MBEA average score 

(Figure 1) and the previously established cut-off values of the original MBEA (Peretz et 

al., 2003), the patients scoring less than 75 per cent correct were considered amusic. 

 

 

 
Figure 1. Distribution of MBEA scale and rhythm average scores across all patients (n = 53) at the one-

week post-stroke stage. Patients scoring less than 75 per cent correct were classified as amusic (grey 

bars). 
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3.4 Magnetic resonance imaging (MRI) 
 

MRIs were performed at the HUCH Department of Radiology using a 1.5 T Siemens 

Vision scanner to verify the stroke diagnosis and to evaluate the size and location of the 

lesion. Size was evaluated from fluid-attenuated inversion recovery (FLAIR) images by 

measuring the maximum diameter of the lesion, or in the case of multiple lesions, the 

sum of the diameters, in the sagittal, coronal, or horizontal plane. The following 

subcategories were used in classifying the location(s) of the lesion(s) within the 

damaged hemisphere: frontal lobe, temporal lobe, parietal lobe, insula, and subcortical. 

In addition, lesions of the AC were recorded. 

 

 

3.5 Magnetoencephalography (MEG) 
 

MEG experiments were performed at the BioMag laboratory (HUCH). In the 

experiments, an auditory oddball paradigm was used to elicit an event-related potential 

(ERP) component called the mismatch negativity (MMN). The MMN (or its magnetic 

counterpart MMNm) is a cortical response to a violation of an auditory regularity, such 

as an acoustical change in a repetitive sound stream, typically peaking about 100–200 

ms from the onset of the violation (Kujala et al., 2007; Näätänen et al., 2007). Since the 

MMN is elicited even when the subject is not attending to the stimuli (Alho et al., 1989; 

Näätänen, 1991), corresponds well with behavioural sound discrimination accuracy 

(Amenedo & Escera, 2000; Jaramillo et al., 2000; Novitski et al., 2004; Tiitinen et al., 

1994), and has good test–retest reliability (Tervaniemi et al., 1999, 2005), the MMN has 

often been used to study auditory encoding in clinical patient groups such as stroke 

patients (e.g., Csépe et al., 2001; Deouell et al., 2000; Ilvonen et al., 2001, 2003). In the 

present study, an MMN paradigm, which measures changes in two types of basic 

acoustical features (frequency and duration), was used. Previously, the same paradigm 

has been used in many non-clinical and clinical studies (e.g., Ilvonen et al., 2001, 2003; 

Tervaniemi et al., 1999, 2005). 
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3.5.1 MEG stimuli 
 

The stimuli were harmonically rich tones delivered binaurally through plastic tubes and 

earplugs at the intensity of an 80 dB sound pressure level (SPL) with a fixed 300 ms 

stimulus onset asynchrony (BrainStim software). The stimulus sequence consisted of 

standard tones (p = 0.8; 500, 1000, and 1500 Hz frequency components; 75 ms duration 

with 5 ms rise-and-fall times) and deviant tones. The deviant tones had either higher 

frequency (p = 0.1; 575, 1150, and 1725 Hz frequency components) or shorter duration 

(p = 0.1; 25 ms duration) than the standard tones. The tones were presented in random 

order, except that each deviant tone was preceded by at least two standard tones. In 

order to control for exogenous effects on the MMN, two control blocks (referred to 

hereafter as control-standards) were included (Kujala et al., 2007). In those, only the 

higher frequency and the shorter duration tones, which served as deviants in the oddball 

blocks, were presented at 100 per cent probability. The patients were instructed to 

ignore the sound stimuli and focus on watching a silent DVD without subtitles. 

 

 

3.5.2 MEG acquisition 
 

MEG was recorded in a magnetically shielded room (Euroshield Ltd., Finland) using a 

306-channel whole-head magnetometer (Elekta Neuromag Oy, Helsinki, Finland). The 

position of the subject's head relative to the sensors was determined by measuring the 

magnetic field produced by four marker coils attached to the scalp (Ahlfors & 

Ilmoniemi, 1989). The locations of the coils in relation to cardinal points on the head 

were determined with a 3D digitizer (PolhemusTM, USA). Online averaging of the MEG 

epochs (sampling rate 602 Hz, bandpass filtering 0.1–95 Hz) for the standard and 

deviant stimuli started 150 ms before and ended 350 ms after stimulus presentation. 

Epochs with MEG or electro-oculogram (EOG) deflections (recorded with electrodes 

placed above and below the left eye and lateral to the eyes) exceeding 3000 fT/cm or 

150 μV, respectively, were discarded from averaging. Recording was continued until 

approximately 100 accepted artefact-free trials for each deviant type were collected, 

which took about 10 to 15 minutes. 
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3.5.3 MEG data analysis 
 

For data visualisation, the averaged responses to the standard and deviant tones were 

first digitally filtered (bandpass 1–20 Hz) and baseline-corrected (time interval -50–0 

ms before stimulus onset) and then, in order to adjust for head position variability 

between the measurement sessions, spatially corrected using the MaxFilterTM software 

(Elekta Neuromag, Finland). MMNm responses to changes in frequency and duration 

(referred to hereafter as frequency MMNm and duration MMNm, respectively) were 

determined by subtracting the averaged responses to the control-standard tones from the 

averaged responses to the deviant tones (Kujala et al., 2007). Source modelling of the 

MMNm responses was performed from the subtraction curves by using the Minimum 

Current Estimation (MCE) method (Elekta Neuromag, Finland), which is based on 

minimum L1-norm estimates and can represent several local or distributed sources 

(Uutela et al., 1999). The MCEs were calculated separately for each individual subject 

at each measurement session (1 week, 3 months, and 6 months post-stroke). The 

averaged responses were first pre-processed by filtering with a 20 Hz low-pass digital 

filter and applying a prestimulus baseline (50 ms before stimulus onset) and a detrend 

baseline (300–350 ms from the stimulus onset) in order to eliminate the effects of 

measurement noise. A spherical head model was used in calculating MCE solutions, 

which were then projected onto an averaged brain surface. The origin of this model was 

determined individually for each subject on the basis of a 3D set of T1-weighted 

anatomical MRIs by fitting a sphere to the curvature of the outer surface of the brain. 

After calculating the MCE, the sources of the MMNm were identified in each 

hemisphere by selecting a region of interest (ROI), which produced the strongest 

response that was within the time window of 100–300 ms from tone onset and followed 

the vertical (“downward”) dipolar orientation typical of the MMNm (Alho, 1995). 

Using the graphical interface of the Neuromag MCE software, the ROI was selected 

individually for each patient at each measurement session so that it always produced the 

highest amplitude response within the hemisphere (for a case example illustrating the 

recovery-related change in the MMNm derived from the MCE analysis, see Figure 2). 

In line with the literature on the typical sources of the MMN in the normal brain (Alho, 

1995; Giard et al., 1990; Levänen et al., 1996; Molholm et al., 2005; Opitz et al., 2002; 
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Rinne et al., 2000), the ROIs were primarily located in the temporal lobe, extending in 

some cases also frontally or parietally. MMNm latency was determined from the peak 

of the response. MMNm amplitude was determined as the mean amplitude within a 50-

ms time window centred at the peak of the response. 

 

 

 
 
Figure 2. An example illustrating the typical recovery-related changes in the frequency MMNm response. 

Changes in the strength of the MMNm in the left and right hemispheres are shown with subtraction 

curves from individual MEG channels over the temporal lobes and with source modeling performed using 

the MCE method. MRI images show the location of the lesion (white area) as well as the centre 

(triangles) and the extent (ellipsoids) of the ROI used in the MCE analysis at the one-week (black), three-

month (red), and six-month (blue) post-stroke stage. 
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3.6 Statistical analyses 
 

Group differences in the demographic and clinical characteristics of the patients were 

analysed with chi-square tests, t-tests, Mann-Whitney U tests, Kruskal-Wallis tests, and 

univariate analyses of variance (ANOVA). Group differences in neuropsychological 

tests (Studies I–IV), mood and QOL questionnaires (Study IV), and MMNm parameters 

(Studies III and V) at different stages of stroke recovery were assessed with univariate 

and mixed-model ANOVAs. The Greenhouse-Geisser epsilon was used to correct for 

sphericity. Post hoc analyses were performed using Tukey’s Honestly Significant 

Difference (HSD) and Fisher’s Least Significant Difference (LSD) tests. In Study V, 

tests of the Time main effects with the Bonferroni correction for multiple comparisons 

were also used. Finally, the relationships between different neuropsychological test 

scores (Studies I, II, and IV) and neuropsychological test scores and MMNm parameters 

(Studies III and V) were analysed with Pearson and Spearman (for non-parametric 

variables) correlation coefficients. The level of statistical significance was set at p < 

0.05. All statistical analyses were performed using SPSS (version 14.0 or 15.0). Missing 

values in test scores were considered missing at random. 
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4 Results 
 

4.1 Patient characteristics 
 

The demographic and clinical characteristics of the patients are presented in Table 2 for 

Studies I–III and in Table 3 for Studies IV and V. In Studies I and II, 32 patients (60%) 

were classified as amusic and 21 as non-amusic, based on their MBEA average scores at 

the one-week post-stroke stage (Figure 1). As shown in Table 2, the patients in the 

amusic group included more females (χ2 = 3.92, p = 0.048) and had less education [t(51) 

= 3.75, p < 0.001] than those in the non-amusic group. Furthermore, the lesions were, 

on average, larger in the amusic group [t(51) = -3.53, p < 0.001] and extended more 

often to the frontal lobe (χ2 = 4.84, p = 0.028) as well as to the AC (χ2 = 9.50, p = 0.002) 

and other temporal lobe areas (χ2 = 3.63, p = 0.057). Thus, gender, education, and lesion 

size were included as covariates when comparing amusic and non-amusic patients in 

Studies I and II. 

In Study III, the patient sample was divided into five groups based on the location of 

the lesion and the presence of amusia: left hemisphere-damaged (LHD) non-amusic 

patients (n = 12), LDH amusic patients (n = 12), right hemisphere-damaged (RHD) non-

amusic patients (n = 9), RHD amusic patients whose lesion extended to the AC (“AC-

amusic”, n = 11), and RHD amusic patients whose lesion spared the AC (“non-AC-

amusic”, n = 9). Within the LHD subgroup, the amusic patients had less education 

[t(22) = 3.78, p = 0.002] and larger lesions [t(22) = -2.85, p = 0.009] and were also 

slightly older [t(22) = -2.07, p = 0.051] than the non-amusic patients. Within the RHD 

subgroup, there was a marginally significant group difference in lesion size [F(2, 26) = 

2.68, p = 0.087] with larger lesions in the AC-amusic group than in the non-amusic 

group (LSD p = 0.03). Thus, education, age, and lesion size were included as covariates 

when comparing amusic and non-amusic LHD patients, and lesion size was included as 

a covariate when comparing AC-amusic, non-AC-amusic, and non-amusic RHD 

patients in Study III. 
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In Studies IV and V, there were no statistically significant differences between the 

music, audio book, and control groups on any baseline demographic or clinical variable 

(Table 3). Furthermore, the groups were comparable in baseline cognitive performance, 

mood, and MMNm amplitudes as well as in antidepressant medication and stroke 

rehabilitation received during the follow-up (Table 3). In contrast, the music group 

listened to music more than the audio book and control groups, whereas the audio book 

group listened to audio books more than the music and control groups during the two-

month intervention period (Kruskal-Wallis χ2 = 28.24, p < 0.001 and χ2 = 39.57, p < 

0.001; HSD p < 0.001 in all comparisons), thereby indicating that the study protocol 

worked well. Notably, these group differences in listening activity were still significant 

at the six-month post-stroke stage (Kruskal-Wallis χ2 = 17.85, p < 0.001 and χ2 = 30.46, 

p < 0.001; HSD p < 0.005), suggesting that most of the music and audio group patients 

continued the listening on their own as a leisure activity even after the two-month 

intervention period. 

 

 
Table 3. Characteristics of the patients in Studies IV and V 
  Music Audio book Control 

P value  group group group 
  (n = 19) (n = 19) (n = 17) 

Demographic Age (years) 56.1 (9.6) 59.3 (8.3) 61.5 (8.0) 0.178 (F) 
(baseline) Gender (male/female) 12/7 9/10 8/9 0.531 (χ2) 

Education (years) 11.2 (4.3) 11.8 (3.0) 9.7 (3.3) 0.198 (F) 
Music listening prior to strokea 4.0 (1.5) 3.2 (1.4) 3.4 (1.6) 0.115 (K) 
Radio listening prior to strokea 4.5 (1.1) 4.1 (1.2) 4.3 (1.2) 0.560 (K) 
Reading prior to strokea 4.0 (0.9) 4.0 (0.7) 4.2 (0.9) 0.558 (K) 

Clinical Motor deficit severityb 1.4 (1.0) 1.2 (1.0) 1.4 (1.2) 0.849 (K) 
(baseline) Aphasiac (no/yes) 12/7 13/6 11/6 0.941 (χ2) 

Amusiad (no/yes) 10/8 7/11 4/13 0.153 (χ2) 
Visual neglecte (no/yes) 14/5 12/7 13/4 0.644 (χ2) 
Antidepressant medication (no/yes) 13/6 14/5 15/2 0.356 (χ2) 
Lesion laterality (left/right) 10/9 8/11 8/9 0.809 (χ2) 
Lesion sizef 5.4 (2.7) 5.0 (2.1) 5.8 (2.4) 0.543 (F) 
Frontal lesion (no/yes) 3/16 7/12 4/13 0.322 (χ2) 
Temporal lesion (no/yes) 8/11 4/15 3/14 0.195 (χ2) 
Parietal lesion (no/yes) 9/10 7/12 7/10 0.804 (χ2) 
Insular lesion (no/yes) 8/11 6/13 5/12 0.686 (χ2) 
Subcortical lesion (no/yes) 10/9 8/11 9/8 0.753 (χ2) 

Cognitive Verbal memory (max.124) 45.1 (21.2) 60.7 (21.7) 50.0 (25.6) 0.105 (F) 
domain Short-term & working memory (max. 42) 19.7 (9.4) 23.3 (7.2) 17.7 (9.5) 0.164 (F) 
(baseline)g Language (max. 162) 109.2 (36.8) 122.1 (28.3) 110.7 (31.7) 0.405 (K) 

Music cognition (max. 28) 19.9 (4.5) 19.2 (5.2) 17.1 (3.5) 0.183 (K) 
Visuospatial cognition (max. 105) 82.8 (23.4) 89.2 (13.3) 77.3 (23.7) 0.174 (K) 
Executive functions (max. 18) 12.6 (3.7) 13.9 (3.5) 12.6 (3.6) 0.344 (K) 
Focused attention (hits, max. 90)  74.8 (19.5) 84.3 (8.5) 87.3 (3.2) 0.105 (K) 
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  Music Audio book Control 
P value  group group group 

  (n = 19) (n = 19) (n = 17) 

Focused attention (RT, seconds) 3.0 (1.1) 3.4 (1.5) 3.7 (2.0) 0.797 (K) 
Sustained attention (hits, max. 100) 87.0 (23.0) 91.1 (12.1) 95.9 (7.4) 0.542 (K) 
Sustained attention (RT, seconds) 1.0 (0.3) 1.2 (0.5) 1.0 (0.2) 0.656 (K) 

POMS Tension (max. 16) 3.9 (3.4) 4.4 (3.6) 3.9 (2.7) 0.870 (F) 
subscale Depression (max. 28) 7.0 (7.3) 6.1 (6.7) 8.5 (7.4) 0.615 (F) 
(baseline) Irritability (max. 28) 4.4 (6.2) 4.7 (6.4) 4.7 (4.2) 0.987 (F) 

Vigour (max. 24) 10.7 (5.6) 9.1 (5.3) 10.1 (6.3) 0.698 (F) 
Fatigue (max. 12) 5.4 (2.9) 4.6 (2.7) 4.2 (4.1) 0.514 (F) 
Inertia (max. 12) 2.7 (2.4) 2.8 (2.8) 3.6 (3.2) 0.578 (F) 
Confusion (max. 20) 7.1 (4.0) 7.4 (4.5) 8.8 (4.8) 0.481 (F) 
Forgetfulness (max. 12) 4.3 (2.6) 4.5 (2.6) 4.8 (3.1) 0.862 (F) 

MMNm Frequency MMNm (left hemisphere)h 3.1 (1.8) 2.5 (2.0) 2.6 (1.8) 0.610 (F) 
(baseline) Frequency MMNm (right hemisphere)h 2.2 (1.1) 3.1 (2.5) 2.9 (1.8) 0.291 (F) 

Duration MMNm (left hemisphere)h 6.1 (4.1) 5.2 (3.6) 5.4 (3.1) 0.688 (F) 
Duration MMNm (right hemisphere)h 7.0 (4.5) 6.3 (5.2) 6.2 (3.1) 0.841 (F) 

Listening Music listeninga (3 m) 5.0 (0) 1.6 (1.9) 1.7 (2.2) < 0.001 (K) 
activity Music listeninga (6 m) 4.5 (0.6) 2.8 (1.7) 2.0 (1.8) < 0.001 (K) 

Audio book listeninga (3 m) 0.1 (0.2) 4.5 (1.2) 0.4 (1.2) < 0.001 (K) 
Audio book listeninga (6 m) 0.3 (1.0) 3.3 (1.8) 0.4 (1.0) < 0.001 (K) 

Rehabilitation Physical therapyi (6 m) 21.1 (34.9) 21.2 (34.4) 11.6 (19.5) 0.922 (K) 
Occupational therapyi (6 m) 10.4 (16.7) 5.7 (11.8) 7.1 (14.3) 0.753 (K) 
Speech therapyi (6 m) 8.3 (14.0) 2.9 (6.7) 5.4 (9.3) 0.476 (K) 

  Neuropsychological rehabilitationi (6 m) 4.3 (7.8) 5.2 (7.6) 2.4 (4.2) 0.849 (K) 

Data are mean (SD) unless otherwise stated. 3 m = 3 month post-stroke stage, 6 m = 6 month post-stroke stage; χ2 = chi-square 
test; F = one-way ANOVA; K = Kruskal-Wallis test; MMNm = magnetic mismatch negativity; POMS = Profile of Mood States; 
RT = reaction time. 
a Numbers denote values on a Likert scale with a range of 0 (never does) – 5 (does daily) 
b Numbers denote values on a Likert scale with a range of 0 (no deficit) – 3 (hemiplegia) 
c Classification based on BDAE Aphasia Severity Rating Scale: scores 0–4 = aphasia, score 5 = no aphasia 
d Classification based on MBEA Scale and Rhythm average score (see Methods for details) 
e Classification based on the Lateralized Inattention Index of the Balloons Test 
f Maximum lesion diameter in cm (see Methods for details) 
g Summary scores of the neuropsychological tests measuring each cognitive domain 
h MMNm source amplitude (nAm) 

i Number of therapy sessions 
 

 

 

4.2 Cognitive deficits associated with acquired amusia 
(Studies I and II) 
 

The aim of Studies I and II was to determine whether acquired amusia was associated 

with deficits in other higher cognitive functions both in early and later post-stroke 

stages. Based on their performance on the shortened version of the MBEA at the one-

week post-stroke stage, 32 patients (60%) were classified as amusic and 21 as non-

amusic. Compared to the non-amusic group, the MBEA average score was significantly 
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lower in the amusic group both one week [t(51) = 11.30, p < 0.001] and three months 

post-stroke [t(51) = 6.08, p < 0.001] (Figure 3). Using the same classification criterion, 

22 of the 53 patients (42%) remained amusic also at the three-month post-stroke stage. 

 

 

 
 

Figure 3. MBEA scale and rhythm average scores (mean ± SEM) of the amusic (n = 32) and non-amusic 

(n = 21) patient groups one week and three months post-stroke. Cut-off level (75%) shown in grey. 

 

 

Differences between the amusic and non-amusic patients in neuropsychological test 

performance at different stages of stroke recovery were evaluated using two-way 

ANOVAs with Group (amusic/non-amusic) and Lesion laterality (left/right) as factors. 

As shown in Figure 4 and Table 4, the amusic patients performed worse than the non-

amusic patients on tests of working memory and learning (digit span, memory 

interference, and word-list learning), visuospatial cognition (copying designs and 

BVRT), verbal expression (semantic fluency), and executive functioning (FAB and 

Stroop time). In addition, separate analyses within the LHD and RHD subgroups 

indicated that the amusic LHD patients had more severe deficits in verbal 

comprehension (Token test) and recall (story recall) than the non-amusic LHD patients. 

Conversely, the amusic RHD patients had more severe deficits in mental flexibility 

(phonemic fluency) and spatial attention (Balloons test part B score) than the non-

amusic RHD patients. 
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Figure 4. Cognitive performance of amusic (n = 32, dotted lines) and non-amusic (n = 21, solid lines) 

patients at different stages of stroke recovery. Neuropsychological test scores are shown separately for 

patients with left hemisphere damage (LHD) and right hemisphere damage (RHD) when there was a 

significant Group x Lesion laterality interaction in the two-way ANOVA. See Table 1 for test 

descriptions. Data are shown as mean ± SEM with the Y axis scaled to the maximum score (except in 

fluency and reaction time tests). *p < 0.05, **p < 0.01, ***p < 0.005 in the ANOVA (black: gender and 

education as covariates; grey: gender, education, and lesion size as covariates). 1 w = one week post-

stroke, 3 m = three months post-stroke, 6 m = six months post-stroke. 
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Table 4. Group differences in cognitive performance at different stages of stroke recovery 
(controlled for gender and education) 

Statisticsa 
1-week 3-month 6-month 
F value df P value F value df P value F value df P value 

Group main effect 
Digit span 10.97 46 0.002 10.24 46 0.002 7.67 46 0.008 
Memory interference 11.77 46 0.001 2.21 46 0.144 6.85 46 0.012 
Word-list learning 4.62 47 0.037 3.391 47 0.072 5.25 46 0.027 
Copying designs 5.22 46 0.027 2.35 45 0.132 3.31 46 0.076 
BVRT 3.28 47 0.077 0.12 45 0.731 10.41 46 0.002 
Semantic fluency 7.34 47 0.009 7.25 47 0.010 11.18 46 0.002 
FAB 6.05 47 0.018 1.27 46 0.266 2.33 46 0.133 
Stroop time 3.90 43 0.055 6.58 45 0.014 10.02 44 0.003 

Group x Lesion laterality interaction 
Token test 9.08 46 0.004 8.60 46 0.005 11.18 45 0.002 
Story recall (immediate) 2.83 47 0.099 1.90 47 0.174 5.20 46 0.027 
Story recall (delayed) 0.70 47 0.406 3.15 47 0.082 4.40 46 0.041 
Phonemic fluency 2.76 47 0.104 3.35 47 0.074 2.13 46 0.135 
Balloons test (part B score) 7.55 47 0.009 1.26 46 0.268 0.90 46 0.349 

Group main effect (LHD patients) 
Token test 5.82 20 0.025 7.66 20 0.012 9.86 19 0.005 
Story recall (immediate) 2.01 20 0.172 0.68 20 0.419 5.29 19 0.033 
Story recall (delayed) 0.50 20 0.487 2.92 20 0.103 4.54 19 0.046 

Group main effect (RHD patients) 
Phonemic fluency 13.32 25 0.001 9.38 25 0.005 5.79 25 0.024 
Balloons test (part B score) 4.94 25 0.036 1.28 24 0.270 1.10 25 0.305 

Note: only tests with significant (p < 0.05) or marginally significant (p < 0.1) effects are shown. See Table 1 for test descriptions. 
LHD = left hemisphere damage, RHD = right hemisphere damage 
a two-way ANOVA with Group (amusic/non-amusic) and Lesion laterality (left/right) as factors and female gender and years of 
education as covariates 
 

 

After taking into account the potentially confounding effect of larger lesion size in 

the amusic group as a covariate, the amusic group still showed significantly worse 

performance on the digit span, memory interference, and semantic fluency tests as well 

as a slightly slower performance on the Stroop test (Table 5 and Figure 4). Similarly, 

the hemisphere-specific group differences on the Token test, story recall, and phonemic 

fluency remained significant. Furthermore, no differences were observed between the 

amusic and non-amusic groups on the RBMT orientation subtest at the one-week stage 

[mean 13.94 (SD 2.05) vs. mean 15.61 (SD 0.80); F(1, 46) = 1.53, p = 0.22], further 

suggesting that the cognitive differences between the groups were not due to more 

general cognitive dysfunction or disorientation caused by extensive cerebral damage. 
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Table 5. Group differences in cognitive performance at different stages of stroke recovery 
(controlled for gender, education, and lesion size) 

Statisticsa 
1-week 3-month 6-month 
F value df P value F value df P value F value df P value 

Group main effect 
Digit span 2.35 45 0.132 4.21 45 0.046 2.56 45 0.116 
Memory interference 4.68 45 0.036 0.40 45 0.532 3.49 45 0.068 
Word-list learning 1.01 46 0.320 1.15 46 0.290 3.07 45 0.087 
Semantic fluency 1.34 46 0.252 1.97 46 0.168 6.61 45 0.013 
Stroop time 1.01 42 0.320 0.54 44 0.467 3.90 43 0.055 

Group x Lesion laterality interaction 
Token test 6.25 45 0.016 9.35 45 0.004 11.24 44 0.002 
Story recall (immediate) 2.57 46 0.116 1.67 46 0.203 5.09 45 0.029 
Story recall (delayed) 0.53 46 0.470 2.92 46 0.094 4.30 45 0.044 
Phonemic fluency 3.29 46 0.076 3.81 46 0.057 2.33 45 0.134 

Group main effect (LHD patients) 
Token test 0.79 19 0.384 1.83 19 0.192 4.75 18 0.043 
Story recall (immediate) 0.14 19 0.713 0.20 19 0.658 6.33 18 0.022 
Story recall (delayed) 0.003 19 0.961 0.54 19 0.470 5.09 18 0.037 

Group main effect (RHD patients) 
Phonemic fluency 7.31 24 0.012 4.56 24 0.043 2.13 24 0.157 

Note: only tests with significant (p < 0.05) or marginally significant (p < 0.1) effects are shown. See Table 1 for test 
descriptions. LHD = left hemisphere damage, RHD = right hemisphere damage 
a two-way ANOVA with Group (amusic/non-amusic) and Lesion laterality (left/right) as factors and female gender, years of 
education, and lesion size as covariates 

 

 

 

The potential contribution of cognitive factors to the severity of amusia at the one-

week stage was evaluated by using correlation analyses (Figure 5). Within the amusic 

group (n = 32), lower MBEA average scores correlated significantly with slower 

reaction times on the simple reaction time (Spearman r = -.63, p < 0.001), vigilance 

(Pearson r = -.63, p < 0.001), Stroop (Spearman r = -.47, p = 0.011), and mental 

subtraction tasks (Spearman r = -.46, p = 0.025) as well as with worse performance on 

the vigilance task (Spearman r = .57, p = 0.001) and the Balloons test part B (Spearman 

r = .55, p = 0.001). 
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Figure 5. Relationship between music perception (MBEA scale and rhythm average score) and other 

cognitive functions at the one-week post-stroke stage in amusic (n = 32) patients. See Table 1 for test 

descriptions. Regression lines are shown only for significant correlations. 

 

 

Correlation analyses were also performed on the change scores (3-month minus 1-

week) of the MBEA average score and other cognitive test scores (Figure 6). In all 

patients (n = 53), improvement on the MBEA correlated significantly with improvement 

on word-list learning (Pearson r = .41, p = 0.002) and delayed recall (Spearman r = .34, 

p = 0.014) as well as copying designs (Spearman r = .29, p = 0.042). Additionally, it 

correlated with Balloons test part A time (Spearman r = -.39, p = 0.005) and part B 

score (Spearman r = .36, p = 0.009) and time (Spearman r = -.35, p = 0.013). Within the 

amusic group (n = 32), similar correlations were observed for word-list learning 

(Pearson r = .46, p = 0.008) and delayed recall (Spearman r = .44, p = 0.012) as well as 

Balloons test part A time (Spearman r = -.34, p = 0.066). Interestingly, in the amusic 
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patients the improvement on the MBEA also correlated significantly with faster 

performance on the mental subtraction task (Spearman r = -.42, p = 0.044). 

 

 

 
 
Figure 6. Relationship between the recovery of music perception (MBEA scale and rhythm average 

score) and other cognitive functions during the three-month post-stroke period. Scatterplots of the change 

scores (3-month post-stroke score minus 1-week post-stroke score) are shown for amusic (n = 32, closed 

circles) and non-amusic (n = 21, open circles) patients. See Table 1 for test descriptions. Regression lines 

are shown only for significant correlations across patients (dotted lines) and within the amusic group 

(solid lines). 
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In summary, the results from Studies I and II indicate that acquired amusia is a 

common and persistent deficit following an ischemic MCA stroke, especially if the 

stroke affects the frontal and temporal brain areas. Compared to non-amusic patients, 

the amusic patients showed more severe deficits in a wide range of cognitive functions, 

including working memory, attention, and executive functions. Attention deficits were 

also widely associated with the severity of amusia, and improvement in attention and 

memory contributed to the recovery of amusia. 

 

 

4.3 Auditory and cognitive deficits associated with acquired 
amusia (Study III) 
 

The aim of Study III was to determine the relative contribution of basic auditory 

encoding and higher cognitive functions in acquired amusia as well as its dependence 

on the location of the cerebral damage. For this purpose, the patient sample was first 

divided according to the laterality of the lesion, yielding 12 amusic and 12 non-amusic 

patients with LHD and 20 amusic and 9 non-amusic patients with RHD. Comparison of 

the MBEA average scores of the amusic LHD and RHD patients using univariate and 

mixed-model ANOVAs showed that the amusic RHD patients had significantly lower 

MBEA average scores both at the one-week stage [F(1, 29) = 8.29, p = 0.007] and 

throughout the three-month period [F(1, 29) = 5.58, p = 0.025] (Figure 7). 

A correlation analysis also indicated that smaller MBEA average scores were 

associated with smaller frequency MMNm amplitudes only in the amusic RHD patients 

(Pearson r = .63, p = 0.003), whereas no positive correlations between the MBEA and 

the MMNm were observed in the amusic LHD patients (Figure 8). 
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Figure 7. MBEA average scores of the patients 

one week and three months post-stroke. Data 

(mean ± SEM) are shown for non-amusic (n = 

12) and amusic (n = 12) patients with left 

hemisphere damage (LHD) and for non-amusic 

(n = 9), non-AC-amusic (n = 9), and AC-

amusic (n = 11) patients with right hemisphere 

damage (RHD). The dotted line indicates the 

amusia cut-off level (75%). 

 

 

Figure 8. Correlation between the MBEA 

average score and the duration and frequency 

MMNm overall amplitudes (average of left and 

right hemisphere responses) one week after a 

stroke. Scatterplots are shown for non-amusic 

patients (n = 21), amusic patients with left 

hemisphere damage (LHD amusic, n = 12), and 

amusic patients with right hemisphere damage 

(RHD amusic, n = 20). Regression lines are 

shown only for statistically significant 

correlations (dotted line: all patients; solid line: 

amusic RHD patients). 
 

 

Regarding the MMNm response (Figure 9), there were significant group differences 

in the right hemisphere duration MMNm latency [F(2, 25) = 4.47, p = 0.022] and 

amplitude [F(2, 25) = 3.56, p = 0.043] in the RHD subgroup one week post-stroke. Post 
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hoc tests (LSD) indicated a longer latency and a smaller amplitude in the AC-amusic 

group than in the non-amusic (p = 0.029 and 0.017) or non-AC-amusic (p = 0.002 and 

0.017) groups. These Group effects remained significant also during the 6-month period 

[F(2, 25) = 3.5, p = 0.046 and F(2, 25) = 3.47, p = 0.047]. Additionally, significant 

Group effects were also observed in the amplitude of the duration MMNm [F(2, 25) = 

4.55, p = 0.021] and the frequency MMNm [F(2, 25) = 3.84, p = 0.035] in the left 

hemisphere during the six-month period. Post hoc tests showed that the left hemisphere 

duration MMNm amplitude was smaller in the AC-amusic group than in the non-amusic 

group (p = 0.006), and the left hemisphere frequency MMNm amplitude was smaller in 

the AC-amusic group than in both non-amusic (p = 0.014) and non-AC-amusic (p = 

0.056) groups. There were no significant differences between the non-AC-amusic and 

 

 

 
 
Figure 9. Group results of the latency and amplitude of the duration MMNm and the frequency MMNm 

in the left and right hemispheres one week (1 w), three months (3 m), and six months (6 m) post-stroke. 

Data (mean ± SEM) are shown for non-amusic (n = 12) and amusic (n = 12) patients with left hemisphere 

damage (LHD) and for non-amusic (n = 9), non-AC-amusic (n = 9), and AC-amusic (n = 11) patients 

with right hemisphere damage (RHD). *p < 0.05 in mixed-model ANOVA (Group effect). 
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non-amusic groups during the six-month follow-up (p = 0.132 – 0.937). Also the amusic 

and the non-amusic LHD patients did not differ on any MMNm parameter during the 

six-month period. 

Regarding the cognitive performance of the RHD patients (Figure 10), there were 

significant group differences in the phonemic [F(2, 25) = 6.13, p = 0.007] and semantic 

[F(2, 25) = 4.97, p = 0.015] fluency tasks as well as in the reaction times on the Stroop 

task [F(2, 22) = 5.21, p = 0.014] one week post-stroke. These group effects also 

remained significant throughout the six-month post-stroke period [F(2, 25) = 3.54, p = 

0.044; F(2, 25) = 6.3, p = 0.006; and F(2, 22) = 4.05, p = 0.032, respectively]. 

Additionally, a significant effect was observed for the digit span test [F(2, 23) = 4.21, p 

= 0.028]. Post hoc testing indicated that both the AC-amusic patients and the non-AC-

amusic patients performed significantly worse than the non-amusic patients on the digit 

span (p = 0.012 and 0.033), phonemic fluency (p = 0.023 and 0.035), and semantic 

fluency (p = 0.008 and 0.003) tests throughout the six-month period. Compared with the 

non-amusic patients, the reaction times on the Stroop task were slower in the AC-

amusic patients (p = 0.011) and, to a lesser degree, also in the non-AC-amusic patients 

(p = 0.066). A significant group difference was also observed for performance on the 

Balloons test part B at the one-week post-stroke stage [F(2, 25) = 3.59, p = 0.042], but 

this effect did not remain significant at later stages. Importantly, there were no 

significant differences between the AC-amusic patients and the non-AC-amusic patients 

in any test (p = 0.313 – 0.792). 

In summary, the results of Study III suggest that amusia caused by RHD is more 

severe than amusia caused by LHD and may be related to deficient pitch encoding in the 

brain. Damage to the right AC and other temporal and frontal structures especially leads 

to a severe and persistent form of amusia that is characterized by deficits in both low-

level auditory processing (MMNm) and higher cognitive functions such as working 

memory, cognitive flexibility, and attention. In contrast, damage to temporal and frontal 

areas that spares the AC results in a more transient form of amusia, which is related 

primarily to cognitive deficits. 
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Figure 10. Cognitive performance of right hemisphere-damaged patients with no amusia (n = 9), amusia 

without auditory cortex damage (non-AC-amusic, n = 9), and amusia with auditory cortex damage (AC-

amusic, n = 11) one week (1 w), three months (3 m), and six months (6 m) post-stroke. Data are shown as 

mean ± SEM with the y axis scaled to the maximum score (except in fluency and reaction time tests). See 

Table 1 for test descriptions. *p < 0.05 and **p < 0.01 in mixed-model ANOVA (Group effect). 

 

 



47 
 

4.4 Effects of music and speech listening on cognitive recovery 
and mood (Study IV) 
 

The aim of Study IV was to determine whether daily music or audio book listening 

could facilitate the recovery of cognitive functions and mood after an acute MCA 

stroke. Figure 11 illustrates the changes in patients in the music (n = 19), audio book (n 

= 19), and control (n = 17) groups on the ten different cognitive domains (see Methods 

for details) during the six-month follow-up. Group differences were analysed using 

mixed-model ANOVAs with Time (1 week/3 months/6 months), Group (music/audio 

book/control) and Lesion laterality (left/right) as factors. There were significant Time x 

Group interactions in the domains of verbal memory [F(4, 96) = 4.7, p = 0.002] and 

focused attention (hits) [F(3.2, 59.3) = 3.9, p = 0.012]. Post hoc testing (HSD) was 

performed on the change scores (3-month minus 1-week and 6-month minus 1-week). 

Both verbal memory and focused attention scores improved more in the music group 

than in the audio book (p = 0.006 and 0.058) and control (p = 0.049 and 0.049) groups 

during the three-month follow-up period. At the six-month post-stroke stage, verbal 

memory recovery was still better in the music group than in the audio book group (p = 

0.006), and focused attention recovery remained better in the music group than in the 

control (p = 0.008) and audio book (p = 0.016) groups. A further correlation analysis 

(Pearson) across all patients indicated that the focused attention (hits) and verbal 

memory scores were significantly correlated at the one-week (r = 0.32, p = 0.037), 

three-month (r = 0.54, p < 0.001), and six-month (r = 0.49, p < 0.001) stages. 
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Figure 11. Changes in the 10 cognitive domains (mean ± SEM) from the one-week (1 w) to the three-

month (3 m) and six-month (6 m) post-stroke stages (1-week score subtracted from the values) in the 

music, audio book, and control groups. **p < 0.01, *p < 0.05 Time x Group interaction in a mixed-model 

ANOVA. 

 

 

The Profile of Mood States (POMS) scores of the three patient groups at the three-

month and six-month post-stroke stages are shown in Figure 12. Significant group 

differences were observed in the depression [one-way ANOVA F(2, 51) = 3.7, p = 

0.031] and confusion [F(2, 51) = 3.3, p = 0.045] scores at the three-month stage with 

post hoc tests (HSD) indicating lower scores in the music group than in the control 

group (p = 0.024 and 0.061). At the six-month stage, these group differences were still 

marginally significant [F(2, 50) = 2.6, p = 0.086 and F(2, 50) = 2.9, p = 0.064]. There 

were no significant group differences in the self- or proxy-rated SAQOL-39 

questionnaire at either the three-month or the six-month stage. 
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Figure 12. Profile of Mood States (POMS) scale scores (mean ± SEM) in the music, audio book, and 

control groups at the three-month (3 m) andsix-month (6 m) post-stroke stages *p < 0.05 Group effect in 

a one-way ANOVA. 

 

 

The potential relationship between the enhanced cognitive recovery and the 

improved mood induced by listening to music was also studied by using correlation 

analyses. The improvement in verbal memory correlated significantly with reduced 

depression (Pearson r = -.61, p = 0.005) and confusion (Pearson r = -.68, p = 0.001) 

during the three-month period within the music group, but not within the audio book or 

control groups. No significant correlations were observed between the changes in mood 

and focused attention. However, when the three-month POMS depression and confusion 

scores were included as covariates in the aforementioned mixed-model ANOVAs, the 

Time x Group interactions still remained significant for both verbal memory [F(4, 96) = 

3.4, p = 0.012] and focused attention (hits) [F(3.3, 56.2) = 4.3, p = 0.007]. These results 

indicate that, although the positive effects of music on mood and cognition were clearly 

interrelated, the enhancing effect of music on cognitive recovery was not entirely 

mediated by the improved mood. 
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In summary, the results of Study IV suggest that listening to music daily during the 

first months after an MCA stroke can enhance the recovery of memory and attention as 

well as prevent a depressed and confused mood. 

 

 

4.5 Effects of music and speech listening on the recovery of 
auditory encoding (Study V) 
 

The aim of Study V was to explore whether daily music or audio book listening after an 

acute MCA stroke could have long-term effects on auditory encoding in the brain as 

indicated by the MMNm response. Group differences in the frequency and duration 

MMNm responses were analysed using mixed-model ANOVAs with Time (1 week/3 

months/6 months), Group (music/audio book/control) and Lesion laterality (left/right) as 

factors. As illustrated in Figure 13, there was a significant Time x Group interaction in 

the amplitude of the right hemisphere frequency MMNm [F(4, 96) = 2.72, p = 0.034]. 

Separate within-group analyses showed that the frequency MMNm amplitude increased 

significantly in the music [F(2, 34) = 5.81, p = 0.007] and audio book [F(1.4, 25.2) = 

8.74, p = 0.003] groups, but not in the control group [F(2, 32) = 0.25, p = 0.78] during 

the six-month post-stroke period. Also post hoc tests (LSD) verified that the frequency 

MMNm amplitude increased more in the music (p = 0.047) and audio book (p = 0.049) 

groups than in the control group from the one-week to the six-month stage. However, 

the music and audio book groups did not differ from each other (p = 0.96). 

For the duration MMNm amplitude (Figure 13), a significant Time x Group x Lesion 

laterality interaction was observed in the right hemisphere [F(4, 96) = 5.79, p < 0.001]. 

Further mixed-model ANOVAs performed separately for the LHD and RHD patients 

showed that the Time x Group interaction was significant only in RHD patients [F(4, 

52) = 4.16, p = 0.005]. Within the RHD patients, the duration MMNm increased 

significantly in the audio book group [F(2, 20) = 6.71, p = 0.006], but not in the music 

[F(2, 16) = 2.60, p = 0.11] or control [F(2, 16) = 1.18, p = 0.33] groups during the six-

month period. Post hoc tests also confirmed that the duration MMNm increased more in 

the audio book group than in the control (p = 0.006) or music (p = 0.054) groups from 

the one-week to the six-month stage. 
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Figure 13. Group results of the frequency and duration MMNm amplitudes at different stages of stroke 

recovery. Data (mean ± SEM) are shown separately for patients with left hemisphere damage (LHD) and 

right hemisphere damage (RHD). *p < 0.05, **p < 0.01, ***p < 0.005 Time main effect in a mixed-model 

ANOVA. MG = Music group; AG = Audio book group; CG = Control group. 

 

 

In order to determine whether the enhancement of the frequency MMNm was related 

to the improvement of verbal memory and focused attention induced by listening to 

music, further correlation analyses were performed. As shown in Figure 14, the 

increased MMNm responses correlated with the recovery of immediate story recall in 

the audio book group (Pearson r = .41, p = 0.043) and with the recovery of delayed 

story recall and mental subtraction both in the music group (Pearson r = .46, p = 0.027 

and Spearman r = .61, p = 0.011, respectively) and in the audio book group (Pearson r = 

.50, p = 0.015 and Spearman r = .49, p = 0.021, respectively. In contrast, no significant 

positive correlations were observed between these tests and the MMNm in the control 

group. 
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Figure 14. Correlations between the recovery of frequency MMNm, verbal memory, and focused 

attention during the six-month post-stroke period. Scatterplots of the change scores (6-month score minus 

1-week score) are shown for the music group (n = 18, circles), the audio book group (n = 19, squares), 

and the control group (n = 17, diamonds), and for the LHD (filled) and RHD (unfilled) patients. 

Regression lines are shown only for Pearson correlation coefficients. 

 

 

In summary, the results of Study V indicate that daily music or audio book listening 

during the first six months after an MCA stroke can improve early auditory encoding as 

indicated by the strengthening of the MMNm response. Specifically, both music and 

audio book listening increased the amplitude of the frequency MMNm, whereas audio 

book listening alone increased the amplitude of the duration MMNm. Moreover, the 

enhancement of the frequency MMNm was associated with the behavioural 

improvement of verbal memory and focused attention induced by listening to music. 
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5 Discussion 
 

The five studies discussed here investigated the interplay of auditory, cognitive, and 

emotional factors related to music processing in the recovering brain. Specifically, 

neuropsychological tests, mood questionnaires, and MEG measurements were 

repeatedly performed on 60 MCA stroke patients over a six-month post-stroke period to 

explore the cognitive and auditory factors associated with acquired amusia (Studies I–

III) as well as to determine the therapeutic impact of listening to music on the recovery 

of cognition and mood (Study IV) and auditory functions (Study V) utilising a 

randomised controlled trial (RCT) setting. The main findings were that amusia is a 

relatively common and persistent deficit after an ischemic MCA stroke, especially if the 

stroke affects the frontal and temporal brain areas in the right hemisphere, and that 

amusia is clearly associated with both low-level auditory processing and domain-

general cognitive deficits. Furthermore, both active music and audio book listening 

during the first post-stroke months can improve early auditory encoding in the brain, 

whereas only music listening was found to enhance the recovery of memory and 

attention as well as to prevent a negative mood after a stroke. In the following sections, 

four topics relevant to the studies will be discussed in more detail: (1) the clinical 

characteristics of amusia, (2) the neural basis of amusia, (3) the potential mechanisms 

underlying the positive effects of music on stroke recovery, and (4) the clinical 

relevance of listening to music in stroke rehabilitation. 

 

 

5.1 Clinical characteristics of amusia 
 

Although the first reported clinical observations of acquired amusia date back to the 

nineteenth century (Johnson & Graziano, 2003), the scientific study of amusia has 

mostly been limited to case reports and small (n ≤ 20) group studies. To date, Studies I–

III are the first longitudinal group studies of acquired amusia with a relatively large 

patient sample (n = 53), and thus they can provide novel information about the clinical 

characteristics of the disorder. In Studies I and II, the incidence of amusia was 60 per 

cent at the one-week post-stroke stage and 42 per cent at the three-month post-stroke 
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stage. Almost two-thirds (66%) of the amusic patients remained amusic at the three-

month stage. This is fully in line with the results of previous smaller studies, which have 

reported amusia in 69 per cent of patients five to ten days post-lesion (Schuppert et al., 

2000) and in 35 per cent of patients six months to seven years post-lesion (Ayotte et al., 

2000) after MCA damage. Together, these findings suggest that amusia is a common 

disorder in the acute post-stroke stage, and in many cases it can persist for longer 

periods of time. Clinically, this information is important because the evaluation of 

music perception is usually not part of the neuropsychological assessment (unless the 

patient happens to be a professional musician), and consequently, the presence of 

amusia may often be overlooked, with the result that the condition is underdiagnosed in 

the stroke population. 

Regarding the lateralization of the deficit, amusia was slightly more common after 

RHD (69%) than after LHD (50%), but this difference was not statistically significant. 

Previous studies have reported relatively similar incidences of amusia after LHD and 

RHD, although the exact musical functions, which are deficient, can differ (Ayotte et 

al., 2000; Liégeois-Chauvel et al., 1998; Peretz, 1990; Schuppert et al., 2000). By 

contrast, evidence from case studies suggests a preponderance of RHD among amusic 

patients (Stewart et al., 2006). However, this is likely to reflect a sampling bias caused 

by the fact that musical testing is often difficult in patients with more severe aphasia. 

The results of Study III showed that the amusic deficit caused by RHD was more severe 

than the deficit caused by LHD. Correlation analyses indicated that smaller frequency 

MMNm amplitudes correlated with lower MBEA scores in amusic patients with RHD, 

but not with LHD, suggesting that the deficit in music perception caused by RHD may 

be more closely related to deficient pitch processing in the brain. Also previous clinical 

and neuroimaging evidence suggests the importance of the right hemisphere: a deficit in 

perceiving pitch within melodies is more typically caused by RHD than by LHD 

(Ayotte et al., 2000; Liégeois-Chauvel et al., 1998; Peretz, 1990; Schuppert et al., 

2000). Similarly, comparing the pitch of two notes within a melody activates a network 

of right frontal and temporal areas in healthy subjects (e.g., Zatorre et al., 1994). 

Studies I–III also indicated that the severity and persistence of amusia depended on 

the location and extent of the cerebral damage. Across all patients, the incidence of 

frontal lobe damage as well as temporal lobe damage, especially to the auditory cortex 
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(AC), was clearly higher in the amusic group than in the non-amusic group. Within the 

RHD subgroup, the AC-amusic patients who had extensive damage covering the AC 

and other temporal and frontal lobe areas were found to perform worse on the MBEA 

throughout the three-month post-stroke period than the non-AC-amusic patients whose 

damage was to the temporal and frontal lobes, but spared the AC. Overall, fewer than 

half (44%) of the non-AC-amusic patients could still be classified as amusic at the 

three-month stage, whereas a vast majority (91%) of the AC-amusic patients remained 

amusic at the three-month stage. Thus, severe and persistent amusia seems to be caused 

especially by damage to the AC as well as to other temporal and frontal areas in the 

right hemisphere. 

 

 

5.2 Neural basis of amusia 
 

The neural basis of music processing, especially the extent to which it differs or 

overlaps with the mechanisms used in other cognitive domains, has been an area of 

active research and debate for the past twenty years (e.g., Peretz, 2006; Patel, 2008). 

According to Peretz (Peretz & Coltheart, 2003; Peretz, 2006), the observed double 

dissociations between the deficits in perceiving music (amusia), speech (aphasia), and 

environmental sounds as well as in perceiving different musical features suggest that 

“music is an autonomous function, innately constrained and made up of multiple 

modules that overlap minimally with other functions (such as language)” (Peretz, 2006, 

p. 25). This view of music as a domain-specific cognitive function that is largely 

independent of language has, however, been challenged by more recent neuroimaging 

studies of healthy subjects showing that the neural processing of linguistic and musical 

structures involves similar ERP components, such as the P600 (Patel et al., 1998) and 

early right anterior negativity (ERAN) (Maess et al., 2001), and activates overlapping 

brain regions, including Broca’s area (Brown et al., 2006; Koelsch et al., 2002; 

Tillmann et al., 2003). Similarly, clinical studies also indicate that patients with Broca’s 

aphasia are impaired and show abnormal ERAN responses in processing musical 

structures (Patel, 2005; Patel et al., 2008b; Sammler et al., in press), and conversely, 

that people with congenital amusia have deficits in phonological and phonemic 
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awareness (Jones et al., 2009b) and in speech intonation processing (Jiang et al., 2010; 

Liu et al., 2010; Patel et al., 2005, 2008). These findings suggest that the processing of 

pitch and syntax in language and music may share common neural mechanisms. 

Regarding syntax processing, it has been suggested that language and music have 

distinct and domain-specific representations, but that activating these representations as 

part of online processing draws on a common pool of limited neural resources (Shared 

syntactic integration resource hypothesis; Patel, 2003; 2008). 

The results of Studies I–III extend this ongoing discussion about the specificity vs. 

non-specificity of music to include the potential role of more domain-general cognitive 

processes, such as attention, memory, and executive functions, in music perception. 

Previously, this topic has been briefly addressed only in one small group study (Münte 

et al., 1998), which reported decreased P3a responses to environmental sounds and 

deficient performance on a behavioural auditory alertness test in amusic stroke patients. 

Compared to the non-amusic patients, the amusic patients in the present studies were 

found to perform worse on tests of working memory and learning (digit span, memory 

interference, word-list learning, and story recall), executive functioning (FAB, Stroop, 

and phonemic fluency), verbal expression and comprehension (semantic fluency and 

Token test), and visuospatial perception and attention (copying designs, BVRT, and 

Balloons test part B). Crucially, the group differences in working memory and learning, 

executive functioning, and verbal expression and comprehension remained significant 

after lesion size was statistically controlled for, suggesting that these cognitive deficits 

were not simply a by-product of the amusic patients having more extensive cerebral 

damage. Correlation analyses within the amusic group also revealed that deficits in 

attention were associated with the severity of amusia and that the improvement of 

attention and memory contributed to the recovery of amusia. 

Given the pivotal role of the prefrontal cortex in regulating attention, working 

memory, executive functions, and verbal skills (e.g., Duncan & Owen, 2000; Stuss & 

Levine, 2002), these results also concur with the MRI finding that frontal lobe lesions 

were more common in the amusic than in the non-amusic patients. Evidence from 

previous studies of acquired (Stewart et at., 2006) and congenital (Hyde et al., 2006, 

2007, 2011; Loui et al., 2009) amusia suggests that, together with the AC and other 

temporal areas, areas in the frontal lobe, especially the inferior frontal gyrus (IFG), 
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which is generally involved in processing response conflict, perceptual difficulty, 

novelty, and working memory (Duncan & Owen, 2000), form a critical node in the 

neural network underlying amusia. Collectively, these findings suggest that amusia can 

result from the dysfunction of brain regions that are not exclusively related to auditory 

encoding, but also serve other domain-general cognitive functions. 

Evidence from previous clinical and neuroimaging studies strongly indicates that the 

right AC plays an important role in musical pitch processing. Damage to the right AC 

has been shown to produce a severe deficit in discriminating between melodies (Milner, 

1962; Peretz, 1990) and perceiving pitch (Johnsrude et al., 2000; Liégeois-Chauvel et 

al., 1998; Zatorre, 1988). Likewise, neuroimaging studies of healthy subjects suggest 

that the AC and other auditory areas in the right hemisphere are active during passive 

listening to melodies (Brown & Martinez, 2007; Patterson et al., 2002; Zatorre et al., 

1994) and respond especially to small pitch changes (Hyde et al., 2008; Jamison et al., 

2006; Schönwiesner et al., 2005; Zatorre & Belin, 2001). However, when the subject 

has to perform an active task (e.g., same-different discrimination between two melodies 

or between two pitches within a single melody), a network of areas in the frontal lobe, 

including precentral, inferior frontal, and dorsolateral prefrontal cortical areas as well as 

the anterior cingulate cortex, becomes activated in addition to the temporal areas 

(Brown & Martinez, 2007; Gaab et al., 2003; Griffiths et al., 1999; Zatorre et al., 1994). 

Thus, the music perception deficit in the amusic brain, as indicated by poor performance 

on the MBEA, could in principle result either from a deficit in auditory encoding caused 

by damage to the AC or other temporal areas or from a deficit in the more cognitive, 

conscious processing of the auditory information caused by frontal lobe damage. 

Study III showed that the amusic patients who had extensive RHD involving the AC 

and other temporal and frontal areas had smaller and slower MMNm responses than the 

non-amusic RHD patients or the amusic RHD patients whose lesions included frontal 

and temporal areas, but spared the AC. In contrast, both the AC-amusic patients and the 

non-AC-amusic patients performed worse than the non-amusic patients on the digit 

span, verbal fluency, and Stroop tasks. These findings suggest that cognitive deficits in 

attention, working memory, and executive functions are the primary mechanism 

underlying amusia without AC damage, whereas amusia with AC damage is associated 

with both auditory and cognitive deficits. 
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5.3 Potential mechanisms underlying the positive effect of 
music on stroke recovery 
 

The main findings of Studies IV and V were that listening to music daily during the 

early post-stroke stage improved the recovery of verbal memory and focused attention 

as well as prevented depressed and confused mood, whereas both music and audio book 

listening enhanced auditory sensory memory during a six-month follow-up. A parallel 

qualitative study, in which the music and audio group patients were interviewed about 

their subjective experiences after the two-month intervention period, yielded similar 

results: music listening was specifically associated with better relaxation, increased 

physical activity, and improved mood, while both music and audio book listening 

provided refreshing stimulation and evoked thoughts and memories of the past 

(Forsblom et al., 2009, 2010). These findings are discussed next in the context of the 

following three mechanisms potentially underlying the effects: (1) improved mood and 

arousal, (2) reduced stress, and (3) enhanced neural plasticity. 

 

Improved mood and arousal. Accumulating evidence from studies of both healthy 

subjects and various clinical patient groups indicates that listening to music has a 

positive influence on mood and cognitive performance (e.g., Abikoff et al., 1996; Beh & 

Hirst, 1999; Chabris, 1999; Foster & Valentine, 2001, Hallam et al., 2002; Juslin & 

Laukka, 2004; Mammarella et al., 2007; Schellenberg et al., 2007; Soto et al., 2009; 

Thompson et al., 2001). The reported beneficial effects of music on cognition are 

transient and span many different cognitive domains, including speed of information 

processing, reasoning, attention, and memory, suggesting that the short-term effect of 

music on cognition is more general than specific to any one domain. According to the 

Arousal and mood hypothesis (Thompson et al., 2001), this effect can be attributed to 

the positive affect and the heightened arousal induced by music, which in turn can lead 

to improved cognitive performance. 

Recent animal studies and functional neuroimaging studies have shed some light on 

the neural mechanisms that mediate these effects. Listening to pleasant music activates 

an interconnected network of subcortical and cortical brain regions, which includes the 

amygdala, the hippocampus, the parahippocampal gyrus, the nucleus accumbens (NAc), 
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the ventral tegmental area (VTA), the anterior cingulate, and the orbitofrontal cortex 

(e.g., Baumgartner et al., 2006; Blood et al., 1999; Blood & Zatorre, 2001; Brown et al., 

2004; Eldar et al., 2007; Koelsch, 2010; Koelsch et al., 2006; Menon & Levitin, 2005; 

Mitterschiffthaler et al., 2007). VTA produces dopamine (DA) and has direct 

projections to the locus ceruleus, the NAc, the amygdala, the hippocampus, the anterior 

cingulate, and the prefrontal cortex (Ashby et al., 1999). Together, this dopaminergic 

mesocorticolimbic system is crucial to mediating arousal, emotion, reward, motivation, 

memory, attention, and executive functioning (Ashby et al., 1999). 

In rats, listening to music has been shown to increase dopaminergic 

neurotransmission and neostriatal DA concentrations (Sutoo & Akiama, 2004) as well 

as to enhance the effect of MDMA (ecstasy) on DA levels in the NAc (Feduccia & 

Duvauchelle, 2008). In humans, DA has been found to mediate many cognitive 

functions, including working memory, attention, and executive functioning (Nieoullon, 

2002). Pharmacological studies have shown that DA agonists as well as stimulants that 

increase DA levels in the brain can improve working memory and executive functions 

in healthy subjects (Mehta & Riedel, 2006) and in patients with brain damage (Bales et 

al., 2009). Thus, it is possible that the repeated activation of the dopaminergic 

mesocorticolimbic system induced by listening to one’s favourite music on a daily basis 

may have contributed to the enhanced cognitive recovery of the music group in the 

present study. Furthermore, the DA system has also been shown to regulate motor 

activity, motivation, and reward behaviour (Knab & Lightfoot, 2010), results that may 

be related to the self-reported increased physical activity (e.g., doing housework and 

dancing) in the music group (Forsblom et al., 2009, 2010). 

Correlation analyses indicated that the positive changes in mood and cognition were 

clearly interrelated in the music listeners. This result is in line with previous clinical 

studies showing that early cognitive impairment can predict depression and quality of 

life (QOL) six to ten months after a stroke (Nys et al., 2006) and, conversely, that 

patients with psychiatric symptoms show more cognitive decline six months post-stroke 

(Rasquin et al., 2005). Thus, it is possible that, in the long run, daily listening to music 

could promote cognitive recovery by preventing depression. Previous research on the 

effectiveness of active music therapy has suggested that it can improve mood and 

emotional adjustment, reduce depression and anxiety as well as increase social 
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interaction and participation in rehabilitation after a stroke or traumatic brain injury 

(Baker et al., 2005; Guétin et al., 2009; Magee & Davidson, 2002; Nayak et al., 2000; 

Thaut et al., 2009). Although both cognitive deficits and mood disorders are known to 

be important factors limiting QOL after a stroke (Carod-Artal & Edigo, 2009), there 

were no significant effects of music on self- or proxy-reported QOL in the present 

study, suggesting that the effect of music listening on everyday functions (e.g., physical 

and psychosocial activities) is clearly limited. 

 

Reduced stress. Another possible set of mechanisms underlying the positive effect of 

music on cognition involves the neuroendocrine system (Patel, 2010). As noted earlier, 

music has a strong influence on the limbic system (Koelsch, 2010), including the 

hypothalamus, which regulates the release of a broad range of hormones (e.g., oxytocin 

and cortisol). Cortisol, a glucocorticoid hormone secreted by the adrenal glands in 

response to stress, is particularly relevant with respect to music, since previous studies 

have shown that listening to music can transiently reduce cortisol levels, both after 

experimentally-induced stress (Khalfa et al., 2003; Kreutz et al., 2004; Suda et al., 2008, 

Pelletier, 2004) and after stress induced by a medical procedure (Leardi et al., 2007; 

Nilsson, 2009; Nilsson et al., 2005; Schneider et al., 2001). A stroke is a major life-

changing event that can cause considerable anxiety and stress (Ferro et al., 2009). In the 

months following a stroke, patients typically have chronically elevated cortisol levels 

(hypercortisolism), which is associated with poor cognitive function and depression 

(Åström et al., 1993; Franceschini et al., 2001; Lee et al., 2007). Prolonged stress can 

also have maladaptive effects on neural plasticity, causing, for example, dendritic 

atrophy, excitatory synapse loss, and decreased neurogenesis in the hippocampus 

(Radley & Morrison, 2005). The qualitative results of the parallel interview study 

(Forsblom et al., 2009, 2010) indicated that the patients felt that listening to music 

helped them to relax better, especially in the early post-stroke stage, suggesting that 

listening to music could alleviate the anxiety and psychological stress experienced by 

the patients. Thus, reduced stress and cortisol levels may be one factor underlying the 

enhancing effect of music on cognitive recovery. 
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Enhanced neural plasticity. Evidence from neuroimaging studies indicates that music 

listening triggers an array of auditory perceptual, cognitive, emotional, and motor 

processes involving the activity of a widespread, mostly bilateral network of temporal, 

prefrontal, motor, parietal, cerebellar, and subcortical areas (e.g., Belin et al., 2000; 

Blood & Zatorre, 2001; Brown & Martinez, 2007; Grahn & Brett, 2007; Hyde et al., 

2008; Janata et al., 2002b; Koelsch, 2010; Koelsch & Siebel, 2005; Platel et al., 2003; 

Popescu et al., 2004; Zatorre, 2005; Zatorre et al., 1994; 2002). A similar, but more left-

lateralized and cortically located network of temporal, prefrontal, premotor, and parietal 

areas is also activated when a person listens to narrated stories (Lindenberg & Scheef, 

2007; Mazoyer et al., 1993; Papathanassiou et al., 2000; Schmithorst et al., 2006; 

Tzourio-Mazoyer et al., 2004). Hemodynamic studies, which have used transcranial 

Doppler sonography (TCD), have demonstrated that listening to music or speech can 

temporarily increase cerebral blood flow, especially in the MCA in healthy subjects 

(Carod-Artal et al., 2004; Matteis et al., 1997; Vollmer-Haase et al., 1998) and possibly 

also in stroke patients (Antić et al., 2008). Taken together, this evidence suggests that 

listening to music or narrated stories after an MCA territory stroke increases the neural 

activity of the areas surrounding the ischemic lesion or in the contralesional hemisphere, 

potentially enhancing the adaptive plastic changes, which typically occur in these areas 

in the subacute post-stroke phase (Kreisel et al., 2006). Thus, the neural stimulation 

provided by the listening may have contributed to the recovery of cognitive functions 

and MMNm observed in the present studies. 

Evidence supporting the notion that auditory stimuli may enhance neural plasticity in 

the recovering brain comes from animal studies using the environmental enrichment 

(EE) paradigm. After an ischemic stroke, EE can improve motor and cognitive recovery 

and induce many neuroplastic changes, such as decreased infarct volume and increased 

neurotrophic factor levels and neurogenesis (Biernaskie & Corbett, 2001; Dahlqvist et 

al., 1999, 2004; Gobbo & O’Mara, 2004; Hicks et al., 2002; Johansson, 1996; 

Johansson & Belichenko, 2002; Komitova et al., 2002, 2005; Risedal et al., 2002). 

These changes are even more pronounced if the EE also contains multimodal sensory 

stimuli, including sound stimuli (Maegele et al., 2005a, 2005b). The effect of a purely 

auditory EE on stroke recovery has not been studied previously, but developmental 

studies suggest that it can enhance the structure and function of the AC (Bose et al., 
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2010; Engineer et al., 2004; Nichols et al., 2007; Percaccio et al., 2005; Xu et al., 2007, 

2009) and improve learning and memory (Angelucci et al., 2007a; Chikahisa et al., 

2006; Kim et al., 2006). Crucially, in the developing brain an auditory EE has also been 

observed to enhance neurogenesis and neurotrophin production (Angelucci et al., 2007a, 

2007b; Chaudhury & Wadhwa, 2009; Chikahisa et al., 2006; Kim et al., 2006), both of 

which are important plasticity mechanisms after a stroke as well (Jin et al., 2006; 

Schäbitz et al., 2007). 

One neural plasticity mechanism that may also account for the effects of listening on 

both cognition and MMNm is enhanced glutamatergic neurotransmission. Glutamate is 

the primary excitatory amino transmitter in the cortex and plays a critical role in 

learning and memory through its action at NMDA receptors (Cotman et al., 1988). 

Pharmacological studies have demonstrated that NMDA function is important for MMN 

generation in animals (Ehrlichman et al., 2008; Javitt et al., 1996; Tikhonravov et al., 

2008) and humans (Korostenskaja et al., 2007; Kreitschmann-Andremahr et al., 2001; 

Umbricht et al., 2002). Suggesting a potential link to glutamate functioning, the MMN 

has also been shown to correlate with working memory, learning, executive functioning, 

and verbal skills in both children and adults (Ahveninen et al., 1999; Baldeweg et al., 

2004; Ilvonen et al. 2003; Jansson-Verkasalo et al., 2004; Kawabuko et al., 2006; Kiang 

et al., 2007; Kujala et al., 2001; Mikkola et al., 2007; Pettigrew et al., 2005; Toyomaki 

et al., 2008). Animal studies have demonstrated that an auditory EE can enhance the 

expression and receptor function of glutamate in the AC and the anterior cingulate 

(Nichols et al., 2007; Xu et al., 2007), whereas auditory deprivation can decrease 

NMDA receptor expression levels in the AC (Bi et al., 2006). Since changes in 

glutamate transmission also parallel the recovery from brain infarction (Centonze et al., 

2007; Keyvani & Schallert, 2002), glutamate may therefore be one crucial mechanism 

underlying the positive effect of music and speech on the recovery of memory and 

auditory encoding. 

 

These suggested mechanisms are by no means mutually exclusive and most likely work 

in concert to bring about the environment-induced enhancement of recovery observed in 

the present studies. Moreover, it seems that no single mechanism can account for the 

effects. For example, including mood as a covariate did not eliminate the group 
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differences in cognitive recovery, suggesting that improvement in mood alone cannot 

account for the positive effect of music listening on cognitive recovery. Owing to the 

relative novelty of the research field, however, there is currently no direct experimental 

evidence to support these hypothesised mechanisms. Thus, more studies utilising 

physiological measures (e.g., heart rate, blood pressure), neuroendocrinological markers 

(e.g., cortisol), and structural and functional neuroimaging methods (e.g., fMRI, PET) in 

a joint manner are clearly needed in order to verify the effect of music listening on 

stroke recovery and to understand better its neural basis. 

 

 

5.4 Clinical relevance of music listening in stroke rehabilitation 
 

During the first weeks after a stroke, the brain undergoes dramatic plastic changes, 

which, according to animal EE studies, can be enhanced by stimulation provided by the 

recovery environment (Johansson, 2004; Nithianantharajah & Hannan, 2006). In the 

human stroke rehabilitation setting, previous research has primarily been directed to 

determining the impact of specific care units (Stroke Unit Trialists’ Collaboration, 

2007), pharmacotherapy interventions (Wardlaw et al., 2009), and rehabilitation 

methods (Bhogal et al., 2003; Cicerone et al., 2005; Langhorne et al., 2009). Thus, very 

little is currently known about the potential effects of everyday leisure activities or the 

recovery environment in general. 

Owing to sensory, motor, and cognitive deficits, the ability of stroke patients to 

engage in their prior hobbies or activities is often greatly reduced. Decreased 

participation in hobbies and leisure activities has been documented in as many as 50–83 

per cent of stroke patients (Daniel et al., 2009). Especially within the first post-stroke 

weeks, patients spend over 50 per cent of their day lying alone and inactive in their beds 

(Bernhardt et al., 2004; De Wit et al., 2005), even though from a plasticity standpoint 

this time-window would be ideal for rehabilitative training (Witte, 1998; Kreisel et al., 

2006). Owing to limited mobilization and physical complications of the patients or lack 

of staff resources, active rehabilitation (e.g., physical or occupational therapy, speech 

therapy, or cognitive rehabilitation) is usually not possible in the early post-stroke stage. 

Since many common pastimes, such as reading and watching TV, are also often 
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hampered by the verbal or visual deficits caused by the stroke, the patients are usually 

left with very little to do during the first weeks in the hospital. 

The results of the present thesis suggest that after an acute stroke, listening to music 

is a beneficial leisure activity that can provide an individually targeted, easy-to-conduct, 

and inexpensive way to help the patients cope with the adverse emotional and 

psychological impacts of stroke as well as to support their cognitive recovery. As with 

other rehabilitation interventions, early timing (Diserens & Rothacher, 2005) and high 

intensity (Kwakkel et al., 1997) are likely to be of the essence for music listening. Thus, 

starting a listening regime within the first week of stroke onset and continuing daily (for 

at least one hour per day) are likely to yield the best gains for recovery. As for the type 

of music, the patients’ favourite music would seem to be the best choice, given its 

familiarity and its capacity to evoke emotions and episodic memories. Musical lyrics 

may also be an important factor, especially for aphasic patients, since listening to songs 

activates bilateral temporal and frontal areas more than listening to speech (Callan et al., 

2006; Schön et al., 2010). More studies are needed to determine the specific impacts of 

different types of music as well as the optimal timing and intensity for using music to 

aid recovery after a stroke. 

 

 

5.5 Conclusions 
 

During the past twenty years, there has been increasing scientific interest in the neural 

basis and potential therapeutic effects of music (e.g., Koelsch 2010; Koelsch & Siebel, 

2005; Patel, 2008; Peretz & Zatorre, 2005; Stewart et al., 2006). At the neural level, the 

relationships between music and other cognitive processes, such as language, memory 

and attention, are still under debate. This thesis suggests that after a stroke, the inability 

to perceive music, as indicated by poor performance on the MBEA, depends on the 

functioning of a frontotemporal neural network and, consequently, is associated with 

deficits in attention, working memory, executive functioning, and verbal skills (Studies 

I and II). Additionally, deficits in low-level auditory encoding, as indicated by 

diminished MMNm responses, contribute to amusia if the damaged area includes the 
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AC (Study III). Thus, musical, auditory, and cognitive functions seem to be closely 

related in the recovering brain. 

Contrary to earlier beliefs, the results here suggest, that clinically amusia is a 

common and persistent deficit after an ischemic MCA stroke and thus should be 

seriously taken into account when assessing the cognitive profile of stroke patients 

(Studies I and II). Finally, the results indicate that daily listening to music during the 

early post-stroke stage can improve the recovery of verbal memory and focused 

attention as well as prevent a depressed and confused mood (Study IV), while both 

music and audio book listening can enhance auditory sensory memory (Study V). These 

findings encourage the use of listening to music as a rehabilitative leisure activity after a 

stroke and suggest that the auditory environment can induce long-term plastic changes 

in the recovering brain. 
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